

Welcome to SheetSync!

A python library to create, update and delete rows of data in a google spreadsheet.

	1. Getting Started
	1.1. Installation

	1.2. Setting up OAuth 2.0 access
	1.2.1. New Project

	1.2.2. Create a new Client ID

	1.2.3. Enable Drive API

	1.3. Injecting data to a Google sheet

	2. Tutorial
	2.1. Customizing the spreadsheet
	2.1.1. Key Column Headers

	2.1.2. Templates for Formatting

	2.1.3. Folders

	2.1.4. Formulas

	2.1.5. Synchronizing data

	2.2. Taking backups

	2.3. Debugging

	3. The sheetsync package API
	3.1. Sheet

	3.2. UpdateResults

	3.3. ia_credentials_helper

1. Getting Started

SheetSync is a python library to create, update and delete rows of data in a google spreadsheet.

1.1. Installation

Install from PyPi using pip [http://www.pip-installer.org/en/latest/]:

pip install sheetsync

Or you can clone the git repo and install from the code:

git clone git@github.com:mbrenig/sheetsync.git LocalSheetSync
pip install LocalSheetSync

Note, you may need to run the commands above with sudo.

1.2. Setting up OAuth 2.0 access

In May 2015 Google retired old API access methods [http://googledevelopers.blogspot.co.uk/2015/04/a-final-farewell-to-clientlogin-oauth.html], and recommended users migrate to
OAuth 2.0 [https://developers.google.com/identity/protocols/OAuth2?utm_campaign=oauth-415&utm_source=gdbc&utm_medium=blog]. OAuth2.0 is better for security and privacy
but it means getting started with sheetsync involves a bit of extra configuration.

The steps below (written in 2015) guide you through API configuration and a simple script to manipulate a Google sheet. They will take around 20 minutes to complete.

Warning

This tutorial is designed to get you using sheetsync quickly. It is insecure because your client secret is stored in plain text. If someone obtains your client secret, they could use it to consume your quota, incur charges or request access to user data.

Before using sheetsync in production you should learn about Client IDs [https://developers.google.com/api-client-library/python/guide/aaa_oauth] and replace the ia_credentials_helper() function with your own function that manages authentication and creates an OAuth2Credentials [https://google-api-python-client.googlecode.com/hg/docs/epy/oauth2client.client.OAuth2Credentials-class.html] object.

1.2.1. New Project

Start by setting up a new project via Google’s developer console, console.developers.google.com [https://console.developers.google.com]:

[image: Create a project]
Pick a project name:

[image: Pick a name]

1.2.2. Create a new Client ID

From your new project’s configuration panel, in the console, select “Credentials”
from the lefthand menu and then “Create new Client ID” for OAuth:

[image: _images/03.CredentialsForProject.jpg]
For this tutorial, choose the type Installed application:

[image: _images/04.CreateClientID.jpg]
The consent screen is what users will see when the sheetsync script asks for
access to their Google drive.

[image: _images/05.ConfigureConsentScreen.jpg]
Finally select “Other” for Installed application type:

[image: _images/06.FinishCreation.jpg]
The steps above should have got to you a page that displays your new Client ID and
Client Secret. For example:

[image: _images/07.Secret!.jpg]

1.2.3. Enable Drive API

Next we need to associate Drive API [https://developers.google.com/drive/] access with these OAuth credentials. From the lefthand menu choose API and search for Drive:

[image: _images/08.FindDriveAPI.jpg]
Click through to the Drive API and “Enable API”:

[image: _images/09.EnableDriveAPI.jpg]
You’re now ready to start using this Client ID information with sheetsync.

1.3. Injecting data to a Google sheet

sheetsync works with data in a dictionary of dictionaries. Each row is
represented by a dictionary, and these are themselves stored in a dictionary
indexed by a row-specific key. For example this dictionary represents two rows
of data each with columns “Color” and “Performer”:

	1
2
3

	data = { "Kermit": {"Color" : "Green", "Performer" : "Jim Henson"},
 "Miss Piggy" : {"Color" : "Pink", "Performer" : "Frank Oz"}
 }

To insert this data (add or update rows) into a target
worksheet in a google spreadsheet doc use this code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	import logging
from sheetsync import Sheet, ia_credentials_helper
Turn on logging so you can see what sheetsync is doing.
logging.getLogger('sheetsync').setLevel(logging.DEBUG)
logging.basicConfig()

Create OAuth2 credentials, or reload them from a local cache file.
CLIENT_ID = '171566521677-3ppd15g5u4lv93van0eri4tbk4fmaq2c.apps.googleusercontent.com'
CLIENT_SECRET = 'QJN*****************hk-i'
creds = ia_credentials_helper(CLIENT_ID, CLIENT_SECRET,
 credentials_cache_file='cred_cache.json')

data = { "Kermit": {"Color" : "Green", "Performer" : "Jim Henson"},
 "Miss Piggy" : {"Color" : "Pink", "Performer" : "Frank Oz"} }

Find or create a spreadsheet, then inject data.
target = Sheet(credentials=creds, document_name="sheetsync Getting Started")
target.inject(data)
print "Spreadsheet created here: %s" % target.document_href

The first part of this script (lines 1-11) imports the Sheet object and
ia_credentials_helper function. This function is included to help you quickly
generate an OAuth2Credentials [https://google-api-python-client.googlecode.com/hg/docs/epy/oauth2client.client.OAuth2Credentials-class.html] object using your Client ID and Secret.

When the ia_credentials_helper function runs it will print a URL to allow
you to grant the script access, like this:

[image: _images/10.TheInstalledApplicationCredentialsHelper.jpg]
From this URL (you may have to log in to a Google Drive account) you will be
prompted to give the API Client you set up in section 1.2, access to your documents:

[image: _images/11.GrantPermission.jpg]
After accepting you’re presented with a verification code that you must paste back into the
script:

[image: _images/12.CopyAccessCode.jpg]
At this point ia_credentials_helper also caches the credentials - so that
you don’t need to repeat this step on future runs of the script.

The later code defines the table data (lines 13,14) then line 17
creates a new spreadsheet document in your google drive.
Finaly line 18 inserts the data resulting in:

[image: _images/Sheet1.png]
It also prints the URL of the google sheet so you can view the result for
yourself.

Since you’ll probably want to update this spreadsheet, take note of the
spreadsheet’s document key from the URL:

[image: _images/URL.png]
and then you can inject new data to the existing document by initializing the sheet as follows:

	1
2
3

	target = Sheet(credentials=creds,
 document_key="1bnieREGAyXZ2TnhXgYrlacCIY09Q2IfGXNZbjsvj82M",
 worksheet_name="Sheet1")

Note

The ‘inject’ method only adds or updates rows. If you want to delete rows from the spreadsheet to keep it in sync with the input data then use the ‘sync’ method described in the next section.

2. Tutorial

Let’s extend the example from Getting Started, and use more of sheetsync’s features.
(With apologies in advance to the Muppets involved).

2.1. Customizing the spreadsheet

2.1.1. Key Column Headers

The first thing we’ll fix is that top-left cell with the value ‘Key’. The keys
for our data are Names and the column header should reflect that. This is easy
enough to do with the key_column_headers field:

 target = sheetsync.Sheet(credentials=creds,
 document_name="Muppet Show Tonight",
 key_column_headers=["Name"])

2.1.2. Templates for Formatting

Google’s spreadsheet API doesn’t currently allow control over
cell formatting, but you can specify a template spreadsheet that has the
formatting you want - and use sheetsync to add data to a copy of the template.
Here’s a template spreadsheet created to keep my list of Muppets:

[image: _images/Template01.png]
https://docs.google.com/spreadsheets/d/1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U/edit#gid=0

The template’s document key is 1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U we can instruct
sheetsync to use this as a basis for the new spreadsheet it creates as follows:

	1
2
3
4
5

	 target = sheetsync.Sheet(credentials=creds,
 document_name="Muppet Show Tonight",
 worksheet_name="Muppets",
 template_key="1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U",
 key_column_headers=["Name"])

Note that I’ve also specified the worksheet name in that example with the
‘worksheet_name’ parameter.

2.1.3. Folders

If you use folders to organize your Google drive, you can specify the folder a
new spreadsheet will be created in. Use either the ‘folder_name’ or ‘folder_key’ parameters.
Here for example I have a folder with the key 0B8rRHMfAlOZrWUw4LUhZejk4c0E:

[image: _images/FolderURL.png]
and instruct sheetsync to move the new spreadsheet into that folder with this
code:

	1
2
3
4
5
6

	target = sheetsync.Sheet(credentials=creds,
 document_name="Muppet Show Tonight",
 worksheet_name="Muppets",
 key_column_headers=["Name"],
 template_key="1J__SpvQvI9S4bW-BkA0PmPykH8VVT9bdoWZ-AW7V_0U",
 folder_key="0B8rRHMfAlOZrWUw4LUhZejk4c0E")

2.1.4. Formulas

Often you’ll need some columns to contain formulas that depend on data in other columns, and when new rows are inserted by sheetsync, ideally you’d want those formulas to be added too.
When initializing the spreadsheet you can specify a row (typically above the
header row) that contains reference formulas. Best illustrated by this example

[image: _images/MuppetsFormulas.png]
https://docs.google.com/spreadsheets/d/1tn-lGqGHDrVbnW2PRvwie4LMmC9ZgYHWlbyTjCvwru8/edit#gid=0

Here row 2 contains formulas (Written out in row 1 for readability) that
reference hidden columns. Row 3 contains the headers.

When new rows are added to this spreadsheet the ‘Photo’ and ‘Muppet’ columns will be populated with a formula similar to the reference row. Here are the parameters to set this up:

 target = sheetsync.Sheet(credentials=creds,
 document_key="1tn-lGqGHDrVbnW2PRvwie4LMmC9ZgYHWlbyTjCvwru8",
 worksheet_name="Muppets",
 key_column_headers=["Name"],
 header_row_ix=3,
 formula_ref_row_ix=2)

 animal = {'Animal': {'Color': 'Red',
 'Image URL': 'http://upload.wikimedia.org/wikipedia/en/e/e7/Animal_%28Muppet%29.jpg',
 'Performer': 'Frank Oz',
 'Wikipedia': 'http://en.wikipedia.org/wiki/Animal_(Muppet)'} }

 target.inject(animal)

2.1.5. Synchronizing data

Until now all examples have used the ‘inject’ method to add data into a spreadsheet or
update existing rows. As the name suggests, sheetsync also has a ‘sync’ method which
will make sure the rows in the spreadsheet match the rows passed to the
function. This might require that rows are deleted from the spreadsheet.

The default behavior is to not actually delete rows, but instead flag them for
deletion with the text “(DELETED)” being appended to the values of the Key columns on rows to delete. This is to help recovery from accidental deletions. Full row deletion can be enabled by passing the flag_deletes argument as follows:

 target = sheetsync.Sheet(credentials=creds,
 document_key="1J__SABCD1234bW-ABCD1234kH8VABCD1234-AW7V_0U",
 worksheet_name="Muppets",
 key_column_headers=["Name"],
 flag_deletes=False)

 new_list = { 'Kermit' : { 'Color' : 'Green',
 'Performer' : 'Jim Henson' },
 'Fozzie Bear' : {'Color' : 'Orange' } }

 target.sync(new_list)

With rows for Miss Piggy and Kermit already in the spreadsheet, the sync
function (in the example above) would remove Miss Piggy and add Fozzie Bear.

2.2. Taking backups

Warning

The sync function could delete a lot of data from your worksheet if the Key
values get corrupted somehow. You should use the backup function to protect
yourself from errors like this.

Some simple mistakes can cause bad results. For instance, if the key column headers on the spreadsheet don’t match those passed to the Sheet constructor the sync method will delete all the existing rows and add new ones! You could protect rows and ranges to guard against this, but perhaps the simplest way to mitigate the risk is by creating a backup of your spreadsheet before syncing data. Here’s an example:

target.backup("Backup of my important sheet. 16th June",
 folder_name = "sheetsync Backups.")

This code would take a copy of the entire spreadsheet that the Sheet instance ‘target’
belongs to, name it “Backup of my important sheet. 16th June”, and move it to a
folder named “sheetsync Backups.”.

2.3. Debugging

sheetsync uses the standard python logging module, the easiest way to find
out what’s going on under the covers is to turn on all logging:

import sheetsync
import logging
Set all loggers to DEBUG level..
logging.getLogger('').setLevel(logging.DEBUG)
Register the default log handler to send logs to console..
logging.basicConfig()

If you find issues please raise them on github [http://github.com/mbrenig/sheetsync/issues], and if you have fixes please
submit pull requests. Thanks!

3. The sheetsync package API

3.1. Sheet

	
class sheetsync.Sheet(credentials=None, document_key=None, document_name=None, worksheet_name=None, key_column_headers=None, header_row_ix=1, formula_ref_row_ix=None, flag_deletes=True, protected_fields=None, template_key=None, template_name=None, folder_key=None, folder_name=None)

	Represents a single worksheet within a google spreadsheet.

This class tracks the google connection, the reference to the worksheet, as
well as options controlling the structure of the data in the worksheet.. for
.. rubric:: example

	Which row is used as the table header

	What header names should be used for the key column(s)

	Whether some columns are protected from overwriting

	
document_key

	str – The spreadsheet’s document key assigned by google
drive. If you are using sheetsync to create a spreadsheet then use
this attribute to saved the document_key, and make sure you pass
it as a parameter in subsequent calls to __init__

	
document_name

	str – The title of the google spreadsheet document

	
document_href

	str – The HTML href for the google spreadsheet document

	
__init__(credentials=None, document_key=None, document_name=None, worksheet_name=None, key_column_headers=None, header_row_ix=1, formula_ref_row_ix=None, flag_deletes=True, protected_fields=None, template_key=None, template_name=None, folder_key=None, folder_name=None)

	Creates a worksheet object (also creating a new Google sheet doc if required)

	Parameters:	
	credentials (OAuth2Credentials) – Credentials object returned by the
google authorization server. Described in detail in this article:
https://developers.google.com/api-client-library/python/guide/aaa_oauth
For testing and development consider using the ia_credentials_helper
helper function

	document_key (Optional) (str) – Document key for the existing spreadsheet to
sync data to. More info here:
https://productforums.google.com/forum/#!topic/docs/XPOR9bTTS50
If this is not provided sheetsync will use document_name to try and
find the correct spreadsheet.

	document_name (Optional) (str) – The name of the spreadsheet document to
access. If this is not found it will be created. If you know
the document_key then using that is faster and more reliable.

	worksheet_name (str) – The name of the worksheet inside the spreadsheet
that data will be synced to. If omitted then the default name
“Sheet1” will be used, and a matching worksheet created if
necessary.

	key_column_headers (Optional) (list of str) – Data in the key column(s) uniquely
identifies a row in your data. So, for example, if your data is
indexed by a single username string, that you want to store in a
column with the header ‘Username’, you would pass this:

key_column_headers=[‘Username’]

However, sheetsync also supports component keys. Python dictionaries can
use tuples as keys, for example if you had a tuple key like
this:

(‘Tesla’, ‘Model-S’, ‘2013’)

You can make the column meanings clear by passing in a list of
three key_column_headers:

[‘Make’, ‘Model’, ‘Year’]

If no value is given, then the default behavior is to name the
column “Key”; or “Key-1”, “Key-2”, ... if your data dictionaries
keys are tuples.

	header_row_ix (Optional) (int) – The row number we expect to see column headers
in. Defaults to 1 (the very top row).

	formula_ref_row_ix (Optional) (int) – If you want formulas to be added to some
cells when inserting new rows then use a formula reference row.
See Formulas for an example use.

	flag_deletes (Optional) (bool) – Specify if deleted rows should only be flagged
for deletion. By default sheetsync does not delete rows of data, it
just marks that they are deleted by appending the string
” (DELETED)” to key values. If you pass in the value “False” then
rows of data will be deleted by the sync method if they are not
found in the input data. Note, use the inject method if you only want
to add or modify data to in a worksheet.

	protected_fields (Optional) (list of str) – An list of fields (column
headers) that contain protected data. sheetsync will only write to
cells in these columns if they are blank. This can be useful if you
are expecting users of the spreadsheet to colaborate on the document
and edit values in certain columns (e.g. modifying a “Test result”
column from “PENDING” to “PASSED”) and don’t want to overwrite
their edits.

	template_key (Optional) (str) – This optional key references the spreadsheet
that will be copied if a new spreadsheet needs to be created.
This is useful for copying over formatting, a specific header
order, or apps-script functions. See Templates for Formatting.

	template_name (Optional) (str) – As with template_key but the name of the
template spreadsheet. If known, using the template_key will be
faster.

	folder_key (Optional) (str) – This optional key references the folder that a new
spreadsheet will be moved to if a new spreadsheet needs to be
created.

	folder_name (Optional) (str) – Like folder_key this parameter specifies the
optional folder that a spreadsheet will be created in (if
required). If a folder matching the name cannot be found, sheetsync
will attempt to create it.

	
backup(backup_name, folder_key=None, folder_name=None)

	Copies the google spreadsheet to the backup_name and folder specified.

	Parameters:	
	backup_name (str) – The name of the backup document to create.

	folder_key (Optional) (str) – The key of a folder that the new copy will
be moved to.

	folder_name (Optional) (str) – Like folder_key, references the folder to move a
backup to. If the folder can’t be found, sheetsync will create it.

	
data(as_cells=False)

	Reads the worksheet and returns an indexed dictionary of the
row objects.

For example:

>>>print sheet.data()

{‘Miss Piggy’: {‘Color’: ‘Pink’, ‘Performer’: ‘Frank Oz’}, ‘Kermit’: {‘Color’: ‘Green’, ‘Performer’: ‘Jim Henson’}}

	
inject(raw_data, row_change_callback=None)

	Use this function to add rows or update existing rows in the
spreadsheet.

	Parameters:	
	raw_data (dict) – A dictionary of dictionaries. Where the keys of the
outer dictionary uniquely identify each row of data, and the inner
dictionaries represent the field,value pairs for a row of data.

	row_change_callback (Optional) (func) – A callback function that you
can use to track changes to rows on the spreadsheet. The
row_change_callback function must take four parameters like so:

	change_callback(row_key,

	row_dict_before,
row_dict_after,
list_of_changed_keys)

	Returns:	
	A simple counter object providing statistics

	about the changes made by sheetsync.

	Return type:	UpdateResults (object)

	
sync(raw_data, row_change_callback=None)

	Equivalent to the inject method but will delete rows from the
google spreadsheet if their key is not found in the input (raw_data)
dictionary.

	Parameters:	
	raw_data (dict) – See inject method

	row_change_callback (Optional) (func) – See inject method

	Returns:	See inject method

	Return type:	UpdateResults (object)

3.2. UpdateResults

	
class sheetsync.UpdateResults

	A lightweight counter object that holds statistics about number of
updates made after using the ‘sync’ or ‘inject’ method.

	
added

	int – Number of rows added

	
changed

	int – Number of rows changed

	
nochange

	int – Number of rows that were not modified.

	
deleted

	int – Number of rows deleted (which will always be 0 when using
the ‘inject’ function)

3.3. ia_credentials_helper

	
sheetsync.ia_credentials_helper(client_id, client_secret, credentials_cache_file='credentials.json', cache_key='default')

	Helper function to manage a credentials cache during testing.

This function attempts to load and refresh a credentials object from a
json cache file, using the cache_key and client_id as a lookup.

If this isn’t found then it starts an OAuth2 authentication flow, using
the client_id and client_secret and if successful, saves those to the local
cache. See Injecting data to a Google sheet.

	Parameters:	
	client_id (str) – Google Drive API client id string for an installed app

	client_secret (str) – The corresponding client secret.

	credentials_cache_file (str) – Filepath to the json credentials cache file

	cache_key (str) – Optional string to allow multiple credentials for a client
to be stored in the cache.

	Returns:	A google api credentials object. As described here:
https://developers.google.com/api-client-library/python/guide/aaa_oauth

	Return type:	OAuth2Credentials

Index

 _
 | A
 | B
 | C
 | D
 | I
 | N
 | S
 | U

_

 	
 	__init__() (sheetsync.Sheet method)

A

 	
 	added (UpdateResults attribute)

B

 	
 	backup() (sheetsync.Sheet method)

C

 	
 	changed (UpdateResults attribute)

D

 	
 	data() (sheetsync.Sheet method)

 	deleted (UpdateResults attribute)

 	
 	document_href (Sheet attribute)

 	document_key (Sheet attribute)

 	document_name (Sheet attribute)

I

 	
 	ia_credentials_helper() (in module sheetsync)

 	
 	inject() (sheetsync.Sheet method)

N

 	
 	nochange (UpdateResults attribute)

S

 	
 	Sheet (class in sheetsync)

 	
 	sync() (sheetsync.Sheet method)

U

 	
 	UpdateResults (class in sheetsync)

 _images/Sheet1.png
A B c

1 [key Color Performer
2 MissPiggy Pink Frank Oz
3 Kemit Green Jim Henson

_images/06.FinishCreation.jpg
Create Client ID

Application type

Web application

Accessed by web browsers over a network.

Service account

Calls Google APIs on behalf o your appiicatin intead of an end-user. Leam more
@ nstalled application

Runs on a desktop computeror handheld device (ke Androld oriPhone).
Installed application type

Androld Learn more

Ghrome Application Learn more

05 Learn more

PlayStation 4
© Other

== -

_images/05.ConfigureConsentScreen.jpg
Consent screen

‘The consent screen will be shown to users whenever you request access o their
private data using your client ID

Note: This screen will be shown for all of your applications registered in this.
project

‘syncsheet.automated.testing@gmail.com =

Product name
Great Google Sheet updater

“Thisis how your logo will look to end users.
Max size: 1206120 px.

Google+ page 1D (0

plus.google.com/ page ID

_images/09.EnableDriveAPI.jpg
-z

Drive API

The Drive API allows clients to access resources from Google Drive.

Learn more
Explore this API (7

_static/comment.png

_images/02.NewProject.jpg
New Project
Project name

MyPythonGoogleSheetProject123

Your project ID will be double-aleph97513

Hide advanced options.
‘App Engine location
US data center

Edt

_static/plus.png

_images/11.GrantPermission.jpg
~ Great Google Sheet updater would like to:
@ Viewand manage your spreadsheets in Google Drive (D
& View and manage the files in your Google Drive @

By clicking Accept, you allow this app and Google o use your information in
‘accordance with ther respective terms of service and privacy polcies. You can
change this and other Accoun! Permissions at any time.

Cancel Accept

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_images/01.CreateAProject.jpg
oogle

Overview

Permissions

APls & auth
pts

API Project ~

/ APIProject

Manage al projects
Create a project..

5
a

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_images/04.CreateClientID.jpg
Create Client ID

Application type
Web application
‘Accessed by web browsers over a network.
Service account
Calls Google APIs on behalf of your application instead of an end-user. Lear more:

© Hnstalled application
Runs on a desktop computer or handheld device (like Android of iPhone).

& Tocreate a Web Client ID or an Instaled Application Cliet, you need to
Set aproduct name in the consent screen

nt screen [IESST]

Configure

nav.xhtml

 Table of Contents

 		Welcome to SheetSync!

 		Getting Started

 		Installation

 		Setting up OAuth 2.0 access

 		New Project

 		Create a new Client ID

 		Enable Drive API

 		Injecting data to a Google sheet

 		Tutorial

 		Customizing the spreadsheet

 		Key Column Headers

 		Templates for Formatting

 		Folders

 		Formulas

 		Synchronizing data

 		Taking backups

 		Debugging

 		The sheetsync package API

 		Sheet

 		UpdateResults

 		ia_credentials_helper

_images/03.CredentialsForProject.jpg
® © ® | O credentiais - MyPythonGe x =
€ C @ httpsy/console.developers.google.com/project/double-aleph-97513/apiui/credential7autt

Google MyPythonGoogleSheetProject123 ~
Overview OAuth No client IDs found.
Permissions OAuth 2.0 allows users to share specifc data with

you (for example, contact lists) while keeping their

Calll) userames, passwords, and other information
APis private
Gredentials Leam more

Consent screen

ent D
Push
Monitoring
Source Code Public API access No keys found.
Deploy & Manage Use of this key does not require any user action or
Compute consent, does not grant access to any account
information, and is not used for authorization
Networking
Leam more
Storage

_images/12.CopyAccessCode.jpg
Google

Please copy this code, switch to your application and paste it there:
4/a0eGUFEMZHKspXLelaicTHVKZVJaGaer46DNDAAMLS

_images/10.TheInstalledApplicationCredentialsHelper.jpg
0 to the following link in your browser:
1ttps://accounts. google. con/o/oauth2/auth?scopeht tpsX3AXZFX2 . googleapt s ComkZFauthXZFdrivesht tps
(3AXZFR2F spreadsheets. google. Comi2F feedsiredi rect.uri-urmi3Ai et FX3AngX3AooUEHK3AZ. OX3Aoobbiresponse. ty
ye-codehcl tent.i-171566521677-3ppd15g5ué v93vander 4tbiéfaazc. apps . googleuser content. conbaccess. yp
offline

el Plcation codet I

_images/FolderURL.png
« C (@ htps://drive.google.com/?authuser=0#folders/0B8rRHMFAIOZrWUw4LUhZejk4cOE
Google

Drive B pemo Folder

_images/MuppetsFormulas.png
Muppet Formulas Example
File Edit View Inset Fomat

A c

=Image(F2) =hyperlink(G2,82)

S AT s % oo ogm-

Data Tools

Photo Muppet Color
Miss Piggy Pink.

Kermit Green

Add-ons

Trobuchet ... -

Performer

Frank 0z

Jim Henson

Help

10

_images/Template01.png
2] Muppet Show Tonight (Template)
File Edit View Inset Fomat Data Tool

Boe AT s % oo T

Fix | Name

c
[Name Color Performer
2 MissPigey Pink Frank Oz
3 Kermit Green Jim Henson
4
5
6
2
8

+ = | Muppets -

_images/URL.png
@ https://docs.google.com/spreadsheets/d/ 1bnieREGAYXZ2TnhXgYrlacCIYO9Q2IfGXNZbjsv)82M/edit#gid=0

_images/07.Secret!.jpg
Client ID for native application

Client 1 171566521677-3ppd1 5g5u4Ivo3vanteriatbkafmaq2c.apps. googleusercontent.com
Client secret QN
Redirect URIs umietfwg:oauth:2.0:00b

http://localhost

Reset secret | Download JSON | Delete

_images/08.FindDriveAPI.jpg
Overview

Permissions

APls & auth
APl
Credentials

Consent screen

APILibrary Enabled APIs (€)

. drive

Backto popular APIs

Name
Drive API

Description

The Drive AP! allows clients to access resources from Google Drive.

