
SharpTAL Documentation
Release 2.2.0

Roman Lacko

Sep 27, 2017

Contents

1 Getting the code 3

2 Introduction 5

3 License 7

4 Contents 9
4.1 Language Reference . 9
4.2 Changes . 25

i

ii

SharpTAL Documentation, Release 2.2.0

SharpTAL is an HTML/XML template engine for .NET platform, that you can use in any application running on .NET
4.0.

The template engine compiles HTML/XML templates into .NET assemblies.

It contains implementation of the ZPT language (Zope Page Templates). ZPT is a system which can generate HTML,
XML or plain text output. ZPT is formed by the TAL (Template Attribute Language), TALES (TAL Expression
Syntax) and the METAL (Macro Expansion TAL).

Contents 1

https://sharptal.readthedocs.org/en/latest/tal.html
https://sharptal.readthedocs.org/en/latest/tales.html
https://sharptal.readthedocs.org/en/latest/tales.html
https://sharptal.readthedocs.org/en/latest/metal.html

SharpTAL Documentation, Release 2.2.0

2 Contents

CHAPTER 1

Getting the code

Binaries are provided as a NuGet package (https://nuget.org/packages/SharpTAL).

The project is hosted in a GitHub repository

Please report any issues to the issue tracker.

3

https://nuget.org/packages/SharpTAL/
http://github.com/lck/SharpTAL/
http://github.com/lck/SharpTAL/issues

SharpTAL Documentation, Release 2.2.0

4 Chapter 1. Getting the code

CHAPTER 2

Introduction

Using a set of simple language constructs, you control the document flow, element repetition and text replacement.

The basic TAL (Template Attribute Language) example:

<html>
<body>
<h1>Hello, ${"world"}!</h1>
<table>

<tr tal:repeat='row new string[] { "red", "green", "blue" }'>
<td tal:repeat='col new string[] { "rectangle", "triangle", "circle" }'>

${row} ${col}
</td>

</tr>
</table>

</body>
</html>

The ${...} notation is short-hand for text insertion. The C# expression inside the braces is evaluated and the result
included in the output. By default, the string is escaped before insertion. To avoid this, use the structure: prefix:

<div>${structure: ...}</div>

The macro language (known as the macro expansion language or METAL) provides a means of filling in portions of a
generic template.

The macro template (saved as main.html file):

<html metal:define-macro="main">
<head>
<title>Example ${document.title}</title>

</head>
<body>
<h1>${document.title}</h1>
<div id="content">
<metal:tag metal:define-slot="content" />

5

SharpTAL Documentation, Release 2.2.0

</div>
</body>

</html>

Template that imports and uses the macro, filling in the content slot:

<metal:tag metal:import="main.html" use-macro='macros["main"]'>
<p metal:fill-slot="content">${structure: document.body}<p/>

</metal:tag>

In the example, the statement metal:import is used to import a template from the file system using a path relative to
the calling template.

Sample code that shows how easy the library is to use:

var globals = new Dictionary<string, object>
{

{ "movies", new List<string> { "alien", "star wars", "star trek" } }
};

const string body = @"<!DOCTYPE html>
<html tal:define='textInfo new System.Globalization.CultureInfo(""en-US"", false).
→˓TextInfo'>

Favorite sci-fi movies:
<div tal:repeat='movie movies'>${textInfo.ToTitleCase(movie)}</div>

</html>";

var template = new Template(body);

var result = template.Render(globals);

Console.WriteLine(result);

Here’s the console output:

<!DOCTYPE html>
<html>

Favorite sci-fi movies:
<div>Alien</div><div>Star Wars</div><div>Star Trek</div>

</html>

6 Chapter 2. Introduction

CHAPTER 3

License

This software is made available under Apache Licence Version 2.0.

7

http://www.apache.org/licenses/LICENSE-2.0

SharpTAL Documentation, Release 2.2.0

8 Chapter 3. License

CHAPTER 4

Contents

Language Reference

Template Attribute Language (TAL)

The Template Attribute Language (TAL) is an attribute language used to create dynamic XML-like content. It allows
elements of a document to be replaced, repeated, or omitted.

An attribute language is a programming language designed to render documents written in XML markup. The input
XML must be well-formed. The output from the template is usually XML-like but isn’t required to be well-formed.

The statements of the language are document tags with special attributes, and look like this:

<p namespace:command="argument">Some Text</p>

In the above example, the attribute namespace:command="argument" is the statement, and the entire paragraph
tag is the statement’s element. The statement’s element is the portion of the document on which this statement operates.

Each statement has three parts: the namespace prefix, the name, and the argument. The prefix identifies the language,
and must be introduced by an XML namespace declaration in XML and XHTML documents, like this:

xmlns:namespace="http://example.com/namespace"

The statements of TAL are XML attributes from the TAL namespace. These attributes can be applied to an XML or
HTML document in order to make it act as a template.

The TAL namespace URI is currently defined as:

xmlns:tal="http://xml.zope.org/namespaces/tal"

This is not a URL, but merely a unique identifier. Do not expect a browser to resolve it successfully. This definition is
required in every file that uses ZPT. For example:

<div xmlns="http://www.w3.org/1999/xhtml"
xmlns:tal="http://xml.zope.org/namespaces/tal">

9

SharpTAL Documentation, Release 2.2.0

.... rest of the template here ...
</div>

All templates that you use ZPT in must include the xmlns:tal="http://xml.zope.org/namespaces/
tal" attribute on some top-level tag.

Statements

A TAL statement has a name (the attribute name) and an argument (the attribute value). For example, a
tal:content statement might look like tal:content="string:Hello". The element on which a state-
ment is defined is its statement element. Most TAL statements are expressions, but the syntax and semantics of these
expressions are not part of TAL.

Note: TALES is used as the expression language for the “stuff in the quotes” typically. TALES is documented
separately.

These are the available TAL statements:

• tal:attributes - dynamically change element attributes.

• tal:define - define variables.

• tal:condition - test conditions.

• tal:content - replace the content of an element.

• tal:omit-tag - remove an element, leaving the content of the element.

• tal:repeat - repeat an element.

• tal:replace - replace the content of an element and remove the element leaving the content.

Order of Operations

When there is only one TAL statement per element, the order in which they are executed is simple. Starting with the
root element, each element’s statements are executed, then each of its child elements is visited, in order, to do the
same.

Any combination of statements may appear on the same element, except that the tal:content and tal:replace
statements may not be used on the same element.

TAL does not use use the order in which statements are written in the tag to determine the order in which they are
executed. When an element has multiple statements, they are executed in this order:

1. tal:define

2. tal:condition

3. tal:repeat

4. tal:content or tal:replace

5. tal:omit-tag

6. tal:attributes

There is a reasoning behind this ordering. Because users often want to set up variables for use in other state-
ments contained within this element or subelements, tal:define is executed first. tal:condition follows,

10 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

then tal:repeat , then tal:content or tal:replace. Finally, before tal:attributes, we have
tal:omit-tag (which is implied with tal:replace).

tal:attributes

Replace element attributes

Syntax

tal:attributes syntax:

argument ::= attribute_statement [';' attribute_statement]*
attribute_statement ::= attribute_name expression
attribute_name ::= [namespace-prefix ':'] Name
namespace-prefix ::= Name

Description

The tal:attributes statement replaces the value of an attribute (or creates an attribute) with a dynamic value.
The value of each expression is converted to a string, if necessary.

Note: You can qualify an attribute name with a namespace prefix, for example html:table, if you are generating
an XML document with multiple namespaces.

If an attribute expression evaluates to null, then that attribute is deleted from the statement element.

If the expression evaluates to the symbol default (a symbol which is always available when evaluating attributes),
its value is defined as the default static attribute value.

If you use tal:attributes on an element with an active tal:replace command, the tal:attributes
statement is ignored.

If you use tal:attributes on an element with a tal:repeat statement, the replacement is made on each
repetition of the element, and the replacement expression is evaluated fresh for each repetition.

Examples

Replacing a link:

<a href="/sample/link.html"
tal:attributes="href context.url()">

Replacing two attributes:

<textarea rows="80" cols="20"
tal:attributes="rows request.rows();cols request.cols()">

tal:condition

Conditionally insert or remove an element

4.1. Language Reference 11

SharpTAL Documentation, Release 2.2.0

Syntax

tal:condition syntax:

argument ::= expression

Description

The tal:condition statement includes the statement element in the template only if the condition
is met, and omits it otherwise. If its expression evaluates to a true value, then normal processing of the
element continues, otherwise the statement element is immediately removed from the template. For these
purposes, the value nothing is false, and default has the same effect as returning a true value.

Note: SharpTAL considers null, zero, empty strings, empty sequences, empty dictionaries false; all other values are
true, including default.

Examples

Test a variable before inserting it:

<p tal:condition="request.message"
tal:content="request.message">
message goes here

</p>

Testing for odd/even in a repeat-loop:

<div tal:repeat="item Enumerable.Range(0, 10)">
<p tal:condition='repeat["item"].even'>Even</p>
<p tal:condition='repeat["item"].odd'>Odd</p>

</div>

tal:content

Replace the content of an element

Syntax

tal:content syntax:

argument ::= (['text'] | 'structure') expression

Description

Rather than replacing an entire element, you can insert text or structure in place of its children with the tal:content
statement. The statement argument is exactly like that of tal:replace, and is interpreted in the same fashion. If
the expression evaluates to null, the statement element is left childless. If the expression evaluates to default,
then the element’s contents are unchanged.

12 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

The default replacement behavior is text, which replaces angle-brackets and ampersands with their HTML en-
tity equivalents. The structure keyword passes the replacement text through unchanged, allowing HTML/XML
markup to be inserted. This can break your page if the text contains unanticipated markup (eg. text submitted via a
web form), which is the reason that it is not the default.

Examples

Inserting the user name:

<p tal:content="user.getUserName()">Fred Farkas</p>

Inserting HTML/XML:

<p tal:content="structure context.getStory()">marked up
content goes here.</p>

tal:define

Define variables

Syntax

tal:define syntax:

argument ::= attribute_statement [';' attribute_statement]*
attribute_statement ::= [context] variable_name expression
context ::= global | local | nonlocal
variable_name ::= Name

Description

The tal:define statement defines variables.

When you define a local variable in a statement element, you can use that variable in that element and the elements it
contains.

If the expression associated with a variable evaluates to null, then that variable has the value null, and may be
used as such in further expressions. Likewise, if the expression evaluates to default, then the variable has the value
default, and may be used as such in further expressions.

Examples

Defining a global variable:

<tal:tag tal:define='global company_name '"My Company"'>

Defining a local variable:

<tal:tag tal:define='company_name "My Company"'>

Defining two local variables, where the second depends on the first:

4.1. Language Reference 13

SharpTAL Documentation, Release 2.2.0

<tal:tag tal:define="mytitle context.title; tlen mytitle.Length">

Declare that the listed identifiers refers to previously bound variables in the nearest enclosing scope:

<p tal:define="mytitle context.title">
<tal:tag tal:define="nonlocal mytitle context.new_title">

</p>

tal:omit-tag

Remove an element, leaving its contents

Syntax

tal:omit-tag syntax:

argument ::= [expression]

Description

The tal:omit-tag statement leaves the contents of an element in place while omitting the surrounding start and
end tags.

If the expression evaluates to a false value, then normal processing of the element continues and the tags are not
omitted. If the expression evaluates to a true value, or no expression is provided, the statement element is replaced
with its contents.

Note: null, zero, empty strings, empty sequences, empty dictionaries are false; all other values are true, including
default.

Examples

Unconditionally omitting a tag:

<div tal:omit-tag="" comment="This tag will be removed">
<i>...but this text will remain.</i>

</div>

Conditionally omitting a tag:

<b tal:omit-tag="bold == false">I may be bold.

The above example will omit the b tag if the variable bold is false.

Creating ten paragraph tags, with no enclosing tag:

<p tal:content="n">1</p>

14 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

tal:repeat

Repeat an element

Syntax

tal:repeat syntax:

argument ::= variable_name expression
variable_name ::= Name

Description

The tal:repeat statement replicates a sub-tree of your document once for each item in a sequence. The expression
should evaluate to a sequence. If the sequence is empty, then the statement element is deleted, otherwise it is repeated
for each value in the sequence. If the expression is default, then the element is left unchanged, and no new variables
are defined.

The variable_name is used to define a local variable and a repeat variable. For each repetition, the local variable
is set to the current sequence element, and the repeat variable is set to an iteration object.

Repeat Variables

You use repeat variables to access information about the current repetition (such as the repeat index). The repeat
variable has the same name as the local variable, but is only accessible through the built-in variable named repeat.

The following information is available from the repeat variable:

• index - repetition number, starting from zero.

• number - repetition number, starting from one.

• even - true for even-indexed repetitions (0, 2, 4, ...).

• odd - true for odd-indexed repetitions (1, 3, 5, ...).

• start - true for the starting repetition (index 0).

• end - true for the ending, or final, repetition.

• length - length of the sequence, which will be the total number of repetitions.

• letter - repetition number as a lower-case letter: “a” - “z”, “aa” - “az”, “ba” - “bz”, ..., “za” - “zz”, “aaa” -
“aaz”, and so forth.

• Letter - upper-case version of letter.

• roman - repetition number as a lower-case roman numeral: “i”, “ii”, “iii”, “iv”, “v”, etc.

• Roman - upper-case version of roman.

You can access the contents of the repeat variable using dictionary, e.g. repeat["item"].start.

4.1. Language Reference 15

SharpTAL Documentation, Release 2.2.0

Examples

Iterating over a sequence of strings:

<p tal:repeat='txt new List<string>() { "one", "two", "three" }'>

</p>

Inserting a sequence of table rows, and using the repeat variable to number the rows:

<table>
<tr tal:repeat="item here.cart">
<td tal:content='repeat["item"].number'>1</td>
<td tal:content="item.description">Widget</td>
<td tal:content="item.price">$1.50</td>

</tr>
</table>

Nested repeats:

<table border="1">
<tr tal:repeat="row Enumerable.Range(0, 10)">
<td tal:repeat="column Enumerable.Range(0, 10)">
<span tal:define='x repeat["row"].number;

y repeat["column"].number;
z x * y'

tal:replace="string:${x} * ${y} = ${z}">1 * 1 = 1
</td>

</tr>
</table>

Insert objects. Separates groups of objects by type by drawing a rule between them:

<div tal:repeat="object objects">
<h2 tal:condition='repeat["object"].first.meta_type'
tal:content="object.type">Meta Type</h2>

<p tal:content="object.id">Object ID</p>
</div>

Note: the objects in the above example should already be sorted by type.

tal:replace

Replace an element

Syntax

tal:replace syntax:

argument ::= ['structure'] expression

16 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

Description

The tal:replace statement replaces an element with dynamic content. It replaces the statement element with
either text or a structure (unescaped markup). The body of the statement is an expression with an optional type prefix.
The value of the expression is converted into an escaped string unless you provide the ‘structure’ prefix. Escaping
consists of converting & to &amp;, < to &lt;, and > to &gt;.

If the expression evaluates to null, the element is simply removed. If the value is default, then the element is left
unchanged.

Examples

Inserting a title:

Title

Inserting HTML/XML:

<div tal:replace="structure table" />

Expressions (TALES)

The Template Attribute Language Expression Syntax (TALES) standard describes expressions that supply Template
Attribute Language (TAL) and Macros (METAL) with data. TALES is one possible expression syntax for these lan-
guages, but they are not bound to this definition. Similarly, TALES could be used in a context having nothing to do
with TAL or METAL.

TALES expressions are described below with any delimiter or quote markup from higher language layers removed.
Here is the basic definition of TALES syntax:

Expression ::= [type_prefix ':'] String
type_prefix ::= Name

Here are some simple examples:

1 + 2
null
string:Hello, ${view.user_name}

The optional type prefix determines the semantics and syntax of the expression string that follows it. A given imple-
mentation of TALES can define any number of expression types, with whatever syntax you like. It also determines
which expression type is indicated by omitting the prefix.

Types

These are the TALES expression types supported by default in SharpTAL:

• csharp - execute a C# expression

• string - format a string

Note: if you do not specify a prefix within an expression context, SharpTAL assumes that the expression is a csharp
expression.

4.1. Language Reference 17

SharpTAL Documentation, Release 2.2.0

Built-in Names

These are the names always available to TALES expressions in SharpTAL:

• default - special value used to specify that existing text or attributes should not be replaced. See the docu-
mentation for individual TAL statements for details on how they interpret default.

• repeat - the repeat variables; see tal:repeat for more information.

• template - reference to the template which was first called; this symbol is carried over when using macros.

• macros - reference to the macros dictionary that corresponds to the current template.

csharp expressions

Syntax

Python expression syntax:

Any valid C# language expression

Description

C# expressions are executed natively within the translated template source code.

string expressions

Syntax

String expression syntax:

string_expression ::= (plain_string | [varsub])*
varsub ::= ('${ Expression }')

Description

String expressions interpret the expression string as text. If no expression string is supplied the resulting string is
empty. The string can contain variable substitutions of the form ${expression}, where expression is a TALES-
expression. The escaped string value of the expression is inserted into the string.

Note: To prevent a ${...} from being interpreted this way, it must be escaped as \${...}.

Examples

Basic string formatting:

18 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

Spam and Eggs

<p tal:content='string:${request.form["total"]}'>
total: 12

</p>

Including a dollar sign:

<p tal:content="string:$${cost}">
cost: $42.00

</p>

Including operator ${...}:

<p tal:content="string:The expression operator: \${cost}">
cost: $42.00

</p>

Macros (METAL)

The Macro Expansion Template Attribute Language (METAL) standard is a facility for HTML/XML macro prepro-
cessing. It can be used in conjunction with or independently of TAL and TALES.

Macros provide a way to define a chunk of presentation in one template, and share it in others, so that changes to the
macro are immediately reflected in all of the places that share it. Additionally, macros are always fully expanded, even
in a template’s source text, so that the template appears very similar to its final rendering.

A single Page Template can accomodate multiple macros.

Namespace

The METAL namespace URI and recommended alias are currently defined as:

xmlns:metal="http://xml.zope.org/namespaces/metal"

Just like the TAL namespace URI, this URI is not attached to a web page; it’s just a unique identifier. This identifier
must be used in all templates which use METAL.

Statements

METAL defines a number of statements:

• metal:define-macro Define a macro.

• metal:use-macro Use a macro.

• metal:define-slot Define a macro customization point.

• metal:fill-slot Customize a macro.

• metal:define-param Define macro parameters.

• metal:fill-param Fill macro parameters.

• metal:import Import macro definitions from external file.

4.1. Language Reference 19

SharpTAL Documentation, Release 2.2.0

Although METAL does not define the syntax of expression non-terminals, leaving that up to the implementation, a
canonical expression syntax for use in METAL arguments is described in TALES Specification.

metal:define-macro

Define a macro

Syntax

metal:define-macro syntax:

argument ::= Name

Description

The metal:define-macro statement defines a macro. The macro is named by the statement expression, and is
defined as the element and its sub-tree.

Examples

Simple macro definition:

<p metal:define-macro="copyright">
Copyright 2004, Foobar Inc.

</p>

metal:define-slot

Define a macro customization point

Syntax

metal:define-slot syntax:

argument ::= Name

Description

The metal:define-slot statement defines a macro customization point or slot. When a macro is used, its slots
can be replaced, in order to customize the macro. Slot definitions provide default content for the slot. You will get the
default slot contents if you decide not to customize the macro when using it.

The metal:define-slot statement must be used inside a metal:define-macro statement.

Slot names must be unique within a macro.

20 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

Examples

Simple macro with slot:

<p metal:define-macro="hello">
Hello <b metal:define-slot="name">World

</p>

This example defines a macro with one slot named name. When you use this macro you can customize the b element
by filling the name slot.

metal:fill-slot

Customize a macro

Syntax

metal:fill-slot syntax:

argument ::= Name

Description

The metal:fill-slot statement customizes a macro by replacing a slot in the macro with the statement element
(and its content).

The metal:fill-slot statement must be used inside a metal:use-macro statement.

Slot names must be unique within a macro.

If the named slot does not exist within the macro, the slot contents will be silently dropped.

Examples

Given this macro:

<p metal:define-macro="hello">
Hello <b metal:define-slot="name">World

</p>

You can fill the name slot like so:

<p metal:use-macro='master.macros["hello"]'>
Hello <b metal:fill-slot="name">Kevin Bacon

</p>

metal:use-macro

Use a macro

4.1. Language Reference 21

SharpTAL Documentation, Release 2.2.0

Syntax

metal:use-macro syntax:

argument ::= expression

Description

The metal:use-macro statement replaces the statement element with a macro. The statement expression describes
a macro definition.

The effect of expanding a macro is to graft a subtree from another document (or from elsewhere in the current doc-
ument) in place of the statement element, replacing the existing sub-tree. Parts of the original subtree may remain,
grafted onto the new subtree, if the macro has slots. See metal:define-slot for more information. If the macro
body uses any macros, they are expanded first.

Examples

Basic macro usage:

<p metal:use-macro='other.macros["header"]'>
header macro from defined in other.html template

</p>

This example refers to the header macro defined in the other template which has been passed as a keyword
argument to ITemplateCache‘s RenderTemplate method. When the macro is expanded, the p element and its
contents will be replaced by the macro.

metal:define-param

Define a macro parameter

Syntax

metal:define-param syntax:

argument ::= attribute_statement [';' attribute_statement]*
attribute_statement ::= param_type param_name [expression]
param_type ::= Parameter Type
param_name ::= Parameter Name

Description

The metal:define-param statement defines macro parameters. When you define a parameter it can be used as a
normal local variable in a macro element, and the elements it contains.

The metal:define-param statement must be used inside a metal:define-macro statement.

Parameter names must be unique within a macro.

22 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

Examples

Simple macro with two parameters:

<p metal:define-macro="hello"
metal:define-param='string name; int age'>
Hello, my name is ${name}.
I'm ${age} years old.

</p>

You can declare parameters with default values:

<p metal:define-macro="hello"
metal:define-param='string name "Roman"; int age 33'>
Hello, my name is ${name}.
I'm ${age} years old.

</p>

metal:fill-param

Fill a macro parameter

Syntax

metal:fill-param syntax:

argument ::= attribute_statement [';' attribute_statement]*
attribute_statement ::= param_name expression
param_name ::= Parameter Name

Description

The metal:fill-param statement fills macro parameters.

The metal:fill-param statement must be used inside a metal:use-macro statement.

If the named parameter does not exist within the macro, the parameter contents will be silently dropped.

Examples

Given this macro:

<p metal:define-macro="hello"
metal:define-param='string name; int age'>
Hello, my name is ${name}.
I'm ${age} years old.

</p>

You can fill the name and age parameters like so:

<p metal:use-macro='master.macros["hello"]'
metal:fill-param='name "Roman"; age 33'>

</p>

4.1. Language Reference 23

SharpTAL Documentation, Release 2.2.0

metal:import

Import macro definitions from external file

Syntax

metal:import syntax:

argument ::= import_statement [';' import_statement]*
import_statement ::= (namespace_name ':') path
namespace_name ::= Namespace name
path ::= Path to file

Description

The metal:import statement imports macro defintions from external files. Macros can be imported to specific
namespace, defined by namespace argument part. If the namespace is not specified, macros are imported to default
namespace.

Examples

Import macros from file Macros.html into default namespace and use imported macro hello:

<p metal:import="Macros.html">
<p metal:use-macro='macros["hello"]'

metal:fill-param='name "Roman"; age 33'>
</p>

</p>

Import macros from file Macros.html into custom namespace mymacros and use imported macro hello:

<p metal:import="mymacros:Macros.html">
<p metal:use-macro='mymacros.macros["hello"]'

metal:fill-param='name "Roman"; age 33'>
</p>

</p>

Import macros from multiple files into one custom namespace:

<p metal:import="mymacros:Macros1.html;mymacros:Macros2.html">
</p>

Import macros from multiple files into multiple custom namespaces:

<p metal:import="mymacros1:Macros1.html;mymacros2:Macros2.html">
</p>

${...} operator

The ${...} notation is short-hand for text insertion. The C# expression inside the braces is evaluated and the result
included in the output (all inserted text is escaped by default):

24 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

<div id="section-${index + 1}">
${content}

</div>

To escape this behavior, prefix the notation with a backslash character: \${...}.

Code blocks

The <?csharp ... ?> notation allows you to embed C# code in templates:

<div>
<?csharp
var numbers = Enumerable.Range(1, 10).Select(n => n.ToString()).ToList()

?>
Please input a number from the range ${string.Join(", ", numbers)}.

</div>

Changes

3.0 (2014-03-04)

• Macro parameters can be declared without default values

• Removed runtime dependency on ICSharpCode.NRefactory

2.1 (2013-05-30)

• Improved type definition resolution of variables defined in globals dictionary

2.0 (2013-01-18)

Features:

• Add support for plain text templates

• Create NuGet package

Dependency Changes:

• SharpTAL now relies on ICSharpCode.NRefactory 5.3.0

• .NET 4.0 is now required

2.0b1 (2013-01-04)

Features:

• Added support for code blocks using the <?csharp ... ?> processing instruction syntax.

• Enable expression interpolation in CDATA [Roman Lacko]

• The “Template” class now provides virtual method “FormatResult(object)” to enable customization of expres-
sion results formatting. [Roman Lacko]

4.2. Changes 25

SharpTAL Documentation, Release 2.2.0

Backwards Incompatibilities:

• Removed “RenderTemplate()” methods from “ITemplateCache” interface (and it’s implementations). [Roman
Lacko]

2.0a2 (2012-01-05)

Features:

• New “meta:interpolation” command to control expression interpolation setting. [Roman Lacko]
To disable expression interpolation: meta:interpolation=”false” To enable expression interpolation:
meta:interpolation=”true”

Internal:

• More code refactoring. [Roman Lacko]

Bugs fixed:

• Tags in the custom tal/metal namespace were not ommited, if the custom namespace was declared on that tag.
[Roman Lacko]

Backwards Incompatibilities:

• Rename “tal:define:set” variable context definition to “tal:define:nonlocal” to declare that the listed identifiers
refers to previously bound variables in the nearest enclosing scope. [Roman Lacko]

• Removed “<tal:omit-scope>”. It was non standart and introduces bad design in template. [Roman Lacko]

2.0a1 (2011-12-20)

Features:

• New HTML/XML template parser. This adds support for HTML5 templates. [Roman Lacko]

• String expression interpolation using ${...} operator in element attributes and in the text of an element. [Roman
Lacko]

• New “Template” class that replaces the direct usage of “MemoryTemplateCache” and “FileSystemTemplate-
Cache”. [Roman Lacko]

• Allow setting CultureInfo for string formatting, default to InvariantCulture [Petteri Aimonen]

• Added method CompileTemplate() to ITemplateCache to precompile template before knowing the global vari-
able values [Petteri Aimonen]

Internal:

• Code refactoring. [Roman Lacko]

• Add relevant lines of the generated source code to CompileSourceException message [Petteri Aimonen]

• Made template hash calculation more robus [Petteri Aimonen]

Backwards Incompatibilities:

• Removed “Inline Templates” from ITemplateChache.RenderTemplate method. Use “metal:import” command
to import macros from external templates [Roman Lacko]

Dependency Changes:

• SharpTAL now relies on ICSharpCode.NRefactory.dll [Roman Lacko]

Bugs fixed:

26 Chapter 4. Contents

SharpTAL Documentation, Release 2.2.0

• In SourceGenerator, fix the handling of newlines in attributes [Petteri Aimonen]

1.2 (2011-01-26)

• Fixed tal:repeat command when using with empty arrays [Roman Lacko]

1.1 (2010-10-25)

• Unit Tests ported to NUnit [Roman Lacko]

• Mono 2.6 with MonoDevelop 2.4 now supported under Linux (tested under Ubuntu 10.10) [Roman Lacko]

• .NET Framework 3.5 and 4.0 with Sharpdevelop 4.0beta3 supported under Windows [Roman Lacko]

1.0 (2010-06-28)

• Initial version [Roman Lacko]

4.2. Changes 27

	Getting the code
	Introduction
	License
	Contents
	Language Reference
	Changes

