SFT Protocol Documentation

Benjamin Hauser, Alex Firmani

Nov 19, 2018

Contents

How it works 3
Components 5
Testing and Deployment 7
Third-Party Integration 9
License 11

ST COontentS v v o e e e e e e e e e e e 11

SFT Protocol Documentation

The SFT protocol is a set of compliance-oriented smart contracts built on the Ethereum blockchain that allow for the
tokenization of debt and equity based securities. It provides a robust, flexible framework allowing issuers and investors
to retain regulatory compliance throughout primary issuance and multi-jurisdictional secondary trading.

Contents 1

SFT Protocol Documentation

2 Contents

CHAPTER 1

How it works

SFT expands upon the ERC20 token standard. Tokens are transferred via the transfer and transferFrom
functions, however the transfer will only succeed if approved by a series of permissioning modules. A call to
checkTransfer returns true if the transfer is possible. The standard configuration includes checking a KYC/AML
whitelist, tracking investor counts and limits, and restrictions on countries and accredited status. By implementing
other modules a variety of additional functionality is possible so as to allow compliance to laws in the countries of the
issuer and investors.

SFT Protocol Documentation

4 Chapter 1. How it works

CHAPTER 2

Components

. Security Token

(a) ERC20 compliant tokens intended to represent a claim to ownership of securities

(b) Modules may be applied to each security token to add additional permissioning or functionality
. Issuing Entity

(a) Central owner contract for tokens created by the same issuer

(b) Modules may be applied at this level that introduce permissioning / functionality to all associated security
token contracts

. KYC Registrar

(a) Whitelists that provide identity, region, and accreditation information of investors based on off-chain
KYC/AML verification

. Custodian

(a) Contracts that represent an entity approved to hold tokens for multiple investors

(b) Base interface that allows for wide customisation depending on the needs of the owner
. Modules

(a) Wide range of functionality that modules can hook into allows for many different applications

SFT Protocol Documentation

6 Chapter 2. Components

CHAPTER 3

Testing and Deployment

Unit testing and deployment of this project is performed with brownie.

https://github.com/iamdefinitelyahuman/brownie

SFT Protocol Documentation

8 Chapter 3. Testing and Deployment

CHAPTER 4

Third-Party Integration

See Third Party Integration for in-depth details.

SFT Protocol Documentation

10 Chapter 4. Third-Party Integration

CHAPTER B

License

This project is licensed under the Apache 2.0 license.

5.1 Contents

Keyword Index, Search Page

5.1.1 Security Token

SecurityToken represents a single, fungible class of securities from an issuer. It conforms to the ERC20
standard, with an additional checkTransfer function available to verify if a transfer will succeed.
Before tokens can be transferred, all of the following checks must pass:

» Sender and receiver addresses must be validated by a KYC registrar
* Issuer imposed limits on investor counts: global, country specific, and accreditation rating specific
* Optional permissions added via modules applied at the SecurityToken and IssuingEntity level

Transfers that move tokens between different addressses owned by the same entity (as identified in the
KYC registrar) are not as heavily restricted because there is no change of ownership. Any address belong-
ing to a single entity can call t ransferFrom and move tokens from any of their wallets. The issuer can
use the same function to move any tokens between any address.

5.1.2 Issuing Entity
Before an issuer can create a security token they must deploy an IssuingEntity contract. This contract has several key
purposes:

» Holds a whitelist of associated KYC registries that investor data can be pulled from

 Tracks investor counts and total balances across all security tokens deployed by the issuer

11

https://www.apache.org/licenses/LICENSE-2.0.html

SFT Protocol Documentation

 Enforces permissions relating to investor limits and authorised countries

* Holds a mapping of hashes for legal documents related to the issuer

5.1.3 KYC Registrar

KYCRegistrar contracts are registries that hold information on the identity, region, and rating of investors.

Registries may be maintained by a single entity, or a federation of entities where each are approved to provide identi-
fication services for their specific jurisdiction. The contract owner can authorize other entities to add investors within
specified countries.

Contract authorities associate addresses to ID hashes that denotes the identity of the investor who owns the address.
More than one address may be associated to the same hash. Anyone can call get ID to see which hash is associated
to an address, and then using this ID call functions to query information about the investor’s region and accreditation
rating.

Registry contracts implement a variation of the standard MultiSig functionality used in other contracts within the
protocol. This document assumes familiarity with the standard multi-sig implementation, and will only highlight the
differences.

It may be useful to also view the KYCRegistrar.sol source code while reading this document.

Components

Registrars are based on the following key components:

* Investors are natural persons or legal entities who have passed KYC/AML checks and are approved to send and
receive security tokens. Each investor is assigned a unique ID and is associated with one or more addresses.

* Authorities are known, trusted entities that are permitted to add, modify, or restrict investors within the registrar.
Authorities are also assigned a unique ID and associated with one or more addresses.

* The owner is the initial authority declared during the deployment the contract. Only the owner may add, modify,
or restrict other authorities.

* Issuers are entities that have created security tokens, who rely on registrars for information about their token
holders.

Authorities
The initial owner addresses and threshold are set during deployment. The owner ID is generated as a keccak of the
contract address.

The owner may designate authorities using the addAuthority function. Authorities do not require explicit permis-
sion to call any contract functions. However, they may only add, modify or restrict investors in countries that they have
been approved to operate in. This permission is initially declared when creating the authority and may be modified
later with setAuthorityCountries.

Once an authority has been designated they may use registerAddresses or restrictAddresses to modify
their associated addresses.

Investors

After verifying an investor’s KYC/AML, an authority may call addInvestor to add the investor to the registrar.

12 Chapter 5. License

multisig.sol
../contracts/components/KYCRegistrar.sol

SFT Protocol Documentation

Each investor is identified in the registrar via a unique ID hash. Their country, region, and investor rating are also
recorded on-chain. See the Data Standards documentation for detailed information on how this information is gener-
ated and formatted.

Investors are also assigned an expiration time for their rating. This is useful in jurisdictions where accreditation
status requires periodic reconfirmation. An authority may update the record for an existing investor by calling
updateInvestor.

Similar to authorities, addresses associated with investors are assigned and restricted via calls to
registerAddresses or restrictAddresses.

Issuer Integration
Issuers must associate their IssuingEntity contract with one or more registrars in order to alow investors to hold their
tokens. This is accomplished by calling ITssuingEntity.setRegistrar.

The investor ID associated with an address may be obtained by calling the get ID view function. The ID may then be
used to call a variety of view functions to obtain the investor’s rating, region, country or KYC expiration date.

IssuingEntity contracts primarily rely on get Investor and get Investors to retrieve investor information in the
most gas efficient manner possible.

See the Third Party Integration page for detailed information on how to integrate contracts within the protocol.

Security Considerations

Here we outline several unfavorable situations that may occur, and guidelines for how to handle them.

Investor Changes Country

An investor who changes their legal country of residence will necessarily alter their ID hash. In this case the investor
should resubmit their KYC/AML to an authority within the new country, receive a new ID hash attached to a new
address, and transfer their tokens from their old address to the new one. Their old ID may then be restricted.

Lost Invesor Private Key

An investor who has lost a private key should contact the registry authority and verify their identity off-chain. The
authority can then restrict the address of the lost key and add one or more new addresses that the investor con-
trols. The investor may retrieve tokens from the lost address either with assistance from the issuer or by using the
SecurityToken.transferFrom function. See the SecurityToken documentation for more information on this
process.

Compromised Authority

If an authority has been compromised or found to be acting in bad faith, the owner may apply a broad restriction
upon them using setAuthorityRestriction. This will also restrict every investor that was approved by this
authority.

A list of investors that were approved by the restricted authority can be obtained from NewInvestor and
UpdatedInvestor events. Once the KYC/AML of these investors has been re-verified, the restriction upon them
may be removed by calling either updateInvestor or setInvestorAuthority.

5.1. Contents 13

data-standards.md
../contracts/IssuingEntity.sol
third-party-integration.md
security-token.md

SFT Protocol Documentation

Compromised Owner

If the owner is compromised or found to be acting in bad faith, issuers can remove the registrar by calling
IssuingEntity.setRegistrar. This will also restrict every investor that was approved by this registry. These
investors will have to KYC via a different authority in order to be able to transfer their tokens.

5.1.4 Custodian

Custodian contracts allow approved entities to hold tokens on behalf of investors. Common examples of custodians
include broker/dealers and secondary markets.

Custodians interact with an issuer’s investor counts differently from regular investors. When an investor transfers a
balance into the custodian it does not increase the overall investor count, instead the investor is now included in the
list of beneficial owners represented by the custodian. Even if the investor now has a balance of 0, they will be still be
included in the issuer’s investor count.

Custodian contracts include a t rans fer function that optionally allows them to remove an investor from the benefi-
cial owners when sending them tokens.

They may also call addInvestors or removeInvestors in cases where beneficial ownership has changed from
an action happening off-chain. Each custodian must be individually approved by an issuer before they can receive
tokens. Because custodians may bypass on-chain compliance checks, it is imperative this approval only be given to
known, trusted entities.

5.1.5 MultiSig Implementation

This document outlines the multi-signature, multi-owner functionality used in IssuingEntity and Custodian contracts.
Multisig functionality in KYCRegistrar contracts use a similar implementation, you can read about the differences in
the registrar documentation.

It may be useful to also view the MultiSig.sol source code while reading this document.

Components

Multisig contracts are based around the following key components:

 Authorities are a collection of one or more addresses permitted to call specific admin-level functionality. Each
authority is assigned a unique ID.

* The owner is the highest authority, capable of creating or restricted other authorities.

* Each authority has a unique threshold value, which is the number of required calls to a function before it
executes. This value cannot be greater the number of addresses associated with the authority.

Initial Setup

Contracts that implement multisig require 2 arguments in the constructor:

* address[] _owners: One or more addresses to associate with the contract owner. The address deploying
the contract is not implicitely included within the owner list.

e uint32 _threshold: The number of calls required for the owner to perform a multi-sig action.

The owner has the highest level of control over the contract. Associated addresses may always call any admin-level
functionality.

14 Chapter 5. License

kyc-registrar.md
../contracts/components/MultiSig.sol

SFT Protocol Documentation

Designating Authorities

After deployment the owner may designate authorities using the AddAut hority function, which takes the following
arguments:

* address[] _owners: One or more addresses to associated with the authority.
* bytes4[] _signatures: Function signatures that this authority is permitted to call.

* uint32 _approvedUntil: The epoch time that this authority is permitted to make calls until. To approve
an authority forever, set it to the highest possible uint32 value of 4294967296 (February, 2106).

* uint32 _threshold: The number of calls required by this authority to perform a multi-sig action.

Authorities differ from the owner in that they must be explicitely approved to call functions within the contract. These
permissions may be modified by the owner viaacall to setAuthoritySignatures. You can check if an authority
is permitted to call a specific function with the view function i sApprovedAuthority.

Authorities may also be given a time-based restriction, either at the time of creation or by calling
setAuthorityApprovedUntil. The owner can also restrict an authority by calling this function and setting
_approvedUntil to 0.

Authorities may add or remove associated addresses with addAuthorityAddresses or
removeAuthorityAddresses. The owner may call this function to add or remove addresses for any
authority.

It is important to note that once an address has been associated to an authority, this association may never be
fully removed. Once an address is removed, that address is now forever unavailable within the protocol. This is
necessary to prevent an address from later being associated with a different entity, which could allow for a variety of
non-compliant actions. See the KYCRegistrar documentation for more information on this concept.

Calling MultiSig Functions

All multi-sig functions return a single boolean to indicate if the threshold was met and the call succeeded. Functions
that implement multi-sig include the following line of code, either at the start or after the initial require statements:

if (!_checkMultiSig()) return false;

Calls that fail to meet the threshold will trigger an event MultiSigCall which includes the current call count and
the threshold value. Once a caller meets the threshold the event MultiSigCallApproved will trigger, the call
will execute, and the call count will be reset to zero.

The number of calls to a function is recorded using a keccak hash of the call data. As such, it is required that each
callingn address format their call data in exactly the same way.

Repeating a multi-sig call from the same address before reaching the threshold will revert.

Implementing MultiSig in External Contracts
By calling checkMultiSigExternal, it is possible to implement multi-sig functionality in external contracts
with the same set of authorities. The function arguments are:

* bytes4 _sig: The original function signature being called

* bytes32 _callHash: akeccak hash of the original calldata

To implement this in an external contract, you would use the following code:

5.1. Contents 15

kyc-registrar.md

SFT Protocol Documentation

bytes32 _callHash = keccak256 (msg.data);
if (!MultiSigContract.checkMultiSigExternal (msg.sig, _callHash)) return false;

checkMultiSigExternal relies on tx.origin to verify that the original caller is an approved authority. Permis-
sions are chekced against the signature value in the same way as with an internal call. The recorded keccak hash of
the call is formed by joining the address of the calling contract, the signature, and the supplied call hash. As such it is
impossible to exploit the external call to advance the count on internal multisig events.

An imporant security consideration: If an external contract includes a function with the same signature as a one inside
the multi-sig contract, it will be impossible to set unique permissions for each function. Developers and auditors of
external contracts should always keep this in mind.

5.1.6 Modules

Issuers may attach modules to IssuingEntity or SecurityToken. When a module is attached, a call to getBindings
checks the hook points that the module should be called at. Depending on the functionality of the module it may attach
at any of the following hook points:

e checkTransfer: called to verify permissions before a transfer is allowed
* transferTokens: called after a transfer has completed successfully

* balanceChanged: called after a balance has changed, such that there was not a corresponding change to
another balance (e.g. token minting and burning)

Modules can also directly change the balance of any address. Modules that are active at the IssuingEntity level can call
this function on any security token, modules at the SecurityToken level can only call it on the token they are attached
to.

When a module is no longer required it can be detached. This should always be done in order to optimize gas costs.

The wide range of functionality that modules can hook into allows for many different applications. Some examples in-
clude: crowdsales, country/time based token locks, right of first refusal enforcement, voting rights, dividend payments,
tender offers, and bond redemption.

5.1.7 Third Party Integration
KYC Registrar

To setup an investor registry, deploy KYCRegistrar.sol. Owner addresses will then be able to add investors using
addInvestor or approve other whitelisting authorities with addAuthority. See the KYCRegistrar page for a
detailed explanation of how to use this contract.

Issuing Tokens

Issuing tokens and being able to transfer them requires the following steps:
1. Deploy IssuingEntity.sol.

2. Call IssuingEntity.setRegistrar to add one or more investor registries. You may maintain your own
registry and/or use those belonging to trusted third parties.

3. Deploy SecurityToken.sol. Enter the address of the issuer contract from step 1 in the constructor. The total
supply of tokens will be initially creditted to the issuer.

4. Call IssuingEntity.addToken to attach the token to the issuer.

16 Chapter 5. License

../contracts/KYCRegistrar.sol
./kyc-registrar.md
../contracts/IssuingEntity.sol
../contracts/SecurityToken.sol

SFT Protocol Documentation

5. Call IssuingEntity.setCountries to approve investors from specific countries to hold the tokens.

At this point, the issuer will be able to transfer tokens to any address that has been whitelisted by one of the approved
investor registries if the investor meets the country and rating requirements.

Note that the issuer’s balance is assigned to the IssuingEntity contract. The issuer can transfer these tokens with a
normal call to SecurityToken.transfer from any approved address. Sending tokens to any address associated
with the issuer will increase the balance on the IssuingEntity contract.

You can also introduce further limitations on investor counts or attach optional modules to add more bespoke func-
tionality. See the IssuingEntity and SecurityToken pages for detailed explanations of how to use these contracts.

Transferring Tokens
SecurityToken.sol is based on the ERC20 Token Standard. Token transfers may be performed in the same ways as any
token using this standard. However, in order to send or receive tokens you must also:

* Be approved in one of the KYC registries associated to the token issuer

* Meet the approved country and rating requirements as set by the issuer

* Pass any additional checks set by the issuer

You can check if a transfer will succeed without performing a transaction by calling the checkTransfer function
of the token contract.

Restrictions imposed on investor limits, approved countries and minimum ratings are only checked when receiving
tokens. Unless an address has been explicitely blocked, it will always be able to send an existing balance. For
example, an investor may purchase tokens that are only require being accreditted, and then later their accreditation
status expires. The investor may still transfer the tokens they already have, but may not receive any more tokens.

Transferring a balance between two addresses associated with the same investor ID does not have the same restrictions
imposed, as there is no change of ownership. An investor with multiple addresses may call t ransferFrom to move
tokens from any of their addresses without first using the approve method. The issuer can also use t ransferFrom
to move any investor’s tokens, without prior approval.

See the SecurityToken page for a detailed explanation of how to use this contract.

Custodians

To set up a custodian contract to send and receive tokens, you must deploy it and then attach it to an IssuingEntity
with IssuingEntity.addCustodian. At this point, investors may send tokens into the custodian contract just
like they would any other address.

The Custodian.transfer function allows you to send tokens out of the contract. You may modify the list of
benficial owners using addInvestors and removeInvestors.

See the Custodian page for a detailed explanation of how to use this contract.

5.1.8 Investor Data Standards

The following generation and format standards should be followed across the SFT protocol to ensure interoperability
between network participants.

5.1. Contents 17

./issuing-entity.md
./security-token.md
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
./security-token.md
./custodian.md

SFT Protocol Documentation

Investor IDs

Investor IDs are stored as a bytes32 keccak256 hash of the investor’s personally identifiable information.
For legal entities, the hash is generated from their Global Legal Entity Identifier (LEI):

The International Organization for Standardization (ISO) 17442 standard defines a set of attributes or
legal entity reference data that are the most essential elements of identification. The Legal Entity Identifier
(LEI) code itself is neutral, with no embedded intelligence or country codes that could create unnecessary
complexity for users.

For natural persons, a hash is produced from a concatenation of the following:
¢ Full legal name in all capital letters without spaces
* Date of Birthas DDMMYYYY
¢ Unique tax ID from current jurisdiction of residence

If any of the malleable fields are changed (via a legal name change or a change of home jurisdictions), the investor will
be required to pass KYC/AML again and a new investor ID will be generated. Once KYC is passed, the tokens held
in previous addresses must be transferred to addresses associated to the new investor ID. It is impossible to remove or
change the ID association of an address.

Country Codes

Based on the ISO-3166-1 numeric standard. Country codes are stored as a uint16 and follow the standard exactly.

A CSV of country and region codes is available ‘here <country-and-region-codes.csv>‘__.

Region Codes

Based on the ISO 3166-2 standard.

Region codes are stored as a bytes3 and are generated in the following way:
1. Convert each character of the ISO 3166-2 code to it’s hexadecimal ASCII code point
2. Concatenate the hex values
3. Pad right where necessary

A quick example to generate region codes using python:

1s03166 = "US-AL"[3:]
1503166 = [hex(ord(i)) .replace('0Ox',"'"") for i in is03166]
print ("0x"+"".join (is03166)) .1just (6, '0"))

* Original code: US-AL
* Resulting bytes32: 0x414c00

A CSV of country and region codes is available ‘here <country-and-region-codes.csv>‘__.

18 Chapter 5. License

https://www.gleif.org/en/about-lei/iso-17442-the-lei-code-structure
https://en.wikipedia.org/wiki/ISO_3166-1_numeric
https://en.wikipedia.org/wiki/ISO_3166-2

	How it works
	Components
	Testing and Deployment
	Third-Party Integration
	License
	Contents

