
Theory of Sound Field Synthesis
Release 2.9.1

SFS Toolbox Developers

Jun 27, 2018





Contents

1 Sound Field Synthesis 1
1.1 Mathematical Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Fourier transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Solution for Special Geometries: NFC-HOA and SDM . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Spherical Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Circular Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Planar Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.4 Linear Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 High Frequency Approximation: WFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Sound Field Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 2.5D Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Model-Based Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.1 Plane Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6.2 Point Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.3 Dipole Point Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.4 Line Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Driving functions for NFC-HOA and SDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7.1 Plane Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7.2 Point Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7.3 Line Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7.4 Focused Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Driving functions for WFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8.1 Plane Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8.2 Point Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8.3 Line Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8.4 Focused Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.9 Driving functions for LSFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.10 Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bibliography 23

i



ii



CHAPTER 1

Sound Field Synthesis

Sound field synthesis (SFS) includes all methods that try to generate a defined sound field in an extended area
that is surrounded by loudspeakers. This page focuses on those methods that provide analytical solutions to the
underlying mathematical problem, namely WFS (Wave Field Synthesis), NFC-HOA (Near-Field Compensated
Higher Order Ambisonics), and the SDM (Spectral Division Method).

The Toolboxes provide you with the implementation of the underlying mathematics. You can make numerical
simulations of the resulting sound fields and can even create binaural simulations of the same sound fields. This
enables you to listen to large loudspeaker arrays, even if you don’t have one in your laboratory or at home. In
addition, you can easily plug-in your own algorithms in order to test or compare them.

The SFS Toolbox project is structured in the following three sub-projects.

Discussion of Theory: http://sfstoolbox.org (current page)

SFS Toolbox for Matlab/Octave: http://matlab.sfstoolbox.org

SFS Toolbox for Python: http://python.sfstoolbox.org

Most of the figures in this page are directly created by the SFS Toolbox for Python. All of them display the
corresponding code for creating them directly before the actual figure. In order to recreate them, you have to
execute the following code first:

import numpy as np
import matplotlib.pyplot as plt
import sfs
plt.rcParams['figure.figsize'] = 8, 4.5 # inch

The image at the top of the page is extracted from [ZotterSpors2013]. The following presentation of the theory is
based on Chap. 2 from [Wierstorf2014].
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1.1 Mathematical Definitions

1.1.1 Coordinate system

Figure shows the coordinate system that is used in the following chapters. A vector x can be described by its
position (𝑥, 𝑦, 𝑧) in space or by its length, azimuth angle 𝜑 ∈ [0, 2𝜋[, and elevation 𝜃 ∈

[︀
−𝜋

2 ,
𝜋
2

]︀
. The azimuth is

measured counterclockwise and elevation is positive for positive 𝑧-values.

Fig. 1.1: Coordinate system used in this document. The vector 𝑥 can also be described by its length, its azimuth
angle 𝜑, and its elevation 𝜃.

1.1.2 Fourier transformation

Let 𝑠 be an absolute integrable function, 𝑡, 𝜔 real numbers, then the temporal Fourier transform is defined after
[Bracewell2000] as

𝑆(𝜔) = ℱ {𝑠(𝑡)} =

∫︁ ∞

−∞
𝑠(𝑡)e−i𝜔𝑡 d𝑡. (1.1)

In the same way the inverse temporal Fourier transform is defined as

𝑠(𝑡) = ℱ−1 {𝑆(𝜔)} =
1

2𝜋

∫︁ ∞

−∞
𝑆(𝜔)ei𝜔𝑡 d𝜔. (1.2)

1.2 Problem statement

The problem of sound field synthesis can be formulated after as follows. Assume a volume 𝑉 ⊂ R𝑛 which is
free of any sources and sinks, surrounded by a distribution of monopole sources on its surface 𝜕𝑉 . The pressure
𝑃 (x, 𝜔) at a point x ∈ 𝑉 is then given by the single-layer potential (compare p. 39 in [ColtonKress1998])

𝑃 (x, 𝜔) =

∮︁
𝜕𝑉

𝐷(x0, 𝜔)𝐺(x− x0, 𝜔) d𝐴(x0), (1.3)

where 𝐺(x − x0, 𝜔) denotes the sound propagation of the source at location x0 ∈ 𝜕𝑉 , and 𝐷(x0, 𝜔) its weight,
usually referred to as driving function. The sources on the surface are called secondary sources in sound field

2 Chapter 1. Sound Field Synthesis
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Fig. 1.2: Illustration of the geometry used to discuss the physical fundamentals of sound field synthesis and the
single-layer potential.

synthesis, analogue to the case of acoustical scattering problems. The single-layer potential can be derived from
the Kirchhoff-Helmholtz integral [Williams1999]. The challenge in sound field synthesis is to solve the integral
with respect to 𝐷(x0, 𝜔) for a desired sound field 𝑃 = 𝑆 in 𝑉 . It has unique solutions which [ZotterSpors2013]
explicitly showed for the spherical case and [Fazi2010] (Chap.4.3) for the planar case.

In the following the single-layer potential for different dimensions is discussed. An approach to formulate the
desired sound field 𝑆 is described and finally it is shown how to derive the driving function 𝐷.

1.3 Solution for Special Geometries: NFC-HOA and SDM

The integral equation (1.3) states a Fredholm equation of first kind with a Green’s function as kernel. This type
of equation can be solved in a straightforward manner for geometries that have a complete set of orthogonal basis
functions. Then the involved functions are expanded into the basis functions 𝜓𝑛 as [MorseFeshbach1981], p.
(940)

𝐺(x− x0, 𝜔) =
∑︁
𝑛

𝐺̃𝑛(𝜔)𝜓*
𝑛(x0)𝜓𝑛(x) (1.4)

𝐷(x0, 𝜔) =
∑︁
𝑛

𝐷̃𝑛(𝜔)𝜓𝑛(x0) (1.5)

𝑆(x, 𝜔) =
∑︁
𝑛

𝑆𝑛(𝜔)𝜓𝑛(x), (1.6)

where 𝐺̃𝑛, 𝐷̃𝑛, 𝑆𝑛 denote the series expansion coefficients, 𝑛 ∈ Z, and ⟨𝜓𝑛, 𝜓𝑛′⟩ = 0 for 𝑛 ̸= 𝑛′. If the
underlying space is not compact the equations will involve an integration instead of a summation

𝐺(x− x0, 𝜔) =

∫︁
𝐺̃(𝜇, 𝜔)𝜓*(𝜇,x0)𝜓(𝜇,x) d𝜇 (1.7)

𝐷(x0, 𝜔) =

∫︁
𝐷̃(𝜇, 𝜔)𝜓(𝜇,x0) d𝜇 (1.8)

1.3. Solution for Special Geometries: NFC-HOA and SDM 3
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𝑆(x, 𝜔) =

∫︁
𝑆(𝜇, 𝜔)𝜓(𝜇,x) d𝜇, (1.9)

where d𝜇 is the measure in the underlying space. Introducing these equations into (1.3) one gets

𝐷̃𝑛(𝜔) =
𝑆𝑛(𝜔)

𝐺̃𝑛(𝜔)
. (1.10)

This means that the Fredholm equation (1.3) states a convolution. For geometries where the required orthogonal
basis functions exist, (1.10) follows directly via the convolution theorem [ArfkenWeber2005], eq. (1013). Due
to the division of the desired sound field by the spectrum of the Green’s function this kind of approach has been
named SDM [AhrensSpors2010]. For circular and spherical geometries the term NFC-HOA is more common due
to the corresponding basis functions. “Near-field compensated” highlights the usage of point sources as secondary
sources in contrast to Ambisonics and HOA (Higher Order Ambisonics) that assume plane waves as secondary
sources.

The challenge is to find a set of basis functions for a given geometry. In the following paragraphs three simple
geometries and their widely known sets of basis functions will be discussed.

1.3.1 Spherical Geometries

The spherical harmonic functions constitute a basis for a spherical secondary source distribution in R3 and can be
defined as [GumerovDuraiswami2004], eq. (12.153)1

𝑌 𝑚
𝑛 (𝜃, 𝜑) = (−1)𝑚

√︃
(2𝑛+ 1)(𝑛− |𝑚|)!

4𝜋(𝑛+ |𝑚|)!
𝑃 |𝑚|
𝑛 (sin 𝜃)ei𝑚𝜑

𝑛 = 0, 1, 2, ... 𝑚 = −𝑛, ..., 𝑛

(1.11)

where 𝑃 |𝑚|
𝑛 are the associated Legendre functions. Note that this function may also be defined in a slightly

different way, omitting the (−1)𝑚 factor, see for example [Williams1999], eq. (6.20).

The complex conjugate of 𝑌 𝑚
𝑛 is given by negating the degree 𝑚 as

𝑌 𝑚
𝑛 (𝜃, 𝜑)* = 𝑌 −𝑚

𝑛 (𝜃, 𝜑). (1.12)

For a spherical secondary source distribution with a radius of𝑅0 the sound field can be calculated by a convolution
along the surface. The driving function is then given by a simple division as [Ahrens2012], eq. (3.21)2

𝐷spherical(𝜃0, 𝜑0, 𝜔) =

1

𝑅 2
0

∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

√︂
2𝑛+ 1

4𝜋

𝑆𝑚
𝑛 (𝜃s, 𝜑s, 𝑟s, 𝜔)

𝐺̆0
𝑛(𝜋

2 , 0, 𝜔)
𝑌 𝑚
𝑛 (𝜃0, 𝜑0),

(1.13)

where 𝑆𝑚
𝑛 denote the spherical expansion coefficients of the source model, 𝜃s, 𝜑s, and 𝑟s its directional dependency,

and 𝐺̆0
𝑛 the spherical expansion coefficients of a secondary monopole source located at the north pole of the sphere

x0 = (𝜋
2 , 0, 𝑅0). For a point source this is given as [SchultzSpors2014], eq. (25)

𝐺̆0
𝑛(𝜋

2 , 0, 𝜔) = −i
𝜔

𝑐

√︂
2𝑛+ 1

4𝜋
ℎ(2)𝑛

(︁𝜔
𝑐
𝑅0

)︁
, (1.14)

where ℎ(2)𝑛 () describes the spherical Hankel function of 𝑛-th order and second kind.

1 Note that sin 𝜃 is used here instead of cos 𝜃 due to the use of another coordinate system, compare Figure 2.1 from Gumerov and
Duraiswami and Fig. 1.1.

2 Note the 1
2𝜋

term is wrong in [Ahrens2012], eq. (3.21) and eq. (5.7) and omitted here, compare the errata and [SchultzSpors2014], eq.
(24).
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1.3.2 Circular Geometries

The following functions build a basis in R2 for a circular secondary source distribution [Williams1999]

Φ𝑚(𝜑) = ei𝑚𝜑. (1.15)

The complex conjugate of Φ𝑚 is given by negating the degree 𝑚 as

Φ𝑚(𝜑)* = Φ−𝑚(𝜑). (1.16)

For a circular secondary source distribution with a radius of 𝑅0 the driving function can be calculated by a convo-
lution along the surface of the circle as explicitly shown by [AhrensSpors2009a] and is then given as

𝐷circular(𝜑0, 𝜔) =
1

2𝜋𝑅0

∞∑︁
𝑚=−∞

𝑆𝑚(𝜑s, 𝑟s, 𝜔)

𝐺̆𝑚(0, 𝜔)
Φ𝑚(𝜑0), (1.17)

where 𝑆𝑚 denotes the circular expansion coefficients for the source model, 𝜑s, and 𝑟s its directional dependency,
and 𝐺̆𝑚 the circular expansion coefficients for a secondary monopole source. For a line source located at x0 =
(0, 𝑅0) this is given as

𝐺̆𝑚(0, 𝜔) = − i

4
𝐻(2)

𝑚

(︁𝜔
𝑐
𝑅0

)︁
, (1.18)

where 𝐻(2)
𝑚 () describes the Hankel function of 𝑚-th order and second kind.

1.3.3 Planar Geometries

The basis functions for a planar secondary source distribution located on the 𝑥𝑧-plane in R3 are given as

Λ(𝑘𝑥, 𝑘𝑧, 𝑥, 𝑧) = e−i(𝑘𝑥𝑥+𝑘𝑧𝑧), (1.19)

where 𝑘𝑥, 𝑘𝑧 are entries in the wave vector k with 𝑘2 = (𝜔
𝑐 )2. The complex conjugate is given by negating 𝑘𝑥

and 𝑘𝑧 as

Λ(𝑘𝑥, 𝑘𝑧, 𝑥, 𝑧)
* = Λ(−𝑘𝑥,−𝑘𝑧, 𝑥, 𝑧). (1.20)

For an infinitely long secondary source distribution located on the 𝑥𝑧-plane the driving function can be calculated
by a two-dimensional convolution along the plane as [Ahrens2012], eq. (3.65)

𝐷planar(𝑥0, 𝑦0, 𝜔) =
1

4𝜋2

∫︁∫︁ ∞

−∞

𝑆(𝑘𝑥, 𝑦s, 𝑘𝑧, 𝜔)

𝐺̆(𝑘𝑥, 0, 𝑘𝑧, 𝜔)
Λ(𝑘𝑥, 𝑥0, 𝑘𝑧, 𝑧0) d𝑘𝑥 d𝑘𝑧, (1.21)

where 𝑆 denotes the planar expansion coefficients for the source model, 𝑦s its positional dependency, and 𝐺̆ the
planar expansion coefficients of a secondary point source with [SchultzSpors2014], eq. (49)

𝐺̆(𝑘𝑥, 0, 𝑘𝑧, 𝜔) = − i

2

1√︀
(𝜔
𝑐 )2 − 𝑘2𝑥 − 𝑘2𝑧

, (1.22)

for (𝜔
𝑐 )2 > (𝑘2𝑥 + 𝑘2𝑧).

For the planar and the following linear geometries the Fredholm equation is solved for a non compact space 𝑉 ,
which leads to an infinite and non-denumerable number of basis functions as opposed to the denumerable case for
compact spaces [SchultzSpors2014].

1.3. Solution for Special Geometries: NFC-HOA and SDM 5
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1.3.4 Linear Geometries

The basis functions for a linear secondary source distribution located on the 𝑥-axis are given as

𝜒(𝑘𝑥, 𝑥) = e−i𝑘𝑥𝑥. (1.23)

The complex conjugate is given by negating 𝑘𝑥 as

𝜒(𝑘𝑥, 𝑥)* = 𝜒(−𝑘𝑥, 𝑥). (1.24)

For an infinitely long secondary source distribution located on the 𝑥-axis the driving function for R2 can be
calculated by a convolution along this axis as [Ahrens2012], eq. (3.73)

𝐷linear(𝑥0, 𝜔) =
1

2𝜋

∫︁ ∞

−∞

𝑆(𝑘𝑥, 𝑦s, 𝜔)

𝐺̆(𝑘𝑥, 0, 𝜔)
𝜒(𝑘𝑥, 𝑥0) d𝑘𝑥, (1.25)

where 𝑆 denotes the linear expansion coefficients for the source model, 𝑦s, 𝑧s its positional dependency, and 𝐺̆ the
linear expansion coefficients of a secondary line source with

𝐺̆(𝑘𝑥, 0, 𝜔) = − i

2

1√︀
(𝜔
𝑐 )2 − 𝑘2𝑥

, (1.26)

for 0 < |𝑘𝑥| < |𝜔𝑐 | .

1.4 High Frequency Approximation: WFS

The single-layer potential (1.3) satisfies the homogeneous Helmholtz equation both in the interior and exterior
regions 𝑉 and 𝑉 *:=R𝑛 ∖ (𝑉 ∪ 𝜕𝑉 ) . If 𝐷(x0, 𝜔) is continuous, the pressure 𝑃 (x, 𝜔) is continuous when ap-
proaching the surface 𝜕𝑉 from the inside and outside. Due to the presence of the secondary sources at the surface
𝜕𝑉 , the gradient of 𝑃 (x, 𝜔) is discontinuous when approaching the surface. The strength of the secondary sources
is then given by the differences of the gradients approaching 𝜕𝑉 from both sides as [FaziNelson2013]

𝐷(x0, 𝜔) = 𝜕n𝑃 (x0, 𝜔) + 𝜕−n𝑃 (x0, 𝜔), (1.27)

where 𝜕n:= ⟨∇,n⟩ is the directional gradient in direction n – see Fig. 1.2. Due to the symmetry of the problem
the solution for an infinite planar boundary 𝜕𝑉 is given as

𝐷(x0, 𝜔) = −2𝜕n𝑆(x0, 𝜔), (1.28)

where the pressure in the outside region is the mirrored interior pressure given by the source model 𝑆(x, 𝜔) for
x ∈ 𝑉 . The integral equation resulting from introducing (1.28) into (1.3) for a planar boundary 𝜕𝑉 is known as
Rayleigh’s first integral equation. This solution is identical to the explicit solution for planar geometries (1.21) in
R3 and for linear geometries (1.25) in R2.

A solution of (1.27) for arbitrary boundaries can be found by applying the Kirchhoff or physical optics approxima-
tion [ColtonKress1983], p. 53–54. In acoustics this is also known as determining the visible elements for the high
frequency boundary element method [Herrin2003]. Here, it is assumed that a bent surface can be approximated
by a set of small planar surfaces for which (1.28) holds locally. In general, this will be the case if the wave length is
much smaller than the size of a planar surface patch and the position of the listener is far away from the secondary
sources.3 Additionally, only one part of the surface is active: the area that is illuminated from the incident field of
the source model.

The outlined approximation can be formulated by introducing a window function 𝑤(x0) for the selection of the
active secondary sources into (1.28) as

𝑃 (x, 𝜔) ≈
∮︁
𝜕𝑉

𝐺(x|x0, 𝜔) −2𝑤(x0)𝜕n𝑆(x0, 𝜔)⏟  ⏞  
𝐷(x0,𝜔)

d𝐴(x0). (1.29)

3 Compare the assumptions made before (15) in [SporsZotter2013], which lead to the derivation of the same window function in a more
explicit way.

6 Chapter 1. Sound Field Synthesis

http://sfstoolbox.org/


http://sfstoolbox.org/ Release 2.9.1

In the SFS Toolbox we assume convex secondary source distributions, which allows to formulate the window
function by a scalar product with the normal vector of the secondary source distribution. In general, also non-
convex secondary source distributions can be used with WFS – compare the appendix in [LaxFeshbach1947]
and4.

One of the advantages of the applied approximation is that due to its local character the solution of the driving
function (1.28) does not depend on the geometry of the secondary sources. This dependency applies to the direct
solutions presented in Solution for Special Geometries: NFC-HOA and SDM.

1.5 Sound Field Dimensionality

The single-layer potential (1.3) is valid for all 𝑉 ⊂ R𝑛. Consequentially, for practical applications a two-
dimensional (2D) as well as a three-dimensional (3D) synthesis is possible. Two-dimensional is not referring
to a synthesis in a plane only, but describes a setup that is independent of one dimension. For example, an infinite
cylinder is independent of the dimension along its axis. The same is true for secondary source distributions in
2D synthesis. They exhibit line source characteristics and are aligned in parallel to the independent dimension.
Typical arrangements of such secondary sources are a circular or a linear setup.

The characteristics of the secondary sources limit the set of possible sources which can be synthesized. For
example, when using a 2D secondary source setup it is not possible to synthesize the amplitude decay of a point
source.

For a 3D synthesis the involved secondary sources depend on all dimensions and exhibit point source characteris-
tics. In this scenario classical secondary sources setups would be a sphere or a plane.

1.5.1 2.5D Synthesis

Fig. 1.3: Sound pressure in decibel for secondary source distributions with different dimensionality all driven by
the same signals. The sound pressure is color coded, lighter color corresponds to lower pressure. In the 3D case
a planar distribution of point sources is applied, in the 2.5D case a linear distribution of point sources, and in the
2D case a linear distribution of line sources.

In practice, the most common setups of secondary sources are 2D setups, employing cabinet loudspeakers. A
cabinet loudspeaker does not show the characteristics of a line source, but of a point source. This dimension-
ality mismatch prevents perfect synthesis within the desired plane. The combination of a 2D secondary source
setup with secondary sources that exhibit 3D characteristics has led to naming such configurations 2.5D synthesis
[Start1997]. Such scenarios are associated with a wrong amplitude decay due to the inherent mismatch of sec-
ondary sources as is highlighted in Fig. 1.3. In general, the amplitude is only correct at a given reference point
xref.

For a circular secondary source distribution with point source characteristic the 2.5D driving function can be
derived by introducing expansion coefficients for the spherical case into the driving function (1.17). The equation

4 The solution mentioned by [LaxFeshbach1947] assumes that the listener is far away from the radiator and that the radiator is a physical
source not a notional one as the secondary sources. In this case the selection criterion has to be chosen more carefully, incorporating the exact
position of the listener and the virtual source. See also the related discussion.
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is than solved for 𝜃 = 0∘ and 𝑟ref = 0. This results in a 2.5D driving function given as [Ahrens2012], eq. (3.49)

𝐷circular,2.5D(𝜑0, 𝜔) =
1

2𝜋𝑅0

∞∑︁
𝑚=−∞

𝑆𝑚
|𝑚|(

𝜋
2 , 𝜑s, 𝑟s, 𝜔)

𝐺̆𝑚
|𝑚|(

𝜋
2 , 0, 𝜔)

Φ𝑚(𝜑0). (1.30)

For a linear secondary source distribution with point source characteristics the 2.5D driving function is derived
by introducing the linear expansion coefficients for a monopole source (1.43) into the driving function (1.25) and
solving the equation for 𝑦 = 𝑦ref and 𝑧 = 0. This results in a 2.5D driving function given as [Ahrens2012], eq.
(3.77)

𝐷linear,2.5D(𝑥0, 𝜔) =
1

2𝜋

∫︁ ∞

−∞

𝑆(𝑘𝑥, 𝑦ref, 0, 𝜔)

𝐺̆(𝑘𝑥, 𝑦ref, 0, 𝜔)
𝜒(𝑘𝑥, 𝑥0) d𝑘𝑥. (1.31)

A driving function for the 2.5D situation in the context of WFS and arbitrary 2D geometries of the secondary
source distribution can be achieved by applying the far-field approximation 𝐻(2)

0 (𝜁) ≈
√︁

2i
𝜋𝜁 e−i𝜁 for 𝜁 ≫ 1 to

the 2D Green’s function [Williams1999], eq. (4.23). Using this the following relationship between the 2D and 3D
Green’s functions can be established.

− i

4
𝐻

(2)
0

(︁𝜔
𝑐
|x− x0|

)︁
⏟  ⏞  

𝐺2D(x−x0,𝜔)

≈
√︂

2𝜋
𝑐

i𝜔
|x− x0|

1

4𝜋

e−i𝜔𝑐 |x−x0|

|x− x0|⏟  ⏞  
𝐺3D(x−x0,𝜔)

,
(1.32)

where 𝐻(2)
0 () denotes the Hankel function of second kind and zeroth order. Inserting this approximation into the

single-layer potential for the 2D case results in

𝑃 (x, 𝜔) =

∮︁
𝑆

√︂
2𝜋

𝑐

i𝜔
|x− x0| 𝐷(x0, 𝜔)𝐺3D(x− x0, 𝜔) d𝐴(x0). (1.33)

If the amplitude correction is further restricted to one reference point xref, 2.5D the driving function for WFS can
be formulated as

𝐷2.5D(x0, 𝜔) =
√︀

2𝜋|xref − x0|⏟  ⏞  
𝑔0

√︂
𝑐

i𝜔
𝐷(x0, 𝜔), (1.34)

where 𝑔0 is independent of x.

1.6 Model-Based Rendering

Knowing the pressure field of the desired source 𝑆(x, 𝜔) is required in order to derive the driving signal for the
secondary source distribution. It can either be measured, i.e. recorded, or modeled. While the former is known
as data-based rendering, the latter is known as model-based rendering. For data-based rendering, the problem
of how to capture a complete sound field still has to be solved. [Avni2013] et al. discuss some influences of the
recording limitations on the perception of the reproduced sound field. This document will consider only model-
based rendering.

Frequently applied models in model-based rendering are plane waves, point sources, or sources with a prescribed
complex directivity. In the following the models used within the SFS Toolbox are presented.

1.6.1 Plane Wave

nk = sfs.util.direction_vector(np.radians(45)) # direction of plane wave
xs = 0, 0, 0 # center of plane wave
omega = 2 * np.pi * 800 # frequency
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
p = sfs.mono.source.plane(omega, xs, nk, grid)
sfs.plot.soundfield(p, grid);

8 Chapter 1. Sound Field Synthesis
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Fig. 1.4: Sound pressure for a monochromatic plane wave (1.35) going into the direction (1, 1, 0). Parameters:
𝑓 = 800 Hz.

The source model for a plane wave is given as [Williams1999], eq. (2.24)5

𝑆(x, 𝜔) = 𝐴(𝜔)e−i𝜔𝑐 ⟨n𝑘,x⟩, (1.35)

where 𝐴(𝜔) denotes the frequency spectrum of the source and n𝑘 a unit vector pointing into the direction of the
plane wave.

Transformed in the temporal domain this becomes

𝑠(x, 𝑡) = 𝑎(𝑡) * 𝛿
(︂
𝑡− ⟨n𝑘,x⟩

𝑐

)︂
, (1.36)

where 𝑎(𝑡) is the Fourier transformation of the frequency spectrum 𝐴(𝜔).

The expansion coefficients for spherical basis functions are given as [Ahrens2012], eq. (2.38)

𝑆𝑚
𝑛 (𝜃𝑘, 𝜑𝑘, 𝜔) = 4𝜋i−𝑛𝑌 −𝑚

𝑛 (𝜃𝑘, 𝜑𝑘), (1.37)

where (𝜑𝑘, 𝜃𝑘) is the radiating direction of the plane wave.

In a similar manner the expansion coefficients for circular basis functions are given as

𝑆𝑚(𝜑s, 𝜔) = i−𝑛Φ−𝑚(𝜑s). (1.38)

The expansion coefficients for linear basis functions are given as after [Ahrens2012], eq. (C.5)

𝑆(𝑘𝑥, 𝑦, 𝜔) = 2𝜋 𝛿 (𝑘𝑥 − 𝑘𝑥,s)𝜒(𝑘𝑦,s, 𝑦), (1.39)

where (𝑘𝑥,s, 𝑘𝑦,s) points into the radiating direction of the plane wave.

1.6.2 Point Source

5 Note that Williams defines the Fourier transform with transposed signs as 𝐹 (𝜔) =
∫︀
𝑓(𝑡)ei𝜔𝑡. This leads also to changed signs in his

definitions of the Green’s functions and field expansions.

1.6. Model-Based Rendering 9

http://sfstoolbox.org/


http://sfstoolbox.org/ Release 2.9.1

xs = 0, 0, 0 # position of source
omega = 2 * np.pi * 800 # frequency
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
p = sfs.mono.source.point(omega, xs, [], grid)
normalization = 4 * np.pi
sfs.plot.soundfield(normalization * p, grid);

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x / m

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y 
/ m

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Fig. 1.5: Sound pressure for a monochromatic point source (1.40) placed at (0, 0, 0). Parameters: 𝑓 = 800 Hz.

The source model for a point source is given by the three dimensional Green’s function as [Williams1999], eq.
(6.73)

𝑆(x, 𝜔) = 𝐴(𝜔)
1

4𝜋

e−i𝜔𝑐 |x−xs|

|x− xs|
, (1.40)

where xs describes the position of the point source.

Transformed to the temporal domain this becomes

𝑠(x, 𝑡) = 𝑎(𝑡) * 1

4𝜋

1

|x− xs|
𝛿

(︂
𝑡− |x− xs|

𝑐

)︂
. (1.41)

The expansion coefficients for spherical basis functions are given as [Ahrens2012], eq. (2.37)

𝑆𝑚
𝑛 (𝜃s, 𝜑s, 𝑟s, 𝜔) = −i

𝜔

𝑐
ℎ(2)𝑛

(︁𝜔
𝑐
𝑟s

)︁
𝑌 −𝑚
𝑛 (𝜃s, 𝜑s), (1.42)

where (𝜑s, 𝜃s, 𝑟s) describes the position of the point source.

The expansion coefficients for linear basis functions are given as [Ahrens2012], eq. (C.10)

𝑆(𝑘𝑥, 𝑦, 𝜔) = − i

4
𝐻

(2)
0

(︁√︁
(𝜔
𝑐 )2 − 𝑘2𝑥 |𝑦 − 𝑦s|

)︁
𝜒(−𝑘𝑥, 𝑥s), (1.43)

for |𝑘𝑥| < |𝜔𝑐 | and with (𝑥s, 𝑦s) describing the position of the point source.

1.6.3 Dipole Point Source

10 Chapter 1. Sound Field Synthesis
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xs = 0, 0, 0 # position of source
ns = sfs.util.direction_vector(0) # direction of source
omega = 2 * np.pi * 800 # frequency
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
p = sfs.mono.source.point_dipole(omega, xs, ns, grid)
sfs.plot.soundfield(p, grid);
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Fig. 1.6: Sound pressure for a monochromatic dipole point source (1.44) placed at (0, 0, 0) and pointing towards
(1, 0, 0). Parameters: 𝑓 = 800 Hz.

The source model for a three dimensional dipole source is given by the directional derivative of the three dimen-
sional Green’s function with respect to ns defining the orientation of the dipole source.

𝑆(x, 𝜔) = 𝐴(𝜔)
1

4𝜋

⟨
∇xs

e−i𝜔𝑐 |x−xs|

|x− xs|
,ns

⟩
= 𝐴(𝜔)

1

4𝜋

(︂
1

|x− xs|
+ i

𝜔

𝑐

)︂
⟨x− xs,ns⟩
|x− xs|2

e−i𝜔𝑐 |x−xs|.

(1.44)

Transformed to the temporal domain this becomes

𝑠(x, 𝑡) = 𝑎(𝑡) *
(︂

1

|x− xs|
+ ℱ−1

{︂
i𝜔

𝑐

}︂)︂
* ⟨x− xs,ns⟩

4𝜋|x− xs|2
𝛿

(︂
𝑡− |x− xs|

𝑐

)︂
. (1.45)

1.6.4 Line Source

xs = 0, 0, 0 # position of source
omega = 2 * np.pi * 800 # frequency
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
p = sfs.mono.source.line(omega, xs, None, grid)
normalization = np.sqrt(8 * np.pi * omega / sfs.defs.c) * np.exp(1j * np.pi / 4)
sfs.plot.soundfield(normalization * p, grid);

The source model for a line source is given by the two dimensional Green’s function as [Williams1999], eq. (8.47)

𝑆(x, 𝜔) = −𝐴(𝜔)
i

4
𝐻

(2)
0

(︁𝜔
𝑐
|x− xs|

)︁
. (1.46)
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Fig. 1.7: Sound pressure for a monochromatic line source (1.46) placed at (0, 0, 0). Parameters: 𝑓 = 800 Hz.

Applying the large argument approximation of the Hankel function [Williams1999], eq. (4.23) and transformed
to the temporal domain this becomes

𝑠(x, 𝑡) = 𝑎(𝑡) * ℱ−1

{︂√︂
𝑐

i𝜔

}︂
*
√︂

1

8𝜋

1√︀
|x− xs|

𝛿

(︂
𝑡− |x− xs|

𝑐

)︂
. (1.47)

The expansion coefficients for spherical basis functions are given as [Hahn2015], eq. (15)

𝑆𝑚
𝑛 (𝜑s, 𝑟s, 𝜔) = −𝜋i𝑚−𝑛+1𝐻(2)

𝑚

(︁𝜔
𝑐
𝑟s

)︁
𝑌 −𝑚
𝑛 (0, 𝜑s). (1.48)

The expansion coefficients for circular basis functions are given as

𝑆𝑚(𝜑s, 𝑟s, 𝜔) = − i

4
𝐻(2)

𝑚

(︁𝜔
𝑐
𝑟s

)︁
Φ−𝑚(𝜑s). (1.49)

The expansion coefficients for linear basis functions are given as

𝑆(𝑘𝑥, 𝑦s, 𝜔) = − i

2

1√︀
(𝜔
𝑐 )2 − 𝑘2𝑥

𝜒(𝑘𝑦, 𝑦s). (1.50)

1.7 Driving functions for NFC-HOA and SDM

In the following, driving functions for NFC-HOA and SDM are derived for spherical, circular, and linear sec-
ondary source distributions. Among the possible combinations of methods and secondary sources not all are
meaningful. Hence, only the relevant ones will be presented. The same holds for the introduced source models
of plane waves, point sources, line sources and focused sources. [AhrensSpors2010] in addition have considered
SDM driving functions for planar secondary source distributions.

For NFC-HOA, temporal-domain implementations for the 2.5D cases are available for a plane wave and a point
source as source models. The derivation of the implementation is not explicitly shown here, but is described in
[Spors2011].
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1.7.1 Plane Wave

nk = 0, -1, 0 # direction of plane wave
omega = 2 * np.pi * 1000 # frequency
R0 = 1.5 # radius of secondary sources
x0, n0, a0 = sfs.array.circular(200, R0)
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
d = sfs.mono.drivingfunction.nfchoa_25d_plane(omega, x0, R0, nk)
p = sfs.mono.synthesized.generic(omega, x0, n0, d * a0 , grid,

source=sfs.mono.source.point)
normalization = 0.05
sfs.plot.soundfield(normalization * p, grid);
sfs.plot.secondarysource_2d(x0, n0, grid)
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Fig. 1.8: Sound pressure for a monochromatic plane wave synthesized with 2.5D NFC-HOA (1.53). Parameters:
n𝑘 = (0,−1, 0), xref = (0, 0, 0), 𝑓 = 1 kHz.

For a spherical secondary source distribution with radius 𝑅0 the spherical expansion coefficients of a
plane wave (1.37) and of the Green’s function for a point source (1.14) are inserted into (1.13) and yield
[SchultzSpors2014], eq. (A3)

𝐷spherical(𝜃0, 𝜑0, 𝜔) = −𝐴(𝜔)
4𝜋

𝑅 2
0

∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

i−𝑛𝑌 −𝑚
𝑛 (𝜃𝑘, 𝜑𝑘)

i𝜔𝑐 ℎ
(2)
𝑛

(︀
𝜔
𝑐𝑅0

)︀ 𝑌 𝑚
𝑛 (𝜃0, 𝜑0). (1.51)

For a circular secondary source distribution with radius 𝑅0 the circular expansion coefficients of a plane
wave (1.38) and of the Green’s function for a line source (1.18) are inserted into (1.17) and yield
[AhrensSpors2009a], eq. (16)

𝐷circular(𝜑0, 𝜔) = −𝐴(𝜔)
2i

𝜋𝑅0

∞∑︁
𝑚=−∞

i−𝑚Φ−𝑚(𝜑𝑘)

𝐻
(2)
𝑚

(︀
𝜔
𝑐𝑅0

)︀ Φ𝑚(𝜑0). (1.52)

For a circular secondary source distribution with radius 𝑅0 and point source as Green’s function the 2.5D driving
function is given by inserting the spherical expansion coefficients for a plane wave (1.37) and a point source (1.42)
into (1.30) as

𝐷circular, 2.5D(𝜑0, 𝜔) = −𝐴(𝜔)
2

𝑅0

∞∑︁
𝑚=−∞

i−|𝑚|Φ−𝑚(𝜑𝑘)

i𝜔𝑐 ℎ
(2)
|𝑚|

(︀
𝜔
𝑐𝑅0

)︀ Φ𝑚(𝜑0). (1.53)
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For an infinite linear secondary source distribution located on the 𝑥-axis the 2.5D driving function is given by in-
serting the linear expansion coefficients for a point source as Green’s function (1.43) and a plane wave (1.39)
into (1.31) and exploiting the fact that (𝜔

𝑐 )2 − 𝑘𝑥s is constant. Assuming 0 ≤ |𝑘𝑥s | ≤ |𝜔𝑐 | this results in
[AhrensSpors2010], eq. (17)

𝐷linear, 2.5D(𝑥0, 𝜔) = 𝐴(𝜔)
4i𝜒(𝑘𝑦, 𝑦ref)

𝐻
(2)
0 (𝑘𝑦𝑦ref)

𝜒(𝑘𝑥, 𝑥0). (1.54)

Transferred to the temporal domain this results in [AhrensSpors2010], eq. (18)

𝑑linear, 2.5D(𝑥0, 𝑡) = ℎ(𝑡) * 𝑎
(︁
𝑡− 𝑥0

𝑐
sin𝜑𝑘 − 𝑦ref

𝑐
sin𝜑𝑘

)︁
, (1.55)

where 𝜑𝑘 denotes the azimuth direction of the plane wave and

ℎ(𝑡) = ℱ−1

{︃
4i

𝐻
(2)
0 (𝑘𝑦𝑦ref)

}︃
. (1.56)

The advantage of this result is that it can be implemented by a simple weighting and delaying of the signal, plus
one convolution with ℎ(𝑡). The same holds for the driving functions of WFS as presented in the next section.

1.7.2 Point Source

xs = 0, 2.5, 0 # position of source
omega = 2 * np.pi * 1000 # frequency
R0 = 1.5 # radius of secondary sources
x0, n0, a0 = sfs.array.circular(200, R0)
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
d = sfs.mono.drivingfunction.nfchoa_25d_point(omega, x0, R0, xs)
p = sfs.mono.synthesized.generic(omega, x0, n0, d * a0 , grid,

source=sfs.mono.source.point)
normalization = 20
sfs.plot.soundfield(normalization * p, grid);
sfs.plot.secondarysource_2d(x0, n0, grid)

For a spherical secondary source distribution with radius 𝑅0 the spherical coefficients of a point source (1.42) and
of the Green’s function (1.14) are inserted into (1.13) and yield [Ahrens2012], eq. (5.7)2

𝐷spherical(𝜃0, 𝜑0, 𝜔) = 𝐴(𝜔)
1

𝑅 2
0

∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

ℎ
(2)
𝑛

(︀
𝜔
𝑐 𝑟s

)︀
𝑌 −𝑚
𝑛 (𝜃s, 𝜑s)

ℎ
(2)
𝑛

(︀
𝜔
𝑐𝑅0

)︀ 𝑌 𝑚
𝑛 (𝜃0, 𝜑0). (1.57)

For a circular secondary source distribution with radius𝑅0 and point source as secondary sources the 2.5D driving
function is given by inserting the spherical coefficients (1.42) and (1.14) into (1.30). This results in [Ahrens2012],
eq. (5.8)

𝐷circular, 2.5D(𝜑0, 𝜔) = 𝐴(𝜔)
1

2𝜋𝑅0

∞∑︁
𝑚=−∞

ℎ
(2)
|𝑚|

(︀
𝜔
𝑐 𝑟s

)︀
Φ−𝑚(𝜑s)

ℎ
(2)
|𝑚|

(︀
𝜔
𝑐𝑅0

)︀ Φ𝑚(𝜑0). (1.58)

For an infinite linear secondary source distribution located on the 𝑥-axis and point sources as secondary sources the
2.5D driving function for a point source is given by inserting the corresponding linear expansion coefficients (1.43)
and (1.26) into (1.31). Assuming 0 ≤ |𝑘𝑥| < |𝜔𝑐 | this results in [Ahrens2012], eq. (4.53)

𝐷linear, 2.5D(𝑥0, 𝜔) =𝐴(𝜔)

∫︁ ∞

−∞

𝐻
(2)
0

(︀√︀
(𝜔
𝑐 )2 − 𝑘2𝑥 (𝑦ref − 𝑦s)

)︀
𝜒(−𝑘𝑥, 𝑥s)

𝐻
(2)
0

(︀√︀
(𝜔
𝑐 )2 − 𝑘2𝑥 𝑦ref

)︀
· 𝜒(𝑘𝑥, 𝑥0) d𝑘𝑥.

(1.59)
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Fig. 1.9: Sound pressure for a monochromatic point source synthesized with 2.5D NFC-HOA (1.58). Parameters:
xs = (0, 2.5, 0) m, xref = (0, 0, 0), 𝑓 = 1 kHz.

1.7.3 Line Source

For a spherical secondary source distribution with radius 𝑅0 the spherical coefficients of a line source (1.48) and
of the Green’s function (1.14) are inserted into (1.13) and yield [Hahn2015], eq. (20)

𝐷spherical(𝜃0, 𝜑0, 𝜔) = 𝐴(𝜔)
1

2𝑅2
0

∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

i𝑚−𝑛𝐻
(2)
𝑚

(︀
𝜔
𝑐 𝑟s

)︀
𝑌 −𝑚
𝑛 (0, 𝜑s)

𝜔
𝑐 ℎ

(2)
𝑛

(︀
𝜔
𝑐𝑅0

)︀ 𝑌 𝑚
𝑛 (𝜃0, 𝜑0). (1.60)

For a circular secondary source distribution with radius 𝑅0 and line sources as secondary sources the driving
function is given by inserting the circular coefficients (1.49) and (1.18) into (1.17) as

𝐷circular(𝜑0, 𝜔) = 𝐴(𝜔)
1

2𝜋𝑅0

∞∑︁
𝑚=−∞

𝐻
(2)
𝑚

(︀
𝜔
𝑐 𝑟s

)︀
Φ−𝑚(𝜑s)

𝐻
(2)
𝑚

(︀
𝜔
𝑐𝑅0

)︀ Φ𝑚(𝜑0). (1.61)

For a circular secondary source distribution with radius 𝑅0 and point sources as secondary sources the 2.5D
driving function is given by inserting the spherical coefficients (1.48) and (1.14) into (1.30) as [Hahn2015], eq.
(23)

𝐷circular, 2.5D(𝜑0, 𝜔) = 𝐴(𝜔)
1

2𝑅0

∞∑︁
𝑚=−∞

i𝑚−|𝑚|𝐻
(2)
𝑚

(︀
𝜔
𝑐 𝑟s

)︀
Φ−𝑚(𝜑s)

𝜔
𝑐 ℎ

(2)
|𝑚|

(︀
𝜔
𝑐𝑅0

)︀ Φ𝑚(𝜑0). (1.62)

For an infinite linear secondary source distribution located on the 𝑥-axis and line sources as secondary sources the
driving function is given by inserting the linear coefficients (1.50) and (1.26) into (1.25) as

𝐷linear(𝑥0, 𝜔) = 𝐴(𝜔)
1

2𝜋

∫︁ ∞

−∞
𝜒(𝑘𝑦, 𝑦𝑠)𝜒(𝑘𝑥, 𝑥0) d𝑘𝑥. (1.63)

1.7.4 Focused Source

Focused sources mimic point or line sources that are located inside the audience area. For the single-layer potential
the assumption is that the audience area is free from sources and sinks. However, a focused source is neither of
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them. It represents a sound field that converges towards a focal point and diverges afterwards. This can be
achieved by reversing the driving function of a point or line source in time which is known as time reversal
focusing [Yon2003].

Nonetheless, the single-layer potential should not be solved for focused sources without any approximation. In
the near field of a source, evanescent waves appear for spatial frequencies 𝑘𝑥 > |𝜔𝑐 | [Williams1999], eq. (24).
They decay exponentially with the distance from the source. An exact solution for a focused source is supposed to
include these evanescent waves around the focal point. That is only possible by applying very large amplitudes to
the secondary sources, compare Fig. 2a in [SporsAhrens2010]. Since the evanescent waves decay rapidly and are
hence not influencing the perception, they can easily be omitted. For corresponding driving functions for focused
sources without the evanescent part of the sound field see [SporsAhrens2010] for SDM and [AhrensSpors2009b]
for NFC-HOA.

In the SFS Toolbox only focused sources in WFS are considered at the moment.

1.8 Driving functions for WFS

In the following, the driving functions for WFS in the frequency and temporal domain for selected source models
are presented. The temporal domain functions consist of a filtering of the source signal and a weighting and
delaying of the individual secondary source signals. This property allows for a very efficient implementation of
WFS driving functions in the temporal domain. It is one of the main advantages of WFS in comparison to most
of the NFC-HOA, SDM solutions discussed above.

1.8.1 Plane Wave

nk = 0, -1, 0 # direction of plane wave
omega = 2 * np.pi * 1000 # frequency
xref = 0, 0, 0 # 2.5D reference point
x0, n0, a0 = sfs.array.circular(200, 1.5)
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
d = sfs.mono.drivingfunction.wfs_25d_plane(omega, x0, n0, nk, xref)
a = sfs.mono.drivingfunction.source_selection_plane(n0, nk)
twin = sfs.tapering.tukey(a,.3)
p = sfs.mono.synthesized.generic(omega, x0, n0, d * twin * a0 , grid,

source=sfs.mono.source.point)
normalization = 0.5
sfs.plot.soundfield(normalization * p, grid);
sfs.plot.secondarysource_2d(x0, n0, grid)

By inserting the source model of a plane wave (1.35) into (1.28) and (1.34) it follows

𝐷(x0, 𝜔) = 2𝑤(x0)𝐴(𝜔)i
𝜔

𝑐
⟨n𝑘,nx0⟩ e−i𝜔𝑐 ⟨n𝑘,x0⟩, (1.64)

𝐷2.5D(x0, 𝜔) = 2𝑤(x0)𝐴(𝜔)
√︀

2𝜋|xref − 𝑥0|
√︂

i
𝜔

𝑐
⟨n𝑘,nx0⟩ e−i𝜔𝑐 ⟨n𝑘,x0⟩. (1.65)

Transferred to the temporal domain via an inverse Fourier transform (1.2), it follows

𝑑(x0, 𝑡) = 2𝑎(𝑡) * ℎ(𝑡) * 𝑤(x0) ⟨n𝑘,nx0⟩ 𝛿
(︂
𝑡− ⟨n𝑘,x0⟩

𝑐

)︂
, (1.66)

𝑑2.5D(x0, 𝑡) = 2𝑎(𝑡) * ℎ2.5D(𝑡) * 𝑤(x0)
√︀

2𝜋|xref − 𝑥0| ⟨n𝑘,nx0
⟩ 𝛿

(︂
𝑡− ⟨n𝑘,x0⟩

𝑐

)︂
, (1.67)

where

ℎ(𝑡) = ℱ−1
{︁

i
𝜔

𝑐

}︁
, (1.68)
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Fig. 1.10: Sound pressure for a monochromatic plane wave synthesized with 2.5D WFS (1.73). Parameters:
n𝑘 = (0,−1, 0), xref = (0, 0, 0), 𝑓 = 1 kHz.

and

ℎ2.5D(𝑡) = ℱ−1

{︂√︂
i
𝜔

𝑐

}︂
(1.69)

denote the so called pre-equalization filters in WFS.

The window function 𝑤(x0) for a plane wave as source model can be calculated after [Spors2008]

𝑤(x0) =

{︃
1 ⟨n𝑘,nx0

⟩ > 0

0 else
(1.70)

1.8.2 Point Source

xs = 0, 2.5, 0 # position of source
omega = 2 * np.pi * 1000 # frequency
xref = 0, 0, 0 # 2.5D reference point
x0, n0, a0 = sfs.array.circular(200, 1.5)
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
d = sfs.mono.drivingfunction.wfs_25d_point(omega, x0, n0, xs, xref)
a = sfs.mono.drivingfunction.source_selection_point(n0, x0, xs)
twin = sfs.tapering.tukey(a,.3)
p = sfs.mono.synthesized.generic(omega, x0, n0, d * twin * a0 , grid,

source=sfs.mono.source.point)
normalization = 1.3
sfs.plot.soundfield(normalization * p, grid);
sfs.plot.secondarysource_2d(x0, n0, grid)

By inserting the source model for a point source (1.40) into (1.28) it follows

𝐷(x0, 𝜔) =
1

2𝜋
𝐴(𝜔)𝑤(x0)i

𝜔

𝑐

(︂
1 +

1

i𝜔𝑐 |x0 − xs|

)︂
⟨x0 − xs,nx0⟩
|x0 − xs|2

e−i𝜔𝑐 |x0−xs|. (1.71)
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Fig. 1.11: Sound pressure for a monochromatic point source synthesized with 2.5D WFS (1.73). Parameters:
xs = (0, 2.5, 0) m, xref = (0, 0, 0), 𝑓 = 1 kHz.

Under the assumption of 𝜔
𝑐 |x0 − xs| ≫ 1, (1.71) can be approximated by [Schultz2016], eq. (2.118)

𝐷(x0, 𝜔) =
1

2𝜋
𝐴(𝜔)𝑤(x0)i

𝜔

𝑐

⟨x0 − xs,nx0⟩
|x0 − xs|2

e−i𝜔𝑐 |x0−xs|. (1.72)

It has the advantage that its temporal domain version could again be implemented as a simple weighting- and
delaying-mechanism.

To reach at 2.5D for a point source, we will start in 3D and apply stationary phase approximations instead of
directly using (1.34) – see discussion after [Schultz2016], (2.146). Under the assumption of 𝜔

𝑐 (|x0 − xs| + |x −
x0|) ≫ 1 it then follows [Schultz2016], eq. (2.137), [Start1997], eq. (3.10, 3.11)

𝐷2.5D(x0, 𝜔) =
1√
2𝜋
𝐴(𝜔)𝑤(x0)

√︂
i
𝜔

𝑐

√︃
|xref − x0|

|xref − x0| + |x0 − xs|

· ⟨x0 − xs,nx0⟩
|x0 − xs|

3
2

e−i𝜔𝑐 |x0−xs|,

(1.73)

whereby xref is a reference point at which the synthesis is correct. A second stationary phase approximation can
be applied to reach at [Schultz2016], eq. (2.131, 2.141), [Start1997], eq. (3.16, 3.17)

𝐷2.5D(x0, 𝜔) =
1√
2𝜋
𝐴(𝜔)𝑤(x0)

√︂
i
𝜔

𝑐

√︃
𝑑ref

𝑑ref + 𝑑s

· ⟨x0 − xs,nx0
⟩

|x0 − xs|
3
2

e−i𝜔𝑐 |x0−xs|,

(1.74)

which is the traditional formulation of a point source in WFS as given by eq. (2.27) in [Verheijen1997]6. Now
𝑑ref is the distance of a line parallel to the secondary source distribution and 𝑑s the shortest possible distance from
the point source to the linear secondary source distribution.

The default WFS driving functions for a point source in the SFS Toolbox are (1.72) and (1.73). Transferring both
to the temporal domain via an inverse Fourier transform (1.2) it follows

𝑑(x0, 𝑡) =
1

2𝜋
𝑎(𝑡) * ℎ(𝑡) * 𝑤(x0)

⟨x0 − xs,nx0
⟩

|x0 − xs|2
𝛿

(︂
𝑡− |x0 − xs|

𝑐

)︂
, (1.75)

6 Whereby 𝑟 corresponds to |x0 − xs| and cos𝜙 to ⟨x0−xs,nx0 ⟩
|x0−xs|

.
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𝑑2.5D(x0, 𝑡) =
1√
2𝜋
𝑎(𝑡) * ℎ2.5D(𝑡) * 𝑤(x0)

√︃
|xref − x0|

|x0 − xs| + |xref − x0|

· ⟨x0 − xs,nx0
⟩

|x0 − xs|
3
2

𝛿

(︂
𝑡− |x0 − xs|

𝑐

)︂
,

(1.76)

𝑑2.5D(x0, 𝑡) =
1√
2𝜋
𝑎(𝑡) * ℎ2.5D(𝑡) * 𝑤(x0)

√︃
𝑑ref

𝑑ref + 𝑑s

· ⟨x0 − xs,nx0
⟩

|x0 − xs|
3
2

𝛿

(︂
𝑡− |x0 − xs|

𝑐

)︂
.

(1.77)

The window function 𝑤(x0) for a point source as source model can be calculated after [Spors2008] as

𝑤(x0) =

{︃
1 ⟨x0 − xs,nx0

⟩ > 0

0 else
(1.78)

1.8.3 Line Source

xs = 0, 2.5, 0 # position of source
omega = 2 * np.pi * 1000 # frequency
x0, n0, a0 = sfs.array.circular(200, 1.5)
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
d = sfs.mono.drivingfunction.wfs_2d_line(omega, x0, n0, xs)
a = sfs.mono.drivingfunction.source_selection_line(n0, x0, xs)
twin = sfs.tapering.tukey(a,.3)
p = sfs.mono.synthesized.generic(omega, x0, n0, d * twin * a0 , grid,

source=sfs.mono.source.point)
normalization = 7
sfs.plot.soundfield(normalization * p, grid);
sfs.plot.secondarysource_2d(x0, n0, grid)
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Fig. 1.12: Sound pressure for a monochromatic line source synthesized with 2D WFS (1.80). Parameters: xs =
(0, 2.5, 0) m, xref = (0, 0, 0), 𝑓 = 1 kHz.

For a line source its orientation ns has an influence on the synthesized sound field as well. Let |v| be the distance
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between x0 and the line source with

v = x0 − xs − ⟨x0 − xs,ns⟩ns, (1.79)

where |ns| = 1. For a 2D or 2.5D secondary source setup and a line source orientation perpendicular to the plane
where the secondary sources are located this automatically simplifies to v = x0 − xs.

By inserting the source model for a line source (1.46) into (1.28) and (1.34) and calculating the derivate of the
Hankel function after eq. (9.1.20) in [AbramowitzStegun1972] it follows

𝐷(x0, 𝜔) = −1

2
𝐴(𝜔)𝑤(x0)i

𝜔

𝑐

⟨v,nx0⟩
|v|

𝐻
(2)
1

(︁𝜔
𝑐
|v|

)︁
, (1.80)

𝐷2.5D(x0, 𝜔) = −1

2
𝑔0𝐴(𝜔)𝑤(x0)

√︂
i
𝜔

𝑐

⟨v,nx0
⟩

|v|
𝐻

(2)
1

(︁𝜔
𝑐
|v|

)︁
. (1.81)

Applying 𝐻(2)
1 (𝜁) ≈ −

√︁
2
𝜋i𝜁e−i𝜁 for 𝑧 ≫ 1 after [Williams1999], eq. (4.23) and transferred to the temporal

domain via an inverse Fourier transform (1.2) it follows

𝑑(x0, 𝑡) =

√︂
1

2𝜋
𝑎(𝑡) * ℎ(𝑡) * 𝑤(x0)

⟨v,nx0⟩
|v| 32

𝛿

(︂
𝑡− |v|

𝑐

)︂
, (1.82)

𝑑2.5D(x0, 𝑡) = 𝑔0

√︂
1

2𝜋
𝑎(𝑡) * ℱ−1

{︂√︂
𝑐

i𝜔

}︂
* 𝑤(x0)

⟨v,nx0⟩
|v| 32

𝛿

(︂
𝑡− |v|

𝑐

)︂
, (1.83)

The window function 𝑤(x0) for a line source as source model can be calculated after [Spors2008] as

𝑤(x0) =

{︃
1 ⟨v,nx0

⟩ > 0

0 else
(1.84)

1.8.4 Focused Source

xs = 0, 0.5, 0 # position of source
ns = 0, -1, 0 # direction of source
omega = 2 * np.pi * 1000 # frequency
xref = 0, 0, 0 # 2.5D reference point
x0, n0, a0 = sfs.array.circular(200, 1.5)
grid = sfs.util.xyz_grid([-1.75, 1.75], [-1.75, 1.75], 0, spacing=0.02)
d = sfs.mono.drivingfunction.wfs_25d_focused(omega, x0, n0, xs, xref)
a = sfs.mono.drivingfunction.source_selection_focused(ns, x0, xs)
twin = sfs.tapering.tukey(a,.3)
p = sfs.mono.synthesized.generic(omega, x0, n0, d * twin * a0 , grid,

source=sfs.mono.source.point)
normalization = 1
sfs.plot.soundfield(normalization * p, grid);
sfs.plot.secondarysource_2d(x0, n0, grid)

As mentioned before, focused sources exhibit a field that converges in a focal point inside the audience area. After
passing the focal point, the field becomes a diverging one as can be seen in Fig. 1.13. In order to choose the active
secondary sources, especially for circular or spherical geometries, the focused source also needs a direction ns.

The driving function for a focused source is given by the time-reversed versions of the driving function for a point
source (1.75) and (1.76) as

𝐷(x0, 𝜔) =
1

2𝜋
𝐴(𝜔)𝑤(x0)i

𝜔

𝑐

⟨x0 − xs,nx0
⟩

|x0 − xs|2
ei

𝜔
𝑐 |x0−xs|. (1.85)

The 2.5D driving functions are given by the time-reversed version of (1.76) for a reference point [Verheijen1997],
eq. (A.14)

𝐷2.5D(x0, 𝜔) =
1√
2𝜋
𝐴(𝜔)𝑤(x0)

√︂
i
𝜔

𝑐

√︃
|xref − x0|

||x0 − xs| − |xref − x0||

· ⟨x0 − xs,nx0⟩
|x0 − xs|

3
2

ei
𝜔
𝑐 |x0−xs|,

(1.86)
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Fig. 1.13: Sound pressure for a monochromatic focused source synthesized with 2.5D WFS (1.86). Parameters:
xs = (0, 0.5, 0) m, ns = (0,−1, 0), xref = (0, 0, 0), 𝑓 = 1 kHz.

and the time reversed version of (1.77) for a reference line, compare [Start1997], eq. (3.16)

𝐷2.5D(x0, 𝜔) =
1√
2𝜋
𝐴(𝜔)𝑤(x0)

√︂
i
𝜔

𝑐

√︃
𝑑ref

𝑑ref − 𝑑s

· ⟨x0 − xs,nx0
⟩

|x0 − xs|
3
2

ei
𝜔
𝑐 |x0−xs|,

(1.87)

where 𝑑ref is the distance of a line parallel to the secondary source distribution and 𝑑s the shortest possible distance
from the focused source to the linear secondary source distribution.

Transferred to the temporal domain via an inverse Fourier transform (1.2) it follows

𝑑(x0, 𝑡) =
1

2𝜋
𝑎(𝑡) * ℎ(𝑡) * 𝑤(x0)

⟨x0 − xs,nx0
⟩

|x0 − xs|2
𝛿

(︂
𝑡+

|x0 − xs|
𝑐

)︂
, (1.88)

𝑑2.5D(x0, 𝑡) =
1√
2𝜋
𝑎(𝑡) * ℎ2.5D(𝑡) * 𝑤(x0)

√︃
|xref − x0|

|x0 − xs| + |xref − x0|

· ⟨x0 − xs,nx0
⟩

|x0 − xs|
3
2

𝛿

(︂
𝑡+

|x0 − xs|
𝑐

)︂
,

(1.89)

𝑑2.5D(x0, 𝑡) =
1√
2𝜋
𝑎(𝑡) * ℎ2.5D(𝑡) * 𝑤(x0)

√︃
𝑑ref

𝑑ref − 𝑑s

· ⟨x0 − xs,nx0
⟩

|x0 − xs|
3
2

𝛿

(︂
𝑡+

|x0 − xs|
𝑐

)︂
.

(1.90)

In this document a focused source always refers to the time-reversed version of a point source, but a focused line
source can be defined in the same way starting from (1.80)

𝐷(x0, 𝜔) = −1

2
𝐴(𝜔)𝑤(x0)i

𝜔

𝑐

⟨x0 − xs,nx0
⟩

|x0 − xs|
𝐻

(1)
1

(︁𝜔
𝑐
|x0 − xs|

)︁
. (1.91)

Transferred to the temporal domain via an inverse Fourier transform (1.2) it follows

𝑑(x0, 𝑡) =

√︂
1

2𝜋
𝑎(𝑡) * ℎ(𝑡) * 𝑤(x0)

⟨x0 − xs,nx0⟩
|x0 − xs|

3
2

𝛿

(︂
𝑡+

|x0 − xs|
𝑐

)︂
. (1.92)
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The window function 𝑤(x0) for a focused source can be calculated as

𝑤(x0) =

{︃
1 ⟨ns,xs − x0⟩ > 0

0 else
(1.93)

1.9 Driving functions for LSFS

The reproduction accuracy of WFS is limited due to practical aspects. For the audible frequency range the de-
sired sound field can not be synthesized aliasing-free over an extended listening area, which is surrounded by a
discrete ensemble of individually driven loudspeakers. However, it is suitable for certain applications to increase
reproduction accuracy inside a smaller (local) listening region while stronger artifacts outside are permitted. This
approach is termed LSFS (Local Sound Field Synthesis) in general.

The implemented Local Wave Field Synthesis method utilizes focused sources as a distribution of virtual loud-
speakers which are placed more densely around the local listening area. These virtual loudspeakers can be driven
by conventional SFS techniques, like e.g. WFS or NFC-HOA. The results are similar to band-limited NFC-
HOA, with the difference that the form and position of the enhanced area can freely be chosen within the listening
area.

The set of focused sources is treated as a virtual loudspeaker distribution and their positions xfs are subsumed
under 𝒳fs. Therefore, each focused source is driven individually by 𝐷l(xfs, 𝜔), which in principle can be any
driving function for real loudspeakers mentioned in previous sections. At the moment however, only WFS and
NFC-HOA driving functions are supported. The resulting driving function for a loudspeaker located at x0 reads

𝐷(x0, 𝜔) =
∑︁

xfs∈𝒳fs

𝐷l(xfs, 𝜔)𝐷fs(x0,xfs, 𝜔), (1.94)

which is superposition of the driving function 𝐷fs(x0,xfs, 𝜔) reproducing a single focused source at xfs weighted
by 𝐷l(xfs, 𝜔). Former is derived by replacing xs with xfs in the WFS driving functions and for focused sources.
This yields

𝐷fs(x0,xfs, 𝜔) =
1

2𝜋
𝐴(𝜔)𝑤(x0)i

𝜔

𝑐

⟨x0 − xfs,nx0
⟩

|x0 − xfs|
3
2

ei
𝜔
𝑐 |x0−xfs| (1.95)

and

𝐷fs,2.5D(x0,xfs, 𝜔) =
𝑔0
2𝜋
𝐴(𝜔)𝑤(x0)

√︂
i
𝜔

𝑐

⟨x0 − xs,nx0
⟩

|x0 − xs|
3
2

ei
𝜔
𝑐 |x0−xs| (1.96)

for the 2.5D case. For the temporal domain, inverse Fourier transform yields the driving signals

𝑑(x0, 𝑡) =
∑︁

xfs∈𝒳fs

𝑑l(xfs, 𝑡) * 𝑑fs(x0,xfs, 𝑡), (1.97)

while 𝑑fs(x0,xfs, 𝑡) is derived analogously to from or . At the moment 𝑑l(xfs, 𝑡) does only support driving func-
tions from WFS.

1.10 Footnotes

1.11 References
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