

Intro

Settings cascade is designed for situations where you need to merge
configuration settings from different hierarchical sources. The model
is the way that CSS cascades onto elements. You can define config
the same way that css rules get specified-

task.default:
 command: "echo hello"
 on_complete: "echo world"
project_name: "my project"

Then your app can use the config

class Task(SettingsSchema):
 name = task
 command: str
 on_complete: str

config = SettingsManager(yaml.load("config.yml"), [Task])
task_config = config.task(class="default")
run_task(
 command=task_config.command,
 on_complete=task_config.on_complete,
 name=config.project_name,
)

Read the full documentation at https://settingscascade.readthedocs.io/en/latest/

Installation

You can install settingscascade from pypi-

pip install settingscascade

Documentation

	Loading Data
	Defining Your Schema

	Specificity

	Data Loader

	Detailed config to selector rules

	Accessing Config values
	The Data Context

	Using Schemas

	Jinja templating

	API

Loading Data

Defining Your Schema

Considering the html/css model, a Schema lines up with an element
(such as a <p> or <div>). Once you define the Schemas that make up
your config, elements in your settings will be mapped against
the schema. An HTML document may look like

<body>
 <div class="outer">
 <p>Hello!</p>
 </div>
</body>

In that example the elements are body, div, and p. In SettingsCascade
you define the elements that make sense for your app. Imagine a task
runner app like Fabric. You may have the concept of Tasks and Environments.

from settingscascade import SettingsSchema

class Environment(SettingsSchema):
 name = "env"
 python: str
 pythonpath: List[str]

class Task(SettingsSchema):
 name = "task"
 command: List[str]
 wait: bool

A SettingsSchema class has one mandatory field- _name_. This is the
name of the element as it will appear in setting files. It is the
equivalent of div of p. Each schema defines annotations for the
valid variables that make up a config for that element. When you load
data, if the rule has an element defined, the system will do some
validation of the type of the data you are loading. This is not a
comprehensive check- for example, if you define List[str] this will
only verify that the data is a list, it will not look at the values.
typing.Any can be used as expected.

Specificity

When loading data, each section of rules will be associated with a
selector, and then when your app tries to look up a rule, the most
specific rule whose selector matches the current context will be returned.
Consider

".env":
 val_a = "a"

"class.env":
 val_a = "b"

If you try to look up val_a from the context module.env it would
return “a”, while from context class.env it would return “b”. A rule
section must match ALL elements of the context to be used, but not all
elements of the context need to be used in the selector. (The first example
would work because there is no rule that matches module.env, but there IS
a rule that matches *.env) The specificity rules are the same as CSS- the
score is a 3-tuple-
- Count of #ID values
- Count of .class values
- count of element values.

So-
- .myclass == 0, 1, 0
- el.myclass == 0, 1, 1
- parent child#thechild == 1, 0, 2

Specificity scores are compared pairwise, the first value, then the second,
then the third. The three examples above are listed from least specific to
most.

Data Loader

The core class of SettingsCascade it the SettingsManager class. You create
a settings manager by passing it a list of data dictionaries and a list of
ElementSchema classes that you have defined. It will then build its internal
cascade of rule definitions (verified according to the schemas you passed).
The dictionaries themselves can be created any way you want- load from TOML,
JSON, Yaml, a Python dict, whatever.

from pathlib import Path
from toml import loads
from settingscascade import SettingsManager

els = {EnvironmentSchema, TaskSchema}
data = loads(Path("pyproject.toml").read_text())
default_data = {"mydefault": 42}
config = SettingsManager([default_data, data], els)

The algorithm for loading the data for each rule section is
1. Determine the selector term for this section.
2. Check for any key named _name_ - add it to the selector as a class.
3. check for any key named _id_ - add it to the selector as an id.
4. Append the selector to the context passed in from the parent to get the
full selector for this section.
5. Iterate through the remaining key, value pairs.
6. If the key matches the _name_ of one of the element schemas or
contains a . or #, load that value as a new section, passing the
selector as the current context and the key as that sections selector
term.
7. For each remaining key, if this section matches an element schema,
verify that the key is in the annotations for the schema and the value
has the correct type.
8. Load the key, value pairs into the config manager as a Rules section.

There are two ways to add classes or ids to a rule section selector.
first, you can just add them directly as though it were css. The toml
file below has four sections. The specifiers are read as environment,
.prod, environment.prod, environment.prod task. This winds up
working exactly like CSS, and is the most obvious way to use this library.

[environment]
setting_a = "outer"

[".prod"]
some_setting = "production"

["environment.prod"]
 name = "default_task"
 task_setting = "less"
["environment.prod".task]
 setting_a = "inner"

You’ll notice that in toml, to put a . or a # in the key of a section,
you’ll have to use quotes. Because of that, the loader will also look
for magic names _name_ and _id_ to pull them from the object. Below,
the selector for section 2 would be tasks.default_task

[environment]
setting_a = "outer"

[[task]]
 name = "default_task"
 task_setting = "less"
 [task.environment]
 setting_a = "inner"

[[task]]
task_setting = "more"

Note there are two special cases to consider from the previous
example. The first is a list of dictionaries (like task). In
this case the library will use the key of the list to build the
selector for each element of the list. In this case it would be
task.default_task and task respectively. The other is that
the second list there has no _name_ variable, so will just get
the selector from the list- if there were more then one item in
that list with the same situation, they would override each other.
In the event that two rule section have the SAME specificity, they
get priority in reverse order of how they were loaded- the last
section beats the first.

Detailed config to selector rules

Parse map into selector/ruleset
! Any key that is not an element is considered to be a rule !
There are two more special keynames - _name_ and _id_. If these
are contained in a map, they update the selector of the parent
key

keyname
“keyname”: {…

keyname.typename
“keyname.typename”: {…

keyname.typename
“keyname”: {“_name_”: “typename, …

keyname#id
“keyname”: {“_id_”: “id”, …

keyname.typename
“keyname”: [{“_name_”: “typename”, …

keyname otherkeyname.nestedname
“keyname”: {“otherkeyname”: {“_name_”: “nestedname”, …

Accessing Config values

The Data Context

Once the data is loaded, it can be accessed anywhere in your
application by just accessing the attribute on your config
object.

var = config.my_var

Whenever you access a value on the config object, it searches through all
of the rulesets that is has for the specified key. It then uses its
current_context to pick the one that is a match with the highest
specificity. In the above example, there is no context, so it searches with
“” as the selector string. You can use config.context(selector) as a
context manager to get deeper values-

with config.context("task.default_task environment"):
 assert config.setting_a == "inner"

The context works like the nested tree of an html structure. the model

with config.context("el.myclass"):
 config.the_value
 with config.context("child"):
 config.the_value
 with config.context("par#inner"):
 config.the_value

would have the same effect as an html structure of

<el class="myclass">
 the_value
 <child>
 the_value
 <par id=inner>
 the_value
 </par>
 </child>
</el>

if you had a ruleset like

the_value: 0
el:
 the_value: 1
child:
 the_value: 2
par:
 the_value: 3
.myclass:
 the_value: 4
#inner:
 the_value: 5
.myclass #inner:
 the_value: 6
el child:
 the_value: 7

The output would be
- 4
- 7
- 6

Using Schemas

Schemas let you enforce structure on rules- what attributes are actually
valid for any particular element type. We have seen how to define them, lets
see how you can use them.

class Task(ElementSchema):
 taskval: str

config = SettingsManager([data], [Task])
print(config.task().someval)

Each ElementSchema has a _name_ associated with it. When you access that name on
the SettingsManager object, it will create an instance of the Schema for you.
Basically, it will push the element onto the search context so that any values you
lookup will come from that element. You can pass extra context as well using the
name and identifier arguments-

with config.context("parent"):
 config.task(identifier="mytask").someval

In this case, someval would be looked up with the context “parent task#mytask”.
Schema objects aren’t context managers, they keep a closure of the context
when they were created, so this

with config.context("parent"):
 task = config.task(identifier="mytask")
val = task.someval

would work the same way as the previous example. Schema objects also provides a
convenience method load() which will return a dictionary of all of the resolved
properties that are defined on the schema. Its the equivalent of

data = {key: getattr(task, key) for key in Task.__props__}

Jinja templating

Any string value returned from your config will be run through
a Jinja2 template resolver before being returned. Any missing
variables in the templates will be looked up in the config
using the current context.

config = SettingsManager({
 "basic": "Var {{someval}}",
 "someval": "default",
 "task": {"someval": "override"}
}, {"task"})

config.basic == "Var default"
with config.context("task"):
 config.basic == "Var override"

This could allow you to be more flexible when merging data from
multiple sources such as default, org, and user level config files.
You can even add custom filters to the environment such as

config = SettingsManager({
 "myval": "{{ (1, 3) | add_two_numbers }}"
})
config.add_filter("add_two_numbers", lambda tup: tup[0] + tup[1])
config.myval == "4"

API

	
class settingscascade.SettingsManager(data: List[dict], els: Optional[List[Type[settingscascade.schema.ElementSchema]]] = None)

	A Settingsmanager object.

	Parameters

	
	data – a list of settings dictionaries

	els – a List of ElemeentSchema objects, If not specified, no elements will be created

	
context(new_context: str = '')

	Add context onto the current context.
This takes a string and appends it to the existing
context. For example (using html elements-)

with config.context("body h1.intro"):
 with config.context("div.myel"):
 config.current_context == "body h1.intro div.myel"

	
property current_context

	Gets a string that represents the current context used
for settings lookups
:return: str

	
load_data(data: dict, next_item: str = '', selector: str = '')

	Loads a settings dictionary into the rule stack.

	Parameters

	
	data – A settings dictionary. Keys should either be selectors or value names.

	next_item – The key for this rule-set. Pulled from the parent dict when loading
recursively.

	selector – The full context selector for any parent rule-sets that should be
added to the selector for this one

	
class settingscascade.ElementSchema(configManager)

	Class that defines the schema for a particular element in your
settings heirarchy. Subclass this and add annotations to define
the allowed values for this element type-

class Element(ElementSchema):
 color: str
 height: int

	
property context

	The context stack that will be used to look up settings for this object

	
load()

	Loads the settings for this schema into a python dictionary. Looks up the value for
each property using the current context stack for this object.

Note

This will throw an error if there are settings defined on the schema that can’t be
found in any level!

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 settingscascade	

Index

 C
 | E
 | L
 | S

C

 	
 	context() (settingscascade.ElementSchema property)

 	(settingscascade.SettingsManager method)

 	
 	current_context() (settingscascade.SettingsManager property)

E

 	
 	ElementSchema (class in settingscascade)

L

 	
 	load() (settingscascade.ElementSchema method)

 	
 	load_data() (settingscascade.SettingsManager method)

S

 	
 	settingscascade (module)

 	
 	SettingsManager (class in settingscascade)

 nav.xhtml

 Table of Contents

 		
 Intro

 		
 Loading Data

 		
 Defining Your Schema

 		
 Specificity

 		
 Data Loader

 		
 Detailed config to selector rules

 		
 Accessing Config values

 		
 The Data Context

 		
 Using Schemas

 		
 Jinja templating

 		
 API

_static/minus.png

_static/plus.png

_static/file.png

