

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	SETLyze 1.0.1 documentation

Welcome to SETLyze’s documentation!

About SETLyze

The purpose of SETLyze is to provide the people involved with the SETL project
an easy and fast way of getting useful information from the data stored in the
SETL database. The SETL database at GiMaRIS [http://www.gimaris.com/]
contains data about the settlement of species in Dutch waters. SETLyze helps
provide more insight in a set of biological questions by analyzing this data.
SETLyze can perform the following set of analyses:

	Spot Preference

	Determine a species’ preference for a specific location on a SETL plate.
Species can be combined so that they are treated as a single species.

	Attraction within Species

	Determine if a species attracts or repels individuals of its own kind.
Species can be combined so that they are treated as a single species.

	Attraction between Species

	Determine if two different species attract or repel each other. Species
can be combined so that they are treated as a single species.

Additionally, any of the above analyses can be performed in batch mode, meaning
that the analysis is repeated for each species of a species selection. Thus
an analysis can be easily performed on an entire data set without intervention.
Batch mode for analyses are parallelized such that the computing power of a
computer is optimally used.

Documentations

	Installation
	Requirements

	Installation

	Contributing

	User Manual
	Introduction

	Using SETLyze

	SETLyze dialogs

	Exporting SETL data from the Access database

	Use Cases

	SETLyze Developer Guide
	Getting Started

	Coding Style Guidelines

	Testing and Optimization

	Distribution

	References
	Reference List

	Legal Information
	Copyright

	Links to other websites

	Disclaimer

	Credits

	About Us
	Arjan Gittenberger

	Jonathan den Boer

	Serrano Pereira

	Adam van Adrichem and Fedde Schaeffer

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

Installation

Requirements

SETLyze runs on GNU/Linux, MacOS, and Microsoft Windows. The following software
is required to run SETLyze:

	GTK+ (>=2.24.0,!=2.24.8,!=2.24.10)

	R

	Python (>=2.6 & <2.8)
	appdirs

	PyGTK, PyCairo, and PyGObject

	pandas

	RPy2

	xlrd (>=0.8)

Windows users can use the Windows installer for SETLyze, which installs all
dependencies and creates shortcuts in the Start menu and on the desktop.

On Debian (based) systems, the dependencies can be installed from the software
repository:

sudo apt-get install python-appdirs python-gtk2 python-pandas python-rpy2 \
python-xlrd r-base-core

More recent versions of some Python packages can be obtained via the Python
Package Index (preferably inside a Python virtualenv):

pip install -r requirements.txt

Windows users should install the PyGTK [http://www.pygtk.org/downloads.html] all-in-one Windows installer. Then use
pip as described above to install the remaining dependencies. Note that this
step is not needed if you have the Windows installer for SETLyze, which comes
bundeled with the requirements.

Installation

Windows users can use the Windows installer for SETLyze, which installs all
dependencies and creates shortcuts in the Start menu and on the desktop.

If you want to install SETLyze from the GitHub repository:

git clone https://github.com/figure002/setlyze.git
pip install setlyze/

Or if you have a source archive file:

pip install setlyze-x.x.tar.gz

Once installed, the setlyze executable should be available.

Contributing

Please follow these steps to start working on the SETLyze code base:

	Fork the project on github.com.

	Create a new branch.

	Commit changes to the new branch.

	Send a pull request [https://help.github.com/articles/creating-a-pull-request/].

First make sure that all dependencies are installed as described above. Then
follow the next steps to run and develop SETLyze within a virtualenv [https://virtualenv.pypa.io/] isolated
Python environment:

$ git clone https://github.com/figure002/setlyze.git
$ cd setlyze/
$ virtualenv --system-site-packages env
$ source env/bin/activate
(env)$ pip install -r requirements.txt
(env)$ python setup.py develop
(env)$ setlyze

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

User Manual

Welcome to the user manual for SETLyze. This manual explains the usage of
SETLyze.

Introduction

SETLyze is a part of the SETL project, a fouling community study focussing on
marine invasive species. The website describes the SETL project as follows:

“Over the last ten years, marine invaders have had a dramatically
increasing impact on temperate water ecosystems around the world.
Substantial ecological and economical damage has been caused by the
introduction of diseases, parasites, predators, invaders outcompeting
native species, and species that are a nuisance for public health,
tourism, aquaculture or in any other way. In the SETL-project
standardized PVC-plates are used to detect these invasive species
and other fouling community organisms. The material and methods of
the SETL-project were developed by the ANEMOON foundation in
cooperation with the Smithsonian Marine Invasions Laboratory of
Smithsonian Environmental Research Centre. In this project 14x14
cm PVC-plates are hung 1 meter below the water surface, and refreshed
and checked for species at least every three months.” —
ANEMOON foundation [http://www.anemoon.org/]

Data collected from these SETL plates are stored in the SETL database. This
database currently contains over 25000 records containing information of over
200 species in different locations throughout the Netherlands. SETLyze is an
application capable of performing a set of analyses on this SETL data. SETLyze
can perform the following analyses:

	Spot Preference

	Determine a species’ preference for a specific location on a SETL plate.
Species can be combined so that they are treated as a single species.

	Attraction within Species

	Determine if a species attracts or repels individuals of its own kind.
Species can be combined so that they are treated as a single species.

	Attraction between Species

	Determine if two different species attract or repel each other. Species
can be combined so that they are treated as a single species.

Additionally, any of the above analyses can be performed in batch mode, meaning
that the analysis is repeated for each species of a species selection. Thus
an analysis can be easily performed on an entire data set without intervention.
Batch mode for analyses are parallelized such that the computing power of a
computer is optimally used.

Data Collection

First let’s have a look at how the data for the SETL project is being
collected. When the SETL plates are checked, each plate is first
carefully pulled out of the water and then photographed. This is
done by a standard procedure described on the ANEMOON
foundation’s website. First an overview photograph is taken of each
plate. Then some more detailed photographs are taken of the species
that grow on each plate. Indivdual plates are recognized by their tags.
The pictures are then carefully analyzed. For each plate the
SETL-monitoring form is filled in. For each species the absence or
presence, abundance and area cover are filled in. For this, a 5x5 grid
is digitally applied over the photograph (SETL plate with digitally applied grid). For
each species the presence or absence on each of the 25 plate surfaces are
filled in and saved to the database.

[image: SETL plate with a grid]
SETL plate with digitally applied grid

Each record in the database contains a species ID, a plate ID, and
the 25 plate surfaces. The species ID links to the species that was found
on the plate. The plate ID links to the plate on which that species was
found. The plate ID is also linked to the location where this plate
was deployed. The 25 plate surfaces (“spots”) are stored in each record
as booleans (meaning they can have a value of True or False). The value
1 (True) for a spot means that the species in question was present on
that spot of the plate. The value 0 (False) means that the species
was absent from that spot.

With 25 spots x 2500 records = 625000+ booleans for the presence/absence of
species, automatic methods of analyzing this data are required. Hence SETLyze
was developed, a tool for analyzing the settlement of species on SETL plates.

Using SETLyze

SETLyze comes with a graphical user interface (GUI). The GUI consists
of dialogs which all have a specific task. These dialogs will guide
you in performing the set of analyses it provides. Most of SETLyze’s
dialogs have a Help button which when clicked should point you
to the corresponding dialog description on this page. All dialog
descriptions can be found in the SETLyze dialogs
section of this manual.

Before SETLyze can perform an analysis it needs access to a data source
containing SETL data. Currently two data sources are supported: Text (.csv)
or Excel (.xls) files exported from the Microsoft Access SETL database. This
means that the user must first export the tables of the SETL database from
Microsoft Access to these files. This would result in four files, one for each
table. The user is then required to load these files into SETLyze. First follow
the steps to export the SETL data.

You can perform an analysis once you have loaded the four data files containing
the SETL data. Start SETLyze and you should be presented with the
Analysis Selection dialog. Select an
analysis and press OK to begin. A new dialog will be displayed, most likely the
Locations Selection dialog.

If this is your first time running SETLyze, the locations selection dialog will
show an empty locations list because no data has been loaded yet. To load SETL
data, click on the Change Data Source button to open the
change data source dialog. This dialog
allows you to load data from CSV or XLS files exported from the Microsoft
Access SETL database.

Once the data has been loaded, the locations selection dialog will
automatically update the list of locations. From here on it’s just a
matter of following the instruction one the screen. Should you need
more help, scroll down to the SETLyze dialogs
section for a more extensive description of each dialog. The dialog
descriptions are also accessible from SETLyze’s dialogs itself by
clicking the Help button on a dialog.

Definition List

This part of the user manual describes some terminology often used
throughout the application and this manual.

	Intra specific

	Within a single species.

	Inter specific

	Between two different species.

	Plate area

	The defined area on a SETL plate. By default the SETL plate is divided in
four plate areas (A, B, C and D):

[image: Default plate areas]
Default plate areas

Plate areas can be customized during an analysis, see
Define Plate Areas dialog.

	Positive spot

	Each record in the SETL database contains data for each of the 25
spots on a SETL plate. The spots are stored as booleans, meaning
they can have two values; 1 (True) means that the species was present
on that spot, 0 (False) means that the species was absent on
that spot. A spot is “positive” if the spot value is 1 or True. Each
record can thus have up to 25 positive spots.

	SETL plate

	In the SETL project standardized PVC-plates are used to detect invasive
species and other fouling community organisms. In this project 14x14
cm PVC-plates are hung 1 meter below the water surface, and refreshed
and checked for species at least every three months.

	Spot

	To analyze SETL plates, photographs of the plates are taken. The
photographs are then analyzed on the computer by applying a 5x5
grid to the photographs. This divides the SETL plate into 25 equal
surface areas (see SETL plate with digitally applied grid). Each
of the 25 surface areas are called “spots”. Species are scored for
presence/absence for each of the 25 spots on each SETL plate, and the
data is stored in the SETL database in the form of records. So each
SETL record in the database contains presence/absence data of one
species for all 25 spots on a SETL plate.

	Spot distance

	Spot distances are the distances between positive spots on a SETL plate.
The spot distances are calculated from observed and expected positive
spots data and are used to define whether species attract or repel.

Observed spot distances (intra specific)

All possible distances between the spots on each plate are calculated
using the Pythagorean theorem. Consider the case of species A and the
following plate:

[image: Spot distances on SETL plate (intra specific)]
Spot distances on SETL plate (intra specific)

As you can see from the figure, three positive spots results in three
spot distances (a, b and c). The distance from one spot to the next
by moving horizontally or vertically is defined as 1. The distances from
the figure are calculated as follows:

[image: spot_distance(a) = \sqrt{3^2 + 2^2} = 3.61]

[image: spot_distance(b) = \sqrt{3^2 + 1^2} = 3.16]

[image: spot_distance(c) = \sqrt{0^2 + 3^2} = 3]

This is done for all plates of an analysis. Note that there can be no
distance 0, in contrast to inter specific spot distances (see below).

Observed spot distances (inter specific)

To obtain spot distances for analyses where two species are involved,
first the plate records are collected that contain both of the selected
species. Then all possible spot distances are calculated between the
two species. The following figure shows an example with positive spots
for two species (A and B) and all possible spot distnaces.

[image: Spot distances on SETL plate (inter specific)]
Spot distances on SETL plate (inter specific)

In the above figure, the distances are calculated the same way as for
intra specific spot distances. Note however that only inter specific
distances are calculated (distances between two different species). This
also makes it possible to have a distance of 0 as visualized in the next
figure.

[image: Spot distances on SETL plate (inter)]
Spot distances on SETL plate (inter specific)

The distances for this figure are calculated as follows:

[image: spot_distance(a) = \sqrt{0^2 + 0^2} = 0]

[image: spot_distance(b) = \sqrt{3^2 + 1^2} = 3.16]

[image: spot_distance(c) = \sqrt{0^2 + 2^2} = 2]

Expected spot distances

The expected spot distances are calculated by generating a copy of
each plate record matching the species selection. Each copy has the
same number of positive spots as its original, except the positive
spots are placed randomly at the plates. Then the spot distances
are calculated the same way as for the observed spot distances. This
means that the resulting list of expected spot distances has the same
length as the observed spot distances.

SETLyze dialogs

SETLyze comes with a graphical user interface consisting of separate
dialogs. The dialogs are described in this section.

Analysis Selection dialog

[image: Analysis Selection dialog]
Analysis Selection dialog

The analysis selection dialog is the first dialog you see when SETLyze
is started. It allows the user to select an analysis to perform on SETL
data. The user can select one of the analyses in the list and click on
the OK button to start the analysis. Clicking the Quit button closes
the application.

After pressing the OK button, two things can happen. If no SETL data was
found on the user’s computer, SETLyze automatically tries to load SETL
locations and species data from the SETL database server. This requires
a direct connection with the SETL database server. A progress dialog is
shown while the data is being loaded. If connecting to the database server
fails, SETLyze continues without data. Since the database server has not been
implemented yet, no data will be loaded.

If SETL data is found on the user’s computer, an information dialog is
displayed telling the user that existing data is being loaded.

Clicking the About button shows SETLyze’s About dialog. The About dialog
shows general information about SETLyze; its version number, license
information, a link to the GiMaRIS website, the application developers,
and contact information.

Clicking the Preferences button loads the Preferences dialog.

Batch Mode dialog

[image: Batch Mode dialog]
Batch Mode dialog

Selecting “Batch mode” in the Analysis Selection dialog brings up the
Batch Mode dialog. This dialog allows you to start an analysis in batch
mode. In batch mode, the selected analysis is repeated for each species in a
species selection (or each inter species combination for analysis “Attraction
between Species”). When multiple species are selected the analysis is repeated
for each species separately and the results are displayed in a Summary Report.
The summary report only displays the species that had significant results.

Preferences dialog

[image: Preferences dialog]
Preferences dialog

The preferences dialog allows you to change SETLyze’s settings. Settings set
here are saved to a configuration file in the user’s home directory
(~/.setlyze/setlyze.cfg). The following settings can be changed:

	Alpha level (α) for statistical tests

	Sets the alpha level. The alpha level must be a number between 0 and 1.
The default value 0.05 means an alpha level of 5%.

This alpha level is translated to a confidence level with the formula
[image: conf. level = 1 - \alpha]. This confidence level is
used for some statistical tests to calculate the confidence interval. At
this moment this is just the t-test (not used in any analysis at this point).

The alpha level is also used to determine if a P-value returned by
statistical tests is considered significant. The P-value is considered
significant if the P-value is equal or less than the alpha level.

	Number of repeats for statistical tests

	Sets the number of repeats to perform on some statistical tests. Some
statistical tests used in SETLyze use expected values that are randomly
generated. This means you can’t draw a solid conclusion from the result
of just one test. There is a change that the found result was a coincidence.
To account for this, these test are repeated a number of times. The default
value is 20 repeats. This value is very low, but good enough for testing
purposes. When you need to draw solid conclusions, this value needs
to be set to a higher number.

	Number of concurrent processes for batch mode

	Batch mode for analyses are parallelized which means that multiple
analyzes can be executed in parallel. The value set here corresponds to the
number of concurrent processes that will execute analyses. The higher
the number, the faster a batch analysis will complete. The number of
processes must be at least 1 and no more than the number of CPUs. The
default value of this option equals to 90% of the available CPUs.

Locations Selection dialog

[image: Locations Selection dialog]
Locations Selection dialog

The locations selection dialog shows a list of all SETL locations. This
dialog allows you to select locations from which you want to select
species. The Species Selection dialog (displayed after clicking the Continue
button) will only display the species that were recorded in the selected
locations. Subsequently this means that only the SETL records that match both
the locations and species selection will be used for the analysis, as each SETL
record is bound to a species and a SETL plate from a specific location.

The Change Data Source button opens the Load Data dialog.
This dialog allows you to load new SETL data. After doing so, the locations
selection dialog is automatically updated with the new data.

The Back button allows you to go back to the previous dialog. This can
be useful when you want to correct a choice you made in a previous dialog.

The Continue button saves the selection, closes the dialog, and shows the next
dialog.

Making a selection

Just click on one of the locations to select it. To select multiple
locations, hold Ctrl or Shift while selecting. To select all locations
at once, click on a location and press Ctrl+A.

Species Selection dialog

[image: Species Selection dialog]
Species Selection dialog

The species selection dialog shows a list of all SETL species that were
found in the selected SETL locations. This dialog allows you to select
the species to be included in the analysis. Only the SETL records that
match both the locations and species selection will be used for the analysis.

It is possible to select more than one species (see Making a selection).
Selecting more than one species in a single species selection dialog means that
the selected species are threated as one species for the analysis. In batch
mode however, the analysis is repeated for each of the selected species.

If the selected analysis requires two or more separate species selections
(e.g. two species are compared), it will display the selection dialog multiple
times. In this case, the header of the selection dialog will say “First Species
Selection”, “Second Species Selection”, etc.

The Back button allows you to go back to the previous dialog. This can
be useful when you want to correct a choice you made in a previous dialog.

The Continue button saves the selection, closes the dialog, and shows the next
dialog.

Making a selection

Just click on one of the species to select it. To select multiple
species, hold Ctrl or Shift while selecting. To select all species
at once, click on a species and press Ctrl+A.

Load Data dialog

[image: Load Data dialog]
Load Data dialog

The Load Data dialog allows you to load SETL data into SETLyze. Two data
sources are supported:

	Text CSV (*.csv, *.txt) files exported from the Microsoft Access SETL
database. The CSV files need to be exported by Microsoft Access, one file
for each of the four tables: SETL_localities, SETL_plates, SETL_records, and
SETL_species. The section Exporting SETL data from the Access database describes how to export
these files.

	Excel 97/2000/XP/2003 (*.xls) files exported from the Microsoft Access SETL
database. One file for each of the four tables: SETL_localities, SETL_plates,
SETL_records, and SETL_species. Microsoft Access by default includes a header
row in the exported XLS files. The header row must be removed before
importing into SETLyze.

After selecting all four data files files, press the OK button to load the
SETL data from these files. A progress dialog is shown while the data
is being loaded. Once the data has been loaded, the Locations Selection dialog
will be updated with the new data.

Define Plate Areas dialog

[image: Define Plate Areas dialog]
Define Plate Areas dialog

This dialog allows you to define the plate areas for analysis “Spot
Preference”. By default, the SETL plate is divided in four plate areas: A, B,
C and D. This dialog allows you to combine these areas by changing the area
definitions. Combining areas means that the combined areas are treated as a
single plate area. One must define at least two plate areas.

The user defined plate areas are only used for the Chi-squared test. In any
case the Wilcoxon test will analyze the plate areas A, B, C, D, A+B, C+D, A+B+C
and B+C+D.

Below is a schematic SETL plate with a grid. By default the plate is
divided in four plate areas (A, B, C and D),

[image: Default plate areas]
Default plate areas

But sometimes it’s useful to combine plate areas. So if one decides
to combine areas A and B, the selection could be changed as follows,

[image: Combined plate areas selection]
Combined plate areas selection

And the resulting plate areas definition would look something like this,

[image: Plate areas A and B combined.]
Plate areas A and B combined.

This would result in three plate areas. Analysis “Spot Preference” would then
determine if the selected species has a preference for either of the three
plate areas.

The names of the plate areas (area 1, area 2, ...) do not have a
special meaning. It is simply used internally by the application to
distinguish between plate areas. These area names are also used in the
analysis report to distinguish between the plate areas.

The Back button allows you to go back to the previous dialog. This can
be useful when you want to correct a choice you made in a previous
dialog.

The Continue button saves the selection, closes the dialog, and shows the next
dialog.

Analysis Report dialog

[image: Analysis Report dialog]
Analysis Report dialog

The analysis report dialog shows the results for an analysis. The dialog
consists of the results frame and a toolbar on top. The toolbar holds a number
of buttons. Hover your mouse pointer over the buttons to reveal a tooltip which
explains the button’s action. Some buttons are explained below:

	Save

	The “Save” button allows you to save the report to a file. Clicking
this button first shows a File Save dialog which allows you to select a
target directory and filename. One file type is supported:

	reStructuredText (*.rst) - Plain text files in an easy-to-read markup
syntax. One can use Docutils [http://docutils.sourceforge.net/] to
convert reStructuredText [http://docutils.sourceforge.net/rst.html]
files into useful formats, such as HTML, LaTeX, man-pages, open-document
or XML.

	Save All

	The “Save All” button is only enabled in batch mode and allows you to export
the reports of the individual analyses. Clicking the “Save” button in batch
mode only saves the Summary Report which is based on the
individual reports.

	Repeat

	The “Repeat” button can be used to repeat an analysis with different
parameters. Clicking this button will open a dialog which shows the same
parameters available in the Preferences dialog. So one can, for
example, quickly repeat the analysis with a different number of repeats.

The report dialog can display two types of reports:

	Standard Report: When running an analysis in standard mode (not in
batch mode) the report is divided into sections. There is a section for each
statistical test that was performed.

	Summary Report: When running an analysis in batch mode the report will
be a summary of all standard reports that were generated. This report will
show less details than a standard report.

Both types of reports will be explained below.

Standard Report

A standard report is divided into subsections. You have to click on a
subsection to reveal its contents. Find the explanation for each subsection
below.

Locations and Species Selections

Displays the locations and species selections. If multiple selections
were made, each element is suffixed by a number. For example “Species
selection (2)” stands for the second species selection.

Wilcoxon rank sum test with continuity correction

Shows the results for the non-repeated Wilcoxon rank-sum tests.

“In statistics, the Mann–Whitney U test (also called the
Mann–Whitney–Wilcoxon (MWW) or Wilcoxon rank-sum test) is a non-parametric
statistical hypothesis test for assessing whether two independent samples
of observations have equally large values.” —
Mann–Whitney U (Wikipedia. 6 December 2010) [http://en.wikipedia.org/wiki/Mann-Whitney-Wilcoxon_test]

Tests showed that spot distances on a SETL plate are not normally
distributed (see Testing spot distances for normal distribution), hence the Wilcoxon
rank-sum test for unpaired data was chosen to test if observed and expected
spot distances differ significantly. The observed and expected spot distances

Depending on the analysis, the test is performed on different groups of data.
The data can be grouped by plate area (analysis “Spot Preference”), the number
of positive spots (analysis “Attraction within Species”) or by positive spot
ratios groups (analysis “Attraction between Species”). See section record
grouping for more information on data grouping.

Each row for the results of the Wicoxon test contains the results of a single
test on a data group. Each row can have the following elements:

	Plate Area

	The plate area of a SETL plate. A SETL plate is divided into four plate
areas: A, B, C, and D (see Default plate areas). The test is
performed on each of the four plate areas, plus the combinations “A+B”,
“C+D”, “A+B+C”, and “B+C+D”. Combining the results of the test for all
plate areas (and combinations) allows you to make conclusions about the
species’ preference for areas on SETL plates. See also
Grouping by Plate Area.

	Positive Spots

	A number representing the number of positive spots. For this test only
records matching that number of positive spots were used. See also
Record grouping by number of positive spots.

	Ratios Group

	A number representing the ratios group. For this test only records grouped
in that ratios group were used. See also
Record grouping by ratios groups.

	n (totals)

	The number of values (n) used for the statistical test. Each value (x) is a
number representing the number of encounters of a species on a plate area
for a specific record in the database. So a value x=4 means that the
species was found on four spots of the area in question for a specific
plate. If the area in question was “A”, then the maximum value for x would be
4, because area “A” consists of four spots. This is done for all records
matching that species and plate area, resulting in a sequence of numbers
(e.g. 1,0,0,3,12,4,8,0,...). So n is the number of values x.

	n (observed species)

	The number of times the species was found on the plate area in question.
This is for all plates summed up.

	n (expected species)

	The number of times you’d expect the species to be found on the plate
area in question. The expected values are calculated per plate with
a random generator. For each plate, the same number of positive spots
are generated randomly on a virtual plate. The number of positive spots
are then counted for the plate area in question.

	n (plates)

	The number of plates that match the number of positive spots.

	n (distances)

	The number of spot distances derived from the records matching the
positive spots number.

	P-value

	The P-value for the test.

	Mean Observed

	The mean of the observed spot distances. This is calculated separately.

	Mean Expected

	The mean of the expected spot distances. This is calculated separately.

	Remarks

	A summary of the results. Shows whether the p-value is significant
(p-value <= alpha level), and if so, how significant and decides based on
the means if the species attract species/reject a plate area
(observed mean < expected mean) or repel species/prefer a plate area
(observed mean > expected mean).

Some data groups might me missing from the list of results. This is because
groups that don’t have matching records are skipped, so they are not displayed
in the list of results.

Wilcoxon rank sum test with continuity correction (repeated)

Shows the significance results for the repeated Wilcoxon tests. For more
information about the Wilcoxon rank-sum test results, see
Wilcoxon rank sum test with continuity correction.

The number of repeats to perform can be set in the Preferences dialog.

Each row for the results of the repeated Wicoxon test contains the results of
repeated tests on a data group. Each row can have the following elements:

	Plate Area

	See description for Wilcoxon rank sum test with continuity correction.

	n (totals)

	See description for Wilcoxon rank sum test with continuity correction.

	n (observed species)

	See description for Wilcoxon rank sum test with continuity correction.

	n (significant)

	Shows how many times the test turned out significant for the repeats
(P-value <= alpha level).

	n (non-significant)

	Shows how many times the test turned out to be not significant for the
repeats (P-value > alpha level).

	n (preference)

	Shows how many times there was a significant preference for the plate
area in question.

	n (rejection)

	Shows how many times there was a significant rejection for the plate
area in question.

	n (attraction)

	Shows how many times there was a significant attraction for the species in
question.

	n (repulsion)

	Shows how many times there was a significant repulsion for the species in
question.

Chi-squared test for given probabilities

Shows the results for Pearson’s Chi-squared Test for Count Data.

“Pearson’s chi-square (χ2) test is the
best-known of several chi-square tests. It tests a null hypothesis
stating that the frequency distribution of certain events observed
in a sample is consistent with a particular theoretical distribution.”
— Pearson’s Chi-squared Test (Wikipedia. 23 December 2010) [http://en.wikipedia.org/wiki/Pearson’s_chi-square_test]

The observed values are the frequencies of the observed spot distances. The
expected values are calculated with the formula [image: e(d) = N * p(d)]
where N is the total number of observed distances and p is the
probability for spot distance d. The probability p has been
pre-calculated for each spot distance. The probabilities for intra-specific
spot distances are from the model of Distribution for intra-specific spot distances
and the probabilities for inter-specific distances are from the model of
Distribution for inter-specific spot distances. The probabilities have been hard coded
into the application:

Intra-specific spot distances:

	Spot Distance
	Probability

	1
	40/300

	1.41
	32/300

	2
	30/300

	2.24
	48/300

	2.83
	18/300

	3
	20/300

	3.16
	32/300

	3.61
	24/300

	4
	10/300

	4.12
	16/300

	4.24
	8/300

	4.47
	12/300

	5
	8/300

	5.66
	2/300

Inter-specific spot distances:

	Spot Distance
	Probability

	0
	25/625

	1
	80/625

	1.41
	64/625

	2
	60/625

	2.24
	96/625

	2.83
	36/625

	3
	40/625

	3.16
	64/625

	3.61
	48/625

	4
	20/625

	4.12
	32/625

	4.24
	16/625

	4.47
	24/625

	5
	16/625

	5.66
	4/625

Depending on the analysis, the records matching the species selection are first
grouped by positive spots number (analysis “Attraction within Species”) or by
ratios group (analysis “Attraction between Species”). See section
Record Grouping.

Each row for the results of the Chi-squared tests contains the results of a
single test on a spots/ratios group. Each row can have the following elements:

	Positive Spots

	A number representing the number of positive spots. For this test
only records matching that number of positive spots were used.

	Ratios Group

	A number representing the ratios group. For this test
only records grouped in that ratios group were used.

	n (plates)

	The number of plates that match the number of positive spots.

	n (distances)

	The number of spot distances derived from the records matching the
positive spots number.

	P-value

	The P-value for the test.

	Chi squared

	The value the Chi-squared test statistic.

	df

	The degrees of freedom of the approximate chi-squared distribution
of the test statistic.

	Mean Observed

	The mean of the observed spot distances. This is calculated separately.

	Mean Expected

	The mean of the expected spot distances. This is calculated separately.

	Remarks

	A summary of the results. Shows whether the p-value is significant,
and if so, how significant and decides based on the means if the
species attract (observed mean < expected mean) or repel
(observed mean > expected mean).

Some spots/ratios groups might me missing from the list of results. This is
because spots/ratios groups that don’t have matching records are skipped,
so they are not displayed in the list of results.

Plate Areas Definition for Chi-squared Test

Describes the definition of the plate areas set with the
Define Plate Areas dialog. See the description for that dialog to get
the meaning of the letters A, B, C and D.

Species Totals per Plate Area for Chi-squared Test

	Area ID

	See the Plate Areas Definition for Chi-squared Test section of the report to see the
definition of each area.

	Observed Totals

	How many times the selected species was found present in each of
the plate areas.

	Expected Totals

	The expected totals for the selected species.

Summary Report

A summary report contains basic information from multiple
standard reports. Such a summary report is basically
a table where each row represents a single analysis and the columns contain
the results per data group.

In the summary report a result is only displayed if one of the statistical
tests done for a species (combination) was considered significant. Some
statistical tests are repeated and in this case there is a p-value for each
repeat. In this case the p-value is calculated with [image: p = 1 - (s/t)] where
s is the number of significant p-values for the major form of significance.
For example, if attraction was more often significant than rejection, then
s is the total number of significant p-values for attraction. And t is
the total number of repeats for the test. So with 20 repeats and
[image: \alpha = 0.05], 19 out of 20 repeats must have had a significant p-value
in one direction for the test result to be considered significant.

Below are the definitions for the result codes used in summary reports.

	na

	There is not enough data for the analysis or in case of the
Chi Squared test one of the expected frequencies is less than 5.

	s

	The result for the statistical test was significant.

	ns

	The result for the statistical test was not significant.

	pr

	There was a significant preference for the plate area in question.

	rj

	There was a significant rejection for the plate area in question.

	at

	There was a significant attraction for the species in question.

	rp

	There was a significant repulsion for the species in question.

The summary report for each analysis are explained below.

Summary Report “Spot Preference”

Example report:

	
	Wilcoxon rank sum test
	Chi-sq

	Species
	n (plates)
	A
	B
	C
	D
	A+B
	C+D
	A+B+C
	B+C+D
	A,B,C,D

	Obelia dichotoma
	177
	pr; p=0.0000
	ns; p=1.0000
	rj; p=0.0000
	ns; p=0.0500
	ns; p=0.3500
	rj; p=0.0000
	ns; p=1.0000
	ns; p=1.0000
	s; χ²=103.98; p=0.0000

	Obelia geniculata
	91
	ns; p=0.4500
	ns; p=1.0000
	rj; p=0.0000
	ns; p=0.1000
	ns; p=1.0000
	rj; p=0.0000
	ns; p=1.0000
	ns; p=1.0000
	s; χ²=62.30; p=0.0000

	Obelia longissima
	341
	pr; p=0.0000
	ns; p=1.0000
	rj; p=0.0000
	rj; p=0.0000
	pr; p=0.0000
	rj; p=0.0000
	ns; p=1.0000
	rj; p=0.0000
	s; χ²=435.22; p=0.0000

Explanation of the columns:

	Species

	Name of the species.

	n (plates)

	The total number of plates for the species selection. The real number of
plates used for each data group may be smaller. Use the “Save All” button
to see the number of plates used for each data group.

	A, B, C, D, A+B, C+D, A+B+C, and B+C+D

	In this report the results are grouped by plate area (see
Grouping by Plate Area). For the Wilcoxon rank sum test, the
test is performed on each of the four plate areas, plus the combinations
“A+B”, “C+D”, “A+B+C”, and “B+C+D”. For the Chi squared test the user
defined plate areas are used. The user defined plate areas can be seen in
the column name (e.g. “A+B,C,D” means that areas A and B were combined).

Summary Report “Attraction within Species”

Explanation of the columns:

	Species

	Name of the species.

	n (plates)

	The total number of plates for the species selection. The real number of
plates used for each data group may be smaller. Use the “Save All” button
to see the number of plates used for each data group.

	2-24, 2, 3, ..., 24

	In this report the results are grouped by positive spot numbers (see
Record grouping by number of positive spots).

Summary Report “Attraction between Species”

Example report:

	
	Wilcoxon rank sum test
	Chi-squared test

	Species A
	Species B
	n (plates)
	1-5
	1
	2
	3
	4
	5
	1-5
	1
	2
	3
	4
	5

	Obelia dichotoma
	Obelia geniculata
	12
	ns; p=0.8500
	ns; p=0.0500
	at; p=0.0000
	ns; p=1.0000
	na
	na
	ns; χ²=16.90; p=0.2615
	rp; χ²=35.36; p=0.0013
	at; χ²=38.12; p=0.0005
	ns; χ²=7.21; p=0.9263
	na
	na

	Obelia dichotoma
	Obelia longissima
	81
	rp; p=0.0000
	ns; p=0.1000
	rp; p=0.0000
	rp; p=0.0000
	rp; p=0.0000
	rp; p=0.0000
	rp; χ²=420.68; p=0.0000
	rp; χ²=134.34; p=0.0000
	rp; χ²=164.86; p=0.0000
	rp; χ²=170.01; p=0.0000
	rp; χ²=96.88; p=0.0000
	rp; χ²=43.53; p=0.0001

	Obelia geniculata
	Obelia longissima
	39
	rp; p=0.0000
	ns; p=0.9500
	ns; p=0.9500
	ns; p=0.5500
	ns; p=0.9500
	rp; p=0.0000
	rp; χ²=211.92; p=0.0000
	rp; χ²=39.46; p=0.0003
	rp; χ²=28.69; p=0.0115
	rp; χ²=105.26; p=0.0000
	ns; χ²=8.14; p=0.8821
	rp; χ²=141.94; p=0.0000

In this example the columns containing numbers (1,2,..) represent

Explanation of the columns:

	Species A

	Name of the first species.

	Species B

	Name of the species the first species was compared with.

	n (plates)

	The total number of plates for the species selection. The real number of
plates used for each data group may be smaller. Use the “Save All” button
to see the number of plates used for each data group.

	1-5, 1, 2, 3, 4, 5

	In this report the results are grouped by positive spot ratio groups (see
Record grouping by ratios groups).

Record Grouping

SETLyze performs statistical tests to determine the significance of
results. The key statistical tests used to determine significance are
the Wilcoxon rank-sum test and Pearson’s Chi-squared test. The tests
are performed on records data that match the locations and species
selection. It is however not a good idea to just perform the test
on all matching records. For this reason the matching records are first
grouped by a specific property. The tests are then performed on each
group.

Two methods for grouping records have been implemented. One is by positive
spots number, and the other is by positive spots ratio. We’ll describe
each grouping method below.

Grouping by Plate Area

This type of grouping is done for analysis “Spot Preference”. Each group
is a plate area or a combination of plate areas.
The following groups are defined:

	Plate area A

	Plate area B

	Plate area C

	Plate area D

	Plate area A+B

	Plate area B+C

	Plate area A+B+C

	Plate area B+C+D

For each group, the number of positive spots for all plates and that specific
plate area are calculated. These make up the observed values.

Record grouping by number of positive spots

This type of grouping is done in the case of calculated spot distances
for a single species (or multiple species grouped together) on SETL
plates (analysis “Attraction within Species”).

A record has a maximum of 25 positive spots,
so this results in a maximum of 25 record groups. Group 1 contains records with
just one positive spot, group 2 contains records with two positive spots, et
cetera. Records of group 1 and 25 are left out however. Group 1 is
skipped because it is not possible to calculate spot distances for
records with just one positive spot. And group 25 is excluded because
a significance test on records of this group will always result in a
p-value of 1. This makes sense, because both the observed and expected
distances are based on records with 25 positive spots, which is a full
SETL plate. As a result, the observed and expected spot distances will
be exactly the same.

The test is also performed on a group with number -24. Of course there
is no such thing as records with minus 24 positive spots. Actually, the
minus sign should be read as “up to”. So this test is also performed on
records with up to 24 positive spots. This means that the significance
test will also be performed on records of all groups together. Note
that records of group 1 will still be ignored.

The results of the significance tests are presented in rows. Each row
contains the result of the test for one group. The “Positive Spots”
column tells you to which group each result belongs.

Record grouping by ratios groups

This type of grouping is done in the case of calculated spot distances
between two different (groups of) species (analysis “Attraction between Species”).

When dealing with two species, plate records are matched that contain
both species. This means we can get a ratio for the positive spots for
each matching SETL plate record. Consider Spot distances on SETL plate (inter specific)
which visualizes a SETL plate with positive spots of species A and B.
There are two positive spots of one species, and three positive spots of
the other. That makes the ratio for this plate 2:3. The order of the
species doesn’t matter here, so a ratio A:B is considered the same as
ratio B:A. All records are grouped based on this ratio. We’ve defined
five ratios groups:

Note

	[image: c = comb(s)]

	A function for generating a list of two-item combinations with
replacement c from a sequence of numbers s. The two-item
combinations are ratios (e.g. (2,3) = ratio 2:3).

	[image: s = seq(start,end)]

	A function for creating a sequence of numbers s from a number
range starting with start and ending at end. For example
[image: seq(1,6) = 1,2,3,4,5]

	Ratios group 1:

	[image: comb(seq(1,6))] =
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4),
(2, 5), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5), (5, 5)

	Ratios group 2:

	[image: comb(seq(1,11)) - comb(seq(1,6))] =
(1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (2, 6), (2, 7), (2, 8),
(2, 9), (2, 10), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), (4, 6),
(4, 7), (4, 8), (4, 9), (4, 10), (5, 6), (5, 7), (5, 8), (5, 9),
(5, 10), (6, 6), (6, 7), (6, 8), (6, 9), (6, 10), (7, 7), (7, 8),
(7, 9), (7, 10), (8, 8), (8, 9), (8, 10), (9, 9), (9, 10), (10, 10)

	Ratios group 3:

	[image: comb(seq(1,16)) - comb(seq(1,11))] =
(1, 11), (1, 12), (1, 13), (1, 14), (1, 15), (2, 11), (2, 12),
(2, 13), (2, 14), (2, 15), (3, 11), (3, 12), (3, 13), (3, 14),
(3, 15), (4, 11), (4, 12), (4, 13), (4, 14), (4, 15), (5, 11),
(5, 12), (5, 13), (5, 14), (5, 15), (6, 11), (6, 12), (6, 13),
(6, 14), (6, 15), (7, 11), (7, 12), (7, 13), (7, 14), (7, 15),
(8, 11), (8, 12), (8, 13), (8, 14), (8, 15), (9, 11), (9, 12),
(9, 13), (9, 14), (9, 15), (10, 11), (10, 12), (10, 13), (10, 14),
(10, 15), (11, 11), (11, 12), (11, 13), (11, 14), (11, 15),
(12, 12), (12, 13), (12, 14), (12, 15), (13, 13), (13, 14),
(13, 15), (14, 14), (14, 15), (15, 15)

	Ratios group 4:

	[image: comb(seq(1,21)) - comb(seq(1,16))] =
(1, 16), (1, 17), (1, 18), (1, 19), (1, 20), (2, 16), (2, 17),
(2, 18), (2, 19), (2, 20), (3, 16), (3, 17), (3, 18), (3, 19),
(3, 20), (4, 16), (4, 17), (4, 18), (4, 19), (4, 20), (5, 16),
(5, 17), (5, 18), (5, 19), (5, 20), (6, 16), (6, 17), (6, 18),
(6, 19), (6, 20), (7, 16), (7, 17), (7, 18), (7, 19), (7, 20),
(8, 16), (8, 17), (8, 18), (8, 19), (8, 20), (9, 16), (9, 17),
(9, 18), (9, 19), (9, 20), (10, 16), (10, 17), (10, 18), (10, 19),
(10, 20), (11, 16), (11, 17), (11, 18), (11, 19), (11, 20),
(12, 16), (12, 17), (12, 18), (12, 19), (12, 20), (13, 16),
(13, 17), (13, 18), (13, 19), (13, 20), (14, 16), (14, 17),
(14, 18), (14, 19), (14, 20), (15, 16), (15, 17), (15, 18),
(15, 19), (15, 20), (16, 16), (16, 17), (16, 18), (16, 19),
(16, 20), (17, 17), (17, 18), (17, 19), (17, 20), (18, 18),
(18, 19), (18, 20), (19, 19), (19, 20), (20, 20)

	Ratios group 5:

	[image: comb(seq(1,25)) - comb(seq(1,21))] =
(1, 21), (1, 22), (1, 23), (1, 24), (2, 21), (2, 22), (2, 23), (2, 24),
(3, 21), (3, 22), (3, 23), (3, 24), (4, 21), (4, 22), (4, 23), (4, 24),
(5, 21), (5, 22), (5, 23), (5, 24), (6, 21), (6, 22), (6, 23), (6, 24),
(7, 21), (7, 22), (7, 23), (7, 24), (8, 21), (8, 22), (8, 23), (8, 24),
(9, 21), (9, 22), (9, 23), (9, 24), (10, 21), (10, 22), (10, 23), (10, 24),
(11, 21), (11, 22), (11, 23), (11, 24), (12, 21), (12, 22), (12, 23),
(12, 24), (13, 21), (13, 22), (13, 23), (13, 24), (14, 21), (14, 22),
(14, 23), (14, 24), (15, 21), (15, 22), (15, 23), (15, 24), (16, 21),
(16, 22), (16, 23), (16, 24), (17, 21), (17, 22), (17, 23), (17, 24),
(18, 21), (18, 22), (18, 23), (18, 24), (19, 21), (19, 22), (19, 23),
(19, 24), (20, 21), (20, 22), (20, 23), (20, 24), (21, 21), (21, 22),
(21, 23), (21, 24), (22, 22), (22, 23), (22, 24), (23, 23), (23, 24),
(24, 24)

Ratios where one species has covered all 25 spots are excluded from this
group because the p-value would be insignificant for such ratios.

You can imagine that the results of the statistical test performed on
records from ratios group 1 has a higher reliability than the results
for ratios group 5. Records from ratios group 1 have fewer positive
spots. Finding that species A is often close to species B on records of
group 5 doesn’t say much. The high number of positive spots naturally
results in spots sitting close to each other. This is however
not the case for records of group 1, where there is enough space for
the species to sit. Finding them next to each other in group 1
probably means something.

The significance test is also performed on ratios group with number -5.
This group includes ratios from all 5 groups (still excluding ratios with
25).

The results of the significance tests are presented in rows. Each row
contains the result of the test for one group. The “Ratios Group”
column tells you to which group each result belongs.

Exporting SETL data from the Access database

Export to CSV files

This section describes how to export the SETL data from the Microsoft
Access database to CSV files.

	Open the SETL database file (*.mdb) in Microsoft Access. You’ll
see four tables in the left column: SETL_localities, SETL_plates,
SETL_records and SETL_species.

	To export a table, right-click on it to open the drop menu. From the
menu select Export > Text file. Then give the filename of the output
file. Make sure to include the table name in the filename (e.g.
setl_localities.csv for the “SETL_localities” table). Uncheck all
other options and press OK.

	In the next dialog that appears select the option that separates
fields with a character. The separator character must be a semicolon
(”;”). If it’s not, change it by clicking the Advanced button. Then
click Finish to export the data to a CSV file.

	Repeat steps 2 and 3 for all tables.

	You should end up with four files, one CSV file for each table. Put
these files in one folder.

Export to Excel files

The database tables can also be exported to Excel files. Only the import of
Excel 97/2000/XP/2003 (*.xls) files are supported by SETLyze, so be sure to
select the right format.

Use Cases

Possible use cases which describe how SETLyze can be used to find answers to
biological questions regarding the settlement of species on SETL plates.

	Use Cases for SETLyze
	Use Case 1: Spot Preference

	Use Case 2: Attraction of Species (intra-specific)

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	User Manual

Use Cases for SETLyze

This document describes some possible use cases which describe how SETLyze
can be used to find answers to biological questions regarding the settlement
of species on SETL-plates.

Use Case 1: Spot Preference

Research Question

“Do species of the genus Obelia have a preference for specific locations
on SETL-plates?”

Performing the analysis

Analysis “Spot preference” was designed to analyse a species’ preference
for a specific location on a SETL-plates.

For this analysis, we can define the following hypotheses:

	Null hypothesis

	The species in question settles at random areas of SETL-plates.

	Alternative hypothesis

	The species in question has a preference for a plate area (observed mean
> expected mean) or has a rejection for a plate area (observed mean <
expected mean).

The analysis uses the P-value to decide which hypothesis is true.

	P >= alpha level

	Assume that the null hypothesis is true.

	P < alpha level

	Assume that the alternative hypothesis is true.

To find an answer to the research question, we’re going to run the analysis
on all species of the genus Obelia from all available locations.

Start SETLyze, and from the main window
select “Analysis 1”. Then click the OK button to start the selected analysis.
The Locations Selection dialog will now show up. If this is your first time
running SETLyze, then the list of locations will be empty. Clicking the
“Load Data” button opens the Load Data dialog. Use this dialog to load
your SETL data. For this example, we’ll use the test data provided with
SETLyze.

Note

On Windows, the test data can be found in the sub folder “test-data” of the
directory to where you installed SETLyze (e.g.
C:\Program Files\GiMaRIS\SETLyze\test-data\).

On Linux, the “test-data” folder can be found in the source package.

Once the SETL data is loaded, you should see a list of all locations. You can
now select the locations from which you want to select species. For this
example, we want to use all data available for the genus Obelia, so we’ll
select all locations. Select a location and then press Ctrl+A to select all
locations. Press the Continue button.

The Species Selection dialog should now be displayed. By default, the
species are sorted by their scientific name. Scroll down until you find the
species who’s name start with Obelia. You should find the following six
species:

	Obelia not geniculata

	Obelia geniculata

	Obelia dichotoma

	Obelia longissima

	Obelia bidentata

	Obelia sp.

Select all six species by holding down the Shift key. Then press the Continue
button.

The Define Plate Areas dialog should now be displayed. This dialog
allows you to define the SETL-plate areas for the Chi-squared test. The result
of the Chi-squared test for this analysis is only useful if you have large
amounts of data for the species you’re analyzing. Because the Wilcoxon test
for this analysis gives more specific information about the plate areas, we’ll
focus on that instead. So we’ll skip the details of this dialog, and leave the
default plate areas setting for the Chi-squared test. Press the Continue button
to start the calculations for this analysis.

In a few seconds you should be presented with the
Analysis Report dialog. This dialog shows the results for the analysis.
For this example, we’ll skip the results of the Chi-squared test, and focus
on the results of the Wilcoxon tests.

Results

You should see two sections for the results of the Wilcoxon test:

	Wilcoxon rank sum test with continuity correction

	Wilcoxon rank sum test with continuity correction (repeated)

Click on both sections to reveal the results. You should see something similar
to the screenshot below.

[image: Analysis Report for Use Case 1]
Analysis Report for Use Case 1

Let’s first look at the results of the non-repeated tests. You can see that
there seems to be a strong preference for the corners of a SETL-plate (see
Default plate areas for an overview of the plate areas).
I say strong, because the P-value is very low (P < 0.1%). At the same time,
this species seems to reject the middle areas of the plates (areas C and D).
There is no significance for area B, so it makes sense that the combination
A+B returns significant preference. This significance is caused by area A, and
not B. The same can be said for B+C+D. The significance is caused by the areas
C+D. Area A+B+C returns non-significant. This is because both A and C have a
significance, but in the opposite directions. B has again no influence because
it’s not significant.

Remember that these are the results of the non-repeated tests. The results
with very low P-values are pretty solid, even though the expected values
were calculated randomly. But this cannot be said for P-values that are
close to the alpha level (5% by default). In that case the significance result
could be a coincidence. This is why the results of repeated tests are included
as well.

The Wilcoxon test was repeated a number of times. And before each repeat, the
expected values are re-calculated. By default, the number of repeats is set to
10.

Let’s have a look at the results of the repeated tests. If you look at the
repeat results for plate area A, you’ll see that out of 10 repeats, 10 were
found to be significant (P < 5%). And out of these 10 significant results, all
10 showed a preference for the area. Based on this result, we can almost safely
say that the results we found are not a coincidence. I say almost, because
a total of 10 repeats is very low. To be even more sure, you can set the
number of repeats to a higher value in the Preferences dialog.

Conclusion

The species of the genus Obelia have a strong preference for the corners
(area A) of SETL-plates, and a strong rejection for the middle (areas C+D) of
SETL-plates. The species don’t seem to have a preference for the borders
(area B).

Use Case 2: Attraction of Species (intra-specific)

Research Question

“Does Balanus crenatus from the location Aquadome Grevelingen attract
individuals of its own kind?”

Performing the analysis

Analysis “Attraction of Species (intra-specific)” can be used to determine
if a species attracts or repels individuals of its own kind.

For this analysis, we can define the following hypotheses:

	Null hypothesis

	The species in question settles at random areas of SETL-plates, unregarded
the presence of other individuals of its own kind.

	Alternative hypothesis

	The species attracts (observed mean < expected mean) or repels
(observed mean > expected mean) individuals of its own kind.

The analysis uses the P-value to decide which hypothesis is true.

	P >= alpha level

	Assume that the null hypothesis is true.

	P < alpha level

	Assume that the alternative hypothesis is true.

To find an answer to this research question, we’re going to run the analysis
on Balanus crenatus from the location Aquadome Grevelingen.

Start SETLyze, and from the main window
select analysis “Attraction within Species”. Then click the OK button to start
the selected analysis. The Locations Selection dialog will now show
up. If this is your first time running SETLyze, then the list of locations
will be empty. Clicking the “Load Data” button opens the
Load Data dialog. Use this dialog to load your SETL data. For this
example, we’ll use the test data provided with SETLyze.

Note

On Windows, the test data can be found in the sub folder “test-data” of the
directory to where you installed SETLyze (e.g.
C:\Program Files\GiMaRIS\SETLyze\test-data\).

On Linux, the “test-data” folder can be found in the source package.

Once the SETL data is loaded, you should see a list of all locations. You can
now select the locations from which you want to select species. For this
example, we’re just interested in data from the location Aquadome Grevelingen.
Select “Aquadome, Grevelingen” from the list. Press the Continue button.

The Species Selection dialog should now be displayed. By default, the
species are sorted by their scientific name. Select the species “Balanus
crenatus”. Press the Continue button to start the calculations for this
analysis.

In a few seconds you should be presented with the
Analysis Report dialog. This dialog shows the results for the analysis.

Results

For this analysis, two different statistical hypothesis tests are performed;
the Wilcoxon rank-sum test and Pearson’s Chi-squared test. The following
sections should be present in the report dialog:

	Wilcoxon rank sum test with continuity correction

	Wilcoxon rank sum test with continuity correction (repeated)

	Chi-squared test for given probabilities

Let’s first have a look at the results of the Wilcoxon tests. Click on both
Wilcoxon sections to reveal the results. You should see something similar
to the screenshot below.

[image: Analysis Report for Use Case 2 - Wilcoxon tests]
Analysis Report for Use Case 2 - Wilcoxon tests

Let’s first look at the results of the non-repeated tests. You’ll see that most
results are non-significant. There might be a few exceptions, but these could
have other causes then attraction/repuslion. For example, some parts of the
SETL-plates might be coverd with another species, making it simply impossible
for Balanus crenatus to settle there.

So these are the results of the non-repeated tests. The results
with very low P-values are pretty solid, even though the expected values
were calculated randomly. But this cannot be said for P-values that are
close to the alpha level (5% by default). In that case the significance result
could be a coincidence. This is why the results of repeated tests should be
taken into account as well.

The Wilcoxon test was repeated a number of times. And before each repeat, the
expected values are re-calculated. By default, the number of repeats is set to
10.

Let’s have a look at the results of the repeated tests. Notice that sometimes
the test does return significant. If you however find that the test returns
non-significant far more often than significant, you could conclude that
there is no significance, and therefor assume that the null hypothesis is true.

Then there are the results of the Chi-squared tests. While the Wilcoxon test
looks at the distribution of spot distances (the measurements), the Chi-quared
test looks at the frequencies at which spot distances occur. The observed
frequencies are being compared to the expected frequencies. This again leads
to P-values which can be used to determine which hypothesis is true. Because
the expected values are fixed, repeats aren’t necessary for this test.

[image: Analysis Report for Use Case 2 - Chi-squared tests]
Analysis Report for Use Case 2 - Chi-squared tests

In this case, the Chi-squared test gives similar results to the Wilcoxon test.
It turns out however that this method is less sensitive to differences in
samples.

Conclusion

Balanus crenatus doesn’t seem to attract or repel individuals of its own
kind.

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

SETLyze Developer Guide

Welcome to the Developer Guide for SETLyze. This document describes the
SETLyze internals. It’s meant for people who are involved in the
development process of SETLyze. It should be easy for a new developer
to pick up where the last SETLyze developer left off. The purpose of
this guide is to give the new developer full understanding of SETLyze’s
internals, its programming style, what’s unfinished, et cetera.

Getting Started

Obtaining the source code

The source code for SETLyze is currently hosted on GitHub. The project page
can be found at the following URL: https://github.com/figure002/setlyze

The source code is version controlled with Git [http://git-scm.com/]. You’ll
need to install Git before you can start working on SETLyze. Go to
http://git-scm.com/ to get started with Git.

If you are new to using Git, there is a well written online book
Pro Git [http://git-scm.com/book] which explains everything you need to know
about using Git. At least read through the
Getting Started [http://git-scm.com/book/en/Getting-Started] section.

Once you have Git installed and properly setup, you can obtain a copy of the
source code for SETLyze with the following command

git clone git://github.com/figure002/setlyze.git

Navigating the SETLyze folder

The key files in SETLyze’s root folder are:

	src/setlyze/

	This is SETLyze’s main code base. This package folder contains
all of SETLyze’s modules. This is the folder where you’ll be
editing most Python source files for SETLyze.

	src/setlyze.pyw

	This is SETLyze’s executable. This is what you’ll run to start SETLyze.

	src/setlyze/docs/html/

	This folder contains the documentation for SETLyze. This includes
the User Manual and the Developer Guide. You can view the manual
by (double) clicking index.html. This should open the documentation
in your web browser.

	src/doc-src/

	This folder contains the files used to build the documentation. This is
done using Sphinx. Some parts of the documentation are from
.rst-files within this folder, others are extracted from the
documentation strings within the program source code.

	README.md

	This text file contains a short description of the program and directs
you to other documentation.

	COPYING

	This text file contains the license for SETLyze. SETLyze is released
under the GNU General Public License version 3.

	INSTALL

	Text file with installation instructions for SETLyze.

Technical Design

SETLyze comes with a Technical Design;
a visual representation of SETLyze’s design parts (functions/classes/GUI’s)
interconnected by arrows representing the application’s functions and work
flow. All design parts are numbered. The same numbers can be found in the
SETLyze’s source code. This means that the different design parts of the
Technical Design can be easily linked to the corresponding source code.

The Technical Design provides an easy to understand overview of the
application for users, but is also of great value to developers. It makes it
easier to get a basic understanding of how the application works by looking
at the Technical Design. If the developer is interested in a specific part of
the application, he or she can easily navigate to the corresponding description
and source code by the reference numbers used in the Technical Design.

Both the descriptions and source codes for the design parts in the Technical
Design are browsable using this documentation. Read the “Design Parts” section
below.

Design Parts

The links below will guide you to the different design parts present in the
Technical Design. You just have to click in the the number for that design
part. Clicking on a design part will show you its description. Next to the
description is a link “[source]” which links to the corresponding source code.

	Design Parts
	1.x Modules, Classes & Functions

	2.x Data Storage Places

	3.x Graphical User Interfaces

	4.x Documents

Navigating the SETLyze Code Base

SETLyze’s many functions and classes are stored in different modules.
Classes and functions with similar functions are placed in the same module.

Below is an overview of all modules for SETLyze. You can click on a
module to get a description of that module and all its elements. You can
even view the source-code for a specific function or class by clicking
the [source] link on the right side of the description.

SETLyze modules

	SETLyze Standard Modules
	setlyze.config — Configuration manager
	Module Contents

	setlyze.database — Database access
	Module Contents

	setlyze.gui — Graphical interfaces
	Module Contents

	setlyze.locale — English text retrieval
	Module Contents

	setlyze.report — Generate analysis reports
	Module Contents

	setlyze.std — Standard functions and classes
	Module Contents

	Analysis Modules
	setlyze.analysis.attraction_inter — Analysis Attraction between Species
	Module Contents

	setlyze.analysis.attraction_intra — Analysis Attraction within Species
	Module Contents

	setlyze.analysis.batch — Batch mode
	Module Contents

	setlyze.analysis.common — Shared routines for analysis modules
	Module Contents

	setlyze.analysis.relations — Analysis Relations between Species
	Module Contents

	setlyze.analysis.spot_preference — Analysis Spot Preference
	Module Contents

Coding Style Guidelines

Code layout

Please write PEP-8 [http://www.python.org/peps/pep-0008.html]
compliant code.

One often-missed requirement is that the first line of docstrings
should be a self-contained one-sentence summary.

We use 4 space indents for blocks, and never use tab characters.

Trailing white space should be avoided, but is allowed. If possible,
configure your text editor to automatically remove trailing spaces and
tabs upon saving.

Unix style newlines (LF) are used.

Each file must have a newline at the end of it.

Lines should be no more than 79 characters if at all possible. Use a
text editor that has some kind of long line marker indicating the 79
characters boundary.
Lines that continue a long statement may be indented in either of
two ways:

within the parenthesis or other character that opens the block, e.g.:

my_long_method(arg1,
 arg2,
 arg3)

or indented by four spaces:

my_long_method(arg1,
 arg2,
 arg3)

The first is considered clearer by some people; however it can be a bit
harder to maintain (e.g. when the method name changes), and it does not
work well if the relevant parenthesis is already far to the right. Avoid
this:

self.legbone.kneebone.shinbone.toebone.shake_it(one,
 two,
 three)

but rather

self.legbone.kneebone.shinbone.toebone.shake_it(one,
 two,
 three)

or

self.legbone.kneebone.shinbone.toebone.shake_it(
 one, two, three)

For long lists, we like to add a trailing comma and put the closing
character on the following line. This makes it easier to add new items in
the future:

from setlyze.std import (
 uniqify,
 median,
 distance,
)

There should be spaces between function parameters, but not between the
keyword name and the value:

call(1, 3, cheese=quark)

Module Imports

	Imports should be done at the top-level of the file, unless there is
a strong reason to have them lazily loaded when a particular
function runs. Import statements have a cost, so try to make sure
they don’t run inside hot functions.

Naming

Functions, methods or members that are relatively private are given
a leading underscore prefix.

We prefer class names to be concatenated capital words (TestCase)
and variables, methods and functions to be lowercase words joined by
underscores (revision_id, get_revision).

For the purposes of naming some names are treated as single compound
words: “filename”, “revno”.

Consider naming classes as nouns and functions/methods as verbs.

Try to avoid using abbreviations in names, because there can be
inconsistency if other people use the full name.

Standard Names

revision_id not rev_id or revid

Functions that transform one thing to another should be named x_to_y
(not x2y as occurs in some old code.)

Event and Signal Handling

A large part of SETLyze is controlled with signals and signal handlers. To emit
custom application signals we use setlyze.std.sender.emit(). And to
connect a signal to a signal handler, we use setlyze.std.sender.connect().
When signal handlers are no longer needed, use
setlyze.std.sender.disconnect() to disconnect the handler from the signal.
Calling setlyze.std.sender.disconnect() should generally be done when
the instance that called setlyze.std.sender.connect() is destroyed.

License Statement

SETLyze is released under the GNU General Public License version 3.
Each file that’s part of SETLyze must have the copyright notice and
copying permission statement included at the top of the file after
the encoding declaration. So the top of each file should look like this:

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright 2010, GiMaRIS <info@gimaris.com>
#
This file is part of SETLyze - A tool for analyzing the settlement
of species on SETL plates.
#
SETLyze is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
SETLyze is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Testing and Optimization

The following document describes the steps taken to test and optimize SETLyze.

	Testing and Optimization
	Testing

	Optimization

Distribution

The following document describes how to create the distribution packages and
installers for SETLyze.

	Distribution of SETLyze
	Building a Windows Installer

	Building Source and Linux Binary Packages

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

Design Parts

1.x Modules, Classes & Functions

	Design Part #
	Reference

	1.0
	The executable for SETLyze (setlyze.pyw).

	1.1
	The main() function in the executable.

	1.2
	setlyze.database.MakeLocalDB

	1.3
	setlyze.analysis.spot_preference

	1.3.1
	setlyze.analysis.spot_preference.Begin

	1.3.2
	setlyze.analysis.spot_preference.BeginBatch

	1.3.3
	setlyze.analysis.spot_preference.Analysis

	1.4
	setlyze.analysis.attraction_intra

	1.4.1
	setlyze.analysis.attraction_intra.Begin

	1.4.2
	setlyze.analysis.attraction_intra.BeginBatch

	1.4.3
	setlyze.analysis.attraction_intra.Analysis

	1.5
	setlyze.analysis.attraction_inter

	1.5.1
	setlyze.analysis.attraction_inter.Begin

	1.5.2
	setlyze.analysis.attraction_inter.BeginBatch

	1.5.3
	setlyze.analysis.attraction_inter.Analysis

	1.11
	setlyze.gui.SelectionWindow.on_load_data()

	1.12
	setlyze.report.Report

	1.13
	setlyze.analysis.spot_preference.Analysis.generate_report()

	1.14
	setlyze.analysis.attraction_intra.Analysis.generate_report()

	1.15
	setlyze.analysis.attraction_inter.Analysis.generate_report()

	1.17
	setlyze.report.export()

	1.19.1
	setlyze.database.AccessLocalDB.set_species_spots()

	1.20
	setlyze.database.AccessDBGeneric.make_plates_unique()

	1.22
	setlyze.analysis.attraction_intra.Analysis.calculate_distances_intra()

	1.23
	setlyze.analysis.attraction_intra.Analysis.calculate_distances_intra_expected()

	1.24
	setlyze.analysis.attraction_intra.Analysis.calculate_significance()

	1.27
	setlyze.analysis.attraction_inter.Analysis.calculate_distances_inter()

	1.28
	setlyze.database.AccessLocalDB

	1.29
	setlyze.database.AccessRemoteDB

	1.31
	setlyze.database.MakeLocalDB.run()

	1.32
	setlyze.database.MakeLocalDB.insert_from_data_files()

	1.33
	setlyze.database.MakeLocalDB.insert_from_db()

	1.34.1
	setlyze.database.MakeLocalDB.insert_locations_from_csv()

	1.34.2
	setlyze.database.MakeLocalDB.insert_locations_from_xls()

	1.35.1
	setlyze.database.MakeLocalDB.insert_species_from_csv()

	1.35.2
	setlyze.database.MakeLocalDB.insert_species_from_xls()

	1.36.1
	setlyze.database.MakeLocalDB.insert_plates_from_csv()

	1.36.2
	setlyze.database.MakeLocalDB.insert_plates_from_xls()

	1.37.1
	setlyze.database.MakeLocalDB.insert_records_from_csv()

	1.37.2
	setlyze.database.MakeLocalDB.insert_records_from_xls()

	1.38
	setlyze.database.MakeLocalDB.create_new_db()

	1.39
	setlyze.gui.SelectionWindow.update_tree()

	1.41.1
	setlyze.database.AccessLocalDB.get_record_ids()

	1.42
	setlyze.gui.SelectLocations.create_model()

	1.43
	setlyze.gui.SelectSpecies.create_model()

	1.44
	setlyze.gui.SelectionWindow.on_continue()

	1.45
	setlyze.gui.SelectionWindow.on_back()

	1.48
	setlyze.report.Report

	1.50
	setlyze.report.Report.set_location_selections()

	1.51
	setlyze.report.Report.set_species_selections()

	1.52
	setlyze.report.Report.set_spot_distances_observed()

	1.53
	setlyze.report.Report.set_spot_distances_expected()

	1.54
	setlyze.report.Report.set_plate_areas_definition()

	1.55
	setlyze.report.Report.set_area_totals_observed()

	1.56
	setlyze.report.Report.set_area_totals_expected()

	1.57
	setlyze.config.ConfigManager

	1.58
	setlyze.analysis.spot_preference.Analysis.run()

	1.59
	setlyze.analysis.attraction_intra.Analysis.run()

	1.60
	setlyze.analysis.attraction_inter.Analysis.run()

	1.62
	setlyze.analysis.spot_preference.Analysis.set_plate_area_totals_observed()

	1.63
	setlyze.analysis.spot_preference.Analysis.set_plate_area_totals_expected()

	1.64
	setlyze.analysis.spot_preference.Analysis.get_defined_areas_totals_observed()

	1.65
	setlyze.analysis.spot_preference.Analysis.repeat_wilcoxon_test()

	1.68
	setlyze.analysis.common.PrepareAnalysis.on_display_results()

	1.69
	setlyze.analysis.attraction_inter.Analysis.calculate_distances_inter_expected()

	1.70
	setlyze.report.Report.set_statistics()

	1.72
	setlyze.report.Report.set_analysis()

	1.73
	setlyze.database.AccessDBGeneric.fill_plate_spot_totals_table()

	1.74
	setlyze.analysis.attraction_inter.Analysis.calculate_significance()

	1.75
	setlyze.database.MakeLocalDB.create_table_info()

	1.76
	setlyze.database.MakeLocalDB.create_table_localities()

	1.77
	setlyze.database.MakeLocalDB.create_table_species()

	1.78
	setlyze.database.MakeLocalDB.create_table_plates()

	1.79
	setlyze.database.MakeLocalDB.create_table_records()

	1.80
	setlyze.database.AccessLocalDB.create_table_species_spots_1()

	1.81
	setlyze.database.AccessLocalDB.create_table_species_spots_2()

	1.83
	setlyze.database.AccessLocalDB.create_table_spot_distances_observed()

	1.84
	setlyze.database.AccessLocalDB.create_table_spot_distances_expected()

	1.85
	setlyze.database.AccessLocalDB.create_table_plate_spot_totals()

	1.86
	setlyze.gui.SelectAnalysis

	1.87
	setlyze.gui.SelectLocations

	1.88
	setlyze.gui.SelectSpecies

	1.89
	setlyze.gui.Report

	1.90
	setlyze.gui.LoadData

	1.91
	setlyze.gui.DefinePlateAreas

	1.92
	setlyze.gui.ProgressDialog

	1.93
	setlyze.database.get_database_accessor()

	1.94
	setlyze.std.Sender

	1.95
	setlyze.database.AccessDBGeneric.get_locations()

	1.96
	setlyze.database.AccessLocalDB.get_species()

	1.98
	setlyze.analysis.spot_preference.Analysis.calculate_significance_wilcoxon()

	1.99
	setlyze.analysis.spot_preference.Analysis.calculate_significance_chisq()

	1.100
	setlyze.analysis.spot_preference.Analysis.wilcoxon_test_for_repeats()

	1.101
	setlyze.analysis.spot_preference.Analysis.get_area_probabilities()

	1.102
	setlyze.analysis.attraction_intra.Analysis.wilcoxon_test_for_repeats()

	1.103
	setlyze.analysis.attraction_intra.Analysis.repeat_wilcoxon_test()

	1.104
	setlyze.analysis.attraction_inter.Analysis.wilcoxon_test_for_repeats()

	1.105
	setlyze.analysis.attraction_inter.Analysis.repeat_wilcoxon_test()

2.x Data Storage Places

	Design Parts: Data
	2.x Data Storage Places
	2.0

	2.1

	2.2

	2.3
	2.3.1

	2.3.2

	2.4
	2.4.1

	2.4.2

	2.5

	2.6

	2.7

	2.9
	2.9.1

	2.9.2

	2.10
	2.10.1

	2.10.2

	2.12

	2.13

	2.14

	2.15

	2.16

	2.17

	2.18

	2.19

	2.20

	2.21

	2.22

	2.23

	2.24

	2.25

	2.26

	2.27

	2.28

	2.29

	2.30

	2.31

	2.32

	2.33

	2.34

	2.35

	2.36

	2.37

	2.38

	2.39

	2.40

	2.41

	2.42

3.x Graphical User Interfaces

	Design Part #
	Reference

	3.0
	Analysis Selection dialog

	3.1
	Locations Selection dialog

	3.2
	Species Selection dialog

	3.3
	Analysis Report dialog

	3.4
	Load Data dialog

	3.5
	Define Plate Areas dialog

	3.6
	Preferences dialog

	3.7
	Batch Mode dialog

4.x Documents

	Design Parts: Documents
	4.x Documents
	4.0

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	Design Parts

Design Parts: Data

The design parts in this overview describes all technical design parts
representing data used in SETLyze. This includes database tables,
application variables, and data files.

2.x Data Storage Places

2.0

Table setl_records in the SETL database. The SETL database can be
either the MS Access database or the PostgreSQL database. This table
contains the SETL records.

PostgreSQL query:

CREATE TABLE setl_records
(
 rec_id SERIAL,
 rec_pla_id INTEGER NOT NULL,
 rec_spe_id INTEGER NOT NULL,
 rec_unknown BOOLEAN,
 rec_o BOOLEAN,
 rec_r BOOLEAN,
 rec_c BOOLEAN,
 rec_a BOOLEAN,
 rec_e BOOLEAN,
 rec_sur_unknown BOOLEAN,
 rec_sur1 BOOLEAN,
 rec_sur2 BOOLEAN,
 rec_sur3 BOOLEAN,
 rec_sur4 BOOLEAN,
 rec_sur5 BOOLEAN,
 rec_sur6 BOOLEAN,
 rec_sur7 BOOLEAN,
 rec_sur8 BOOLEAN,
 rec_sur9 BOOLEAN,
 rec_sur10 BOOLEAN,
 rec_sur11 BOOLEAN,
 rec_sur12 BOOLEAN,
 rec_sur13 BOOLEAN,
 rec_sur14 BOOLEAN,
 rec_sur15 BOOLEAN,
 rec_sur16 BOOLEAN,
 rec_sur17 BOOLEAN,
 rec_sur18 BOOLEAN,
 rec_sur19 BOOLEAN,
 rec_sur20 BOOLEAN,
 rec_sur21 BOOLEAN,
 rec_sur22 BOOLEAN,
 rec_sur23 BOOLEAN,
 rec_sur24 BOOLEAN,
 rec_sur25 BOOLEAN,
 rec_1st BOOLEAN,
 rec_2nd BOOLEAN,
 rec_v BOOLEAN,
 rec_photo_nrs VARCHAR(100),
 rec_remarks VARCHAR(100),

 CONSTRAINT rec_id_pk PRIMARY KEY (rec_id),
 CONSTRAINT rec_pla_id_fk FOREIGN KEY (rec_pla_id)
 REFERENCES setl_plates (pla_id)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT rec_spe_id_fk FOREIGN KEY (rec_spe_id)
 REFERENCES setl_species (spe_id)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION
);

2.1

Table setl_species in the SETL database. The SETL database can be
either the MS Access database or the PostgreSQL database. This table
contains the SETL species records.

PostgreSQL query:

CREATE TABLE setl_species
(
 spe_id SERIAL,
 spe_name_venacular VARCHAR(100) UNIQUE,
 spe_name_latin VARCHAR(100) NOT NULL UNIQUE,
 spe_invasive_in_nl BOOLEAN,
 spe_description VARCHAR(300),
 spe_remarks VARCHAR(160),
 spe_picture OID,

 CONSTRAINT spe_id_pk PRIMARY KEY (spe_id)
);

2.2

Table setl_localities in the SETL database. The SETL database can be
either the MS Access database or the PostgreSQL database. This table
contains the SETL locality records.

PostgreSQL query:

CREATE TABLE setl_localities
(
 loc_id SERIAL,
 loc_name VARCHAR(100) NOT NULL UNIQUE,
 loc_nr INTEGER,
 loc_coordinates VARCHAR(100),
 loc_description VARCHAR(300),

 CONSTRAINT loc_id_pk PRIMARY KEY (loc_id)
);

2.3

Table species in the local SQLite database. This table is
automatically filled from 2.1 when the user
starts a SETLyze analysis.

2.3.1

Same as 2.3, but filled from
2.1.

2.3.2

Same as 2.3, but filled from
2.19.

SQLite query:

CREATE TABLE species
(
 spe_id INTEGER PRIMARY KEY,
 spe_name_venacular VARCHAR,
 spe_name_latin VARCHAR,
 spe_invasive_in_nl INTEGER,
 spe_description VARCHAR,
 spe_remarks VARCHAR
);

2.4

Table localities in the local SQLite database. This table is
automatically filled from 2.2 when the user
starts a SETLyze analysis.

SQLite query:

CREATE TABLE localities
(
 loc_id INTEGER PRIMARY KEY,
 loc_name VARCHAR,
 loc_nr VARCHAR,
 loc_coordinates VARCHAR,
 loc_description VARCHAR
);

2.4.1

Same as 2.4, but filled from
2.2.

2.4.2

Same as 2.4, but filled from
2.18.

2.5

Table records in the local SQLite database. This table is only filled
if the user selected CSV files to import SETL data from. By default
this table is empty, and the records data from 2.0
is used.

SQLite query:

CREATE TABLE records
(
 rec_id INTEGER PRIMARY KEY,
 rec_pla_id INTEGER,
 rec_spe_id INTEGER,
 rec_unknown INTEGER,
 rec_o INTEGER,
 rec_r INTEGER,
 rec_c INTEGER,
 rec_a INTEGER,
 rec_e INTEGER,
 rec_sur_unknown INTEGER,
 rec_sur1 INTEGER,
 rec_sur2 INTEGER,
 rec_sur3 INTEGER,
 rec_sur4 INTEGER,
 rec_sur5 INTEGER,
 rec_sur6 INTEGER,
 rec_sur7 INTEGER,
 rec_sur8 INTEGER,
 rec_sur9 INTEGER,
 rec_sur10 INTEGER,
 rec_sur11 INTEGER,
 rec_sur12 INTEGER,
 rec_sur13 INTEGER,
 rec_sur14 INTEGER,
 rec_sur15 INTEGER,
 rec_sur16 INTEGER,
 rec_sur17 INTEGER,
 rec_sur18 INTEGER,
 rec_sur19 INTEGER,
 rec_sur20 INTEGER,
 rec_sur21 INTEGER,
 rec_sur22 INTEGER,
 rec_sur23 INTEGER,
 rec_sur24 INTEGER,
 rec_sur25 INTEGER,
 rec_1st INTEGER,
 rec_2nd INTEGER,
 rec_v INTEGER
);

2.6

A list [<selection-1>,<selection-2>] for storing a maximum of two
location selections. <selection-1> and <selection-2> are lists
of integers representing location IDs. These IDs are the same as the IDs
in column loc_id in 2.2 and
2.4.

If no location selections are made yet, this variable has the value
[None,None].

Get the value with setlyze.config.ConfigManager.get()

setlyze.config.cfg.get('locations-selection', slot=int)

Set the value with setlyze.config.ConfigManager.set()

setlyze.config.cfg.set('locations-selection', list, slot=int)

2.7

A list [<selection-1>,<selection-2>] for storing a maximum of two
species selections. <selection-1> and <selection-2> are lists
of integers representing species IDs. These IDs are the same as the IDs
in column spe_id in 2.1 and
2.3.

Get the value with setlyze.config.ConfigManager.get()

setlyze.config.cfg.get('species-selection', slot=int)

Set the value with setlyze.config.ConfigManager.set()

setlyze.config.cfg.set('species-selection', list, slot=int)

2.9

Table species_spots_1 in the local database containing the SETL
records for the first selection of species and locations.

This table does not contain the complete records, but just the plate ID
and the 25 record surfaces.

SQLite query:

CREATE TABLE species_spots_1
(
 id INTEGER PRIMARY KEY,
 rec_pla_id INTEGER,
 rec_sur1 INTEGER,
 rec_sur2 INTEGER,
 rec_sur3 INTEGER,
 rec_sur4 INTEGER,
 rec_sur5 INTEGER,
 rec_sur6 INTEGER,
 rec_sur7 INTEGER,
 rec_sur8 INTEGER,
 rec_sur9 INTEGER,
 rec_sur10 INTEGER,
 rec_sur11 INTEGER,
 rec_sur12 INTEGER,
 rec_sur13 INTEGER,
 rec_sur14 INTEGER,
 rec_sur15 INTEGER,
 rec_sur16 INTEGER,
 rec_sur17 INTEGER,
 rec_sur18 INTEGER,
 rec_sur19 INTEGER,
 rec_sur20 INTEGER,
 rec_sur21 INTEGER,
 rec_sur22 INTEGER,
 rec_sur23 INTEGER,
 rec_sur24 INTEGER,
 rec_sur25 INTEGER
);

2.9.1

Same as 2.9, but with unique plates.

2.9.2

Same as 2.9, but with plates with just one
spot removed.

2.10

Table species_spots_2 in the local database containing the SETL
records for the second selection of species and locations.

This table does not contain the complete records, but just the plate ID
and the 25 record surfaces.

SQLite query:

CREATE TABLE species_spots_2
(
 id INTEGER PRIMARY KEY,
 rec_pla_id INTEGER,
 rec_sur1 INTEGER,
 rec_sur2 INTEGER,
 rec_sur3 INTEGER,
 rec_sur4 INTEGER,
 rec_sur5 INTEGER,
 rec_sur6 INTEGER,
 rec_sur7 INTEGER,
 rec_sur8 INTEGER,
 rec_sur9 INTEGER,
 rec_sur10 INTEGER,
 rec_sur11 INTEGER,
 rec_sur12 INTEGER,
 rec_sur13 INTEGER,
 rec_sur14 INTEGER,
 rec_sur15 INTEGER,
 rec_sur16 INTEGER,
 rec_sur17 INTEGER,
 rec_sur18 INTEGER,
 rec_sur19 INTEGER,
 rec_sur20 INTEGER,
 rec_sur21 INTEGER,
 rec_sur22 INTEGER,
 rec_sur23 INTEGER,
 rec_sur24 INTEGER,
 rec_sur25 INTEGER
);

2.10.1

Same as 2.10, but with unique plates.

2.10.2

Same as 2.10, but with plates with just one
spot removed.

2.12

Table spot_distances_observed in the local database containing the
observed spot distances.

Contains the spot distances for the records in 2.9
if created by calculate_distances_intra().

If the table is created by calculate_distances_inter(),
the table contains the distances between spots in 2.9
and 2.10.

SQLite query:

CREATE TABLE spot_distances_observed
(
 id INTEGER PRIMARY KEY,
 rec_pla_id INTEGER,
 distance REAL
);

2.13

Table spot_distances_expected in the local database. Has the same
design as 2.12, but contains random generated
spot distances instead. These random generated spot distances will serve
as the expected spot distances.

SQLite query:

CREATE TABLE spot_distances_expected
(
 id INTEGER PRIMARY KEY,
 rec_pla_id INTEGER,
 distance REAL
);

2.14

Table info in the local SQLite database for storing basic
information about the local database.

SQLite query:

CREATE TABLE info
(
 id INTEGER PRIMARY KEY,
 name VARCHAR,
 value VARCHAR
);

This information includes its creation date, the data source, and a
version number. The data source is a string which has the same design as
2.22. You can insert the data source with the
following SQLite query

cursor.execute("INSERT INTO info VALUES (null, 'source', ?)", [setlyze.config.cfg.get('data-source')])

Giving a version number to the local database could be useful in the future.
We can then notify the user if the local database is too old,
followed by creating a new local database. This would only work if the
version for the database is incremented each time you change the design
of the local database. To do this, edit the version number in
create_table_info(). The version
number can be inserted with

cursor.execute("INSERT INTO info VALUES (null, 'version', ?)", [db_version])

The creation date and data source is inserted by the methods
insert_from_csv() and
insert_from_db(). The date can be
inserted with

cursor.execute("INSERT INTO info VALUES (null, 'date', date('now'))")

2.15

Table setl_plates in the SETL database. The SETL database can be
either the MS Access database or the PostgreSQL database. This table
contains the SETL plate records.

PostgreSQL query:

CREATE TABLE setl_plates
(
 pla_id SERIAL,
 pla_loc_id INTEGER NOT NULL,
 pla_setl_coordinator VARCHAR(100),
 pla_nr VARCHAR(100),
 pla_deployment_date TIMESTAMP,
 pla_retrieval_date TIMESTAMP,
 pla_water_temperature VARCHAR(100),
 pla_salinity VARCHAR(100),
 pla_visibility VARCHAR(100),
 pla_remarks VARCHAR(300),

 CONSTRAINT pla_id_pk PRIMARY KEY (pla_id),
 CONSTRAINT pla_loc_id_fk FOREIGN KEY (pla_loc_id)
 REFERENCES setl_localities (loc_id)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION
);

2.16

Table plates in the local SQLite database. This table is only filled
if the user selected CSV files to import SETL data from. By default
this table is empty, and the plates data from 2.15
is used.

SQLite query:

CREATE TABLE plates
(
 pla_id INTEGER PRIMARY KEY,
 pla_loc_id INTEGER,
 pla_setl_coordinator VARCHAR,
 pla_nr VARCHAR,
 pla_deployment_date TEXT,
 pla_retrieval_date TEXT,
 pla_water_temperature VARCHAR,
 pla_salinity VARCHAR,
 pla_visibility VARCHAR,
 pla_remarks VARCHAR
);

2.17

Links to an instance of xml.dom.minidom.Document. It’s a XML DOM
(Document Object Model) object containing the analysis settings and results.
This XML DOM object is generated by setlyze.report.ReportGenerator.

Get the value with setlyze.config.ConfigManager.get()

setlyze.config.cfg.get('analysis-report')

Set the value with setlyze.config.ConfigManager.set()

setlyze.config.cfg.set('analysis-report', value)

2.18

CSV file containing the locality records exported from the MS Access
SETL database.

If exported from the MS Access SETL database, the CSV file must have
the format

LOC_id;LOC_name;LOC_nr;LOC_coordinates;LOC_description

2.19

CSV file containing the species records exported from the MS Access
SETL database.

If exported from the MS Access SETL database, the CSV file must have
the format

SPE_id;SPE_name_venacular;SPE_name_latin;SPE_invasive_in_NL;SPE_description;SPE_remarks;SPE_picture

2.20

CSV file containing the plate records exported from the MS Access
SETL database.

If exported from the MS Access SETL database, the CSV file must have
the format

PLA_id;PLA_LOC_id;PLA_SETL_coordinator;PLA_nr;PLA_deployment_date;PLA_retrieval_date;PLA_water_temperature;PLA_salinity;PLA_visibility;PLA_remarks

2.21

CSV file containing the SETL records exported from the MS Access
SETL database.

If exported from the MS Access SETL database, the CSV file must have
the format

REC_id;REC_PLA_id;REC_SPE_id;REC_?;REC_O;REC_R;REC_C;REC_A;REC_E;REC_sur?;REC_sur1;REC_sur2;REC_sur3;REC_sur4;REC_sur5;REC_sur6;REC_sur7;REC_sur8;REC_sur9;REC_sur10;REC_sur11;REC_sur12;REC_sur13;REC_sur14;REC_sur15;REC_sur16;REC_sur17;REC_sur18;REC_sur19;REC_sur20;REC_sur21;REC_sur22;REC_sur23;REC_sur24;REC_sur25;REC_1st;REC_2nd;REC_V;REC_photo_nrs;REC_remarks

2.22

A string variable representing the current data source.

Can be either setl-database or data-files. Several application
functions check this variable to figure out where to obtain data from.
The first means the PostgreSQL SETL database, and the second from user
selected CSV files exported from the MS Access SETL database.

This variable should be set whenever the data source has changed.

Get the value with setlyze.config.ConfigManager.get()

setlyze.config.cfg.get('data-source')

Set the value with setlyze.config.ConfigManager.set()

setlyze.config.cfg.set('data-source', value)

2.23

Table spot_distances in the local database containing all possible
pre-calculated spot distances.

SQLite query:

CREATE TABLE spot_distances
(
 id INTEGER PRIMARY KEY,
 delta_x INTEGER,
 delta_y INTEGER,
 distance REAL
);

Each distance in this table is coupled to a horizontal and a vertical
spot difference. The distances are pre-calculated by
setlyze.std.distance(). In other words, if we have two spots,
and we know the horizontal difference (Δx) and the vertical
difference (Δy), we can look up the corresponding distance in the
spot_distances table.

Deprecated since version 0.1: A performance test showed that retrieving
pre-calculated spot distances from the database is much slower than
calculating them on run time.

2.24

Variable of type dict containing the plate areas definition for
analysis 1.

The dictionary has the format

{
'area1': list,
'area2': list,
'area3': list,
'area4': list
}

Where list is a list of strings. The possible
strings are A, B, C and D. Each letter represents a
surface on a SETL plate. For a clearer picture, refer to
Default plate areas.

The default value for the plate areas definition is

{
'area1': ['A'],
'area2': ['B'],
'area3': ['C'],
'area4': ['D']
}

Using setlyze.gui.DefinePlateAreas, the user can change this
definition. The user could for example combine the surfaces A and
B, meaning the value for this variable becomes

{
'area1': ['A', 'B'],
'area3': ['C'],
'area4': ['D']
}

Keep in mind that the dictionary keys (area1, area2, ..) don’t have any
meaning. They just make it possible to destinct between the plate areas.

Get the value with setlyze.config.ConfigManager.get()

setlyze.config.cfg.get('plate-areas-definition')

Set the value with setlyze.config.ConfigManager.set()

setlyze.config.cfg.set('plate-areas-definition', value)

2.25

An application variable that contains the observed species totals for each
user defined plate area. Keep in mind that this is not the number of individual
organisms found on the plate areas, as the records just tell the presence
of a species. So it tells how many times the presence of a species was
found on each user defined plate area.

This is what the value can look like

{
'area4': 52,
'area1': 276,
'area2': 751,
'area3': 457
}

	Namespace:

	setlyze.analysis.spot_preference.Start.areas_totals_observed

2.26

An application variable that contains the expected species totals for
each plate area. Keep in mind that this not the number of individuals
found on the plate area, as the records just tell the presence of a
species.

This is what the value can look like

{
'area4': 61.439999999999998,
'area1': 245.75999999999999,
'area2': 737.27999999999997,
'area3': 491.51999999999998
}

	Namespace:

	setlyze.analysis.spot_preference.areas_totals_expected

2.27

The element location_selections in the XML DOM report that contains
the user selected locations.

2.28

The element species_selections in the XML DOM report that contains the
user selected species.

2.29

The element spot_distances_observed in the XML DOM report that contains
the actual spot distances.

2.30

The element spot_distances_expected in the XML DOM report that
contains the expected spot distances.

2.31

The element plate_areas_definition in the XML DOM report that contains
the user defined plate areas definition.

2.32

The element area_totals_observed in the XML DOM report that contains the
actual species totals per plate area.

2.33

The element area_totals_expected in the XML DOM report that contains
the expected species totals per plate area.

2.34

The element statistics_normality in the XML DOM report that contains
the statistic results for the normality tests.

2.35

The element statistics_significance in the XML DOM report that
contains the statistic results for the significance tests.

2.36

Analysis variable that contains the statistic results for the normality
tests.

	Namespace:

	setlyze.analysis.attraction_intra.Begin.statistics['normality']

2.37

Analysis variable that contains the statistic results for the
significance tests.

	Namespace:

	setlyze.analysis.attraction_intra.Begin.statistics['significance']

2.38

The element analysis in the XML DOM report that contains the name of
the analysis.

2.39

Table plate_spot_totals in the local database for the number of
positive spots for each plate ID in the tables 2.9
and/or 2.10.

Column n_spots_a is for the spots in 2.9, and
column n_spots_b for the spots in 2.10.

SQLite query:

CREATE TABLE plate_spot_totals
(
 pla_id INTEGER PRIMARY KEY,
 n_spots_a INTEGER,
 n_spots_b INTEGER
);

2.40

A XML file containing all data elements from 2.17.

2.41

Table plate_area_totals_observed in the local SQLite database. This table
contains the number of positive spots for each default plate area (A, B, C,
and D) for each plate that matches the species selection.

This table is filled by set_plate_area_totals_observed().

SQLite query:

CREATE TABLE plate_area_totals_observed (
 pla_id INTEGER PRIMARY KEY,
 area_a INTEGER,
 area_b INTEGER,
 area_c INTEGER,
 area_d INTEGER
);

2.42

Table plate_area_totals_expected in the local SQLite database.

This table contains the number of expected positive spots for each default
plate area (A, B, C, and D) per plate that matches the species selection. The
expected spots are calculated with a random generator. The random generator
randomly puts an equal number of positive spots on a virtual plate, then
calcualtes the number of positive spots for each plate area. This is done for
all plates mathching a species selection.

This table is filled by set_plate_area_totals_expected().

SQLite query:

CREATE TABLE plate_area_totals_expected (
 pla_id INTEGER PRIMARY KEY,
 area_a INTEGER,
 area_b INTEGER,
 area_c INTEGER,
 area_d INTEGER
);

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	Design Parts

Design Parts: Documents

The design parts in this overview describes all technical design parts
representing documents created by SETLyze.

4.x Documents

4.0

The analysis report. The report can be exported in reStructuredText format.

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

SETLyze Standard Modules

This reference manual describes the modules that are part of SETLyze.

	setlyze.config — Configuration manager
	Module Contents

	setlyze.database — Database access
	Module Contents

	setlyze.gui — Graphical interfaces
	Module Contents

	setlyze.locale — English text retrieval
	Module Contents

	setlyze.report — Generate analysis reports
	Module Contents

	setlyze.std — Standard functions and classes
	Module Contents

	Analysis Modules
	setlyze.analysis.attraction_inter — Analysis Attraction between Species

	setlyze.analysis.attraction_intra — Analysis Attraction within Species

	setlyze.analysis.batch — Batch mode

	setlyze.analysis.common — Shared routines for analysis modules

	setlyze.analysis.relations — Analysis Relations between Species

	setlyze.analysis.spot_preference — Analysis Spot Preference

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

setlyze.config — Configuration manager

	Author:	Serrano Pereira, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

setlyze.database — Database access

	Author:	Serrano Pereira, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

setlyze.gui — Graphical interfaces

	Author:	Serrano Pereira, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

setlyze.locale — English text retrieval

	Author:	Serrano Pereira, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

This module is for storing and retrieving messages used in SETLyze.
The purpose is to have a standard place for storing these messages. This was
basically meant for convenience so the developer doesn’t have to browse
through SETLyze’s code base just to change a sentence.

This module wasn’t created for adding multi-language support, though
it can be easily expanded to do so.

	
setlyze.locale.text(key, *args)[source]

	Return the text string from the ENGLISH dictionary where key
is key.

A simple example:

>>> import setlyze.locale
>>> setlyze.locale.text('analysis-spot-preference-descr')
'Determine if a species has preference for a specific area on SETL plates.'

Substitution is also supported:

>>> import setlyze.locale
>>> setlyze.locale.text('dummy', "windy with a slight chance of rain")
"And tomorrow's forecast is, windy with a slight chance of rain"

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

setlyze.report — Generate analysis reports

	Author:	Serrano Pereira

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

setlyze.std — Standard functions and classes

	Author:	Serrano Pereira, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

Analysis Modules

The modules described in this chapter all perform one of SETLyze’s analysis.

	setlyze.analysis.attraction_inter — Analysis Attraction between Species
	Module Contents

	setlyze.analysis.attraction_intra — Analysis Attraction within Species
	Module Contents

	setlyze.analysis.batch — Batch mode
	Module Contents

	setlyze.analysis.common — Shared routines for analysis modules
	Module Contents

	setlyze.analysis.relations — Analysis Relations between Species
	Module Contents

	setlyze.analysis.spot_preference — Analysis Spot Preference
	Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

 	Analysis Modules

setlyze.analysis.attraction_inter — Analysis Attraction between Species

	Author:	Serrano Pereira, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

 	Analysis Modules

setlyze.analysis.attraction_intra — Analysis Attraction within Species

	Author:	Serrano Pereira, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

 	Analysis Modules

setlyze.analysis.batch — Batch mode

	Author:	Serrano Pereira

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

 	Analysis Modules

setlyze.analysis.common — Shared routines for analysis modules

	Author:	Serrano Pereira

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

 	Analysis Modules

setlyze.analysis.relations — Analysis Relations between Species

	Author:	Serrano Pereira, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

 	SETLyze Standard Modules

 	Analysis Modules

setlyze.analysis.spot_preference — Analysis Spot Preference

	Author:	Serrano Pereira, Jonathan den Boer, Adam van Adrichem, Fedde Schaeffer

	Release:	1.0.1

	Date:	July 17, 2015

Module Contents

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

Testing and Optimization

This document describes the steps taken to test and optimize SETLyze.

Testing

Calculation of expected spot distances

Analyses 2 and 3 have a built-in consistency check. In all cases must the
number of calculated expected spot distances be equal to the number of observed
spot distances. If this is not the case, than this indicates a bug in the
application. This is what the check looks like:

Perform a consistency check. The number of observed and
expected spot distances must always be the same.
count_observed = len(observed)
count_expected = len(expected)
if count_observed != count_expected:
 raise ValueError("Number of observed and expected spot "
 "distances are not equal. This indicates a bug "
 "in the application.")

Testing spot distances for normal distribution

This part describes the method used to test if the spot distances on a
SETL-plate follow a standard normal distribution. The choice of the statistical
tests used for some analyis is based on the results of this test. This is
because some statistical tests assume that the samples follow a normal
distribution while some do not.

First step was to calculate the probabilities for the spot distances on a
SETL-plate. A Python script was written to calculate the probabilities for
all possible spot distances on a single SETL-plate. This was done for both
intra-specific and inter-specific spot distances. The results were then loaded
into R and visualised in a histogram (see Distribution for intra-specific spot distances
and Distribution for inter-specific spot distances).

[image: Distribution for intra-specific spot distances]
Distribution for intra-specific spot distances

The frequencies were obtained by calculating all possible distances
between two spots if all 25 spots are covered.
The same test was done with different numbers of positive spots
randomly placed on a plate with 100.000 repeats. All
resulting distributions are very similar to this figure.

[image: Distribution for inter-specific spot distances]
Distribution for inter-specific spot distances

The frequencies were obtained by calculating all possible distances
between two spots with ratio 25:25 (species A and B have all 25 spots
covered). The same test was done with different positive spots
ratios (spots randomly placed on a plate, 100.000 repeats). All
resulting distributions are very similar to this figure.

The histograms show that there is a tendency towards a normal distrubution, but
this is obstructed because of the limited number of possible spot distances.
To test if the distribution of spot distances really don’t follow a standard
normal distribution, we performed the One-sample Kolmogorov-Smirnov test on
both (intra and inter) spot distance samples. This was again done with the
use of R. The results are as follows:

> ks.test(dist_intra[,1], 'pnorm', mean=mean(dist_intra[,1]), sd=sd(dist_intra[,1]))

 One-sample Kolmogorov-Smirnov test

data: dist_intra[, 1]
D = 0.1419, p-value = 1.133e-05
alternative hypothesis: two-sided

Warning message:
In ks.test(dist_intra[, 1], "pnorm", mean = mean(dist_intra[, 1]), :
 cannot compute correct p-values with ties

> ks.test(dist_inter[,1], 'pnorm', mean=mean(dist_inter[,1]), sd=sd(dist_inter[,1]))

 One-sample Kolmogorov-Smirnov test

data: dist_inter[, 1]
D = 0.1188, p-value = 4.403e-08
alternative hypothesis: two-sided

Warning message:
In ks.test(dist_inter[, 1], "pnorm", mean = mean(dist_inter[, 1]), :
 cannot compute correct p-values with ties

So the p-values can’t be correctly computed which might render the results
unreliable. So the Shapiro-Wilk normality test was performed as well:

> shapiro.test(dist_intra[, 1])

 Shapiro-Wilk normality test

data: dist_intra[, 1]
W = 0.9512, p-value = 1.955e-08

> shapiro.test(dist_inter[, 1])

 Shapiro-Wilk normality test

data: dist_inter[, 1]
W = 0.9725, p-value = 1.957e-09

Again very low p-values are found, which is why we assume that spot distances
on a SETL-plate don’t follow a standard normal distribution. Hence we chose
the Wilcoxon rank-sum test because this test doesn’t assume that data come
from a normal distribution (Dalgaard). Welch’s t-test is
an adaptation of Student’s t-test (Wikipedia). And because
Student’s t-test does assume that data come from a normal distribution
(Dalgaard), we chose not to use this test.

Optimization

Spot distance calculation

It was thought that retrieving pre-calculating spot distances from a table in
the local database would be faster than calculating each spot distance on run
time. Python’s timeit [http://docs.python.org/2.7/library/timeit.html#module-timeit] module was used to find out which method is
faster. For this purpose a small script was written:

#!/usr/bin/env python

import os
import timeit
from sqlite3 import dbapi2 as sqlite

import setlyze.std

connection = sqlite.connect(os.path.expanduser('~/.setlyze/setl_local.db'))
cursor = connection.cursor()

test_record = [1,1]

def test1():
 """Get pre-calculated spot distances from the local database."""
 combos = setlyze.std.get_spot_combinations_from_record(test_record)

 for spot1,spot2 in combos:
 h,v = setlyze.std.get_spot_position_difference(spot1,spot2)
 cursor.execute("SELECT distance "
 "FROM spot_distances "
 "WHERE delta_x = ? "
 "AND delta_y = ?",
 (h,v))
 distance = cursor.fetchone()

def test2():
 """Calculate spot distances on run time."""
 combos = setlyze.std.get_spot_combinations_from_record(test_record)

 for spot1,spot2 in combos:
 h,v = setlyze.std.get_spot_position_difference(spot1,spot2)
 distance = setlyze.std.distance(h,v)

Time both tests.
runs = 1000
t = timeit.Timer("test1()", "from __main__ import test1")
print "test1: %f seconds" % (t.timeit(runs)/runs)

t = timeit.Timer("test2()", "from __main__ import test2")
print "test2: %f seconds" % (t.timeit(runs)/runs)

cursor.close()
connection.close()

The first test in the script gets pre-calculated spot distances from the
database and the second test calculates spot distances on run time. The
output was as follows:

test1: 0.011350 seconds
test2: 0.003097 seconds

This shows that calculating spot distances on run time is almost 4 times faster
than retrieving pre-calculated spot distances from the database. So the use
of the “spot_distances” table was dropped and spot distances are now calculated
on run time.

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

 	SETLyze Developer Guide

Distribution of SETLyze

This guide shows the developer how to distribute SETLyze, making it
available for the user.

The purpose of this document is to give the developers instructions on how to
distribute SETLyze. This includes building an installer for Windows, and source
packages mainly for GNU/Linux users and developers. New developers will have
to do this at some point, so this document was created for their convenience.

Building a Windows Installer

SETLyze should be as easy as possible to install on Windows machines and
most users don’t want to worry about downloading and installing SETLyze’s
pre-requisites. Thus a Windows installer (also called a “setup”) which installs
SETLyze along with all its pre-requisites is required. This section explains
how to create the Windows installer for SETLyze using Nullsoft Scriptable
Install System (NSIS), a professional open source system to create Windows
installers.

[image: Screenshot of the Windows installer for SETLyze]
Screenshot of the Windows installer for SETLyze

To start off, you’ll need a Windows machine (preferably Windows XP or higher)
to build the installer. Once you have that, read on to the next part.

Preparing your Windows environment

Before you can start building the installer, we need to make some preparations.
You first need to make sure that SETLyze runs flawlesly on your Windows machine.
Let’s try to get SETLyze running using only the source code. Do not use
the Windows installer to get SETLyze running on your system.

First you need to download and install all of SETLyze’s pre-requisites on the
Windows machine. You’ll need to download and install the tools in the order
of this list below. Actually the order doesn’t matter much, but the Python
modules (marked with an asterisk) need to be installed after Python itself
is installed. It is important that you get the right versions as well.
If no version number is given in the list below, than it means you can get the
latest version. The tools marked with an asterisk (*) are Python modules,
meaning they are available for different versions of Python. Since we’re using
Python 2.7, it is required that you download the versions for Python 2.7.
Look at the suffix of the installer’s filenames, they should end with
“-py2.7.exe”. Download only 32bit versions of the tools below. The 32bit
installers often have “win32” or “x86” (not “x86-64”) in the filename.

	Python [http://www.python.org/download/releases/] (>=2.7 & <3)

	R [http://cran.xl-mirror.nl/bin/windows/base/old/2.12.1/] (=2.12.1)

	PyGTK (bundle with PyCairo, PyGObject, GTK+ 2.24.0) [http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24/] (=2.24.0) *

	RPy [http://sourceforge.net/projects/rpy/files/rpy/] (>=1.0.3) *

	xlrd [http://pypi.python.org/pypi/xlrd] (>=0.8.0) *

	Python Win32 Extensions [http://sourceforge.net/projects/pywin32/files/pywin32/] (>=218) *

SETLyze will probably run fine with Python 2.6 too, but the latest Python 2.7
is recommended and used in this tutorial.

We are specifically using GTK+ version 2.24.0 for Windows. At the time of
writing this there are also GTK+ 2.24.8 and 2.24.10 available for Windows,
but we are not using those versions because of a huge memory leak
(bug 685959 [https://bugzilla.gnome.org/show_bug.cgi?id=685959])
that was introduced in GTK+ 2.24.8 (fixed in 2.24.14). The memory leak causes
SETLyze to use a huge amount of memory which results in a crash when running
long batch analyses.

Also notice that we are specifically using R version 2.12.1. This is because
the RPy module must correspond to the version of R and Python you have
installed. The latest version of RPy at the time of writing this is version
1.0.3, which has the filename rpy-1.0.3.win32-py2.7-R.2.12.1.exe.
This means it requires R version 2.12.1. There is also RPy2, a
redesign and rewrite of RPy. During the development of the initial version
of SETLyze, it was too hard to get RPy2 working well on Windows, which is why
was decided to use the older but stable RPy. It is possible to migrate to RPy2
and newer versions of R, but this requires changes in the source code of
SETLyze, as RPy2 works slightly different.

Running and Testing SETLyze

Now that you have installed all of SETLyze’s pre-requisites, you can try
to run SETLyze. First obtain a copy of SETLyze’s Git repository (see
Obtaining the source code). We will use the SETLyze Git repository to build
the Windows installer.

Note

It is important that you get the Git repository, not just the code from a
source package.

The Git repository contains a file src/setlyze.pyw. This is the executable
for SETLyze. On Windows, you should run it with the command
python -d src/setlyze.pyw from a DOS window so you can see any error/debug
messages returned by SETLyze. After you have thoroughly tested SETLyze and
found no problems or error messages, you can continue with the next step.

Preparing the Distribution Folder

Not all files required for creating a Windows installer are included in
the Git repository for SETLyze. So you need to manually copy some extra
files to the folder. First I will explain some of the important files and
folders.

	win32/

	This folder contains some files required for creating the Windows installer.

	win32/dependencies/

	This folder is for third party Windows installers of some of SETLyze’s
pre-requisites that will be incorporated in SETLyze’s Windows installer.
For SETLyze 1.0, this folder must just contain the installer for R 2.12.1.

	win32/setlyze_setup_modern.nsi

	This is the NSIS script we will use to build SETLyze’s Windows installer.
This script is a regular text file. You can open it in a text editor
(e.g. Notepad++ or gedit). This script contains all the information
required for building the Windows installer.

	src/

	This folder contains SETLyze’s main code base.

	src/build-win32-exe.py

	This script is used to build the Windows executable for SETLyze. This
script uses py2exe for that. This script is not intended for installing
SETLyze.

FYI: It would make more sense to put this file in the ‘win32’ folder,
but SETLyze’s module folder (src/setlyze/) needs to be
in the same folder as this script.

	src/doc-src/source/

	This folder contains the source files of the documentation. The source
files end with the extension ”.rst”. You can edit these with a text editor.
After editing the source files (*.rst) for the documentation, you can
use the make files (“Makefile” on Linux, “make.bat” on Windows) to generate
the actual HTML documentation. Refer to the
Sphinx documentation [http://sphinx.pocoo.org/contents.html]
for instructions.

The Makefile contains a custom target html2 which is similar to
the default html target, but uses the -E switch of sphinx-build
so that all source files are read. This is useful when some parts of the
documentation aren’t fully updated.

The generated documentation is put in src/setlyze/docs/.

To prepare the folder containing SETLyze’s Git repository for creating
distributions, you need to copy the Windows installer for R 2.12.1 in the
win32/dependencies folder. The installer is called R-2.12.1-win.exe
and can be downloaded from the R website.

Building the Windows Executable for SETLyze

The next step is to create a Windows executable for SETLyze. From now on, you
need to be at a Windows machine (notice the use of backslashes). At this point,
one can start SETLyze by running setlyze.pyw from the Git repository.
So setlyze.pyw is SETLyze’s executable, but it is a regular Python script,
and one needs to have Python and all of SETLyze’s pre-requisites installed to
run the script. We don’t want Windows users to have to download and install
all these extra tools. So before creating the installer, we’re going to create
a special Windows executable (setlyze.exe) which does not require users
to have Python and all the pre-requisites installed (with one exception). For
this purpose we’re going to use py2exe [http://www.py2exe.org/]. Download
the latest py2exe for Python 2.7 from here [http://sourceforge.net/projects/py2exe/files/]
and install it on your Windows machine.

Once you have py2exe installed, building the Windows executable should be a
breeze with the provided src\build-win32-exe.py. Open up a DOS window and
run the following command:

cd src\
python build-win32-exe.py py2exe

Note

Running Python from the command-line (or DOS) requires that you have Python
in your PATH environment variable. Python is not added to PATH by default.
If the above command gives you a message like:

“‘python’ is not recognized as an internal or external command, operable
program or batch file.”

then you need to make sure that your computer knows where to find the
Python interpreter. To do this you will have to modify a variable called
PATH, which is a list of directories where Windows will look for programs.

The Python on Windows FAQ [http://docs.python.org/faq/windows.html]
explains how to do this. Search for “PATH environment variable” on that page
(Ctrl+F, type “PATH environment variable”, hit Enter).

This should create a new folder called src\dist\. Open this folder in
Windows Explorer. You should now see a whole bunch of files, including
setlyze.exe.

Go ahead and see if setlyze.exe runs. Double clicking setlyze.exe
should open up SETLyze’s main window. You might notice something different
though. The dialogs look really ugly. Remember that this Windows executable
doesn’t need to have Python etc. installed. The executable is now actually
using its own copy of Python (python27.dll), GTK (libgtk-win32-2.0-0.dll),
and all the other stuff it requires. Py2exe has automatically collected all the
files required to run SETLyze and put them in one folder. But the GTK+ Runtime
requires some extra files to make the GTK dialogs look nice (py2exe doesn’t
include these files automatically). So we need to manually copy these files to
the src\dist\ folder.

First figure out where the PyGTK installer installed the GTK+ Runtime files.
Open a Python interpreter and enter these commands

>>> import sys
>>> __import__('gtk')
<module 'gtk' from 'c:\Python27\lib\site-package
>>> m = sys.modules['gtk']
>>> print m.__path__[0]
'c:\\Python27\\lib\\site-packages\\gtk-2.0\\gtk'

The example output tells us that the runtime files can be found in
C:\Python27\Lib\site-packages\gtk-2.0\runtime\. Manually copy the
following folders to the src\dist\ folder:

	<GTK_runtime_path>\etc\

	<GTK_runtime_path>\lib\

Only the *.dll files from the subdirectories are needed. Remove the other
files to save space.

	<GTK_runtime_path>\share\

From this folder only the themes/ and locale/ subdirectories are needed.
Remove the other files and folders to save space. Even from the locale/
folder you don’t need all files. You can just keep the locales that are used
in SETLyze (mainly locales for English), which saves a lot of space.

Again run setlyze.exe. SETLyze should now look like a native
Windows application; no more ugly dialogs. But we are not there yet. Try to
use one of SETLyze Help buttons. You’ll notice that it doesn’t work. This is
because it’s looking for the documentation files in the src\dist\docs\
folder. This folder doesn’t exist yet. The build-win32-exe.py script
doesn’t automatically copy the src\setlyze\docs\ folder to the
src\dist\ folder. This is not yet built into the build-win32-exe.py`
script, so you’ll have to copy-paste it manually.

Copy the folder src\setlyze\docs\ into the src\dist\ folder. The
contents of src\setlyze\docs\ were generated from the src\doc-src\
folder with the Sphinx [http://sphinx-doc.org/] documentation generator.
Again try one of SETLyze’s Help buttons. The help contents should now open in
your browser.

At this point, the src\dist\ folder contains almost all files
required to run SETLyze. I say almost, because one still needs to have R
installed to run setlyze.exe. But we’ll get to that later. Check, and
double check that setlyze.exe works the way it should.

Building the Windows Installer

Now that you have prepared the dist folder, you can start building the
Windows installer for SETLyze. The structure of the repository folder is
important because the NSIS script (“setlyze_setup_modern.nsi”) expects to find
a number of files and folders in the repository folder, and packs these into a
single installer. The files and folders it uses are as follows

.
 ├── COPYING
 ├── dist
 ├── icons
 │ └── setlyze.ico
 ├── README.md
 └── win32
 └── dependencies
 └── R-2.12.1-win.exe

Notice that you need to put the installer for R in the win32\dependencies\
folder.

Open setlyze_setup_modern.nsi in a text editor (e.g. Notepad++ or gedit)
and see if you can find the directives that load these files (hint: search
for “File”). You do not need to understand everything what’s in the NSIS
script right now. You just need to be able to edit it. All directives need
to be correct, or else building the installer will fail.

Once all files are in place, it’s time to compile the NSIS script. Compiling
means that we will build the actual installer from the NSIS script. You’ll
first need to download and install Nullsoft Scriptable Install System [http://nsis.sourceforge.net/].

Once NSIS is installed, you can build the Windows installer by simply
right-clicking setlyze_setup_modern.nsi and choosing “Compile NSIS Script”.
Give NSIS a moment to process the script and compile the installer. If the
script is correct, it should produce the Windows installer in the same folder,
called something similar to setlyze-x.x-bundle-win32.exe.

Last, but not least you should test the installer. The best way to do this is
on a clean installation of Windows. Meaning you should test this on a Windows
machine where no other software has been installed, because only then can you
really say that the installer and the resulting SETLyze executable works. An
easy way to get a clean installation, is to install Windows on a virtual
machine (e.g. VirtualBox) and test the installer before any other software is
installed.

Building Source and Linux Binary Packages

The source package is nothing more than an archive (.tar.gz on Linux, .zip on
Windows) containing the application’s source code. Distributing the
application’s source code is what defines open source software. This allows
everyone to see how SETLyze was created, but also to edit, use, and learn from
it. This package can also be used to install SETLyze on all supported
operating systems, including Windows and GNU/Linux. This part of the guide
explains how to create source packages and installation packages for GNU/Linux.

From now on, well need a Linux system. Open a terminal window and cd to the
root folder of the Git repository. The command for this looks something like
this:

cd /path/to/setlyze/

Of course you need replace that path with the path to the repository folder.
Now list all files in that folder by typing ls. You might notice a file
“CMakeLists.txt”. This is a CMake configuration file and there are more of these
files in subfolders. We use CMake for creating distribution packages. Here
follow a few examples. Before we continue, create a ‘build’ folder:

mkdir build
cd build/

Now run the following command to generate the make files:

ccmake ..

This command actually reads the ‘CMakeLists.txt’ file mentioned earlier. Press
‘c’ to configure the make file. Set the “CMAKE_INSTALL_PREFIX” option to
“/usr”. Press ‘c’ again to confirm the settings. Then press ‘g’ to generate
the make files. There should now be a file called Makefile in the build/
folder. This Makefile can do awesome things, which will be demonstrated by
some examples:

To install SETLyze system-wide, run this command as root,

make install

To uninstall SETLyze from the system, run this command as root,

make uninstall

To build a source package,

make package_source

To build a binary packages (e.g. DEB and RPM packages),

make package

The resulting source or binary packages are ready for distribution. Do make
sure to test the resulting packages first.

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

References

All references used in the documentation are listed here.

Reference List

	[1]	Matsumoto, M., Nishimura, T. Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions on
Modeling and Computer Simulation 8, 3-30 (1998).

	[2]	Millar, N. Biology statistics made simple using Excel. School Science
Review 83, (303).

	[3]	Buijs, A. Statistiek om mee te werken, Achtste druk.
Wolters-Noordhoff bv Groningen/Houten, The Netherlands.

	[4]	Dalgaard, P. Introductory Statistics With R, Second Edition. Springer,
Copenhagen.

	[5]	Wikipedia. Welch’s t test. http://en.wikipedia.org/wiki/Welch’s_t_test. 17 August 2010.

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SETLyze 1.0.1 documentation

Legal Information

Copyright

Documentation

The content of this documentation is property of their authors. Some
contents of this documentation was produced elswhere and reproduced here
with permission.

You are welcome to display on your computer, download and print pages
from this documentation provided the content is only used for personal,
educational and non-commercial use. You must retain copyright and other
notices on any copies or printouts you make. The content of this
documentation is subject to the GNU General Public Licence (“GPL”)
unless otherwise stated.

SETLyze

SETLyze is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

SETLyze is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with the program. If not, see http://www.gnu.org/licenses/.

Links to other websites

This documentation contains links to other websites and resources. The
links are provided for convenience only and GiMaRIS is not responsible
for the content of any linked websites. The inclusion of any link to a
website does not imply endorsement by GiMaRIS of the website or their
entities, products or services.

Disclaimer

This documentation was created using Sphinx [http://sphinx.pocoo.org/]
which is property of their authors.

SETLyze is written in the Python programming language and thus needs the
Python interpreter to operate. SETLyze might come in packages bundled
with Python and other software tools it requires. The third party
software tools bundled with SETLyze are property of their individual
authors and are governed by their individual applicable licence. Below
is a list of the key third party software tools that SETLyze depends on:

	Python [http://www.python.org/about/legal/]

	GTK+ [http://www.gtk.org/index.php]

	PyGTK [http://www.pygtk.org/about.html]

	PyCairo [http://cairographics.org/pycairo/]

	PyGObject [http://www.pygtk.org/downloads.html]

	setuptools [http://pypi.python.org/pypi/setuptools]

	R [http://www.r-project.org/about.html]

	RPy [http://rpy.sourceforge.net/index.html]

	xlrd [http://pypi.python.org/pypi/xlrd]

	Python Win32 Extensions [http://starship.python.net/crew/mhammond/win32/Downloads.html]

Credits

	This legal information is based on Canonical’s legal information [http://www.canonical.com/legal].

	The Developer Guide is based on the Developer Guide for Bazaar [http://doc.bazaar.canonical.com/bzr.2.1/developers/HACKING.html].

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	SETLyze 1.0.1 documentation

About Us

The following people have been involved in the SETLyze project.

Arjan Gittenberger

Project leader and contact (info@gimaris.com) at GiMaRIS.

Jonathan den Boer

Internship bioinformatics (Leiden University of Applied Science) student at
GiMaRIS. Responsible for the intial development of the application (then
called “Sesprere”).

	Implemented analysis “Spot preference”.

	Documentation (user manual, programmer’s manual and technical design).

Serrano Pereira

Internship bioinformatics (Leiden University of Applied Science) student at
GiMaRIS (September to November 2010).

	Optimization of the overall application (renamed “SETLyze”).

	Moved from Tkinter to GTK+ for creating the graphical user interfaces.

	Optimization of analysis “Spot preference”

	Implementation of analysis “Attraction within species” and
analysis “Attraction between species”.

	Sphinx documentation (user manual, developer guide).

	Technical design.

	Distribution packages (source package, Windows installer).

Continued work on SETLyze in January 2013:

	Code repository moved from Bazaar to Git.

	Implementation of batch mode for analyses “Spot preference”, “Attraction
within species” and “Attraction between species”. This has been parallelized
with the multiprocessing module from Python’s standard library.

	Overall optimization of the code.

	Dropped the XML report exporter in favor of an improved reStructuredText
report exporter.

	Use a configuration file to save user preferences.

	Release of version 1.0 in April 2013.

Adam van Adrichem and Fedde Schaeffer

Minor project / internship bioinformatics (Leiden University of Applied
Science) students at GiMaRIS.

	Reorganised the Bazaar repositories to be easier to copy, develop and track.

	Implemented the cancel button in the progress bar of the analyses.

	Implemented the possibility of reading Microsoft Office Excel 97–2004
workbooks.

	Tried to make a start making the technical design match the actual
implementation.

	Looked into how the repetitions of Wilcoxon tests could be parallelised
using the multiprocessing module from Python’s standard library.

	Looked into how an analysis could be executed serially for all species in
the database, to find out which species should be investigated more.

	Release of version 0.2.

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	SETLyze 1.0.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 setlyze	

 	
 	
 setlyze.locale	

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	SETLyze 1.0.1 documentation

Index

 S
 | T

S

 	

 	setlyze.locale (module)

T

 	

 	text() (in module setlyze.locale)

 Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

 _images/gimaris_logo.png
GIMaR1S

_images/report-usecase-1.png
Analysis Report: Spot Preference

> Locations and Species Selections
> Plate Areas Definiton for Chi-squared Test

> Species Totals per Plate Area for Chi-squared Test

> Results for Pearson's Chi-squared Tests for Count Data

¥ Results for Wilcoxon rank-sum tests (non-repeated)

Plate Area [n (totals) | (observed species) | n (expected species) | Prvalue

Mean Obsened | Mean Expected | Remars

D 740 EG 805 0.000000 1536487 1087838 ignificant; Preference; P < 0.001; n > 20
' 740 2661 2389 0262923 3.595945 3.228378 Not significant; P> 0.05;n > 20

c 740 1022 1549 0.000000 1.381081 2003243 Significant; Rejection; P < 0.001; n > 20
o 740 116 103 0000001 0.156757 0.260811 Significant; Rejection; P < 0.001; n > 20
AvB 1480 3708 3104 0000072 2:566216 2158108 ificant;Preference; P < 0.001; n > 20
=) 1480 1138 1742 0.000000 0768919 1477027 Significant; Rejection; P < 0.001; n > 20
AvBeC 2220 4820 4743 0394872 2171171 2136487 Not significant; P> 0.05;n > 20

BeCD 2220 3799 am 0.000000 1711261 1.860811 Significant; Rejection; P < 0.001; n > 20
¥ Sigificance results for repeated Wilcoxon tests

Plate Area [n (totals) | (observed species) | (significant) | n (non-significant) | n (preference) | n (rejection)

D 740 EG 0 o 0 o

' 740 2661 o 10 o

c 740 1022 0 0

o 740 116 10 10

AvB 1480 3708 0 0 o

=) 1480 1138 10 10

AvBeC 2220 4820 o 0 o

BeCD 2220 3799 10 o 10

_images/setl_plate_inter_distances.png
gl

_images/setl_plate_intra_distances.png

_images/dialog_analysis_report.png
D> Locations and Species Selections
D> Plate Areas Definition for Chi-squared Test

D> Species Totals per Plate Area for Chi-squared Test
D> Chi-squared test for given probabilites

'V Wilcoxon rank sum test with continuity correction

PlateArea | n (totals) | n (observed species) | n (expected species) Pvalue Mean Observed Mean Expected
A 849 1581 1504 0839102 1.862191 1.877503

8 849 a3 a751 0911878 5621908 5595995

c 849 3076 318 0.666472 3.623086 3672556

) 849 a1s 382 0108679 0.488810 0449941
A8 849 6354 6345 0.996669 7.484099 7473498
D 849 3491 3500 0873874 4111897 4122497
AvBeC 849 9430 9463 0.906475 11107185 11146054
BeCD 849 8264 8251 0.996635 9.733805 0718493

'V Wilcoxon rank sum test with continuity correction (repeated)

PlateArea | n (totals) | n (observed species) | n (significant) | n (non-significant) | (preference) | n (rejection)
A 849 1581 0 2 0 0

8 849 a3 0 2 0 0

c 849 3076 0 2 0 0

_images/report-usecase-2b.png
Analysis Report: Attraction of Species (intra-specific)

> Locations and Spcies Selections
> SpotDistances

» Results for Wilcoxon rank-sum tests (non-repeated)

> Signifcance resuls for repeated Wiloxo tests

¥ Resuis o Pearso's Chi-squared Tests or Count Data

Positve Spots | n(plaes) | distances) | Palue | Chisquared | di | Mean Observed | Mean Expecied | Remarks

3 1 3 0251387 15958333 13 3.33333 2386667 Not significant; P > 0.05; n < 20
4 2 2 0712558 9770833 13 2.045000 2462500 Not significant; P> 0.05;n < 20
s 2 20 0763439 9125000 13 2520000 2934500 Not significant; P > 0.05; n < 20
5 2 30 0229825 16368055 13 2.816000 2455667 Not significant; P> 0.05;n > 20
7 4 8 0201490 16952381 13 2874048 2430524 Not significant; P > 0.05; n > 20
8 1 E] 0867144 7625000 13 2.834643 2857500 Not significant; P> 0.05;n > 20
9 1 3 0970143 5215278 13 2679722 2155833 Not significant; P > 0.05; n > 20
2 1 66 0526712 12011364 13 2464242 2527424 Not significant; P> 0.05;n > 20
1 1 o1 0672428 10261447 13 2766503 271439 Not significant; P > 0.05; n > 20
18 1 153 0950202 sgE3442 13 2797778 2772876 Not significant; P> 0.05;n > 20
2 ” s 0502046 12303276 13 2732595 2615782 Not significant; P > 0.05; n > 20

_images/distance_distribution_inter.png
Frequency

80

60

40

20

Spot Distance Frequencies (inter)

Il

0 1 2 3 4 5

‘Spotdistance

_images/plate_areas_combined1.png
313[3]1

3/4/3|1

3/3[3]1

1
1
1

_images/dialog_species_selection.png
s 9
Species Selection

Analysis Spot preference VO

Below are the available species for the selected location(s).
Please select the species to be included for the analysis.

Tip: Hold Cerl or Shift to select multple items. To select all

items, press CuleA.
Species (Latin)

Anaitides maculata
Anemone bad photograph
Aplidium glabrum
Ascidian A

Ascidiella aspersa

Asterias rubens

Athanas nitescens

Balanus sp.

Barnacle bad photograph
Bamacle young

black amahinod

v Species (common)
sestippelde dieseltreinworm

Glanzende bolzakpiip
Ascidian A

Viwitte 2akpijp
Gewone zeester
Kreeftgamasl

Kwalpoliepjes

Barnacle bad photograph

 Back [contnue |

_images/report-usecase-2a.png
Analysis Report: Attraction of Species (intra-specific)

e
> Spot Distances.

¥ Results for Wilcoxon rank-sum tests (non-repeated)
PositveSpots | n pltes) | distances) | Palue | Mean Obsened | Mean Expected | Remars

BRI
IOV

18 1
N 17

3
2
20
30
8
E]
3
66
o1
153
s

¥ Signfcance resuls forrepeated Wiloxon tests
Posie Spots | plates) | distances) | signfcand) | non-signfcan) | (attaction) | epulsion)

0506555
0703113
0306468
0.408385
0018262
0.340801
0063349
0.758680
0751458
0784633
014921

3133333
2045000
2520000
2816000
2874048
2834643
2679722
2464242
2766593
2797778
2732505

2386667
2462500
2934500
2455667
2430524
2857500
2155833
2527424
271439
2772876
2615782

Not significant P > 0.05; n < 20
Not significant: P> 0.05;n < 20
Not significant P > 0.05; n < 20
Not significant; P> 0.05;n > 20
Significant; Repulsion; P < 0.0
Not significant; P> 0.05;n > 20
Not significant P > 0.05; n > 20
Not significant; P> 0.05;n > 20
Not significant P > 0.05; n > 20
Not significant; P> 0.05;n > 20
Not significant P > 0.05; n > 20

BRI
IOV

18 1
N 17

3
2
20
30
8
E]
3
66
o1
153
s

> Results for Pearson's Chi-squared Tests for Count Data.

0
s
0
10
s
10
9
s
0
10
0

gimaris.html

 Navigation

 		
 index

 		
 modules |

 		SETLyze 1.0.1 documentation »

GiMaRIS

[image: GiMaRIS logo]
www.gimaris.com [http://www.gimaris.com/]

 © Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

_static/comment.png

_images/dialog_define_plate_areas.png
& o

Analysis Spot preference

€
@)

Define SETL-plate Areas for Chi-
squared Test

Please define the plate areas for the Chi-squared test. You
can keep the default setting, meaning that A, B, Cand D are
treated as separate plate areas, or you can combine specific
areas by changing the setting below. Combining areas means
that the combined areas are treated as a single plate area.
One must define at least two plate areas.

In any case the Wilcoxon test will analyze the plate areas A B,
C.D, A%B, C+D, A+B+C and B+C+D.

Plate area 1:

Plate area 2:

Plate area 3:

Plate area 4:

A B CD
@®

> | m|w W >
@O0 0 m
W 0|00 m
W 000w
> | m|w w >

back | [continue

search.html

 Navigation

 		
 index

 		
 modules |

 		SETLyze 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

_images/dialog_change_data_source.png
Load SETL Data
Load SETL Data
Use one ofthe tabs below to load SETL data.
From Local Files
Load SETL data from CSV or XLS fles. These data fles can

be exported from the Microsoft Access SETL database.
The user manual describes how to export these fles.

Select ocationsfe: [E] SETL localtesals

Select species file: [|=) SETL species.csv.

Select records file: | (None)

H

Selectplatesfile: | (None)

[_concet_J[__ox__|

_images/setl_plate_with_grid.png

_images/dialog_select_analysis.png
Welcome to SETLyze

Select the desired SETL analysis:

®
7 Astraction within species
7 Attraction between species

©) Batch mode

Spot preference

Determine if a species has preference for a
specific area on SETL plates.

About || Preferences

Qe || ok

_static/comment-bright.png

_images/dialog_preferences.png
Alpha level (a)forstatitical tests:

Number of repeats for statistical tests:

——

_static/up.png

_images/dialog_batch_mode.png
S N
®

©) Attraction within species

©) Attraction between species

Spot preference
Determine if a species has preference for a

specific area on SETL plates.
Close oK

_images/distance_distribution_intra.png
Frequency

40

30

20

10

Spot Distance Frequencies (intra)

[

1 2 3 4 5

‘Spotdistance

_static/plus.png

_images/plate_areas_default.png
A|B|B|B|A
B|C|C|C|B
B|C|D|C|B
B|C|C|C|B
A|B|B|B|A

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/math/b32bcd1efbf4f8dbb7a4411adf1337791c0dca13.png
seq(1,6) =1,2,.3.4,5

_static/down-pressed.png

_static/minus.png

_images/dialog_locations_selection.png
Analysis Spot preference. VO®
t*t 9
Locations Selec

Below are the available locations. Please select the locations
from which you want to select species.

By defoult, the data i loaded from the remote SETL database.
To load data from a difierent data source, click the "Change
Data Source” button below.

Tip: Hold Cerl or Shift to select multple items. To select all
items, press CtrivA.

Locations v
Aquadome, Grevelingen

Bommenede harbor, Grevelingen

Breskens harbor

Breskens, on floating dock NOT SETL
Colijnsplaat floating dock, Qosterschelde
Colijnsplaat jetty, Oosterschelde

Den Helder port

Eemshaven port

Hompelvoet, Grevelingen

Ijmuiden

Change Data Source. Back || Continue

_images/math/f6b6710b9ecf21424c3e68caf9d7f2cfcb8887d7.png
comb(seq(1,21)) — comb(seq(1,16))

_static/file.png

_images/math/5d9e95142b017804ef98c3cb1fa2e8555aa2a645.png

_images/math/913ae89fc8044c20935332e1b5c5ebc0d44c969e.png
comb(seq(1,25)) — comb(seq(1,21))

_images/math/c28f3fc9430301b6e771b5798a848f4b76620bea.png
comb(s)

_static/down.png

_images/math/fadee93f8aa8bd8692e4eb296f31e12e2fb84a23.png
comb(seq(1,6))

_images/math/3e93d35526b48b20f86894014c1f7d0c14f2447c.png
eld) = N *pld)

_images/math/603b5596eb7756826a137c82c8901e6749709c8b.png
comb(seq(1,16)) — comb(seq(1,11))

_static/setlyze-logo.png
v

_images/math/5e19daa1eb7bd77ebe60c0546b1a2304d235cb7f.png

_images/math/f144ee98ea8709aef7deb2806471270bb32edab9.png
spot distance(b) = /32 + 12 = 3.16

_images/math/9d3ddf4132d506584d84dc6448d3b53290e3a723.png
spot distance(a) = /32 + 22

_images/math/d157da68b2f34414a05382a6872f3f5264527937.png
V02 +32=3

spot distance(c’

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		SETLyze 1.0.1 documentation »

 All modules for which code is available

		setlyze.locale

 © Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

_images/math/26c63f05abe7d57197cbd3f8e70d6f90262f52f7.png
spot distance(a) = /02 + 02

_images/math/82aed6deeaba25247806e9ad8444007465696520.png
V02422 =2

spot distance(c’

_modules/setlyze/locale.html

 Navigation

 		
 index

 		
 modules |

 		SETLyze 1.0.1 documentation »

 		Module code »

 Source code for setlyze.locale

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright 2010-2013, GiMaRIS <info@gimaris.com>
#
This file is part of SETLyze - A tool for analyzing the settlement
of species on SETL plates.
#
SETLyze is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
SETLyze is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""This module is for storing and retrieving messages used in SETLyze.
The purpose is to have a standard place for storing these messages. This was
basically meant for convenience so the developer doesn't have to browse
through SETLyze's code base just to change a sentence.

This module wasn't created for adding multi-language support, though
it can be easily expanded to do so.
"""

import sys
import logging

ENGLISH = [
 ('dummy',
 "And tomorrow's forecast is, %s"),
 ('select-locations',
 "Below are the available locations. Please select the locations "
 "from which you want to select species."),
 ('option-change-source',
 "By default the data is loaded from the SETL database. To load "
 "data from a different data source, click the \"Load Data\" button below."),
 ('selection-tips',
 "Tip: Hold Ctrl or Shift to select multiple items. To select all "
 "items, press Ctrl+A."),
 ('select-species',
 "Below are the available species for the selected location(s). Please "
 "select the species to be included for the analysis.\n\n"
 "It is possible to select more than one species. Selecting more than "
 "one species means that the selected species are treated as one "
 "species for the analysis."),
 ('select-species-batch-mode',
 "Below are the available species for the selected location(s). Please "
 "select the species to be included for the analysis.\n\n"
 "It is possible to select more than one species. Selecting more than "
 "one species means that the analysis is repeated for each of the "
 "selected species."),
 ('select-species-batch-mode-inter',
 "Below are the available species for the selected location(s). Please "
 "select the species to be included for the analysis.\n\n"
 "It is possible to select more than one species. Selecting more than "
 "one species means that the analysis is repeated for each possible "
 "inter species combination of the selected species."),
 ('analysis-spot-preference',
 'Analysis Spot preference'),
 ('analysis-spot-preference-descr',
 "Determine if a species has preference for a specific area on SETL "
 "plates."),
 ('analysis-attraction-intra',
 'Analysis Attraction within Species'),
 ('analysis-attraction-intra-descr',
 "Determine if a species attracts or repels individuals of its "
 "own kind."),
 ('analysis-attraction-inter',
 'Analysis Attraction between Species'),
 ('analysis-attraction-inter-descr',
 "Determine if two different species attract or repel each other."),
]

Turn the list into a dictionary. This provides easier access to its
items.
ENGLISH = dict(ENGLISH)

[docs]def text(key, *args):
 """Return the text string from the ``ENGLISH`` dictionary where key
 is `key`.

 A simple example:

 >>> import setlyze.locale
 >>> setlyze.locale.text('analysis-spot-preference-descr')
 'Determine if a species has preference for a specific area on SETL plates.'

 Substitution is also supported:

 >>> import setlyze.locale
 >>> setlyze.locale.text('dummy', "windy with a slight chance of rain")
 "And tomorrow's forecast is, windy with a slight chance of rain"
 """
 if key not in ENGLISH:
 raise ValueError("Unknown key '%s'" % key)
 if args:
 text = ENGLISH[key] % (args)
 else:
 text = ENGLISH[key]

 return text

 © Copyright 2010, 2011, GiMaRIS.
 Created using Sphinx 1.3.1.

_images/windows_installer.png
ZTX

Welcome to the SETLyze 0.3 Setup
Wizard

This wizard wil qide you through the instalation of SETLyze:
0.3

Itis recommended that you dose al other appications
before starting Setup. Tris il make it possble o update
relevant system fles without having to reboot your
computer,

Clck Next to contine.

e

_images/setl_plate_inter_distances2.png
b

_images/plate_areas_selection_combined1.png
In any case the Wilcoxon test wil analyze the
C.D, A%B, C+D, A+B+C and B+C+D.

A B C D

Plateareal: @

Plate area 2:

Platearea3: ()) @ O

)
)
)
STl o]

Platearead:) O O @

_images/math/4c8081f28d399880a59129c7602c1816d90f252c.png

_images/math/c3edc81de27cb6e0b8396129cad73d1e798af314.png
seq(start, end)

_images/math/3d52494c74a78b5da9afd2de54bdbc633dcd4d2a.png
comb(seq(1,11)) — comb(seq(1,6))

