
Seshat Documentation
Release 1.0.0

Joshua P Ashby

Apr 05, 2017

Contents

1 A Few Minor Warnings 3

2 Quick Start 5
2.1 Contributing . 5
2.2 Doc Contents . 6

2.2.1 controller . 6
2.2.2 Routing . 7
2.2.3 Response Headers - Head . 8
2.2.4 actions . 8
2.2.5 BaseRequest . 9
2.2.6 dispatch . 10
2.2.7 Indices and tables . 11

Python Module Index 13

i

ii

Seshat Documentation, Release 1.0.0

Seshat is a toy web framework built by JoshAshby over the past few years. It’s aimed at being somewhat opinionated,
and most definetly full of bad practices but it gets the job done with running a few smaller sites.

Build status - Master: Build status - Dev: Gittip if you like the work I do and would consider a small donation to
help fund me and this project:

Contents 1

Seshat Documentation, Release 1.0.0

2 Contents

CHAPTER 1

A Few Minor Warnings

1. I have litterally NO clue what I am doing. Use at your own risk.

2. I’m only a second year university student, and software isn’t even my major; I’m working towards an Electrical
and Computer Engineering degree, so not only do I have limited time to keep this maintained, but I also probably
won’t write the best code ever.

3. This project follows the semantic versioning specs. All Minor and patch versions will not break the major
versions API, however an bump of the major version signifies that backwards compatibility will most likely be
broken.

3

Seshat Documentation, Release 1.0.0

4 Chapter 1. A Few Minor Warnings

CHAPTER 2

Quick Start

Getting started is fairly easy, take a look at the included example.py:

from waitress import serve
import seshat.dispatch as dispatch

from seshat.route import route
from seshat.controller import BaseController
from seshat.actions import NotFound

@route()
class index(BaseController):

def GET(self):
name = self.request.get_param("name", "World!")
return "Hello, " + name

@route()
class wat(BaseController):

def GET(self):
return Redirect("/?name=Wat")

serve(dispatch.dispatch)

This starts a full web app on port 8080 that you can navigate your browser to localhost that will serve a basic page
displaying the text “Hello, World”. Navigating to localhost:8080/wat will redirect you back to the index, with the
name now as “Wat”.

Contributing

All code for this can be found online at github. If something is broken, or a feature is missing, please submit a pull
request or open an issue. Most things I probably won’t have time to get around to looking at too deeply, so if you

5

https://github.com/JoshAshby/seshat

Seshat Documentation, Release 1.0.0

want it fixed, a pull request is the way to go. Besides that, I’m releasing this under the GPLv3 License as found in the
LICENSE.txt file. Enjoy!

Doc Contents

controller

No app built with Seshat does much without controllers. This module provides a base controller class which can be
used right away in its current state, or can be inherited from to create more advanced or custom controllers.

Basic use is like so:

from seshat.controller import BaseController

class index(BaseController):
def GET(self):
return "<h1>WAT</h1>"

If you see something along the lines of ‘Content Generating Request Method’ it will usually mean GET(), POST(),
or any other HTTP method verb which might be given to the controller.

class seshat.controller.BaseController(request)
The parent of all controllers which Seshat will serve.

To use this to make a controller, override or add the request method (in all caps) which will be called for this
controller. Eg, with the controller:

from seshat.controller import BaseController

class index(BaseController):
def GET(self):
return "<h1>WAT</h1>"

then all GET method requests to this controller will return with the text <h1>WAT</h1> however all POST,
PUT, DELETE calls will return as a blank page, since those methods are not overridden.

Note: Support for Not Supported status codes may be added later, ironically.

post_init_hook()
Called at the end of __init__ this allows you to customize the creation process of your controller, without
having to override __init__ itself.

This should accept nothing and return nothing.

pre_content_hook()
Called before the generating request method is called and should return either None or Head or
BaseAction object.

If there is a returned value other than None, this will skip calling the content generating request method
and simply return directly to dispatch.

A good example of the use for this hook would be for authentication. You could for example, check the id
set through the cookie and compare it to a database entry. If the cookie is not currently in use (ie, user not
logged in, or similar) then you could do:

6 Chapter 2. Quick Start

Seshat Documentation, Release 1.0.0

return Head("401")

or perhaps:

return actions.Unauthorized()

Return type Head or BaseAction or None

post_content_hook(content)
Gets called after the content generating request method has been called. This can be to further modify the
content which is returned, or perform some other action after each request.

Parameters content (str) – the content from the content generating request method that was
called.

Returns The original or modified content

Return type str

HEAD()
Will be called if the request method is HEAD

By default this will call GET() but return nothing, so that only the Headers are returned to the client.

GET()
Will be called if the request method is GET

Routing

Along with needing to have controllers, an app also has to have routes to those controllers. There is a provided
auto route function, described below, that will generate the route pattern based off of the file hierarchy of where the
controller which is decorated is located at. If you prefer to make your own routes, then you can use the described
RouteContainer along with the route tables add_route() to make your own routes.

seshat.route_containers.controller_folder = ‘’
The folder where the controllers are located in. Since the auto route generation uses folder hierarchy, this setting
allows to you to have controllers in a single folder but not have that folder end up as the route prefix.

seshat.route.route()
Class decorator that will take and generate a route table entry for the decorated controller class, based off of its
name and its file hierarchy

Use like so:

from seshat.controller import BaseController
from seshat.route import route

@route()
class index(BaseController):

pass

which will result in a route for “/” being made for this controller.

controllers whose name is index automatically get routed to the root of their folders, so an index controller in
“profiles/” will have a route that looks like “/profiles”

Controllers whose name is view will automatically get routed to any index route that has an attached ID. Eg:

2.2. Doc Contents 7

Seshat Documentation, Release 1.0.0

In folder: profiles/
class view(BaseController):
pass

will be routed to if the request URL is “/profiles/5” and the resulting id will be stored in self.request.id

class seshat.route_containers.RouteContainer(url, controller)
Provides a base route table entry which can either be used by itself or inherited from to make a custom process
for making a route.

Eg of use is the AutoRouteContainer which is used in conjunction with the route() decocrator to
automatically generate a route url.

controller = None
The controller object, of type BaseController which this route represents

Type BaseController

url = None
The actual url pattern for which this route is for. :type: str

Response Headers - Head

Often times you hopefully won’t have to directly make a Head object for your response, since the framework and
base controller takes care of this for you for you most of the time. However the Head` class provides some utilities
to make dealing with response headers a little easier.

class seshat.head.Head(status=‘200 OK’, headers=None, errors=None)
Gives a basic container for the headers within a request.

status = None
To change the status at anytime, you can simply just assign it a new value.

errors = None
If an error was encounters then the stack trace will end up here

reset_headers()
Allows you to reset the headers

add_header(key, value)
Allows you to add a new header to the list

Eg:

add_header("location", "/")

will result in the tuple ("location", "/") being added to the list of headers to be returned.

Parameters

• key – The header name

• value – The header value

actions

Actions allow you to write code that looks like:

8 Chapter 2. Quick Start

Seshat Documentation, Release 1.0.0

class RandomController(BaseController):
def GET(self):
return Redirect("/")

which I think looks a lot nicer than:

class RandomController(BaseController):
def GET(self):
self.head.status = "303 SEE OTHER"
self.head.append("location", "/")

This module provides a few common Action classes to use, along with a BaseAction which can be inherited to create
your own Actions.

class seshat.actions.BaseAction
Provides a base for creating a new object which represents an HTTP Status code.

All returned data is checked if it is of type BaseAction and if so, the data/actions head is returned rather than the
controllers head. This allows for a syntax like:

return NotFound()

which will cause the controller to return a 404 status code.

To create a new action, inherit this class then make a new __init__(self, *kargs) which sets self.head to a Head
object.

class seshat.actions.Redirect(loc)
Returns a 303 See Other status code along with a location header back to the client.

Parameters loc (str) – The location to which the client should be redirect to

class seshat.actions.Unauthorized
Returns a 401 Unauthorized status code back to the client

class seshat.actions.NotFound
Returns a 404 Not Found code and the resulting 404 error controller to be returned to the client.

BaseRequest

class seshat.request.FileObject(file_obj)
Provides a File like object which supports the common file operations, along with providing some additional
metadata which is sent from the client.

read()

readline()

seek(where)

readlines()

auto_read()

class seshat.request.BaseRequest(env)
Represents the request from the server, and contains various information and utilities. Also the place to store
the session object.

cookie_name = ‘sid’
The name of the cookie

2.2. Doc Contents 9

Seshat Documentation, Release 1.0.0

url = None
A urlparse result of the requests path

method = None
The HTTP method by which the request was made, in all caps.

remote = None
The clients IP, otherwise Unknown IP

user_agent = None
The user agent, unparsed, or the string Unknown User Agent

referer = None
The referal URL if it exists, otherwise an empty string.

accepts(t)
Determines if the given mimetype is accepted by the client.

get_param(parameter, default=’‘, cast=<type ‘str’>)
Allows you to get a parameter from the request. If the parameter does not exist, or is empty, then a default
will be returned. You can also choose to optionally cast the parameter.

If a parameter has multiple values then this will return a list of all those values.

Parameters

• parameter – The name of the parameter to get

• default – The default to return if the parameter is nonexistent or empty

• cast – An optional cast for the parameter.

get_file(name)
Along with getting parameters, one may wish to retrieve other data such as files sent.

This provides an interface for getting a file like FileObject which can be used like a normal file but
also holds some meta data sent with the request. If no file by the given name is found then this will return
None

build_session()
Called during the objects instantiation. Override to set the requests session property.

build_cfg()
Called during the objects instantiation. Override to set the requests cfg property.

log(head)
Called right at the end of the request when the response is being returned to the client. This is useful for
logging to a database or log file.

Parameters head – The reponses Head object which was returned to the client.

dispatch

Dispatch is the actual WSGI app which is served. This module also contains several configuration properties, along
with easy access to the apps route table though route_table. Documentation on the route table can be found below:
RouteTable

Note: If you would like to see the logs that seshat produces, using the standard library logging module, create a
handler for seshat

10 Chapter 2. Quick Start

Seshat Documentation, Release 1.0.0

seshat.dispatch.request_obj
The object which should be used to create a new Request item from. Should inherit from BaseRequest

alias of BaseRequest

seshat.dispatch.dispatch(env, start_response)
WSGI dispatcher

This represents the main WSGI app for Seshat. To use with waitress, for example:

from waitress import serve
serve(dispatch)

class seshat.route_table.RouteTable

add_route(r_container)
Adds the given route container to the route table.

Parameters r_container (RouteContainer) – The route container which contains the
url and controller for a route.

Indices and tables

• genindex

• modindex

• search

2.2. Doc Contents 11

Seshat Documentation, Release 1.0.0

12 Chapter 2. Quick Start

Python Module Index

s
seshat.actions, 8
seshat.controller, 6
seshat.dispatch, 10

13

Seshat Documentation, Release 1.0.0

14 Python Module Index

Index

A
accepts() (seshat.request.BaseRequest method), 10
add_header() (seshat.head.Head method), 8
add_route() (seshat.route_table.RouteTable method), 11
auto_read() (seshat.request.FileObject method), 9

B
BaseAction (class in seshat.actions), 9
BaseController (class in seshat.controller), 6
BaseRequest (class in seshat.request), 9
build_cfg() (seshat.request.BaseRequest method), 10
build_session() (seshat.request.BaseRequest method), 10

C
controller (seshat.route_containers.RouteContainer at-

tribute), 8
controller_folder (in module seshat.route_containers), 7
cookie_name (seshat.request.BaseRequest attribute), 9

D
dispatch() (in module seshat.dispatch), 11

E
errors (seshat.head.Head attribute), 8

F
FileObject (class in seshat.request), 9

G
GET() (seshat.controller.BaseController method), 7
get_file() (seshat.request.BaseRequest method), 10
get_param() (seshat.request.BaseRequest method), 10

H
Head (class in seshat.head), 8
HEAD() (seshat.controller.BaseController method), 7

L
log() (seshat.request.BaseRequest method), 10

M
method (seshat.request.BaseRequest attribute), 10

N
NotFound (class in seshat.actions), 9

P
post_content_hook() (seshat.controller.BaseController

method), 7
post_init_hook() (seshat.controller.BaseController

method), 6
pre_content_hook() (seshat.controller.BaseController

method), 6

R
read() (seshat.request.FileObject method), 9
readline() (seshat.request.FileObject method), 9
readlines() (seshat.request.FileObject method), 9
Redirect (class in seshat.actions), 9
referer (seshat.request.BaseRequest attribute), 10
remote (seshat.request.BaseRequest attribute), 10
request_obj (in module seshat.dispatch), 10
reset_headers() (seshat.head.Head method), 8
route() (in module seshat.route), 7
RouteContainer (class in seshat.route_containers), 8
RouteTable (class in seshat.route_table), 11

S
seek() (seshat.request.FileObject method), 9
seshat.actions (module), 8
seshat.controller (module), 6
seshat.dispatch (module), 10
status (seshat.head.Head attribute), 8

U
Unauthorized (class in seshat.actions), 9
url (seshat.request.BaseRequest attribute), 9
url (seshat.route_containers.RouteContainer attribute), 8
user_agent (seshat.request.BaseRequest attribute), 10

15

	A Few Minor Warnings
	Quick Start
	Contributing
	Doc Contents
	controller
	Routing
	Response Headers - Head
	actions
	BaseRequest
	dispatch
	Indices and tables

	Python Module Index

