

Seshat Web Framework v1.0.0

Seshat is a toy web framework built by JoshAshby over the past few years. It’s
aimed at being somewhat opinionated, and most definetly full of bad practices
but it gets the job done with running a few smaller sites.

Build status - Master:

[image: https://secure.travis-ci.org/JoshAshby/seshat.png?branch=master]
 [http://travis-ci.org/JoshAshby/seshat]Build status - Dev:

[image: https://secure.travis-ci.org/JoshAshby/seshat.png?branch=dev]
 [http://travis-ci.org/JoshAshby/seshat]Gittip if you like the work I do and would consider a small donation to help
fund me and this project:

A Few Minor Warnings

	I have litterally NO clue what I am doing. Use at your own risk.

	I’m only a second year university student, and software
isn’t even my major; I’m working towards an Electrical and Computer
Engineering degree, so not only do I have limited time to keep this
maintained, but I also probably won’t write the best code ever.

	This project follows the semantic versioning specs. All Minor and
patch versions will not break the major versions API, however an bump of the
major version signifies that backwards compatibility will most likely be
broken.

Quick Start

Getting started is fairly easy, take a look at the included example.py:

from waitress import serve
import seshat.dispatch as dispatch

from seshat.route import route
from seshat.controller import BaseController
from seshat.actions import NotFound

@route()
class index(BaseController):
 def GET(self):
 name = self.request.get_param("name", "World!")
 return "Hello, " + name

@route()
class wat(BaseController):
 def GET(self):
 return Redirect("/?name=Wat")

serve(dispatch.dispatch)

This starts a full web app on port 8080 that you can navigate your browser to
localhost that will serve a basic page displaying the text
“Hello, World”. Navigating to localhost:8080/wat will redirect you back to the
index, with the name now as “Wat”.

Contributing

All code for this can be found online at
github [https://github.com/JoshAshby/seshat].
If something is broken, or a feature is missing, please submit a pull request
or open an issue. Most things I probably won’t have time to get around to
looking at too deeply, so if you want it fixed, a pull request is the way
to go. Besides that, I’m releasing this under the GPLv3 License as found in the
LICENSE.txt file. Enjoy!

Doc Contents

	controller

	Routing

	Response Headers - Head

	actions

	BaseRequest

	dispatch

Indices and tables

	Index

	Module Index

	Search Page

controller

No app built with Seshat does much without controllers. This module provides a
base controller class which can be used right away in its current state, or can
be inherited from to create more advanced or custom controllers.

Basic use is like so:

from seshat.controller import BaseController

class index(BaseController):
 def GET(self):
 return "<h1>WAT</h1>"

If you see something along the lines of ‘Content Generating Request Method’ it
will usually mean GET(), POST(), or any other HTTP method verb which
might be given to the controller.

	
class seshat.controller.BaseController(request)

	The parent of all controllers which Seshat will serve.

To use this to make a controller, override or add the request method (in
all caps) which will be called for this controller. Eg, with the
controller:

from seshat.controller import BaseController

class index(BaseController):
 def GET(self):
 return "<h1>WAT</h1>"

then all GET method requests to this controller will return with the text
<h1>WAT</h1> however all POST, PUT, DELETE calls will return as a blank
page, since those methods are not overridden.

Note

Support for Not Supported status codes may be added later, ironically.

	
post_init_hook()

	Called at the end of __init__ this allows you to customize the
creation process of your controller, without having to override
__init__ itself.

This should accept nothing and return nothing.

	
pre_content_hook()

	Called before the generating request method is called and should return either
None or Head or BaseAction object.

If there is a returned value other than None, this will skip calling
the content generating request method and simply return directly to
dispatch.

A good example of the use for this hook would be for authentication.
You could for example, check the id set through the cookie and compare
it to a database entry. If the cookie is not currently in use (ie, user
not logged in, or similar) then you could do:

return Head("401")

or perhaps:

return actions.Unauthorized()

	Return type:	Head or BaseAction or None

	
post_content_hook(content)

	Gets called after the content generating request method has been
called. This can be to further modify the content which is returned, or
perform some other action after each request.

	Parameters:	content (str) – the content from the content generating request method
that was called.

	Returns:	The original or modified content

	Return type:	str

	
HEAD()

	Will be called if the request method is HEAD

By default this will call GET() but return nothing, so that only the
Headers are returned to the client.

	
GET()

	Will be called if the request method is GET

Routing

Along with needing to have controllers, an app also has to have routes to those
controllers. There is a provided auto route function, described below, that
will generate the route pattern based off of the file hierarchy of where the
controller which is decorated is located at. If you prefer to make your own
routes, then you can use the described RouteContainer along with
the route tables add_route() to make your own routes.

	
seshat.route_containers.controller_folder = ''

	The folder where the controllers are located in. Since the auto route
generation uses folder hierarchy, this setting allows to you to have
controllers in a single folder but not have that folder end up as the route
prefix.

	
seshat.route.route()

	Class decorator that will take and generate a route table entry for the
decorated controller class, based off of its name and its file hierarchy

Use like so:

from seshat.controller import BaseController
from seshat.route import route

@route()
class index(BaseController):
 pass

which will result in a route for “/” being made for this controller.

controllers whose name is index automatically get routed to the root of
their folders, so an index controller in “profiles/” will have a route that
looks like “/profiles”

Controllers whose name is view will automatically get routed to any index
route that has an attached ID. Eg:

In folder: profiles/
class view(BaseController):
 pass

will be routed to if the request URL is “/profiles/5” and the resulting
id will be stored in self.request.id

	
class seshat.route_containers.RouteContainer(url, controller)

	Provides a base route table entry which can either be used by itself or
inherited from to make a custom process for making a route.

Eg of use is the AutoRouteContainer which is used in
conjunction with the route() decocrator to automatically generate
a route url.

	
controller = None

	The controller object, of type BaseController which this
route represents

	Type:	BaseController

	
url = None

	The actual url pattern for which this route is for.
:type: str

Response Headers - Head

Often times you hopefully won’t have to directly make a Head object for
your response, since the framework and base controller takes care of this for
you for you most of the time. However the Head` class provides some
utilities to make dealing with response headers a little easier.

	
class seshat.head.Head(status='200 OK', headers=None, errors=None)

	Gives a basic container for the headers within a request.

	
status = None

	To change the status at anytime, you can simply just assign it a new
value.

	
errors = None

	If an error was encounters then the stack trace will end up here

	
reset_headers()

	Allows you to reset the headers

	
add_header(key, value)

	Allows you to add a new header to the list

Eg:

add_header("location", "/")

will result in the tuple ("location", "/") being added to the
list of headers to be returned.

	Parameters:	
	key – The header name

	value – The header value

actions

Actions allow you to write code that looks like:

class RandomController(BaseController):
 def GET(self):
 return Redirect("/")

which I think looks a lot nicer than:

class RandomController(BaseController):
 def GET(self):
 self.head.status = "303 SEE OTHER"
 self.head.append("location", "/")

This module provides a few common Action classes to use, along with a
BaseAction which can be inherited to create your own Actions.

	
class seshat.actions.BaseAction

	Provides a base for creating a new object which represents an HTTP Status code.

All returned data is checked if it is of type BaseAction and if so, the
data/actions head is returned rather than the controllers head. This allows
for a syntax like:

return NotFound()

which will cause the controller to return a 404 status code.

To create a new action, inherit this class then make a new __init__(self, *kargs)
which sets self.head to a Head object.

	
class seshat.actions.Redirect(loc)

	Returns a 303 See Other status code along with a location header back
to the client.

	Parameters:	loc (str) – The location to which the client should be redirect to

	
class seshat.actions.Unauthorized

	Returns a 401 Unauthorized status code back to the client

	
class seshat.actions.NotFound

	Returns a 404 Not Found code and the resulting 404 error controller to be
returned to the client.

BaseRequest

	
class seshat.request.FileObject(file_obj)

	Provides a File like object which supports the common file operations,
along with providing some additional metadata which is sent from the
client.

	
read()

	

	
readline()

	

	
seek(where)

	

	
readlines()

	

	
auto_read()

	

	
class seshat.request.BaseRequest(env)

	Represents the request from the server, and contains various information
and utilities. Also the place to store the session object.

	
cookie_name = 'sid'

	The name of the cookie

	
url = None

	A urlparse result of the requests path

	
method = None

	The HTTP method by which the request was made, in all caps.

	
remote = None

	The clients IP, otherwise Unknown IP

	
user_agent = None

	The user agent, unparsed, or the string Unknown User Agent

	
referer = None

	The referal URL if it exists, otherwise an empty string.

	
accepts(t)

	Determines if the given mimetype is accepted by the client.

	
get_param(parameter, default='', cast=<type 'str'>)

	Allows you to get a parameter from the request. If the parameter does
not exist, or is empty, then a default will be returned. You can also
choose to optionally cast the parameter.

If a parameter has multiple values then this will return a list of all
those values.

	Parameters:	
	parameter – The name of the parameter to get

	default – The default to return if the parameter is nonexistent
or empty

	cast – An optional cast for the parameter.

	
get_file(name)

	Along with getting parameters, one may wish to retrieve other data such
as files sent.

This provides an interface for getting a file like
FileObject which can be used like a normal file but also
holds some meta data sent with the request. If no file by the given
name is found then this will return None

	
build_session()

	Called during the objects instantiation.
Override to set the requests session property.

	
build_cfg()

	Called during the objects instantiation.
Override to set the requests cfg property.

	
log(head)

	Called right at the end of the request when the response is being
returned to the client. This is useful for logging to a database or log
file.

	Parameters:	head – The reponses Head object which was returned
to the client.

dispatch

Dispatch is the actual WSGI app which is served. This module also contains
several configuration properties, along with easy access to the apps route
table though route_table. Documentation on the route table can be found
below: RouteTable

Note

If you would like to see the logs that seshat produces, using the standard
library logging module, create a handler for seshat

	
seshat.dispatch.request_obj

	The object which should be used to create a new Request item from. Should
inherit from BaseRequest

alias of BaseRequest

	
seshat.dispatch.dispatch(env, start_response)

	WSGI dispatcher

This represents the main WSGI app for Seshat.
To use with waitress, for example:

from waitress import serve
serve(dispatch)

	
class seshat.route_table.RouteTable

	
	
add_route(r_container)

	Adds the given route container to the route table.

	Parameters:	r_container (RouteContainer) – The route container which contains the url and controller for a route.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 seshat	

 	
 	
 seshat.actions	

 	
 	
 seshat.controller	

 	
 	
 seshat.dispatch	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | P
 | R
 | S
 | U

A

 	
 	accepts() (seshat.request.BaseRequest method)

 	add_header() (seshat.head.Head method)

 	
 	add_route() (seshat.route_table.RouteTable method)

 	auto_read() (seshat.request.FileObject method)

B

 	
 	BaseAction (class in seshat.actions)

 	BaseController (class in seshat.controller)

 	
 	BaseRequest (class in seshat.request)

 	build_cfg() (seshat.request.BaseRequest method)

 	build_session() (seshat.request.BaseRequest method)

C

 	
 	controller (seshat.route_containers.RouteContainer attribute)

 	
 	controller_folder (in module seshat.route_containers)

 	cookie_name (seshat.request.BaseRequest attribute)

D

 	
 	dispatch() (in module seshat.dispatch)

E

 	
 	errors (seshat.head.Head attribute)

F

 	
 	FileObject (class in seshat.request)

G

 	
 	GET() (seshat.controller.BaseController method)

 	
 	get_file() (seshat.request.BaseRequest method)

 	get_param() (seshat.request.BaseRequest method)

H

 	
 	Head (class in seshat.head)

 	
 	HEAD() (seshat.controller.BaseController method)

L

 	
 	log() (seshat.request.BaseRequest method)

M

 	
 	method (seshat.request.BaseRequest attribute)

N

 	
 	NotFound (class in seshat.actions)

P

 	
 	post_content_hook() (seshat.controller.BaseController method)

 	
 	post_init_hook() (seshat.controller.BaseController method)

 	pre_content_hook() (seshat.controller.BaseController method)

R

 	
 	read() (seshat.request.FileObject method)

 	readline() (seshat.request.FileObject method)

 	readlines() (seshat.request.FileObject method)

 	Redirect (class in seshat.actions)

 	referer (seshat.request.BaseRequest attribute)

 	
 	remote (seshat.request.BaseRequest attribute)

 	request_obj (in module seshat.dispatch)

 	reset_headers() (seshat.head.Head method)

 	route() (in module seshat.route)

 	RouteContainer (class in seshat.route_containers)

 	RouteTable (class in seshat.route_table)

S

 	
 	seek() (seshat.request.FileObject method)

 	seshat.actions (module)

 	
 	seshat.controller (module)

 	seshat.dispatch (module)

 	status (seshat.head.Head attribute)

U

 	
 	Unauthorized (class in seshat.actions)

 	url (seshat.request.BaseRequest attribute)

 	(seshat.route_containers.RouteContainer attribute)

 	
 	user_agent (seshat.request.BaseRequest attribute)

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		Seshat Web Framework v1.0.0

 		controller

 		Routing

 		Response Headers - Head

 		actions

 		BaseRequest

 		dispatch

_static/up.png

_static/up-pressed.png

