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CHAPTER 1

Documentation

1.1 Sequence to Sequence Modeling

In this project we explain the sequence to sequence modeling using [Pytorch].

1.1.1 What is the problem?

Machine Translation(MT) is one of the areas of NLP that has been profoundly affected by advances in deep learning.
In fact, progress in MT can be categorized into pre-deep learning and deep learning era. Confirmation of this could
be some of the reference books in NLP community such as ”Speech and Language Processing”. Second version of
this book was published in 2008 and chapter 25 is dedicated to machine translation but there is not a single mention of
deep learning usage for MT. However, today we know that the top performing machine translation systems are solely
based on neural networks which led to the term Neural Machine Translation (NMT).

When we use the term neural machine translation, we are talking about applying different deep learning tech- niques
for the task of machine translation. It was after success of neural network in image classification tasks that researchers
started to use neural networks in machine translation. Around 2013 research groups started to achieve breakthrough
results in NMT and boosted state of the art performance. Unlike traditional statistical machine transla- tion, NMT is
based on an end-to-end neural network that increases the performance of machine translation systems.

We dedicate this project to a core deep learning based model for sequence-to-sequence modeling and in particular
machine translation: An Encoder-Decoder architecture based on Long-Short Term Memory (LSTM) networks.

1.1.2 What makes the problem a problem?

Although sequence to sequence modeling scope is broader than just the machine translation task, the main focus on
seq-2-seq research has been dedicated to MT due to its great importance in real-world problems. Furthermore, machine
translation is the bridge for a universal human-machine conversation.

1
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1.1.3 What is the secret sauce here?

Here, we tried to achieve some primary goals as we hope to make this work unique compared to the many other
available tutorials:

1. We called this repo "from scratch" due to the fact that we do NOT consider any background for
the reader in terms of implementation.

2. Instead of using high-level package modules, simple RNN architectures are used for demonstration
purposes. This helps the reader to understand everything from scratch. The downside,
however, is the relatively low speed of training. This may not cause any trouble as we try to train a very
small model.

3. The difference between uni-directional LSTMs and bi-directional LSTMs have been
clarified using the simple encoder-decoder implementation.

1.1.4 Who cares?

It tutorial has been provided for the developers/researchers who really want to start from scratch and learn everything
spoon-by-spoon. The goal is to give as much detail as possible so the others do NOT have to spend the time to
understand hidden and yet very important details.

1.2 Model

The goal here is to create a sequence-to-sequence mapping model which is going to be built on an Encoder-Decoder
network. The model encode the information into a specific representation. This representation later on will be mapped
as a target output sequence. This transition makes the model understand the interoperibility between two sequences.
In another word, the meaningful connection between the two sequence will be created. Two important sequence to
sequence modeling examples are Machine Transtional and Autoencoders. Here, we can do both just by
chaning the input-output language sequences.

1.2.1 Word Embedding

At the very first step, we should know what are the input-output sequences and how we should represent
the data for the model to understand it. Clearly, it should be a sequence of words in the input and the equivalent
sequence in the output. In case of having an autoencoder, both input and output sentences are the same.

A learned representation for context elements is called word embedding in which the words with similar meaning,
ideally, become highly correlated in the representation space as well. One of the main incentives behind word embed-
ding representations is the high generalization power as opposed to sparse higher dimensional representation. Unlike
the traditional bag-of-word representation in which different words have quite different representation regardless of
their usage, in learning the distributed representation, the usage of words in the context is of great importance which
lead to similar representation for correlated words in meaning. The are different approaches for creating word embed-
ding. Please refer to the great Pytorch tutorial titled [WORD EMBEDDINGS: ENCODING LEXICAL SEMANTICS]
for more details.

1.2.2 Encoder

The encoder generates a single output vector that embodies the input sequence meaning. The general procedure is as
follows:

1. In each step, a word will be fed to a network and it generates an output and a hidden state.

2 Chapter 1. Documentation
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2. For the next step, the hidden step and the next word will be fed to the same network (W) for updating the
weights.

3. In the end, the last output will be the representative of the input sentence (called the “context vector”).

The EncoderRNN attribute is dedicated to the encoder structure. The Encoder in our code, can be a
unidirectional/bidirectional LSTM. A Bidirectional LSTM consists of two independent LSTMs, one
take the input sequence in normal time order and the other one will be fed with the input sequence in the reverse time
order. The outputs of the two will usually be concatenated at each time step (usually the last hidden states will be
concatenated and returned). The created feature vector will represents the initial hidden states of the decoder. The
architecture of a bi-lstm is as below:

NOTE: As can be observered in the figure colors, two independent different set of weights MUST be considered
for the forward and backward passes, Otherwise, the network will assume the backward pass follows the forward
pass!!

The encoder, will generally be initialized as below:

def __init__(self, hidden_size, input_size, batch_size, num_layers=1,
→˓bidirectional=False):

"""

* For nn.LSTM, same input_size & hidden_size is chosen.
:param input_size: The size of the input vocabulary
:param hidden_size: The hidden size of the RNN.
:param batch_size: The batch_size for mini-batch optimization.
:param num_layers: Number of RNN layers. Default: 1
:param bidirectional: If the encoder is a bi-directional LSTM. Default: False
"""
super(EncoderRNN, self).__init__()
self.batch_size = batch_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.hidden_size = hidden_size

# The input should be transformed to a vector that can be fed to the network.
self.embedding = nn.Embedding(input_size, embedding_dim=hidden_size)

(continues on next page)

1.2. Model 3
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(continued from previous page)

# The LSTM layer for the input
self.lstm = nn.LSTM(input_size=hidden_size, hidden_size=hidden_size, num_

→˓layers=num_layers)

NOTE: We do NOT generate the whole LSTM/Bi-LSTM architecture using Pytorch. Instead, we just use the LSTM
cells to represent what exactly is going on in the encoding/decoding phases!

The initialization of the LSTM is a little bit different compared to the LSTM [Understanding LSTM Netwroks]. Both
cell state and hidden states must be initialized as belows:

def initHidden(self):

if self.bidirectional:
encoder_state = [torch.zeros(self.num_layers, 1, self.hidden_size,

→˓device=device),
torch.zeros(self.num_layers, 1, self.hidden_size,

→˓device=device)]
encoder_state = {"forward": encoder_state, "backward": encoder_state}
return encoder_state

else:
encoder_state = [torch.zeros(self.num_layers, 1, self.hidden_size,

→˓device=device),
torch.zeros(self.num_layers, 1, self.hidden_size,

→˓device=device)]
return encoder_state

As it can be seen in the above code, for the Bidirectional LSTM, we have separate and independent states for
forwards and backward directions.

1.2.3 Decoder

For the decoder, the final encoder hidden state (or the concatenation if we have a bi-lstm as the encoder) of the encoder
will be called context vector. This context vector, generated by the encoder, will be used as the initial hidden
state of the decoder. Decoding is as follows:

1. At each step, an input token and a hidden state is fed to the decoder.

• The initial input token is the <SOS>.

• The first hidden state is the context vector generated by the encoder (the encoder’s last hidden state).

2. The first output, should be the first word of the output sequence and so on.

3. The output token generation ends with <EOS> being generated or the predefined max_length of the output
sentence.

After the first decoder step, for the following steps, the input is going to be the previous word prediction of the RNN. So
the output generation will be upon the network sequence prediction. In case of using teacher_forcing, the input
is going to be the actual targeted output word. It provides better guidance for the training but it is inconsistent with
the evaluation stage as targeted outputs do not exists! In order to handle the issue with this approach, new approaches
have been proposed.

The decoder, will generally be initialized as below:

def __init__(self, hidden_size, output_size, batch_size, num_layers=1):
super(DecoderRNN, self).__init__()
self.batch_size = batch_size

(continues on next page)
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(continued from previous page)

self.num_layers = num_layers
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, hidden_size)
self.lstm = nn.LSTM(input_size=hidden_size, hidden_size=hidden_size, num_layers=1)
self.out = nn.Linear(hidden_size, output_size)

def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
output, (h_n, c_n) = self.lstm(output, hidden)
output = self.out(output[0])
return output, (h_n, c_n)

def initHidden(self):
"""
The spesific type of the hidden layer for the RNN type that is used (LSTM).
:return: All zero hidden state.
"""
return [torch.zeros(self.num_layers, 1, self.hidden_size, device=device),

torch.zeros(self.num_layers, 1, self.hidden_size, device=device)]

1.2.4 Encoder-Decoder Bridge

The context vector, generated by the encoder, will be used as the initial hidden state of the decoder. In case that their
dimension is not matched, a linear layer should be employed to transformed the context vector to a suitable
input (shape-wise) for the decoder cell state (including the memory(Cn) and hidden(hn) states). The shape mismatch
is True in the following conditions:

1. The hidden sizes of encoder and decoder are the same BUT we have a bidirectional LSTM as the Encoder.

2. The hidden sizes of encoder and decoder are NOT same.

3. ETC?

The linear layer will be defined as below:

def __init__(self, bidirectional, hidden_size_encoder, hidden_size_decoder):
super(Linear, self).__init__()
self.bidirectional = bidirectional
num_directions = int(bidirectional) + 1
self.linear_connection_op = nn.Linear(num_directions * hidden_size_encoder,

→˓hidden_size_decoder)
self.connection_possibility_status = num_directions * hidden_size_encoder ==

→˓hidden_size_decoder

def forward(self, input):

if self.connection_possibility_status:
return input

else:
return self.linear_connection_op(input)

1.2. Model 5
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1.3 Dataset

NOTE: The dataset object is heavily inspired by the official Pytorch tutorial: [TRANSLATION WITH A SEQUENCE
TO SEQUENCE NETWORK AND ATTENTION] The dataset is prepaired using the data_loader.py script.

At the first state we have to define word indexing for further processing. The word2index is the dictionary of
transforming word to its associated index and index2word does the reverse:

SOS_token = 1
EOS_token = 2

class Lang:
def __init__(self, name):

self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0: "<pad>", SOS_token: "SOS", EOS_token: "EOS"}
self.n_words = 3 # Count SOS and EOS

def addSentence(self, sentence):
for word in sentence.split(' '):

self.addWord(word)

def addWord(self, word):
if word not in self.word2index:

self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1

else:
self.word2count[word] += 1

Unlike the [Pytorch tutorial] we started the indexing from 1 by SOS_token = 1 to have the zero reserved!

In the end, we define a dataset class to handle the processing:

class Dataset():
"""dataset object"""

def __init__(self, phase, num_embeddings=None, max_input_length=None,
→˓transform=None, auto_encoder=False):

"""
The initialization of the dataset object.
:param phase: train/test.
:param num_embeddings: The embedding dimentionality.
:param max_input_length: The maximum enforced length of the sentences.
:param transform: Post processing if necessary.
:param auto_encoder: If we are training an autoencoder or not.
"""
if auto_encoder:

lang_in = 'eng'
lang_out = 'eng'

else:
lang_in = 'eng'
lang_out = 'fra'

# Skip and eliminate the sentences with a length larger than max_input_length!
input_lang, output_lang, pairs = prepareData(lang_in, lang_out, max_input_

→˓length, auto_encoder=auto_encoder, reverse=True)
(continues on next page)
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(continued from previous page)

print(random.choice(pairs))

# Randomize list
random.shuffle(pairs)

if phase == 'train':
selected_pairs = pairs[0:int(0.8 * len(pairs))]

else:
selected_pairs = pairs[int(0.8 * len(pairs)):]

# Getting the tensors
selected_pairs_tensors = [tensorsFromPair(selected_pairs[i], input_lang,

→˓output_lang, max_input_length)
for i in range(len(selected_pairs))]

self.transform = transform
self.num_embeddings = num_embeddings
self.max_input_length = max_input_length
self.data = selected_pairs_tensors
self.input_lang = input_lang
self.output_lang = output_lang

1.4 Training/Evaluation

The training/evaluation of this model is done in a not very optimized way deliberately!! The reasons are as follows:

1. I followed the principle of running with one click that I personnal have for all my open
source projects. The principle says: “Everyone must be able to run everything by one click!”. So you see
pretty much everything in one Python file!

2. Instead of using ready-to-use RNN objects which process mini-batches of data, we input the sequence
word-by-word to help the readers having a better sense of what is happening behind the doors of seq-to-
seq modeling scheme.

3. For the evaluation, we simply generate the outputs of the system based on the built model to see if the
model is good enough!

For mini-batch optimization, we input batches of sequences. There is a very important note for the batch feeding. After
inputing each batch element, the encoder hidden states must be reset. Otherwise, the system may assume
the next sequence in a batch follows the previously processed sequence. It can be seen in the following Python script:

for step_idx in range(args.batch_size):
# reset the LSTM hidden state. Must be done before you run a new sequence.

→˓Otherwise the LSTM will treat
# the new input sequence as a continuation of the previous sequence.
encoder_hidden = encoder.initHidden()
input_tensor_step = input_tensor[:, step_idx][input_tensor[:, step_idx] != 0]
input_length = input_tensor_step.size(0)

1.5 Results

Some sample results for autoencoder training are as follows:

1.4. Training/Evaluation 7
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Input: you re very generous EOS
Output: you re very generous EOS
Predicted Output: you re very generous <EOS>

Input: i m worried about the future EOS
Output: i m worried about the future EOS
Predicted Output: i m worried about the about <EOS>

Input: we re anxious EOS
Output: we re anxious EOS
Predicted Output: we re anxious <EOS>

Input: she is more wise than clever EOS
Output: she is more wise than clever EOS
Predicted Output: she is nothing than a than <EOS>

Input: i m glad i invited you EOS
Output: i m glad i invited you EOS
Predicted Output: i m glad i invited you <EOS>

8 Chapter 1. Documentation



CHAPTER 2

Recommended Readings

• Sequence to Sequence Learning with Neural Networks - Original Seq2Seq Paper

• Neural Machine Translation by Jointly Learning to Align and Translate - Sequence to Sequence with Attention

• Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
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CHAPTER 3

Contributing

For typos, please do not create a pull request. Instead, declare them in issues or email the repository owner. Please
note we have a code of conduct, please follow it in all your interactions with the project.

3.1 Pull Request Process

Please consider the following criterions in order to help us in a better way:

1. The pull request is mainly expected to be a link suggestion.

2. Please make sure your suggested resources are not obsolete or broken.

3. Ensure any install or build dependencies are removed before the end of the layer when doing a build and creating
a pull request.

4. Add comments with details of changes to the interface, this includes new environment variables, exposed ports,
useful file locations and container parameters.

5. You may merge the Pull Request in once you have the sign-off of at least one other developer, or if you do not
have permission to do that, you may request the owner to merge it for you if you believe all checks are passed.

3.2 Final Note

We are looking forward to your kind feedback. Please help us to improve this open source project and make our work
better. For contribution, please create a pull request and we will investigate it promptly. Once again, we appreciate
your kind feedback and elaborate code inspections.

11
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CHAPTER 4

Contributor Covenant Code of Conduct

4.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

4.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

13
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4.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

4.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

4.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
amirsina.torfi@gmail.com. The project team will review and investigate all complaints, and will respond in a way that
it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the
reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

4.6 Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at [http:
//contributor-covenant.org/version/1/4{]}{[}version]

[homepage]: http://contributor-covenant.org [version]: http://contributor-covenant.org/version/1/4/
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CHAPTER 5

LICENSE

MIT License

Copyright (c) 2019 Amirsina Torfi

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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