

Sensor Motion

Python package for analyzing sensor-collected human motion data (e.g.
physical activity levels, gait dynamics).

Dedicated accelerometer devices, such as those made by Actigraph,
usually bundle software for the analysis of the sensor data. In my work
I often collect sensor data from smartphones and have not been able to
find any comparable analysis software.

This Python package allows the user to extract human motion data, such
as gait/walking dynamics, directly from accelerometer signals.
Additionally, the package allows for the calculation of physical
activity (PA) or moderate-to-vigorous physical activity (MVPA) counts,
similar to activity count data offered by companies like Actigraph.

Installation

You can install this package using pip:

pip install sensormotion

Requirements

This package has the following dependencies, most of which are just
Python packages:

	Python 3.x

	The easiest way to install Python is using the
Anaconda [https://www.continuum.io/downloads] distribution, as it
also includes the other dependencies listed below

	Python 2.x has not been tested, so backwards compatibility is not
guaranteed

	numpy

	Included with Anaconda. Otherwise, install using pip (pip install numpy)

	scipy

	Included with Anaconda. Otherwise, install using pip (pip install scipy)

	matplotlib

	Included with Anaconda. Otherwise, install using pip (pip install matplotlib)

Usage

Here is brief example of extracting step-based metrics from raw
vertical acceleration data:

Import the package:

import sensormotion as sm

If you have a vertical acceleration signal x, and its corresponding
time signal t, we can begin by filtering the signal using a low-pass
filter:

b, a = sm.signal.build_filter(frequency=10,
 sample_rate=100,
 filter_type='low',
 filter_order=4)

x_filtered = sm.signal.filter_signal(b, a, signal=x)

[image: _images/filter.png]
Next, we can detect the peaks (or valleys) in the filtered signal, which
gives us the time and value of each detection. Optionally, we can
include a plot of the signal and detected peaks/valleys:

peak_times, peak_values = sm.peak.find_peaks(time=t, signal=x_filtered,
 peak_type='valley',
 min_val=0.6, min_dist=30,
 plot=True)

[image: _images/peak_detection.png]
From the detected peaks, we can then calculate step metrics like cadence
and step time:

cadence = sm.gait.cadence(time=t, peak_times=peak_times, time_units='ms')
step_mean, step_sd, step_cov = sm.gait.step_time(peak_times=peak_times)

Physical activity counts and intensities can also be calculated from the acceleration data:

x_counts = sm.pa.convert_counts(x, time, integrate='simpson')
y_counts = sm.pa.convert_counts(y, time, integrate='simpson')
z_counts = sm.pa.convert_counts(z, time, integrate='simpson')
vm = sm.signal.vector_magnitude(x_counts, y_counts, z_counts)
categories, time_spent = sm.pa.cut_points(vm, set_name='butte_preschoolers', n_axis=3)

[image: _images/pa_counts.png]
For a more in-depth tutorial, and more workflow examples, please take a look
at the tutorial [https://github.com/sho-87/sensormotion/blob/master/tutorial.ipynb].

I would also recommend looking over the
documentation [http://sensormotion.readthedocs.io] to see other
functionalities of the package.

Contribution

I work on this package in my spare time, on an “as needed” basis for my
research projects. However, pull requests for bug fixes and new features
are always welcome!

Please see the develop
branch [https://github.com/sho-87/sensormotion/tree/develop] for the
development version of the package, and check out the issues
page [https://github.com/sho-87/sensormotion/issues] for bug reports
and feature requests.

Getting Help

You can find the full documentation for the package
here [http://sensormotion.readthedocs.io]

Python’s built-in help function will show documentation for any module
or function: help(sm.gait.step_time)

You’re encouraged to post questions, bug reports, or feature requests as
an issue [https://github.com/sho-87/sensormotion/issues]

Alternatively, ask questions on
Gitter [https://gitter.im/sensormotion/lobby]

Index & Modules

	Index

	Module Index

	Search Page

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sensormotion	

 	
 	
 sensormotion.gait	

 	
 	
 sensormotion.pa	

 	
 	
 sensormotion.peak	

 	
 	
 sensormotion.plot	

 	
 	
 sensormotion.signal	

 	
 	
 sensormotion.utils	

Index

 B
 | C
 | D
 | F
 | I
 | P
 | R
 | S
 | V
 | X

B

 	
 	baseline() (in module sensormotion.signal)

 	
 	build_filter() (in module sensormotion.signal)

C

 	
 	cadence() (in module sensormotion.gait)

 	ceildiv() (in module sensormotion.utils)

 	
 	convert_counts() (in module sensormotion.pa)

 	cut_points() (in module sensormotion.pa)

D

 	
 	detrend_signal() (in module sensormotion.signal)

F

 	
 	fft() (in module sensormotion.signal)

 	
 	filter_signal() (in module sensormotion.signal)

 	find_peaks() (in module sensormotion.peak)

I

 	
 	indexes() (in module sensormotion.peak)

P

 	
 	plot_filter_response() (in module sensormotion.plot)

 	
 	plot_signal() (in module sensormotion.plot)

R

 	
 	rectify_signal() (in module sensormotion.signal)

S

 	
 	sensormotion (module)

 	sensormotion.gait (module)

 	sensormotion.pa (module)

 	sensormotion.peak (module)

 	sensormotion.plot (module)

 	
 	sensormotion.signal (module)

 	sensormotion.utils (module)

 	step_count() (in module sensormotion.gait)

 	step_regularity() (in module sensormotion.gait)

 	step_symmetry() (in module sensormotion.gait)

 	step_time() (in module sensormotion.gait)

V

 	
 	vector_magnitude() (in module sensormotion.signal)

X

 	
 	xcorr() (in module sensormotion.signal)

sensormotion

	Sensor Motion
	Accessing Documentation

	Package Overview

	Module Reference
	sensormotion.gait module

	sensormotion.pa module

	sensormotion.peak module

	sensormotion.plot module

	sensormotion.signal module

	sensormotion.utils module

	setup module

Sensor Motion

Provides tools for analyzing sensor-collected human motion data. This
includes, for example, estimation of gait dynamics from accelerometer data,
and conversion to physical activity (MVPA) counts from acceleration. Also
contains a few useful functions for pre-processing and visualizing
accelerometer signals.

This package was primarily developed for use on Android sensor data collected
at the Attentional Neuroscience Lab (University of British Columbia).

Accessing Documentation

Documentation is available via docstrings provided with the code, and an
online API reference found at
ReadTheDocs [http://sensormotion.readthedocs.io].

To view documentation for a function or module, first make sure the package
has been imported:

>>> import sensormotion as sm

Then, use the built-in help function to view the docstring for any
module or function:

>>> help(sm.gait)

>>> help(sm.peak.find_peaks)

Package Overview

	gait module

	Calculate various types of gait dynamics (cadence, symmetry etc.)

	pa module

	Calculate physical activity (PA) levels with conversion to activity counts

	peak module

	Detect peaks and valleys in a signal

	plot module

	Wrapper functions for creating simple graphs

	signal module

	Signal processing tools such as filtering and cross-correlation

	utils module

	General utility functions used throughout the package

Module Reference

sensormotion.gait module

Calculate gait dynamics.

Functions for the calculation of variance gait dynamics from acceleration
data (e.g. step symmetry, cadence).

	
cadence(time, peak_times, time_units='ms')

	Calculate cadence of the current signal.

Cadence (steps per minute) can be estimated by detecting peaks in the
acceleration vector. Given 1) the duration of the signal and 2) the number
of steps/peaks in the signal, we can calculate an estimate of steps per
minute.

Peak detection provides number of steps within the time frame of the
signal. This is then extrapolated from milliseconds to minutes to estimate
cadence.

	Parameters

	
	time (ndarray) – Time vector of the original acceleration signal. Used to calculate
duration of the input signal.

	peak_times (ndarray) – Time of each peak, returned by sensormotion.peak.find_peaks().
This provides the number of steps within the timeframe of the signal.

	time_units ({‘ms’, ‘s’}, optional) – Units of the time signal.

	Returns

	cadence – Estimated cadence for the input signal.

	Return type

	float

	
step_count(peak_times)

	Count total number of steps in the signal.

This is simply the number of peaks detected in the signal.

	Parameters

	peak_times (ndarray) – Times of the peaks detected by sensormotion.peak.find_peaks().

	Returns

	step_count – Number of steps/peaks in the signal.

	Return type

	int

	
step_regularity(autocorr_peak_values)

	Calculate step and stride regularity from autocorrelation peak values.

Step and stride regularity measures based on
Moe-Nilssen (2004) - Estimation of gait cycle characteristics by trunk
accelerometry [http://www.jbiomech.com/article/S0021-9290(03)00233-1/abstract].

If calculating regularity from acceleration in the vertical axis, this
function receives the detected peaks from the vertical axis
autocorrelation.

However, if calculating regularity from lateral axis
acceleration, you should pass in both peaks and valleys from the
autocorrelation of the lateral axis.

Step regularity:

Perfect step regularity will be 1.0 for vertical axis autocorrelation
(the larger the better, capped at 1.0).

For the lateral axis, perfect regularity is -1.0 (the smaller the
better, capped at -1.0).

Stride regularity:

Perfect stride regularity will be 1.0 for vertical axis autocorrelation
(the larger the better, capped at 1.0).

Lateral axis sign and interpretation are the same as the vertical axis.

	Parameters

	autocorr_peak_values (ndarray) – Values of the autocorrelation peaks/valleys detected by
sensormotion.peak.find_peaks(). This should contain only peak
values when looking at the vertical axis, and both peak and valley
values when looking at the lateral axis.

	Returns

	
	step_reg (float) – Step regularity. Value is capped at 1.0 or -1.0 depending on the
axis of interest.

	stride_reg (float) – Stride regularity. Capped at 1.0 for both vertical and lateral axes.

	
step_symmetry(autocorr_peak_values)

	Calculate step symmetry from autocorrelation peak values.

Step symmetry measures based on Moe-Nilssen (2004) - Estimation of gait
cycle characteristics by trunk accelerometry [http://www.jbiomech.com/article/S0021-9290(03)00233-1/abstract].

If calculating symmetry from acceleration in the vertical axis, this
function receives the detected peaks from the vertical axis
autocorrelation.

However, if calculating symmetry from lateral axis
acceleration, you should pass in both peaks and valleys from the
autocorrelation of the lateral axis.

Perfect step symmetry is 1.0 for the vertical axis - larger values are
more symmetric, capped at 1.0.

Perfect step symmetry is -1.0 for the lateral axis - smaller values are
more symmetric, capped at -1.0.

	Parameters

	autocorr_peak_values (ndarray) – Values of the autocorrelation peaks/valleys detected by
sensormotion.peak.find_peaks(). This should contain only peak
values when looking at the vertical axis, and both peak and valley
values when looking at the lateral axis.

	Returns

	step_sym – Step symmetry. Value is capped at 1.0 or -1.0 depending on the
axis of interest.

	Return type

	float

	
step_time(peak_times)

	Calculate step timing information.

Step timing can be calculated from the peak times of the original
acceleration signal. This includes mean time between steps,
standard deviation of step time, and the coefficient of
variation (sd/mean).

	Parameters

	peak_times (ndarray) – Times of the peaks detected by sensormotion.peak.find_peaks().

	Returns

	
	step_time_mean (float) – Mean time between all steps/peaks in the signal.

	step_time_sd (float) – Standard deviation of the distribution of step times in the signal.

	step_time_cov (float) – Coefficient of variation. Calculated as sd/mean.

sensormotion.pa module

Calculate physical activity (PA) levels with conversion to activity counts.

Functions for converting raw sensor data to physical activity (PA) or
moderate-to-vigorous physical activity (MVPA) counts, similar to those given
by dedicated accelerometers such as Actigraph devices.

For a uniaxial accelerometer, the signal should first be passed into
sensormotion.pa.convert_counts(), then the counts should categorized
using sensormotion.pa.cut_points().

For a triaxial accelerometer, an additional step is required. Each axis
should first be passed into sensormotion.pa.convert_counts() separately,
then the 3 count vectors should be passed into
sensormotion.signal.vector_magnitude() to calculate vector
magnitude (VM) of the counts. Finally, the single VM vector should be
categorized using sensormotion.pa.cut_points().

	
convert_counts(x, time, time_scale='ms', epoch=60, rectify='full', integrate='simpson', plot=False, fig_size=(10, 5))

	Convert acceleration to physical activity (PA) counts.

Given an acceleration signal over a single axis, integrate the signal
for each time window (epoch). The area under the curve for each epoch is
the physical activity count for that time period.

Linearly interpolated values are used if exact multiples of epoch are
not found in the time signal.

	Parameters

	
	x (ndarray) – Acceleration signal to be converted to PA counts.

	time (ndarray) – Time signal associated with x.

	time_scale ({‘ms’, ‘s’}, optional) – The unit that time is measured in. Either seconds (s) or
milliseconds (ms).

	epoch (int, optional) – The duration of each time window in seconds. Counts will be calculated
over this period. PA counts are usually measured over 60 second
epochs. sensormotion.pa.cut_points() also requires 60 second
epochs, however, if you’re using your own cut point set and just want
raw count values feel free to use any sized epoch.

	rectify ({‘full’, ‘half’}, optional) – Type of rectifier to use on the input acceleration signal. This is to
ensure that PA counts take into consideration negative acceleration
values. Full-wave rectification turns all negative values into
positive ones. Half-wave rectification sets all negative values to
zero.

	integrate ({‘simpson’, ‘trapezoid’}, optional) – Integration method to use for each epoch.

	plot (bool, optional) – Toggle to display a plot of PA counts over time.

	fig_size (tuple, optional) – If plotting, set the width and height of the resulting figure.

	Returns

	counts – PA count values for each epoch.

	Return type

	ndarray

	
cut_points(x, set_name, n_axis, plot=False, fig_size=(10, 5))

	Categorize physical activity (PA) counts into intensity categories.

Use a pre-specified cut-point set to determine the intensity level of each
epoch of PA. Cut-point sets are from published research articles, and a
summary can be found in the Actigraph FAQ:
https://actigraph.desk.com/customer/en/portal/articles/2515803-what-s-the-difference-among-the-cut-points-available-in-actilife

Important: The cut-point sets used here assume each count epoch is 60
seconds long. If you’re using counts from
sensormotion.pa.convert_counts() make sure you had set the value of
epoch to 60. Don’t use this function if you use different length epochs.

	Parameters

	
	x (ndarray) – Vector of counts calculated by sensormotion.pa.convert_counts()
or vector magnitude from sensormotion.signal.vector_magnitude().
This can either be from a single axis or a vector magnitude, but set
the n_axis parameter accordingly.

	set_name ({‘butte_preschoolers’, ‘freedson_adult’, ‘freedson_children’, ‘keadle_women’}) – The name of the cut-point set to use.

These are listed in the Actigraph FAQ, and the corresponding research
article is shown below:

butte_preschoolers: Butte et al. (2013) - Prediction of Energy
Expenditure and Physical Activity in Preschoolers

freedson_adult (uniaxial): Freedson et al. (1998) - Calibration of
the Computer Science and Applications, Inc. accelerometer

freedson_adult (triaxial): Freedson et al. (2011) - Validation and
Comparison of ActiGraph Activity Monitors

freedson_children: Freedson et al. (2005) - Calibration of
accelerometer output for children

keadle_women: Keadle et al. (2014) - Impact of accelerometer data
processing decisions on the sample size, wear time and physical
activity level of a large cohort study

	n_axis ({1, 3}) – Number of axes over which acceleration was recorded (1 = uniaxial,
3 = triaxial accelerometer). This is used to determine the cut-point
set values to use as some sets are for counts over a single axis,
whereas others are thresholds for vector magnitude (calculated from
3 axes).

	plot (bool, optional) – Toggle to display a plot of PA counts with category thresholds marked.

	fig_size (tuple, optional) – If plotting, set the width and height of the resulting figure.

	Returns

	
	category (list) – List of intensity categories for each epoch of PA, as determined by
the cut-point set thresholds.

	time_spent (ndarray) – Amount of time (counts) spent at each PA intensity level.

sensormotion.peak module

Peak detection algorithms.

This modules contains functions for detecting peaks and valleys in signals.
Signals can also be detrended by estimating a baseline prior to peak
detection.

Based on work by
Lucas Hermann Negri [https://pypi.python.org/pypi/PeakUtils].

	
find_peaks(time, signal, peak_type='peak', min_val=0.5, min_dist=25, detrend=0, plot=False, show_grid=True, fig_size=(10, 5))

	Find peaks in a signal.

Calculate and return the peaks and/or valleys of a signal. Can optionally
detrend a signal before peak detection. A plot can be created that
displays the original signal with overlaid peaks and valleys.

	Parameters

	
	time (ndarray) – Time vector (X-axis) component of the input signal.

	signal (ndarray) – Value (Y-axis) of the signal over time.

	peak_type ({‘peak’, ‘valley’, ‘both’}, optional) – Type of peaks to be detected. peak will return positive peaks.
valley will return negative peaks. both will return both peaks and
valleys. Peak indices are calculated by calling
sensormotion.peak.indexes().

	min_val (float between [0., 1.], optional) – Normalized threshold. Only the peaks with amplitude higher than the
threshold will be detected.

	min_dist (int, optional) – Minimum distance between each detected peak. The peak with the highest
amplitude is preferred to satisfy this constraint.

	detrend (int, optional) – Degree of the polynomial that will estimate the data baseline. A low
degree may fail to detect all the baseline present, while a high
degree may make the data too oscillatory, especially at the edges. A
value of 0 will not apply any baseline detrending. The baseline for
detrending is calculated by sensormotion.signal.baseline().

	plot (bool, optional) – Toggle to create a plot of the signal with peaks/valleys overlaid.

	show_grid (bool, optional) – If creating a plot, toggle to show grid lines

	fig_size (tuple, optional) – If creating a plot, set the width and height of the resulting figure.

	Returns

	
	peak_times (ndarray) – Array containing the time of each peak.

	peak_values (ndarray) – Array containing the value of each peak.

	signal_detrended (ndarray, optional) – If detrend has been selected (detrend > 0), an additional array is
returned containing the detrended signal.

	
indexes(y, thres=0.3, min_dist=1)

	Peak detection routine.

Finds the numeric index of the peaks in y by taking its first order
difference. By using thres and min_dist parameters, it is possible to
reduce the number of detected peaks. y must be signed.

	Parameters

	
	y (ndarray (signed)) – 1D amplitude data to search for peaks.

	thres (float between [0., 1.]) – Normalized threshold. Only the peaks with amplitude higher than the
threshold will be detected.

	min_dist (int) – Minimum distance between each detected peak. The peak with the highest
amplitude is preferred to satisfy this constraint.

	Returns

	peak_indexes – Array containing the numeric indexes of the peaks that were detected

	Return type

	ndarray

sensormotion.plot module

Matplotlib plotting functions.

Convenience wrappers around common matplotlib pyplot plot calls. This module
simplifies the creation of filter frequency response curves and general
signal plots over time.

	
plot_filter_response(frequency, sample_rate, filter_type, filter_order=2, show_grid=True, fig_size=(10, 5))

	Plot filter frequency response.

Generate a plot showing the frequency response curve of a filter with the
specified parameters.

	Parameters

	
	frequency (int or tuple of ints) – The cutoff frequency for the filter. If filter_type is set as
‘bandpass’ then this needs to be a tuple of integers representing
the lower and upper bound frequencies. For example, for a bandpass
filter with range of 2Hz and 10Hz, you would pass in the tuple (2, 10).
For filter types with a single cutoff frequency then a single integer
should be used.

	sample_rate (float) – Sampling rate of the signal.

	filter_type ({‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}) – Type of filter to build.

	filter_order (int, optional) – Order of the filter.

	show_grid (bool, optional) – Toggle to show grid lines on the plot.

	fig_size (tuple, optional) – Tuple containing the width and height of the resulting figure.

	
plot_signal(time, signal, title='', xlab='', ylab='', line_width=1, alpha=1, color='k', subplots=False, show_grid=True, fig_size=(10, 5))

	Plot signals over time.

Convenience wrapper around pyplot to quickly create plots of signals
over time. This is useful if you want to avoid remembering the syntax
for matplotlib.

	Parameters

	
	time (ndarray) – Time vector of the signal (X-axis)

	signal (ndarray or list of dicts) – If plotting a single line, you can pass in a single array.

If you want to plot multiple lines (either on the same plot, or as
subplots) you should pass in a list of dictionaries. Each dictionary
represents a separate line and contains options for that line. The
dictionary can hold the follow keys: ‘data’ (required), ‘label’,
‘color’, ‘alpha’, ‘line_width’.

For example, a 2 line plot can be created like this:

>>> plot.plot_signal(time_array, [{'data': line1_data,
 'label': 'line 1',
 'color': 'b'},
 {'data': line2_data,
 'label': 'second line',
 'line_Width': 4}])

	title (str, optional) – Title of the plot.

	xlab (str, optional) – Label for the x axis.

	ylab (str, optional) – Label for the y axis.

	line_width (int or float, optional) – Width of the plot lines.

	alpha (int or float, optional) – Alpha of the plot lines.

	color (str, optional) – Colour of the plot lines. Receives a string following the matplotlib
colors API: http://matplotlib.org/api/colors_api.html

	subplots (bool, optional) – If multiple lines are passed in, should they be displayed on the same
plot (False)? Or should each be displayed in separate subplots (True)?

	show_grid (bool, optional) – Toggle to display grid lines on the plot.

	fig_size (tuple, optional) – Set the figure size of the resulting plot.

sensormotion.signal module

Signal-processing functions.

Functions for pre-processing signals (e.g. filtering, cross-correlation).
Mostly wrappers around numpy/scipy functions, but with some sane defaults and
calculation of required values (e.g. Nyquist frequency and associated cutoff).

	
baseline(y, deg=None, max_it=None, tol=None)

	Computes the baseline of a given data.

Iteratively performs a polynomial fitting in the data to detect its
baseline. At every iteration, the fitting weights on the regions with
peaks are reduced to identify the baseline only.

	Parameters

	
	y (ndarray) – Data to detect the baseline.

	deg (int) – Degree of the polynomial that will estimate the data baseline. A low
degree may fail to detect all the baseline present, while a high
degree may make the data too oscillatory, especially at the edges.

	max_it (int) – Maximum number of iterations to perform.

	tol (float) – Tolerance to use when comparing the difference between the current
fit coefficients and the ones from the last iteration. The iteration
procedure will stop when the difference between them is lower than
tol.

	Returns

	baseline – Array with the baseline amplitude for every original point in y

	Return type

	ndarray

	
build_filter(frequency, sample_rate, filter_type, filter_order)

	Build a butterworth filter with specified parameters.

Calculates the Nyquist frequency and associated frequency cutoff, and
builds a Butterworth filter from the parameters.

	Parameters

	
	frequency (int or tuple of ints) – The cutoff frequency for the filter. If filter_type is set as
‘bandpass’ then this needs to be a tuple of integers representing
the lower and upper bound frequencies. For example, for a bandpass
filter with range of 2Hz and 10Hz, you would pass in the tuple (2, 10).
For filter types with a single cutoff frequency then a single integer
should be used.

	sample_rate (float) – Sampling rate of the signal.

	filter_type ({‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}) – Type of filter to build.

	filter_order (int, optional) – Order of the filter.

	Returns

	
	b (ndarray) – Numerator polynomials of the IIR filter.

	a (ndarray) – Denominator polynomials of the IIR filter.

	
detrend_signal(signal, degree)

	Detrend a signal.

Detrends a signal using a polynomial fit with the specified degree.

	Parameters

	
	signal (ndarray) – Signal values to detrend.

	degree (int) – Degree of the polynomial that will estimate the data baseline. A low
degree may fail to detect all the baseline present, while a high
degree may make the data too oscillatory, especially at the edges. A
value of 0 will not apply any baseline detrending. The baseline for
detrending is calculated by sensormotion.signal.baseline().

	Returns

	detrended_signal – Detrended form of the original signal.

	Return type

	ndarray

	
fft(signal, sampling_rate, plot=False, show_grid=True, fig_size=(10, 5))

	Perform FFT on signal.

Compute 1D Discrete Fourier Transform using Fast Fourier Transform.
Optionally, plot the power spectrum of the frequency domain.

	Parameters

	
	signal (ndarray) – Input array to be transformed.

	sampling_rate (float) – Sampling rate of the input signal.

	plot (bool, optional) – Toggle to display a plot of the power spectrum.

	show_grid (bool, optional) – If creating a plot, toggle to show grid lines on the figure.

	fig_size (tuple, optional) – If plotting, set the width and height of the resulting figure.

	Returns

	signal_fft – Transformation of the original input signal.

	Return type

	ndarray

	
filter_signal(b, a, signal)

	Filter a signal.

Simple wrapper around scipy.signal.filtfilt() to apply a
foward-backward filter to preserve phase of the input. Requires the
numerator and denominator polynomials from
sensormotion.signal.build_filter().

	Parameters

	
	b (ndarray) – Numerator polynomial coefficients of the filter.

	a (ndarray) – Denominator polynomial coefficients of the filter.

	signal (ndarray) – Input array to be filtered.

	Returns

	signal_filtered – Filtered output of the original input signal.

	Return type

	ndarray

	
rectify_signal(signal, rectifier_type='full', plot=False, show_grid=True, fig_size=(10, 5))

	Rectify a signal.

Run a signal through a full or half-wave rectifier. Optionally plot the
resulting signal.

	Parameters

	
	signal (ndarray) – Input signal to be rectified.

	rectifier_type ({‘full’, ‘half’}, optional) – Type of rectifier to use. Full-wave rectification turns all negative
values into positive ones. Half-wave rectification sets all negative
values to zero.

	plot (bool, optional) – Toggle to display a plot of the rectified signal.

	show_grid (bool, optional) – If creating a plot, toggle to show grid lines on the figure.

	fig_size (tuple, optional) – If plotting, set the width and height of the resulting figure.

	Returns

	output – Rectified signal.

	Return type

	ndarray

	
vector_magnitude(*args)

	Calculate the vector magnitude/euclidean norm of multiple vectors.

Given an arbitrary number of input vectors, calculate the vector
magnitude/euclidean norm using the Pythagorean theorem.

	Parameters

	*args (ndarray) – Each parameter is a numpy array representing a single vector. Multiple
vectors can be passed in, for example, vector_magnitude(x, y, z)

	Returns

	vm – Vector magnitude across all input vectors.

	Return type

	ndarray

	
xcorr(x, y, scale='none', plot=False, show_grid=True, fig_size=(10, 5))

	Cross-correlation between two 1D signals.

Calculate the cross-correlation between two signals for all time lags
(forwards and backwards). If the inputs are different lengths, zeros will
be appended to the shorter input.

All 4 scaling options (none, biased, unbiased, and coeff)
reproduce the output from MATLAB’s xcorr() function.

Optionally, plots can be created to visualize the cross-correlation values
at each lag.

	Parameters

	
	x (ndarray) – First input signal.

	y (ndarray) – Second input signal. Pass in x again for autocorrelation.

	scale ({‘none’, ‘biased’, ‘unbiased’, ‘coeff’}, optional) – Scaling options for the cross-correlation values. Replicates MATLAB’s
options for scaling.

	plot (bool, optional) – Toggle to display a plot of the cross-correlations.

	show_grid (bool, optional) – If creating a plot, toggle to show grid lines on the figure.

	fig_size (tuple, optional) – If plotting, set the width and height of the resulting figure.

	Returns

	
	corr (ndarray) – Cross-correlation values.

	lags (ndarray) – Lags for the cross-correlations.

sensormotion.utils module

Utility functions used across the rest of the package.

	
ceildiv(a, b)

	Ceiling division.

Divide and round up the result.

	Parameters

	
	a (int or float) – dividend (numerator) to be divided.

	b (int or float) – divisor (denominator) to divide by.

	Returns

	result – quotient of the division, rounded up to the nearest integer.

	Return type

	float

setup module

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/peak_detection.png
Peak Detection (val: 0.

dist: 10)

+ 20peaks

I

2000

000
Time

00

000

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Sensor Motion

_images/filter.png
Antero-posterior (AP) - forwards backwards

2000

00

00

a000

10600

_images/pa_counts.png
Physical activity counts and intensity

PA count

Epoch (length: 60 seconds)

