

 Navigation

 	
 index

 	
 next |

 	semidbm 0.5.1 documentation

Semidbm

Semidbm is a fast, pure python implementation of a dbm, which is a
persistent key value store. It allows you to get and set keys through
a dict interface:

import semidbm
db = semidbm.open('testdb', 'c')
db['foo'] = 'bar'
print db['foo']
db.close()

These values are persisted to disk, and you can later retrieve
these key/value pairs:

Then at a later time:
db = semidbm.open('testdb', 'r')
prints "bar"
print db['foo']

It was written with these things in mind:

	Pure python, supporting python 2.6, 2.7, 3.3, and 3.4.

	Cross platform, works on Windows, Linux, Mac OS X.

	Supports CPython, pypy, and jython (versions 2.7-b3 and higher).

	Simple and Fast (See Benchmarking Semidbm).

Post feedback and issues on
github issues [https://github.com/jamesls/semidbm/issues], or check out the
latest changes at the github repo [https://github.com/jamesls/semidbm].

Topics

	An Overview of Semidbm
	Using Semidbm

	SemiDBM Details
	Writing a Value

	Reading Values

	Data Verification

	Read Only Mode

	Benchmarking Semidbm
	Benchmarking Approach

	Benchmark Results

	Changelog
	0.5.1

	0.5.0

	0.4.0

	0.3.1

	0.3.0

	0.2.1

	0.2.0

Developer Documentation

	API for semidbm

	File Format of DB file
	Abstract

	Motivation

	Specification

	Header

	Entries

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	semidbm 0.5.1 documentation

An Overview of Semidbm

The easiest way to think of semidbm is as an improvement over python’s
dumbdbm [http://docs.python.org/library/dumbdbm.html] module.

While the standard library has faster dbms based on well established C
libraries (GNU dbm, Berkeley DB, ndbm), dumbdbm is the only pure python
portable dbm in the standard library.

Semidbm offers a few improvements over dumbdbm including:

	Better overall performance (more on this later).

	Only a single file is used (no separate index and data file).

	Data file compaction. Free space can be reclaimed (though this
only happens whenever explicitly asked to do so
using the compact() method).

	Get/set/delete are require O(1) IO.

Like dumbdbm, semidbm is cross platform. It has been tested on:

	Linux (Ubuntu 11.10, debian)

	Mac OS X (Lion/Mountain Lion)

	Windows 7/8.

There are also a few caveats to consider when using semidbm:

	The entire index must fit in memory, this means all keys must
fit in memory.

	Not thread safe; can only be accessed by a single process.

	While the performance is reasonable, it still will not beat one of the
standard dbms (GNU dbm, Berkeley DB, etc).

Using Semidbm

To create a new db, specify the name of the directory:

import semidbm
db = semidbm.open('mydb', 'c')

This will create a mydb directory. This directory is where semidbm will
place all the files it needs to keep track of the keys and values stored in the
db. If the directory does not exist, it will be created.

Once the db has been created, you can get and set values:

db['key1'] = 'value1'
print db['key1']

Keys and values can be either str or bytes.

str types will be encoded to utf-8 before writing to disk.
You can avoid this encoding step by providing a byte string
directly:

db[b'key1'] = b'value1'

Otherwise, semidbm will do the equivalent of:

db['key1'.encode('utf-8')] = 'value1'.encode('utf-8')

It is recommended that you handle the encoding of your strings
in your application, and only use bytes when working with
semidbm. The reason for this is that when a value
is retrieved, it is returned as a bytestring (semidbm can’t
know the encoding of the bytes it retrieved). For example (this
is with python 3.3):

>>> db['foo'] = 'value'
>>> db['foo']
b'value'
>>> db['kēy'] = 'valueē'
>>> db['kēy']
b'value\xc4\x93'

To avoid this confusion, encode your strings before storing with
with semidbm.

The reason this automatic conversion is supported is that this is
what is done with the DBMs in the python standard library (including
dumbdbm which this module was intended to be a drop in replacement
for). In order to be able to be a drop in replacement, this
automatic encoding process needs to be supported (but not recommended).

 Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	semidbm 0.5.1 documentation

SemiDBM Details

This guide goes into the details of how semidbm works.

Writing a Value

One of the key characteristics of semidbm is that it only writes to the end of
a file. Once data has been written to a file, it is never changed. This
makes it easy to guarantee that once the data is written to disk, you can be
certain that semidbm will not corrupt the data. This also makes semidbm
simpler because we don’t have to worry about how to modify data in a way that
prevents corruption in the event of a crash.

Even updates to existing values are written as new values at the end of
a file. When the data file is loaded, these transactions are “replayed”
so that the last change will “win”. For example, given these operations:

add key "foo" with value "bar"
add key "foo2" with value "bar2"
delete key "foo2"
add key "foo" with value "new value"

this would represent a dictionary that looked like this:

{"foo": "new value"}

Note

This is just the conceptual view of the transactions. The actual
format is a binary format specified in File Format of DB file.

You can imagine that a db with a large number of updates can cause
the file to grow to a much larger size than is needed. To reclaim
fixed space, you can use the compact() method. This will
rewrite the data file is the shortest amount of transactions
needed. The above example can be compacted to:

add key "foo" with value "new value"

When a compaction occurs, a new data file is written out (the original
data file is left untouched). Once all the compacted data has been
written out to the new data file (and fsync’d!), the new data file
is renamed over the original data file, completing the compaction.
This way, if a crash occurs during compaction, the original data file
is not corrupted.

Reading Values

The index that is stored in memory does not contain the actual
data associated with the key. Instead, it contains the location
within the file where the value is located, conceptually:

db = {'foo': DiskLocation(offset=40, size=10)}

When the value for a key is requested, the offset and size are looked
up. A disk seek is performed and a read is performed for the
specified size associated with the value. This translates to
2 syscalls:

lseek(fd, offset, os.SEEKSET)
data = read(fs, value_size)

Data Verification

Every write to a semidbm db file also includes a crc32 checksum.
When a value is read from disk, semidbm can verify this crc32 checksum.
By default, this verification step is turned off, but can be enabled using the
verify_checksums argument:

>>> db = semidbm.open('dbname', 'c', verify_checksums=True)

If a checksum error is detected a DBMChecksumError is raised:

>>> db[b'foo']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "./semidbm/db.py", line 192, in __getitem__
 return self._verify_checksum_data(key, data)
 File "./semidbm/db.py", line 203, in _verify_checksum_data
 "Corrupt data detected: invalid checksum for key %s" % key)
semidbm.db.DBMChecksumError: Corrupt data detected: invalid checksum for key b'foo'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "./semidbm/db.py", line 192, in __getitem__
 return self._verify_checksum_data(key, data)
 File "./semidbm/db.py", line 203, in _verify_checksum_data
 "Corrupt data detected: invalid checksum for key %s" % key)
semidbm.db.DBMChecksumError: Corrupt data detected: invalid checksum for key b'foo'

Read Only Mode

SemiDBM includes an optimized read only mode. If you know you only
want to read values from the database without writing new values you
can take advantage of this optimized read only mode. To open a db
file as read only, use the 'r' option:

db = semidbm.open('dbname', 'r')

 Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	semidbm 0.5.1 documentation

Benchmarking Semidbm

Semidbm was not written to be the fastest dbm available, but its performance is
surprisingly well for a pure python dbm. Before showing the benchmark results,
it’s important to note that these benchmark results can vary across machines
and should in no way be considered definitive nor comprehensive. And yes,
there are other things besides performance that are important when considering
a dbm.

Benchmarking Approach

The benchmarks used for semidbm are based off the benchmark scripts for
leveldb [http://code.google.com/p/leveldb/]. You can run the benchmark
scripts yourself using the scripts/benchmark script in the repo. By default,
the benchmark uses a db of one million keys with 16 byte keys and 100 byte
values (these are the values used for leveldb’s benchmarks). All of these
parameters can be changed via command line arugments (-n, -k, -s
respectively).

The benchmark script is written in a way to be compatible with any module
supporting the dbm interface. Given the dbm interface isn’t entirely
standardized, this is what is required:

	An open() function in the module (that behaves like
dumbdbm.open [http://docs.python.org/library/dumbdbm.html#dumbdbm.open],
gdbm.open [http://docs.python.org/library/gdbm.html#gdbm.open], etc).

	The returned object from open() is a “dbm” like object. All the object
needs to support is __getitem__, __setitem__, __delitem__, and
close().

To specify what dbm module to use, use the -d argument. The value of this
argument should the module name of the dbm, for example, to run the benchmarks
against semidbm:

scripts/benchmark -d semidbm

The -d argument can be specified multiple times.

If a dbm does not support a dbm interface, an adapter module can be written for
the dbm. The directory scripts/adapters is added to sys.path before the
benchmarks are run, so benchmarking a 3rd party dbm is straightforward. For
example, in order to benchmark Berkeley DB using the bsddb3 module, a
scripts/adapters/bdb_minimal.py file was created:

import bsddb3.db
def open(filename, mode):
 db = bsddb3.db.DB(None)
 if mode == 'r':
 flags = bsddb3.db.DB_RDONLY
 elif mode == 'rw':
 flags = 0
 elif mode == 'w':
 flags = bsddb3.db.DB_CREATE
 elif mode == 'c':
 flags = bsddb3.db.DB_CREATE
 elif mode == 'n':
 flags = bsddb3.db.DB_TRUNCATE | bsddb3.db.DB_CREATE
 else:
 raise bsddb3.db.DBError(
 "flags should be one of 'r', 'w', 'c' or 'n' or use the "
 "bsddb.db.DB_* flags")
 db.open(filename, None, bsddb3.db.DB_HASH, flags)
 return db

The bsddb3.db.DB [http://www.jcea.es/programacion/pybsddb_doc/db.html]
object can now be benchmarked using:

scripts/benchmark -d bdb_minimal

Benchmark Results

Below are the results of benchmarking various dbms.
Although scripts/benchmark shows the results in various forms of measurement,
the measurement chosen here is the average number of operations per second over
the total number of keys. For this measurement, higher is better.

The dbms chosen for this benchmark are:

	semidbm

	gdbm (GDN dbm)

	bdb (minimal Berkeley DB interface, scripts/adapaters/bdb_minimal.py)

	dumbdbm

The dbm module was not included because it was not able to add 1000000 to its
db, it raises an exception around 420000 keys with an “Out of overflow pages”
error.

This first benchmark shows the ops/sec for adding one million keys to the db.

[image: _images/fill_sequential.png]
The second benchmark shows the ops/sec for repeatedly accessing 1% of the keys
(randomly selected).

[image: _images/read_hot.png]
The next benchmark shows the ops/sec for reading all one million keys in the
same order that they were added.

[image: _images/read_sequential.png]
The next benchmark shows the ops/sec for reading all one million keys in a
randomly selected order.

[image: _images/read_random.png]
And the last benchmark shows the ops/sec for deleting all one million keys in
the same order that they were added.

[image: _images/delete_sequential.png]
Note that dumbdbm is not shown in the chart above. This is because deletion of
keys in dumbdbm is extremely slow. It also appears to have O(n) behavior (it
writes out its data file on every delete). To give you an idea of the
performance, running this benchmark against dumbdbm with 1000 keys gave an
average ops/sec for the delete_sequential benchmark of 800. For 10000
keys dumbdbm resulted in 104 ops/sec.

The table below shows the actual numbers for the charts above.

	
	semidbm
	gdbm
	bdb
	dumbdbm

	fill_sequential
	73810
	63177
	73614
	5460

	read_hot
	218651
	202432
	200111
	59569

	read_sequential
	257668
	417320
	209696
	62605

	read_random
	219962
	406594
	197690
	59258

	delete_sequential
	144265
	119167
	135137
	0

Benchmarking With Large Values

One area where semidbm benchmarks really well is when dealing with large
values. The same 5 benchmarks were repeated, but with only 1000 total keys,
16 byte keys, and 100000 byte values.

The first benchmark shows the ops/sec for 1000 sequential writes.

[image: _images/large_fill_sequential.png]
The second benchmark shows the ops/sec for repeatedly accessing 1% of the keys
(randomly selected).

[image: _images/large_read_hot.png]
The third benchmark shows the ops/sec for sequentially reading all 1000 keys.

[image: _images/large_read_sequential.png]
The fourth benchmark shows the ops/sec for reading all 1000 keys in a
randomly selected order.

[image: _images/large_read_random.png]
And the last benchmark shows the ops/sec for deleting all 1000 keys in
the same order that they were added.

[image: _images/large_delete_sequential.png]
Below is the raw data used to generate the above charts.

	n=1000,k=16,v=100000
	semidbm
	dbm
	gdbm
	bdb_minimal
	dumbdbm

	fill_sequential
	2653
	2591
	5525
	4677
	1330

	read_hot
	61016
	8363
	23104
	11782
	31624

	read_sequential
	42421
	8822
	1508
	11519
	26757

	read_random
	42133
	8720
	16442
	11162
	23778

	delete_sequential
	141379
	21167
	17695
	7267
	780

You can see that with the exception of fill_sequential (in which the fastest
module, gdbm, was roughly twice as fast as semidbm), semidbm completely
outperforms all the other dbms. In the case of read_sequential, semidbm’s 28
times faster than gdbm.

Overall, semidbm’s performance is comparable to the performance of other dbms
with small keys and values, but is surprisingly faster than other dbms when
reading large values. It’s also clear that semidbm is faster than dumbdbm is all
of the benchmarks shown here.

Running the Benchmarks

You are encouraged to run the benchmarks yourself, to recreate the benchmark
above, you can run:

scripts/benchmark -d semidbm -d gdbm -d bdb_minimal -d dumbdbm

Though keep in mind that you will probably want to stop the benchmark
once dumbdbm reaches the delete_sequential benchmark. Either that or you can
leave off dumbdbm and run it with a smaller number of keys:

scripts/benchmark -d dumbdbm -n 10000

 Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	semidbm 0.5.1 documentation

Changelog

0.5.1

	Remove unused code.

	Add support for wheels.

0.5.0

	Remove mmap read only dbm subclass. This functionality
has not been available in a public interface since
b265e60c5f4c0b1e8e9e4343f5f2300b5e017bf0 (1.5 years ago)
so it’s now removed.

	Added non mmap based dbm loader for platforms that do not
support mmap (jython).

	Atomic renames on windows during db compaction.

0.4.0

0.4.0 is a backwards incompatible release with 0.3.1.
Data files created with 0.3.1 will not work with 0.4.0.
The reasons for switching to 0.4.0 include:

	Data format switched from ASCII to binary file format,
this resulted in a nice performance boost.

	Index and data file consolidated to a single file, resulting
in improved write performance.

	Checksums are written for all entries. Checksums can
be verified for every __getitem__ call (off by default).

	Python 3 support (officially python 3.3.x).

0.3.1

	Windows support.

0.3.0

	The data file and the index file are kept in a separate directory. To load
the the db you specify the directory name instead of the data filename.

	Non-mmapped read only version is used when the db is opened with r.

	Write performance improvements.

0.2.1

	DB can be opened with r, c, w, and n.

	Add a memory mapped read only implementation for reading
from the DB (if your entire data file can be mmapped this
provides a huge performance boost for reads).

	Benchmark scripts rewritten to provide more useful information.

0.2.0

	New sync() method to ensure data is written to disk.
	sync() is called during compaction and on close().

	Add a DBMLoadError exception for catching semidbm loading errors.

 Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	semidbm 0.5.1 documentation

API for semidbm

	
semidbm.db.open(filename, flag='r', mode=438, verify_checksums=False)[source]

	Open a semidbm database.

	Parameters:	
	filename – The name of the db. Note that for semidbm,
this is actually a directory name. The argument is named
filename to be compatible with the dbm interface.

	flag – Specifies how the db should be opened.
flag can be any of these values:

	Value
	Meaning

	'r'
	Open existing database for reading only
(default)

	'w'
	Open existing database for reading and
writing

	'c'
	Open database for reading and writing,
creating it if it doesn’t exist

	'n'
	Always create a new, empty database, open
for reading and writing

	mode – Not currently used (provided to be compatible with
the dbm interface).

	verify_checksums – Verify the checksums for each value
are correct on every __getitem__ call (defaults to False).

	
class semidbm.db._SemiDBM(dbdir, renamer, data_loader=None, verify_checksums=False)[source]

	

	Parameters:	dbdir – The directory containing the dbm files. If the directory
does not exist it will be created.

	
close(compact=False)[source]

	Close the db.

The data is synced to disk and the db is closed.
Once the db has been closed, no further reads or writes
are allowed.

	Parameters:	compact – Indicate whether or not to compact the db
before closing the db.

	
compact()[source]

	Compact the db to reduce space.

This method will compact the data file and the index file.
This is needed because of the append only nature of the index
and data files. This method will read the index and data file
and write out smaller but equivalent versions of these files.

As a general rule of thumb, the more non read updates you do,
the more space you’ll save when you compact.

	
keys()[source]

	Return all they keys in the db.

The keys are returned in an arbitrary order.

	
sync()[source]

	Sync the db to disk.

This will flush any of the existing buffers and
fsync the data to disk.

You should call this method to guarantee that the data
is written to disk. This method is also called whenever
the dbm is close()‘d.

 Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 previous |

 	semidbm 0.5.1 documentation

File Format of DB file

	author:	James Saryerwinnie

	status:	Draft

	target-version:	0.4.0

	date:	April 15, 2013

Abstract

This document proposes a new file format for semidbm. This is a backwards
incompatible change.

Motivation

When python3 support was added, semidbm received a significant performance
degredation. This was mainly due to the str vs. bytes differentiation, and
the fact that semidbm was a text based format. All of the integer sizes and
checksum information was written as ASCII strings, and as a result, encoding
the string to a byte sequence added additional overhead.

In order to improve performance, semidbm should adopt a binary format,
specifically the sizes of the keys and values as well as the checksums should
be written as binary values. This will avoid the need to use string formatting
when writing values. It will also improve the load time of a db file.

Specification

A semidbm file will consist of a header and a sequence of entries.
All multibyte sequences are writteni network byte order.

Header

The semidbm header format consists of:

	4 byte magic number (53 45 4d 49)

	4 byte version number consisting of 2 byte major version and 2 byte
minor version (currently (1, 1)).

Entries

After the header, the file contains a sequence of
entries. Each entry has this format:

	4 byte key size

	4 byte value size

	Key contents

	Value content

	4 byte CRC32 checksum of Key + Value

If a key is deleted it will have a value size of -1 and no value content.

 Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	semidbm 0.5.1 documentation

Index

 _
 | C
 | K
 | O
 | S

_

 	

 	_SemiDBM (class in semidbm.db)

C

 	

 	close() (semidbm.db._SemiDBM method)

 	

 	compact() (semidbm.db._SemiDBM method)

K

 	

 	keys() (semidbm.db._SemiDBM method)

O

 	

 	open() (in module semidbm.db)

S

 	

 	sync() (semidbm.db._SemiDBM method)

 Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

 _static/minus.png

_static/comment-bright.png

_images/read_hot.png
ops/sec

200000

15000

150000

125000

100000

75000

50000

25000

read_hot(num_keys=1000000, keysize=16, valsize=100)

semidom

Gumbdbm

_images/fill_sequential.png
fill_sequential(num_keys=1000000, keysize=16, valsize=100)

75000

50000

opsfsec

25000

Gumbdbm

semidom

search.html

 Navigation

 		
 index

 		semidbm 0.5.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		semidbm 0.5.1 documentation »

 All modules for which code is available

		semidbm.db

 © Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

_images/large_fill_sequential.png
ops_per_second

5520

968

w16

2

312

2760

208

1656

104

=2

fll_sequential(numkeys=1000 keysize=16,valsize=100000)

semidom bab_minimal

Gumbdbm

_static/plus.png

_static/down.png

_modules/semidbm/db.html

 Navigation

 		
 index

 		semidbm 0.5.1 documentation »

 		Module code »

 Source code for semidbm.db

"""An only semi-dumb DBM.

This module is an attempt to do slightly better than the
standard library's dumbdbm. It keeps a similar design
to dumbdbm while improving and fixing some of dumbdbm's
problems.

"""
import os
import sys
from binascii import crc32
import struct

from semidbm.exceptions import DBMLoadError, DBMChecksumError, DBMError
from semidbm.loaders import _DELETED, FILE_FORMAT_VERSION, FILE_IDENTIFIER
from semidbm import compat

_open = compat.file_open

[docs]class _SemiDBM(object):
 """

 :param dbdir: The directory containing the dbm files. If the directory
 does not exist it will be created.

 """
 def __init__(self, dbdir, renamer, data_loader=None,
 verify_checksums=False):
 self._renamer = renamer
 self._data_loader = data_loader
 self._dbdir = dbdir
 self._data_filename = os.path.join(dbdir, 'data')
 # The in memory index, mapping of key to (offset, size).
 self._index = None
 self._data_fd = None
 self._verify_checksums = verify_checksums
 self._current_offset = 0
 self._load_db()

 def _create_db_dir(self):
 if not os.path.exists(self._dbdir):
 os.makedirs(self._dbdir)

 def _load_db(self):
 self._create_db_dir()
 self._index = self._load_index(self._data_filename)
 self._data_fd = os.open(self._data_filename, compat.DATA_OPEN_FLAGS)
 self._current_offset = os.lseek(self._data_fd, 0, os.SEEK_END)

 def _load_index(self, filename):
 # This method is only used upon instantiation to populate
 # the in memory index.
 if not os.path.exists(filename):
 self._write_headers(filename)
 return {}
 try:
 return self._load_index_from_fileobj(filename)
 except ValueError as e:
 raise DBMLoadError("Bad index file %s: %s" % (filename, e))

 def _write_headers(self, filename):
 with _open(filename, 'wb') as f:
 # Magic number identifier.
 f.write(FILE_IDENTIFIER)
 # File version format.
 f.write(struct.pack('!HH', *FILE_FORMAT_VERSION))

 def _load_index_from_fileobj(self, filename):
 index = {}
 for key_name, offset, size in self._data_loader.iter_keys(filename):
 size = int(size)
 offset = int(offset)
 if size == _DELETED:
 # This is a deleted item so we need to make sure that this
 # value is not in the index. We know that the key is already
 # in the index, because a delete is only written to the index
 # if the key already exists in the db.
 del index[key_name]
 else:
 if key_name in index:
 index[key_name] = (offset, size)
 else:
 index[key_name] = (offset, size)
 return index

 def __getitem__(self, key, read=os.read, lseek=os.lseek,
 seek_set=os.SEEK_SET, str_type=compat.str_type,
 isinstance=isinstance):
 if isinstance(key, str_type):
 key = key.encode('utf-8')
 offset, size = self._index[key]
 lseek(self._data_fd, offset, seek_set)
 if not self._verify_checksums:
 return read(self._data_fd, size)
 else:
 # Checksum is at the end of the value.
 data = read(self._data_fd, size + 4)
 return self._verify_checksum_data(key, data)

 def _verify_checksum_data(self, key, data):
 # key is the bytes of the key,
 # data is the bytes of the value + 4 byte checksum at the end.
 value = data[:-4]
 expected = struct.unpack('!I', data[-4:])[0]
 actual = crc32(key)
 actual = crc32(value, actual)
 if actual & 0xffffffff != expected:
 raise DBMChecksumError(
 "Corrupt data detected: invalid checksum for key %s" % key)
 return value

 def __setitem__(self, key, value, len=len, crc32=crc32, write=os.write,
 str_type=compat.str_type, pack=struct.pack,
 isinstance=isinstance):
 if isinstance(key, str_type):
 key = key.encode('utf-8')
 if isinstance(value, str_type):
 value = value.encode('utf-8')
 # Write the new data out at the end of the file.
 # Format is
 # 4 bytes 4bytes 4bytes
 # <keysize><valsize><key><val><keyvalcksum>
 # Everything except for the actual checksum + value
 key_size = len(key)
 val_size = len(value)
 keyval_size = pack('!ii', key_size, val_size)
 keyval = key + value
 checksum = pack('!I', crc32(keyval) & 0xffffffff)
 blob = keyval_size + keyval + checksum

 write(self._data_fd, blob)
 # Update the in memory index.
 self._index[key] = (self._current_offset + 8 + key_size,
 val_size)
 self._current_offset += len(blob)

 def __contains__(self, key):
 return key in self._index

 def __delitem__(self, key, len=len, write=os.write, deleted=_DELETED,
 str_type=compat.str_type, isinstance=isinstance,
 crc32=crc32, pack=struct.pack):
 if isinstance(key, str_type):
 key = key.encode('utf-8')
 key_size = pack('!ii', len(key), _DELETED)
 crc = pack('!I', crc32(key) & 0xffffffff)
 blob = key_size + key + crc

 write(self._data_fd, blob)
 del self._index[key]
 self._current_offset += len(blob)

 def __iter__(self):
 for key in self._index:
 yield key

[docs] def keys(self):
 """Return all they keys in the db.

 The keys are returned in an arbitrary order.

 """
 return self._index.keys()

 def values(self):
 return [self[key] for key in self._index]

[docs] def close(self, compact=False):
 """Close the db.

 The data is synced to disk and the db is closed.
 Once the db has been closed, no further reads or writes
 are allowed.

 :param compact: Indicate whether or not to compact the db
 before closing the db.

 """
 if compact:
 self.compact()
 self.sync()
 os.close(self._data_fd)

[docs] def sync(self):
 """Sync the db to disk.

 This will flush any of the existing buffers and
 fsync the data to disk.

 You should call this method to guarantee that the data
 is written to disk. This method is also called whenever
 the dbm is `close()`'d.

 """
 # The files are opened unbuffered so we don't technically
 # need to flush the file objects.
 os.fsync(self._data_fd)

[docs] def compact(self):
 """Compact the db to reduce space.

 This method will compact the data file and the index file.
 This is needed because of the append only nature of the index
 and data files. This method will read the index and data file
 and write out smaller but equivalent versions of these files.

 As a general rule of thumb, the more non read updates you do,
 the more space you'll save when you compact.

 """
 # Basically, compaction works by opening a new db, writing
 # all the keys from this db to the new db, renaming the
 # new db to the filenames associated with this db, and
 # reopening the files associated with this db. This
 # implementation can certainly be more efficient, but compaction
 # is really slow anyways.
 new_db = self.__class__(os.path.join(self._dbdir, 'compact'),
 data_loader=self._data_loader,
 renamer=self._renamer)
 for key in self._index:
 new_db[key] = self[key]
 new_db.sync()
 new_db.close()
 os.close(self._data_fd)
 self._renamer(new_db._data_filename, self._data_filename)
 os.rmdir(new_db._dbdir)
 # The index is already compacted so we don't need to compact it.
 self._load_db()

class _SemiDBMReadOnly(_SemiDBM):
 def __delitem__(self, key):
 self._method_not_allowed('delitem')

 def __setitem__(self, key, value):
 self._method_not_allowed('setitem')

 def sync(self):
 self._method_not_allowed('sync')

 def compact(self):
 self._method_not_allowed('compact')

 def _method_not_allowed(self, method_name):
 raise DBMError("Can't %s: db opened in read only mode." % method_name)

 def close(self, compact=False):
 os.close(self._data_fd)

class _SemiDBMReadWrite(_SemiDBM):
 def _load_db(self):
 if not os.path.isfile(self._data_filename):
 raise DBMError("Not a file: %s" % self._data_filename)

 super(_SemiDBMReadWrite, self)._load_db()

class _SemiDBMNew(_SemiDBM):
 def _load_db(self):
 self._create_db_dir()
 self._remove_files_in_dbdir()
 super(_SemiDBMNew, self)._load_db()

 def _remove_files_in_dbdir(self):
 # We want to create a new DB so we need to remove
 # any of the existing files in the dbdir.
 if os.path.exists(self._data_filename):
 os.remove(self._data_filename)

These renamer classes are needed because windows
doesn't support atomic renames, and I won't want
non-window clients to suffer for this. If you're on
windows, you don't get atomic renames.
class _Renamer(object):
 """An object that can rename files."""
 def __call__(self, from_file, to_file):
 os.rename(from_file, to_file)

Note that this also works on posix platforms as well.
class _WindowsRenamer(object):
 def __call__(self, from_file, to_file):
 # os.rename() does not work if the dst file exists
 # on windows so we have to use our own version that
 # supports atomic renames.
 import semidbm.win32
 semidbm.win32.rename(from_file, to_file)

def _create_default_params(**starting_kwargs):
 kwargs = starting_kwargs.copy()
 # Internal method that creates the parameters based
 # on the choices like platform/available features.
 if sys.platform.startswith('win'):
 renamer = _WindowsRenamer()
 else:
 renamer = _Renamer()
 try:
 from semidbm.loaders.mmapload import MMapLoader
 data_loader = MMapLoader()
 except ImportError:
 # If mmap is not available then fall back to the
 # simple non mmap based file loader.
 from semidbm.loaders.simpleload import SimpleFileLoader
 data_loader = SimpleFileLoader()
 kwargs.update({'renamer': renamer, 'data_loader': data_loader})
 return kwargs

The "dbm" interface is:
#
open(filename, flag='r', mode=0o666)
#
All the other args after this should have default values
so that this function remains compatible with the dbm interface.
[docs]def open(filename, flag='r', mode=0o666, verify_checksums=False):
 """Open a semidbm database.

 :param filename: The name of the db. Note that for semidbm,
 this is actually a directory name. The argument is named
 `filename` to be compatible with the dbm interface.

 :param flag: Specifies how the db should be opened.
 `flag` can be any of these values:

 +---------+---+
 | Value | Meaning |
 +=========+===+
 | ``'r'`` | Open existing database for reading only |
 | | (default) |
 +---------+---+
 | ``'w'`` | Open existing database for reading and |
 | | writing |
 +---------+---+
 | ``'c'`` | Open database for reading and writing, |
 | | creating it if it doesn't exist |
 +---------+---+
 | ``'n'`` | Always create a new, empty database, open |
 | | for reading and writing |
 +---------+---+

 :param mode: Not currently used (provided to be compatible with
 the dbm interface).

 :param verify_checksums: Verify the checksums for each value
 are correct on every __getitem__ call (defaults to False).

 """
 kwargs = _create_default_params(verify_checksums=verify_checksums)
 if flag == 'r':
 return _SemiDBMReadOnly(filename, **kwargs)
 elif flag == 'c':
 return _SemiDBM(filename, **kwargs)
 elif flag == 'w':
 return _SemiDBMReadWrite(filename, **kwargs)
 elif flag == 'n':
 return _SemiDBMNew(filename, **kwargs)
 else:
 raise ValueError("flag argument must be 'r', 'c', 'w', or 'n'")

 © Copyright 2012, James Saryerwinnie Jr.
 Created using Sphinx 1.2b1.

_static/comment.png

_static/ajax-loader.gif

_images/read_sequential.png
ops/sec

read_sequential(num_keys=1000000, keysize=16, valsize=100)

400000
375000
350000
25000
300000
275000
250000
25000
200000
175000
150000
125000
100000

75000

50000

25000

0

semidom

Gumbdbm

_images/large_read_random.png
read_random(numkeys=1000 keysize=16,valsize=100000)
130

917

3704

29091

2278

1 second

' 21065

ops_per

15852

12639

w26

- III
0

semidom bab_minimal _ dumbdbm

_images/read_random.png
ops/sec

read_random(num_keys=1000000, keysize=16, valsize=100)

400000
375000
350000
25000
300000
275000
250000
25000
200000
175000
150000
125000
100000

75000

50000

25000

0

semidom

Gumbdbm

_static/file.png

_images/large_read_hot.png
61010

54309

808

a7

36606

1 second

30505

ops_per

21404

18303

12202

6101

read_hot(numkeys=1000,keysize=16,valsize=100000)

Semidom

bab_minimal

Gumbdbm

_images/delete_sequential.png
delete_sequential(num_keys=1000000, keysize=16, valsize=100)

125000

100000

75000

ops/sec

50000

25000

semidom

Gmbabm

_images/large_read_sequential.png
read_sequential(numkeys=1000 keysize=16,valsize=100000)
2420

3178

3936

29694

1 second

ops_per

¢ wbm

semidom bab_minimal _ dumbdbm

_images/large_delete_sequential.png
delete_sequential(numkeys=1000 keysize=16,valsize=100000)

7282

13104

98366

a8

830

ops_per_second

se552

2414

276

1138

Semidbm dbm gibm ba_minimal _ mbabm

_static/down-pressed.png

