

Semi-Automatic Classification Plugin Documentation

Release 5.3.6.1

Luca Congedo

kesäkuuta 24, 2017

Sisältö

Ι	Introduction	1
1		1
Π	Liitännäisen asennus	5
1	Installation in Windows 32 bit	9
2	Installation in Windows 64 bit	11
3	Installation in Ubuntu Linux	15
4	Installation in Debian Linux	19
5	Installation in Mac OS	23
II	I SCPn käyttöliittymä	27
6	SCP menu	29
7	SCP Tools	31
8	Working toolbar	33
9	SCP dock	37
10	Main Interface Window	49
11	Spectral Signature Plot	121
12	2 Scatter Plot	127
13	SCP Edit Toolbar	133
IV	V Brief Introduction to Remote Sensing	135
	Basic Definitions	139
	5 Supervised Classification Definitions	149
16	• Image conversion to reflectance	161
17	Conversion to Temperature	165

18 References	167
V Perusoppaat	169
19 Tutorial 1	173
20 Tutorial 2	185
21 NASA ARSET Webinar	205
VI Teemalliset käyttöoppaat	207
22 Tutorial: Land Cover Signature Classification	211
23 Tutorial: Estimation of Land Surface Temperature with Landsat and ASTER	221
VII Semi-Automatic OS	243
24 Installation in VirtualBox	247
VIII Frequently Asked Questions	251
25 Plugin installation	255
26 Pre processing	259
27 Processing	261
28 Warnings	263
29 Errors	265
30 Various	269

Osa I

Introduction

Developed by Luca Congedo, the **Semi-Automatic Classification Plugin** (*SCP*) is a free open source plugin for QGIS that allows for the semi-automatic classification (also known as supervised classification) of remote sensing images. It provides several tools for the download of free images, the preprocessing, the postprocessing, and the raster calculation (please see *What can I do with the SCP*? (page 269)).

The **overall objective** of *SCP* is to provide a set of intertwined tools for raster processing in order to make an automatic workflow and ease the land cover classification, which could be performed also by people whose main field is not remote sensing. The first version of the *SCP* was written by Luca Congedo in 2012 for the ACC Dar Project in order to create a tool for the classification of land cover in an affordable and automatic fashion (read this working paper). Following versions of *SCP* were developed as personal commitment to the remote sensing field and open source software. *SCP* version 5 (codename: Kourou) is developed in the frame of Luca Congedo's PhD in Landscape and Environment at Sapienza University of Rome.

http://www.youtube.com/watch?v=K2mIa66e6h0

This **user manual** provides information about the *Liitännäisen asennus* (page 7) of SPC and the *SCPn käyttöliit-tymä* (page 29), with detailed information about all the functions. In addition, the *Brief Introduction to Remote Sensing* (page 137) illustrates the basic concepts and definitions which are required for using the *SCP*.

Perusoppaat (page 171) are available for learning the main functions of *SCP* and *Teemalliset käyttöoppaat* (page 209) illustrate specific tools.

You are kindly invited to **contribute to SCP** (see *How to contribute to SCP* (page 270)) and join the Facebook group or the Google+ Community. Several thousand people have already joined and posted hundreds of questions and comments. Also, please read the *Frequently Asked Questions* (page 253).

For more information and tutorials visit the official site

How to cite:

Congedo Luca (2016). Semi-Automatic Classification Plugin Documentation. DOI: http://dx.doi.org/10.13140/ RG.2.2.29474.02242/1

License:

Except where otherwise noted, content of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

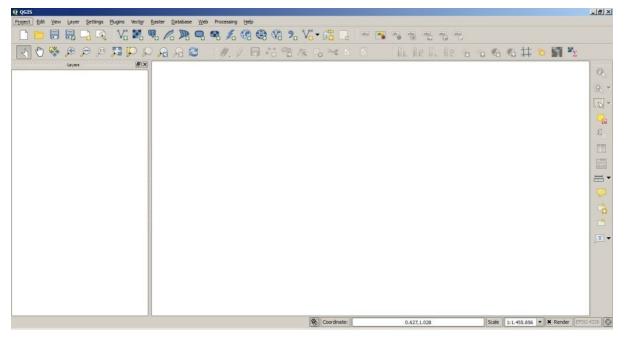
Semi-Automatic Classification Plugin is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License. Semi-Automatic Classification Plugin is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Semi-Automatic Classification Plugin. If not, see http://www.gnu.org/licenses/.

Translators:

Language: Author

Osa II

Liitännäisen asennus


Puoliautomaattinen Luokittelu liitännäinen tarvitsee asennukset GDAL, OGR, NumPy, SciPy ja Matplotlib (ovat mukana QGIS ohjelmassa). Tämä kappale kuvaa Puoliautomaattisen Luokittelu liitännäisen asennuksen tuetuissa käyttöjärjestelmissä.

Installation in Windows 32 bit

QGIS download and installation

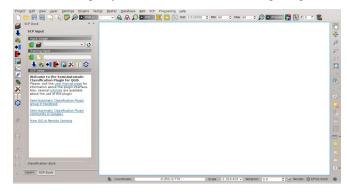
- Download the latest QGIS version 32 bit from here (the direct download of QGIS 2.8 from this link);
- Execute the QGIS installer with administrative rights, accepting the default configuration.

Now, QGIS 2 is installed.

Semi-Automatic Classification Plugin installation

- Run QGIS 2;
- From the main menu, select Plugins > Manage and Install Plugins;

• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;

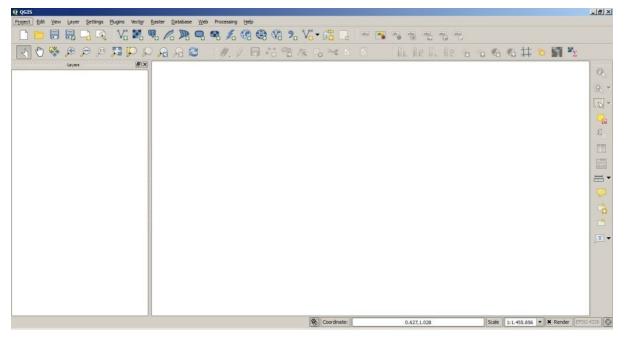

TIP: in case of issues or an offline installation is required see *How to install the plugin manually?* (page 255) and *How to install the plugin from the official SCP repository?* (page 255).

	Remove empty layers from the m	Semi-Automatic Classification Plugin
×	💫 Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the
	🚔 Rss menu	processing of multispectral or hyperspectral remote sensing images, which provides a
	RT MapServer Exporter	set of tools for pre processing and post processing.
	RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-automatic
	🚔 RT QSpider	supervised classification of remote sensing images, providing tools to expedite the creation of ROIs (training
8	RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training areas can be
	Rample Rasters	automatically calculated and displayed in a spectral signature plot. It is possible to import spectral signatures from external sources. Also, a tool allows for the selection and download of spectral signatures
	🚔 SaTSViz	from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Several tools are available for
8	ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification process (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification previews).
	Search & format EPSG CRS Plugin	(Minimum Distance, Maximum Likelinood, Spectral Angle Mapping algorithms, and classification previews), and the post processing phase (conversion to vector, accuracy assessment, land cover change, classification
	SelectPlusFR	ord). This plugan requires the installation of GOAL, OGR, Numpy, Sofy and Maplotith, Also, a virtual المنافر المنظري المنظري المنطق ال خلالتان المنطق الم المناطق المنطق المنط المنطق المنطق المنطق المنطق المنطق المنطق المنطق المنطق المنطق المنطق المنطقة المنطق المنطق المنطق المنطق المنطق المنطق المنطق المنطق المنطق المنطقة المنطقة منطقة المنطقة ا منطقة المنطقة المنطقة منطقة المنطقة المنطقة الم
	SelectTools	
	selenext	
	Semi-Automatic Classification Pl	
Г	Send2GE	
	SENSUM Earth Observation Tools	술술술술 25 rating vote(s), 38811 downloads
	SG Diagram Downloader	
	Shapefile Encoding Fixer	gs: raster,landsat,spectral signature,classification,land cover,accuracy,scatter plot,supervised ssification.dos1.clip.remote sensing.mask,analysis,land cover change
	ShelD8	More info: homepage tracker code repository
	Shortout Manager	Author: Luca Congedo
	shotoobs	Author: Luca Congedo
a 🗆	SimpleReports	Upgrade all Install plugin

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

 A Bod graph fight B Bod graph fight<		RiverGIS	Semi-Automatic Classification Plugin
Rudescoder areas I through region growing or multiple ROI Creation. The "spectral significance" of training and additional of a spectral significance of the sponsore that the spectral significance of the spectral spectrespectral spectrespectres spectral spectral spectral spectral spec	gradeable 🙀	Rss menu RT MapServer Exporter RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-automatic
Res. Auronas Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Auronas Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Auronas Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Auronas Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Auronas Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Statut der Marchanis Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Statut der Marchanis Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Statut der Marchanis Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Statut der Marchanis Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Statut der Marchanis Casaficarung der Landbedeskung Casaficazione della Copertura del Suolo. For more informa Res. Statut der Marchanis Casaficarung der Marchanis der Mar		Sample Rasters SaTSViz SorpRunner Search & format EPSG CRS Plugin SelectPlusFR SelectTools	areas) through region growing or multiple ROI creation. The spectral signatures of training areas can be automatically calculated and displayed in a spectral signature glot. It is possible to import spectral signatures from external sources. Also, a tool allows for the selection and download of spectral signatures the pre processing phase (may calculated and phase). The spectral algorithms, and classification process (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification previews). This plagin requires the installation of GOAL, OGA, Numpy, Schy and Matpolich, Also, a vitual of the tree processing phase (may calculated and phase) and the spectrosci previews). This plagin requires the installation of GOAL, OGA, Numpy, Schy and Matpolich, Also, a vitual of the tree processing base (may calculated and the spectrosci previews).
Shapefie Encoding Fixer Shapefie Encoding Fix	*	Semi-Automatic Classification Pl Send2GE SENSUM Earth Observation Tools SG Diagram Downloader	KlassRizerung der Landbedeckung Classificazione della Copertura del Suolo. For more information please wish thu://fomgintors.blogspoc.cm/ ####################################

Configuration of the plugin


LUKU 2

Installation in Windows 64 bit

QGIS download and installation

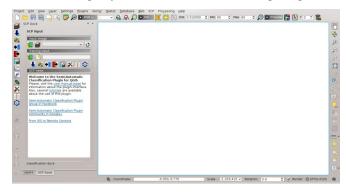
- Download the latest QGIS version 64 bit from here (the direct download of QGIS 2.8 from this link);
- Execute the QGIS installer with administrative rights, accepting the default configuration.

Now, QGIS 2 is installed.

Semi-Automatic Classification Plugin installation

- Run QGIS 2;
- From the main menu, select Plugins > Manage and Install Plugins;

• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;


TIP: in case of issues or an offline installation is required see *How to install the plugin manually?* (page 255) and *How to install the plugin from the official SCP repository?* (page 255).

	Remove empty layers from the m	Semi-Automatic Classification Plugin
led 🗙	Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the
ble	👷 Rss menu	processing of multispectral or hyperspectral remote sensing images, which provides a
ioie	RT MapServer Exporter	set of tools for pre processing and post processing.
	RT Omero	white but we do not a the deal to terrate discussion bits (doo) allow for the series to terrate
	RT QSpider	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-automatic supervised classification of remote sensing images, providing tools to expedite the creation of ROIs (training to expedite the creation of ROIs (tra
	RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training areas can be
	Sample Rasters	automatically calculated and displayed in a spectral signature plot. It is possible to import spectral signatures from external sources. Also, a tool allows for the selection and download of spectral signatures
	SaTSViz	from the USGS Spectral Library (http://speciab.cr.usgs.gov/spectral-lib.html). Several tools are available fo
	ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification process
	Search & format EPSG CRS Plugin	(Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification previews), and the post processing phase (conversion to vector, accuracy assessment, land cover change, classificat
	SelectPlusFR	ond), This plugan requires the installation of GOAL, OGR, Numpy, Softy and Matpiothis, Also, a virtual home is available they/fromgistors. No.pspot.com/jpicemi-automatic-o-hum. Keywords: ±utemB5H載 git ± 地理電力: 計算行 5計 (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)
	SelectTools	
	selenext	
	Semi-Automatic Classification Pl	
	Send2GE	visic rittp://iromgistors.biogspot.com/
	SENSUM Earth Observation Tools	全合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合
	SG Diagram Downloader	
	Shapefile Encoding Fixer	Tags: raster,landsat,spectral signature,classification,land cover,accuracy,scatter plot,supervised classification.dos1.clip.remote sensing.mask.analysis.land cover change
	ShelD8	More info: homepage tracker code repository
	Shortcut Manager	
	shotoobs	Author: Luca Congedo
	SimpleReports	Upgrade all Instal plugin

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

installed		Remove empty layers from the main RiverGIS	Semi-Automatic Classification Plugin
radeable 🛛	×	Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the
tinas	1	Rss menu	processing of multispectral or hyperspectral remote sensing images, which provides a
ungs	1	RT MapServer Exporter	set of tools for pre processing and post processing.
	1	RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-automatic
	1	RT QSpider	supervised classification of remote sensing images, providing tools to expedite the creation of ROIs (training
	1	RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training areas can be
i i	1	Sample Rasters	 automatically calculated and displayed in a spectral signature plot. It is possible to import spectral signatures from external sources. Also, a tool allows for the selection and download of spectral signal from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Several tools are availab
i.		* SaTSViz	
		ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification process (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification previews).
	1	Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assessment, land cover change, arreport). This plugin requires the installation of GDAL, OGR, Numy, SciPy and Natplotib. Also, a virtum machine is available http://fromgistors.blogspot.com/p/semi-automatic-os.html. Keywords: ナーとのでは、ないないないないないないないないないないないないないないないないないないない
		SelectPlusFR	
8		SelectTools	
		selenext	Cobertura de la Tierra Classification de la Couverture du Sol классификация землепользования
	*	Semi-Automatic Classification PI	Klassifizierung der Landbedeckung Classificazione della Copertura del Suolo. For more information please visit http://fromgistors.blogspot.com/
	· .		
		Send2GE	
*		Send2GE SENSUM Earth Observation Tools	含含含含含 25 rating vote(s), 38811 downloads
		SENSUM Earth Observation Tools	Category: Raster Taos: Raster. Classification. Land Cover. Remote Sensing. Analysis. Landsat. Land Cover Change. Accuracy
•		SENSUM Earth Observation Tools SG Diagram Downloader	

Configuration of the plugin

The configuration of available RAM is recommended in order to reduce the processing time. From the SCP menu

(page 29) select Settings > Processing. SCP 🛃 Band set 👆 Download images > 🚓 Tools > ➡ Preprocessing > Postprocessing > 🝟 Band calc 🔀 Spectral plot 💉 Scatter plot S Batch X Settings > Interface User manual Processing 🔅 Online help Debug About

In the *Settings* (page 116), set the Available RAM (MB) to a value that should be half of the system RAM. For instance, if your system has 2GB of RAM, set the value to 1024MB.

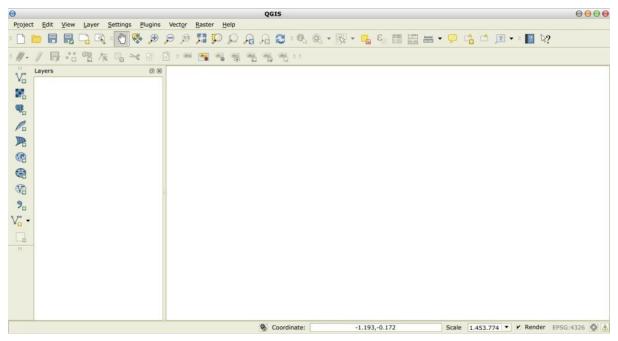
9	Semi-Automatic Classification Plugi	n	0
load images 🛛 🇞 Tools 🔶 Prepro	cessing 📑 Postprocessing 📔 Band cal	c 🥩 Band set 🔊 Batch 🗡	Settings <
Interface			
Processing			
Classification process			
 Play sound when finished 	✓ Use virtual raster for temp files	✓ Raster compression	
RAM			
wailable RAM (MB)			1024 ᅌ
Temporary directory			
/tmp/semiautomaticclassification			
Debug			

LUKU 3

Installation in Ubuntu Linux

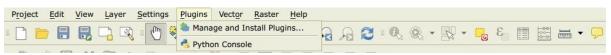
QGIS download and installation

• Open a terminal and type:


sudo apt-get update

- Press Enter and type the user password;
- Type in a terminal:

sudo apt-get install qgis python-matplotlib python-scipy

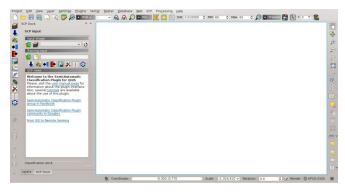

• Press Enter and wait until the software is downloaded and installed.

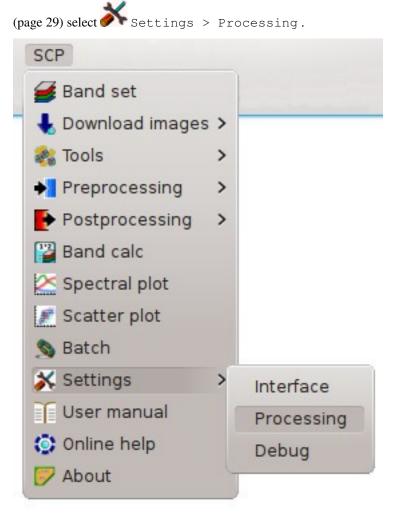
Now, QGIS 2 is installed.

Semi-Automatic Classification Plugin installation

- Run QGIS 2;
- From the main menu, select Plugins > Manage and Install Plugins;

• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;


TIP: in case of issues or an offline installation is required see *How to install the plugin manually?* (page 255) and *How to install the plugin from the official SCP repository?* (page 255).


• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

Installed	Sear	rdh			
Not nataled Upgradeable Settings	×	Remove empty layers from the me Revertils Road graph plagin Reas meru RT MagGreen Exporter RT Grapherer Exporter RT Grapherer Exporter RT Grapherer Sarthill Sorgelinerer Sarthill from EPSG CRS Plagin SelectTools selected SelectTools selected SelectTools SelectTo	Semi-Automatic Classification Hogin for the semi-automatic supervised classificat for a state of multipectral or hyperspectral remote set of tools for pre processing and post processing Writen by Luca Congedo, the Semi-Automatic Classification PLu supervised classification of remote sensing images, providing to durational set of the semi-automatic classification PLu supervised classification of remote sensing images, providing to durational set of the semi-automatic classification pLu supervised classification of remote sensing images, providing to durational set of the set of the set of the set of the set of the supervised classification of sense set of the set of the set of the supervised classification of the set of the set of the set of the duration is a set of the set of the set of the set of the set of the the set of the set of the set of the set of the duration is a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set o	too designed to expedite the sensing images, which provi- or (SCP) allows for the semi-automo- too to expedie the creation of ROS too too the operative the creation of ROS too too the operative the creation of the creation that is the sensitive to import spectral is the possible to import spectral is the sensitive the sensitive the sensitive assessment, land cover change, data is observed as the sensitive the sensitive is observed as the sensitive the sensitive is observed as the sensitive the sensitive is a del such. For more information principal is the sensitive the sensitive the sensitive the sensitive is a del such. For more information principal is the sensitive the sensitive the sensitive the sensitive is the sensitive the sensitive the sensitive the sensitive is the sensitive the sensitive the sensitive the sensitive is the sensitive the sensitive the sensitive the sensitive the sensitive is the sensitive the sensitive the sensitive the sensitive the sensitive is the sensitive the	atic (training in be hatures able for ress ews), ssification al 分類監督 blease
		shelD8	Tags: Raster, Classification, Land Cover, Remote Sensing, Analy Supervised classification. Spectral signature. Mask. Scatter plot		couracy,
		Shortcut Manager	Upgrade al	Uninstal plugin Reinsta	

Configuration of the plugin

The configuration of available RAM is recommended in order to reduce the processing time. From the SCP menu

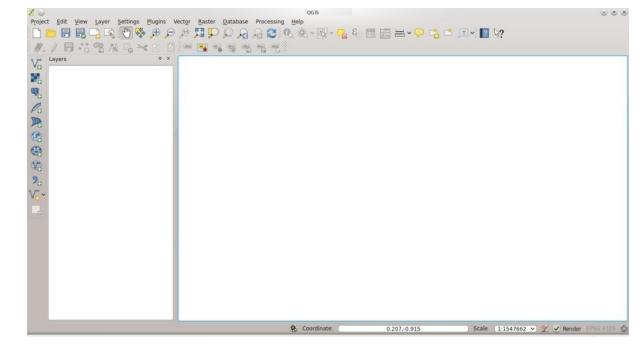
In the *Settings* (page 116), set the Available RAM (MB) to a value that should be half of the system RAM. For instance, if your system has 2GB of RAM, set the value to 1024MB.

9	Semi-Automatic Classification Plugi	n	0
load images 🛛 🇞 Tools 🔶 Prepro	cessing 📑 Postprocessing 📔 Band cal	c 🥩 Band set 🔊 Batch 🗡	Settings <
Interface			
Processing			
Classification process			
 Play sound when finished 	✓ Use virtual raster for temp files	✓ Raster compression	
RAM			
wailable RAM (MB)			1024 ᅌ
Temporary directory			
/tmp/semiautomaticclassification			
Debug			

Installation in Debian Linux

QGIS download and installation

• Open a terminal and type:


sudo apt-get update

- Press Enter and type the user password;
- Type in a terminal:

sudo apt-get install qgis python-matplotlib python-scipy

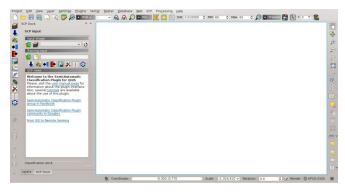
• Press Enter and wait until the software is downloaded and installed.

Now, QGIS 2 is installed.

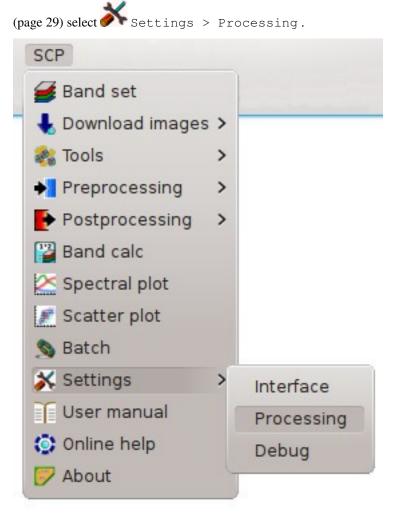
Semi-Automatic Classification Plugin installation

- Run QGIS 2;
- From the main menu, select Plugins > Manage and Install Plugins;

• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;


TIP: in case of issues or an offline installation is required see *How to install the plugin manually?* (page 255) and *How to install the plugin from the official SCP repository?* (page 255).

stalled	Remove empty layers from the m	Semi-Automatic Classification Plugin	
t installed 🗶	😞 Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the	
gradeable	🚑 Rss menu	processing of multispectral or hyperspectral remote sensing images, which prov	
gradeable	RT MapServer Exporter	set of tools for pre processing and post processing.	
ttings	RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-autor	matic
	RT QSpider	supervised classification of remote sensing images, providing tools to expedite the creation of ROI	Is (trainin
	RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training areas of	
	Provide Rasters	automatically calculated and displayed in a spectral signature plot. It is possible to import spectral signatures from external sources. Also, a tool allows for the selection and download of spectral signatures from external sources.	
1	SaTSViz	from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Several tools are ava	ailable fo
	📄 ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification pro (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification pre-	
	🌸 Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assessment, land cover change, da	assificati
	SelectPlusFR	report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy and Matplotlib. Also, a virt machine is available http://fromgistors.blogspot.com/p/semi-automatic-os.html . Keywords: 十步神教	ual
	P SelectTools	machine is available http://romgistors.biogspot.com/p/semi-automatic-os.html . Keywords: 工地機会 分数 土地遊業分数 約時付き分類 (いうえい) (いうえい) (こうない) (こう	
	ierext in the selenext is a selenext in the selenext is a selene with the selene withe selene with the selene	ertura de la Tierra Classification de la Couverture du Sol классификация землепользования	
	Semi-Automatic Classification Pl	Klassifizierung der Landbedeckung Classificazione della Copertura del Suolo. For more information visit http://fromgistors.blogspot.com/	please
	Send2GE		
	SENSUM Earth Observation Tools	含含含含含 25 rating vote(s), 38811 downloads	
	🚔 SG Diagram Downloader	Tags: raster.landsat.spectral signature.classification.land cover.accuracy.scatter plot.supervised	
	Shapefile Encoding Fixer	lags: raster, landsat, spectral signature, classification, land cover, accuracy, scatter plot, supervised classification.dos1.clip.remote sensing.mask, analysis.land cover change	
	shelD8	More info: homepage tracker code repository	
	Shortcut Manager	Author: Luca Congedo	
	🌸 shptoobs 💽	Autor: Laca Congress	
	SimpleReports	Upgrade all Inst	tall plugin

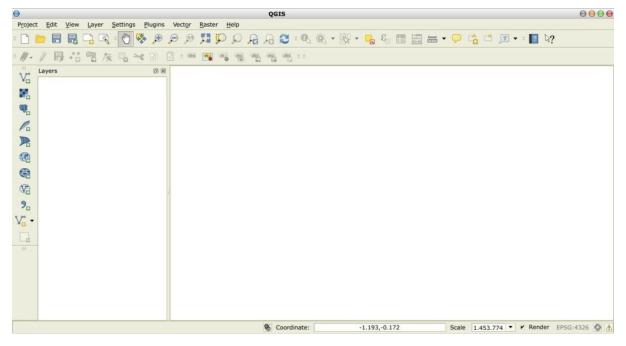

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

Installed Sea	sarch		
Not installed Upgradeable Settings	Ramenu RT MayGener Diporter RT Oner RT Ogder Rufersoor Sample Rasters Sample Sa	Semi-Actomatic Classification Plugin Hugin for the semi-automatic supervised classification designed to expedite the special of the semi-automatic supervised classification (scip) allows for the semi-automa- tic of colo for pre processing and post processing. Writen by Luca Congede, the Semi-automatic Classification Plugin (SCP) allows for the semi-automa- special classification of remote sensing mages, providing tode to expedite the crashed ratios constrained classification of remote sensing mages, providing tode to expedite the crashed ratios constrained classification of remote sensing mages, providing tode to expedite the crashed ratios constrained classification of remote sensing mages, providing tode to expedite the crashed ratios constrained classification of remote sensing mages, providing tode to expedite the crashed ratios constrained classification of remote sensing mages, providing tode to expedite the crashed ratios constrained classification of remote sensing and providing tode to expedite the crashed ratios of the post processing phase (may decima la spectrai signature plot. It is possible to impost pastes matching is available http://formgistrained.plot.inter/sensing-and spectrained ratios constrained as Interna classification de la Couverture du Sel classification de la Couverture du Sel classification de la Couverture du Sel classification de la Couverture du Sel classification de la Couverture du Sel classification de la Couverture du Sel classification de la Couverture du Sel classification classification de la the thy/infromistraines/lagsification de la Couverture du Sel classification de la the thy/infromistraines/lagsification de la Couverture du Sel classification de la the thy/infromistraines/lagsification de la Couverture du Sel classification de la the thy/infromistraines/lagsification de la couverture du Sel classification de la c	atic (trainin, n be atures able for ess aws), sificatio a lease lease

Configuration of the plugin

The configuration of available RAM is recommended in order to reduce the processing time. From the SCP menu

In the *Settings* (page 116), set the Available RAM (MB) to a value that should be half of the system RAM. For instance, if your system has 2GB of RAM, set the value to 1024MB.


0	Semi-Automatic Classification Plugi	in 😒 🔄
nload images 🛛 🍓 Tools 🛛 🔶 Prep	processing 📑 Postprocessing 🔛 Band cal	Ic 🥩 Band set 🦠 Batch 💸 Settings <
Interface		
Processing		
Classification process		
 Play sound when finished 	✓ Use virtual raster for temp files	Raster compression
RAM		
wailable RAM (MB)		1024 🗘
Temporary directory		
/tmp/semiautomaticclassification	on	
Debug		

Installation in Mac OS

QGIS download and installation

- Download and install the latest version of QGIS and GDAL from here .
- In addition, download and install the python modules Numpy, Scipy, and Matplotlib from this link .

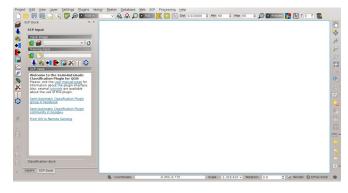
Now, QGIS 2 is installed.

Semi-Automatic Classification Plugin installation

- Run QGIS 2;
- From the main menu, select Plugins > Manage and Install Plugins;

		Settings																
	<u></u>	- cm 😵	🌲 Mana	ige and Ir	nstall Plug	ins	Q	Q	0	- Q.	0	- 10	- C	1 8	. E	-00		-
	0		🔧 Pytho	on Consol	e			70	~	18	2013	_h	2.4	0		<u>10-01</u>	[2

• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;


TIP: in case of issues or an offline installation is required see *How to install the plugin manually?* (page 255) and *How to install the plugin from the official SCP repository?* (page 255).

stalled	Remove empty layers from the m.	S	Semi-Automatic Classification Plugin					
ot installed	Road graph plugin	P	lugin for the semi-automatic supervised classification designed to	o expedite the				
gradeable	Rss menu		rocessing of multispectral or hyperspectral remote sensing image					
gradeable	RT MapServer Exporter	S	et of tools for pre processing and post processing.					
ttings	RT Omero		ritten by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows f	les the comi automatic				
	RT QSpider		apervised classification of remote sensing images, providing tools to expedite th					
	RuGeocoder	ar	eas) through region growing or multiple ROI creation. The spectral signatures of	of training areas can be				
	P Sample Rasters	at	utomatically calculated and displayed in a spectral signature plot. It is possible t gnatures from external sources. Also, a tool allows for the selection and downlo	to import spectral signatures				
	SaTSViz	fre	om the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Seve	eral tools are available for				
	ScriptRunner		the pre processing phase (image clipping, Landsat conversion to reflectance), the classification proce (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification previe					
	Search & format EPSG CRS Plugin		and the post processing phase (conversion to vector, accuracy assessment, land cover change, classifical report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy and Matplotib. Also, a virtual					
	SelectPlusFR							
	SelectTools		machine is available http://fromgistors.blogspot.com//jsemi-automatic-os.html , Keywords: 土地 小貴 土地羅美術 前時作約頃, 山本区 Allassification do Solo Classification Cobertura de la Tierra Classification de la Couverture du Sol (naccubwaupe sevienos).oseawo wish thtts://fromgistors.blogsock.com/					
	🚔 selenext	C		лепользования				
	Remi-Automatic Classification Pl			more information please				
	Send2GE							
	SENSUM Earth Observation Tools							
	🔶 SG Diagram Downloader							
	hapefile Encoding Fixer		ags: raster,landsat,spectral signature,classification,land cover,accuracy,scatter assification.dos1.clip.remote sensing.mask.analysis.land cover change	plot,supervised				
	helD8		More info: homepage tracker code repository					
	Shortcut Manager		uthor: Luca Congedo					
	shotoobs	-	action, caca congedo					
	SimpleReports	-	pgrade all	Install plugin				

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

	Sear	21						
Not installed		Remove empty layers from the m	Semi-Automatic Classification Plugin	1				
Upgradeable	×	Road graph plugin	Plugin for the semi-automatic supervised classification designed to expe	dite the				
Settings		Rss menu	processing of multispectral or hyperspectral remote sensing images, which provides set of tools for pre processing and post processing.					
bettings		RT MapServer Exporter						
		RT Omero						
		RT QSpider	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the s supervised classification of remote sensing images, providing tools to expedite the creat	s providing tools to expedite the creation of ROIs (trainin				
		RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training	ng areas can be				
		Sample Rasters	automatically calculated and displayed in a spectral signature plot. It is possible to import spectral signatures from external societa, allows for the selection and download of spectral allor in the USGS Spectral Library (http://spectal.bc.rugs.gov/spectral.lib.html). Suevalt tools are avoid (http://spectal.lib.html). Suevalt tools are avoid (http://s					
		Real SetSviz						
		ScriptRunner						
	ŝ.	Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assessment, land cover of	change, classificatio				
		P SelectPlusFR	report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy and Matplotlib. A machine is available http://fromgistors.blogspot.com/p/semi-automatic-os.html , Keywon					
1		SelectTools	かき、土地軍語分幸 教師付き分類 المتعادية الاستخدام الأراضي Classificação da Cobertura do Solo Clasi					
		selenext	Cobertura de la Tierra Classification de la Couverture du Sol классификация землеполы	вования				
	×	📝 Semi-Automatic Classification Pl 🦳	Klassifizierung der Landbedeckung Classificazione della Copertura del Suolo. For more in visit http://fromgistors.blogspot.com/	formation please				
		Send2GE						
		SENSUM Earth Observation Tools	會會會會會 25 rating vote(s), 38811 downloads					
		SG Diagram Downloader	Category: Baster					
		Shapefile Encoding Fixer	Tags: Raster, Classification, Land Cover, Remote Sensing, Analysis, Landsat, Land Cover	r Change, Accuracy				
			Supervised classification Spectral signature Mask Scatter plot. Clin. DOS1					
		ShelD8						

Configuration of the plugin

The configuration of available RAM is recommended in order to reduce the processing time. From the SCP menu

(page 29) select Settings > Processing. SCP 🛃 Band set 👆 Download images > 🚓 Tools > ➡ Preprocessing > Postprocessing > 🝟 Band calc 🔀 Spectral plot 💉 Scatter plot S Batch X Settings > Interface User manual Processing 🔅 Online help Debug About

In the *Settings* (page 116), set the Available RAM (MB) to a value that should be half of the system RAM. For instance, if your system has 2GB of RAM, set the value to 1024MB.

Processing Classification process Image: Play sound when finished Image: Use virtual raster for temp files RAM	9	Semi-Automatic Classification Plugi	n	\odot
Trocessing Classification process Play sound when finished Use virtual raster for temp files RAM wailable RAM (MB) 1024 Temporary directory Image: An intervention of the second s	load images 🛛 🆓 Tools 🔶 Prepr	ocessing 📑 Postprocessing 🔛 Band cal	c 🥩 Band set 🔊 Batch 🥉	K Settings <
Classification process Play sound when finished Use virtual raster for temp files Raster compression RAM vailable RAM (MB) 1024 Temporary directory / trmp/semiautomaticclassification	nterface			
Play sound when finished Use virtual raster for temp files Raster compression RAM wailable RAM (MB) Temporary directory Image: comparison of the provided and the	Processing			
RAM vailable RAM (MB) 1024 Temporary directory Temp/semiautomaticclassification	Classification process			
wailable RAM (MB) 1024 Temporary directory I (tmp/semiautomaticclassification	 Play sound when finished 	✓ Use virtual raster for temp files	Raster compression	
Temporary directory Imp/semiautomaticclassification			-	
/tmp/semiautomaticclassification				1024 🛇
Tebug	/tmp/semiautomaticclassificatio	n		×
Debug				
Tebug				
Tebug				
ebug				
Debug				
lebug				
lebug				
lebug				
	Jebug			

Osa III

SCPn käyttöliittymä

SCP menu

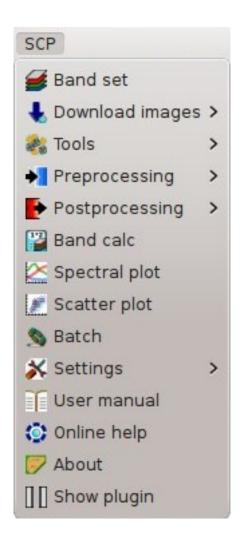
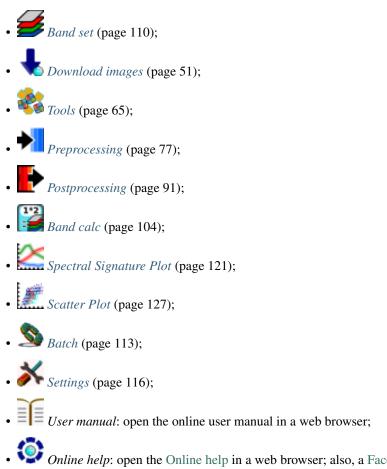
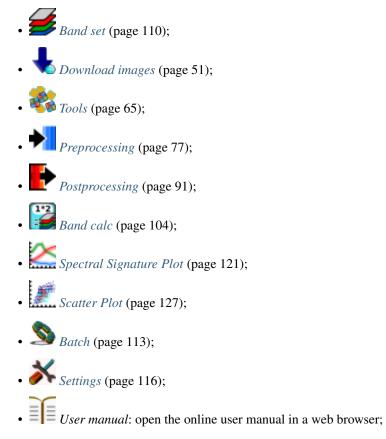



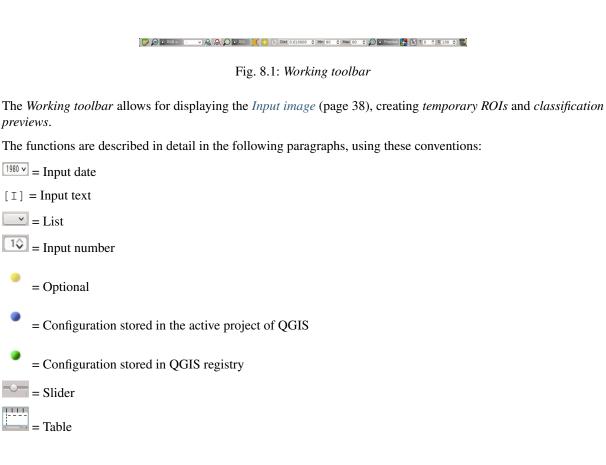
Fig. 6.1: SCP menu

The SCP menu allows for the selection of the main functions of the Main Interface Window (page 49), the Spectral Signature Plot (page 121), and the Scatter Plot (page 127).


- Online help: open the Online help in a web browser; also, a Facebook group and a Google+ Community are available for sharing information and asking for help about SCP;
- U Show plugin: show all the SCP toolbars and dock if previously hidden;

SCP Tools

Fig. 7.1: SCP Tools


The toolbar SCP Tools allows for the selection of the main functions of the Main Interface Window (page 49), the Spectral Signature Plot (page 121), and the Scatter Plot (page 127).

• Online help: open the Online help in a web browser; also, a Facebook group and a Google+ Community are available for sharing information and asking for help about SCP;

luku **8**

Working toolbar

Image control

- Erection: show the Main Interface Window (page 49);
- Zoom the map to the extent of *Input image* (page 38);

- • RGB = : use the button to show/hide the *Input image* (page 38) in the map; from the list select a *Color Composite* (page 145) that is applied to the *Input image* (page 38); new color composites can be entered typing the band numbers separated by or ; or , (e.g. RGB = 4-3-2 or RGB = 4;3;2 or RGB = 4,3,2);
- Ma: display the input image stretching the minimum and maximum values according to cumulative count of current map extent;
- /oll: display the input image stretching the minimum and maximum values according to standard deviation of current map extent;

Temporary ROI

A *temporary ROI* is a temporary polygon displayed in the map, which can be saved permanently in the *Training input* (page 40). A *temporary ROI* can be drawn manually or using a *Region Growing Algorithm* (page 149).

- Description: zoom the map to the extent of *temporary ROI*;
- W ROI: use the button to show/hide the *temporary ROI* and the *Training input* in the map;
- A ctivate the pointer to create a *temporary ROI* by drawing a polygon in the map; left click on the map to define the ROI vertices and right click to define the last vertex closing the polygon; press the keyboard button CTRL to add a multipart polygon; press the keyboard buttons CTRL + Z for removing the last multipart polygon;
- **I**: activate the pointer to create a *temporary ROI* using the region growing algorithm; left click on the map for creating the ROI; right click on the map for displaying the spectral signature of a pixel of the *Input image* (page 38) in the *Spectral Signature Plot* (page 121); press the keyboard button CTRL to add a multipart polygon (new parts are not created if overlapping to other parts); press the keyboard buttons CTRL + Z for removing the last multipart polygon;
- Create a *temporary ROI* using the region growing algorithm at the same seed pixel as the previous one; it is useful after changing the *region growing parameters*;

Region growing parameters: the following parameters are required for the ROI creation using a region growing algorithm on

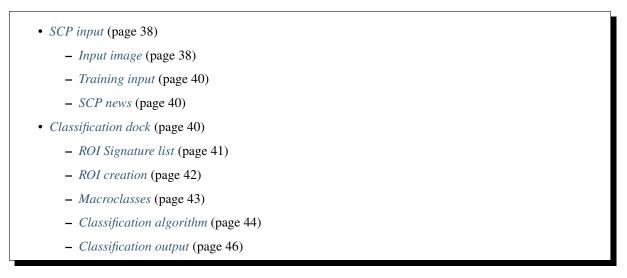
- *Dist* : set the interval which defines the maximum spectral distance between the seed pixel and the surrounding pixels (in radiometry unit);
- *Min* : set the minimum area of a ROI (in pixel unit); this setting overrides the Range radius until the minimum ROI size is reached; if Rapid ROI on band is checked, then ROI will have at least the size defined Min ROI size; if Rapid ROI on band is unchecked, then ROI could have a size smaller than Min ROI size;
- *Max* : set the maximum width of a ROI (i.e. the side length of a square, centred at the seed pixel, which inscribes the ROI) in pixel unit;

Classification preview

Classification preview allows for displaying temporary classifications (i.e. classification previews). Classification previews are useful for testing the algorithm in a small area of the *Input image* (page 38), before classifying the entire image which can be time consuming (see *Classification output* (page 46)).

Classification preview is performed according to the parameters defined in Classification algorithm (page 44).

In addition to the classification raster, an *Algorithm raster* (page 156) can be displayed, which is useful for assessing the distance of a pixel classified as class X from the corresponding spectral signature X. In *Classification previews*, black pixels are distant from the corresponding spectral signature (i.e. probably a new ROI, or spectral signature, should be collected in that area) and white pixels are closer to the corresponding spectral signature (i.e. probably the spectral signature identifies correctly those pixels).


After the creation of a new preview, old previews are placed in QGIS Layers inside a layer group named Class_temp_group (custom name can be defined in *Temporary group name* (page 117)) and are deleted when the QGIS session is closed.

WARNING: Classification previews are automatically deleted from disk when the QGIS session is closed; a QGIS message (that can be ignored) could ask for the path of missing layers when opening a previously saved project.

- Just 2007 the map to the extent of the last *Classification preview* (page 35);
- Preview: use the button to show/hide the last *Classification preview* (page 35) in the map;
- **Classification preview** (page 35); left click the map to start the classification process and display the classification preview; right click to start the classification process and show the *Algorithm raster* (page 156) of the preview;
- Section 2015 Create a new *Classification preview* (page 35) centred at the same pixel as the previous one;
- T :: change dynamically the classification preview transparency, which is useful for comparing the classification to other layers;
- *S* : size of the preview in pixel unit (i.e. the side length of a square, centred at the clicked pixel);
- We remove from QGIS the *classification previews* that are archived in the *Class_temp_group*;

luku 9

SCP dock

The SCP dock allows for the definition of inputs, the creation of ROIs (Regions Of Interest) and spectral signatures, and the classification of an input image.

The *Input image* (page 38), to be classified, can be a multi-band raster or a set of single bands defined in the *Band* set (page 110).

The *Training input* (page 40), created with *SCP*, stores the ROI polygons and spectral signatures used for the land cover classification of the *Input image* (page 38).

ROIs are polygons used for the definition of the spectral characteristics of land cover classes. *SCP* allows for the creation of *temporary ROI polygons* using a region growing algorithm or drawn manually. Using the region growing algorithm the image is segmented around a pixel seed including spectrally homogeneous pixels. *Temporary ROI polygons* can be saved in the *Training input* (page 40) along with the spectral signatures of the ROI. It is worth pointing out that classification is always based on spectral signatures.

In SCP, land cover classes (and ROIs) are defined with a system of *Classes* (*Class ID*) and *Macroclasses* (*Macroclass ID*) (see *Classes and Macroclasses* (page 150)) that are used for the classification process; each *Macroclass ID* is related to a *Macroclass Information* (e.g. macroclass name) and each *Class ID* is related to a *Class Information* (e.g. class name), but only *Macroclass ID* and *Class ID* are used for the classification process.

Training input is composed of a vector part (i.e. a shapefile) and a spectral signature part which are independent. The attribute table of the vector contains four fields as in the following table.

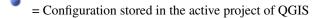
0 1 5		
Description	Field name	Field type
Macroclass ID	MC_ID	int
Macroclass Information	MC_info	string
Class ID	C_ID	int
Class Information	C_info	string

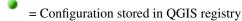
Training input fields

Spectral signatures of classes are calculated from the ROIs and saved in the *Training input* (page 40). In addition, spectral signatures can be imported from other sources (see *Import signatures* (page 67)).

The use of the *Macroclass ID* or *Class ID* for classifications is defined with the option *Use MC ID or C ID* in the *Classification algorithm* (page 44). It is worth highlighting that when using *Macroclass ID* all the spectral signatures are evaluated separately and each pixel is classified with the corresponding *MC ID* (i.e. there is no combination of signatures before the classification).

The **classification** can be performed for the entire image (*Classification output* (page 46)) or a part of it, creating a *Classification preview* (page 35).


The functions are described in detail in the following paragraphs, using these conventions:


1980 v = Input date

T = Input text

12 = Input number

= Optional

= Slider

= Table

SCP input

Input image

This section allows for the selection of the image to be classified. Raster files must be already loaded in QGIS.

Input image can be a multi-band raster or a set of single bands defined in the *Band set* (page 110). If a multi-band raster is selected, raster bands are listed in the *Band set* (page 110).

• Le: open one or more raster files and add them *Band set* (page 110);

- **Solution**: open the *Band set* (page 110);
- *Input image* : select the input image from a list of multi-spectral images loaded in QGIS; if the *Band set* (page 110) is defined, then this list will contain the item << *band set* >>;

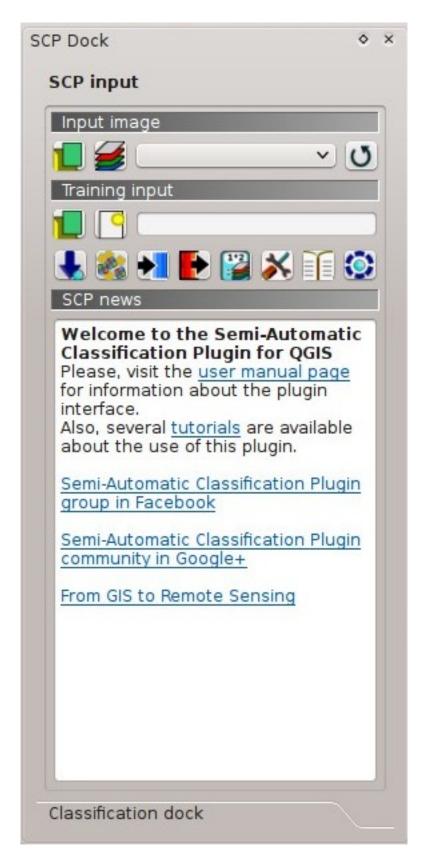


Fig. 9.1: SCP input

. U: refresh layer list;

Training input

The training input is a file .scp created in *SCP* (i.e. a zip file containing a shapefile and an xml file) used for storing ROIs and spectral signatures.

Warning: Signature list files saved with previous versions of *SCP* are not compatible with SPC 5; however you can import a ROI shapefile using the tool *Import shapefile* (page 67).

ROIs and spectral signatures are displayed in the *ROI Signature list* (page 41). ROIs and spectral signatures can be imported from other sources (see *Import signatures* (page 67)) and exported (see *Export signatures* (page 70)). ROIs are displayed in QGIS as vector file (in order to prevent data loss, you should not edit this layer using QGIS functions).

- Lee: open a training input file; ROIs and spectral signatures are loaded in *ROI Signature list* (page 41); the vector part of the training input is loaded in QGIS;
- Create an empty training input file (.scp); the vector part of the training input is loaded in QGIS; also a backup file is created (a file .scp.backup in the same directory as the file .scp) when the training input file is saved;
- *Training input* **T** : it displays the path to the training input file;
- **N**: open the *Download images* (page 51);
- **1** open the *Tools* (page 65);
- **7**: open the *Preprocessing* (page 77);
- **C**: open the *Postprocessing* (page 91);
- Estimate the Band calc (page 104);
- *M*: open the *Settings* (page 116);
- \blacksquare open the online user manual in a web browser;

• • • open the Online help in a web browser; also, a Facebook group and a Google+ Community are available for sharing information and asking for help about *SCP*;

SCP news

This section displays news about the *SCP* and related services. News are downloaded on startup (internet connection required). It can be enabled or disabled in the settings *Dock* (page 117).

Classification dock

The *Classification dock* is designed to manage the **spectral signatures**, and **classify** the *Input image* (page 38).

ROI Signature list

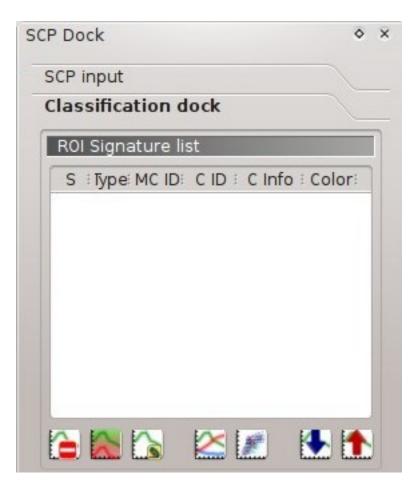


Fig. 9.2: ROI Signature list

The *ROI Signature list* displays the ROI polygons and spectral signatures contained in the *Training input* (page 40). If an item is a ROI polygon, double click the item to zoom to that ROI in the map. Items in the table can be highlighted with the mouse left click.

Changes in the *ROI Signature list* are applied to the file *Training input* (page 40) only when the QGIS project is saved. ROIs can be edited, deleted and merged from this table.

WARNING: In order to avoid data loss, do not edit the vector *Training input* using the QGIS tools. Use only the tools of *SCP* for managing the *Training input*.

- S: selection checkbox; only the spectral signatures checked in this list are used for the classification process;
- Type: type of the item:
 - * *R* = only ROI polygon;
 - * *S* = only spectral signature;
 - * B = both ROI and spectral signature;
- MC ID: ROI Macroclass ID [int]; it can be edited with a single click; MC Info is displayed in Macroclasses (page 43); if the ID of a spectral signature is set 0, then pixels belonging to this signature are labelled as unclassified;
- C ID: ROI Class ID [int]; it can be edited with a single click;

- *C Info*: ROI Class Information [text]; it can be edited with a single click;
- *Color*: C ID color; double click to select a color for the class that is used in the classification; if the ID of a spectral signature is set 0, then pixels belonging to this signature are labelled as unclassified;
- elete highlighted ROIs and signatures;
- Example: merge highlighted spectral signatures or ROIs obtaining a new signature calculated as the average of signature values for each band (covariance matrix is excluded);
- Los: calculate spectral signatures of highlighted ROIs;
- East show the ROI spectral signature in the *Spectral Signature Plot* (page 121); spectral signature is calculated from the *Input image* (page 38);
- Left: : open the Scatter Plot (page 127);
-: open the tab *Export signatures* (page 70);

ROI creation MC Info MC 1 MC ID 10 CID 10 C Info C 1 ✓ Calculate sig. Display NDVI V Rapid ROI band 10 Automatic refresh ROI Automatic plot Macroclasses Classification algorithm Classification output

ROI creation

Fig. 9.3: ROI creation

ROI creation is complementary to the Working toolbar (page 33) and it allows for saving ROIs to the Training input (page 40) defining classes and macroclasses. A Band set (page 110) must be defined before the ROI creation, and ROI polygons must be inside the area of the Band set.

- *MC ID* : ROI Macroclass ID [int]; the corresponding *MC Info* is loaded if already defined in Macroclasses (page 43);
- *MC Info* **T** : ROI Macroclass information [text]; style and information for macroclasses are defined in Macroclasses (page 43);
- *C ID* : ROI Class ID [int];
- *C Info* **T** : ROI Class information [text];
- : delete the last saved ROI from the *Training input* (page 40);
- *Calculate sig.* : if checked, while saving a ROI, the spectral signature thereof is calculated (from Input image (page 38) pixels under ROI polygon) and saved to Training input (page 40) (calculation time depends on the band number of *Input image* (page 38));
- : save the temporary ROI to the *Training input* (page 40) using the defined classes and macroclasses; ROI is displayed in the *ROI Signature list* (page 41);

• Display : if the ROI creation pointer is active (see *Working toolbar* (page 33)), the pixel value of selected

- NDVI (Normalized Difference Vegetation Index); NDVI requires the near-infrared and red bands;
- EVI (Enhanced Vegetation Index); EVI requires the blue, near-infrared and red bands converted to reflectance; wavelengths must be defined in the *Band set* (page 110);
- Custom; use the custom expression defined in the following line *Expression*;
- *Expression* **I** : set a custom expression; expression is based on the *Band set*; bands are defined as *bandset#b* + *band number* (e.g. bandset#b1 for the first band of the *Band set*); for example NDVI for a Landsat image would be (bandset #b4 - bandset #b3)/(bandset #b4 + bandset #b3);
- *Rapid ROI band* : if checked, temporary ROI is created with region growing using only one Input image (page 38) band (i.e. region growing is rapider); the band is defined by the Band set number; if unchecked, ROI is the result of the intersection between ROIs calculated on every band (i.e. region growing is slower, but ROI is spectrally homogeneous in every band);
- *Automatic refresh ROI*: calculate automatically a new temporary ROI while *Region growing parameters* in the Working toolbar (page 33) are being changed;
- • Automatic plot: calculate automatically the temporary ROI spectral signature and display it in the Spectral Signature Plot (page 121) (MC Info of this spectral signature is set tempo_ROI);

Macroclasses

Macroclasses allows for the definition of Macroclass names and colors (used to display the results of Classification preview (page 35) and Classification output (page 46)). According to Classification algorithm (page 44), classifications performed using C ID have the colors defined for classes in the ROI Signature list (page 41); classifications performed using MC ID have the colors defined in the Macroclasses (page 43).

ROI creation			
Macroclasse	s		
MC ID :	MC Info	Color	•
Classification Load qml	style		
Classification	algorithm		
Classification	output		

Fig. 9.4: Macroclasses

MC IDs are automatically added to this table when a new ROI is saved to the *ROI Signature list* (page 41) (if the *MC ID* is not already in the list). Settings are stored in *Training input* (page 40).

- Macroclasses
 - *MC ID*: Macroclass ID [int]; it can be edited with a single click;
 - MC Info: Macroclass Information [text]; it can be edited with a single click;
 - Color: MC ID color; double click to select a color for the class that is used in the classification;
- add a new row to the table;
- : delete the highlighted rows from the table;

Classification style

In addition, a previously saved *classification style* (QGIS .qml file) can be loaded and used for classification style.

- Load qml : select a .qml file overriding the colors defined for *C ID* or *MC ID*;
- = reset style to default (i.e. use the colors defined for *C ID* or *MC ID*);

Classification algorithm

The *Classification algorithm* includes several functions for the classification process used also during the *Classification preview* (page 35).

ROI creation
Macroclasses
Classification algorithm
Use MC ID 🗸 C ID
Algorithm
Minimum Distance 🗸 Threshold 0.000 🔷 🎑
Land Cover Signature Classification
Use 🗌 LCS 📄 Algorithm 📄 only overlap 🌄
Classification output

Fig. 9.5: Classification algorithm

- $Use \bowtie MC ID \bowtie C ID$: if MC ID is checked, the classification is performed using the Macroclass ID (code MC ID of the signature); if C ID is checked, the classification is performed using the Class ID (code C ID of the signature);
- for the Algorithm band weight (page 71) for the definition of band weights;

Algorithm

Classification is performed using the selected algorithm.

- 💷 📍 : available *Classification Algorithms* (page 151) are:
 - Minimum Distance (page 152);
 - Maximum Likelihood (page 152);
 - Spectral Angle Mapping (page 153);
- Threshold 😳 📍 : it allows for the definition of a classification threshold (applied to all the spectral signatures); for
 - for Minimum Distance, pixels are unclassified if distance is greater than threshold value;
 - for Maximum Likelihood, pixels are unclassified if probability is less than threshold value (max 100);
 - for Spectral Angle Mapping, pixels are unclassified if spectral angle distance is greater than threshold value (max 90);

• Section 22 Section 2

Land Cover Signature Classification

Land Cover Signature Classification (page 154) is a classification that can be used as alternative or in combination with the *Algorithm* (page 45) (see *LCS threshold* (page 73)). Pixels belonging to two or more different classes (or macroclasses) are classified as *Class overlap* with raster value = -1000.

- Use LCS Algorithm only overlap: if LCS is checked, the Land Cover Signature Classification is used; if Algorithm is checked, the selected Algorithm (page 45) is used for unclassified pixels of the Land Cover Signature Classification; if only overlap is checked, the selected Algorithm (page 45) is used only for class overlapping pixels of the Land Cover Signature Classification; unclassified pixels of the Land Cover Signature Classification are left unclassified;
- expention open the *LCS threshold* (page 73);

Classification output

		ROI creation
		Macroclasses
		Classification algorithm
		Classification output
		Apply mask
port	Classification r	Create vector
		Save algorithm files
	(
		<u> </u>

Fig. 9.6: Classification output

Classification output allows for the classification of the *Input image* (page 38) according to the parameters defined in *Classification algorithm* (page 44).

Classification raster is a file .tif (a QGIS style file .qml is saved along with the classification); also other outputs can be optionally calculated. Outputs are loaded in QGIS after the calculation.

- Apply mask : if checked, a shapefile can be selected for masking the classification output (i.e. the area outside the shapefile is not classified);
- **Exercise**: reset the mask shapefile;
- Create vector : if checked, in addition to the classification raster, a classification shapefile is saved in the same directory and with the same name as the *Classification output*; conversion to vector can also be

performed at a later time (see *Classification to vector* (page 96));

- Classification report : if checked, a report about the land cover classification is calculated and saved as a .csv file in the same directory and with the same name (with the suffix _report) as the Classification output; report can also be performed at a later time (see Classification report (page 94));
- Save algorithm files : if checked, the Algorithm raster (page 156) is saved, in addition to the classification raster, in the same directory as the *Classification output*; a raster for each spectral signature used as input (with the suffix _sig_MC ID_C ID) and a general algorithm raster (with the suffix _alg_raster) are created;

Solution: choose the output destination and start the image classification;

LUKU **10**

Main Interface Window

- *Download images* (page 51)
 - Landsat download (page 51)
 - Sentinel-2 download (page 55)
 - ASTER download (page 59)
 - MODIS download (page 63)
- Tools (page 65)
 - Multiple ROI Creation (page 65)
 - Import signatures (page 67)
 - *Export signatures* (page 70)
 - Algorithm band weight (page 71)
 - Signature threshold (page 72)
 - LCS threshold (page 73)
 - RGB list (page 75)
- Preprocessing (page 77)
 - Landsat (page 77)
 - Sentinel-2 (page 79)
 - ASTER (page 80)
 - MODIS (page 82)
 - Clip multiple rasters (page 84)
 - Split raster bands (page 86)
 - Stack raster bands (page 86)
 - *PCA* (page 89)
 - Vector to raster (page 90)

- Postprocessing (page 91)
 - Accuracy (page 91)
 - Land cover change (page 93)
 - Classification report (page 94)
 - Cross classification (page 95)
 - Classification to vector (page 96)
 - Reclassification (page 96)
 - *Edit raster* (page 99)
 - *Classification sieve* (page 101)
 - Classification erosion (page 104)
 - Classification dilation (page 104)
- Band calc (page 104)
 - Band list (page 107)
 - Expression (page 107)
 - Index calculation (page 108)
 - Decision rules (page 108)
 - Output raster (page 109)
- Band set (page 110)
 - Band list (page 111)
 - Band set definition (page 111)
 - *Band set tools* (page 112)
- Batch (page 113)
 - *Batch* (page 113)
 - Run (page 116)
- *Settings* (page 116)
 - Interface (page 116)
 - Processing (page 117)
 - *Debug* (page 119)

The Main Interface Window is composed of several tabs and subtabs. The functions are described in detail in the following paragraphs, using these conventions:

 $\boxed{\mathbf{T}} = \text{Input date}$ $\boxed{\mathbf{T}} = \text{Input text}$ $\boxed{\mathbf{T}} = \text{List}$ $\boxed{\mathbf{T}} = \text{Input number}$ = Optional

= Configuration stored in the active project of QGIS

Configuration stored in QGIS registry
 Slider
 Table

Download images

The tab **Non-Download images** includes the tools for searching and downloading free remote sensing images. An internet connection is required.

Landsat download

\odot			Semi-Automatic	Classification Plugin	1		\odot
👆 Downloa	ad images 🛛 🍓 Too	ols 🔶 Preproce	essing Postproces	ssing 📔 Band ca	lc 🥌 Band set	S Batch	🕻 Settings 🛛 📝 <
🜯 Landsa	at download 🛛 🐛 S	entinel-2 downloa	d 🛛 👯 ASTER downloa	d			
Login http:	s://ers.cr.usgs.gov						
User 🗌			Passwor	d			remember
Searchar	rea						
UL X (Lon)		ULY (Lat)	LR X (Lon)		LR Y (Lat)		💿 Show 🕇
Search							
Satellites	L8 OLI/TIRS 🗸		Date from 1980-01-01	▼ to 2016-10-22	2 🗸	Max clou	d cover (%) 100 🗘
Results 10	00 ᅌ Filter						Find 💭
(
Landsat in	mages						
Image li	ist						
	ImageID	Acquisitio	nDate CloudCover	i Path i	Row	min_lat	min_lon
							_
	<u></u>						< >
Download	d options						
Download	(from Amazon Web	Services, Google	Earth Engine, USGS Ear	rthExplorer)			
✓ Only if	f preview in Layers 🗸	Preprocess imag	ges 🗸 Load bands in Q	GIS			1

This tab allows for searching and downloading the whole archive of *Landsat Satellite* (page 141) images (from 1 MSS to 8 OLI), acquired from the 80s to present days. Search is performed through the CMR Search API developed by NASA.

Landsat images are freely available through the services: EarthExplorer, Google Earth Engine, and the Amazon Web Services (AWS) (for Landsat 8). This tool attempts to download images first from *Amazon Web Services* and *Google Earth Engine*; only if images are not available, the download is performed through the service *EarthExplorer* in order to prevent the server from becoming saturated.

Images are downloaded as compressed archives (this tool allows for the download of single bands for Landsat 8 images provided by the *Amazon Web Services*). Also, automatic conversion to reflectance of downloaded bands is available.

Login https://ers.cr.usgs.gov/

USGS EROS credentials (https://ers.cr.usgs.gov) are required for downloads from EarthExplorer . Login using your USGS EROS credentials or register for free at https://ers.cr.usgs.gov/register .

- User **T** : enter the user name;
- *Password* **T** : enter the password;
- *remember*: remember user name and password in QGIS;

Search area

Define the search area by entering the coordinates (longitude and latitude) of an Upper Left (UL) point and Lower Right (LR) point, or interactively drawing an area in the map.

The definition of a search area is required before searching the images.

- *UL X (Lon)* set the UL longitude;
- UL Y (Lat) 12: set the UL latitude;
- *LR X (Lon)* : set the LR longitude;
- *LR Y (Lat)* 10: set the LR latitude;
- • *Show*: show or hide the search area drawn in the map;
- Control cont

Search

Define the search settings such as date of acquisition, maximum cloud cover, or specify Landsat satellites.

- *Satellites* : set the Landsat satellites;
- *Date from* 1980 v: set the starting date of acquisition;
- to 1980 v: set the ending date of acquisition;
- *Max cloud cover* (%) 12: maximum cloud cover in the image;
- *Results* 12: maximum number of images returned by the search;
- Filter **T**: set a filter such as the Image ID of Landsat images (e.g. LC81910312015006LGN00); it is possible to enter multiple Image IDs separated by comma or semicolon (e.g. LC81910312015006LGN00, LC81910312013224LGN00); filtered images must be inside the search area;
- *Find* Find the images in the search area; results are displayed inside the table in *Landsat images* (page 53); results are added to previous results;

Tip: Search results (and the number thereof) depend on the defined area extent and the range of dates. In order to get more results, perform multiple searches defining smaller area extent and narrow acquisition dates (from and to).

Landsat images

Image list: found images are displayed in this table, which includes the following fields;

- ImageID: the Landsat Image ID;
- AcquisitionDate: date of acquisition of Landsat image;
- CloudCover: percentage of cloud cover in the image;
- Path: WRS path of the image;
- *Row*: WRS row of the image;
- *min_lat*: minimum latitude of the image;
- *min_lon*: minimum longitude of the image;
- *max_lat*: maximum latitude of the image;
- *max_lon*: maximum longitude of the image;
- USGScollection: USGS collection code of the image;
- Preview: URL of the image preview;
- *collection*: collection code of the image;

• Key is solved a set of highlighted images in the map; preview is roughly georeferenced on the fly;

: remove highlighted images from the list;

remove all images from the list;

Download options

Landsat 8 bands

This tab allows for the selection of single bands (only for Landsat 8 images provided by the Amazon Web Services).

- *Band* X: select bands for download;
- : select or deselect all bands;

Download

Download the Landsat images in the *Landsat images* (page 53). During the download it is recommended not to interact with QGIS.

Download is performed according to image availability from the services EarthExplorer, Google Earth Engine, or the Amazon Web Services (AWS). If the image is not available for download it is possible to check the availability thereof on http://earthexplorer.usgs.gov/.

• *Only if preview in Layers*: if checked, download only those images listed in *Landsat images* (page 53) which are also listed in the QGIS layer panel;

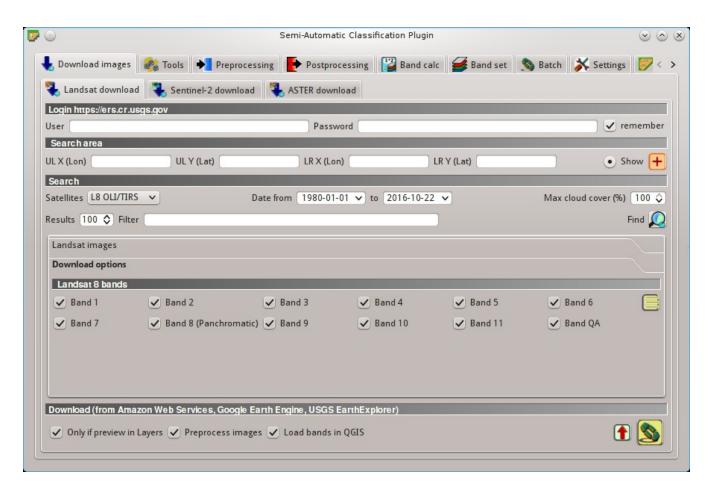


Fig. 10.2: Download options

- *Preprocess images*: if checked, bands are automatically converted after the download, according to the settings defined in *Landsat* (page 77);
- *Load bands in QGIS*: if checked, bands are loaded in QGIS after the download;
- : export the download links to a text file;
- start the download process of all the images listed in *Landsat images* (page 53);

Sentinel-2 download

0	Semi-Automatic Classification Plugin	0
占 Download images 🛛 🆓 Tools 🔶 Preprocess	ing 📑 Postprocessing 🔛 Band calc 🥩 Band set 🦠 Batch 💸 Set	tings 📝 Abou
🔧 Landsat download 🛛 🍣 Sentinel-2 download	STER download	
Login Sentinels		
Service https://scihub.copernicus.eu/apihub		
User	Password	🖌 🖌 remember
Search area		_
UL X (Lon) UL Y (Lat)	LR X (Lon) LR Y (Lat)	• Show 🕂
Date from 2015-07-01 V to 2016-11-18 V M Sentinel images Image list	1ax cloud cover (%) 100 ♢ Results 10 ♢ Filter	Find 🧶
ImageName	Granule AcquisitionDate: Zone CloudCover mi	in_lat
		< >
Download options		
Download		0

Fig. 10.3: Sentinel-2 download

Sentinel-2 is a European satellite launched in 2015, developed in the frame of Copernicus land monitoring services, which acquires 13 spectral bands (see *Sentinel-2 Satellite* (page 143)). This tab allows for searching and downloading the free Sentinel-2 images (Level-1C) from the Sentinels Scientific Data Hub (using the Data Hub API). Images are mainly downloaded from the Amazon S3 AWS if available.

Sentinel-2 satellite has a swath width of 290km. Sentinel-2 Level-1C images are delivered in granules (also called tiles) with a side of 100km in UTM/WGS84 projection. This tool allows for the selection and download of granules and bands.

Tip: In case of errors please see *Error* [50] 'Internet error'. Unable to download Sentinel-2 images. Why? (page 267) and *Error* [56] 'SSL connection error'. Unable to download Sentinel-2 images. Why? (page 267).

Login Sentinels

In order to access to Sentinel data a free registration is required at https://scihub.copernicus.eu/userguide/ 1SelfRegistration (other services may require different registrations). After the registration, enter the user name and password for accessing data.

- Service **T** : enter the service URL (default is https://scihub.copernicus.eu/apihub); other mirror services that share the same infrastructure can be used (such as https://scihub.copernicus.eu/dhus, https://finhub.nsdc.fmi.fi, https://data.sentinel.zamg.ac.at);
- **____**: reset the default service https://scihub.copernicus.eu/s2);
- User **T** : enter the user name;
- *Password* **T** : enter the password;
- *remember*: remember user name and password in QGIS;

Search area

Define the search area by entering the coordinates (longitude and latitude) of an Upper Left (UL) point and Lower Right (LR) point, or interactively drawing an area in the map. The definition of a search area is required before searching the images.

- *UL X (Lon)* : set the UL longitude;
- *UL Y (Lat)* : set the UL latitude;
- *LR X (Lon)* 10: set the LR longitude;
- *LR Y (Lat)* set the LR latitude;
- Show: show or hide the search area drawn in the map;
- the click to set the UL point and right click to set the UL point and right click to set the LR point; the area is displayed in the map;

Search

Define search settings such as the date of acquisition or search for specific Sentinel images using the Image ID or name.

- *Date from* 1980 v: set the starting date of acquisition;
- to 1980 v: set the ending date of acquisition;
- *Max cloud cover* (%) 12: maximum cloud cover in the image;
- *Results* 10: maximum number of images returned by the search;
- *Filter* **T**: set a filter such as the Image Name of Sentinel images (e.g. S2A_OPER_PRD_MSIL1C_PDMC_20160419T190217_R022_V20160419T101026);
- *Find* Find the images in the search area; results are displayed inside the table in *Sentinel images* (page 57); results are added to previous results;

Tip: Search results (and the number thereof) depend on the defined area extent and the range of dates. In order to get more results, perform multiple searches defining smaller area extent and narrow acquisition dates (from and to).

Sentinel images

Image list: found images are displayed in this table, which includes the following fields;

- ImageName: the Sentinel Image Name;
- Granule: the single granule name;
- AcquisitionDate: date of acquisition of Sentinel image;
- Zone: tile zone according to the US-MGRS naming convention;
- CloudCover: percentage of cloud cover in the image;
- *min_lat*: minimum latitude of the image;
- *min_lon*: minimum longitude of the image;
- *max_lat*: maximum latitude of the image;
- *max_lon*: maximum longitude of the image;
- *Size*: the size of the image (unused);
- *Preview*: URL of the image overview;
- *GranulePreview*: URL of the granule preview; if available, preview is downloaded from the Amazon Web Services;
- ImageID: the Sentinel Image ID;
- Stephen in the map;
- Will: display overview of highlighted images in the map; overview is roughly georeferenced on the fly; overviews could not be available when using mirror services;
- 🜅: remove highlighted images from the list;
- **T**: remove all images from the list;

Tip: download this zip file containing the shapefile of Sentinel-2 granules for identifying the zone; load this shapefile in QGIS, select the granules in your search area and open the attribute table to see the zone name.

Download options

This tab allows for the selection of single bands.

- *Band* X: select bands for download;
- Marcillary data: if checked, the metadata files (a .xml file whose name contains MTD_SAFL1C and a .xml file whose name contains MTD_L1C) and the cloud mask file (a .gml file whose name contains MSK_CLOUDS) are downloaded;

: select or deselect all bands;

\odot		S	emi-Automatic Clas:	sification Plugin			\odot \odot \otimes
Lownload images	🍂 Tools 🔶	Preprocessing	Postprocessing	📔 Band calc	Band set 🔊 Bat	ch 👗 Settings [About
🔧 Landsat download	Sentinel-2	download 🤻 A	STER download				
Login Sentinels							
Service https://scihub.o	opernicus.eu/api	hub					
User			Password			🖌 rer	nember
Searcharea							
UL X (Lon)	ULY (Lat)		LR X (Lon)	LR Y (Lat)	• Sh	ow 🕂
Search							
Date from 2015-07-01	✓ to 2016-11	-18 V Max clou	d cover (%) 100 💠	Results 10 🔷	Filter	F	ind <u>Q</u>
Sentinel images							
Download options							
Sentinel-2 bands	-	-					
Band 1	Band 2	✓ Band 3	✓ Band 4	✓ Band 5	✓ Band 6	✓ Band 7	
Band 8	Band 8A	Band 9	Band 10	✓ Band 11	✓ Band 12	✓ Ancillary data	
Download							
 Only if preview in La 	avers Z Prenroo	ess images 📿 Lo	ad bands in OGIS			A	
() only a preview in co	Jeis 💽 Heplot						

Fig. 10.4: Download options

Download

Download the Sentinel-2 images in the *Sentinel images* (page 57). Bands selected in *Download options* (page 57) are downloaded.

During the download it is recommended not to interact with QGIS.

- *Only if preview in Layers*: if checked, download only those images listed in *Sentinel images* (page 57) which are also listed in the QGIS layer panel;
- Preprocess images: if checked, bands are automatically converted after the download, according to the settings defined in *Sentinel-2* (page 79);
- *Load bands in QGIS*: if checked, bands are loaded in QGIS after the download;
- ① : export the download links to a text file;
 - Start the download process of all the images listed in *Sentinel images* (page 57);

ASTER download

\odot		Semi-Automatic Classifica	tion Plugin		0
🖶 Download images	🇞 Tools 🔶 Preproces	sing 💽 Postprocessing	🗿 Band calc 🥁 Band set	Set	tings 📝 <
💫 Landsat downloa	d 🜏 Sentinel-2 download	ASTER download			
Login https://urs.eart	thdata.nasa.gov				
User		Password			remember
Search area	ULY (Lat)	LR X (Lon)	LR Y (Lat)		• Show 🕇
Search Satellites ASTER Leve	el 1T 🗸	Date from 2000-01-01 v to	2016-10-22 🗸	Max cloud cove	r (%) 100 🗘
Results 100 🔷 Filte	ir (Find 🛴
ASTER images	lmagelD	AcquisitionDate: Cloud	Cover :ImageDisplayID:D	ayNightFlag : mi	n_lat
<					

This tab allows for searching and downloading the whole archive of free images L1T acquired by *ASTER Satellite* (page 143) since 2000. Search is performed through the CMR Search API developed by NASA. The ASTER L1T data products are retrieved from the online Data Pool, courtesy of the NASA Land Processes Distributed Active

Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool.

Also, automatic conversion to reflectance of downloaded bands is available.

Login https://urs.earthdata.nasa.gov

EOSDIS Earthdata credentials (https://urs.earthdata.nasa.gov) are required for download. Login using your *EOS-DIS Earthdata* credentials or register for free at https://urs.earthdata.nasa.gov/users/new.

Warning: Before downloading ASTER images, you must approve LP DAAC Data Pool clicking the following https://urs.earthdata.nasa.gov/approve_app?client_id=ijpRZvb9qeKCK5ctsn75Tg

- User **T** : enter the user name;
- *Password* **T** : enter the password;
- *remember*: remember user name and password in QGIS;

Search area

Define the search area by entering the coordinates (longitude and latitude) of an Upper Left (UL) point and Lower Right (LR) point, or interactively drawing an area in the map.

The definition of a search area is required before searching the images.

- *UL X (Lon)* : set the UL longitude;
- *UL Y (Lat)* set the UL latitude;
- *LR X (Lon)* set the LR longitude;
- *LR Y (Lat)* 12: set the LR latitude;
- • *Show*: show or hide the search area drawn in the map;
- the last the use of the map; left click to set the use of the transfer of the map; left click to set the use of the transfer of the transfer

Search

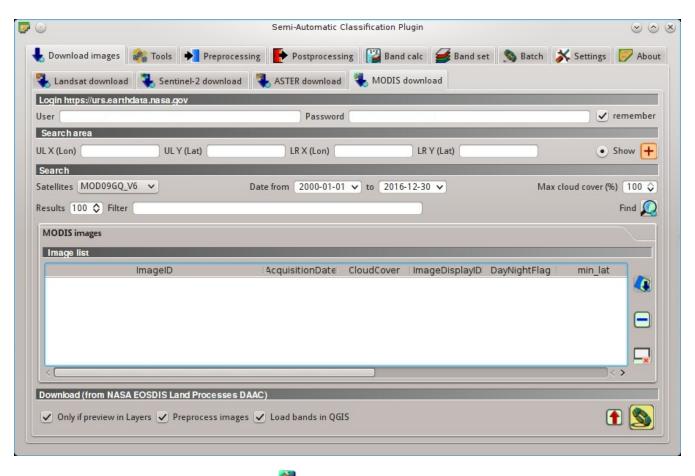
Define the search settings such as date of acquisition, maximum cloud cover, or specify ASTER satellites.

- *Satellites* **___**: set the ASTER satellites (unused);
- *Date from* 1980 v: set the starting date of acquisition;
- to $1980 \, \mathbf{v}$: set the ending date of acquisition;
- *Max cloud cover (%)* : maximum cloud cover in the image;
- *Results* 12: maximum number of images returned by the search;
- *Filter* **T**: set a filter such as the Image ID of ASTER images; it is possible to enter multiple Image IDs separated by comma or semicolon; filtered images must be inside the search area;
- *Find* Find the images in the search area; results are displayed inside the table in *ASTER images* (page 61); results are added to previous results;

Tip: Search results (and the number thereof) depend on the defined area extent and the range of dates. In order to get more results, perform multiple searches defining smaller area extent and narrow acquisition dates (from and to).

ASTER images

Image list: found images are displayed in this table, which includes the following fields;


- ImageID: the ASTER Image ID;
- AcquisitionDate: date of acquisition of ASTER image;
- *CloudCover*: percentage of cloud cover in the image;
- *ImageDisaplyID*: the ASTER Image ID;
- DayNightFlag: flag for acquisition during day or night;
- *min_lat*: minimum latitude of the image;
- *min_lon*: minimum longitude of the image;
- *max_lat*: maximum latitude of the image;
- *max_lon*: maximum longitude of the image;
- Service: download service of the image;
- Preview: URL of the image preview;
- *collection*: collection code of the image;
- State the map is the mages in the map; preview is roughly georeferenced on the fly;
 - : remove highlighted images from the list;
- **remove all images from the list;**

Download

Download the ASTER images in the ASTER images (page 61). During the download it is recommended not to interact with QGIS.

- *Only if preview in Layers*: if checked, download only those images listed in *ASTER images* (page 61) which are also listed in the QGIS layer panel;
- *Preprocess images*: if checked, bands are automatically converted after the download, according to the settings defined in *ASTER* (page 80);
- *Load bands in QGIS*: if checked, bands are loaded in QGIS after the download;
- ①: export the download links to a text file;

start the download process of all the images listed in ASTER images (page 61);

MODIS download

This tab allows for searching and downloading the archive of free *MODIS Products* (page 144) acquired since 2000 (in particular MOD09GQ, MYD09GQ, MOD09GA, MYD09GA, MOD09Q1, MYD09Q1, MOD09A1, MYD09A1). Search is performed through the CMR Search API developed by NASA. MODIS products are retrieved from the online Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool.

Also, automatic reprojection of downloaded bands is available.

Login https://urs.earthdata.nasa.gov

EOSDIS Earthdata credentials (https://urs.earthdata.nasa.gov) are required for download. Login using your *EOS-DIS Earthdata* credentials or register for free at https://urs.earthdata.nasa.gov/users/new.

Warning: Before downloading MODIS images, you must approve LP DAAC Data Pool clicking the following https://urs.earthdata.nasa.gov/approve_app?client_id=ijpRZvb9qeKCK5ctsn75Tg

- User **T** : enter the user name;
- *Password* **T** : enter the password;
- *remember*: remember user name and password in QGIS;

Search area

Define the search area by entering the coordinates (longitude and latitude) of an Upper Left (UL) point and Lower Right (LR) point, or interactively drawing an area in the map.

The definition of a search area is required before searching the images.

- *UL X (Lon)* : set the UL longitude;
- *UL Y (Lat)* : set the UL latitude;
- *LR X (Lon)* : set the LR longitude;
- *LR Y (Lat)* 10: set the LR latitude;
- • *Show*: show or hide the search area drawn in the map;
- the last the use of the map; left click to set the use of the transfer of the map; left click to set the use of the use of the transfer of t

Search

Define the search settings such as date of acquisition, maximum cloud cover, or specify MODIS product.

- *Products* : set the MODIS products;
- *Date from* 1980 v: set the starting date of acquisition;
- to 1980 v: set the ending date of acquisition;
- *Max cloud cover* (%) 12: maximum cloud cover in the image (unused);
- *Results* 12: maximum number of images returned by the search;

- *Filter* **T**: set a filter such as the Image ID of MODIS images; it is possible to enter multiple Image IDs separated by comma or semicolon; filtered images must be inside the search area;
- *Find* Find the images in the search area; results are displayed inside the table in *MODIS images* (page 64); results are added to previous results;

Tip: Search results (and the number thereof) depend on the defined area extent and the range of dates. In order to get more results, perform multiple searches defining smaller area extent and narrow acquisition dates (from and to).

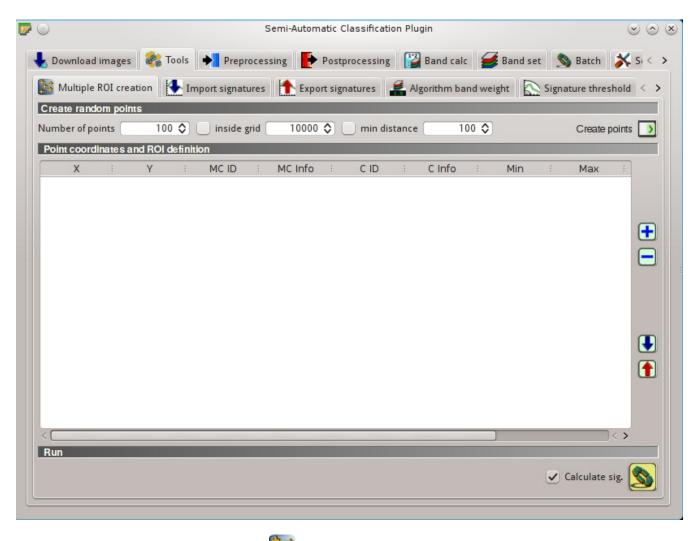
MODIS images

1.1.1.1

- *Image list*: found images are displayed in this table, which includes the following fields;
 - ImageID: the MODIS Image ID;
 - AcquisitionDate: date of acquisition of MODIS image;
 - CloudCover: percentage of cloud cover in the image;
 - ImageDisaplyID: the MODIS Image ID;
 - DayNightFlag: flag for acquisition during day or night;
 - *min_lat*: minimum latitude of the image;
 - *min_lon*: minimum longitude of the image;
 - *max_lat*: maximum latitude of the image;
 - *max_lon*: maximum longitude of the image;
 - Service: download service of the image;
 - *Preview*: URL of the image preview;
 - *collection*: collection code of the image;
- s display preview of highlighted images in the map; preview is roughly georeferenced on the fly;
- 🔲: remove highlighted images from the list;
- **•** remove all images from the list;

Download

Download the MODIS images in the *MODIS images* (page 64). During the download it is recommended not to interact with QGIS.


- *Only if preview in Layers*: if checked, download only those images listed in *MODIS images* (page 64) which are also listed in the QGIS layer panel;
- *Preprocess images*: if checked, bands are automatically converted after the download, according to the settings defined in *MODIS* (page 82);
- *Load bands in QGIS*: if checked, bands are loaded in QGIS after the download;
- **II**: export the download links to a text file;

start the download process of all the images listed in *MODIS images* (page 64);

Tools

The tab **Tools** includes several tools for manipulating ROIs and spectral signatures.

Multiple ROI Creation

This tab allows for the automatic creation of ROIs, useful for the rapid classification of multi-temporal images, or for accuracy assessment. Given a list of point coordinates and ROI options, this tool performs the region growing of ROIs. Created ROIs are automatically saved to the *Training input* (page 40).

Create random points

• *Number of points* 12: set a number of points that will be created when *Create points* is clicked;

- *inside grid* : if checked, the *input image* area is divided in cells where the size thereof is defined in the combobox (image unit, usually meters); points defined in Number of random points are created randomly within each cell;
- *min distance iii*: if checked, random points have a minimum distance defined in the combobox (image unit, usually meters); setting a minimum distance can result in fewer points than the number defined in *Number of points*;
- *Create points* **:** create random points inside the *input image* area;

Point coordinates and ROI definition

- **Point coordinates and ROI definition: table containing the following fields;**
 - *X* : point X coordinate (float);
 - *Y* : point Y coordinate (float);
 - MC ID: ROI Macroclass ID (int);
 - MC Info: ROI Macroclass information (text);
 - CID: ROI Class ID (int);
 - C Info: ROI Class information (text);
 - *Min* : the minimum area of a ROI (in pixel unit);
 - *Max* : the maximum width of a ROI (in pixel unit);
 - *Dist* : the interval which defines the maximum spectral distance between the seed pixel and the surrounding pixels (in radiometry unit);
 - *Rapid ROI band* : if a band number is defined, ROI is created only using the selected band, similarly to *Rapid ROI band* in *ROI creation* (page 42);
- **U**: add a new row to the table; all the table fields must be filled for the ROI creation;
- - : delete the highlighted rows from the table;
- Import a point list from text file to the table; every line of the text file must contain values separated by tabs of X, Y, MC ID, MC Info, Class ID, C Info, Min, Max, Dist, and optionally the Rapid ROI band;
- ①: export the point list to text file;

Run

• *Calculate sig.*: if checked, the spectral signature is calculated while the ROI is saved to *Training input* (page 40);

start the ROI creation process for all the points and save ROIs to the *Training input* (page 40);

Import signatures

The tab *Import signatures* allows for importing spectral signatures from various sources.

Import library file

0	Semi-Automatic Classification P	lugin 🛞 🙆
🖌 Download Images 🛛 🎎	Tools 🔶 Preprocessing 📑 Postprocessing	🍟 Band calc 🛛 🥩 Band set 🔊 Batch 🕺 S <
Multiple ROI creation	🚺 Import signatures 🛛 🚹 Export signatures 🛛 🚅	Algorithm band weight 🛛 🔛 Signature threshold <
Import library file		
Select a file: SCP file (*.sc); USGS library (*.asc); ASTER library (*.txt); CSV (*.csv)	,
Import shapefile		
Download USGS Spectral Li	nan.	

Fig. 10.8: Import library file

This tool allows for importing spectral signatures from various sources: a previously saved *Training input* (page 40) (.scp file); a USGS Spectral Library (.asc file); a previously exported CSV file. In case of USGS Spectral Library, the library is automatically sampled according to the image band wavelengths defined in the *Band set* (page 110), and added to the *ROI Signature list* (page 41);

• Select a file : open a file to be imported in the *Training input* (page 40);

Import shapefile

This tool allows for importing a shapefile, selecting the corresponding fields of the Training input (page 40).

- *Select a shapefile* : open a shapefile;
- *MC ID field* select the shapefile field corresponding to MC ID;

	Semi-A	utomatic Classification Plugin	1	\odot
Download Images 🛛 💰	Tools 🔶 Preprocessing	Postprocessing 🔡 Ba	and calc <i> s</i> Band set 🔊 B	Batch 🕺 S < 🔉
Multiple ROI creation	Import signatures	Export signatures 🛃 Algori	ithm band weight 🛛 🖳 Signatur	e threshold < >
Import library file				
Import shapefile				
Select a shapefile (*.sh	p)			
Shapefile fields				
MCID field	MC Info field	C ID field	C Info field	
	V	<u> </u>	v) [~
			✓ Calculate sig. Import :	shapefile
			. · ·	•
Download USGS Spectral	Library			

Fig. 10.9: Import shapefile

- *MC Info field* select the shapefile field corresponding to MC Info;
- *C ID field* select the shapefile field corresponding to C ID;
- *C Info field* : select the shapefile field corresponding to C Info;
- *Calculate sig.*: if checked, the spectral signature is calculated while the ROI is saved to *Training input* (page 40);
- *Import shapefile* : import all the shapefile polygons as ROIs in the *Training input* (page 40);

Download USGS Spectral Library

Download Images									
🚳 Multiple ROI crea	tion 🚺 Imp	oort signatures	Export sig	natures	Algorithm b	and weight	Si Si	gnature thre	eshold <
Import library file									
Import shapefile									
Download USGS Spe	ectral Library								
Select a chapter									~
Select a library									~)
74247									
							Impor	t spectral lib	rary 🕟
Library Descripti	on (requires in	ternet connecti	on)	_	_	_	Impor	t spectral lib	rary 🚺
Library Descripti	on (requires in	ternet connecti	on)	_	_	_	Impor	t spectral lib	rary 🚺
Library Descripti	on (requires in	ternet connecti	on)	_	_	-	Impor	t spectral lib	rary 🕟
Library Descripti	on (requires in	ternet connecti	on)	-	-	-	Impor	t spectral lib	rary 🕟
Library Descripti	on (requires in	ternet connecti	on)	_			Impor	t spectral lib	rary 🕟
Library Descripti	on (requires in	ternet connecti	on)				Impor	t spectral lib	rary 💽
Library Descripti	on (requires in	ternet connecti	on)				Import	t spectral lib	rary 💽
Library Descripti	on (requires in	ternet connecti	on)				Impor	t spectral lib	rary 💽
Library Descripti	on (requires in	ternet connecti	on)				Impor	t spectral lib	rary 💽
Library Descripti	on (requires in	ternet connecti	on)				Impor	t spectral lib	rary 💽
Library Descripti	on (requires in	ternet connecti	on)				Impor	t spectral lib	rary 💽
Library Descripti	on (requires in	ternet connecti	on)				Impor	t spectral lib	rary 💽
Library Descripti				ulan ostara liih	htaal		Impor	t spectral lib	rary

Fig. 10.10: Download USGS Spectral Library

The tab *Download USGS Spectral Library* allows for the download of the USGS spectral library (Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J., 2007, USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231).

The libraries are grouped in chapters including Minerals, Mixtures, Coatings, Volatiles, Man-Made, Plants, Vegetation Communities, Mixtures with Vegetation, and Microorganisms. An internet connection is required.

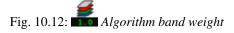
• *Select a chapter* : select one of the library chapters; after the selection, chapter libraries are shown in *Select a library*;

- *Select a library* select one of the libraries; the library description is displayed in the frame *Library description*;
- *Import spectral library* : download the library and add the sampled spectral signature to the *ROI Signature list* (page 41) using the parameters defined in *ROI creation* (page 42); the library is automatically sampled according to the image band wavelengths defined in the *Band set* (page 110), and added to the *ROI Signature list* (page 41);

Tip: Spectral libraries downloaded from the USGS Spectral Library can be used with Minimum Distance or Spectral Angle Mapping algorithms, but not Maximum Likelihood because this algorithm needs the covariance matrix that is not included in the spectral libraries.

Export signatures

	Semi-Automatic Clas	sification Plugin			\sim \sim \times
👆 Download images 💸 Tools 🏾 🔶 Preprocessi	ng Postprocessing	월 Band calc 🥩	Band set 🔊 B	atch 💦 Settings	🥟 About
👫 Multiple ROI creation 🚺 Import signatures	1 Export signatures	Algorithm band weig	ght 💽 Signatur	e threshold 🚺 🥿 LC	S thres < >
Export		_	_		
Export as SCP file (*.scp)					
Export as shapefile (*.shp)					9
Export as CSV file (.csv)					



This tool allows for exporting the signatures highlighted in the ROI Signature list (page 41).

- *Export as SCP file* create a new .scp file and export highlighted ROIs and spectral signatures as *SCP* file (* .scp);
- *Export as shapefile* : export highlighted ROIs (spectral signature data excluded) as a new shapefile (* .shp);
- *Export as CSV file* : open a directory, and export highlighted spectral signatures as individual CSV files (* .csv) separated by semicolon (;);

 Semi-Automatic Classification Plugin	\sim \sim \times
👆 Download images 🔹 Tools 🔸 Preprocessing 📑 Postprocessing 🔛 Band calc 🥩 Band set 🔊 Batch 🗡	Si < >
🔝 Multiple ROI creation 🔛 Import signatures 🏠 Export signatures 🚅 Algorithm band weight 🔝 Signature threshold	< >
Band weight Band number : Band name : Weight :	
Band humber - Band hame - Weight -	
	×
Automatic weight	
Set weight 1.00 Image Television	

Algorithm band weight

This tab allows for the definition of band weights that are useful for improving the spectral separability of materials at certain wavelengths (bands). During the classification process, band values and spectral signature values are multiplied by the corresponding band weights, thus modifying the spectral distances.

Band weight

- Band weight: table containing the following fields;
 - Band number : number of the band in the Band set;
 - Band name : name of the band;
 - *Weight* : weight of the band; this value can be edited;

Automatic weight

x: reset all band weights to 1;

• *Set weight* : set the defined value as weight for all the highlighted bands in the table;

Signature threshold

9	Semi	i-Automatic Classification Plu	gin	\otimes \otimes \otimes
👆 Download images 🛛 🎄 Tools	Preprocessing	Postprocessing	Band calc 🥩 Band set	S Batch 🕺 S < >
ation 🛃 Import signatures	Export signatures	🕌 Algorithm band weight	Signature threshold	LCS threshold < >
Signature threshold				
MC ID #MC Info# C ID # C Info	MD Threshold	ML Threshold	SAM Threshold	
				* /
Automatic thresholds		Control III		
Set threshold 0.0000 🔿 💽		Set threshold = σ	• 1.0 💠 🚺	

This tab allows for the definition of a classification threshold for each spectral signature. All the signatures contained in the *Training input* (page 40) are listed. This is useful for improving the classification results, especially when spectral signatures are similar. Thresholds of signatures are saved in the *Training input* (page 40).

If threshold is 0 then no threshold is applied. Depending on the selected *Classification algorithm* (page 44) the threshold value is evaluated differently:

- for Minimum Distance, pixels are unclassified if distance is greater than threshold value;
- for Maximum Likelihood, pixels are unclassified if probability is less than threshold value (max 100);
- for Spectral Angle Mapping, pixels are unclassified if spectral angle distance is greater than threshold value (max 90).

Signature threshold

Signature threshold: table containing the following fields;

- MC ID: signature Macroclass ID;
- MC Info: signature Macroclass Information;
- C ID: signature Class ID;
- C Info: signature Class Information;
- *MD Threshold*: Minimum Distance threshold; this value can be edited;
- *ML Threshold*: Maximum Likelihood threshold; this value can be edited;
- SAM Threshold: Spectral Angle Mapping threshold; this value can be edited;

reset all signatures thresholds to 0 (i.e. no threshold used);

Automatic thresholds

- : set the defined value as threshold for all the highlighted signatures in the table; Set threshold
- Set threshold = $\sigma * \square \square$: for all the highlighted signatures, set an automatic threshold calculated as the distance (or angle) between mean signature and (mean signature + ($\sigma * v$)), where σ is the standard deviation and v is the defined value; currently works for Minimum Distance and Spectral Angle Mapping;

LCS threshold

This tab allows for setting the signature thresholds used by Land Cover Signature Classification (page 154). All the signatures contained in the Training input (page 40) are listed; also, signature thresholds are saved in the Training input (page 40).

Overlapping signatures (belonging to different classes or macroclasses) are highlighted in orange in the table LC Signature threshold; the overlapping check is performed considering MC ID or C ID according to the setting Use

MC ID C ID in Classification algorithm (page 44). Overlapping signatures sharing the same ID are not highlighted.

LC Signature threshold

- LC Signature threshold: table containing the following fields;
 - MC ID: signature Macroclass ID;
 - MC Info: signature Macroclass Information;
 - C ID: signature Class ID;
 - C Info: signature Class Information;
 - Color [overlap MC_ID-C_ID]: signature color; also, the combination MC ID-C ID is displayed in case of overlap with other signatures (see Land Cover Signature Classification (page 154));
 - *Min B* X: minimum value of band X; this value can be edited;
 - *Max B* X: maximum value of band X; this value can be edited;

e: show the ROI spectral signature in the *Spectral Signature Plot* (page 121); spectral signature is calculated from the *Input image* (page 38);

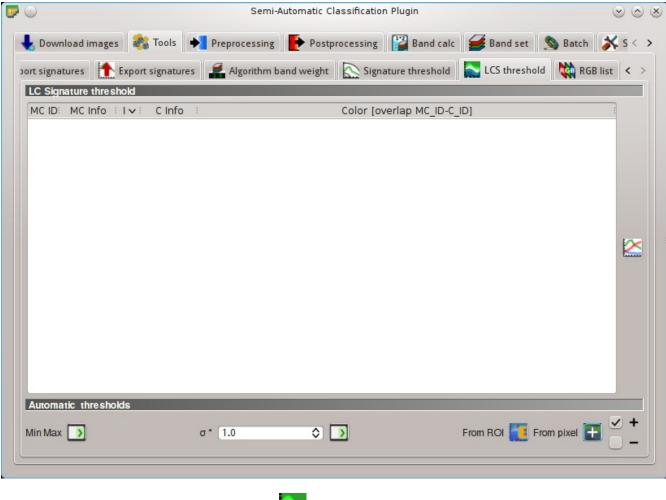
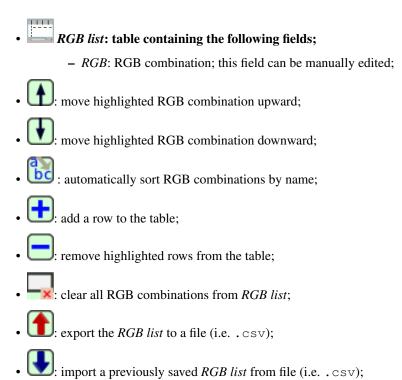


Fig. 10.14: EXAMPLE Fig. 10.14:

Automatic thresholds


Set thresholds automatically for highlighted signatures in the table *LC Signature threshold*; if no signature is highlighted, then the threshold is applied to all the signatures.


- *Min Max* : set the threshold based on the minimum and maximum of each band;
- $\sigma * \square \square$: set an automatic threshold calculated as (band value + ($\sigma * v$)), where σ is the standard deviation of each band and v is the defined value;
- *From ROI* **E**: set the threshold using the temporary ROI pixel values, according to the following checkboxes:
 - +: if checked, signature threshold is extended to include pixel signature;
 - 🗹 –: if checked, signature threshold is reduced to exclude pixel signature;
- *From pixel* set the threshold by clicking on a pixel, according to the following checkboxes:
 - 🗹 +: if checked, signature threshold is extended to include pixel signature;
 - - : if checked, signature threshold is reduced to exclude pixel signature;

RGB list

This tab allows for managing the RGB *Color Composite* (page 145) used in the list *RGB*= of the *Image control* (page 33).

RGB list

Automatic RGB

• *Band combinations* : add the combinations of all bands (i.e. permutation) to the *RGB list* (page 75) (e.g. 1-2-3, 1-2-4, ..., 3-2-1);

Preprocessing

The tab *Preprocessing* provides several tools for data manipulation which are useful before the actual classification process.

Landsat

\odot				S	emi-Au	tomatic Cla	ssificatior	n Plugi	n					6	0
L Downloa	ad images	📸 Too	ols 🔶	Preproces	sing	Postpr	ocessing	1	and calc		Band se	et 🥊	Batch	*	51 <
🐼 Landsa	at 📉 Se	entinel-2	🙉 AST	TER 🏂	Clip mu	iltiple raste	rs 🌒 S	oplit ras	ter bands		PCA		/ector to	raster	
Landsat c	onversion	to TOA re	flectance	and brigh	tnesste	emperature	•								
Directory co	ntaining La	ndsat band	ls												
Select MTL	file (if not in	Landsato	firectory)												
Bright	ness tempe	erature in l	Celsius												
Apply I	DOS1 atmo	spheric co	orrection				~	Use I	NoData va	alue (in	nage has	s black	border)	0	٥
Perform	n pansharp	ening (La	ndsat 7 or	8)											
Create	Band set a	nd use Ba	ind set too	ols											
Metadata															
Satellite		Date	e (YYYY-N	IM-DD)		Su	in elevation			Ea	arth sun c	distanc	e		
	Band		RADIAN	ICE_MULT		RADIAN	CE_ADD		REFLEC	TANCE	MULT	÷F	REFLECT	ANCE	
															_
<															
Run															
														ſ	8
														ł	8
												_		_	_

This tab allows for the conversion of Landsat 1, 2, and 3 MSS and Landsat 4, 5, 7, and 8 images from DN (i.e. Digital Numbers) to the physical measure of Top Of Atmosphere reflectance (TOA), or the application of a simple atmospheric correction using the DOS1 method (Dark Object Subtraction 1), which is an image-based technique (for more information about the Landsat conversion to TOA and DOS1 correction, see *Image conversion to reflectance* (page 161)). Pan-sharpening is also available; for more information read *Pan-sharpening* (page 146).

Landsat conversion to TOA reflectance and brightness temperature

- *Directory containing Landsat bands* : open a directory containing Landsat bands; names of Landsat bands must end with the corresponding number; if the metadata file is included in this directory then *Metadata* (page 78) are automatically filled;
- Select MTL file : if the metadata file is not included in the Directory containing Landsat bands, select the path of the metadata file in order to fill the Metadata (page 78) automatically;
- *Brightness temperature in Celsius*: if checked, convert brightness temperature to Celsius (if a Landsat thermal band is listed in *Metadata* (page 78)); if unchecked temperature is in Kelvin;
- Apply DOS1 atmospheric correction: if checked, the DOS1 Correction (page 162) is applied to all the bands (thermal bands excluded);
- Use NoData value (image has black border) 10: if checked, pixels having NoData value are not counted during conversion and the DOS1 calculation of DNmin; it is useful when image has a black border (usually pixel value = 0);
- *Perform pan-sharpening*: if checked, a Brovey Transform is applied for the *Pan-sharpening* (page 146) of Landsat bands;
- *Create Band set and use Band set tools*: if checked, the *Band set* is created after the conversion; also, the *Band set* is processed according to the tools checked in the *Band set* (page 110);

Metadata

All the bands found in the *Directory containing Landsat bands* are listed in the table *Metadata*. If the Landsat metadata file (a .txt or .met file with the suffix MTL) is provided, then *Metadata* are automatically filled. For information about *Metadata* fields read this page and this one .

- *Satellite* **T**: satellite name (e.g. Landsat8);
- *Date* **T**: date acquired (e.g. 2013-04-15);
- *Sun elevation* 12: Sun elevation in degrees;
- Earth sun distance 12: Earth Sun distance in astronomical units (automatically calculated if Date is filled;
- : remove highlighted bands from the table *Metadata*;
- Metadata: table containing the following fields;
 - Band: band name;
 - *RADIANCE_MULT*: multiplicative rescaling factor;
 - RADIANCE_ADD: additive rescaling factor;
 - *REFLECTANCE_MULT*: multiplicative rescaling factor;
 - REFLECTANCE_ADD: additive rescaling factor;
 - RADIANCE_MAXIMUM: radiance maximum;
 - *REFLECTANCE_MAXIMUM*: reflectance maximum;
 - *K1_CONSTANT*: thermal conversion constant;

- *K2_CONSTANT*: thermal conversion constant;
- *LMAX*: spectral radiance that is scaled to QCALMAX;
- *LMIN*: spectral radiance that is scaled to QCALMIN;
- QCALMAX: minimum quantized calibrated pixel value;
- QCALMIN: maximum quantized calibrated pixel value;

Run

• Example: select an output directory and start the conversion process; only bands listed in the table *Metadata* are converted; converted bands are saved in the output directory with the prefix RT_ and automatically loaded in QGIS;

Sentinel-2

P 💿	Semi-Automatic Classification Plugin	> @ &
- Down	oad images 🔹 Tools 🔸 Preprocessing 📑 Postprocessing 🔛 Band calc 💋 Band set 🔊 Batch 💸 Settings 📝	About
🐼 Lan	sat 📉 Sentinel-2 🔣 ASTER 🎿 MODIS 🏂 Clip multiple rasters 🅠 Split raster bands 🗾 Stack raster bands 🗤 PC	A < >
	-2 conversion	
Directory	ontaining Sentinel-2 bands	
Select m	adata file (MTD_MSIL1C)	
Ар	DOS1 atmospheric correction Use NoData value (image has black border) 0	٥
🖌 Cre	e Band set and use Band set tools	
Metada		
Satellite		
-	Band Quantification value Solar irradiance	
Run		

This tab allows for the conversion of **Sentinel-2** images to the physical measure of Top Of Atmosphere reflectance (TOA), or the application of a simple atmospheric correction using the DOS1 method (Dark Object Subtraction 1), which is an image-based technique (for more information about conversion to TOA and DOS1 correction, see *Image conversion to reflectance* (page 161)).

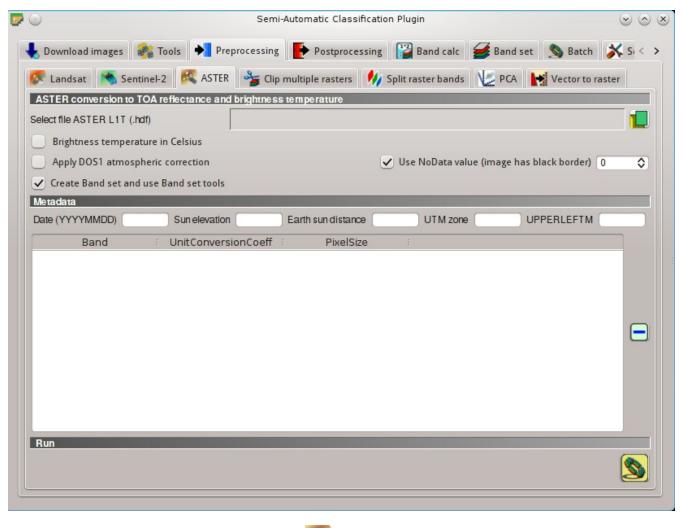
Sentinel-2 conversion

- *Directory containing Sentinel-2 bands* : open a directory containing Sentinel-2 bands; names of Sentinel-2 bands must end with the corresponding number; if the metadata file is included in this directory then *Metadata* (page 80) are automatically filled;
- Select metadata file : select the metadata file which is a .xml file whose name contains MTD_MSIL1C);
- Apply DOS1 atmospheric correction: if checked, the DOS1 Correction (page 162) is applied to all the bands;
- *Use NoData value (image has black border)* 10: if checked, pixels having NoData value are not counted during conversion and the DOS1 calculation of DNmin; it is useful when image has a black border (usually pixel value = 0);
- *Create Band set and use Band set tools*: if checked, the *Band set* is created after the conversion; also, the *Band set* is processed according to the tools checked in the *Band set* (page 110);

Metadata

All the bands found in the *Directory containing Sentinel-2 bands* are listed in the table *Metadata*. If the Sentinel-2 metadata file (a .xml file whose name contains MTD_MSIL1C) is provided, then *Metadata* are automatically filled. For information about *Metadata* fields read this informative page.

- *Satellite* **T**: satellite name (e.g. Sentinel-2A);
- : remove highlighted bands from the table *Metadata*;
- *Metadata*: table containing the following fields;
 - Band: band name;
 - Quantification value: value for conversion to TOA reflectance;
 - Solar irradiance: solar irradiance of band;


Run

select an output directory and start the conversion process; only bands listed in the table *Metadata* are converted; converted bands are saved in the output directory with the prefix RT_ and automatically loaded in QGIS;

ASTER

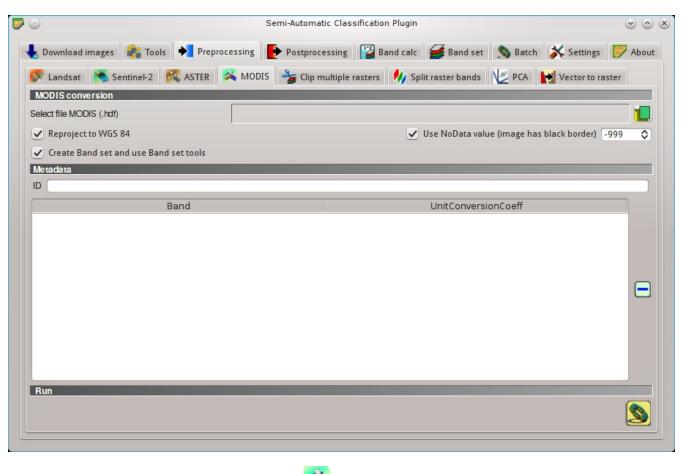
This tab allows for the conversion of **ASTER L1T** images to the physical measure of Top Of Atmosphere reflectance (TOA), or the application of a simple atmospheric correction using the DOS1 method (Dark Object Subtraction 1), which is an image-based technique (for more information about conversion to TOA and DOS1 correction, see *Image conversion to reflectance* (page 161)).

ASTER conversion

- *Select file ASTER L1T* : select an ASTER image (file .hdf);
- Apply DOS1 atmospheric correction: if checked, the DOS1 Correction (page 162) is applied to all the bands;
- Use NoData value (image has black border) 10: if checked, pixels having NoData value are not counted during conversion and the DOS1 calculation of DNmin; it is useful when image has a black border (usually pixel value = 0);
- *Create Band set and use Band set tools*: if checked, the *Band set* is created after the conversion; also, the *Band set* is processed according to the tools checked in the *Band set* (page 110);

Metadata

All the bands found in the *Select file ASTER L1T* are listed in the table *Metadata*. For information about *Metadata* fields visit the ASTER page.


- *Date* **T**: date acquired (e.g. 20130415);
- *Sun elevation* 12: Sun elevation in degrees;
- Earth sun distance 12: Earth Sun distance in astronomical units (automatically calculated if Date is filled;
- *UTM zone* **T**: UTM zone code of the image;
- UPPERLEFTM T: coordinates of the upper left corner of the image;
- : remove highlighted bands from the table *Metadata*;
- *Metadata*: table containing the following fields;
 - Band: band name;
 - UnitConversionCoeff: value for radiance conversion;
 - PixelSize: solar irradiance of band;

Run

select an output directory and start the conversion process; only bands listed in the table *Metadata* are converted; converted bands are saved in the output directory with the prefix RT_ and automatically loaded in QGIS;

MODIS

This tab allows for the conversion of MODIS images to .tif format, and the reprojection to WGS 84.

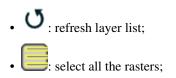
MODIS conversion

- Select file MODIS : select a MODIS image (file .hdf);
- *Reproject to WGS 84*: if checked, reproject bands to WGS 84, required for use in *SCP*;
- Use NoData value (image has black border) 10: if checked, pixels having NoData value are not counted during conversion and the DOS1 calculation of DNmin; it is useful when image has a black border (usually pixel value = 0);
- Create Band set and use Band set tools: if checked, the Band set is created after the conversion; also, the Band set is processed according to the tools checked in the Band set (page 110);

Metadata

All the bands found in the Select file MODIS are listed in the table Metadata. For information about Metadata fields visit the MODIS page.

- *ID* **T**: ID of the image;
- : remove highlighted bands from the table *Metadata*;
- *Metadata*: table containing the following fields;
 - Band: band name;
 - UnitConversionCoeff: value for conversion;


Run

select an output directory and start the conversion process; only bands listed in the table Metadata are converted; converted bands are saved in the output directory with the prefix RT_ and automatically loaded in QGIS;

Clip multiple rasters

This tab allows for cutting several image bands at once, using a rectangle defined with point coordinates or a boundary defined with a shapefile.

Raster list

Clip coordinates

Set the Upper Left (UL) and Lower Right (LR) point coordinates of the rectangle used for clipping; it is possible to enter the coordinates manually. Alternatively use a shapefile.

	Semi-Automatic Classification Plugin	×
	👆 Download images 🔹 Tools 🔺 Preprocessing 📄 Postprocessing 📔 Band calc 🥩 Band set 🔊 Batch 🗡 S < >	•
	🐼 Landsat 🙈 Sentinel-2 🥂 ASTER 🏂 Clip multiple rasters 🅠 Split raster bands 🗽 PCA 🔛 Vector to raster	
	Raster list	
	O	
	Clip coordinate s	
	UL X UL Y LR X LR Y • Show +	
	Use shapefile for clipping	
	Use temporary ROI for clipping	
	NoData value 0 🗘 Output name prefix clip	
	Run	
L		

- ULX is the UL X coordinate;
- *UL Y* 12: set the UL Y coordinate;
- LR X 12: set the LR X coordinate;
- *LR Y* 12: set the LR Y coordinate;
- • *Show*: show or hide the clip area drawn in the map;
- term: define a clip area by drawing a rectangle in the map; left click to set the UL point and right click to set the LR point; the area is displayed in the map;
- Use shapefile for clipping : if checked, use the selected shapefile (already loaded in QGIS) for clipping; UL and LR coordinates are ignored;
- *Use temporary ROI for clipping*: if checked, use a temporary ROI (see *ROI creation* (page 42)) for clipping; UL and LR coordinates are ignored;

• U: refresh layer list;

- NoData value 12: if checked, set the value for NoData pixels (e.g. pixels outside the clipped area);
- *Output name prefix* **T**: set the prefix for output file names (default is clip);

Run

echoose an output destination and clip selected rasters; only rasters selected in the *Raster list* (page 84) are clipped and automatically loaded in QGIS;

Split raster bands

Split a multiband raster to single bands.

Raster input

- Select a multiband raster **___**: select a multiband raster already loaded in QGIS;
- U: refresh layer list;
- *Output name prefix* **T**: set the prefix for output file names (default is split);

Run

QGIS;

Stack raster bands

Stack raster bands into a single file.

	\odot	Semi-Automatic Classification Plugin	\odot \odot \otimes
	👆 Download images 🛛 🍇 Tools 🗎 I	Preprocessing 📑 Postprocessing 🔛 Band calc 💋 Band set 🦠 Batch 🥉	K si< ≻
1	🐼 Landsat 🙈 Sentinel-2 🌌 AST	ER 🔧 Clip multiple rasters 🂔 Split raster bands 🛛 🐙 PCA 💽 Vector to rast	er
	Raster input		
	Select a multiband raster		✓ U
	Output name prefix	split	
	Run		

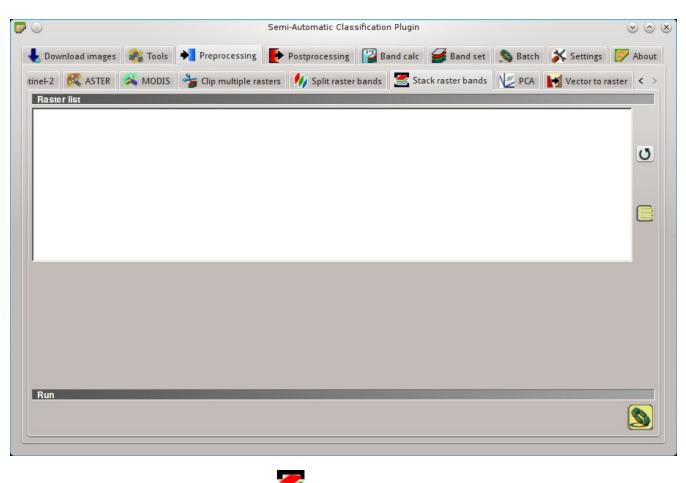
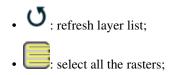
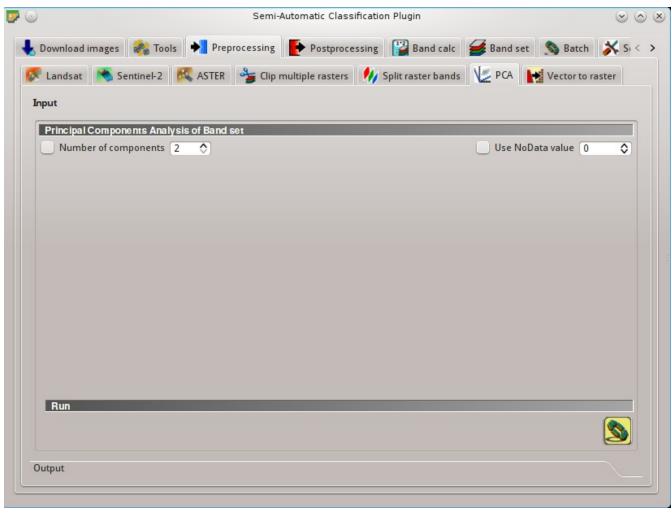



Fig. 10.22: Stack raster bands


Raster list

Run

Example: choose the output destination and stack selected rasters; output is automatically loaded in QGIS;

PCA

This tab allows for the PCA (Principal Component Analysis (page 145)) of bands loaded in the Band set.

Principal Component Analysis of Band set

• Winnumber of components 10: if checked, set the number of calculated components; if unchecked, all

the components are calculated;

• Use NoData value 12: if checked, set the value of NoData pixels, ignored during the calculation;

Run

: select an output directory and start the calculation process; principal components are calculated and saved as raster files; also, the details about the PCA are displayed in the tab *Output* and saved in a .txt file in the output directory;

Vector to raster

0	Semi-Automatic Classification Plugin	0
bownload images 🛛 🍂 Tools 🕴	Preprocessing F Postprocessing 📔 Band calc 💋 Band set 🦠	Batch 🕺 Si <
😵 Landsat 📉 Sentinel-2 🏼 🎉	ASTER 🛛 🏂 Clip multiple rasters 🏼 🎶 Split raster bands 🛛 🐙 PCA 🛛 🛃 Ve	ctor to raster
Select the vector		
✓ Use the value field of the vector		~
Use constant value	1	\$
Select the type of conversion	Center of pixels	~
Select the reference raster		U
Run		<u></u>

This tab allows for the conversion of a vector to raster format.

- *Select the vector* **___**: select a vector already loaded in QGIS;
- U: refresh layer list;

- *Use the value field of the vector* : if checked, the selected field is used as attribute for the conversion; pixels of the output raster have the same values as the vector attribute;
- Use constant value 12: if checked, the polygons are converted to raster using the selected constant value;
- Select the type of conversion : select the type of conversion between *Center of pixels* and *All pixels touched*:
 - *Center of pixels*: during the conversion, vector is compared to the reference raster; output raster pixels are attributed to a polygon if pixel center is within that polygon;
 - *All pixels touched*: during the conversion, vector is compared to the reference raster; output raster pixels are attributed to a polygon if pixel touches that polygon;
- *Select the reference raster* select a reference raster; pixels of the output raster have the same size and alignment as the reference raster;
- U: refresh layer list;

Run

• Solution conversion to raster;

Postprocessing

The tab *Postprocessing* provides several functions that can be applied to the classification output.

Accuracy

This tab allows for the validation of a classification (read *Accuracy Assessment* (page 158)). Classification is compared to a reference raster or reference shapefile (which is automatically converted to raster). If a shapefile is selected as reference, it is possible to choose a field describing class values.

Several statistics are calculated such as overall accuracy, user's accuracy, producer's accuracy, and Kappa hat. The output is an error raster that is a .tif file showing the errors in the map, where pixel values represent the categories of comparison (i.e. combinations identified by the ErrorMatrixCode in the error matrix) between the classification and reference. Also, a text file containing the error matrix (i.e. a .csv file separated by tab) is created with the same name defined for the .tif file.

Input

• Select the classification to assess : select a classification raster (already loaded in QGIS);

• U: refresh layer list;

• Select the reference shapefile or raster : select a raster or a shapefile (already loaded in QGIS), used as reference layer (ground truth) for the accuracy assessment;

• U: refresh layer list;

)	Semi-Automatic Classification Plugin	
Download images 🔹 Tools 🔶	Preprocessing 📄 Postprocessing 🔛 Band calc 🛃 Band	set 🦠 Batch 🗩 S
Accuracy 🔀 Land cover change	🔛 Classification report 🛛 🙀 Classification to vector 🛛 🔂 Recla	assification 📕 Edit ra <
Input		
Select the classification to assess		~ (U)
Select the reference shapefile or raster		<u>َنْ</u>
	Shapefile field	C
Run		
		<u>S</u>
Output		
output		

• *Shapefile field* : if a shapefile is selected as reference, select a shapefile field containing numeric class values;

Run

exercises: choose the output destination and start the calculation; the error matrix is displayed in the tab *Output* and the error raster is loaded in QGIS;

Land cover change

)	Semi-Automatic Classification Plugin	∞ (
Download images 🔹 Tools 🔶 I	Preprocessing 🛛 💽 Postprocessing 🛛 🔛 Band calc 🥃 Ba	and set 🦠 Batch 🛛 👗 S
Accuracy 🔀 Land cover change	🔡 Classification report 🛛 🕌 Classification to vector 🛛 🔂 F	Reclassification 📗 Edit ra <
Input		
Select the reference classification		<u>ی</u> د
Select the new classification		<u>ک</u> ~
✓ Report unchanged pixels		
Run		
Output		

The tab Land cover change allows for the comparison between two classifications in order to assess land cover changes. Output is a land cover change raster (i.e. a file .tif showing the changes in the map, where each pixel represents a category of comparison (i.e. combinations) between the two classifications, which is the ChangeCode in the land cover change statistics) and a text file containing the land cover change statistics (i.e. a file .csv separated by tab, with the same name defined for the .tif file).

Input

• Select the reference classification :: select a reference classification raster (already loaded in QGIS);

- U: refresh layer list;
- *Select the new classification* : select a new classification raster (already loaded in QGIS), to be compared with the reference classification;
- U: refresh layer list;
- *Report unchanged pixels*: if checked, report also unchanged pixels (having the same value in both classifications);

Run

: choose the output destination and start the calculation; the land cover change statistics are displayed in the tab *Output* (and saved in a text file) and the land cover change raster is loaded in QGIS;

Classification report

)	Semi-Automatic (Classification Plugin		0
, Download images 🛛 🍓 Tools 🔶	Preprocessing Post	processing 🔛 Band calc	🥖 Band set 🦠 Batch	🗙 si <
🔓 Accuracy 🛛 🛃 Land cover change	Classification report	Real Classification to vector	🔂 Reclassification	Edit ra <
Input				
Select the classification				<u>~</u> 0
Use NoData value 0	٥			
Run				
				2
0				
Output				

This tab allows for the calculation of class statistics such as number of pixels, percentage and area (area unit is defined from the image itself).

Input

- Select the classification : select a classification raster (already loaded in QGIS);
- U: refresh layer list;
- Use NoData value 12: if checked, NoData value will be excluded from the report;

Run

• Choose the output destination and start the calculation; the report is saved in a text file and displayed in the tab *Output*;

Cross classification

)	Semi-Automatic Classification Plugin	\odot
Download images 🛛 🍇 Tools 🔶	reprocessing 📄 Postprocessing 🔛 Band calc ᢖ Band set	🦠 Batch 💸 Settings 📝
🚡 Accuracy 🛛 🔀 Land cover change	📅 Classification report 🛛 🎆 Cross classification 🛛 🙌 Classification	to vector 🔀 Reclassification <
Input		
Select the classification		~ U
Use NoData value 0	D	
Select the reference shapefile or raster		~ <u>U</u>
	Shapefile field	~
Run		
Output		

This tab allows for the calculation of a cross classification raster and matrix. Classification is compared to a reference raster or reference shapefile (which is automatically converted to raster). This is useful for calculating the area for every combination between reference classes and classification values. If a shapefile is selected as reference, it is possible to choose a field describing class values.

The output is a cross raster that is a .tif file where pixel values represent the categories of comparison (i.e. combinations identified by the CrossMatrixCode) between the classification and reference. Also, a text

file containing the cross matrix (i.e. a .csv file separated by tab) is created with the same name defined for the .tif file.

Input

- Select the classification : select a classification raster (already loaded in QGIS);
- U: refresh layer list;
- Use NoData value 12: if checked, NoData value will be excluded from the calculation;
- Select the reference shapefile or raster : select a raster or a shapefile (already loaded in QGIS), used as reference layer;
- U: refresh layer list;
- *Shapefile field* : if a shapefile is selected as reference, select a shapefile field containing numeric class values;

Run

: choose the output destination and start the calculation; the cross matrix is displayed in the tab *Output* and the cross raster is loaded in QGIS;

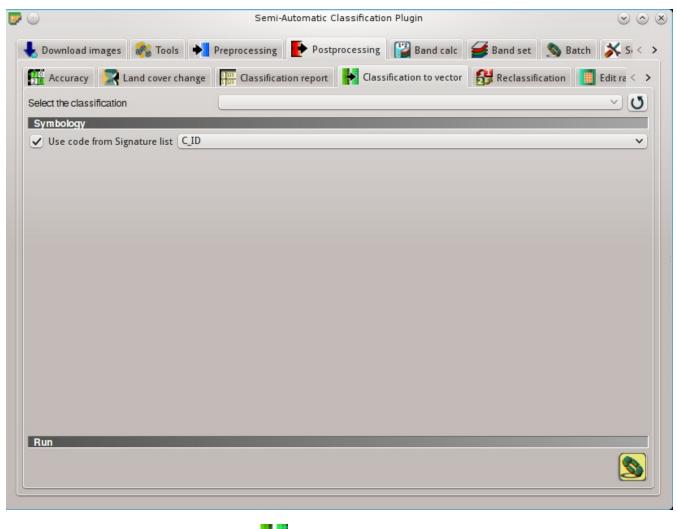
Classification to vector

This tab allows for the conversion of a classification raster to vector shapefile.

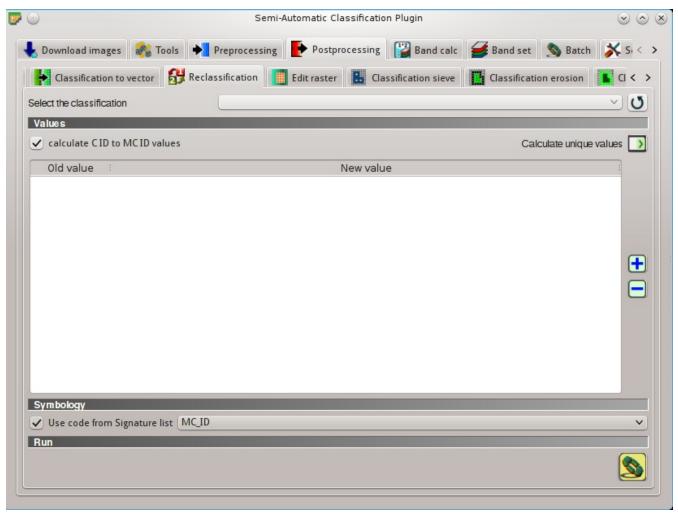
- Select the classification : select a classification raster (already loaded in QGIS);
- U: refresh layer list;

Symbology

- Use code from Signature list 🔤: if checked, color and class information are defined from ROI Signature list (pag
 - MC ID: use the ID of macroclasses;
 - C ID: use the ID of classes;


Run

• Solution: choose the output destination and start the conversion;


Reclassification

This tab allows for the reclassification (i.e. assigning a new class code to raster pixels). In particular, it eases the conversion from C ID to MC ID values.

• Select the classification : select a classification raster (already loaded in QGIS);

. U: refresh layer list;

Values

• *calculate C ID to MC ID values*: if checked, the reclassification table is filled according to the *ROI*

Signature list (page 41) when Calculate unique values is clicked;

- *Calculate unique values* calculate unique values in the classification and fill the reclassification table;
 - *Values*: table containing the following fields;
 - Old value: set the expression defining old values to be reclassified; Old value can be a value or an expressions defined using the variable name raster (custom names can be defined in Variable name for expressions (page 117)), following Python operators (e.g. raster > 3 select all pixels having value > 3; raster > 5 | raster < 2 select all pixels having value > 5 or < 2; raster >= 2 & raster <= 5 select all pixel values between 2 and 5);</p>
 - New value: set the new value for the old values defined in Old value;
 - **U**: add a row to the table;
- : remove highlighted rows from the table;

Symbology

- Use code from Signature list 🔤: if checked, color and class information are defined from ROI Signature list (pag
 - MC ID: use the ID of macroclasses;
 - C ID: use the ID of classes;

Run

Example: choose the output destination and start the calculation; reclassified raster is loaded in QGIS;

Edit raster

This tab allows for the direct editing of pixel values in a raster. Only pixels beneath ROI polygons or vector polygons are edited.

Attention: the input raster is directly edited; it is recommended to create a **backup copy** of the input raster before using this tool in order to prevent data loss.

This tool can rapidly edit large rasters, especially when editing polygons are small, because pixel values are edited directly. In addition, the *SCP Edit Toolbar* (page 133) is available for easing the raster editing using multiple values.

- Select the input raster : select a raster (already loaded in QGIS);
- U: refresh layer list;

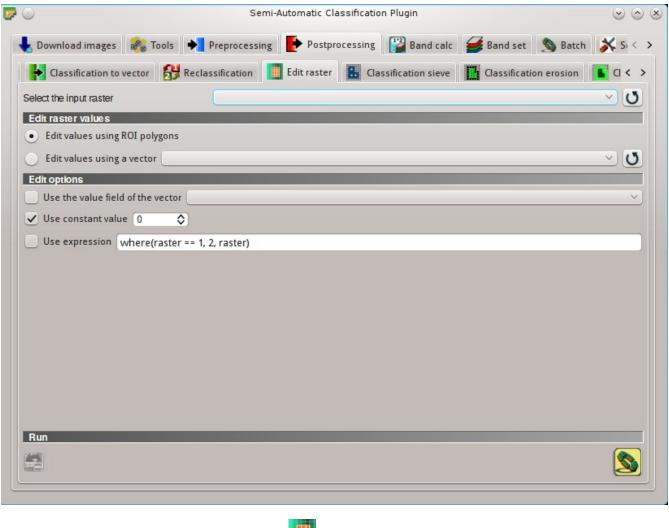


Fig. 10.31: *Edit raster*

Edit raster values

- *Edit values using ROI polygons*: if checked, raster is edited using temporary ROI polygons in the map;
- *Edit values using a vector if checked, raster is edited using all the polygons of selected vector;*
- U: refresh layer list;

Edit options

- Use the value field of the vector : if checked, raster is edited using the selected vector (in *Edit values using a vector*) and the polygon values of selected vector field;
- *Use constant value* 12: if checked, raster is edited using the selected constant value;
- Use expression T: if checked, raster is edited according to the entered expression; the expression must contain one or more where; the following example expression where (raster == 1, 2, raster) is already entered, which sets 2 where raster equals 1, and leaves unchanged the values where raster is not equal to 1;

Run

- **I**: undo the last raster edit (available only when using ROI polygons);
- Solution: edit the raster;

Classification sieve

This tab allows for the replacement of isolated pixel values with the value of the largest neighbour patch (based on GDAL Sieve). It is useful for removing small patches from a classification.

- Select the classification : select a raster (already loaded in QGIS);
- U: refresh layer list;
- *Size threshold* size of the patch to be replaced (in pixel unit); all patches smaller the selected number of pixels will be replaced by the value of the largest neighbour patch;
- *Pixel connection* **___**: select the type of pixel connection:
 - 4: in a 3x3 window, diagonal pixels are not considered connected;
 - 8: in a 3x3 window, diagonal pixels are considered connected;

Run

: choose the output destination and start the calculation;

\odot	Semi-Automatic	Classification Plugin	\odot
👆 Download images 🛛 🆓 Tools	Preprocessing Pos	tprocessing 🔛 Band calc 🥩 Band s	et 🔊 Batch 🗡 Si <
o vector 🛛 🔀 Reclassification 📗	Edit raster	on sieve 🛛 🚺 Classification erosion	Classification dilation <
Select the classification			<u>v</u> ک
Size threshold	2 🔿	Pixel connection	4 🗸
Run			
			8

Fig. 10.32: Classification sieve

	Semi-Automati	c Classification Plugin	0 0
y Download images 🛛 🎎 T	Fools 🔶 Preprocessing 📑 Po	stprocessing 🔛 Band calc 🥩 Band	set 🔊 Batch 🗩 Si <
vector 🔀 Reclassificatio	n 📕 Edit raster 🔝 Classificat	ion sieve 🔢 Classification erosion	Classification dilation <
elect the classification			Ŭ
lass values			
ize in pixels	1 💠	Pixel connection	4 🗸
Run			

Fig. 10.33: Classification erosion

Classification erosion

This tab allows for removing the border of a class patch (erosion), defining the class values to be eroded and the number of pixels from the border. It is useful for classification refinement.

- Select the classification : select a raster (already loaded in QGIS);
- U: refresh layer list;
- *Class values* **T**: set the class values to be eroded; class values must be separated by , and can be used to define a range of values (e.g. 1, 3–5, 8 will select classes 1, 3, 4, 5, 8); if the text is red then the expression contains errors;
- *Size in pixels* : number of pixels to be eroded from the border;
- *Pixel connection* **___**: select the type of pixel connection:
 - 4: in a 3x3 window, diagonal pixels are not considered connected;
 - 8: in a 3x3 window, diagonal pixels are considered connected;

Run

• <u>s</u>: ch

: choose the output destination and start the calculation;

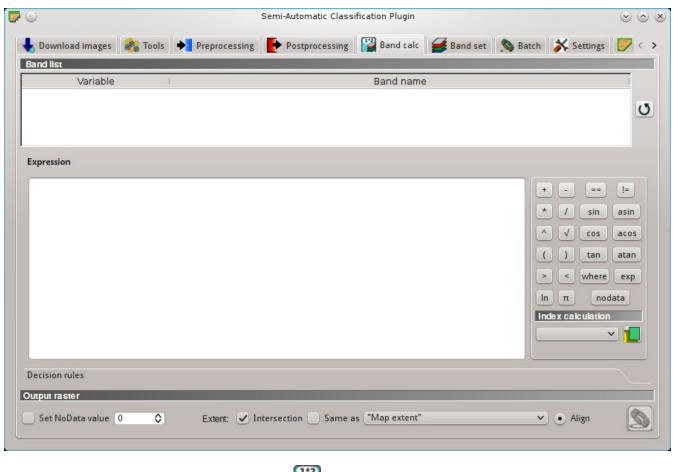
Classification dilation

This tab allows for dilating the border of a class patch, defining the class values to be dilated and the number of pixels from the border. It is useful for classification refinement.

- Select the classification : select a raster (already loaded in QGIS);
- U: refresh layer list;
- *Class values* **T**: set the class values to be dilated; class values must be separated by , and can be used to define a range of values (e.g. 1, 3–5, 8 will select classes 1, 3, 4, 5, 8); if the text is red then the expression contains errors;
- *Size in pixels* 12: number of pixels to be dilated from the border;
- *Pixel connection* : select the type of pixel connection:
 - 4: in a 3x3 window, diagonal pixels are not considered connected;
 - 8: in a 3x3 window, diagonal pixels are considered connected;

Run

: choose the output destination and start the calculation;


Band calc

The Band calc allows for the **raster calculation for bands** (i.e. calculation of pixel values) using NumPy functions. Raster bands must be already loaded in QGIS. Input rasters must be in the same projection.

In addition, it is possible to calculate a raster using decision rules.

	90
S Batch 关	5. <
ssification dilation	<
	U
	_
4	~
ſ	~
ŀ	2
	ļ

Fig. 10.34: Classification dilation

Band list

- Band list: table containing a list of single band rasters (already loaded in QGIS);
 - *Variable*: variable name defined automatically for every band (e.g. raster1, raster2);
 - Band name: band name (i.e. the layer name in QGIS);

• U: refresh image list;

Expression

Enter a mathematical expression for raster bands. In particular, NumPy functions can be used with the prefix np. (e.g. np.log10 (raster1)). For a list of NumPy functions see the NumPy page.

The expression can work with both Variable and Band name (between double quotes). Also, bands in the Band set (page 110) can be referenced directly; for example bandset #b1 refers to band 1 of the Band set. Double click on any item in the Band list (page 107) for adding its name to the expression. In addition, the following variables related to *Band set* (page 110) the are available:

- "#BLUE#": the band with the center wavelength closest to 0.475 μm ;
- "#RED#": the band with the center wavelength closest to 0.65 μm ;
- "#NIR#": the band with the center wavelength closest to 0.85 μm ;

Variables for output name are available:

- #BANDSET#: the name of the first band in the Band set (page 110);
- *#DATE#*: the current date and time (e.g. 20161110_113846527764);

If text in the *Expression* is green, then the syntax is correct; if text is red, then the syntax is incorrect and it is not possible to execute the calculation.

It is possible to enter multiple expressions separated by newlines such as the following example:

```
"raster1"+ "raster2"
"raster3- "raster4"
```

The above example calculates two new rasters in the output directory with the suffix _1 (e.g. calc_raster_1) for the first expression and _2 (e.g. calc_raster_2) for the second expression. Also, it is possible to define the output name using the symbol @ followed by the name, such as the following example:

"raster1"+ "raster2"@ calc 1

"raster3- "raster4"@ calc_2

The following buttons are available:

- +: plus;
- -: minus;
- *: product;
- /: ratio;
- ^: power;
- V: square-root;
- (: open parenthesis;
-): close parenthesis;
- >: greater then;

- <: less then;
- *ln*: natural logarithm;
- *π*: pi;
- ==: equal;
- *!*=: not equal;
- sin: sine;
- *asin*: inverse sine;
- cos: cosine;
- *acos*: inverse cosine;
- *tan*: tangent;
- atan: inverse tangent;
- where: conditional expression according to the syntax where (condition , value if true, value if false) (e.g. where ("raster1-= 1, 2, "raster1"));
- *exp*: natural exponential;
- nodata: NoData value of raster (e.g. nodata ("raster1")); it can be used as value in the expression (e.g. where ("raster1-= nodata ("raster1"), 0, "raster1"));

Index calculation

Index calculation allows for entering a spectral index expression (see Spectral Indices (page 146)).

- *Index calculation* **___**: list of spectral indices:
 - NDVI: if selected, the NDVI calculation is entered in the Expression ((("#NIR#- "#RED#") / ("#NIR#"+ "#RED#") @ NDVI));
 - EVI: if selected, the EVI calculation is entered in the Expression (2.5 * ("#NIR#- "#RED#") / ("#NIR#"+ 6 * "#RED#- 7.5 * "#BLUE#"+ 1) @ EVI);
- Let: open a text file (.txt) containing custom expressions to be listed in *Index calculation*; the text file must contain an expression for each line; each line must be in the form expression_name; expression (separated by ;) where the expression_name is the expression name that is displayed in the *Index calculation*; if you open an empty text file, the default values are restored; following an example of text content:

```
NDVI; ( "#NIR#" - "#RED#" ) / ( "#NIR#" + "#RED#" ) @NDVI
EVI; 2.5 * ( "#NIR#" - "#RED#" ) / ( "#NIR#" + 6 * "#RED#" - 7.5 * "#BLUE#" +

→1) @EVI
SR; ( "#NIR#" / "#RED#" ) @SR
```

Decision rules

Decision rules allows for the calculation of an output raster based on rules. Rules are conditional statements based on other rasters; if the *Rule* is true, the corresponding *Value* is assigned to the output pixel.

Rules are verified from the first to the last row in the table; if the first *Rule* is false, the next *Rule* is verified for that pixel, until the last rule. If multiple rules are true for a certain pixel, the value of the first *Rule* is assigned to that pixel. The NoData value is assigned to those pixels where no *Rule* is true.

Decision rules: table containing the following fields;

Semi-Automatic Classification Plugin	\odot	0 8	
🖶 Download images 🔹 Tools 🏓 Preprocessing 📄 Postprocessing 🔛 Band calc 🥩 Band set 🔊 Batch 🗼 Settings	7	< >	
Band list	_		
Variable : Band name	:		
		U	
Expression			
Decision rules			
Value : Rule		≜	
	1	Ð	
	C	Ð	
	C		
		×	
	C		
	6		
Output raster			
Set NoData value 0 Settent: Intersection Same as "Map extent" · Align			

- Value: the value assigned to pixels if the Rule is true;
- Rule: the rule to be verified (e.g. "raster1"> 0); multiple conditional statements can be entered separated by ; (e.g. "raster1"> 0; "raster2"< 1 which means to set the Value where raster1 > 0 and raster2 < 1);</p>
- More than the second second
 - ①: export the rules to a text file that can be imported later;
 - : import rules from a text file;

Output raster

The output raster is a .tif file, with the same spatial resolution and projection of input rasters; if input rasters have different spatial resolutions, then the highest resolution (i.e. minimum pixel size) is used for output raster.

- Use NoData value 12: if checked, set the value of NoData pixels in output raster;
- Extent: if the following options are unchecked, the output raster extent will include the extents of all input rasters;
 - *Intersection*: if checked, the extent of output raster equals the intersection of input raster extents (i.e. minimum extent);
 - Same as : if checked, the extent of output raster equals the extent of "Map extent" (the extent of the map currently displayed) or a selected layer;
- • Align: if checked, and Same as is checked selecting a raster, the calculation is performed using the same extent and pixel alignment of selected raster;
- Expression is active and text is green, choose the output destination and start the calculation based on Expression; if Decision rules is active and text is green, choose the output destination and start the calculation based on Decision rules;

Band set

\odot	Semi-/	Automatic Classificatio	on Plugin		0
Download images 🛛 🎎 Tools	Preprocessing	Postprocessing	Band calc	🛃 Band set 🔊	Batch 🕺 Si <
Band list					
					1
					(
					ſ
					-
Band set definition					_
Band name	1	Center wave	lenath i Multipli	cative Factor	Additive Fa
					0
					-
					C
					$ \rightarrow $
Quick wavelength settings			✓ Wavelength ι	init band number	
Band set tools Create virtual raster of band set	Create raster of ba	and set (stack bands	Build band overvi	ews 📃 Band calc	expressions 🧕

This tab allows for the definition of a set of single band rasters (*Band set*) used as *Input image*. The Center wavelength of bands should be defined in order to use several functions of *SCP*.

If a *Band set* of single band rasters is defined, then the item << band set >> will be listed in the *Working toolbar* (page 33) as *input image*.

The Band set definition is saved with the QGIS project.

Band list

List of single band rasters loaded in QGIS.

- Le: open one or more raster file (single band) which are added to the *Band set* and loaded in QGIS;
- . U: refresh list of raster bands loaded in QGIS;
- 📃: select all raster bands;
- **T** : add selected rasters to the *Band set*.

Band set definition

Definition of bands composing the input image.

If the *Center wavelength* of bands is not defined, the band number is used and some *SCP* tools will be disabled. It is possible to define a multiplicative rescaling factor and additive rescaling factor for each band (for instance using the values in Landsat metadata), which are used on the fly (i.e. pixel value = original pixel value * multiplicative rescaling factor + additive rescaling factor) during the processing.

Band set definition: table containing the following fields;
Band name

name of the band; name cannot be edited;
Center wavelength

center of the wavelength of the band;
Multiplicative Factor

additive rescaling factor;
Additive Factor

additive rescaling factor;

Additive factor

additive rescaling factor;

move highlighted bands upward;
move highlighted bands downward;
move highlighted bands by name, giving priority to the ending numbers of name;
are remove highlighted bands from the Band set;
clear all bands from Band set;
export the Band set to a file;

- . : import a previously saved *Band set* from file;
- *Quick wavelength settings* = : rapid definition of band center wavelength for the following satellite sensors:
 - ASTER;
 - GeoEye-1;
 - Landsat 8 OLI;
 - Landsat 7 ETM+;
 - Landsat 5 TM:
 - Landsat 4 TM;
 - Landsat 1, 2, and 3 MSS;
 - MODIS;
 - Pleiades:
 - QuickBird;
 - RapidEye;
 - Sentinel-2;
 - SPOT 4;
 - SPOT 5;
 - SPOT 6;
 - WorldView-2 and WorldView-3;
- *Wavelength unit* \square select the wavelength unit among:
 - Band number: no unit, only band number;
 - μm : micrometres;
 - *nm*: nanometres;

Band set tools

It is possible to perform several processes directly on Band set.

- *Create virtual raster of band set*: if checked, create a virtual raster of bands;
- Create raster of band set (stack bands): if checked, stack all the bands and create a unique .tif raster;
- *Build band overviews*: if checked, build raster overviews (i.e. pyramids) for improving display performance; overview files are created in the same directory as bands;
- *Band calc expression*: if checked, calculate the *Expression* (page 107) entered in *Band calc* (page 104); it is recommended the use of *Band set* variables in the expression (e.g. bandset #b1);
- choose the output destination and start the process;

Batch

\odot			S	emi-Automa	tic Classif	ication Plug	in				\odot	\odot	
nload images	鶺 Tools	Preproce	ssing	Postproc	essing	길 Band ca	lc 💋 8	Band set	S Batch	*	Settings	<	
Batch			-										
													1
)
												J	
												-	1
												~	-
Run													
												3	>
											6		-

This tab allows for the automatic execution (batch) of several SCP functions using a scripting interface.

Batch

Enter a batch expression; each function must be in a new line. Functions have the following structure:

function name; function options

Each functions has options, identified by a name, with the following structure:

```
option name: option argument
```

Options must be separated by the character ; . Each function option represents an option in the corresponding interface of *SCP*; option arguments of type text must be between the character '; in case of checkboxes, the value 1 represents checked, while the value 0 represents unchecked. A new line beginning with # can be used for commenting.

According to the function, some of the options are mandatory while other options can be omitted from the expression. Option names that contain path require the full path to a file. Some options that require multiple arguments such as lists; lists must be separated by , .

If the expression contains errors, the text is red.

- **U**: export the batch expression to a file;
- - *I*: import a previously saved batch expression from file;

Functions: the following functions are available with the corresponding options;

- Accuracy (page 91): calculate accuracy (accuracy; classification_file_path : ''; reference_file_path : ''; shapefile_field_name : ''; output_raster_path : '');
- ASTER (page 80): ASTER conversion (aster_conversion; input_raster_path : ''; celsius_temperature : 0; apply_dos1 : 0; use_nodata : 1; nodata_value : 0; create_bandset : 1; output_dir : '');
- Band calc (page 104): band calculation (band_calc;expression : '';
 output_raster_path : '';extent_same_as_raster_name : '';
 extent_intersection : 1;set_nodata : 0;nodata_value : 0);
- Classification output (page 46): perform classification (classification; use_macroclass : 0; algorithm_name : 'Minimum Distance'; use_lcs : 0; use_lcs_algorithm : 0; use_lcs_only_overlap : 0; apply_mask : 0; mask_file_path : ''; vector_output : 0; classification_report : 0; save_algorithm_files : 0; output_classification_path : '');
- Classification dilation (page 104): dilation of a classification (classification_dilation; input_raster_path : ''; class_values : ''; size_in_pixels : 1; pixel_connection : 4; output_raster_path : '');
- Classification erosion (page 104): erosion of a classification (classification_erosion; input_raster_path : ''; class_values : ''; size_in_pixels : 1; pixel_connection : 4; output_raster_path : '');
- Classification report (page 94): report of a classification (classification_report; input_raster_path : '';use_nodata : 0;nodata_value : 0; output_report_path : '');
- Classification sieve (page 101): classification sieve(classification_sieve; input_raster_path : ''; size_threshold : 2; pixel_connection : 4; output_raster_path : '');
- Classification to vector (page 96): convert classification to vector (classification_to_vector; input_raster_path : ''; use_signature_list_code : 1; code_field : 'C_ID'; output_vector_path : '');
- Clip multiple rasters (page 84): clip multiple rasters (clip_multiple_rasters; input_raster_path : '';output_dir : '';use_shapefile : 0; shapefile_path : '';ul_x : '';ul_y : '';lr_x : '';lr_y : ''; nodata_value : 0;output_name_prefix : 'clip');
- Cross classification (page 95): cross classification (cross_classification; classification_file_path : '';use_nodata : 0;nodata_value : 0;reference_file_path : '';shapefile_field_name : ''; output_raster_path : '');
- Edit raster (page 99): edit raster values using a shapefile); (edit_raster_using_shapefile; input_raster_path : ''; input_vector_path : ''; vector_field_name : ''; constant_value : 0; expression : 'where (raster == 1, 2, raster)');
- Land cover change (page 93): calculate land cover change (land_cover_change; reference_raster_path : '';new_raster_path : '';output_raster_path

: '');

- Landsat (page 77): Landsat conversion (landsat_conversion; input_dir :
 '';mtl_file_path : '';celsius_temperature : 0;apply_dos1 : 0;
 use_nodata : 1;nodata_value : 0;pansharpening : 0;create_bandset
 : 1;output_dir : '');
- MODIS (page 82): MODIS conversion (modis_conversion; input_raster_path : '';reproject_wgs84 : 1;use_nodata : 1;nodata_value : -999; create_bandset : 1;output_dir : '');
- PCA (page 89): Principal Component Analysis (pca;use_number_of_components : 0, number_of_components : 2;use_nodata : 1;nodata_value : 0;output_dir : '');
- Reclassification (page 96): raster reclassification (reclassification; input_raster_path : '';value_list : 'oldVal-newVal;oldVal-newVal'; use_signature_list_code : 1;code_field : 'MC_ID';output_raster_path : '');
- Sentinel-2 (page 79): Sentinel-2 conversion (sentinel_conversion; input_dir : '';mtd_safl1c_file_path : '';apply_dos1 : 0;use_nodata : 1; nodata_value : 0;create_bandset : 1;output_dir : '');
- Split raster bands (page 86): split raster to single bands (split_raster_bands; input_raster_path : '';output_dir : '';output_name_prefix : 'split');
- *Stack raster bands* (page 86): stack rasters into a single file (stack_raster_bands; input_raster_path : '';output_raster_path : '');
- Vector to raster (page 90): convert vector to raster (vector_to_raster;vector_file_path : '';use_value_field : 1;vector_field_name : '';constant_value : 1; reference_raster_path : '';type_of_conversion : 'Center of pixels'; output_raster_path : '');

In addition, the following functions are available:

- Add raster to QGIS: add a raster to QGIS (add_raster; input_raster_path : ''; input_raster_name : '');
- Create Band set: create a Band set (create_bandset;raster_path_list : ''; center_wavelength : '';wavelength_unit : 1;multiplicative_factor : '';additive_factor : '');
- Open training input: open a training input file (open_training_input; training_file_path : '');
- Set working directory: set a working directory (argument is the path to a directory) (!working_dir!; '');

If a working directory is defined, !working_dir! can be entered in other functions where a path is required (e.g. add_raster; input_raster_path : '!working_dir!/raster1.tif'; input_raster_name : 'raster1.tif'); An example of batch expression is:

Run

• if text in the batch expression is green, start the batch processes;

Settings

The tab *Settings* allows for the customization of *SCP*.

Interface

Customization of the interface.

\odot		5	emi-Automatic Clas	sification Plugin				\odot
nload images	🍓 Tools	Preprocessing	Postprocessing	Band calc	💋 Band set	S Batch	メ Settin	gs <
Interface								
Field names	of training in	put						
MCID field		MCInfo field	CID	field	CInfo	field		
MC_ID		MC_info)	C_inf	0		
ROI style								
ROI color 📒	Transp	parency	T T	-0-	1	1	1 1	
Variable nam	e for expres	sions (tab Reclassificat	ion and Edit raster)					
Variable name	raster							
Temporary g	roup name							
Group name	Class_temp_g	group						
Dock								
Download	news on sta	rtup						
Processing								

Fig. 10.38: Interface

Field names of training input

Set the names of fields in the *Training input* (page 40). Changing field names should usually be avoided.

• *MC ID field* **T** • : name of the Macroclass ID field (default is MC_ID);

- *MC Info field* **:** name of the Macroclass Information field (default is MC_info);
- *C ID field* **T** : name of the Class ID field (default is C_ID);
- *C Info field* **T** : name of the Class Information field (default is C_info);
- **Example**: reset field names to default;

ROI style

Change ROI color and transparency for a better visualization of temporary ROIs on the map.

- *ROI color* : button for changing ROI color;
- *Transparency* : change ROI transparency;
- **____**: reset ROI color and transparency to default;

Variable name for expressions

Set the variable name used in expressions of the Reclassification (page 96) and Edit raster (page 99).

- Variable name **T** : set variable name (default is raster);
- **w** : reset variable name to default;

Temporary group name

Set the temporary group name in QGIS Layers used for temporary layers .

- Group name T : set group name (default is Class_temp_group);
- **EX**: reset group name to default;

Dock

Download news on startup: if checked, news about the *SCP* and related services are downloaded on startup and displayed in *Dock*;

Processing

Classification process

- Play sound when finished *: if checked, play a sound when the classification process is completed;
- *Use virtual rasters for temp files* : if checked, create virtual rasters for certain temporary files, instead of creating real rasters; it is useful for reducing disk space usage during calculations;

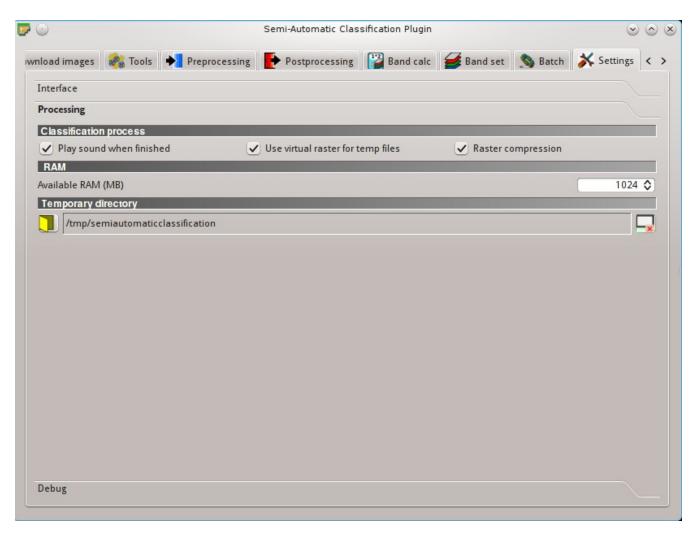


Fig. 10.39: Processing

• *Raster compression* : if checked, a lossless compression (DEFLATE or PACKBITS) is applied to raster outputs in order to save disk space; it is recommended to check this option, however compressed files are sometimes larger than files without compression;

RAM

• Available RAM (MB) : set the available RAM (in MB) that is used during the processes in order to improve the SCP performance; this value should be half of the system RAM (e.g. 1024MB if system has 2GB of RAM); in case of errors, set a value lower than 512MB;

Temporary directory

- : select a new temporary directory where temporary files are saved during processing; the path to the current temporary directory is displayed; default is a system temporary directory;
- **T**: reset to default temporary directory;

Debug

Debugging utilities for the creation of a Log file (i.e. recording of *SCP* activities for reporting issues) and testing *SCP* dependencies.

If you found a plugin error, please read How can I report an error? (page 265).

Log file

- *Records events in a log file* : if checked, start recording events in a Log file;
 - : export the Log file (i.e. a .txt file);

: clear the content of Log file;

Test

• *Test dependencies* : test *SCP* dependencies (GDAL, GDAL subprocess, NumPy, SciPy, Matplotlib, Internet connection); results are displayed in a window;

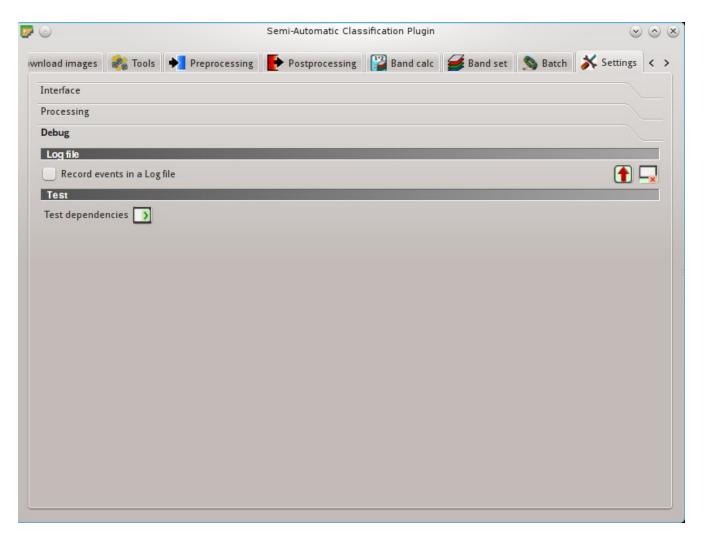


Fig. 10.40: Debug

luku **11**

Spectral Signature Plot

The window *Spectral Signature Plot* includes several functions for displaying spectral signature values as a function of wavelength (defined in the *Band set* (page 110)). Signatures can be added to the Spectral Signature Plot through the *SCP dock* (page 37).

The window *Spectral Signature Plot* includes also some functions useful for the definition of value ranges used by the *Land Cover Signature Classification* (page 154) (see *LCS threshold* (page 73)).

Overlapping signatures (belonging to different classes or macroclasses) are highlighted in orange in the table *Plot Signature list* (page 121); the overlapping check is performed considering *MC ID* or *C ID* according to the setting

Use MC ID C ID in *Classification algorithm* (page 44). Overlapping signatures sharing the same *ID* are not highlighted.

The functions are described in detail in the following paragraphs, using these conventions:

 $1980 \vee$ = Input date

T = Input text

🚬 = List

10 = Input number

= Optional

= Configuration stored in the active project of QGIS

= Configuration stored in QGIS registry

= Slider

= Table

IIII

Plot Signature list

• Signature list:

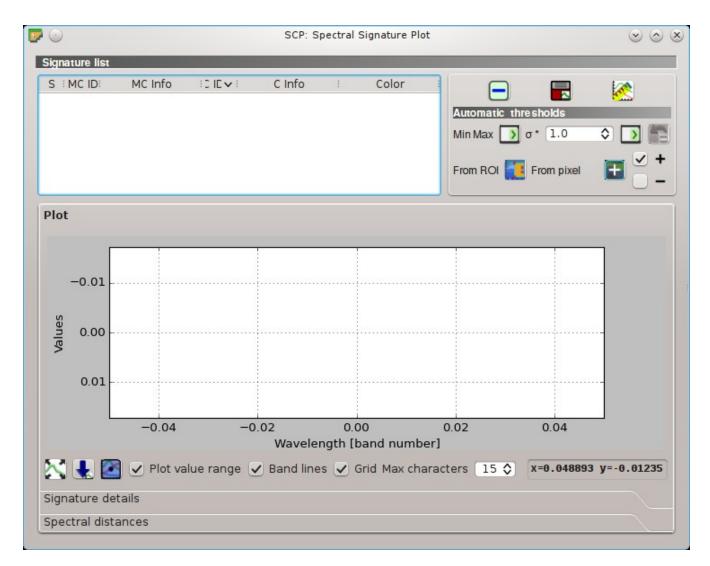


Fig. 11.1: Spectral Signature Plot

- S: checkbox field; if checked, the spectral signature is displayed in the plot;
- MC ID: signature Macroclass ID;
- MC Info: signature Macroclass Information;
- C ID: signature Class ID;
- C Info: signature Class Information;
- *Color [overlap MC_ID-C_ID]*: signature color; also, the combination *MC ID-C ID* is displayed in case of overlap with other signatures (see *Land Cover Signature Classification* (page 154));
- *Min B* X: minimum value of band X; this value can be edited;
- Max B X: maximum value of band X; this value can be edited;
- : remove highlighted signatures from this list;
- add highlighted spectral signatures to *ROI Signature list* (page 41);
- Calculate the spectral distances of spectral signatures displayed in the plot; distances are reported in the tab *Spectral distances* (page 124);

Automatic thresholds

Set thresholds automatically for highlighted signatures in the table *Plot Signature list* (page 121); if no signature is highlighted, then the threshold is applied to all the signatures.

- *Min Max* : set the threshold based on the minimum and maximum of each band;
- $\sigma * \square \square$: set an automatic threshold calculated as (band value + ($\sigma * v$)), where σ is the standard deviation of each band and v is the defined value;
- **I**: undo the last automatic thresholds;
- From ROI .: set the threshold using the temporary ROI pixel values, according to the following checkboxes:
 - 🗹 +: if checked, signature threshold is extended to include pixel signature;
 - 🗹 -: if checked, signature threshold is reduced to exclude pixel signature;
- *From pixel* set the threshold by clicking on a pixel, according to the following checkboxes:
 - 🗹 +: if checked, signature threshold is extended to include pixel signature;
 - 🗹 –: if checked, signature threshold is reduced to exclude pixel signature;

Plot

Left click and hold inside the plot to move the view of the plot. Use the mouse wheel to zoom in and out the view of the plot. Right click and hold inside the plot to zoom in a specific area of the plot. Legend inside the plot can be moved using the mouse.

Plot commands:

- A sutomatically fit the plot to data;
- 🔽: save the plot image to file (available formats are . jpg, .png, and .pdf);
- activate the cursor for interactively changing the value range of highlighted signatures in the plot; click the plot to set the minimum or maximum value of a band (also for several signatures simultaneously); cursor is deactivated when moving outside the plot area;
- *Plot value range*: if checked, plot the value range for each signature (semi-transparent area);
- *Band lines*: if checked, display a vertical line for each band (center wavelength);
- Grid: if checked, display a grid;
- *Max characters* 12: set the maximum length of text in the legend;
- *x y*: display x y coordinates of mouse cursor inside the plot;

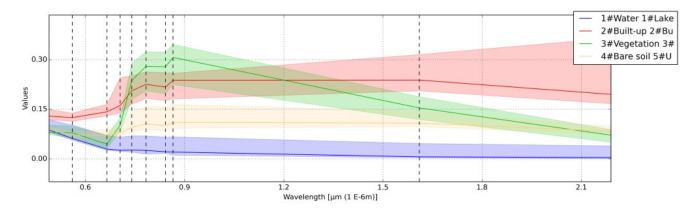


Fig. 11.2: Spectral Signature: Example of spectral signature plot

Signature details

Display the details about spectral signatures (i.e. Wavelength, Values, and Standard deviation). In case of signatures calculated from ROIs, the ROI size (number of pixels) is also displayed.

Spectral distances

Display spectral distances of signatures (see *Plot Signature list* (page 121)), which are useful for assessing ROI separability (see *Spectral Distance* (page 156)).

The following spectral distances are calculated :

- *Jeffries-Matusita Distance* (page 156): range [0 = identical, 2 = different]; useful in particular for *Maximum Likelihood* (page 152) classifications;
- *Spectral Angle* (page 157): range [0 = identical, 90 = different]; useful in particular for *Spectral Angle Mapping* (page 153) classifications;
- Euclidean Distance (page 157): useful in particular for Minimum Distance (page 152) classifications;
- *Bray-Curtis Similarity* (page 158): range [0 = different, 100 = identical]; useful in general;

Values are displayed in red if signatures are particularly similar.

	\odot			SCP: S	pectral	Signature Plo	ot	\odot \odot \otimes
I	Signature list	_	_					
	S : MC ID:	MC Info	E ID :	C Info	:	Color	$ \qquad \qquad \boxed{ \qquad } \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	 ≥ ⇒ ⇒ + -
	Plot Signature d	letails						
	Spectral dist	ances						

Fig. 11.3: Spectral Signature: Signature details

MC_D 2 MC_info Built-up C D 2 C info Buildings ROL_size 160 pixels Values 0.31928 0.34507 0.40855 0.41648 0.43712 0.44923 0.43654 0.665 1.61 2.19 Values 0.31928 0.34507 0.40855 0.41648 0.43712 0.44923 0.43654 0.66223 0.636 0.6246 Standard deviation 0.08239 0.09748 0.1231 0.10352 0.10436 0.10986 0.16104 0.171 Mc_ID 3 MC_info Vegetation C D 5 C info = Deciduous trees ROl_size 9.994 pixels Wavelength [E-6m] 0.49 0.56 0.6655 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.07938 0.04444 10.10337 0.23965 0.26138 0.27985 0.30896 10.5462 0.0716 Standard deviation 0.00153 0.00347 0.02021 0.02	Values 0.08748 0.0615 0.03002 0.02266 0.0219 0.02278 0.02078 0.0206 0.00618 0.00421 Standard deviation 0.00217 0.00227 0.00277 0.00277 0.00272 0.00333 0.0022 0.00221 0.00221 0.00221 0.00221 0.00221 0.00221 0.00221 0.00221 0.00221 0.00221 0.00221 0.00221 0.00233 0.00221 0.00221 0.00233 0.00221 0.00221 0.00233 0.00221 0.00221 0.00233 0.00221 0.00233 0.00252 Wavelength [E-6m] 0.49 0.565 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.31928 0.34507 0.48529 0.4855 0.656 0.676 5.74 0.43554 0.43554 0.6264 5.746 Standard deviation 0.08239 0.09748 0.1231 0.10357 0.23965 0.3865 1.61 2.19 Wavelength [E-6m] 0.49 0.56									ROI_size =			
Standard deviation 0.00217 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00272 0.00303 0.00252 MC_ID - 2 MC_Info - Built-up C_ID - 2 C_Info - Buildings ROI_size - 160 pixels Values 0.34507 0.4665 0.4783 0.842 0.865 1.61 2.19 Values 0.34507 0.4665 0.474 0.43654 0.43654 0.43654 0.43654 0.43654 0.43654 0.43654 0.43654 0.43654 0.43654 0.43654 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 <t< th=""><th>Standard deviation 0.00217 0.00277 0.00277 0.00272 0.0033 0.00252 MC_ID 2 MC_info Built-up C ID 2 C info Buildings ROI size 160 pixels Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.31928 0.34507 0.40855 0.41648 0.43712 0.44923 0.4354 0.4625 0.636 0.626 Standard deviation 0.09748 0.1231 0.10332 0.10836 0.1304 0.10886 0.6104 0.171 Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.0798 0.04444 0.10337 0.23965 0.28138 0.27985 0.30896 0.1542 0.0116 Standard deviation 0.00513 0.00347 0.0221 0.02618 0.02228 0.27985 0.30896<</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Standard deviation 0.00217 0.00277 0.00277 0.00272 0.0033 0.00252 MC_ID 2 MC_info Built-up C ID 2 C info Buildings ROI size 160 pixels Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.31928 0.34507 0.40855 0.41648 0.43712 0.44923 0.4354 0.4625 0.636 0.626 Standard deviation 0.09748 0.1231 0.10332 0.10836 0.1304 0.10886 0.6104 0.171 Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.0798 0.04444 0.10337 0.23965 0.28138 0.27985 0.30896 0.1542 0.0116 Standard deviation 0.00513 0.00347 0.0221 0.02618 0.02228 0.27985 0.30896<												
MC_ID 2 MC_info Built-up C_ID 2 C_info	MC_ID 2 MC_info Built-up C_ID 2 C_info Buildings ROL_size 160 pixels Wavelength [E-6m] 0.49 0.56 0.655 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.31928 0.34507 0.40855 0.1648 0.43712 0.4923 0.43654 0.64223 0.636 0.6246 Standard deviation 0.8239 0.09748 0.1231 0.10352 0.10634 0.10836 0.13041 0.10986 0.6104 0.171 MC_ID 3 MC_info Vegetation C.1D 5 C_info Deciduous trees RO_size 9194 pixels Wavelength [E-6m] 0.49 0.56 0.6655 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.07938 0.04444 0.0337 0.23965 0.28138 0.27985 0.30896 0.5462 0.0156 Standard deviation 0.00513 0.00444 0.02124 0.02628 0.02777 <td></td> <td>and the second se</td> <td></td>											and the second se	
Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.31928 0.34507 0.4685 0.41648 0.4923 0.43554 0.46923 0.636 0.6246 Standard deviation 0.0829 0.09748 0.1231 0.10634 0.10836 0.13016 0.10986 0.16104 0.171 Wavelength [E-6m] 0.49 0.56 0.6655 0.705 0.74 0.733 0.842 0.865 1.6104 0.171 Wavelength [E-6m] 0.49 0.56 0.6655 0.705 0.74 0.733 0.842 0.865 1.6104 0.171 Values 0.07975 0.79788 0.64444 0.10337 0.23965 0.8421 0.842 0.865 0.6112 0.0758 Standard deviation 0.00153 0.00241 0.02244 0.0228 0.02727 0.02864 0.01191 0.00578 Wavelength [E-6m] 0.49 0.565 0.74 <	Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.31928 0.34507 0.4685 0.41648 0.43712 0.44223 0.43554 0.43654 0.6246 Standard deviation 0.09748 0.1231 0.10432 0.13364 0.19086 0.16104 0.171 Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.733 0.842 0.865 1.6104 0.171 Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.733 0.842 0.865 1.6104 0.171 Wavelength [E-6m] 0.49 0.55 0.6444 0.10337 0.23965 0.8138 0.27965 0.30896 0.15462 0.07156 Standard deviation 0.00153 0.00241 0.00264 0.02124 0.02628 0.02727 0.02864 0.01191 0.00578 Wavelength [E-6m] 0.49 0.565 0.765 0.74 <td>Standard deviation</td> <td>0.00217</td> <td>0.00232</td> <td>0.00277</td> <td>0.00277</td> <td>0.002</td> <td>73 0.0029</td> <td>92 0.00</td> <td>272 0.0030</td> <td>3 0.0028</td> <td>0.00252</td> <td></td>	Standard deviation	0.00217	0.00232	0.00277	0.00277	0.002	73 0.0029	92 0.00	272 0.0030	3 0.0028	0.00252	
Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.31928 0.34507 0.40855 0.41648 0.43712 0.44923 0.43654 0.4622 0.636 0.6246 Standard deviation 0.08239 0.09748 0.1231 0.10352 0.10634 0.10836 0.13041 0.10986 0.16104 0.171 Wavelength [E-6m] 0.49 0.56 0.6655 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.70738 0.04444 0.10337 0.23965 0.218138 0.27985 0.30966 0.15462 0.07156 Standard deviation 0.00513 0.00261 0.00261 0.02248 0.02727 0.02864 0.01191 0.00578 Wavelength [E-6m] 0.49 0.655 0.74 0.743 0.842 0.865 1.61 2.19 Values 0.005150 0.6162 0.02124	Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.31928 0.34507 0.46655 0.41648 0.43712 0.44923 0.43654 0.46223 0.6366 0.6246 Standard deviation 0.08299 0.09748 0.1231 0.10352 0.10634 0.10886 0.10410 0.10986 0.1614 0.171 Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.7978 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.79788 0.04444 0.10337 0.23965 0.28138 0.27985 0.30966 0.15462 0.07156 Standard deviation 0.00513 0.00261 0.0084 0.02124 0.02288 0.02727 0.20864 0.01191 0.00578 Wavelength [E-6m] 0.49	_	MC I	D = 2 MC	info = B	uilt-up (D =	2 C info	- Buile	dings ROL	size = 160	pixels	
Values 0.31928 0.34507 0.40855 0.41648 0.43712 0.44923 0.43654 0.4223 0.636 0.6246 Standard deviation 0.08239 0.09748 0.10352 0.10634 0.10836 0.13041 0.10986 0.1614 0.171 Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.09775 0.07938 0.04444 0.10337 0.23965 0.2124 0.027985 0.30896 0.15422 0.0156 Standard deviation 0.00175 0.0741 0.0238 0.27985 0.30896 0.15422 0.00578 Wavelength [E-6m] 0.49 0.56 0.655 0.705 0.74 0.7283 0.842 0.865 0.6162 0.0156 MC_ID 3 MC_Info Vegetation C_ID 6 C_Info Crop ROLsize 7292 pixels Wavelength [E-6m] 0.49 0.56 0.05162 0.0728 0.27439 0.35851 0.35088 </td <td>Values 0.31928 0.34507 0.40855 0.41648 0.43712 0.44923 0.43654 0.46223 0.636 0.6246 Standard deviation 0.08239 0.09748 0.1231 0.10352 0.10634 0.10836 0.13041 0.10986 0.16104 0.171 Wavelength [E-6m] 0.49 0.55 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.07978 0.02414 0.10337 0.23965 0.23183 0.27277 0.2866 0.15162 0.0578 Madeus 0.00377 0.00261 0.0648 0.02124 0.02727 0.2866 0.1612 0.0578 Madues 0.00347 0.00261 0.02614 0.02124 0.02727 0.2864 0.0119 0.00578 Madues 0.00347 0.00261 0.0648 0.02124 0.2628 0.02727 0.02864 0.0119 0.00578 Wavelength [E-6m] 0.49 0.56 0.6655 0.750</td> <td>Wavelength [E-6m]</td> <td></td>	Values 0.31928 0.34507 0.40855 0.41648 0.43712 0.44923 0.43654 0.46223 0.636 0.6246 Standard deviation 0.08239 0.09748 0.1231 0.10352 0.10634 0.10836 0.13041 0.10986 0.16104 0.171 Wavelength [E-6m] 0.49 0.55 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.07978 0.02414 0.10337 0.23965 0.23183 0.27277 0.2866 0.15162 0.0578 Madeus 0.00377 0.00261 0.0648 0.02124 0.02727 0.2866 0.1612 0.0578 Madues 0.00347 0.00261 0.02614 0.02124 0.02727 0.2864 0.0119 0.00578 Madues 0.00347 0.00261 0.0648 0.02124 0.2628 0.02727 0.02864 0.0119 0.00578 Wavelength [E-6m] 0.49 0.56 0.6655 0.750	Wavelength [E-6m]											
Standard deviation 0.08239 0.09748 0.1231 0.10352 0.10436 0.13041 0.10986 0.16104 0.171 MC_ID 3 MC_Info Vegetation C_ID 5 C_info Declduous res RO_isize 9.194 pixels Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.07978 0.04444 0.10337 0.23965 0.21318 0.27985 0.30896 0.15462 0.07156 Standard deviation 0.00153 0.00241 0.00212 0.02248 0.02124 0.02288 0.02727 0.2846 0.01191 0.0578 MC_ID 3 MC_Info Vegetation C_ID 6 C_info Crop Rot Size 7292 kizet Wavelength [E-6m] 0.49 0.656 0.0578 0.743 0.35851 0.3688 0.99117 0.13533 0.60778	Standard deviation 0.08239 0.09748 0.1231 0.10352 0.10634 0.10836 0.13041 0.10986 0.16104 0.171 MC_ID 3 MC_Info Vegetation C ID 5 C_Info Declauous res 0.16104 0.171 Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.07978 0.04444 0.10337 0.23965 0.28138 0.27985 0.30896 0.15462 0.07156 Standard deviation 0.00153 0.00241 0.00261 0.02124 0.02262 0.02727 0.02864 0.01191 0.00578 Wavelength [E-6m] 0.49 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Wavelength [E-6m] 0.693 0.6655 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.6938 0.80378 0.7735 0.7439												
MC_ID = 3 MC_info - Vegetation C_ID = 5 C_info = Deciduous trees ROI_size = 9194 pixels Wavelength [E-6m] 0.49 0.56 0.6655 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.07978 0.04444 0.10337 0.23965 0.28138 0.27985 0.30866 0.15462 0.07156 Standard deviation 0.00153 0.00261 0.00648 0.02124 0.02278 0.02864 0.01191 0.00578 MC_ID = 3 MC_info = Vegetation C_ID = 6 C_info = Crop ROI size = 7292 pixels Wavelength [E-6m] 0.495 0.655 0.774 0.783 0.865 1.61 2.19 Values 0.08938 0.08162 0.0774 0.783 0.865 1.61 2.19 Values 0.08938 0.08162 0.05162 0.7974 0.35681 0.35088 1.9117 0.13533 0.66077	MC_ID = 3 MC_info = Vegetation C_ID = 5 C_info = Deciduous trees ROI_size = 9194 pixels Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.07975 0.07938 0.04444 0.10337 0.23965 0.28138 0.27985 0.30896 0.15462 0.0156 Standard deviation 0.00153 0.00261 0.00684 0.02124 0.02628 0.02727 0.02846 0.01191 0.00578 MC_IDO = 3 MC_Info = Vegetation C_ID = 6 C_Info = Crop ROI_size = 7292 pixels Wavelength [E-6m] 0.49 0.565 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08378 0.05162 0.0778 0.7433 0.8425 0.35085 0.35087			2 Construction of the local of			A CONTRACTOR OF			Contraction of the second second	Contrast Contraster Statement	and the second second second second	
Values 0.07975 0.07938 0.04444 0.10337 0.23965 0.28138 0.27985 0.30896 0.15462 0.07156 Standard deviation 0.00153 0.00347 0.00261 0.00684 0.02124 0.02628 0.02727 0.02864 0.01191 0.00578 Model MC_ID 3 MC_info Vegetation C_ID 6 C_info Crop ROLsize 7292 pixels Wavelength [E-6m] 0.49 0.566 0.6152 0.0707 0.783 0.842 0.855 1.61 2.19 Values 0.08938 0.8378 0.5162 0.9078 0.27439 0.35851 0.35088 0.39117 0.13533 0.6677	Values 0.07975 0.07938 0.04444 0.10337 0.23965 0.28138 0.27985 0.30896 0.15422 0.07156 Standard deviation 0.00153 0.00347 0.00261 0.00644 0.02124 0.02628 0.02727 0.02864 0.01191 0.00578 MC_ID = 3 MC_info = Vegetation C_ID = 6 C_info = Crop ROI_size = 7292 pixels Wavelength [E-6m] 0.49 0.566 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08938 0.08078 0.5162 0.978 0.27439 0.35851 0.35088 0.39117 0.13533 0.60677	Wavelageth IF (m)											
MC_ID 3 MC_info Vegetation 0.02124 0.02628 0.02727 0.02864 0.01191 0.00578 Wavelength [E-6m] 0.49 0.56 0.6655 0.705 0.74 0.783 0.842 0.855 1.61 2.19 Values 0.08938 0.08378 0.5162 0.9078 0.2743 0.35851 0.35088 0.39117 0.13533 0.6677	Standard deviation 0.00153 0.00347 0.00261 0.00684 0.02124 0.02628 0.02727 0.02864 0.01191 0.00578 MC_ID = 3 MC_info = Vegetation C_ID = 6 C_info = Crop ROI_size = 7292 pixels Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08938 0.08378 0.5162 0.9078 0.27439 0.35851 0.35088 0.39117 0.13533 0.60677												
MC_ID = 3 MC_info = Vegetation C_ID = 6 C_info = Crop ROLsize = 7292 pixels Wavelength [E-6m] 0.49 0.56 0.655 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08938 0.05162 0.0978 0.27439 0.35851 0.35088 0.39117 0.13533 0.6677	MC_ID = 3 MC_info = Vegetation C_ID = 6 C_info = Crop ROI_size = 7292 pixels Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08938 0.05162 0.0978 0.27439 0.35851 0.35088 0.39117 0.13533 0.06077												
Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08938 0.08128 0.05162 0.0978 0.27439 0.35851 0.35088 0.39117 0.13533 0.06077	Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08938 0.05162 0.0978 0.27439 0.35851 0.35088 0.39117 0.13533 0.60077	standard deviation	0.00153	0.0034	0.002	61 0.00	084	0.02124	0.026.	28 0.0272	/ 0.02864	4 0.01191	0.00578
Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08938 0.08128 0.05162 0.0978 0.27439 0.35851 0.35088 0.39117 0.13533 0.06077	Wavelength [E-6m] 0.49 0.56 0.665 0.705 0.74 0.783 0.842 0.865 1.61 2.19 Values 0.08938 0.05162 0.0978 0.27439 0.35851 0.35088 0.39117 0.13533 0.60077		MC_I	D = 3 MC	info = V	egetati	on C II) = 6 C_i	nfo = 0	rop ROI_si	ze = 7292	pixels	
		Wavelength [E-6m]											
Standard deviation 0.00179 0.00273 0.00373 0.00494 0.01845 0.03103 0.03132 0.03304 0.00572 0.00481	Standard deviation 0.00179 0.00273 0.00373 0.00494 0.01845 0.03103 0.03132 0.03304 0.00572 0.00481	Values	0.08938	0.08378	0.05162	0.0978	0.274	39 0.358	51 0.35	5088 0.391	17 0.13533	3 0.06077	
		Standard deviation	0.00179	0.00273	0.00373	0.00494	0.018	45 0.031	03 0.03	3132 0.033	04 0.00572	2 0.00481	
							-						

Fig. 11.4: Spectral Signature: Example of signature details

	\odot			SCP: Sp	ectral	Signature Plo	t	\odot \odot \otimes
E	Signature list						-	
	S : MC ID:	MC Info	÷ C ID ÷	C Info	ŧ	Color	Automatic thresholds	<u>~</u>
							Min Max 🚺 σ* 1.0	۵ 🚺 📰
							From ROI 🚺 From pixel	₩ +
ſ	Plot							
	Signature de	tails						
	Spectral dis	stances						
1								

Fig. 11.5: Spectral Signature: Spectral distances

lot		
ignature details		
pectral distances		
Bray-Curtis similarity [%	27.9528874113	
	MC ID = 2 MC info = Built-up C ID = 2 C info = Buildings	1
	MC ID = 3 MC info = Vegetation C ID = 5 C info = Deciduous tree	
Jeffries-Matusita distanc		
Spectral angle	31.7900209201	
Euclidean distance	1.00566895221	
Bray-Curtis similarity [%		
Bray-curtis similarity [*	1 33.1609149331	
	MC ID = 2 MC info = Built-up C ID = 2 C info = Buildings	
	MC_ID = 3 MC_info = Vegetation C_ID = 6 C_info = Crop	
Jeffries-Matusita distand	e 2.0	
Spectral angle	36.4808416193	
Euclidean distance	0.98272739517	
Bray-Curtis similarity [%	\$58.9113857176	
	MC ID = 3 MC_info = Vegetation C_ID = 5 C_info = Deciduous tree	
	MC_ID = 3 MC_info = Vegetation C_ID = 6 C_info = Crop	
Jeffries-Matusita distand		
Spectral angle	5.72524359651	
Euclidean distance	0.140149128722	
Bray-Curtis similarity [%	90.896321367	

Fig. 11.6: Spectral Signature: Example of spectral distances

LUKU 12

Scatter Plot

The window *Scatter plot* displays pixel values for two raster bands as points in the 2D space. Scatter plots are useful for assessing ROI separability between two bands.

The functions are described in detail in the following paragraphs, using these conventions:

- Input date
 Image: Input text
 Image: Input text
 Image: Input number
 Image: Input number
 Image: Optional
 Image: Configuration stored in the active project of QGIS
 Image: Configuration stored in QGIS registry
- = Slider
 - = Table

Scatter list

• Scatter list:

- S: checkbox field; if checked, the spectral signature is displayed in the plot;
- MC ID: signature Macroclass ID;
- MC Info: signature Macroclass Information;
- C ID: signature Class ID;
- C Info: signature Class Information;

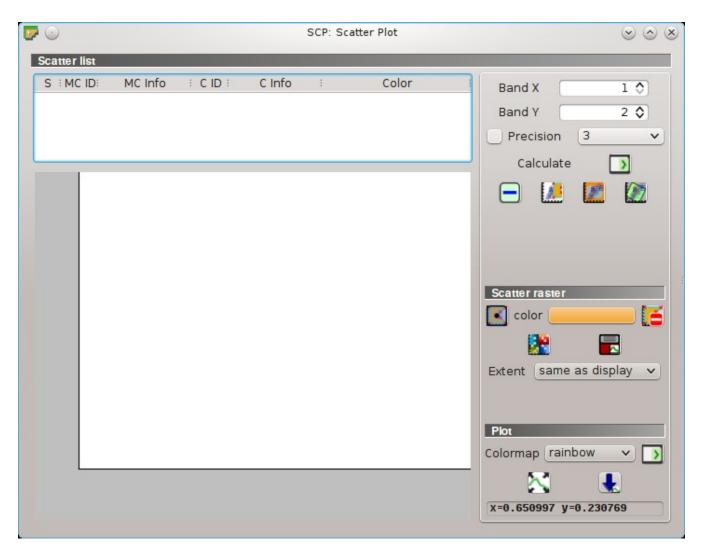


Fig. 12.1: Scatter Plot

- *Color*: color field; double click to select a color for the plot;
- *Band X* 12: X band of the plot;
- *Band Y* 12: Y band of the plot;
- *Precision* : use custom precision for calculation (precision should be selected according to pixel values):
 - $-4 = 10^{-4}$
 - $-3 = 10^{-3}$
 - $-2 = 10^{-2}$
 - $-1 = 10^{-1}$
 - -0 = 1
 - **-** -1 = 10
 - $-2 = 10^2$
 - $-3 = 10^3$
- *Calculate* calculate the scatter plot for the ROIs checked in the list;
- : remove highlighted signatures from this list;
- Line: add a temporary scatter plot to the list (as MC Info = tempScatter) and start the plot calculation of the last temporary ROI (see *Working toolbar* (page 33));
- Limit: add a temporary scatter plot to the list (as MC Info = tempScatter) and start the plot calculation of pixels in current display extent;
- Let a temporary scatter plot to the list (as MC Info = tempScatter) and start the plot calculation of the entire image;

WARNING: Using a precision value that is too high can result in slow calculation or failure.

Scatter raster

This tool allows for the drawing of selection polygons inside the scatter plot; these selection polygons are used for creating a *Scatter raster* that is a temporary raster classified according to the intersection of scatter plots and drawn polygons.

Pixels of the *Input image* (page 38) are classified, according to scatter plot bands, if pixel values are in the range of intersection between scatter plots and selection polygons (polygons should not overlap). The value assigned to the *Scatter raster* pixels is the sequential number of selection polygon; also the raster color is derived from the selection polygon.

After the creation of a new *Scatter raster*, old rasters are placed in QGIS Layers inside a layer group named Class_temp_group (custom name can be defined in *Temporary group name* (page 117)) and are deleted when the QGIS session is closed.

- Left click on the plot to define the vertices and right click to define the last vertex closing the polygon;
- *color*: select the color of polygon (which is used also in the *Scatter raster*);

- E: remove all the selection polygons from the plot;
- **E** calculate the *Scatter raster* and display it in the map;
- Calculate the spectral signature of the *Scatter raster* (considering all the classified pixels) using the *Input image* (page 38), and save the signature to the *ROI Signature list* (page 41);
- *Extent* : extent of the *Scatter raster*; available options are:
 - Same as display: extent is the same as map display;
 - Same as image: extent is the same as the whole image;

Plot

Left click and hold inside the plot to move the view of the plot. Use the mouse wheel to zoom in and out the view of the plot. Right click and hold inside the plot to zoom in a specific area of the plot.

- *Colormap* : select a colormap that is applied to highlighted scatter plots in the list when is clicked; if no scatter plot is highlighted then the colormap is applied to all the scatter plots;
- • automatically fit the plot to data;
- **W**: save the plot image to file (available formats are . jpg, .png, and .pdf);
- *x y*: display x y coordinates of mouse cursor inside the plot;

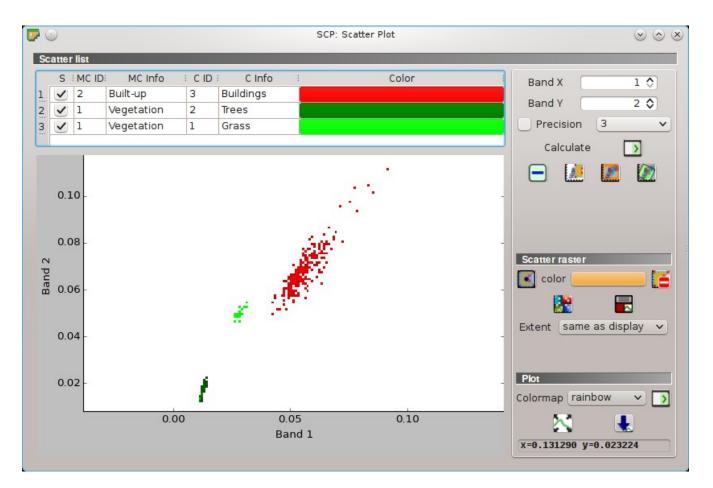


Fig. 12.2: Example Scatter Plot

luku **13**

SCP Edit Toolbar

Fig. 13.1: SCP Tools

The *SCP Edit Toolbar* allows for the direct editing of pixel values in the input raster defined in *Edit raster* (page 99) using ROI polygons. Only pixels beneath ROI polygons are edited.

- e open the tool SCP Edit Toolbar for selecting the input raster;
- 1 Let the raster using the selected constant value;
- 10 Let the raster using the selected constant value;
- 10 Let the raster using the selected constant value;
- **E**: undo the last raster edit (available only when using ROI polygons);

Osa IV

Brief Introduction to Remote Sensing

- Basic Definitions (page 139)
 - *GIS definition* (page 139)
 - Remote Sensing definition (page 139)
 - Sensors (page 141)
 - Radiance and Reflectance (page 141)
 - *Spectral Signature* (page 141)
 - Landsat Satellite (page 141)
 - Sentinel-2 Satellite (page 143)
 - ASTER Satellite (page 143)
 - MODIS Products (page 144)
 - Color Composite (page 145)
 - Principal Component Analysis (page 145)
 - Pan-sharpening (page 146)
 - Spectral Indices (page 146)
- Supervised Classification Definitions (page 149)
 - Land Cover (page 149)
 - Supervised Classification (page 149)
 - Training Areas (page 149)
 - Classes and Macroclasses (page 150)
 - Classification Algorithms (page 151)
 - Spectral Distance (page 156)
 - Classification Result (page 158)
 - Accuracy Assessment (page 158)
- Image conversion to reflectance (page 161)
 - Radiance at the Sensor's Aperture (page 161)
 - Top Of Atmosphere (TOA) Reflectance (page 161)
 - *Surface Reflectance* (page 162)
 - DOS1 Correction (page 162)
- Conversion to Temperature (page 165)
 - Conversion to At-Satellite Brightness Temperature (page 165)
 - Estimation of Land Surface Temperature (page 166)
- References (page 167)

LUKU **14**

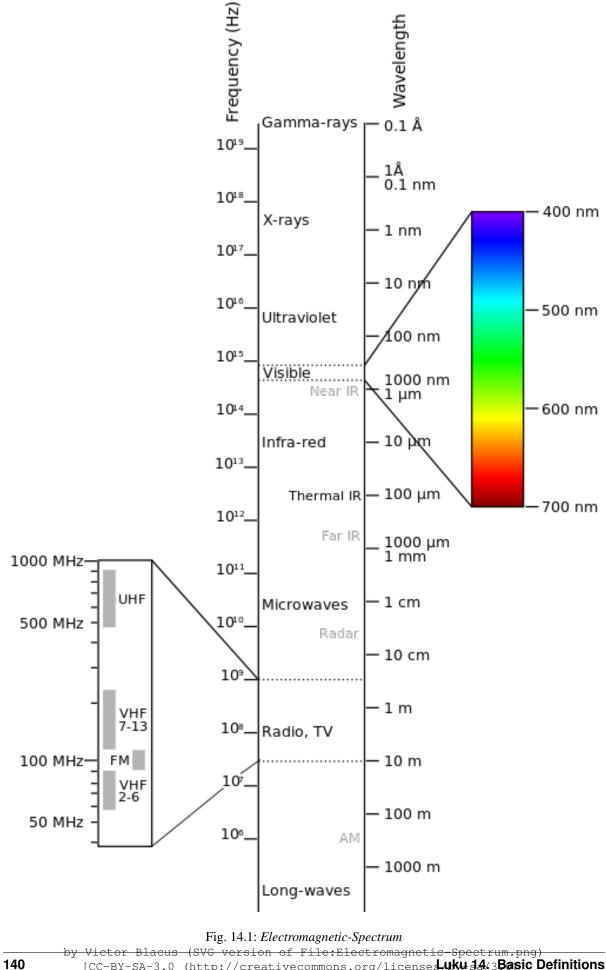
Basic Definitions

This chapter provides basic definitions about GIS and remote sensing. For other useful resources see *Free and valuable resources about remote sensing and GIS* (page 270).

GIS definition

There are several definitions of **GIS** (Geographic Information Systems), which is not simply a program. In general, GIS are systems that allow for the use of geographic information (data have spatial coordinates). In particular, GIS allow for the view, query, calculation and analysis of spatial data, which are mainly distinguished in raster or vector data structures. Vector is made of objects that can be points, lines or polygons, and each object can have one ore more attribute values; a raster is a grid (or image) where each cell has an attribute value (Fisher and Unwin, 2005). Several GIS applications use raster images that are derived from remote sensing.

Remote Sensing definition


A general definition of **Remote Sensing** is "the science and technology by which the characteristics of objects of interest can be identified, measured or analyzed the characteristics without direct contact" (JARS, 1993).

Usually, remote sensing is the measurement of the energy that is emanated from the Earth's surface. If the source of the measured energy is the sun, then it is called **passive remote sensing**, and the result of this measurement can be a digital image (Richards and Jia, 2006). If the measured energy is not emitted by the Sun but from the sensor platform then it is defined as **active remote sensing**, such as radar sensors which work in the microwave range (Richards and Jia, 2006).

The **electromagnetic spectrum** is "the system that classifies, according to wavelength, all energy (from short cosmic to long radio) that moves, harmonically, at the constant velocity of light" (NASA, 2013). Passive sensors measure energy from the optical regions of the electromagnetic spectrum: visible, near infrared (i.e. IR), shortwave IR, and thermal IR (see Figure *Electromagnetic-Spectrum* (page 140)).

The interaction between solar energy and materials depends on the wavelength; solar energy goes from the Sun to the Earth and then to the sensor. Along this path, **solar energy** is (NASA, 2013):

- **Transmitted** The energy passes through with a change in velocity as determined by the index of refraction for the two media in question.
- Absorbed The energy is given up to the object through electron or molecular reactions.

[CC-BY-SA-3.0 (http://creativecommons.org/license**Juku 34**/3**Basic Definitions** via Wikimedia Commons

- **Reflected** The energy is returned unchanged with the angle of incidence equal to the angle of reflection. Reflectance is the ratio of reflected energy to that incident on a body. The wavelength reflected (not absorbed) determines the color of an object.
- **Scattered** The direction of energy propagation is randomly changed. Rayleigh and Mie scatter are the two most important types of scatter in the atmosphere.
- **Emitted** Actually, the energy is first absorbed, then re-emitted, usually at longer wavelengths. The object heats up.

Sensors

Sensors can be on board of airplanes or on board of satellites, measuring the electromagnetic radiation at specific ranges (usually called bands). As a result, the measures are quantized and converted into a digital image, where each picture elements (i.e. pixel) has a discrete value in units of Digital Number (DN) (NASA, 2013). The resulting images have different characteristics (resolutions) depending on the sensor. There are several kinds of **resolutions**:

- **Spatial resolution**, usually measured in pixel size, "is the resolving power of an instrument needed for the discrimination of features and is based on detector size, focal length, and sensor altitude" (NASA, 2013); spatial resolution is also referred to as geometric resolution or IFOV;
- **Spectral resolution**, is the number and location in the electromagnetic spectrum (defined by two wavelengths) of the spectral bands (NASA, 2013) in multispectral sensors, for each band corresponds an image;
- **Radiometric resolution**, usually measured in bits (binary digits), is the range of available brightness values, which in the image correspond to the maximum range of DNs; for example an image with 8 bit resolution has 256 levels of brightness (Richards and Jia, 2006);
- For satellites sensors, there is also the **temporal resolution**, which is the time required for revisiting the same area of the Earth (NASA, 2013).

Radiance and Reflectance

Sensors measure the **radiance**, which corresponds to the brightness in a given direction toward the sensor; it useful to define also the **reflectance** as the ratio of reflected versus total power energy.

Spectral Signature

The **spectral signature** is the reflectance as a function of wavelength (see Figure *Spectral Reflectance Curves of Four Different Targets* (page 142)); each material has a unique signature, therefore it can be used for material classification (NASA, 2013).

Landsat Satellite

Landsat is a set of multispectral satellites developed by the NASA (National Aeronautics and Space Administration of USA), since the early 1970's.

Landsat images are very used for environmental research. The resolutions of Landsat 4 and Landsat 5 sensors are reported in the following table (from http://landsat.usgs.gov/band_designations_landsat_satellites.php); also, Landsat temporal resolution is 16 days (NASA, 2013).

Landsat 4 and Landsat 5 Bands

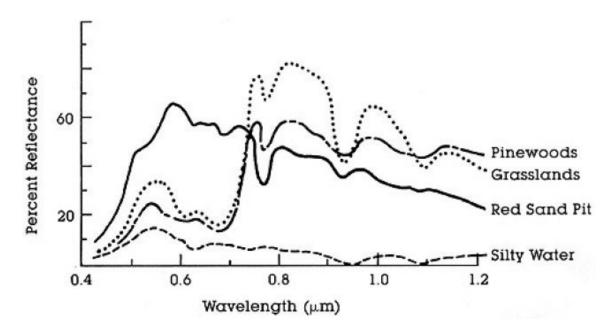


Fig. 14.2: Spectral Reflectance Curves of Four Different Targets (from NASA, 2013)

Landsat 4, Landsat 5 Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Blue	0.45 - 0.52	30
Band 2 - Green	0.52 - 0.60	30
Band 3 - Red	0.63 - 0.69	30
Band 4 - Near Infrared (NIR)	0.76 - 0.90	30
Band 5 - SWIR	1.55 - 1.75	30
Band 6 - Thermal Infrared	10.40 - 12.50	120 (resampled to 30)
Band 7 - SWIR	2.08 - 2.35	30

The resolutions of Landsat 7 sensor are reported in the following table (from http://landsat.usgs.gov/band_ designations_landsat_satellites.php); also, Landsat temporal resolution is 16 days (NASA, 2013).

Landsat 7 Bands		
Landsat 7 Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Blue	0.45 - 0.52	30
Band 2 - Green	0.52 - 0.60	30
Band 3 - Red	0.63 - 0.69	30
Band 4 - Near Infrared (NIR)	0.77 - 0.90	30
Band 5 - SWIR	1.57 - 1.75	30
Band 6 - Thermal Infrared	10.40 - 12.50	60 (resampled to 30)
Band 7 - SWIR	2.09 - 2.35	30
Band 8 - Panchromatic	0.52 - 0.90	15

The resolutions of Landsat 8 sensor are reported in the following table (from http://landsat.usgs.gov/band_designations_landsat_satellites.php); also, Landsat temporal resolution is 16 days (NASA, 2013).

Landsat 8 Bands

Landsat 8 Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Coastal aerosol	0.43 - 0.45	30
Band 2 - Blue	0.45 - 0.51	30
Band 3 - Green	0.53 - 0.59	30
Band 4 - Red	0.64 - 0.67	30
Band 5 - Near Infrared (NIR)	0.85 - 0.88	30
Band 6 - SWIR 1	1.57 - 1.65	30
Band 7 - SWIR 2	2.11 - 2.29	30
Band 8 - Panchromatic	0.50 - 0.68	15
Band 9 - Cirrus	1.36 - 1.38	30
Band 10 - Thermal Infrared (TIRS) 1	10.60 - 11.19	100 (resampled to 30)
Band 11 - Thermal Infrared (TIRS) 2	11.50 - 12.51	100 (resampled to 30)

A vast archive of images is freely available from the U.S. Geological Survey . For more information about how to freely download Landsat images read this .

Images are identified with the paths and rows of the WRS (Worldwide Reference System for Landsat).

Sentinel-2 Satellite

Sentinel-2 is a multispectral satellite developed by the European Space Agency (ESA) in the frame of Copernicus land monitoring services. Sentinel-2 acquires 13 spectral bands with the spatial resolution of 10m, 20m and 60m depending on the band, as illustrated in the following table (ESA, 2015).

Sentinel-2 Bands	Central Wavelength [micrometers]	Resolution [meters]
Band 1 - Coastal aerosol	0.443	60
Band 2 - Blue	0.490	10
Band 3 - Green	0.560	10
Band 4 - Red	0.665	10
Band 5 - Vegetation Red Edge	0.705	20
Band 6 - Vegetation Red Edge	0.740	20
Band 7 - Vegetation Red Edge	0.783	20
Band 8 - NIR	0.842	10
Band 8A - Vegetation Red Edge	0.865	20
Band 9 - Water vapour	0.945	60
Band 10 - SWIR - Cirrus	1.375	60
Band 11 - SWIR	1.610	20
Band 12 - SWIR	2.190	20

Sentinel-2 Bands

Sentinel-2 images are freely available from the ESA website https://scihub.esa.int/dhus/ .

ASTER Satellite

The **ASTER** (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite was launched in 1999 by a collaboration between the Japanese Ministry of International Trade and Industry (MITI) and the NASA. ASTER has 14 bands whose spatial resolution varies with wavelength: 15m in the visible and near-infrared, 30m in the short wave infrared, and 90m in the thermal infrared (USGS, 2015). ASTER bands are illustrated in the following table (due to a sensor failure **SWIR data acquired since April 1, 2008 is not available**). An additional band 3B (backwardlooking near-infrared) provides stereo coverage.

ASTER Bands

ASTER Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Green	0.52 - 0.60	15
Band 2 - Red	0.63 - 0.69	15
Band 3N - Near Infrared (NIR)	0.78 - 0.86	15
Band 4 - SWIR 1	1.60 - 1.70	30
Band 5 - SWIR 2	2.145 - 2.185	30
Band 6 - SWIR 3	2.185 - 2.225	30
Band 7 - SWIR 4	2.235 - 2.285	30
Band 8 - SWIR 5	2.295 - 2.365	30
Band 9 - SWIR 6	2.360 - 2.430	30
Band 10 - TIR 1	8.125 - 8.475	90
Band 11 - TIR 2	8.475 - 8.825	90
Band 12 - TIR 3	8.925 - 9.275	90
Band 13 - TIR 4	10.25 - 10.95	90
Band 14 - TIR 5	10.95 - 11.65	90

MODIS Products

The **MODIS** (Moderate Resolution Imaging Spectroradiometer) is an instrument operating on the Terra and Aqua satellites launched by NASA in 1999 and 2002 respectively. Its temporal resolutions allows for viewing the entire Earth surface every one to two days, with a swath width of 2,330. Its sensors measure 36 spectral bands at three spatial resolutions: 250m, 500m, and 1,000m (see https://lpdaac.usgs.gov/dataset_discovery/modis).

Several products are available, such as surface reflectance and vegetation indices. In this manual we are considering the surface reflectance bands available at 250m and 500m spatial resolution (Vermote, Roger, & Ray, 2015).

MODIS Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Red	0.62 - 0.67	250 - 500
Band 2 - Near Infrared (NIR)	0.841 - 0.876	250 - 500
Band 3 - Blue	0.459 - 0.479	500
Band 4 - Green	0.545 - 0.565	500
Band 5 - SWIR 1	1.230 - 1.250	500
Band 6 - SWIR 2	1.628 - 1.652	500
Band 7 - SWIR 3	2.105 - 2.155	500

MODIS Bands

The following products (Version 6, see https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table) are available for download (Vermote, Roger, & Ray, 2015):

- MOD09GQ: daily reflectance at 250m spatial resolution from Terra MODIS;
- MYD09GQ: daily reflectance at 250m spatial resolution from Aqua MODIS;
- MOD09GA: daily reflectance at 500m spatial resolution from Terra MODIS;
- MYD09GA: daily reflectance at 500m spatial resolution from Aqua MODIS;
- MOD09Q1: reflectance at 250m spatial resolution, which is a composite of MOD09GQ (each pixel contains the best possible observation during an 8-day period);
- MYD09Q1: reflectance at 250m spatial resolution, which is a composite of MYD09GQ (each pixel contains the best possible observation during an 8-day period);
- MOD09A1: reflectance at 250m spatial resolution, which is a composite of MOD09GA (each pixel contains the best possible observation during an 8-day period);
- MYD09A1: reflectance at 250m spatial resolution, which is a composite of MYD09GA (each pixel contains the best possible observation during an 8-day period);

Color Composite

Often, a combination is created of three individual monochrome images, in which each is assigned a given color; this is defined **color composite** and is useful for photo interpretation (NASA, 2013). Color composites are usually expressed as:

"R G B = Br Bg Bb"

where:

- R stands for Red;
- G stands for Green;
- B stands for Blue;
- Br is the band number associated to the Red color;
- Bg is the band number associated to the Green color;
- Bb is the band number associated to the Blue color.

The following Figure *Color composite of a Landsat 8 image* (page 145) shows a color composite "R G B = 4 3 2" of a Landsat 8 image (for Landsat 7 the same color composite is R G B = 3 2 1; for Sentinel-2 is R G B = 4 3 2) and a color composite "R G B = 5 4 3" (for Landsat 7 the same color composite is R G B = 4 3 2; for Sentinel-2 is R G B = 8 4 3). The composite "R G B = 5 4 3" is useful for the interpretation of the image because vegetation pixels appear red (healthy vegetation reflects a large part of the incident light in the near-infrared wavelength, resulting in higher reflectance values for band 5, thus higher values for the associated color red).

RGB = 432

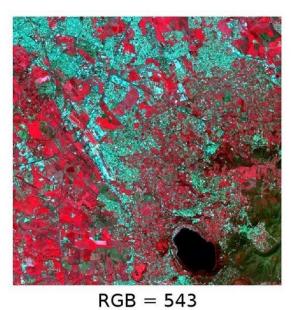


Fig. 14.3: Color composite of a Landsat 8 image Data available from the U.S. Geological Survey

Principal Component Analysis

Principal Component Analysis (PCA) is a method for reducing the dimensions of measured variables (bands) to the principal components (JARS, 1993).

Th principal component transformation provides a new set of bands (principal components) having the following characteristic: principal components are uncorrelated; each component has variance less than the previous com-

ponent. Therefore, this is an efficient method for extracting information and data compression (Ready and Wintz, 1973).

Given an image with N spectral bands, the principal components are obtained by matrix calculation (Ready and Wintz, 1973; Richards and Jia, 2006):

$$Y = D^t X$$

where:

- Y = vector of principal components
- $D = \text{matrix of eigenvectors of the covariance matrix } C_x \text{ in X space}$
- t denotes vector transpose

And X is calculated as:

$$X = P - M$$

- P = vector of spectral values associated with each pixel
- M = vector of the mean associated with each band

Thus, the mean of X associated with each band is 0. D is formed by the eigenvectors (of the covariance matrix C_x) ordered as the eigenvalues from maximum to minimum, in order to have the maximum variance in the first component. This way, the principal components are uncorrelated and each component has variance less than the previous component(Ready and Wintz, 1973).

Usually the first two components contain more than the 90% of the variance. For example, the first principal components can be displayed in a *Color Composite* (page 145) for highlighting *Land Cover* (page 149) classes, or used as input for *Supervised Classification* (page 149).

Pan-sharpening

Pan-sharpening is the combination of the spectral information of multispectral bands (MS), which have lower spatial resolution (for Landsat bands, spatial resolution is 30m), with the spatial resolution of a panchromatic band (PAN), which for Landsat 7 and 8 it is 15m. The result is a multispectral image with the spatial resolution of the panchromatic band (e.g. 15m). In *SCP*, a Brovey Transform is applied, where the pan-sharpened values of each multispectral band are calculated as (Johnson, Tateishi and Hoan, 2012):

$$MSpan = MS * PAN/I$$

where *I* is Intensity, which is a function of multispectral bands.

The following weights for I are defined, basing on several tests performed using the *SCP*. For Landsat 8, Intensity is calculated as:

$$I = (0.42 * Blue + 0.98 * Green + 0.6 * Red)/2$$

For Landsat 7, Intensity is calculated as:

$$I = (0.42 * Blue + 0.98 * Green + 0.6 * Red + NIR)/3$$

Spectral Indices

Spectral indices are operations between spectral bands that are useful for extracting information such as vegetation cover (JARS, 1993). One of the most popular spectral indices is the **Normalized Difference Vegetation Index** (NDVI), defined as (JARS, 1993):

$$NDVI = (NIR - Red)/(NIR + Red)$$

Fig. 14.4: *Example of pan-sharpening of a Landsat 8 image. Left, original multispectral bands (30m); right, pan-sharpened bands (15m)*

Data available from the U.S. Geological Survey

NDVI values range from -1 to 1. Dense and healthy vegetation show higher values, while non-vegetated areas show low NDVI values.

Another index is the **Enhanced Vegetation Index** (EVI) which attempts to account for atmospheric effects such as path radiance calculating the difference between the blue and the red bands (Didan, et al., 2015). EVI is defined as:

$$EVI = G(NIR - Red)/(NIR + C_1Red - C_2Blue + L)$$

where: G is a scaling factor, C_1 and C_2 are coefficients for the atmospheric effects, and L is a factor for accounting the differential NIR and Red radiant transfer through the canopy. Typical coefficient values are: G = 2.5, L = 1, $C_1 = 6$, $C_2 = 7.5$ (Didan, et al., 2015).

LUKU **15**

Supervised Classification Definitions

This chapter provides basic definitions about supervised classifications.

Land Cover

Land cover is the material at the ground, such as soil, vegetation, water, asphalt, etc. (Fisher and Unwin, 2005). Depending on the sensor resolutions, the number and kind of land cover classes that can be identified in the image can vary significantly.

Supervised Classification

A **semi-automatic classification** (also supervised classification) is an image processing technique that allows for the identification of materials in an image, according to their spectral signatures. There are several kinds of classification algorithms, but the general purpose is to produce a thematic map of the land cover.

Image processing and GIS spatial analyses require specific software such as the Semi-Automatic Classification Plugin for QGIS.

Training Areas

Usually, supervised classifications require the user to select one or more Regions of Interest (ROIs, also Training Areas) for each land cover class identified in the image. **ROIs** are polygons drawn over homogeneous areas of the image that overlay pixels belonging to the same land cover class.

Region Growing Algorithm

The Region Growing Algorithm allows to select pixels similar to a seed one, considering the **spectral similarity** (i.e. spectral distance) of adjacent pixels. In *SCP* the Region Growing Algorithm is available for the training area creation. The parameter **distance** is related to the similarity of pixel values (the lower the value, the more similar are selected pixels) to the seed one (i.e. selected clicking on a pixel). An additional parameter is the **maximum width**, which is the side length of a square, centred at the seed pixel, which inscribes the training area (if all the pixels had the same value, the training area would be this square). The **minimum size** is used a constraint (for

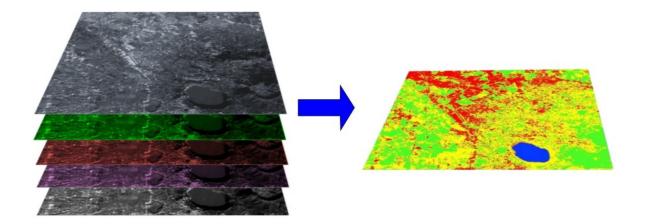


Fig. 15.1: A multispectral image processed to produce a land cover classification (Landsat image provided by USGS)

every single band), selecting at least the pixels that are more similar to the seed one until the number of selected pixels equals the minimum size.

In figure *Region growing example* (page 150) the central pixel is used as seed (image a) for the region growing of one band (image b) with the parameter spectral distance = 0.1; similar pixels are selected to create the training area (image c and image d).

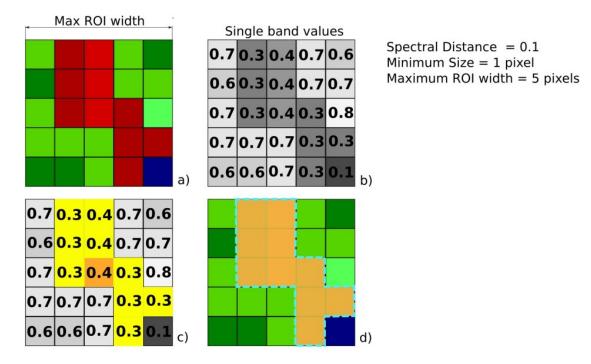


Fig. 15.2: Region growing example

Classes and Macroclasses

Land cover classes are identified with an arbitrary ID code (i.e. Identifier). *SCP* allows for the definition of **Macroclass ID** (i.e. MC ID) and **Class ID** (i.e. C ID), which are the identification codes of land cover classes. A **Macroclass** is a group of ROIs having different Class ID, which is useful when one needs to classify materials

that have different spectral signatures in the same land cover class. For instance, one can identify grass (e.g. ID class = 1 and Macroclass ID = 1) and trees (e.g. ID class = 2 and Macroclass ID = 1) as vegetation class (e.g. Macroclass ID = 1). Multiple Class IDs can be assigned to the same Macroclass ID, but the same Class ID cannot be assigned to multiple Macroclass IDs, as shown in the following table.

Example of Macroclasses

Macroclass name	Macroclass ID	Class name	Class ID
Vegetation	1	Grass	1
Vegetation	1	Trees	2
Built-up	2	Buildings	3
Built-up	2	Roads	4

Therefore, Classes are subsets of a Macroclass as illustrated in Figure Macroclass example (page 151).

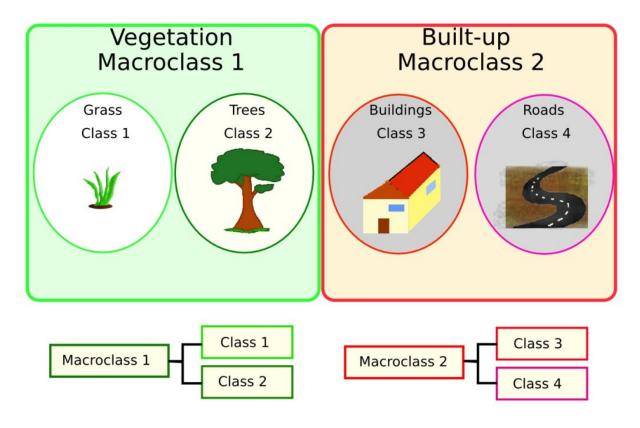


Fig. 15.3: Macroclass example

If the use of Macroclass is not required for the study purpose, then the same Macroclass ID can be defined for all the ROIs (e.g. Macroclass ID = 1) and Macroclass values are ignored in the classification process.

Classification Algorithms

The **spectral signatures** (spectral characteristics) of reference land cover classes are calculated considering the values of pixels under each ROI having the same Class ID (or Macroclass ID). Therefore, the classification algorithm classifies the whole image by comparing the spectral characteristics of each pixel to the spectral characteristics of reference land cover classes. *SCP* implements the following classification algorithms.

Minimum Distance

Minimum Distance algorithm calculates the Euclidean distance d(x, y) between spectral signatures of image pixels and training spectral signatures, according to the following equation:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where:

- x = spectral signature vector of an image pixel;
- y = spectral signature vector of a training area;
- n = number of image bands.

Therefore, the distance is calculated for every pixel in the image, assigning the class of the spectral signature that is closer, according to the following discriminant function (adapted from Richards and Jia, 2006):

$$x \in C_k \iff d(x, y_k) < d(x, y_j) \forall k \neq j$$

where:

- $C_k = \text{land cover class } k;$
- y_k = spectral signature of class k;
- y_j = spectral signature of class j.

It is possible to define a threshold T_i in order to exclude pixels below this value from the classification:

$$\begin{array}{l} x \in C_k \iff d(x,y_k) < d(x,y_j) \forall k \neq j \\ and \\ d(x,y_k) < T_i \end{array}$$

Maximum Likelihood

Maximum Likelihood algorithm calculates the probability distributions for the classes, related to Bayes' theorem, estimating if a pixel belongs to a land cover class. In particular, the probability distributions for the classes are assumed the of form of multivariate normal models (Richards & Jia, 2006). In order to use this algorithm, a sufficient number of pixels is required for each training area allowing for the calculation of the covariance matrix. The discriminant function, described by Richards and Jia (2006), is calculated for every pixel as:

$$g_k(x) = \ln p(C_k) - \frac{1}{2} \ln |\Sigma_k| - \frac{1}{2} (x - y_k)^t \Sigma_k^{-1} (x - y_k)$$

where:

- $C_k = \text{land cover class } k;$
- *x* = spectral signature vector of a image pixel;
- $p(C_k)$ = probability that the correct class is C_k ;
- $|\Sigma_k|$ = determinant of the covariance matrix of the data in class C_k ;
- Σ_k^{-1} = inverse of the covariance matrix;
- y_k = spectral signature vector of class k.

Therefore:

$$x \in C_k \iff g_k(x) > g_j(x) \forall k \neq j$$

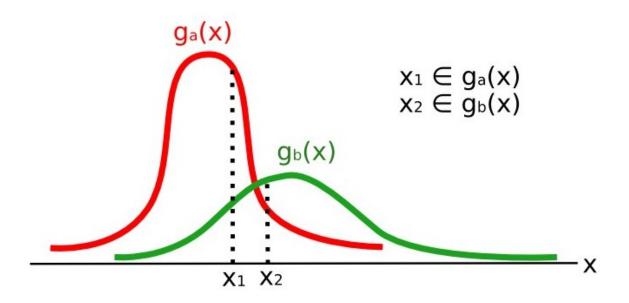


Fig. 15.4: Maximum Likelihood example

In addition, it is possible to define a threshold to the discriminant function in order to exclude pixels below this value from the classification. Considering a threshold T_i the classification condition becomes:

$$x \in C_k \iff g_k(x) > g_j(x) \forall k \neq j$$

and
$$g_k(x) > T_i$$

Maximum likelihood is one of the most common supervised classifications, however the classification process can be slower than *Minimum Distance* (page 152).

Spectral Angle Mapping

The Spectral Angle Mapping calculates the spectral angle between spectral signatures of image pixels and training spectral signatures. The spectral angle θ is defined as (Kruse et al., 1993):

$$\theta(x,y) = \cos^{-1}\left(\frac{\sum_{i=1}^{n} x_i y_i}{(\sum_{i=1}^{n} x_i^2)^{\frac{1}{2}} * (\sum_{i=1}^{n} y_i^2)^{\frac{1}{2}}}\right)$$

Where:

- x = spectral signature vector of an image pixel;
- y = spectral signature vector of a training area;
- n = number of image bands.

Therefore a pixel belongs to the class having the lowest angle, that is:

$$x \in C_k \iff \theta(x, y_k) < \theta(x, y_j) \forall k \neq j$$

where:

- C_k = land cover class k;
- y_k = spectral signature of class k;
- y_j = spectral signature of class j.

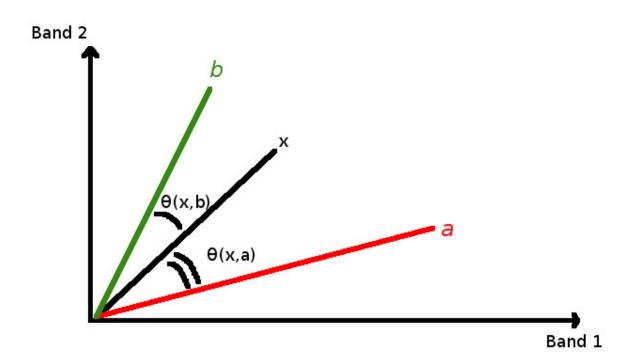


Fig. 15.5: Spectral Angle Mapping example

In order to exclude pixels below this value from the classification it is possible to define a threshold T_i :

 $x \in C_k \iff \theta(x, y_k) < \theta(x, y_j) \forall k \neq j$ and $\theta(x, y_k) < T_i$

Spectral Angle Mapping is largely used, especially with hyperspectral data.

Parallelepiped Classification

Parallelepiped classification is an algorithm that considers a range of values for each band, forming a multidimensional parallelepiped that defines a land cover class. A pixel is classified if the values thereof are inside a parallelepiped. One of the major drawbacks is that pixels whose signatures lie in the overlapping area of two or more parallelepipeds cannot be classified (Richards and Jia, 2006).

Land Cover Signature Classification

Land Cover Signature Classification is available in *SCP* (see *Land Cover Signature Classification* (page 46)). This classification allows for the definition of spectral thresholds for each training input signature (a minimum value and a maximum value for each band). The thresholds of each training input signature define a spectral region belonging to a certain land cover class.

Spectral signatures of image pixels are compared to the training spectral signatures; a pixel belongs to class X if pixel spectral signature is completely contained in the spectral region defined by class X. In case of pixels falling inside overlapping regions or outside any spectral region, it is possible to use additional classification algorithms (i.e. *Minimum Distance* (page 152), *Maximum Likelihood* (page 152), *Spectral Angle Mapping* (page 153)) considering the spectral characteristics of the original input signature.

In the following image, a scheme illustrates the Land Cover Signature Classification for a simple case of two spectral bands x and y. User defined spectral regions define three classes $(g_a, g_b, \text{ and } g_c)$. Point p_1 belongs to

class g_a and point p_2 belongs to class g_b . However, point p_3 is inside the spectral regions of both classes g_b and g_c (overlapping regions); in this case, point p_3 will be unclassified or classified according to an additional classification algorithm. Point p_4 is outside any spectral region, therefore it will be unclassified or classified according to an additional classified according to an additional classification algorithm. Given that point p_4 belongs to class g_c , the spectral region thereof could be extended to include point p_4 .

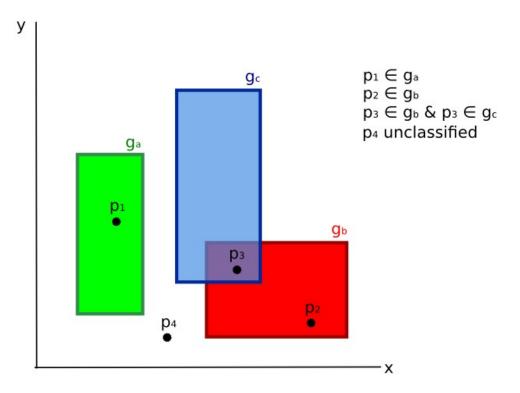


Fig. 15.6: Land cover signature classification

This is similar to *Parallelepiped Classification* (page 154), with the exception that spectral regions are defined by user, and can be assigned independently for the upper and lower bounds. One can imagine spectral regions as the set of all the spectral signatures of pixels belonging to one class.

In figure *Plot of spectral ranges* (page 156) the spectral ranges of three classes $(g_a, g_b, \text{ and } g_c)$ are displayed; the colored lines inside the ranges (i.e. semi-transparent area) represent the spectral signatures of pixels that defined the upper and lower bounds of the respective ranges. Pixel p_1 (dotted line) belongs to class g_b because the spectral signature thereof is completely inside the range of class g_b (in the upper limit); pixel p_2 (dashed line) is unclassified because the spectral signature does not fall completely inside any range; pixel p_3 (dotted line) belongs to class g_a .

It is worth noticing that these spectral thresholds can be applied to any spectral signature, regardless of spectral characteristics thereof; this function can be very useful for separating similar spectral signatures that differ only in one band, defining thresholds that include or exclude specific signatures. In fact, classes are correctly separated if the spectral ranges thereof are not overlapping at least in one band. Of course, even if spectral regions are overlapping, chances are that no pixel will fall inside the overlapping region and be misclassified; which is the upper (or lower) bound of a range do not imply the existence, in the image, of any spectral signature having the maximum (or minimum) range values for all the bands (for instance pixel p_1 of figure *Plot of spectral ranges* (page 156) could not exist).

One of the main benefit of the *Land Cover Signature Classification* is that it is possible to select pixels and and include the signature thereof in a spectral range; therefore, the classification should be the direct representation of the class expected for every spectral signature. This is very suitable for the classification of a single land cover class (defined by specific spectral thresholds), and leave unclassified the rest of the image that is of no interest for the purpose of the classification.

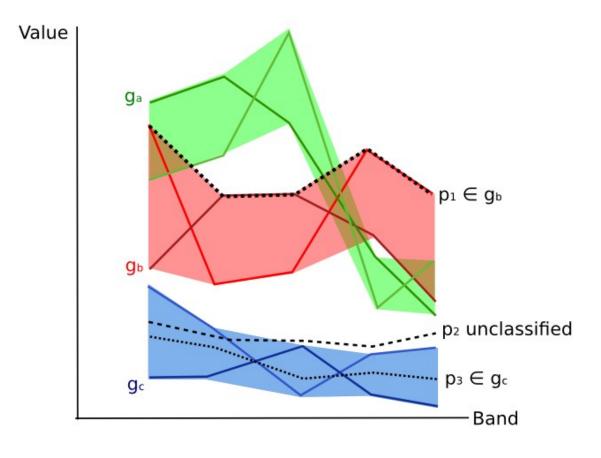


Fig. 15.7: Plot of spectral ranges

Algorithm raster

An algorithm raster represents the "distance" (according to the definition of the classification algorithm) of an image pixel to a specific spectral signature.

In general, an algorithm raster is produced for every spectral signature used as training input. The value of every pixel is the result of the algorithm calculation for a specific spectral signature. Therefore, a pixel belongs to class X if the value of the algorithm raster corresponding to class X is the lowest in case of *Minimum Distance* (page 152) or *Spectral Angle Mapping* (page 153) (or highest in case of *Maximum Likelihood* (page 152)).

Given a classification, a combination of algorithm rasters can be produced, in order to create a raster with the lowest "distances" (i.e. pixels have the value of the algorithm raster corresponding to the class they belong in the classification). Therefore, this raster can be useful to identify pixels that require the collection of more similar spectral signatures (see *Classification preview* (page 35)).

Spectral Distance

It is useful to evaluate the spectral distance (or separability) between training signatures or pixels, in order to assess if different classes that are too similar could cause classification errors. The *SCP* implements the following algorithms for assessing similarity of spectral signatures.

Jeffries-Matusita Distance

Jeffries-Matusita Distance calculates the separability of a pair of probability distributions. This can be particularly meaningful for evaluating the results of *Maximum Likelihood* (page 152) classifications.

The Jeffries-Matusita Distance J_{xy} is calculated as (Richards and Jia, 2006):

$$J_{xy} = 2\left(1 - e^{-B}\right)$$

where:

$$B = \frac{1}{8}(x-y)^t \left(\frac{\Sigma_x + \Sigma_y}{2}\right)^{-1} (x-y) + \frac{1}{2} \ln \left(\frac{\left|\frac{\Sigma_x + \Sigma_y}{2}\right|}{\left|\Sigma_x\right|^{\frac{1}{2}} \left|\Sigma_y\right|^{\frac{1}{2}}}\right)$$

where:

- x =first spectral signature vector;
- *y* = second spectral signature vector;
- Σ_x = covariance matrix of sample x;
- Σ_y = covariance matrix of sample y;

The Jeffries-Matusita Distance is asymptotic to 2 when signatures are completely different, and tends to 0 when signatures are identical.

Spectral Angle

The Spectral Angle is the most appropriate for assessing the *Spectral Angle Mapping* (page 153) algorithm. The spectral angle θ is defined as (Kruse et al., 1993):

$$\theta(x,y) = \cos^{-1}\left(\frac{\sum_{i=1}^{n} x_i y_i}{(\sum_{i=1}^{n} x_i^2)^{\frac{1}{2}} * (\sum_{i=1}^{n} y_i^2)^{\frac{1}{2}}}\right)$$

Where:

- x = spectral signature vector of an image pixel;
- y = spectral signature vector of a training area;
- n = number of image bands.

Spectral angle goes from 0 when signatures are identical to 90 when signatures are completely different.

Euclidean Distance

The Euclidean Distance is particularly useful for the evaluating the result of *Minimum Distance* (page 152) classifications. In fact, the distance is defined as:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where:

- x =first spectral signature vector;
- y = second spectral signature vector;
- n = number of image bands.

The Euclidean Distance is 0 when signatures are identical and tends to increase according to the spectral distance of signatures.

Bray-Curtis Similarity

The Bray-Curtis Similarity is a statistic used for assessing the relationship between two samples (read this). It is useful in general for assessing the similarity of spectral signatures, and Bray-Curtis Similarity S(x, y) is calculated as:

$$S(x,y) = 100 - \left(\frac{\sum_{i=1}^{n} |(x_i - y_i)|}{\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i}\right) * 100$$

where:

- x =first spectral signature vector;
- *y* = second spectral signature vector;
- n = number of image bands.

The Bray-Curtis similarity is calculated as percentage and ranges from 0 when signatures are completely different to 100 when spectral signatures are identical.

Classification Result

The result of the classification process is a raster (see an example of Landsat classification in Figure *Landsat classification* (page 158)), where pixel values correspond to class IDs and each color represent a land cover class.

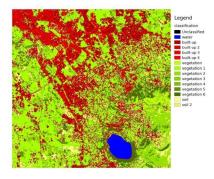


Fig. 15.8: *Landsat classification* Data available from the U.S. Geological Survey

A certain amount of errors can occur in the land cover classification (i.e. pixels assigned to a wrong land cover class), due to spectral similarity of classes, or wrong class definition during the ROI collection.

Accuracy Assessment

After the classification process, it is useful to assess the accuracy of land cover classification, in order to identify and measure map errors. Usually, **accuracy assessment** is performed with the calculation of an error matrix, which is a table that compares map information with reference data (i.e. ground truth data) for a number of sample areas (Congalton and Green, 2009).

The following table is a scheme of error matrix, where k is the number of classes identified in the land cover classification, and n is the total number of collected sample units. The items in the major diagonal (aii) are the number of samples correctly identified, while the other items are classification error.

Scheme of Error Matrix

	Ground truth 1	Ground truth 2	 Ground truth k	Total
Class 1	a_{11}	a_{12}	 a_{1k}	a_{1+}
Class 2	a_{21}	a_{22}	 a_{2k}	a_{2+}
	•••		 	
Class k	a_{k1}	a_{k2}	 a_{kk}	a_{k+}
Total	a_{+1}	a_{+2}	 a_{+k}	n

Therefore, it is possible to calculate the overall accuracy as the ratio between the number of samples that are correctly classified (the sum of the major diagonal), and the total number of sample units n (Congalton and Green, 2009).

For further information, the following documentation is freely available: Landsat 7 Science Data User's Handbook, Remote Sensing Note, or Wikipedia.

LUKU **16**

Image conversion to reflectance

This chapter provides information about the conversion to reflectance implemented in SCP.

Radiance at the Sensor's Aperture

Radiance is the "flux of energy (primarily irradiant or incident energy) per solid angle leaving a unit surface area in a given direction", "Radiance is what is measured at the sensor and is somewhat dependent on reflectance" (NASA, 2011, p. 47).

Images such as Landsat or Sentinel-2 are composed of several bands and a metadata file which contains information required for the conversion to reflectance.

Landsat images are provided in radiance, scaled prior to output. for Landsat images **Spectral Radiance at the** sensor's aperture (L_{λ} , measured in [watts/(meter squared * ster * μm)]) is given by (https://landsat.usgs.gov/Landsat8_Using_Product.php):

$$L_{\lambda} = M_L * Q_{cal} + A_L$$

where:

- M_L = Band-specific multiplicative rescaling factor from Landsat metadata (RA-DIANCE_MULT_BAND_x, where x is the band number)
- A_L = Band-specific additive rescaling factor from Landsat metadata (RADIANCE_ADD_BAND_x, where x is the band number)
- Q_{cal} = Quantized and calibrated standard product pixel values (DN)

Sentinel-2 images (Level-1C) are already provided in *Top Of Atmosphere (TOA) Reflectance* (page 161), scaled prior to output (ESA, 2015).

Top Of Atmosphere (TOA) Reflectance

Images in radiance can be converted to Top Of Atmosphere (TOA) Reflectance (combined surface and atmospheric reflectance) in order to reduce the in between-scene variability through a normalization for solar irradiance. This

TOA reflectance (ρ_p), which is the unitless ratio of reflected versus total power energy (NASA, 2011), is calculated by:

$$\rho_p = (\pi * L_\lambda * d^2) / (ESUN_\lambda * \cos\theta_s)$$

where:

- L_{λ} = Spectral radiance at the sensor's aperture (at-satellite radiance)
- *d* = Earth-Sun distance in astronomical units (provided with Landsat 8 metadata file, and an excel file is available from http://landsathandbook.gsfc.nasa.gov/excel_docs/d.xls)
- $ESUN_{\lambda}$ = Mean solar exo-atmospheric irradiances
- θ_s = Solar zenith angle in degrees, which is equal to θ_s = 90° θ_e where θ_e is the Sun elevation

It is worth pointing out that Landsat 8 images are provided with band-specific rescaling factors that allow for the direct conversion from DN to TOA reflectance.

Sentinel-2 images are already provided in scaled TOA reflectance, which can be converted to TOA reflectance with a simple calculation using the Quantification Value provided in the metadata (see https://sentinel.esa.int/ documents/247904/349490/S2_MSI_Product_Specification.pdf).

Surface Reflectance

The effects of the atmosphere (i.e. a disturbance on the reflectance that varies with the wavelength) should be considered in order to measure the reflectance at the ground.

As described by Moran et al. (1992), the **land surface reflectance** (ρ) is:

$$\rho = [\pi * (L_{\lambda} - L_p) * d^2] / [T_v * ((ESUN_{\lambda} * \cos\theta_s * T_z) + E_{down})]$$

where:

- L_p is the path radiance
- T_v is the atmospheric transmittance in the viewing direction
- T_z is the atmospheric transmittance in the illumination direction
- E_{down} is the downwelling diffuse irradiance

Therefore, we need several atmospheric measurements in order to calculate ρ (physically-based corrections). Alternatively, it is possible to use **image-based techniques** for the calculation of these parameters, without in-situ measurements during image acquisition. It is worth mentioning that **Landsat Surface Reflectance High Level Data Products** for Landsat 8 are available (for more information read http://landsat.usgs.gov/CDR_LSR.php).

DOS1 Correction

The **Dark Object Subtraction** (DOS) is a family of image-based atmospheric corrections. Chavez (1996) explains that "the basic assumption is that within the image some pixels are in complete shadow and their radiances received at the satellite are due to atmospheric scattering (path radiance). This assumption is combined with the fact that very few targets on the Earth's surface are absolute black, so an assumed one-percent minimum reflectance is better than zero percent". It is worth pointing out that the accuracy of image-based techniques is generally lower than physically-based corrections, but they are very useful when no atmospheric measurements are available as they can improve the estimation of land surface reflectance. The **path radiance** is given by (Sobrino, et al., 2004):

$$L_p = L_{min} - L_{DO1\%}$$

where:

- L_{min} = "radiance that corresponds to a digital count value for which the sum of all the pixels with digital counts lower or equal to this value is equal to the 0.01% of all the pixels from the image considered" (Sobrino, et al., 2004, p. 437), therefore the radiance obtained with that digital count value (DN_{min})
- $L_{DO1\%}$ = radiance of Dark Object, assumed to have a reflectance value of 0.01

In particular for Landsat images:

$$L_{min} = M_L * DN_{min} + A_L$$

Sentinel-2 images are converted to radiance prior to DOS1 calculation.

The radiance of Dark Object is given by (Sobrino, et al., 2004):

$$L_{DO1\%} = 0.01 * [(ESUN_{\lambda} * \cos\theta_s * T_z) + E_{down}] * T_v / (\pi * d^2)$$

Therefore the **path radiance** is:

$$L_{p} = M_{L} * DN_{min} + A_{L} - 0.01 * [(ESUN_{\lambda} * \cos\theta_{s} * T_{z}) + E_{down}] * T_{v} / (\pi * d^{2})$$

There are several DOS techniques (e.g. DOS1, DOS2, DOS3, DOS4), based on different assumption about T_v , T_z , and E_{down} . The simplest technique is the **DOS1**, where the following assumptions are made (Moran et al., 1992):

- $T_v = 1$
- $T_z = 1$
- $E_{down} = 0$

Therefore the **path radiance** is:

$$L_p = M_L * DN_{min} + A_L - 0.01 * ESUN_\lambda * \cos\theta_s / (\pi * d^2)$$

And the resulting land surface reflectance is given by:

$$\rho = [\pi * (L_{\lambda} - L_{p}) * d^{2}] / (ESUN_{\lambda} * \cos\theta_{s})$$

ESUN [W /(m2 * μm)] values for Landsat sensors are provided in the following table.

Band	Landsat 1	Landsat 2	Landsat 3	Landsat 4	Landsat 5	Landsat 7
	MSS*	MSS*	MSS*	TM*	TM*	ETM+**
1				1983	1983	1970
2				1795	1796	1842
3				1539	1536	1547
4	1823	1829	1839	1028	1031	1044
5	1559	1539	1555	219.8	220	225.7
6	1276	1268	1291			
7	880.1	886.6	887.9	83.49	83.44	82.06
8						1369

```
ESUN values for Landsat bands
```

* from Chander, Markham, & Helder (2009)

** from http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html

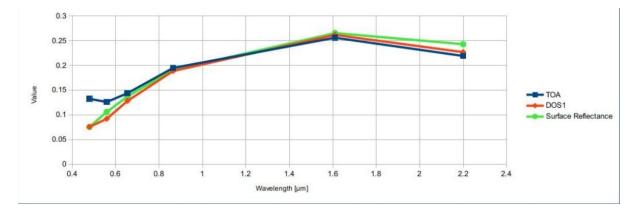
For Landsat 8, ESUN can be calculated as (from http://grass.osgeo.org/grass65/manuals/i.landsat.toar.html):

$$ESUN = (\pi * d^2) * RADIANCE_MAXIMUM/REFLECTANCE_MAXIMUM$$

where RADIANCE_MAXIMUM and REFLECTANCE_MAXIMUM are provided by image metadata.

ESUN [W /(m2 * μm)] values for **Sentinel-2** sensor (provided in image metadata) are illustrated in the following table.

ESUN values for Sentinel-2 bands


Band	Sentinel-2
1	1913.57
2	1941.63
3	1822.61
4	1512.79
5	1425.56
6	1288.32
7	1163.19
8	1036.39
8A	955.19
9	813.04
10	367.15
11	245.59
12	85.25
-	

ESUN [W /(m2 * μm)] values for ASTER sensor are illustrated in the following table (from Finn, et al., 2012).

ESUN values for ASTER bands

Band	ASTER
1	1848
2	1549
3	1114
4	225.4
5	86.63
6	81.85
7	74.85
8	66.49
9	59.85

An example of comparison of to TOA reflectance, DOS1 corrected reflectance and the Landsat Surface Reflectance High Level Data Products (ground truth) is provided in Figure *Spectral signatures of a built-up pixel* (page 164).

Fig. 16.1: Spectral signatures of a built-up pixel

Comparison of TOA reflectance, DOS1 corrected reflectance and Landsat Surface Reflectance High Level Data Products

luku **17**

Conversion to Temperature

This chapter provides the basic information about the conversion to **At-Satellite Brightness Temperature** implemented in *SCP* and the estimation of **Land Surface Temperature**.

Conversion to At-Satellite Brightness Temperature

For thermal bands, the conversion of DN to At-Satellite Brightness Temperature is given by (from https://landsat.usgs.gov/Landsat8_Using_Product.php):

$$T_B = K_2/ln[(K_1/L_\lambda) + 1]$$

where:

- K_1 = Band-specific thermal conversion constant (in watts/meter squared * ster * μm)
- K_2 = Band-specific thermal conversion constant (in kelvin)

and L_{λ} is the Spectral Radiance at the sensor's aperture, measured in watts/(meter squared * ster * μm).

The K_1 and K_2 constants for Landsat sensors are provided in the following table.

Thermal Conversion Constants for Landsat

Constant	Landsat 4*	Landsat 5*	Landsat 7**
K_1	671.62	607.76	666.09
K_2	1284.30	1260.56	1282.71

* from Chander & Markham (2003)

** from NASA (2011)

For Landsat 8, the K_1 and K_2 values are provided in the image metadata file.

 K_1 and K_2 are calculated as (Jimenez-Munoz & Sobrino, 2010):

$$K_1 = c_1 / \lambda^5$$

$$K_2 = c_2/\lambda$$

where (Mohr, Newell, & Taylor, 2015):

• $c_1 = \text{first radiation constant} = 1.191 * 10^{-16} W m^2 s r^{-1}$

• c_2 = second radiation constant = $1.4388 * 10^{-2} mK$

Therefore, for ASTER bands K_1 and K_2 are provided in the following table.

Thermal Conversion Constants for ASTER

Constant	Band 10	Band 11	Band 12		Band 14
K_1	$3.024 * 10^3$	$2.460 * 10^3$	$1.909 * 10^3$	$8.900 * 10^2$	$6.464 * 10^2$
K_2	$1.733 * 10^3$	$1.663 * 10^3$	$1.581 * 10^3$	$1.357 * 10^3$	$1.273 * 10^3$

Estimation of Land Surface Temperature

Several studies have described the estimation of Land Surface Temperature. Land Surface Temperature can be calculated from At-Satellite Brightness Temperature T_B as (Weng, et al. 2004):

$$T = T_B / [1 + (\lambda * T_B / c_2) * ln(e)]$$

where:

- λ = wavelength of emitted radiance
- $c_2 = h * c/s = 1.4388 * 10^{-2} \text{ m K}$
- $h = \text{Planck's constant} = 6.626 * 10^{-34} \text{ J s}$
- $s = \text{Boltzmann constant} = 1.38 * 10^{-23} \text{ J/K}$
- c = velocity of light = 2.998×10^8 m/s

The values of λ for the thermal bands of Landsat and ASTER satellites can be calculated from the tables in *Landsat Satellite* (page 141) and *ASTER Satellite* (page 143).

Several studies used NDVI for the estimation of land surface emissivity (Sobrino, et al., 2004); other studies used a land cover classification for the definition of the land surface emissivity of each class (Weng, et al. 2004). For instance, the emissivity (*e*) values of various land cover types are provided in the following table (from Mallick, et al. 2012).

Emissivity values

Land surface	Emissivity e	
Soil	0.928	
Grass	0.982	
Asphalt	0.942	
Concrete	0.937	

LUKU **18**

References

- Chander, G. & Markham, B. 2003. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges Geoscience and Remote Sensing, IEEE Transactions on, 41, 2674 - 2677
- Chavez, P. S. 1996. Image-Based Atmospheric Corrections Revisited and Improved Photogrammetric Engineering and Remote Sensing, [Falls Church, Va.] American Society of Photogrammetry, 62, 1025-1036
- Congalton, R. and Green, K., 2009. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton, FL: CRC Press
- Didan, K.; Barreto Munoz, A.; Solano, R. & Huete, A. 2015. MODIS Vegetation Index User's Guide. Collection 6, NASA
- ESA, 2015. Sentinel-2 User Handbook. Available at https://sentinel.esa.int/documents/247904/685211/ Sentinel-2_User_Handbook
- Finn, M.P., Reed, M.D, and Yamamoto, K.H. 2012. A Straight Forward Guide for Processing Radiance and Reflectance for EO-1 ALI, Landsat 5 TM, Landsat 7 ETM+, and AS-TER. Unpublished Report from USGS/Center of Excellence for Geospatial Information Science, 8 p, http://cegis.usgs.gov/soil_moisture/pdf/A%20Straight%20Forward%20guide%20for%20Processing%20Radiance%20and%20Reflectance_V_24Jul12.pdf
- Fisher, P. F. and Unwin, D. J., eds. 2005. Representing GIS. Chichester, England: John Wiley & Sons
- JARS, 1993. Remote Sensing Note. Japan Association on Remote Sensing. Available at http://www.jars1974.net/pdf/rsnote_e.html
- Jimenez-Munoz, J. C. & Sobrino, J. A. 2010. A Single-Channel Algorithm for Land-Surface Temperature Retrieval From ASTER Data IEEE Geoscience and Remote Sensing Letters, 7, 176-179
- Johnson, B. A., Tateishi, R. and Hoan, N. T., 2012. Satellite Image Pansharpening Using a Hybrid Approach for Object-Based Image Analysis ISPRS International Journal of Geo-Information, 1, 228. Available at http://www.mdpi.com/2220-9964/1/3/228)
- Kruse, F. A., et al., 1993. The Spectral Image Processing System (SIPS) Interactive Visualization and Analysis of Imaging spectrometer. Data Remote Sensing of Environment
- Mallick, J.; Singh, C. K.; Shashtri, S.; Rahman, A. & Mukherjee, S. 2012. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city International Journal of Applied Earth Observation and Geoinformation, 19, 348 - 358

- Mohr, P. J.; Newell, D. B. & Taylor, B. N. 2015. CODATA Recommended Values of the Fundamental Physical Constants: 2014 National Institute of Standards and Technology, Committee on Data for Science and Technology
- Moran, M.; Jackson, R.; Slater, P. & Teillet, P. 1992. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output Remote Sensing of Environment, 41, 169-184
- NASA (Ed.) 2011. Landsat 7 Science Data Users Handbook Landsat Project Science Office at NASA's Goddard Space Flight Center in Greenbelt, 186 http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook. pdf
- NASA, 2013. Landsat 7 Science Data User's Handbook. Available at http://landsathandbook.gsfc.nasa.gov
- Ready, P. and Wintz, P., 1973. Information Extraction, SNR Improvement, and Data Compression in Multispectral Imagery. IEEE Transactions on Communications, 21, 1123-1131
- Richards, J. A. and Jia, X., 2006. Remote Sensing Digital Image Analysis: An Introduction. Berlin, Germany: Springer.
- Sobrino, J.; Jiménez-Muñoz, J. C. & Paolini, L. 2004. Land surface temperature retrieval from LANDSAT TM 5 Remote Sensing of Environment, Elsevier, 90, 434-440
- USGS, 2015. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precision Terrain Corrected Registered At-Sensor Radiance Product (AST_L1T). AST_L1T Product User's Guide. USGS EROS Data Center.
- Vermote, E. F.; Roger, J. C. & Ray, J. P. 2015. MODIS Surface Reflectance User's Guide. Collection 6, NASA
- Weng, Q.; Lu, D. & Schubring, J. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, Elsevier Science Inc., Box 882 New York NY 10159 USA, 89, 467-483

Osa V

Perusoppaat

Seuraavat ovat perusoppaita maanpeitteen luokittelulle käyttäen Puoliautomaattista Luokittelu liitännäistä (*SCP*). Otaksumme että Sinulla on perustietämys QGIS:istä (voit löytää oppaan QGIS toimintoihin seuraavalta sivulta http://docs/user_manual/introduction/qgis_gui.html).

LUKU **19**

Tutorial 1

The following is very basic tutorials for land cover classification using the Semi-Automatic Classification Plugin (*SCP*). It is assumed that you have a basic knowledge of QGIS.

- Tutorial 1: Your First Land Cover Classification (page 173)
 - Data (page 174)
 - Set the Input Image in SCP (page 174)
 - Create the Training Input File (page 175)
 - Create the ROIs (page 175)
 - Create a Classification Preview (page 181)
 - Create the Classification Output (page 181)

Tutorial 1: Your First Land Cover Classification

This is a basic tutorial about the use of *SCP* for the classification of a multi-spectral image. It is recommended to read the *Brief Introduction to Remote Sensing* (page 137) before this tutorial.

The purpose of the classification is to identify the following land cover classes:

- 1. Water;
- 2. Built-up;
- 3. Vegetation;
- 4. Bare soil.

Following the video of this tutorial.

http://www.youtube.com/watch?v=GFrDgQ6Nzqs

Data

Download the image from this archive (data available from the U.S. Geological Survey) and **unzip** the downloaded file.

The downloaded file is actually a *Landsat Satellite* (page 141) image (pan-sharpened) including the following bands:

- 1. Blue;
- 2. Green;
- 3. Red;
- 4. Near-Infrared;
- 5. Short Wavelength Infrared 1;
- 6. Short Wavelength Infrared 2.

In this tutorial we pretend this dataset is a generic multi-spectral raster in order to focus on the classification process (in the next tutorial we are going to use an image whose bands are single rasters).

Set the Input Image in SCP

Start QGIS. In the *SCP input* (page 38) click the button **u** of the *Input image* (page 38), in order to select the file sample_image.tif. Once selected, sample_image.tif is set as *Input image*, the image is displayed in the map and bands are loaded in the *Band set* (page 110).

We can display a *Color Composite* (page 145) of bands: Near-Infrared, Red, and Green: in the *Working toolbar* (page 33), click the list RGB= and select the item 4–3–2 (corresponding to the band numbers in *Band set* (page 110)). You can see that image colors in the map change according to the selected bands, and vegetation is highlighted in red (if the item 3–2–1 was selected, natural colors would be displayed).

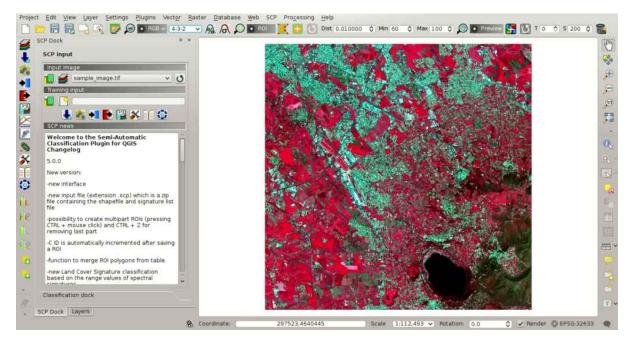


Fig. 19.1: Color composite RGB=4-3-2

Create the Training Input File

Now we need to create the *Training input* (page 40) in order to collect *Training Areas* (page 149) (ROIs) and calculate the *Spectral Signature* (page 141) thereof (which are used in classification).

In the *SCP dock* (page 37) click the button and define a name (e.g. training.scp) in order to create the *Training input*. The path of the file is displayed in *Training input*. A vector is added to QGIS layers with the same name as the Training input (in order to prevent data loss, you should not edit this layer using QGIS functions).

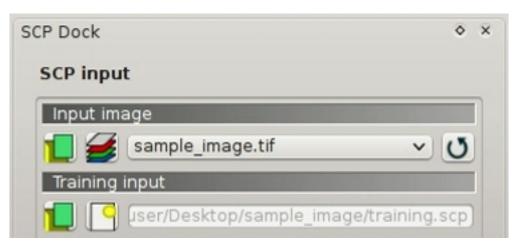


Fig. 19.2: Definition of Training input in SCP

Create the ROIs

We are going to create ROIs defining the *Classes and Macroclasses* (page 150). Each ROI identifies a land cover class through a Class ID. The Class ID codes used in this tutorial are illustrated in the following table (for now we assign the same code to Class ID and Macroclass ID).

Class name	Class ID	
Water	1	
Built-up	2	
Vegetation	3	
Bare soil	4	

ROIs can be created by manually drawing a polygon or with an automatic region growing algorithm.

Zoom in the map over the dark area (it is a lake) in the lower right region of the image. In order to create manually

a ROI inside the dark area, click the button in the *Working toolbar* (page 33) (you can ignore a message about wavelength unit not provided). Left click on the map to define the ROI vertices and right click to define the last vertex closing the polygon. An orange semi-transparent polygon is displayed over the image, which is a temporary polygon (i.e. it is not saved in the *Training input*).

TIP: You can draw temporary polygons (the previous one will be overridden) until the shape covers the intended area.

If the shape of the temporary polygon is good we can save it to the Training input.

Open the Classification dock (page 40) to define the Classes and Macroclasses (page 150). In the ROI creation

(page 42) set *MC ID* = 1 and *MC Info* = Water; also set *C ID* = 1 and *C Info* = Lake. Now click **C ID** to save the ROI in the *Training input*.

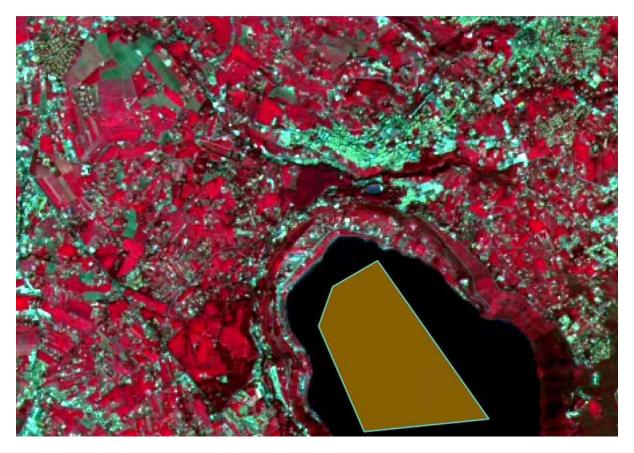


Fig. 19.3: A temporary ROI created manually

After a few seconds, the ROI is listed in the ROI Signature list (page 41) and the spectral signature is calculated

(because *Calculate sig.* was checked).

As you can see, the *C ID* in *ROI creation* (page 42) is automatically increased by 1. Saved ROI is displayed as a dark polygon in the map and the temporary ROI is removed. Also, in the *ROI Signature list* (page 41) you can notice that the *Type* is *B*, meaning that the ROI spectral signature was calculated and saved in the *Training input*.

Now we are going to create a second ROI for the built-up class using the automatic region growing algorithm. Zoom in the map over the blue area in the upper left region of the image.

In *Working toolbar* (page 33) set the *Dist* value to 0.08. Click the button in the *Working toolbar* (page 33) and click over the blue area of the map. After a while the orange semi-transparent polygon is displayed over the image.

TIP : *Dist* value should be set according to the range of pixel values; in general, increasing this value creates larger ROIs.

In the *ROI creation* (page 42) set *MC ID* = 2 and *MC Info* = Built-up; also set *C ID* = 2 (it should be already set) and *C Info* = Buildings.

Again, the C ID in ROI creation (page 42) is automatically increased by 1.

Create a ROI for the class Vegetation (red pixels in color composite RGB=4-3-2) and a ROI for the class Bare soil (green pixels in color composite RGB=4-3-2) following the same steps described previously. The following images show a few examples of these classes identified in the map.

The following examples display a few RGB color composites of Landsat images.

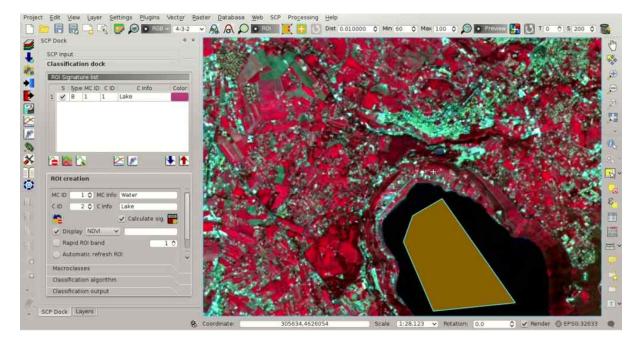


Fig. 19.4: The ROI saved in the Training input

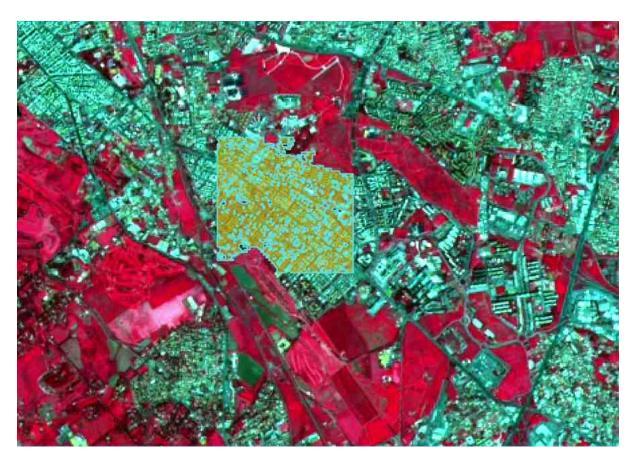


Fig. 19.5: A temporary ROI created with the automatic region growing algorithm

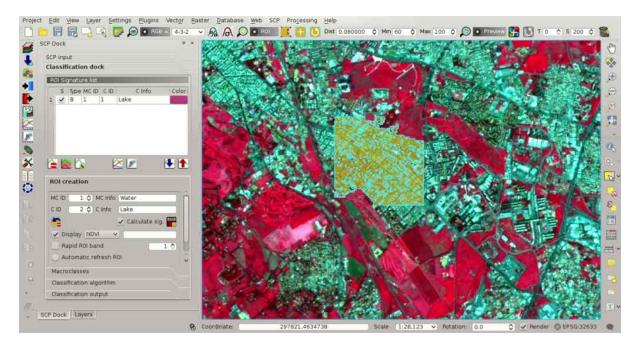


Fig. 19.6: The ROI saved in the Training input

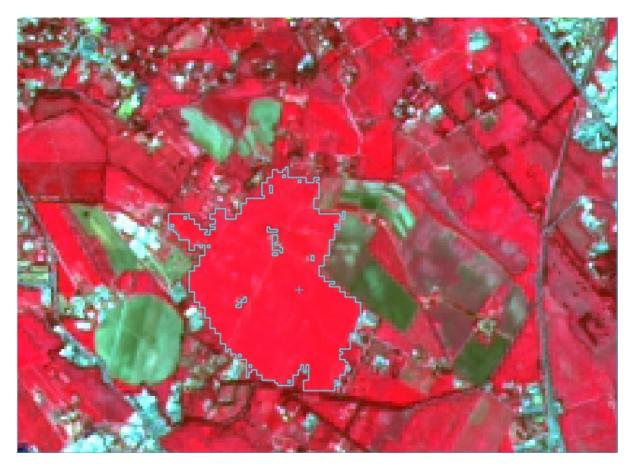


Fig. 19.7: Vegetation

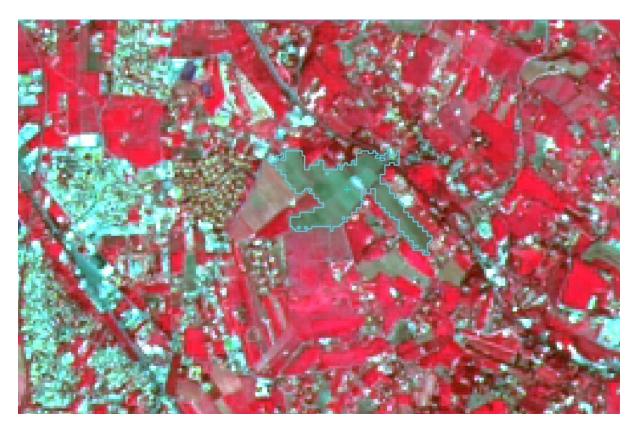


Fig. 19.8: Bare soil

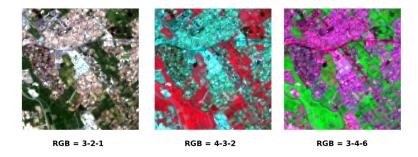


Fig. 19.9: Built-up ROI: large buildings

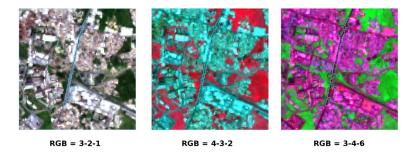
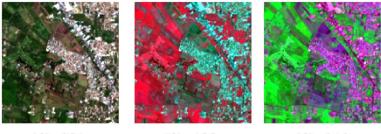
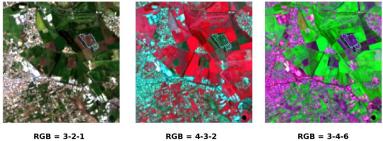



Fig. 19.10: Built-up ROI: road



RGB = 3-2-1

RGB = 4-3-2

RGB = 3-4-6

Fig. 19.11: Built-up ROI: buildings and narrow roads

RGB = 3-2-1

Fig. 19.12: Bare soil ROI: uncultivated land

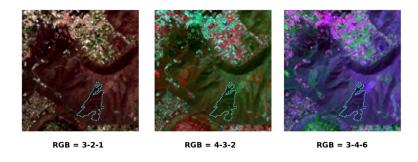


Fig. 19.13: Vegetation ROI: deciduous trees

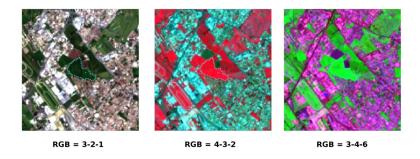


Fig. 19.14: Vegetation ROI: crop

Create a Classification Preview

The classification process is based on collected ROIs (and spectral signatures thereof). It is useful to create a *Classification preview* (page 35) in order to assess the results (influenced by spectral signatures) before the final classification. In case the results are not good, we can collect more ROIs to better classify land cover.

Before running a classification (or a preview), set the color of land cover classes that will be displayed in the classification raster. In the *ROI Signature list* (page 41), double click the color (in the column *Color*) of each ROI to choose a representative color of each class.

la	ssif	icat	ion d	ock		
R	DI Sig	gnat	ure lis	st		
	S	Тур	e: MC		C Info	Color
1	~	В	1	1	Lake	
2	~	В	2	2	Buildings	
3	~	В	3	3	Crop	
4	~	В	4	4	Uncultivated land	
**						

Fig. 19.15: Definition of class colors

Now we need to select the classification algorithm. In this tutorial we are going to select the *Spectral Angle Mapping* (page 153).

In Classification algorithm (page 44) select the Spectral Angle Mapping Algorithm (page 45). In Classification

preview (page 35) set Size = 500; click the button **under and** then left click a point of the image in the map. The classification process should be rapid, and the result is a classified square centered in clicked point.

Previews are temporary rasters (deleted after QGIS is closed) placed in a group named *Class_temp_group* in the QGIS panel Layers.

TIP: When loading a previously saved QGIS project, a message could ask to handle missing layers, which are temporary layers that SCP creates during each session and are deleted afterwards; you can click *Cancel* and ignore these layers.

In general, it is good to perform a classification preview every time a ROI (or a spectral signature) is added to the *ROI Signature list* (page 41). Therefore, the phases *Create the ROIs* (page 175) and *Create a Classification Preview* (page 181) should be iterative and concurrent processes.

Create the Classification Output

Assuming that the results of classification previews were good (i.e. pixels are assigned to the correct class defined in the *ROI Signature list* (page 41)), we can perform the actual land cover classification of the whole image.

Fig. 19.16: Classification preview displayed over the image

In the *Classification output* (page 46) click the button and

ge 46) click the button and define the path of the classification output, which

is a raster file (.tif). If \bowtie Play sound when finished is checked in Classification process (page 117) settings, a sound is played when the process is finished.

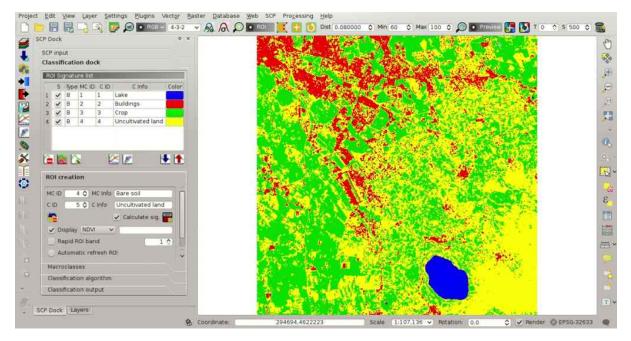


Fig. 19.17: Result of the land cover classification

Well done! You have just performed your first land cover classification.

Water and vegetation are correctly identified. However, you can see that there are several classification errors (especially soil classified as built-up and vice versa), because the number of ROIs (spectral signatures) is insufficient.

We can improve the classification using some of the tools described in the next tutorial.

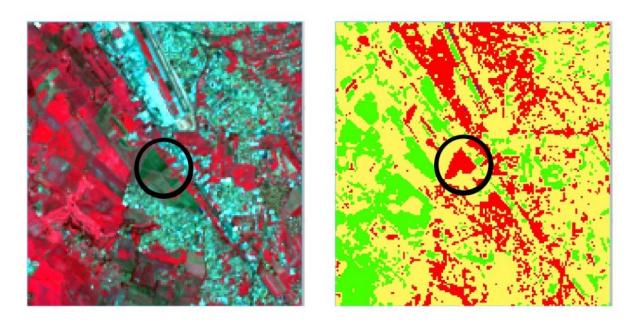


Fig. 19.18: Example of error: Bare soil classified as Built-up

LUKU **20**

Tutorial 2

- Data Download (page 186)
- Automatic Conversion to Surface Reflectance (page 188)
- Clip the Data (page 190)
- Create the Band Set (page 192)
- Create the ROIs (page 192)
- Create a Classification Preview (page 198)
- Assess Spectral Signatures (page 200)
- Create the Classification Output (page 202)

Tutorial 2: Land Cover Classification of Sentinel-2 Images

This tutorial describes the main phases for the classification of images acquired by *Sentinel-2 Satellite* (page 143). In addition, some of the *SCP* tools are illustrated.

We are going to classify the following land cover classes:

- 1. Water;
- 2. Built-up;
- 3. Vegetation;
- 4. Bare soil.

Following the video of this tutorial.

http://www.youtube.com/watch?v=FcETq8OWM0k

Data Download

We are going to **download a Sentinel-2 image** provided by the Copernicus Scientific Data Hub. In particular we are going to use the following Sentinel-2 bands (for more information read *Sentinel-2 Satellite* (page 143)):

- Band 2 Blue;
- Band 3 Green;
- Band 4 Red;
- Band 5 Vegetation Red Edge;
- Band 6 Vegetation Red Edge;
- Band 7 Vegetation Red Edge;
- Band 8 NIR;
- Band 8A Vegetation Red Edge;
- Band 11 SWIR;
- Band 12 SWIR;

TIP : In case you have slow internet connection you can download a subset of the image (about 50MB) from this link (© Copernicus Sentinel data 2016) which is the result of steps *Data Download* (page 186) and *Clip the Data* (page 190).

Start a new QGIS project. Open the tab *Download images* (page 51) clicking the button in the *SCP menu* (page 29), or the *SCP Tools* (page 31), or the *SCP dock* (page 37). Select the tab *Sentinel-2 download* (page 55). We are searching a specific image acquired on May 06, 2016.

In Login Sentinels (page 56) enter the user name and password for accessing data (free registration is required).

WARNING : The guest/guest account is not available anymore. Free registration is required. See https://scihub.copernicus.eu/news/News00097.

In Search area (page 56) enter:

- *UL X (Lon)*: 12
- *UL Y* (*Lat*): 42
- *LR X (Lon)*: 13
- *LR Y (Lat)*: 41

TIP : In general it is possible to define the area coordinates clicking the button the and drawing a rectangle in the map.

In Search (page 56) set:

- Date from: 2016-05-06
- *to*: 2016-05-06

Now click the button *Find* Add and after a few seconds the image will be listed in the Image list.

Tip: download this zip file containing the shapefile of Sentinel-2 granules for identifying the zone; load this shapefile in QGIS, select the granules in your search area and open the attribute table to see the zone name.

In the result table, click the item T32TQM in the field Zone, which is the Granule

S2A_OPER_MSI_L1C_TL_SGS__20160506T153005_A004552_T32TQM, and click the button **SSE**. A preview will be downloaded and displayed in the map, which is useful for assessing the quality of the image and the cloud cover.

0		Semi-Automatic Classificatio	n Plugin		0
Download image	es 🔹 Tools 🔶 Preprocessin	ng 📑 Postprocessing 🔛 E	Band calc 🥌 Band set	🔊 Batch 🚿	Settings 🔛 I <
表 Landsat downl	oad 🜏 Sentinel-2 download	STER download			
Login Sentinels			A REAL PROPERTY AND A REAL PROPERTY.		
ervice https://sci	hub.copernicus.eu/s2				
Jser guest		Password 0000	•		🖌 remember
Searcharea					
JL X (Lon) 12	ULY (Lat) 42	LR X (Lon) 13	LR Y (Lat) 41		 Show +
Search					
Image list	ImageName	Granule Acquisition	Date Zone C	oudCover	min_lat
					-
<					
< Download option:					-
Ownload options					-
Download	s v in Layers ✔ Preprocess images (✓ Load bands in OGIS			

Fig. 20.1: Search Sentinel-2 images

Login Se	intine Is					
Service	https://scihub.copernicus.eu/s2					
Jser gu	est	Password •				remembe
Search	area					
JLX (Lon) 12 ULY (Lat) 42	LR X (Lon) 13	LR Y (Lat)	41	•	Show +
Search		0 0 1109				
100000000000						0
late from						Find
Sentine	images	lax cloud cover (%) 1	00 🗘 🛛 Filter			~~~
Sentine I Image	images list			Zone	CloudCover	
Image	images list ImageName	Granule	AcquisitionDate	Zone 32TPL	CloudCover	
Image 1 S2	images list	Granule S2A_OPN02.02	AcquisitionDate	The second s	The second se	
1 52 2 52	images Ilist ImageName IA_OPER_PRD_MSIL1C0527_20160506T100527	Granule S2A_OPN02.02 S2A_OPN02.02	AcquisitionDate 2016-05-06T10:05:27Z	32TPL	2.76867	
Image 1 52 2 52 3 52	limages list ImageName IA_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527	Granule S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02	AcquisitionDate 2016-05-06710:05:27Z 2016-05-06710:05:27Z	32TPL 32TPM	2.76867 2.76867	
1 52 2 52 3 52 4 52 5 52	Images IIst ImageName A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527	Granule \$2A_OPN02.02 \$2A_OPN02.02 \$2A_OPN02.02 \$2A_OPN02.02 \$2A_OPN02.02	AcquisitionDate 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z	32TPL 32TPM 32TPN 32TQL 32TQM	2.76867 2.76867 2.76867 2.76867 2.76867 2.76867	
1 52 2 52 3 52 4 52 5 52 6 52	Images IIIst ImageName A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T10527 A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD	Granule S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02	AcquisitionDate 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z	32TPL 32TPM 32TPN 32TQL 32TQM 32TQN	2.76867 2.76867 2.76867 2.76867 2.76867 2.76867 2.76867	
Image 1 52 2 52 3 52 4 52 5 52 6 52 7 52	Images IIst ImageName A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527 A_OPER_PRD_MSIL1C0527_20160506T100527	Granule S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02 S2A_OPN02.02	AcquisitionDate 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z 2016-05-06T10:05:27Z	32TPL 32TPM 32TPN 32TQL 32TQM	2.76867 2.76867 2.76867 2.76867 2.76867 2.76867	

Fig. 20.2: Sentinel-2 search result

TIP : It is also possible to display the image overview (which is composed of several granules) with the button

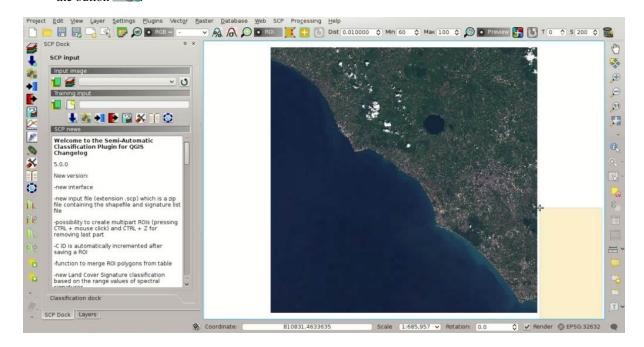


Fig. 20.3: Image preview

Click the tab *Download options* (page 57) and uncheck bands 1, 9, and 10. Also, uncheck the options *Preprocess images* (usually this should be checked, but for the purpose of this tutorial we are going to preprocess ima-

ges in the step Automatic Conversion to Surface Reflectance (page 188)) and *Load bands in QGIS* (because we are going to clip the images).

TIP : The option *Only if preview in Layers* allows for downloading only images in the result table which are loaded as previews in the map. It is convenient to check this option and remove the images previews in the QGIS layer list, leaving only the previews of images that one wish to download.

In order to start the image download, click the button and select a directory where bands are saved (e.g. Desktop). The download could last a few minutes according to your internet connection speed (band size ranges from 30 to 90MB). The download progress is displayed in a bar.

After the download, all the bands and the metadata files are saved in the output directory.

Automatic Conversion to Surface Reflectance

Conversion to reflectance (see *Radiance and Reflectance* (page 141)) can be performed automatically. The metadata file (a .xml file whose name contains MTD_SAFL1C) downloaded with the images contains the required information for the conversion. Read *Image conversion to reflectance* (page 161) for information about the *Top Of Atmosphere (TOA) Reflectance* (page 161) and *Surface Reflectance* (page 162).

In order to convert bands to reflectance, open the tab *Preprocessing* (page 77) clicking the button *menu* (page 29), or the *SCP Tools* (page 31), or the *SCP dock* (page 37), and select the tab *Sentinel-2* (page 79).

Click the button *Directory containing Sentinel-2 bands* and select the directory that should be named S2A_OPER_MSI_L1C_TL_SGS__20160506T153005_A004552_T32TQM. The list of bands is automa-

			Semi-Automatic Classi	fication Plugin			0
Download image	es 📸 Tools 🏓 Pi	reprocessing 📑 Pos	stprocessing 🔡 Band	calc 🥌 Band set	S Batch 🔀 Settir	ngs 📝 About	
🖶 Landsat downli	oad 🛛 🐛 Sentinel-2 do	ownload 💐 ASTER d	download				
Login Sentinels				and the second second			
ervice https://scil	hub.copernicus.eu/s2						🖵
Jser guest			Password •)	✓ remember
Searcharea							
IL X (Lon) 12.7408	8313643 UL Y (Lat)	41.7936658637	LR X (Lon) 13	LR Y (Lat) 41			• Show +
Search							
ate from 2016-0	5-06 🗸 to 2016-05-0	06 🗸 Ma	x cloud cover (%) 100 🕻	Filter			Find 🛴
Sentinel images							
	s						
Sentinel images Download options Sentinel-2 bands Band 1			✓ Band 3	✓ Band 4	✓ Band 5	✓ Band 6	
Download options	s	✓ Band 8A	✓ Band 3 Band 9	✔ Band 4 Band 10	✓ Band 5 ✓ Band 11	✓ Band 6 ✓ Band 12	
Download options Sentinel-2 bands Band 1	s 🗹 Band 2	✓ Band 8A		0		-	
Download options Sentinel-2 bands Band 1	s 🗹 Band 2	✓ Band 8A		0		-	
Download options Sentinel-2 bands Band 1	s 🗹 Band 2	✓ Band 8A		0		-	
Download options Sentinel-2 bands Band 1	s 🗹 Band 2	✓ Band 8A		0		-	

Fig. 20.4: Selection of bands for download

Fig. 20.5: Download of Sentinel bands

tically loaded in the table *Metadata* (page 80). Also, the metadata information for each band is loaded (because the metadata file is inside the same directory).

TIP : If a Sentinel-2 image was downloaded directly from the site https://scihub.copernicus.eu and you want to convert images to reflectance using *SCP*, you should copy the .xml file whose name contains MTD_SAFL1C (included in the granule directory) and paste it inside the same directory of bands (files .jp2).

In order to calculate *Surface Reflectance* (page 162) we are going to apply the *DOS1 Correction* (page 162); therefore, enable the option *Apply DOS1 atmospheric correction*.

TIP : It is recommended to perform the DOS1 atmospheric correction to the entire image (before clipping the image) in order to improve the calculation of parameters based on the image.

Uncheck the option Create Band set and use Band set tools because we are going to define this in the

following step *Create the Band Set* (page 192). In order to start the conversion process, click the button and select the directory where converted bands are saved (e.g. Desktop).

56	ntinel-2 conversion				-
Dire	ctory containing Sentinel-2 bands	/home/user/Desktop/S2A_OPER_MSI_L1	C_TL_SGS_20160506T15300	5_A004552_T32TQM	
Sele	ct metadata file (MTD_SAFL1C)				1
~	Apply DOS1 atmospheric correction	<i>a</i>		✓ Use NoData value (image has black bord	ier) 0 O
-	Create Band set and use Band set too	de			· · · ·
	rcreate band set and use band set tot	75			
-	allite Sentinel-2A				
PARKIN	Sendner 2A				
		Band	Quantification value	Solar irradiance	
1		506T153005_A004552_T32TQM_B02.jp2	10000	1941.63	
2	and the second se	506T153005_A004552_T32TQM_B03.jp2	10000	1512.79	
3		506T153005_A004552_T32TQM_B04.jp2 506T153005_A004552_T32TQM_B05.jp2	10000	1425.56	
4		506T153005_A004552_T32TQM_B05.jp2	10000	1288.32	
5		506T153005_A004552_T32TQM_B00.p2	10000	1163.19	
7		506T153005_A004552_T32TQM_B08.jp2	10000	1036.39	
8		506T153005_A004552_T32TQM_B11.jp2	10000	245.59	
9	and the second se	506T153005_A004552_T32TQM_B12.jp2	10000	85.25	
10		506T153005 A004552 T32TQM B8A.jp2	10000	955.19	
10	S2A_OPER_MSI_L1C_TL_SGS_20160	506T153005_A004552_T32TQM_B8A.jp2	10000	955.19	

Fig. 20.6: Sentinel-2 conversion to reflectance

After a few minutes, converted bands are loaded and displayed (file name starts with RT_). If *Play sound when finished* is checked in *Classification process* (page 117) settings, a sound is played when the process is finished.

Clip the Data

Sentinel-2 images have a large extent. In order to reduce the computational time, we are going to clip bands to the same study area as *Tutorial 1: Your First Land Cover Classification* (page 173). Open the tab *Preprocessing* (page 77) and select the tab *Clip multiple rasters* (page 84).

Click the button \mathbf{V} to refresh the layer list, and check all the layers whose name starts with RT_ (the band number is at the end of the layer name).

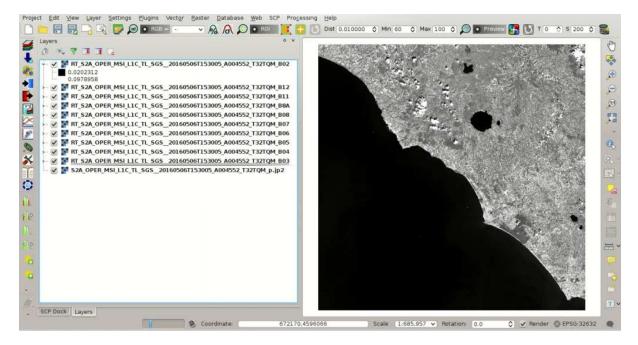
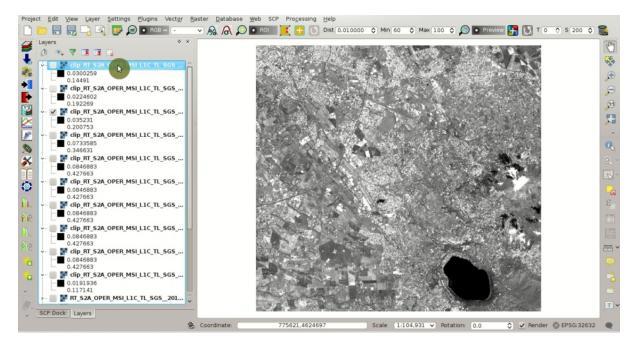


Fig. 20.7: Converted Sentinel-2 bands


Click the button **u** and select an area such as the following image, or enter the following values:

- *UL X*: 791810
- UL Y: 4643020
- LR X: 809750
- LR Y: 4626230

Input imag		ant 2 M ASTER	multiple rasters	er bands 🗡 PCA 💓 Vector	to raster		
	Raster list		and a second second				R. C.
Training inp	RT_S2A_OPER_MSI_L	1C_TL_SG5_20160506T15300	05_A004552_T32TQM_B11			<u>^</u>	C. T. W.
		1C_TL_SG5_20160506T15300					できかん
	1007	1C_TL_S65_20160506T15300	한 것은 것은 것이야 한 것이 없어? 것은 것은 것이 없는 것이 같다.			U	Mark Sar
SCP news		.1C_TL_SGS_20160506T15300 .1C_TL_SGS_20160506T15300					
Welcome	and the second se	1C TL SGS_20160506T15300					S. MAR
Classificat	and the second se	1C_TL_SGS_20160506T15300					and the second
Changelo	RT_S2A_OPER_MSI_L	1C_TL_SG5_20160506T15300	05_A004552_T32TQM_B03				and the
5.0.0	1						
New version	C lip coordinates	Souther to the second	A location of the second				Contraction of the second
-new interfi	ULX 791810	ULY 4643020	LRX 809750	LR Y 4626230		• Show +	Sec. 1
-new input file contain	Use shapefile for clips	ling				<u> </u>	Ser.
list file	NoData value 0 🗘			Output name prefix	clip		1
-possibility CTRL + mor							8 2 C 18
removing la							due
-C ID is auto saving a RC							No. of Concession, Name
saving a m							
function to							
-function to	Bun						10000

Fig. 20.8: Clip area

Click the button and select a directory (e.g. clip) where clipped bands are saved (with the file name prefix defined in *Output name prefix*). When the process is completed, clipped rasters are loaded and displayed. We can

remove the bands whose names start with RT_ from QGIS layers.

Fig. 20.9: Clipped bands

Create the Band Set

Now we need to define the *Band set* which is the input image for *SCP*. Open the tab *Band set* (page 110) clicking the button in the *SCP menu* (page 29), or the *SCP Tools* (page 31), or the *SCP dock* (page 37). Click the button is to refresh the layer list, and check all the clipped bands; then click to add selected rasters to the *Band set*. In the table *Band set definition* order the band names in ascending order (click is order to sort bands by name automatically), then highlight band 8A (i.e. single click on band name in the table) and use the buttons or to place this band at number 8. Finally, select *Sentinel-2* from the list *Quick wavelength settings*, in order to set automatically the *Center wavelength* of each band and the *Wavelength unit* (required for spectral signature calculation).

You can notice that the item << band set >> is selected as *Input image* (page 38) in the SCP dock (page 37).

Create the ROIs

In order to collect ROIs we need to Create the Training Input File (page 175) as described in Tutorial 1: Your First

Land Cover Classification (page 173) (in the *SCP dock* (page 37) click the button and define a file name). The *Training input* stores the ROIs and the *Spectral Signature* (page 141) thereof.

We are going to create several ROIs using the Macroclass IDs defined in the following table (see *Classes and Macroclasses* (page 150)).

Macroclasses

•	Download images	Tools	Preprocessing	Postprocessing	Band calc 🥁 Band se	et 💊 Batch	X s < :
	nd list						
~	clip_RT_S2A_OPER	MSI_L1C_TL	_SGS20160506T1530	05_A004552_T32TQM_B03.tif			^
~	clip_RT_S2A_OPER	MSI_L1C_TL	_SGS20160506T1530	05_A004552_T32TQM_B04.tif			
~	clip RT S2A OPER	MSI LIC TL	SGS 20160506T1530	05_A004552_T32TQM_B05.tif			U
1				05_A004552_T32TQM_B06.tif			
-				05_A004552_T32TQM_B07.tif			
-	1= = =						~ +
~	CIIP_RT_SZA_OPER		_565_2010050011530	05_A004552_T32TQM_B08.tif			~
Ba	nd set definition				and the second		
			Band name		E Center wavelen	gth i Multip	licative
1	clip_RT_S2A_OPER_	MSI_L1C_TL	SGS_20160506T15300	05_A004552_T32TQM_B02.tif	0.49	1	-
2	clip_RT_S2A_OPER_	MSI_L1C_TL_	SGS_20160506T15300	05_A004552_T32TQM_B03.tif	0.56	1	-
3	clip_RT_S2A_OPER_	MSI_L1C_TL_	SGS_20160506T15300	05_A004552_T32TQM_B04.tif	0.665	1	
4	clip_RT_S2A_OPER_	MSI_L1C_TL_	SGS_20160506T15300	05_A004552_T32TQM_B05.tif	0.705	1	bc
5	clip_RT_S2A_OPER_	MSI_L1C_TL_	SGS_20160506T15300	05_A004552_T32TQM_B06.tif	0.74	1	
6	clip_RT_S2A_OPER_	MSI_L1C_TL_	SGS_20160506T15300	05_A004552_T32TQM_B07.tif	0.783	1	
7	clip_RT_S2A_OPER_	MSI_L1C_TL_	SGS_20160506T15300	05_A004552_T32TQM_B08.tif	0.842	1	
8	clip_RT_S2A_OPER_	MSI_L1C_TL_	SGS_20160506T15300	05_A004552_T32TQM_B8A.tif	0.865	1	
	clip_RT_S2A_OPER_	MSI_L1C_TL_	SGS_20160506T15300	05_A004552_T32TQM_B11.tif	1.61	1	×
9		MSI L1C TL	SGS_20160506T15300	05_A004552_T32TQM_B12.tif	2.19	1	

Fig. 20.10: Definition of a band set

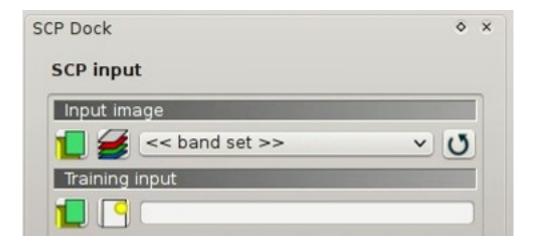


Fig. 20.11: Band set

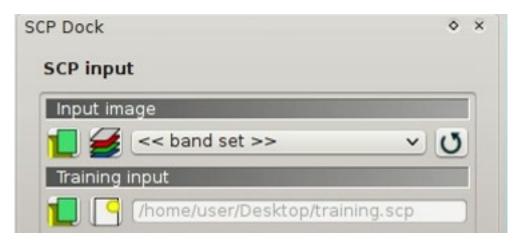


Fig. 20.12: Definition of Training input in SCP

Macroclass name	Macroclass ID
Water	1
Built-up	2
Vegetation	3
Bare soil	4

In this phase we are creating the database of spectral signatures used to identify land cover classes (the ones defined as macroclasses). However, these macroclasses are composed of several materials having different spectral signatures; in order to achieve good classification results we should separate spectral signatures of different materials, even if belonging to the same macroclass. Thus, we are going to create several ROIs for each macroclass (setting the same *MC ID*, but assigning a different *C ID* to every ROI).

In the list RGB= of Working toolbar (page 33) select 3-2-1 to display a natural color image (see ref:*color_composite_definition* and *Sentinel-2 Satellite* (page 143)). After a few seconds, the *Color Composite* (page 145) will be displayed. We can see that urban areas are white and vegetation is green.

TIP : If a *Band set* (page 110) is defined, a temporary virtual raster (named band_set.vrt) is created automatically, which allows for the display of *Color Composite* (page 145). In order to speed up the visualization, you can show only the virtual raster and hide all the layers in the QGIS Layers.

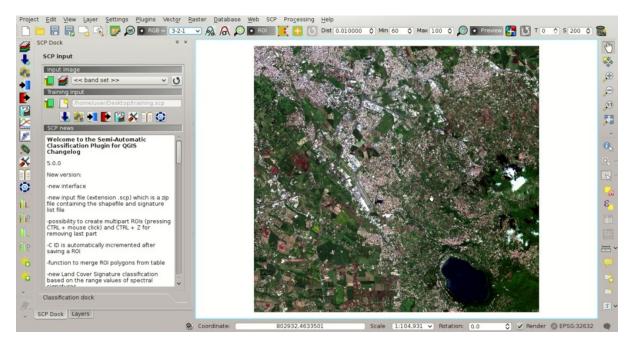


Fig. 20.13: *Color composite RGB* = *3*-2-1

Now in the list RGB = of the *Working toolbar* (page 33) type 3-7-10 (you can also use the tool RGB list (page 75)). Using this color composite, urban areas are purple and vegetation is green. You can notice that this color composite RGB = 3-7-10 highlights roads more than natural color (RGB = 3-2-1). Also, you can see that there are clouds in the right part of the image.

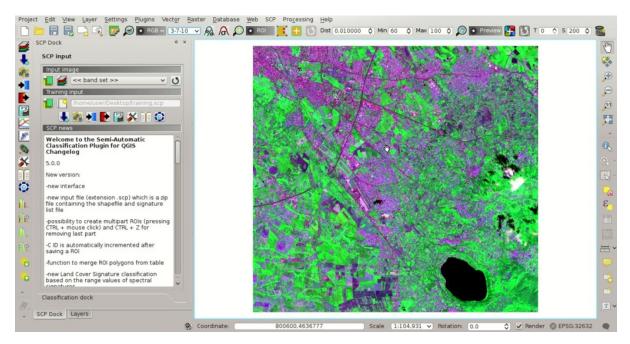


Fig. 20.14: *Color composite RGB* = *3*-*7*-*10*

Now create the ROIs following the same steps described in Create the ROIs (page 175) of Tutorial 1: Your First

Land Cover Classification (page 173). After clicking the button in the *Working toolbar* (page 33) you should notice that the cursor in the map displays a value changing over the image. This is the NDVI value of the pixel

beneath the cursor (NDVI is displayed because the function \square *Display* is checked in *ROI creation* (page 42)). The NDVI value can be useful for identifying spectrally pure pixels, in fact vegetation has higher NDVI values than soil.

For instance, move the mouse over a vegetation area and left click to create a ROI when you see a local maximum value. This way, the created ROI and the spectral signature thereof will be particularly representative of healthy vegetation.

The color composite RGB = 7-3-2 is also useful for highlighting vegetation.

Create several ROIs (the more is the better). The region growing algorithm can create more homogeneous ROIs (i.e. standard deviation of spectral signature values is low) than manually drawn ones; the manual creation of ROIs can be useful in order to account for the spectral variability of classes (especially when using the algorithm *Maximum Likelihood* (page 152)).

In general, you should create one ROI for each color that you can distinguish in the image. Therefore, change the color composite in order to identify the different types of land cover.

TIP : Change frequently the *Color Composite* (page 145) in order to clearly identify the materials at the ground; use the mouse wheel on the list *RGB*= of the *Working toolbar* (page 33) for changing the

color composite rapidly; also use the buttons *Ma* and *for* better displaying the *Input image* (i.e. image stretching).

A few examples of ROIs are illustrated in the following figures.

It is worth mentioning that you can show or hide the temporary ROI clicking the button *ROI* in *Working toolbar* (page 33).

Fig. 20.15: NDVI value of vegetation pixel displayed in the map

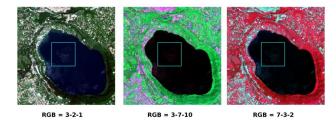


Fig. 20.16: Water ROI: lake

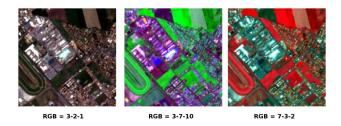


Fig. 20.17: Built-up ROI: large buildings

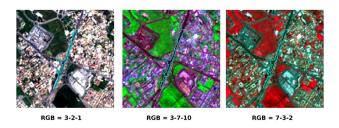


Fig. 20.18: Built-up ROI: road

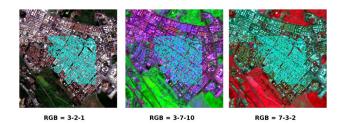



Fig. 20.19: Built-up ROI: buildings and narrow roads

RGB = 3-2-1

Fig. 20.20: Vegetation ROI: deciduous trees

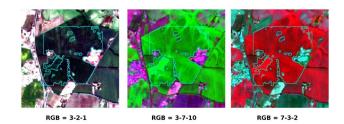


Fig. 20.21: Vegetation ROI: crop

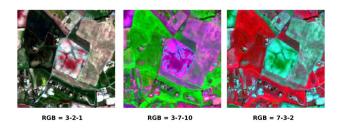


Fig. 20.22: Bare soil ROI: uncultivated land

TIP : Install the plugin QuickMapServices in QGIS, and add a map (e.g. OpenStreetMap) in order to facilitate the identification of ROIs using high resolution data.

We can also try to mask clouds in the image, creating ROIs of clouds and assigning the special MC ID = 0 (which is an ID used for labelling intentionally unclassified pixels) and a different C ID. In fact spectral signatures with the MC ID = 0 are normally used in the classification, but every pixel assigned to these spectral signatures is labelled unclassified in the classification result. Therefore, this is a simple way for masking particular spectral signatures such as clouds (of course there are more advanced methods for masking clouds that will be discussed in other tutorials).

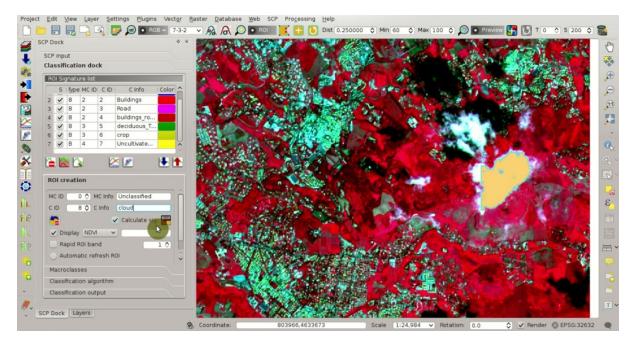


Fig. 20.23: Example of ROI for clouds

Create a Classification Preview

As pointed out in *Tutorial 1: Your First Land Cover Classification* (page 173), previews are temporary classifications that are useful for assessing the effects of spectral signatures during the ROI collection.

Set the colors of the spectral signatures in the *ROI Signature list* (page 41); then, in the *Classification algorithm* (page 44) select the classification algorithm *Maximum Likelihood* (page 152). In *Classification preview* (page 35)

set *Size* = 500; click the button **und** and then left click a point of the image in the map.

The classification preview is displayed in the map.

In order to create a classification preview using Macroclass IDs check the option $\bowtie MCID$ in the tab *Classification algorithm* (page 44) of the *SCP dock* (page 37). In the tab *Macroclasses* (page 43) of the *SCP dock* (page 37) change the colors of *MC ID* (in the table *Macroclasses* (page 43) double click the color of each macroclass to choose a representative color).

Now click the button with the *Working toolbar* (page 33) to calculate a new preview at the same area of the previous one. In the following figure you can notice that there are fewer classes (only the *MC ID*) than the previous preview; also, clouds are unclassified (black pixels).

TIP : In the Working toolbar (page 33) click the button Verview to easily show or hide the

classification previews, and the button \heartsuit *RGB*= to show or hide the *Input image*.

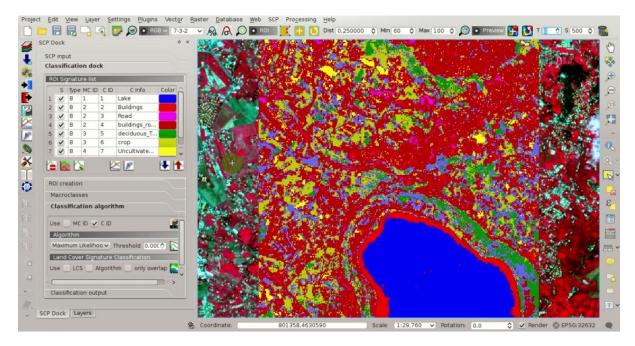


Fig. 20.24: Example of preview using C IDs

Ma	acroc	lasses	
	MC	D : MC Info : C	olor
1	1	Water	
2	2	Built-up	
3	3	Vegetation	H C
4	4	Bare soil	~
Cla	assific	ation style	
08	ad qm	I (- 🔟 🗔
18	ssific	ation algorithm	

Fig. 20.25: COlors of MC IDs

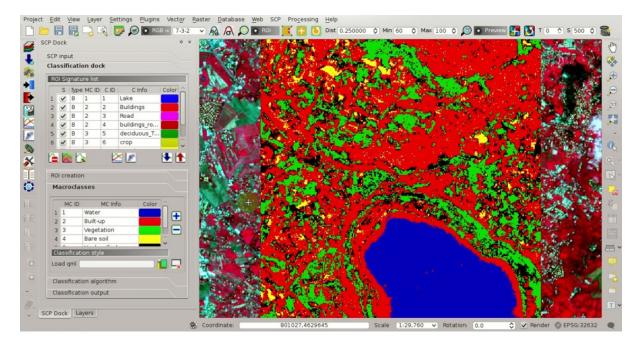


Fig. 20.26: Example of preview using MC IDs

Assess Spectral Signatures

Spectral signatures are used by *Classification Algorithms* (page 151) for labelling image pixels. Different materials may have similar spectral signatures (especially considering multispectral images) such as built-up and soil. If spectral signatures used for classification are too similar, pixels could be misclassified because the algorithm is unable to discriminate correctly those signatures. Thus, it is useful to assess the *Spectral Distance* (page 156) of signatures to find similar spectral signatures that must be removed. Of course the concept of distance vary according to the algorithm used for classification.

One can simply assess spectral signature similarity by displaying a signature plot. In order to display the signature plot, in the *ROI Signature list* (page 41) highlight two or more spectral signatures (with click in the table), then

click the button **Sectral** Signature Plot (page 121) is displayed in a new window. Move ans zoom inside the *Plot* (page 123) to see if signatures are similar (i.e. very close). We can see in the following figure a signature plot of different materials.

In the plot we can see the line of each signature (with the color defined in the *ROI Signature list* (page 41)), and the spectral range (minimum and maximum) of each band (i.e. the semi-transparent area colored like the signature line). The larger is the semi-transparent area of a signature, the higher is the standard deviation, and therefore the heterogeneity of pixels that composed that signature. Spectral signature values are displayed in the *Signature details* (page 124).

Additionally, we can calculate the spectral distances of signatures (for more information see *Spectral Distance* (page 156)). Highlight two or more spectral signatures with click in the table *Plot Signature list* (page 121), then

click the button **Sector**; distances will be calculated for each pair of signatures. Now open the tab *Spectral distances* (page 124); we can notice that similarity between signatures vary according to considered algorithm.

For instance, two signatures can be very similar *Spectral Angle Mapping* (page 153) (very low *Spectral Angle* (page 157)), but quite distant for the *Maximum Likelihood* (page 152) (*Jeffries-Matusita Distance* (page 156) value near 2). The similarity of signatures is affected by the similarity of materials (in relation to the number of spectral bands available in the *Input image*); also, the way we create ROIs influences the signatures.

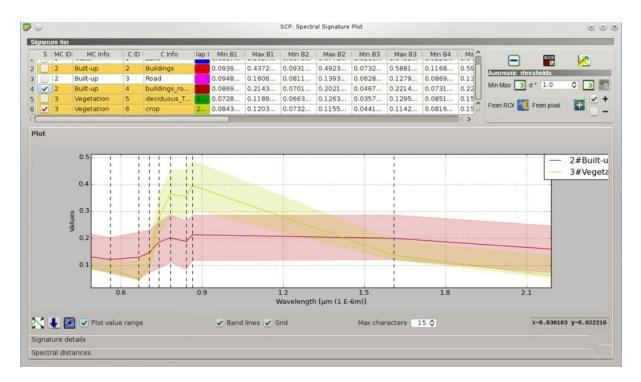


Fig. 20.27: Spectral plot

nature list	MC Info		Clr	nfo ila	D I Min B1	Max B	B1 Min B	2 Max B	Min B3	Max B3	Min B4	Ma ^		
× 2	Built-up	2	Building		0.0939	0.4372	0.0931	0.4923.		0.5881	0.1168	0.59		1
× 2	Built-up	3	Road		0.0939					0.1279	0.0869	0.13	Automatic thresholds	
V 2	Built-up	4	building	IS TO	0.0869						0.0731		Min Max) σ* 1.0	Image: A transformed and tr
✓ 3	Vegetation	5	deciduo		0.0728						0.0851			
✓ 3	Vegetation		crop		0.0843				. 0.0441		0.0816	~	From ROI From pixel	H
		-												0
ot														
gnature	details													
									= 1205 pix	and the second se				
	gth [E-6m]	0.49	0.56	0.665 0	.705 0.7	4 0.78	0.842	0.865	1.61 2.1	19				
		0.49	0.56	0.665 0	.705 0.7	4 0.78	0.842	0.865		19				
Va		0.49	0.56 0	0.665 0 0.21385 0	.705 0.7	4 0.78 4489 0.25	0.842 768 0.246	0.865	1.61 2.1 0.30968 0.2	19 28242				
Va	lues	0.49	0.56 0	0.665 0 0.21385 0	.705 0.7	4 0.78 4489 0.25	0.842 768 0.246	0.865	1.61 2.1 0.30968 0.2	19 28242				
Va Standaro	lues deviation	0.49 0.19398 0.07195 MC_II	0.56 0.19353 0.08473	0.665 0 0.21385 0 0.1062 0 info = Bu	.705 0.7 .22322 0.2 .09626 0.0	4 0.78 4489 0.25 9555 0.09	0.842 768 0.246 551 0.103	0.865	1.61 2.1 0.30968 0.2 0.15258 0.1	19 28242				
Va Standaro	lues	0.49 0.19398 0.07195 MC_II	0.56 0 0.19353 0 0.08473 0 0 = 2 MC	0.665 0 0.21385 0 0.1062 0 info = Bu	.705 0.7 .22322 0.2 .09626 0.0	4 0.78 4489 0.25 9555 0.09	83 0.842 6768 0.246 9551 0.103 60 = Road	0.865 41 0.26808 25 0.09657	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels	19 28242				
Va Standard Wavelen	deviation gth [E-6m]	0.49 0.19398 0.07195 MC_II 0.49	$\begin{array}{c} 0.56 \\ 0.19353 \\ 0.08473 \\ 0 \end{array}$ $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.665 0 0.21385 0 0.1062 0 info = Bu .665 0.1	.705 0.7 .22322 0.2 .09626 0.0 	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783	0.842 768 0.246 551 0.103 6 = Road 0.842	0.865 41 0.26808 25 0.09657 ROI_size = 0.865 1.0	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels	19 28242 16081				
Va Standaro Wavelen Va	deviation gth [E-6m]	0.49 0.19398 0.07195 MC_II 0.49 0.11985	$\begin{array}{c} 0.56 \\ 0.19353 \\ 0.08473 \\ 0 \end{array}$	0.665 0 0.21385 0 0.1062 0 info = Bu .665 0.1 .09769 0.1	.705 0.7 .22322 0.2 .09626 0.0 .09626 0.0 .09626 0.0 .09626 0.1 .0096 0.13	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142	3 0.842 5768 0.246 551 0.103 6 = Road 0.842 5 0.12995	0.865 41 0.26808 25 0.09657 ROI_size = 0.865 1.0 0.14885 0.3	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 0.1 0.1 2.19 3109 0.099	19 28242 16081 91				
Va Standaro Wavelen Va	deviation deviation gth [E-6m] lues	0.49 0.19398 0.07195 MC_II 0.49 0.11985	$\begin{array}{c} 0.56 \\ 0.19353 \\ 0.08473 \\ 0 \end{array}$	0.665 0 0.21385 0 0.1062 0 info = Bu .665 0.1 .09769 0.1	.705 0.7 .22322 0.2 .09626 0.0 .09626 0.0 .09626 0.0 .09626 0.1 .0096 0.13	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142	3 0.842 5768 0.246 551 0.103 6 = Road 0.842 5 0.12995	0.865 41 0.26808 25 0.09657 ROI_size = 0.865 1.0 0.14885 0.3	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 0.1 0.1 2.19 3109 0.099	19 28242 16081 91				
Va Standaro Wavelen Va Standaro	lues I deviation gth [E-6m] lues I deviation	0.49 0.19398 0.07195 MC_II 0.49 0.11985 0.00993 MC_ID	0.56 0 0.19353 0 0.08473 0 0 = 2 MC_ 0.56 0 0.10332 0 0.00973 0 = 2 MC_ii	0.665 0 0.21385 0 0.1062 0 info = Bu .665 0. .09769 0. .01338 0.0	.705 0.7/ .22322 0.2 .09626 0.0 illt-up C_ID 705 0.74 10696 0.13 00954 0.01	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142 469 0.018	33 0.842 5768 0.246 5551 0.103 fo = Road 0.842 5 0.12995 98 0.0244	0.865 41 0.26808 25 0.09657 ROI_size = 0.865 1.0 0.14885 0.0 0.02038 0.0	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 0.1 0.1 2.19 3109 0.099	19 28242 16081 91 61				
Va Standaro Wavelen Va Standaro	deviation deviation gth [E-6m] lues	0.49 0.19398 0.07195 MC_II 0.49 0.11985 0.00993 MC_ID 0.49	0.56 0 0.19353 0 0.08473 0 0 = 2 MC_ 0.56 0 0.10332 0 0.00973 0 = 2 MC_ii 0.56	0.665 0 0.21385 0 0.1062 0 1.1062 0 .665 0 0.09769 0 .01338 0 .1 01338 0 .1 0.665	.705 0.7 .22322 0.2 .09626 0.0 .0705 0.74 10696 0.13 .00954 0.01 .00954 0.01	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142 469 0.018 = 4 C_info 0.74	0.842 0.842 0.103 0.103 0.842 0.842 0.842 0.12995 0.12995 0.12995 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0246 0.02666 0.0266 0.0266 0.0266 0.0266 0.02666 0.02666 0.02666	0.865 41 0.26808 25 0.09657 ROL_size = 0.865 1.1 0.14885 0.1 0.02038 0.1 gs_roads R .842 0.8	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 0.1 3109 0.099 01331 0.012 OI size = 8 85	19 28242 16081 91 61				
Va Standard Wavelen Va Standard Wavelen	ues I deviation gth [E-6m] lues I deviation gth [E-6m]	0.49 0.19398 0.07195 MC_II 0.49 0.11985 0.00993 MC_ID 0.49	0.56 0 0.19353 0 0.08473 0 0 = 2 MC_ 0.56 0 0.10332 0 0.00973 0 = 2 MC_ii 0.56	0.665 0 0.21385 0 0.1062 0 1.1062 0 .665 0 0.09769 0 .01338 0 .1 01338 0 .1 0.665	.705 0.7/ .22322 0.2 .09626 0.0 iilt-up C_ID 705 0.74 10696 0.13 00954 0.01	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142 469 0.018 = 4 C_info 0.74	0.842 0.842 0.103 0.103 0.842 0.842 0.842 0.12995 0.12995 0.12995 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0246 0.0276 0.	0.865 41 0.26808 25 0.09657 ROL_size = 0.865 1.1 0.14885 0.1 0.02038 0.1 gs_roads R	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 0.1 3109 0.099 01331 0.012 OI size = 8 85	19 28242 16081 91 61 272 pixels	7			
Va Standard Wavelen Va Standard Wavelen Va	ues I deviation gth [E-6m] lues I deviation gth [E-6m]	0.49 0.19398 0.07195 0.49 0.11985 0.00993 MC_ID 0.49 0.49 0.1302	0.56 0 0.19353 0 0.08473 0 0.56 0 0.10332 0 0.00973 0 = 2 MC_i 0.56 0.12087	0.665 0 0.21385 0 0.1062 0 1.065 0 0.09769 0 0.1338 0 0.665 0 0.665 0 0.12864	.705 0.7 .22322 0.2 .09626 0.0 iilt-up C_ID 0.74 .00954 0.01 it-up C_ID 0.14 .00954 0.01 .0.705 0.7 .0.705 0.14	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142 469 0.018 = 4 C_info 0.74 0 0.18445 0	33 0.842 5768 0.246 5551 0.103 50 = Road 0.842 5 5 0.12995 98 0.0244 0 = buildin 0.783 0 0.2016 0	0.865 41 0.26808 25 0.09657 ROL_size = 0.865 1.4 0.14885 0.1 0.02038 0.4 gs_roads R .842 0.8 18726 0.2	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 0.1 3109 0.099 01331 0.012 OI size = 8 85	19 28242 16081 91 61 272 pixels 2.19 22 0.1592				
Va Standard Wavelen Va Standard Wavelen Va	lues I deviation gth [E-6m] lues I deviation gth [E-6m] lues	0.49 0.19398 0.07195 MC_II 0.49 0.11985 0.00993 MC_ID 0.49 0.1302 0.02224	0.56 0 0.19353 0 0.08473 0 0.56 0 0.10332 0 0.00973 0 = 2 MC_i 0.56 0 0.12087 0 0.0254	0.665 0 0.1385 0 0.1062 0 0.1062 0 0.1062 0 0.1385 0 0.09769 0 0.1338 0 0.665 0 0.1338 0 0.665 0.12864 0.03694 0	.705 0.7 .22322 0.2 .09626 0.0 iilt-up C_ID 0 705 0.74 10696 0.13 00954 0.01 it-up C_ID 0 0.705 0.14598 0.02542 0	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142 469 0.018 = 4 C_info 0.74 0 0.18445 0 0.018445 0	33 0.842 5768 0.246 5551 0.103 60 Road 0.842 0.12995 98 0.0244 0 buildin 0.783 0 0.2016 0 0.02892 0	0.865 41 0.26808 25 0.09657 ROI_size = 0.865 1.1 0.14885 0.1 0.02038 0.1 gs_roads R .842 0.8 18726 0.2 .03785 0.0	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 1 31.09 0.099 01331 0.012 Ol_size 8 55 1.61 124 0.199 3087 0.032	19 28242 16081 91 61 272 pixels 272 pixels 22 0.1592 52 0.0352	2			
Va Standard Wavelen Va Standard Wavelen Va	lues I deviation gth [E-6m] lues I deviation gth [E-6m] lues	0.49 0.19398 0.07195 MC_II 0.49 0.11985 0.00993 MC_ID 0.49 0.1302 0.02224	0.56 0 0.19353 0 0.08473 0 0.56 0 0.10332 0 0.00973 0 = 2 MC_i 0.56 0 0.12087 0 0.0254	0.665 0 0.1385 0 0.1062 0 0.1062 0 0.1062 0 0.1385 0 0.09769 0 0.1338 0 0.665 0 0.1338 0 0.665 0.12864 0.03694 0	.705 0.7 .22322 0.2 .09626 0.0 iilt-up C_ID 0 705 0.74 10696 0.13 00954 0.01 it-up C_ID 0 0.705 0.14598 0.02542 0	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142 469 0.018 = 4 C_info 0.74 0 0.18445 0 0.018445 0	33 0.842 5768 0.246 5551 0.103 60 Road 0.842 0.12995 98 0.0244 0 buildin 0.783 0 0.2016 0 0.02892 0	0.865 41 0.26808 25 0.09657 ROI_size = 0.865 1.1 0.14885 0.1 0.02038 0.1 gs_roads R .842 0.8 18726 0.2 .03785 0.0	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 0.1 3109 0.099 01331 0.012 OI size = 8 85 1.61 1.24	19 28242 16081 91 61 272 pixels 272 pixels 22 0.1592 52 0.0352	2			
Va Standaro Vastandaro Standaro Va Standaro	lues I deviation gth [E-6m] lues I deviation gth [E-6m] lues	0.49 0.19398 0.07195 MC_II 0.49 0.11985 0.00993 MC_ID 0.49 0.1302 0.02224 MC_ID	0.56 0 0.19353 0 0.08473 0 0.56 0 0.10332 0 0.00973 0 = 2 MC_i 0.56 0 0.12087 0 0.0254	0.665 0 0.1385 0 0.1062 0 0.1062 0 0.1062 0 0.1385 0 0.09769 0 0.1338 0 0.665 0 0.1338 0 0.665 0.12864 0.03694 0	.705 0.7 .22322 0.2 .09626 0.0 iilt-up C_ID 0 705 0.74 10696 0.13 00954 0.01 it-up C_ID 0 0.705 0.14598 0.02542 0	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142 469 0.018 = 4 C_info 0.74 0 0.18445 0 0.018445 0	33 0.842 5768 0.246 5551 0.103 60 Road 0.842 0.12995 98 0.0244 0 buildin 0.783 0 0.2016 0 0.02892 0	0.865 41 0.26808 25 0.09657 ROLsize = 0.865 0.14885 0.1 0.02038 0.1 gs_roads R 842 1.8726 0.2 0.3785 0.0	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 1 31.09 0.099 01331 0.012 Ol_size 8 55 1.61 124 0.199 3087 0.032	19 28242 16081 91 61 272 pixels 2.19 22 0.1592 52 0.0352 = 9477 pi	2 kels			
Va Standaro Va Standaro Wavelen Va Standaro Wavelen	ues I deviation gth [E-6m] lues I deviation gth [E-6m] lues I deviation gth [E-6m]	0.49 0.19398 0.07195 MC_II 0.49 0.11985 0.00993 MC_ID 0.49 0.1302 0.02224 MC_ID 0.49	0.56 0 0.19353 0 0.08473 0 0 = 2 MC_ 0.56 0 0.10332 0 0.00973 0 0.00973 0 0.266 0 0.12087 0 0.0254 = 3 MC_ii	0.665 0 0.21385 0 0.1062 0 info = Bu .665 0. .00769 0. .01338 0. mfo = Bui 0.665 0 1.2864 0.03694 mfo = Veç 0.665	.705 0.7 .22322 0.2 .09626 0.0 silt-up C_ID 0.74 10696 0.13 00954 0.01 it-up C_ID 0.705 0.705 0.74 0.0954 0.01 it-up C_ID 0.705 0.14598 0.02542 itetation C 0.705	4 0.78 4489 0.25 9555 0.09 = 3 C_inf 0.783 379 0.142 469 0.018 = 4 C_info 0.74 0 0.18445 0 0.02468 0 1D = 5 C_i	33 0.842 36 0.246 5551 0.103 60 - Road 0.842 5 5 0.12995 98 0.0244 0 - buildin 0.783 0 0.2016 0 0.02892 0 info - decc 0.783 0	0.865 41 0.26808 25 0.09657 ROI_size = 0.865 1.4 0.14885 0.1 0.02038 0.4 gs_roads R .842 0.8 18726 0.2 03785 0.0 iduous_Tre 0.842	1.61 2.1 0.30968 0.2 0.15258 0.1 201 pixels 0.1 31 2.19 0.099 0.1331 0.012 Ol_size = 8 8 55 1.61 1.24 0.199 0.087 0.032	19 28242 16081 91 61 272 pixels 2.19 22 0.1592 52 0.0352 = 9477 pi 61 2.1	2 cels 9			

Fig. 20.28: Spectral signature values

								SCP: Spect	ral Signature	Plot						0
ignat	ure list			_	-	_	_									
S	MC ID	MC Info	CID	C Info	lap I	Min B1	Max B1	Min B2	Max B2	Min B3	Max B3	Min B4	Ma			1
~	2	Built-up	2	Buildings	3	0.0939	0.4372	0.0931	0.4923	0.0732	0.5881	0.1168	0.59			R.S.
~	2	Built-up	3	Road		0.0948	0.1606	0.0811	0.1393	0.0628	0.1279	0.0869	0.13	Automatic thresh	1	_
~	2	Built-up	4	buildings ro		0.0869	0.2143	0.0701	0.2021	0.0467	0.2214	0.0731	0.22	Min Max) σ*	1.0	
~	3	Vegetation	5	deciduous T	2	0.0728	0.1189	0.0663	0.1263	0.0357	0.1295	0.0851	0.15			
~	3	Vegetation	6	crop	2	0.0843	0.1203	0.0732	0.1155	0.0441	0.1142	0.0816	0.15	From ROI	om pixel	H
	oli como		Al-Constant	A second									1<>			0
lot																
Signa	ture de	tails														
ped	tral dis	stances														
			MC	ID = 2 MC inf	o = B	Built-up C	ID = 2C in	fo = Build	ings							
				_ID = 2 MC_inf 4C_ID = 2 MC_i												
Jeff	ries-M	atusita distan	-	4C_ID = 2 MC_i												
	Spe	ctral angle	ce 1.8	4C_ID = 2 MC_i												
	Spe Euclide	ctral angle ean distance	ce 1.8 8.7 0.3	AC_ID = 2 MC_i 9677166311 6157323408 99042840994												
	Spe Euclide	ctral angle	ce 1.8 8.7 0.3	AC_ID = 2 MC_i 9677166311 6157323408 99042840994												
	Spe Euclide	ctral angle ean distance	ce 1.8 8.7 0.3	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185	nfo =	Built-up	C_ID = 3 C_	info = Roa	ad							
	Spe Euclide	ctral angle ean distance	ce 1.8 8.7 0.3 6] 66.	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC	nfo = _info	= Built-up	C_ID = 3 C_	info = Roa C_info = Bu	uildings]						
Bra	Spe Euclide by-Curt	ctral angle ean distance tis similarity [9	ce 1.8 8.7 0.3 6] 66. MC	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_inf	nfo = _info	= Built-up	C_ID = 3 C_	info = Roa C_info = Bu	uildings	6						
Bra	Spe Euclide ay-Curt	ctral angle ean distance tis similarity (9 atusita distan	ce 1.8 8.7 0.3 6] 66. MC ce 1.5	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_ ID = 2 MC_inf 261864589	nfo = _info	= Built-up	C_ID = 3 C_	info = Roa C_info = Bu	uildings							
Bra	Spe Euclide by-Curt ries-M Spe	ctral angle ean distance tis similarity [9 atusita distan ctral angle	ce 1.8 8.7 0.3 6] 66. 60 Ce 1.5 6.6	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_ ID = 2 MC_inf 261864589 8562102401	nfo = _info	= Built-up	C_ID = 3 C_	info = Roa C_info = Bu	uildings	5 5 5 5 5 5						
Bra	Spe Euclide by-Curt ries-M Spe Euclide	ctral angle ean distance iis similarity (% atusita distan ctral angle ean distance	ce 1.8 8.7 0.3 6] 66. MC ce 1.5 6.6 0.2	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_ ID = 2 MC_ID 261864589 8562102401 51671450659	nfo = _info	= Built-up	C_ID = 3 C_	info = Roa C_info = Bu	uildings							
Bra	Spe Euclide by-Curt ries-M Spe Euclide	ctral angle ean distance tis similarity [9 atusita distan ctral angle	ce 1.8 8.7 0.3 6] 66. MC ce 1.5 6.6 0.2	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_ ID = 2 MC_ID 261864589 8562102401 51671450659	nfo = _info	= Built-up	C_ID = 3 C_	info = Roa C_info = Bu	uildings							
Bra	Spe Euclide by-Curt ries-M Spe Euclide	ctral angle ean distance iis similarity (% atusita distan ctral angle ean distance	ce 1.8 8.7 0.3 6] 66. MC ce 1.5 6.6 0.2	C_ID = 2 MC_I 9677166311 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_Inf 261864589 8562102401 51671450659 3859339773 3859339773	nfo = _info o = B	= Built-up = Built-up Built-up C_	C_ID = 3 C_ 0 C_ID = 2 (ID = 4 C_in	info = Roa C_info = Bu fo = build	uildings							
Bra	Spe Euclide by-Curt ries-M Spe Euclide	ctral angle ean distance iis similarity (% atusita distan ctral angle ean distance	Ce 1.8 8.7 0.3 6] 66. 0.2 6] 81.	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_Inf 261864589 8562120401 51671450659 3859339773 MC_ID = 2 M	_info = _info o = B	= Built-up = Built-up Built-up C_	C_ID = 3 C_ D C_ID = 2 C ID = 4 C_IN up C_ID = 1	info = Roa C_info = Bu fo = build 2 C_info =	ad uildings ings_roads							
Bra Jeffi Bra	Spe Euclid y-Curt ries-M Spe Euclid y-Curt	ctral angle ean distance iis similarity (% atusita distan ctral angle ean distance	Ce 1.8 8.7 0.3 6] 66. MC Ce 1.5 6.6 0.2 6] 81.	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_Inf 261864589 8562102401 51671450659 3859339773 MC_ID = 2 MC_Inf	_info = _info o = B	= Built-up = Built-up Built-up C_	C_ID = 3 C_ D C_ID = 2 C ID = 4 C_IN up C_ID = 1	info = Roa C_info = Bu fo = build 2 C_info =	ad uildings ings_roads							
Bra Jeffi Bra	Spe Euclid ny-Curt ries-M Spe Euclid ny-Curt	ctral angle ean distance cis similarity (9 atusita distan ctral angle ean distance cis similarity (9 atusita distan	Ce 1.8 8.7 0.3 6] 66. MC Ce 1.5 6.6 0.2 6] 81. Ce 1.9	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_I 1D = 2 MC_Inf 201864589 8562102401 51671450659 3859339773 MC_ID = 2 MC_Inf 9999760957	_info = _o = B	= Built-up = Built-up Built-up C_	C_ID = 3 C_ D C_ID = 2 C ID = 4 C_IN up C_ID = 1	info = Roa C_info = Bu fo = build 2 C_info =	ad uildings ings_roads							
Bra Jeffi Bra	Spe Euclide y-Curt ries-M Euclide y-Curt ries-M Spe	ctral angle ean distance tis similarity [9 atusita distan ctral angle ean distance tis similarity [9	Image: second	AC_ID = 2 MC_I 9677166311 6157323408 99042840994 558385185 MC_ID = 2 MC_Inf 261864589 8562102401 51671450659 3859339773 MC_ID = 2 MC_Inf	_info = _o = B	= Built-up = Built-up Built-up C_	C_ID = 3 C_ D C_ID = 2 C ID = 4 C_IN up C_ID = 1	info = Roa C_info = Bu fo = build 2 C_info =	ad uildings ings_roads							

Fig. 20.29: Spectral distances

Create the Classification Output

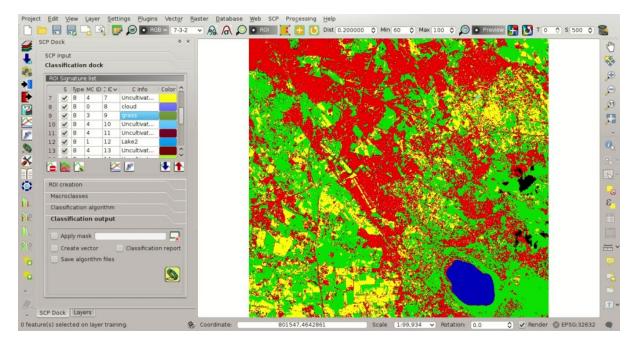
Repeat iteratively the phases *Create the ROIs* (page 192), *Create a Classification Preview* (page 198), and *Assess Spectral Signatures* (page 200) until the classification previews show good results.

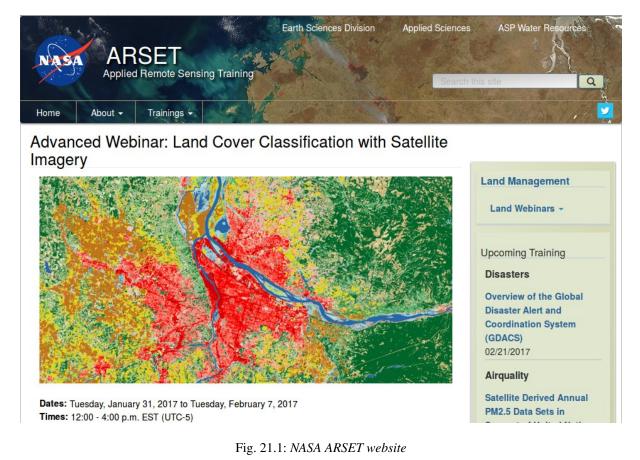
To start the classification of the entire image, open the tab *Classification output* (page 46), click the button and define the name of the classification output.

TIP : Set the *Available RAM (MB)* in *RAM* (page 119) settings, in order to reduce the computational time; the recommended value is half of the system RAM.

If *Play sound when finished* is checked in *Classification process* (page 117) settings, a sound is played when the process is finished.

It is worth mentioning that *SCP* provides other tools and techniques that can improve the classification results, which are described in *Teemalliset käyttöoppaat* (page 209).




Fig. 20.30: Classification

luku **21**

NASA ARSET Webinar

NASA ARSET is a program for fostering the acquisition and use of NASA satellite data for supporting decisions, through online webinars and in-person workshops.

NASA ARSET offered the webinar Land Cover Classification with Satellite Imagery which covered very interesting objectives such as access and download Landsat imagery and learn the basic steps for performing a supervised classifications using the *SCP*.

This webinar is organized in two sessions:

- Introduction to Land Cover Classification and QGIS
- Improving a Supervised Land Cover Classification

The entire webinar is very informative, and I recommend watching the recordings. In particular, the *Land Cover Signature Classification* (page 154) is illustrated during the exercise of the second session.

Slides of presentations, in English and Spanish, and the recordings of both sessions are freely available at this link https://arset.gsfc.nasa.gov/land/webinars/advanced-land-classification.

Many thanks to NASA ARSET for their effort in teaching remote sensing using open source software.

After these tutorials, please check the Teemalliset käyttöoppaat (page 209).

Osa VI

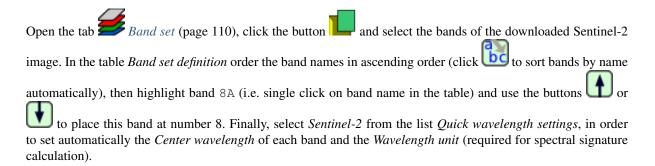
Teemalliset käyttöoppaat

Seuraavat ovat teemallisia käyttöoppaita. Ennen näitä oppaita on suositeltavaa lukea

LUKU **22**

Tutorial: Land Cover Signature Classification

- Create the Band Set (page 211)
- Create the ROIs and Define the Spectral Thresholds (page 213)
- Land Cover Classification (page 217)
- Other Tutorials (page 219)


This tutorial is about the Land Cover Signature Classification (page 154). It is assumed that one has the basic knowledge of SCP and Perusoppaat (page 171).

Following the video of this tutorial.

http://www.youtube.com/watch?v=wUr5ZjpWBo0

First download the sample image from this link (© Copernicus Sentinel data 2016) which is a Sentinel-2 image, and unzip the file.

Create the Band Set

0	Download images 🔹 Tools 🔰 Preprocessing 📑 Postprocessing 🚏		Da Da	an or set .
Ba	nd list			
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B02.tif			â 🎩
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B03.tif			
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B05.tif			U
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B04.tif			
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B07.tif			
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B06.tif			
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B12.tif			~
Ba	nd set definition			
	Band name	Center waveleng	th : Multipl	icative Fac 👔
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B02.tif	0.49	1	-
2	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B03.tif	0.56	1	•
3	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B04.tif	0.665	1	Bo
1	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B05.tif	0.705	1	
5	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B06.tif	0.74	1	
5	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B07.tif	0.783	1	
7	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B08.tif	0.842	1	
3	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B8A.tif	0.865	1	
	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B11.tif	1.61	1	(
0	RT_S2A_OPER_MSI_L1C_TL_SGS20160506T153005_A004552_T32TQM_B12.tif	2.19	1	
C				$ \rightarrow \blacksquare$
) uit	k wavelength settings Sentinel-2 [bands 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12]	Wavelength unit	(1 E-6m)	×
	nd set tools		i (i z onij	

Fig. 22.1: Band set definition

Create the ROIs and Define the Spectral Thresholds

In the *SCP dock* (page 37) click the button and define a file name for the *Training input*. We are going to create ROIs similarly to *Tutorial 2: Land Cover Classification of Sentinel-2 Images* (page 185).

We are going to use the following Macroclass IDs (see Classes and Macroclasses (page 150)).

Macroclasses

Macroclass name	Macroclass ID
Water	1
Built-up	2
Vegetation	3
Bare soil	4

In addition, we can mask clouds in the image, creating ROIs of clouds and assigning the special MCID = 0.

In the list RGB = of Working toolbar (page 33) define a Color Composite (page 145) such as RGB = 3-2-1 or RGB = 7-3-2.

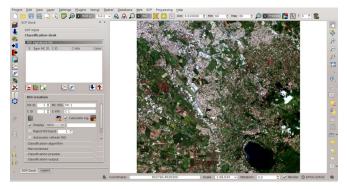


Fig. 22.2: Color composite

Now create some ROIs. ROIs are used in *Land Cover Signature Classification* (page 154) for defining a spectral region. The *Land Cover Signature Classification* (page 154) can use additional classification algorithms for pixels falling inside overlapping regions or outside any spectral region (in this tutorial we are going to use *Minimum Distance* (page 152)), therefore it is important that ROIs are homogeneous in order to train correctly the additional algorithm. Following the ROI creation we are going to change the signature thresholds in the *LCS threshold* (page 73).

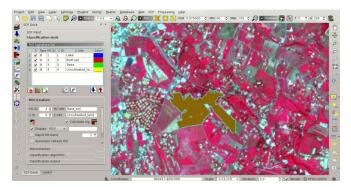


Fig. 22.3: ROI creation

After the ROI creation, in the *ROI Signature list* (page 41) highlight these spectral signatures, then click the button

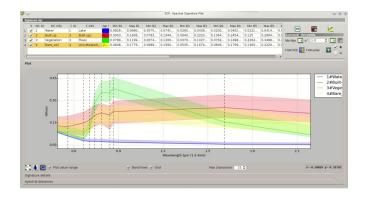


Fig. 22.4: Signature plot

Spectral signatures are displayed with the respective colors; also, the semi-transparent area represents the spectral range of each ROI. The minimum and maximum values of these spectral range are displayed in the *Plot Signature list* (page 121). You can manually edit these ranges or use the tools *Automatic thresholds* (page 123). It is worth noticing the same spectral ranges (of spectral signatures in *ROI Signature list* (page 41)) are displayed in the *Signature threshold* (page 72).

In *Classification algorithm* (page 44) select *Use* \bowtie *LCS* to use the in *Land Cover Signature Classification* (page 154). Now create a classification preview over the lake (see *Create a Classification Preview* (page 198)).

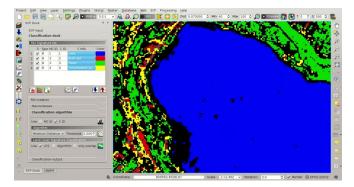


Fig. 22.5: Classification preview

You can see that several pixels are unclassified (black) because they are outside any spectral range. In the Plot

Signature list (page 121) highlight a signature of macroclass Water and click the button From pixel **III**. This tool allows you to extend the spectral range to include a pixel signature. Click an unclassified pixel in the map

over the lake; you should see that the spectral range of highlighted signature is larger now. Click the button with the *Working toolbar* (page 33).

Now the area classified as water is larger and should include the pixel that was clicked before. Create a temporary

ROI over the unclassified area of the lake and click the button From ROI

This way, the spectral range is extended to include the minimum and maximum value of this ROI for each band.

Creating another classification preview we can see that the classified area is extended according to the temporary ROI.

You can extend the spectral range to classify the whole lake as water.

TIP : During ROI creation, click the button in *Working toolbar* (page 33) and right click on the map for displaying the spectral signature of a pixel in the *Spectral Signature Plot* (page 121). This can be useful for assessing unclassified pixels and extend one or more spectral ranges.

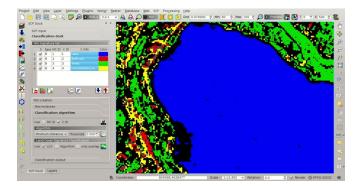


Fig. 22.6: Classification preview

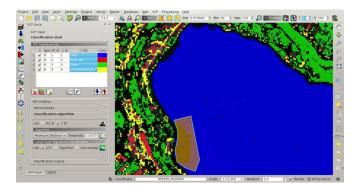


Fig. 22.7: Signature plot: the spectral range is extended

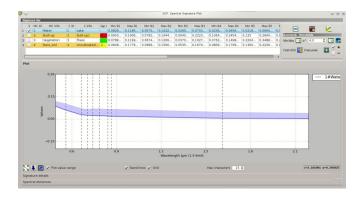


Fig. 22.8: Signature plot: the spectral range is extended

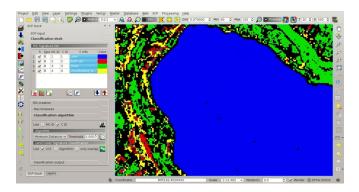


Fig. 22.9: Classification preview

Particular attention should be posed on the spectral similarity of classes. For instance soil and built-up can have very similar spectral signatures. Therefore, several ROIs should be collected in the attempt to separate these classes.

Spectral ranges should not overlap in order to avoid unclassified pixels. In the following figure, two signatures have overlapping ranges (it means that potentially there is a signature whose values fall in two classes); these signatures are highlighted in orange in the *Plot Signature list* (page 121) (also in the *LC Signature threshold* (page 73)) and the combinations MC ID - C ID of overlapping signatures are displayed in the column *Color* [overlap MC_ID-C_ID].

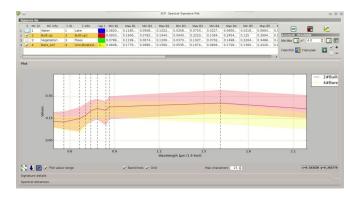


Fig. 22.10: Overlapping signatures

It is possible to reduce the range with the button *From ROI* \square or *From pixel* \square if the checkbox \square – is checked. In this case, the range is reduced to exclude the values of selected pixels or ROIs.

In addition, it is possible to edit the range directly from the plot. In the Plot Signature list (page 121) highlight a

signature, click the button **band**, then click inside the plot to extend or reduce the range. As a general procedure, you should compare spectral signatures and identify one or more values that could separate the overlapping ranges (if spectral ranges are not overlapping at least in one band then classes are correctly separated).

In case two spectral regions belonging to different classes are overlapping, you should consider reducing the ranges, collecting other spectral signatures with reduced ranges, or extending the spectral range of one signature to include the range of the other spectral signature that will be deleted. For instance, it could be convenient to create two spectral ranges (with two spectral signatures) for the same class in order to easily separate a third spectral signature whose values are comprised between the minimum and maximum values of the other two ranges.

TIP : Check the *Automatic plot* to display automatically the plot of a temporary ROI in the *Spectral Signature Plot* (page 121), and assess the spectral range before saving the ROI.

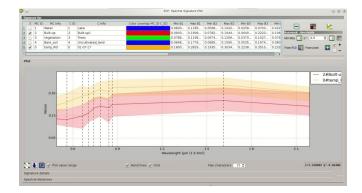


Fig. 22.11: The plot of a temporary ROI

Now check \bowtie *MC ID* in *Classification algorithm* (page 44). When \bowtie *MC ID* is checked, the classification is performed using all the spectral signatures (without any modification of original spectral values) but assigning

the macroclass code. Moreover, only overlapping signatures belonging to different macroclasses are highlighted in *Plot Signature list* (page 121). This allows spectral signatures sharing the same *MC ID* to be overlapping.

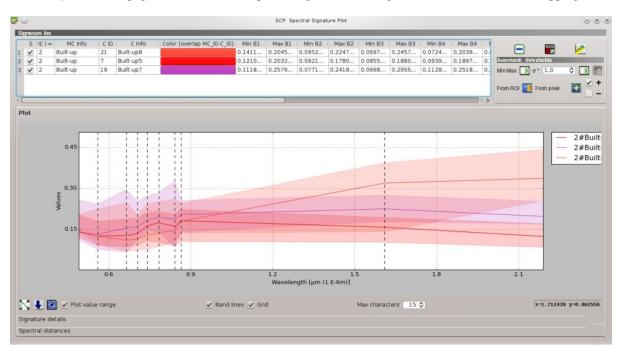


Fig. 22.12: Overlapping regions belonging to the same MC ID

Also, open the tab *LCS threshold* (page 73) for checking the overlap of all the spectral signatures saved in the *Training input*.

Land Cover Classification

After the creation of several ROIs and the definition of spectral ranges, we can perform the classification for the whole image.

Having selected \checkmark *MC ID* and \checkmark *LCS* in *Classification algorithm* (page 44), click the button \checkmark in the *Classification output* (page 46) and select an output destination. After the processing, the classification will be displayed in QGIS.

Unclassified pixels, displayed in black, are pixels whose spectral signature is not completely contained in any spectral region. Also, pixels contained in more than one spectral region (having different *MC ID*) are classified as *Class Overlap*.

We could create other spectral regions in order to classify all the unclassified pixels. Alternatively, we can use

the selected *Algorithm* (page 45) for classifying those pixels. Check the *Algorithm* in *Land Cover Signature Classification* (page 46) and select the *Minimum Distance* (page 152) in *Algorithm* (page 45); then click the button

I in the *Classification output* (page 46).

Pixels that were unclassified by *LCS* now are classified using the *Minimum Distance* (page 152), which compares calculates the Euclidean distance between pixels and spectral signatures. Black pixels are clouds classified using the special MC ID = 0.

In addition, we can use the *Minimum Distance* (page 152) to classify only pixels that were labelled *Class Overlap* by *LCS*, leaving unclassified pixels whose spectral signature is not completely contained in any spectral region.

1	Imment	- in the second	14	Europet signat	ures 🚅 A	lassithes have	dunisht [Circulture	threshold		achal	
				Export signat	ures A	ligorithm ban	id weight	Signature	threshold		esnon	
LC	Signatu	re threshold		_	_							
	MC ID	MC Info		C Info	verlap MC	Min B1	Max B1	Min B2	Max B2	Min B3	: N:	2
1	1	Water	1	Lake	0-26;	0.080600	0.118500	0.056499	0.102200	0.025699	0.0	
2	2	Built-up	2	Built-up1	4-31;4-32;	0.122545	0.149378	0.113600	0.138368	0.130199	0.1	
	3	Vegetation	3	Trees		0.073299	0.095764	0.063299	0.099600	0.032699	0.0	
3 4 5 6	4	Bare soil	5	Uncultiva		0.084100	0.095299	0.067699	0.082099	0.053899	0.0	
5	2	Built-up	6	Built-up2		0.154499	0.437299	0.146400	0.492399	0.161599	0.5	
6	2	Built-up	7	Built-up5	4-32;	0.121045	0.203299	0.092100	0.178000	0.085500	0.1	
7	2	Built-up	8	Built-up3		0.259880	0.487899	0.179199	0.499900	0.205899	0.5	
8	3	Vegetation	9	Grass2	4-31;4-32;	0.094387	0.110428	0.078699	0.131206	0.057208	0.1	
9	0	Cloud	10	Cloud1		0.179399	0.477299	0.202700	0.469900	0.225199	0.5	
10	3	Vegetation	11	Trees2		0.088500	0.119199	0.078599	0.120499	0.048300	0.1	
11	3	Vegetation	12	Grass4		0.089900	0.109899	0.087200	0.119800	0.051899	0.0	
12	4	Bare soil	13	Uncultiva		0.096799	0.113720	0.085299	0.113600	0.086000	0.1	Lun
13	4	Bare soil	14	Uncultiva		0.095205	0.151800	0.094409	0.167500	0.080079	0.1	
14	2	Built-up	15	Built-up4		0.169200	0.339100	0.164000	0.367100	0.158700	0.3	
15	2	Built-up	16	Built-up6		0.152657	0.252499	0.133300	0.245600	0.154100	0.2	
16	3	Vegetation	17	Grass3		0.106899	0.139699	0.109399	0.155200	0.086199	0.1	
17	2	Built-up	18	Built-up6		0.175400	0.368400	0.166400	0.370499	0.162799	0.3	
18	2	Built-up	19	Built-up7	4-31;4-32;	0.111891	0.257699	0.077100	0.241899	0.066899	0.2	
19	3	Vegetation	20	Grass5		0.088299	0.109579	0.087200	0.140499	0.045699	0.1	
20	2	Built-up	21	Built-up8	4-31;	0.141124	0.204500	0.095200	0.224700	0.069799	0.2	
21	2	Built-up	22	Built-up9	4-31;4-32;	0.121724	0.142499	0.111500	0.146999	0.127399	0.1	F.
22	2	Built-up	23	Built-up10	4-31;	0.115400	0.174199	0.115999	0.171399	0.107000	0.2	~
<											>	
Δim	omatic	thre sholds										
	ormatio	tin o ononao										

Fig. 22.13: LCS threshold. Overlapping regions are highlighted in orange

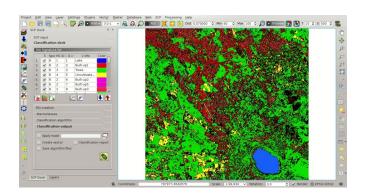


Fig. 22.14: LCS classification

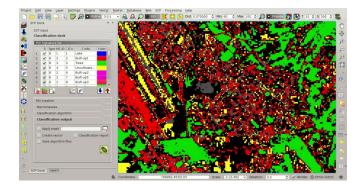


Fig. 22.15: LCS classification. Class Overlap

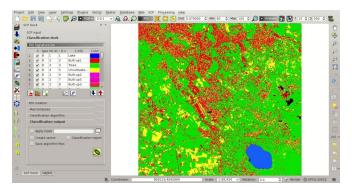


Fig. 22.16: LCS classification. Classification using the additional classification algorithm

Check only overlap in Land Cover Signature Classification (page 46), leaving checked Algorithm; then

click the button in the *Classification output* (page 46).

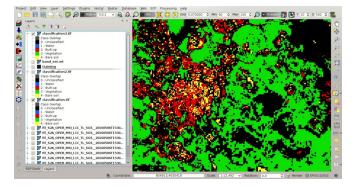


Fig. 22.17: LCS classification. Classification using the additional classification algorithm only for Class Overlap

The *Land Cover Signature Classification* (page 154) can be useful for the classification of a single land cover class, defining only the spectral ranges that identify our objective. For instance, if we were interested in built-up classification only, we could collect only ROIs for this class, obtaining a classification such as in the following image.

Other Tutorials

For other tutorials visit the blog From GIS to Remote Sensing .

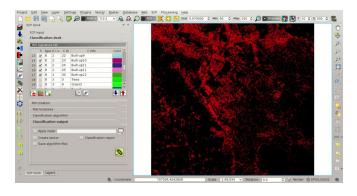


Fig. 22.18: LCS classification. Classification of the class Built-up

luku **23**

Tutorial: Estimation of Land Surface Temperature with Landsat and ASTER

- Data Download and Conversion (page 222)
- Clip to Study Area (page 224)
- Land Cover Classification (page 227)
- Reclassification of Land Cover Classification to Emissivity Values (page 229)
- Conversion from At-Satellite Temperature to Land Surface Temperature (page 229)
- Data Download and Conversion of ASTER Image (page 232)
- Clip to Study Area of ASTER image (page 234)
- Land Cover Classification of ASTER Image (page 236)
- Reclassification of Land Cover Classification to Emissivity Values of ASTER Image (page 236)
- Conversion from At Satellite Temperature to Land Surface Temperature of ASTER Image (page 239)
- Other Tutorials (page 241)

This tutorial is about the estimation land surface temperature using *Landsat Satellite* (page 141) and *ASTER Satellite* (page 143) images. In this tutorial we are going to use a **land cover classification** for the definition of **surface emissivity**, which is required for the calculation of the **land surface temperature**. It is assumed that one has the basic knowledge of *SCP* and *Perusoppaat* (page 171).

Our study area will be Paris (France), an area covered by urban surfaces, vegetation and agricultural fields.

Before downloading data, please watch the following video that illustrates the study area and provides very useful information about thermal infrared images, and their application (footage courtesy of European Space Agency/ESA). Also, a brief description of the area that we are going to classify is available here.

http://www.youtube.com/watch?v=Vjg5REQb-Bc

The **thermal infrared** band is particularly useful for assessing the temperature difference between the city and the surrounding rural areas, and studying the urban heat island phenomenon. We are going to use **Landsat and ASTER images** for the estimation of land surface temperature. For more information about the conversion of raster bands please read *Conversion to At-Satellite Brightness Temperature* (page 165). Following the video of this tutorial.

http://www.youtube.com/watch?v=7W4IwlvPLbQ

Data Download and Conversion

We are going to download the Landsat 8 image acquired in 2015 (image ID = LC81990262015270LGN00, data available from the U.S. Geological Survey).

Start a new QGIS project. Open the tab *Download images* (page 51) clicking the button in the *SCP menu* (page 29), or the *SCP Tools* (page 31), or the *SCP dock* (page 37). Select the tab *Landsat download* (page 51).

In *Login https://ers.cr.usgs.gov/* (page 52) you should enter the user name and password for accessing data (free registration at USGS EROS is required) in *User* and *Password*. However, in this case login should not be required because this Landsat 8 image is available directly from the Amazon Web Services (AWS).

In Search area (page 52) enter:

- *UL X (Lon)*: 2
- *UL Y (Lat)*: 49
- LR X (Lon): 2.5
- *LR Y (Lat)*: 48.8

TIP : In general it is possible to define the area coordinates clicking the button **t** and drawing a rectangle in the map.

In Search (page 52) select L8 OLI/TIRS from the list Satellites and set the acquisition date:

- Date from: 2015-09-27
- to: 2015-09-27

Now click the button Find Add and after a few seconds the image will be listed in the Image list.

In the result table, click the item LC81990262015270LGN00 in the field *ImageID*, and click the button **S**. A preview will be downloaded and displayed in the map, which is useful for assessing the quality of the image and the cloud cover.

Click the tab *Download options* (page 53) and leave checked only the following bands:

- 2 = Blue
- 3 = Green
- 4 = Red
- 5 = Near-Infrared
- 6 = Short Wavelength Infrared 1
- 7 = Short Wavelength Infrared 2
- 10 = Thermal Infrared (TIRS) 1

Bands from 2 to 7 will be used for the land cover classification, and band 10 for the estimation of land surface temperature (see *Why using only Landsat 8 band 10 in the estimation of surface temperature*? (page 262)).

The checkbox Preprocess images allows for the automatic conversion of bands after the download, according to the settings defined in Landsat (page 77); we are going to apply the DOS1 Correction (page 162). Bands from 2 to 7 will be converted to reflectance and band 10 will be converted to At-Satellite Brightness Temperature. Open

the tab *Landsat* (page 77), check Apply DOS1 atmospheric correction and uncheck Create Band set and use Band set tools (we are going to create the Band set after the clip of the image to study area).

		Semi-Au	itomatic Classificat	tion Plugin					0
bownload imag	ges 🍇 Tools 🔶	Preprocessing	Postprocessin	g 🔛 Band c	alc 🥩	Band set	S Ba	tch 🤰	X s <
头 Landsat down	load 🜏 Sentinel-2	download 🏼 🌯	ASTER download						
Login https://ers.c	cr.usgs.gov								
User			Password					🖌 rem	nember
Searcharea									
ULX (Lon) 2	UL Y (Lat)	49	LR X (Lon) 2.5	L	RY (Lat)	48.5		• Sho	w (+
Search									
Satellites L8 OLI/	TIRS V	Date from 20	15-09-27 🗸 to 💈	2015-09-27 🗸		Max	cloud cov	er (%)	100 🗘
E .L.								-	. 0
Filter								H	nd 🛴
Landsat images									
Image list	ImageID	AcquicitionDat	cloudCover	Path	3	Pow	; mir	lat	
Image list	ImageID 015270LGN00	AcquisitionDate		Path	26	Row	mir 47.7815	n_lat	
Image list		CONTRACTOR DESCRIPTION OF A DESCRIPTION OF				Row			
Image list		CONTRACTOR DESCRIPTION OF A DESCRIPTION OF				Row			
Image list		CONTRACTOR DESCRIPTION OF A DESCRIPTION OF				Row			
Image list		CONTRACTOR DESCRIPTION OF A DESCRIPTION OF				Row			
Image list 1. LC819902620 <	015270LGN00	CONTRACTOR DESCRIPTION OF A DESCRIPTION OF				Row			
Image list	015270LGN00	CONTRACTOR DESCRIPTION OF A DESCRIPTION OF				Row			
Image list 1 LC819902620 <	015270LGN00	2015-09-27 10	2	199		Row			
Image list Image list 1 LC819902620 <	015270LGN00	2015-09-27 10	2	199 Explorer)		Row			

Fig. 23.1: Landsat search result

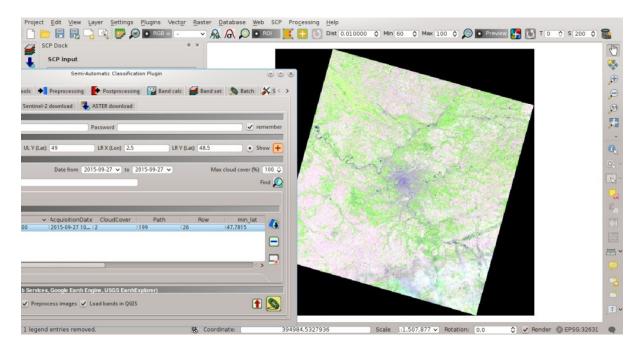


Fig. 23.2: Image preview

0		Semi-Automatic	Classification Plugi	n		0
Download imag	ges 🔹 Tools 🔶 Prep	rocessing 📑 Po	stprocessing 🔛	Band calc 🥳 Bar	nd set 🦠 Batch	X s <
头 Landsat dowr	nload 🜏 Sentinel-2 down	load 👯 ASTER (download			
Login https://ers.	cr.usgs.gov					
User		Passwo	rd		🗸 re	emember
Searcharea						
ULX (Lon) 2	UL Y (Lat) 49	LRX	(Lon) 2.5	LR Y (Lat) 48.	5 • S	how 🕇
Search						
Satellites L8 OLL	TIRS V Da	te from 2015-09-2	7 🗸 to 2015-09-2	27 🗸	Max cloud cover (%)	100 🗘
Filter						Find 🔎
r						~
Landsat images						
Download option	ns					
Landsat 8 ban	ds					
Band 1	✓ Band 2	✓ Band 3	Band 4	Band 5	Band 6	
Band 7	Band 8 (Panchroma	tic) 📃 Band 9	Band 10	Band 11	Band QA	
And a local division of the local division o	Amazon Web Services, Goo	gle Earth Engine, US	GS EarthExplorer)			_
Download (from						
	w in Layers ✔ Preprocess i	mages 🗸 Load ba	nds in QGIS		(1	

Fig. 23.3: Selection of bands for download

In order to start the **download and conversion process**, open the tab *Landsat download* (page 51), click the button

and select the directory where converted bands are saved (e.g. Desktop). After a few minutes, converted bands are loaded and displayed (file name starts with RT_).

Clip to Study Area

We are going to clip the Landsat images to our study area.

Open the tab *Preprocessing* (page 77) clicking the button in the *SCP menu* (page 29), or the *SCP Tools* (page 31), or the *SCP dock* (page 37). Select the tab *Clip multiple rasters* (page 84) and click the button to refresh the layer list and show the loaded rasters. Click the button to select all the rasters to be clipped, and in *Clip coordinates* (page 84) type the following values:

- UL X: 402705
- UL Y: 5461065
- *LR X*: 480824
- *LR Y*: 5381535

Now click the button and select the directory where clipped bands are saved (e.g. Desktop). Clipped bands have the prefix clip_ and will be automatically loaded and displayed. We can remove the bands whose names start with RT_ from QGIS layers.

9 🔾			Ser	mi-Automat	ic Classification	n Plugin					\odot
L Downlo	oad images 🛛 🙀	Tools	Preprocessi	ng 📑 P	ostprocessing	📔 Ba	nd calc	🥖 Band se	et 🔊	Batch	X s <
🐼 Land	sat 📉 Sentin	nel-2 🔣	ASTER 🏂 C	lip multiple	rasters 🚺 💔	Split raste	er bands	PCA	H Ve	ctor to ra	aster
Landsat	conversion to T	OA reflecta	nce and brightr	esstempe	rature						
Directory of	containing Landsa	at bands									
Select MT	L file (if not in Lar	ndsat director	ry)								
Brigh	ntness temperati	ure in Celsiu:	s								
✓ Appl	y DOS1 atmosph	eric correcti	on		~	Use No	Data valu	e <mark>(image ha</mark> s	black bo	order) 🕻	•
Perfo	ırm pansharpenii	ng (Landsat	7 or 8)								
Creat	te Band set and u	use Band set	t tools								
Metadata	a										
Satellite		Date (YYY	Y-MM-DD)		Sun elevation	1 (Earth sun d	istance		
	Band	RAD	DIANCE_MULT	: R4	DIANCE_ADD	i P	REFLECTA	NCE_MULT	: RE	FLECTA	NCE
<											$\langle \rangle$
Run											
											2

Fig. 23.4: Conversion settings

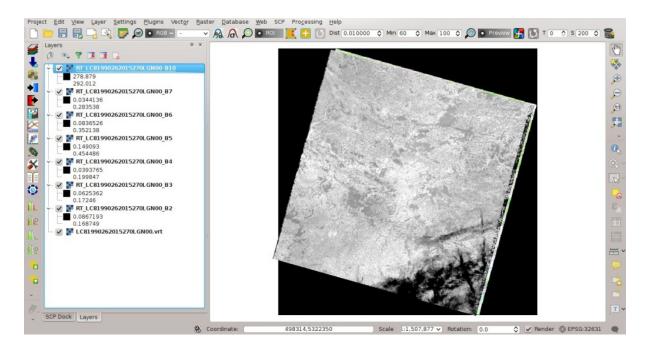


Fig. 23.5: Converted Landsat bands

\odot	Se	mi-Automatic Classif	ication Plugin	٢	00
Download images	🗞 Tools 🔶 Preprocess	ing Postproces	ising 🔛 Band calc 💋 E	Band set 🔊 Batch 🗼	s <
🐼 Landsat 🛛 📉 Sent	inel-2 🔣 ASTER 🏂	Clip multiple rasters	🂔 Split raster bands	PCA Vector to raster	
Raster list					
✓ RT_LC81990262013	5270LGN00_B10				
✓ RT_LC81990262015	5270LGN00_B7				
✓ RT_LC81990262013	5270LGN00_B6				U
✓ RT_LC81990262015	5270LGN00_B5				-
✓ RT_LC8199026201	5270LGN00_B4				
✓ RT LC8199026201	5270LGN00 B3				
-	27020100_05				
RT_LC8199026201	-				C
RT_LC81990262013 RT_LC81990262013 Clip coordinates UL X 402705	-	LR X 480824	LR Y 5381535) • Show	•
Clip coordinates	5270LGN00_B2	LR X (480824	LR Y 5381535	Show	
Clip coordinates ULX (402705	5270LGN00_B2	LR X 480824	LR Y 5381535 Output name prefix	Show	(+
Clip coordinates ULX 402705 Use shapefile for clip	5270LGN00_B2	LRX (480824) • Show	(+
Clip coordinates ULX 402705 Use shapefile for clip	5270LGN00_B2	LR X 480824) • Show	(+
Clip coordinates ULX 402705 Use shapefile for clip	5270LGN00_B2	LR X 480824) • Show	(+
Clip coordinates ULX 402705 Use shapefile for clip	5270LGN00_B2	LR X 480824) • Show	(+
Clip coordinate s UL X (402705 Use shapefile for clip NoData value (0	5270LGN00_B2	LR X 480824) • Show	(+

Fig. 23.6: Clip area

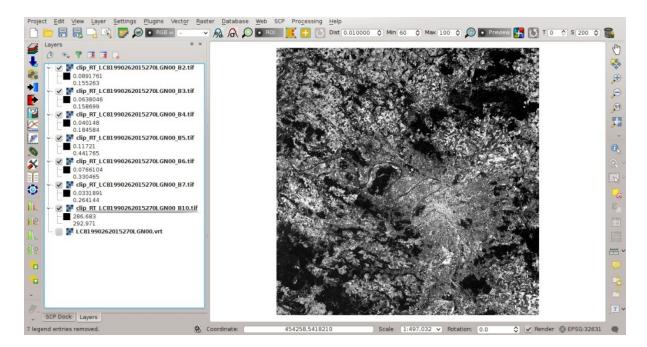


Fig. 23.7: Clipped bands

Land Cover Classification

Now we need to classify land cover, which will be used later for the creation of the emissivity raster. For detailed instructions about the **classification process** please see *Tutorial 2: Land Cover Classification of Sentinel-2 Images* (page 185).

We are going to use the following Macroclass IDs (see Classes and Macroclasses (page 150)).

Macroclasses

Macroclass name	Macroclass ID
Water	1
Built-up	2
Vegetation	3
Bare soil	4

Open the tab *Band set* (page 110) clicking the button *set* and define the Landsat 8 *Band set* using clipped bands from 2 to 7 (excluding band 10).

Band list			
clip_RT_LC81990262015270LGN00_B2.tif			â
clip_RT_LC81990262015270LGN00_B3.tif			
clip_RT_LC81990262015270LGN00_B4.tif			
clip_RT_LC81990262015270LGN00_B5.tif			
clip RT LC81990262015270LGN00 B6.tif			
clip_RT_LC81990262015270LGN00_B0.tlf			~
Clip_R1_LC81990262015270LGN00_B7.th			~
Band set definition			
Band name	E Center wave	length 🕴 Multiplicati	ve Factor 🔅 🛛 Additive
clip_RT_LC81990262015270LGN00_B2.tif	0.48	1	0
clip_RT_LC81990262015270LGN00_B3.tif	0.56	1	0
clip_RT_LC81990262015270LGN00_B4.tif	0.655	1	0
clip_RT_LC81990262015270LGN00_B5.tif	0.865	1	0
clip_RT_LC81990262015270LGN00_B6.tif	1.61	1	0
clip_RT_LC81990262015270LGN00_B7.tif	2.2	1	0
			<>
uick wavelength settings Landsat 8 OLI [bands 2, 3, 4,	5 6 71	✓ Wavelength unit µm	(1 E-6m)

Fig. 23.8: Band set

In the *SCP dock* (page 37) click the button \square , define a file name for the *Training input*. In the list *RGB*= of *Working toolbar* (page 33) select 4–3–2 to display a false color composite corresponding to the bands: Near-Infrared, Red, and Green (see *Color Composite* (page 145)).

After the creation of several ROIs for each land cover class, we can perform the classification of the whole image (see *Tutorial 2: Land Cover Classification of Sentinel-2 Images* (page 185)). After setting the colors of *MC ID* (in the tab *Macroclasses* (page 43) of the *SCP dock* (page 37)), in the tab *Classification algorithm* (page 44) check the

option *MC ID* to use Macroclass IDs and select the classification algorithm *Maximum Likelihood* (page 152).

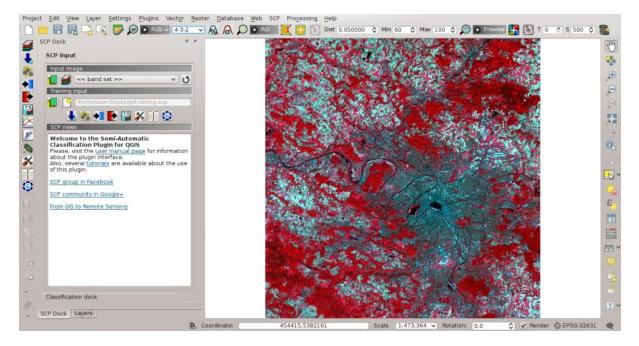


Fig. 23.9: Color composite

Then, open the tab *Classification output* (page 46), click the button and define the name of the classification output.

Reclassification of Land Cover Classification to Emissivity Values

Now we are going to reclassify the classification raster using the **land surface emissivity** values. The emissivity (e) values for the land cover classes are provided in the following table (values used in this tutorial are only indicative, because emissivity of every material should be obtained from field survey):

<i>Emissivity values</i>	Em	is	siv	vitv	val	ues
--------------------------	----	----	-----	------	-----	-----

Land surface	Emissivity e
Water	0.98
Built-up	0.94
Vegetation	0.98
Bare soil	0.93

Open the tab *Postprocessing* (page 91) clicking the button in the *SCP menu* (page 29), or the *SCP Tools*

(page 31), or the *SCP dock* (page 37). Select the tab *Reclassification* (page 96) and click the button \bigcirc to refresh the layer list and show the loaded rasters. Select the classification raster from the list.

Click the button to add 4 rows to the table *Values*. In this table, set the old value (the Macroclass ID of the classification) and the new value (the corresponding emissivity e) for every land cover class. Uncheck the

checkbox *Use code from Signature list*, click the button and define the name of the output raster (e.g. emissivity.tif).

This is the emissivity raster, where each pixel has the emissivity value that we have defined for the respective land cover class.

ROI creation	
Macroclasses	
Classification algorithm	
Use 🕑 MC ID 📄 C ID	
Algorithm	
Maximum Likelihooc 🗸 Threshold 0.000(🏠	
Land Cover Signature Classification	
Use 🗌 LCS 📄 Algorithm 📄 only overlap [
Classification output	

Fig. 23.10: Classification algorithm

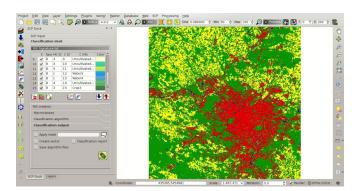


Fig. 23.11: Land cover classification

0			Semi-Automatic	Classification Plugin		\odot
5	Download image	s 🔹 Tools 🔶	Preprocessing Pos	stprocessing 🔡 Band calc	😹 Band set 🦠 Batch	X s <
7 0 2 8	Accuracy	Land cover change	Classification report	Classification to vector	Reclassification	Edit ri < 💙
Sele	ect the classification	on	classification.tif			~ U
Va	lues					
0	calculate CID to	MCID values			Calculate unique va	ulues 🚺
	Old value	1		New value		
1	1	0.98				
2	2	0.94				
3	3	0.98				
4	4	0.93				-
S	mbology					
		Signature list MC_ID				
R	un					
						2

Fig. 23.12: Reclassification

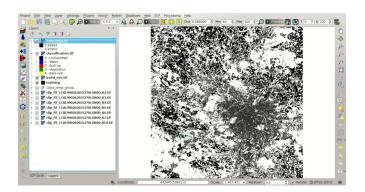


Fig. 23.13: Emissivity raster

Conversion from At-Satellite Temperature to Land Surface Temperature rature

Now we are ready to convert the At-Satellite Brightness Temperature to Land Surface Temperature, using the following equation (see *Estimation of Land Surface Temperature* (page 166)):

$$T = T_B / [1 + (\lambda * T_B / c_2) * ln(e)]$$

where:

- λ = wavelength of emitted radiance
- $c_2 = h * c/s = 1.4388 * 10^{-2}$ m K = 14388 μ m K
- $h = Planck's constant = 6.626 * 10^{-34} J s$
- $s = \text{Boltzmann constant} = 1.38 * 10^{-23} \text{ J/K}$
- c = velocity of light = 2.998×10^8 m/s

The values of λ for Landsat bands are listed in the following table.

Center wavelength of Landsat bands

Satellite	Band	$\lambda(m)$
Landsat 4, 5, and 7	6	11.45
Landsat 8	10	10.8
Landsat 8	11	12

Open the tab *Band calc* (page 104) clicking the button in the *SCP menu* (page 29), or the *SCP Tools* (page 31),

or the *SCP dock* (page 37). Click the button \bigcirc to refresh the layer list and show the loaded rasters. We have used band 10 of Landsat 8, therefore in the *Expression* (page 107) type the equation for conversion adapted to our rasters:

```
"clip_RT_LC81990262015270LGN00_B10.tif" / (1 + (10.8 * "clip_RT_

→LC81990262015270LGN00_B10.tif" / 14388 ) * ln("emissivity.tif") )
```


Click the button and define the name of the output raster (e.g. surface_temperature.tif). After the calculation, the Land Surface Temperature (in kelvin) will be loaded, and we can change the layer style. In addition, in the tab *Band calc* (page 104) we can calculate the temperature in Celsius with the expression:

"surface_temperature.tif" - 273.15

We can notice that the urban area and uncultivated land have the highest temperatures, while vegetation has the lowest temperature. The aim of this tutorial is to describe a methodology for the estimation of surface temperature using open source programs and free images. It is worth highlighting that in order to achieve more accurate results, one should perform field survey for improving the land cover classification and the estimation of surface emissivities.

In addition to Landsat, we are going to use an ASTER image and use the same methodology for the estimation of Land Surface Temperature.

Data Download and Conversion of ASTER Image

Open the tab Download images (page 51) and select the tab ASTER download (page 59).

In Login https://urs.earthdata.nasa.gov (page 60) enter the user name and password required for accessing data (free registration at EOSDIS Earthdata is required) in User and Password. The ASTER L1T data products are

Bar			
	Variable	Band name	Â
	raster1	emissivity.tif	
++	raster2	classification.tif	C
	raster3	clip_RT_LC81990262015270LGN00_B2.tif	
	raster4	clip_RT_LC81990262015270LGN00_B3.tif	^
	raster5	clip RT LC81990262015270LGN00 B4.tif	V
"0	clip_RI_LC8199026201 clip_RT_LC8199026201	270LGN00_B10.tif" / (1 + (10.8 * 270LGN00_B10.tif" / 14388) * ln("emissivity.tif"))	asin
"0	clip_RT_LC8199026201; clip_RT_LC8199026201;	* / sin ^ \ cos () tar > < whe	asin acos acos atan re exp nodata
	cision rules	* / sin	a asin a acos a acos a atan re exp nodata ion

Fig. 23.14: Calculation of surface temperature

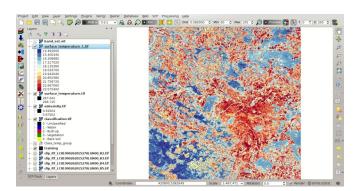


Fig. 23.15: Land Surface Temperature of the Landsat Image

retrieved from the online Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool.

In Search area (page 60) enter:

- *UL X (Lon)*: 2
- *UL Y (Lat)*: 49
- *LR X (Lon)*: 2.5
- *LR Y (Lat)*: 48.8

In Search (page 60) set the acquisition date:

- Date from: 2000-08-24
- to: 2000-08-24

Now click the button Find kiew and after a few seconds the image will be listed in the Image list.

\odot	Semi-A	utomatic Classification Plugin		\odot
👆 Download images 🛛 🧃	Tools 🔶 Preprocessing	Postprocessing 🔛 Band ca	lc 🥩 Band set	S Batch
头 Landsat download	🜏 Sentinel-2 download 💐	ASTER download		
Login https://urs.earthda	ita.nasa.gov			
User user		Password •••••••		🖌 🖌 remembe
Search area			A REPORT OF A PARTY OF	
UL X (Lon) 2.132564070	88 UL Y (Lat) 48.9641746499	9 LR X (Lon) 2.27224836448 LR	Y (Lat) 48.887254	9864 • Show +
Search				
Satellites ASTER Level 11	Date from	2000-08-24 v to 2000-08-24 v	Max	loud cover (%) 100 🔇
			THUR C	
Filter				Find 🛴
ASTER images				
Image list				
mage ist	In a set D		(Jacoba Dian Jacob	DaublightEles
1 AST L1T 003082420	ImageID 000111313_20150411071856		ImageDisplayID	
AST_LIT_005082420	100111313_20130411071830	2000-08-24 11 1	AS1_L11_0050	
				_
(<c< td=""><td></td><td></td><td></td><td><></td></c<>				<>
Download (from NASA E	OSDIS Land Processes DAAC)			
1	rers 🗸 Preprocess images 🗸			

Fig. 23.16: ASTER search result

In the result table, click the item AST_L1T_00308242000111313_20150411071856_3805 in the field *ImageID*, and click the button A preview will be downloaded and displayed in the map, which is useful for assessing the quality of the image and the cloud cover.

As we did for Landsat, we are going to apply the *DOS1 Correction* (page 162). The checkbox *Preprocess images* allows for the automatic conversion of bands after the download, according to the settings defined in *ASTER* (page 80). Bands from 1 to 9 will be converted to reflectance and bands from 10 to 14 will be converted to At-Satellite Brightness Temperature.

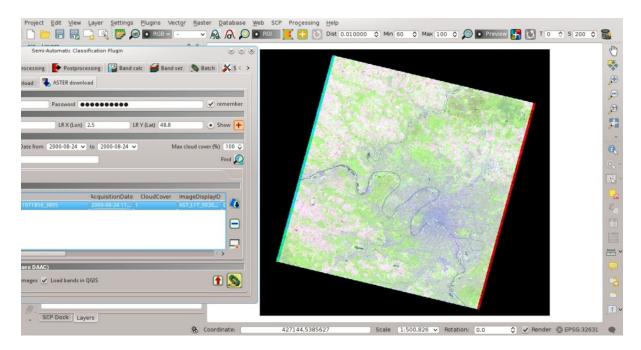


Fig. 23.17: ASTER image preview

Open the tab *ASTER* (page 80), check Apply DOS1 atmospheric correction and leave checked *Create* Band set and use Band set tools (this is useful to automatiacally create a Band set, which is required for the next step).

In order to start the **download and conversion process**, open the tab *ASTER download* (page 59), click the button

and select the directory where converted bands are saved (e.g. Desktop). After a few minutes, converted bands are loaded and displayed (file name starts with RT_).

Clip to Study Area of ASTER image

We are going to **clip the ASTER images** to our study area, because bands are not aligned at the border.

Open the tab *Preprocessing* (page 77) clicking the button **7**. Select the tab *Clip multiple rasters* (page 84) and

click the button v to refresh the layer list and show the loaded rasters. *Band set 'Click the button |select_all| to select all the rasters to be clipped, and check |checkbox| :guilabel: 'Use temporary ROI for clipping.* Now, we can draw a manual ROI (because a *Band set* is already defined, see *ROI creation* (page 42)) about the same shape of the ASTER image, about 20 pixels within the border thereof (in order to align the border of all the bands).

Now click the button and select the directory where clipped bands are saved (e.g. Desktop). Clipped bands have the prefix clip_ and will be automatically loaded and displayed. We can remove the bands whose names start with RT_ from QGIS layers.

Land Cover Classification of ASTER Image

Using the same Macroclass IDs used for Landsat, we are going to classify the ASTER image.

Open the tab *Band set* (page 110) clicking the button *Set*. Click tha button

X to clear all bands from *Band set*

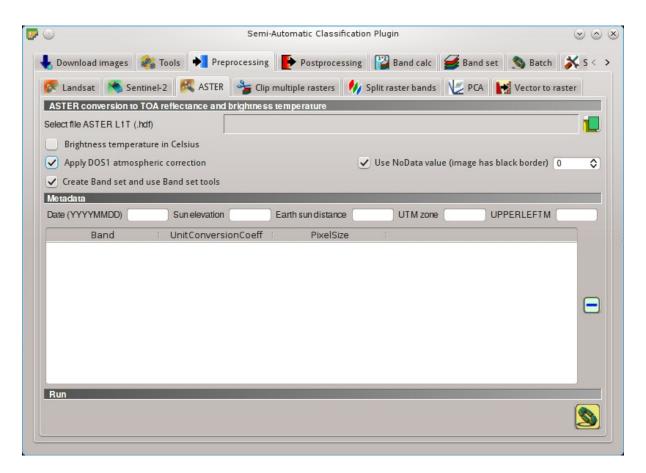


Fig. 23.18: Conversion settings

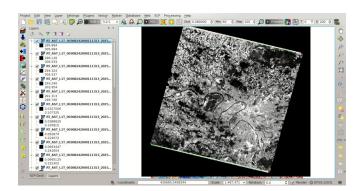


Fig. 23.19: Converted ASTER bands

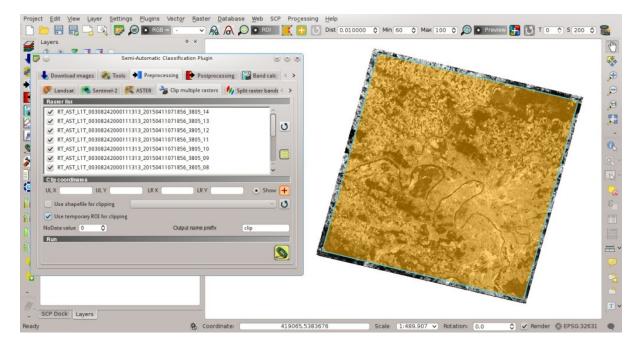


Fig. 23.20: Clip area

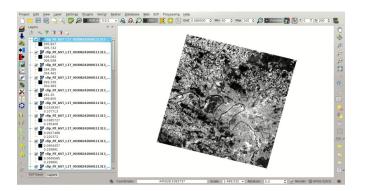


Fig. 23.21: Clipped bands

\odot	Semi-Automatic Classification Plugin	\odot	\odot
mages	🍇 Tools heprocessing 📑 Postprocessing 🔡 Ba	and calc 🥌 Band set	< >
Band	list		
🗸 c	lip_RT_AST_L1T_00308242000111313_20150411071856_3805_05	<u>^</u>	
VC	lip_RT_AST_L1T_00308242000111313_20150411071856_3805_04		-
V (lip_RT_AST_L1T_00308242000111313_20150411071856_3805_03		0
	lip_RT_AST_L1T_00308242000111313_20150411071856_3805_02		
_	lip_RT_AST_L1T_00308242000111313_20150411071856_3805_01	U	
	"P] 0.[]eosocz.zococ	~	+
Band	set definition		
	Band name	E Center wavelen	
1 clip	RT_AST_L1T_00308242000111313_20150411071856_3805_01	0.56	H
1000	RT_AST_L1T_00308242000111313_20150411071856_3805_02	0.66	
3 clip	RT_AST_L1T_00308242000111313_20150411071856_3805_03	0.81	ва
4 clip	RT_AST_L1T_00308242000111313_20150411071856_3805_04	1.65	
5 clip	RT_AST_L1T_00308242000111313_20150411071856_3805_05	2.165	
6 clip	_RT_AST_L1T_00308242000111313_20150411071856_3805_06	2.205	
	RT_AST_L1T_00308242000111313_20150411071856_3805_07	2.26	
o elie	DT ACT 11T 00200242000111212 20150411071056 2005 00	2.22	Ĭ
7 clip	_RT_AST_L1T_00308242000111313_20150411071856_3805_07	×	
C.Y. J. Lenne	set tools	<u> </u>	
	eate virtual raste 📄 Create raster of bai 📄 Build band overviev 🌘	Band calc expressi	

and define the ASTER Band set using the clipped bands from 1 to 9.

Fig. 23.22: ASTER band set

In the *SCP dock* (page 37) click the button , define a file name for the *Training input* (e.g. training_ASTER). Clear the table *ROI Signature list* (page 41) highlighting all the spectral signatures created

previously for Landsat and clicking the button

In the list RGB= of Working toolbar (page 33) select 3-2-1 to display a false color composite corresponding to the bands: Near-Infrared, Red, and Green (see *Color Composite* (page 145)).

After the creation of several ROIs for each land cover class, we can perform the classification of the whole image. After setting the colors of *MC ID* (in the tab *Macroclasses* (page 43) of the *SCP dock* (page 37)), in the tab

Classification algorithm (page 44) check the option *MC ID* to use Macroclass IDs and select the classification algorithm *Maximum Likelihood* (page 152). Then, open the tab *Classification output* (page 46), click the button

and define the name of the classification output (e.g. classification_aster.tif).

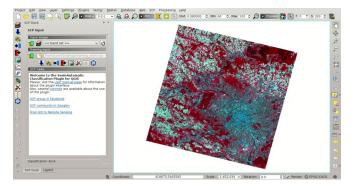


Fig. 23.23: ASTER color composite

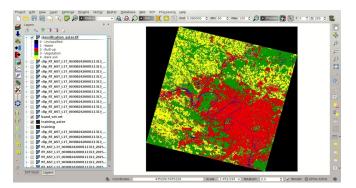


Fig. 23.24: ASTER land cover classification

Reclassification of Land Cover Classification to Emissivity Values of ASTER Image

Now we are going to reclassify the classification raster using the same **land surface emissivity** values used for Landsat.

Open the tab *Postprocessing* (page 91) clicking the button **I**. Select the tab *Reclassification* (page 96) and click

the button \boldsymbol{U} to refresh the layer list and show the loaded rasters. Select the classification raster from the list.

Click the button to add 4 rows to the table *Values*. In this table, set the old value (the Macroclass ID of the classification) and the new value (the corresponding emissivity e) for every land cover class. Uncheck the

checkbox *Use code from Signature list*, click the button *and define the name of the output raster (e.g. emissivity_aster.tif).*

The following figure show the emissivity raster of ASTER image.

Conversion from At Satellite Temperature to Land Surface Temperature of ASTER Image

We can convert the At-Satellite Brightness Temperature to Land Surface Temperature, using the same equation used for Landsat (see *Estimation of Land Surface Temperature* (page 166)).

The values of λ for ASTER bands are listed in the following table.

Center wavelength of ASTER bands

0			Semi-Automatic C	Classification Plugin		0
5	Download imag	ges 🖓 Tools 🔶	Preprocessing Post	processing 🔡 Band calc	😹 Band set 🔊 Batch	X s <
7 0 2 8	Accuracy	Land cover change	Classification report	Classification to vector	Reclassification	Edit ri <
Sele	ect the classifica	ation	classification_aster.tif			- U
Va	alues					
0	calculate CID	to MCID values			Calculate unique v	alues 🕟
	Old value	1		New value		
1	1	0.98				
2	2	0.94				
3	3	0.98				_
4	4	0.93				-
61	mbology					_
		n Signature list MC_ID				~
R						
						N

Fig. 23.25: ASTER reclassification

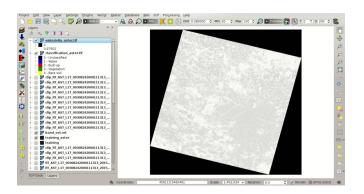


Fig. 23.26: ASTER emissivity raster

Satellite	Band	$\lambda(m)$
ASTER	10	8.3
ASTER	11	8.65
ASTER	12	9.1
ASTER	13	10.6
ASTER	14	11.3

We are going to use ASTER band 13 that has a λ value very similar to the Landsat band 10.

Open the tab *Band calc* (page 104) clicking the button \square . Click the button \square to refresh the layer list and show the loaded rasters, and in the *Expression* (page 107) type equation for conversion adapted to our rasters:

	Variable	Band name	Â		
1 r	raster1 emissivity_aster.tif raster2 classification aster.tif				
		classification_aster.tif			
3 r	raster3	classification_aster.tif clip_RT_AST_L1T_00308242000111313_20150411071856_3805_14.tif			
4 r 5 r	raster4	clip_RT_AST_L1T_00308242000111313_20150411071856_3805_13.tif clip_RT_AST_L1T_00308242000111313_20150411071856_3805_12.tif	<u></u>		
5 r	raster5	Clip RT AST LTT 00308242000111313 20150411071856 3805 12.tif			
- Poli	IP_RI_ASI_LI1_00308242000	111313_20150411071856_3805_13.tif" / (1 + (10.6 *	- == !=		
In(IP_RT_AST_LIT_00308242000 ip_RT_AST_LIT_00308242000 "emissivity_aster.tif"))	111313_20150411071856_3805_13.tif" / (1 + (10.6 * 111313_20150411071856_3805_13.tif" / 14388) * ★ (() Inde	 == != / sin asin √ cos acos) tan atan < where exp π nodata 		

Fig. 23.27: Calculation of surface temperature

Click the button and define the name of the output raster (e.g. surface_temperature_aster.tif). After the calculation, the Land Surface Temperature (in kelvin) will be loaded, and we can change the layer style. In addition, in the tab *Band calc* (page 104) we can calculate the temperature in Celsius with the expression:

"surface_temperature_aster.tif" - 273.15

The ASTER image shows temperature values higher than the Landsat image. For instance, we could perform the difference between the two surface temperature rasters (Landsat and ASTER) to assess the variation of temperature. However, we should notice that the two images were acquired in different months (Landsat on 27-09-2015 and ASTER on 24-08-2000).

The large availability of Landsat and ASTER images for the past decades allows for the reliable monitoring of land

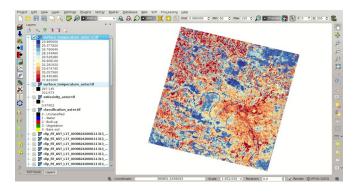


Fig. 23.28: Land Surface Temperature of the ASTER Image

cover and surface temperature. Nevertheless, cloud cover can limit the number of images that can be effectively used.

This tutorial illustrated a methodology of temperature estimation using these satellite images and open source programs. One should always consider that the estimation accuracy depends on several factors, such as the thematic and spatial accuracy of land cover classifications and the reliability of the emissivity values. Estimation errors can be of 1 K or even more. Other methods have been developed which can provide more accurate results, and the reader can continue the research.

Other Tutorials

For other tutorials visit the blog From GIS to Remote Sensing .

Also, visit the blog From GIS to Remote Sensing for other tutorials such as:

- Flood Monitoring Using The Semi-Automatic Classification Plugin;
- Wildfire Monitoring Using The Semi-Automatic Classification Plugin;
- From Image Download to NDVI Calculation in One Move: SCP Batch;

Tutustuaksesi muihin epävirallisiin oppaisiin, myös muilla kielillä kuin englanniksi, katso Other tutorials about SCP, also in languages other than English? (page 270).

Osa VII

Semi-Automatic OS

The Semi-Automatic OS is a lightweight virtual machine for the land cover classification of remote sensing images. It includes the Semi-Automatic Classification Plugin (SCP) for QGIS, already configured along with all the required dependencies, and installed through the official SCP repository (https://semiautomaticgit.github.io/ SemiAutomaticClassificationPlugin/repository.xml) which provides always the latest version of SCP.

Fig. 23.29: Semi-Automatic OS desktop

The Semi-Automatic OS is based on Debian, and it is designed to require very little hardware resources. It uses LXDE and Openbox as main desktop environment. This virtual machine can be useful for testing the Semi-Automatic Classification Plugin, or when the installation of the required programs in the host system is problematic.

The Semi-Automatic OS is available as a 32 bit and 64 bit virtual machine that can be run in the open source VirtualBox, or any other virtualization program. The following is a guide for the installation of the Semi-Automatic OS in the open source program of virtualization VirtualBox.

LUKU **24**

Installation in VirtualBox

- 1. Download VirtualBox open source software (select a proper version depending on your OS) and install it; at the end of the installation restart the system;
- 2. Download the Semi-Automatic OS virtual machine (about 800 MB) from here (32 bit or 64 bit);
- 3. Extract the virtual machine content in a directory (it requires about 3 GB of disk space); the file is compressed in 7z format (if needed, download the open source extraction software from http://www.7-zip.org/);
- 4. Run VirtualBox and create a new Debian virtual machine;
 - (a) Click the New button;
 - (b) Type a name for the virtual machine (for instance Semi-Automatic OS); select Linux and Debian (32 or 64 bit) as Type and Version respectively; click Next;

ile <u>Machin</u>	e <u>H</u> elp		
ew Setting	s Start	Disca 🚾 Create Virtual Machine	Details Snapshots
		Name and o Please choose a d machine and selection used throughout V Name: Semi-Aut Type: Linux Version: Debian (3)	escriptive name for the new virtual t the type of operating system you nit. The name you choose will be omatic OS

(c) Set the memory size; the more is the better, but this parameter should not exceed a half of the host system RAM (for instance if the host system has 1 GB of RAM, type 512 MB); click Next;

File	Machine	Help				
New New	Settings	Start	Discal 🖾 Create Virtua	N Machine		Details Snapshots
				Memory size Select the amount be allocated to the The recommended 4 MB	of memory (RAM) in mega	ial machines on your haven't created any virtual ss the top or ation

(d) In the Hard drive settings select Use an existing virtual hard drive file and select the downloaded file SemiAutomaticOS.vmdk; click Create;

File	Machine	Help		
New	Settings	Start	Disca 🖾 Create Virtual Machine	Details Snapshots
			Create Virtual Machine Hard drive Figure Virtual Machine Figure Virtual Mard drive to the new machine, so created, a new hard drive file or select one from the list or from another location using the folder icon. If you need a more complex storage set-up you can skip this step and make the changes to the machine, strings once the machine is created. If you need a more complex storage set-up you can skip this step and make the changes to the machine is traded. If you need a wirtual hard drive is 10,00 GB. If on not add a virtual hard drive now If Use an existing virtual hard drive file Semi-Automatic OS.vmdk (Normal, 10,00 () Image: A more complex	al machines on your haven't created any virtual ss the e top or ation

- 5. Start the Semi-Automatic OS by clicking the Start button;
- 6. It is recommended to install the virtualbox-guest-utils in the virtual machine, from the Menu > Preferences > Synaptic Package Manager; it allows for a better integration of the Semi-Automatic OS in the host system, such as: the resize of the system window, or the folder sharing.

The Semi-Automatic OS includes a sample dataset of Landsat image (available from the U.S. Geological Survey) and a Sentinel-2 image (© Copernicus Sentinel data 2016) which are the input for the two basic tutorials.

Semi-Automatic OS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License. Semi-Automatic OS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. See http://www.gnu.org/licenses/.

Osa VIII

Frequently Asked Questions

If you have comments or questions please join the Facebook group or the Google+ Community .

Before asking, please check the official site From GIS to Remote Sensing and the following Frequently Asked Questions.

- *Plugin installation* (page 255)
 - How to install the plugin manually? (page 255)
 - *How to install the plugin from the official SCP repository?* (page 255)
- Pre processing (page 259)
 - Which image bands should I use for a semi-automatic classification? (page 259)
 - Which Landsat bands can be converted to reflectance by the SCP? (page 259)
 - Can I apply the conversion to Sentinel-2 images download from the web? (page 259)
 - How are converted Sentinel-2 images that have different resolutions? (page 260)
 - Can I apply the Landsat conversion and DOS correction to clipped bands? (page 260)
 - Can I apply the DOS correction to bands with black border (i.e. with NoData value)? (page 260)
 - How to remove cloud cover from images? (page 260)
 - How do I create a virtual raster manually in QGIS? (page 260)
 - After pan-sharpening of Landsat 8 images, why NIR bands still have 30m resolution? (page 260)
- *Processing* (page 261)
 - I get classification errors. How can I improve the accuracy? (page 261)
 - Is it possible to use the same training input for multiple images? (page 261)
 - What is the difference between classes and macroclasses? (page 261)
 - Can I use SCP with images from drones or aerial photographs? (page 261)
 - Why using only Landsat 8 band 10 in the estimation of surface temperature? (page 262)
- Warnings (page 263)
 - Warning [12]: The following signature will be excluded if using Maximum Likelihood. Why? (pa-ge 263)
- Errors (page 265)
 - How can I report an error? (page 265)
 - Virtual raster creation issues. Why? (page 265)
 - Error [26] 'The version of Numpy is outdated'. Why? (page 267)
 - Error 'Plugin is damaged. Python said: ascii'. Why? (page 267)
 - Error [50] 'Internet error'. Unable to download Sentinel-2 images. Why? (page 267)
 - Error [56] 'SSL connection error'. Unable to download Sentinel-2 images. Why? (page 267)
 - This plugin is broken 'matplotlib requires pyparsing >= 1.5.6'. Why? (page 268)
 - Error installing the plugin, possible missing dependencies. Why? (page 268)
- Various (page 269)
 - What can I do with the SCP? (page 269)
 - How to contribute to SCP (page 270)
 - Free and valuable resources about remote sensing and GIS (page 270)

- Other tutorials about SCP, also in languages other than English? (page 270)
- How can I translate this user manual to another language? (page 271)
- Where is the source code of SCP? (page 272)

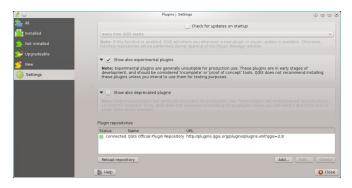
Plugin installation

How to install the plugin manually?

The SCP can be installed manually (this can be useful when an internet connection is not available, or the installation is required on multiple computers), following a few steps:

- 1. download the SCP zip archive from https://github.com/semiautomaticgit/ SemiAutomaticClassificationPlugin/archive/master.zip;
- extract the content of the archive (several files such as COPYING.txt and folders such as ui) in a new folder named SemiAutomaticClassificationPlugin (without -master);
- 3. open the QGIS plugins directory (in Windows usually C:\Users\username\. qgis2\python\plugins, in Linux and Mac usually /home/username/.qgis2/python/ plugins/) and delete the folder SemiAutomaticClassificationPlugin if present;
- 4. copy the folder SemiAutomaticClassificationPlugin inside the QGIS plugins directory;
- 5. the plugin should be installed; start QGIS, open the Plugin Manager and be sure that Semi-Automatic Classification Plugin is checked.

How to install the plugin from the official SCP repository?


It is possible to install the SCP using the official repository. This repository allows for the installation of the latest version of SCP (master), in some cases also before the availability thereof in the QGIS repository. Therefore, this can be useful if you need a fix or a new function that is still not available in the QGIS repository. Moreover, the master version in the SCP repository can be installed along with the version available in the QGIS repository.

In order to install the SCP repository follow these steps:

- Run QGIS 2;
- From the main menu, select Plugins > Manage and Install Plugins;

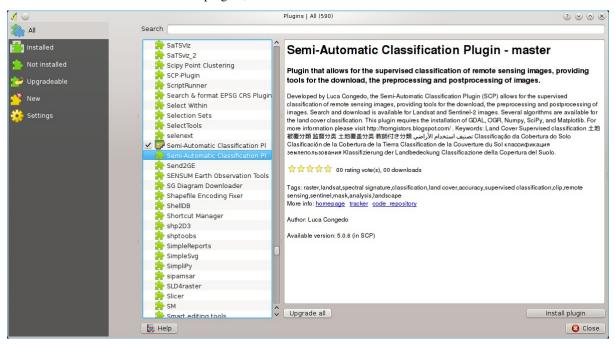
				Settings															
	-		13	<u>راس</u> 😵	🍓 Mana	Manage and Install Plugins			0	Q	2	- Q.	0	-	-	1	3	 00	- 🔘
	_		-C3 - V		Pytho	on Consol	e			10	~	-75	xe43	-W				<u>6-01</u>	 25
116		 							_										

• Click Settings then click the button Add;

• Inside the Repository details enter:

Name:

SCP


URL:

```
https://semiautomaticgit.github.io/SemiAutomaticClassificationPlugin/repository.xml
```

and click OK;

X 🔾	Repository details 📀 😒 🔿 😣
Name	SCP
URL	(https://semiautomaticgit.github.io/SemiAutomaticClassificationPlugin/repository.xml
Parameters	(?qgis=2.8
Enabled	
	V OK 🥝 Cancel

• After the repository update, the item Semi-Automatic Classification Plugin - master should be listed with the other plugins;

• From the menu All, select the Semi-Automatic Classification Plugin - master and click the button Install plugin; the latest version of SCP should be automatically activated (ignore errors, the restart of QGIS could be necessary to complete the SCP installation); it is possible to deactivate the other SCP installed in the QGIS repository;

LUKU **26**

Pre processing

Which image bands should I use for a semi-automatic classification?

In general, it is preferable to avoid thermal infrared bands. If you are using Landsat 4, 5 or 7 you should select bands: 1, 2, 3, 4, 5, 7 avoiding band 6 that is thermal infrared; for Landsat 8 you should select bands: 2, 3, 4, 5, 6, 7. Landsat 8 band 1 is generally avoided because it is very similar to the blue band and it is mainly used for coastal aerosol study. Landsat thermal infrared band is excluded from classifications because values are mainly related to object temperature.

For Sentinel-2 images you can use bands: 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12.

Which Landsat bands can be converted to reflectance by the SCP?

All Landsat 1,2, and 3 MSS and Landsat 4, 5, 7, and 8 images downloaded from http://earthexplorer.usgs.gov/ and processed with the Level 1 Product Generation System (LPGS) can be converted to reflectance automatically by the SCP; products generated by the LPGS have a MTL file included that is required for the conversion. Since version 3.1.1 the *SCP* can also convert images from the Global Land Cover Facility (images available for free from ftp://ftp.glcf.umd.edu/glcf/Landsat/). In particular, images having an old format of the MTL file (or a .met file) can be processed through the automatic conversion to reflectance and the DOS correction. However, some images do not have the required information and cannot be processed. Also, notice that some images available from the Global Land Cover Facility are already converted to reflectance. For this process, image bands must be renamed in order to remove the final 0 if present (e.g. rename B10 to B1).

Can I apply the conversion to Sentinel-2 images download from the web?

Yes, you can convert also images downloaded from the web (actually the conversion is recommended). You should move all the bands (.jp2 files) and if available the .xml file whose name contains MDT_SAFL1C in the same directory. Then select this directory in *Sentinel-2 conversion* (page 80). Images are converted to reflectance.

How are converted Sentinel-2 images that have different resolutions?

During the conversion to reflectance, pixels of 20m bands are split in 4 pixels of 10m whose values are the same as the original 20m pixel. The purpose of this operation is to allow for the calculation between all the bands, without changing original values.

Can I apply the Landsat conversion and DOS correction to clipped bands?

Yes, you can clip the images before the conversion to reflectance and then copy the MTL file (contained in the Landsat dataset) inside the directory with the clipped bands. If you want to apply the DOS correction (which is an image based technique) you should convert the original Landsat bands (the entire image) and then clip the conversion output (i.e. bands converted to reflectance).

Can I apply the DOS correction to bands with black border (i.e. with NoData value)?

If you want to apply the DOS correction to an entire band which has NoData values (the black border with value = 0) then you have to check the checkbox Use NoData value and set the value to 0. This is because DOS is an image based technique, and NoData values must be excluded from the calculation.

How to remove cloud cover from images?

DOS1 correction does not remove clouds from the image. However, Landsat 8 images include Band 9 that identifies clouds (see this NASA site). You can use this band for the creation of a mask.

For other Landsat satellites, clouds can be masked using the approach described this paper.

Also, see the following video-tutorial.

How do I create a virtual raster manually in QGIS?

In order to create a multi-spectral virtual raster in QGIS:

- 1. from the menu Raster select Miscellaneous > Build Virtual Raster (catalog);
- 2. click the button Select... and select all the Landsat bands (in numerical order);
- 3. select the output file (for instance rgb.vrt); check Separate (bands will be separated) and click OK.

After pan-sharpening of Landsat 8 images, why NIR bands still have 30m resolution?

Landsat 8 panchromatic band doesn't acquire in the Near Infrared (NIR) region (see *Landsat Satellite* (page 141)). Therefore, the pan-sharpening process can't improve the resolution of NIR and SWIR bands (see *Pan-sharpening* (page 146)), which appear to have 30m resolution. However, raster all pan-sharpened rasters have 15m resolution to allow raster calculation.

Processing

I get classification errors. How can I improve the accuracy?

Several materials have similar spectral signatures (e.g. soil and built-up, or forest and other types of dense low vegetation), which can cause classification errors if ROIs, and spectral signatures thereof, are not acquired correctly. In order to improve the results, you can try to collect more ROIs over these areas, in order to train the algorithm for these very similar areas, also, display the spectral signatures of these areas in *Spectral Signature Plot* (page 121) to assess their similarity. You can also use a *Signature threshold* (page 72) for these signatures in order to reduce the variability thereof (only pixels very similar to the input signatures will be classified). The *Land Cover Signature Classification* (page 154) is also useful for classifying specific materials that can be spectrally similar to other ones.

Is it possible to use the same training input for multiple images?

Yes, it is possible if all the images have the same number of bands. However, if images are acquired in different months, land cover changes (especially of vegetation state) will affect the spectral signature (i.e. the same pixel has different spectral signature in different periods). Atmospheric effects could also affect the images differently. That could reduce classification accuracy. Therefore, it is suggested to collect always the ROIs and spectral signatures for every image.

What is the difference between classes and macroclasses?

Please see Classes and Macroclasses (page 150).

Can I use SCP with images from drones or aerial photographs?

Yes, you can use them if they have at least 4 bands. With less than 4 bands, semi-automatic classification algorithms are unable to classify the land cover correctly. Alternative classification methods exist, such as object oriented classification, which is not implemented in SCP.

Why using only Landsat 8 band 10 in the estimation of surface temperature?

Several methods were developed for estimating surface temperature. The method described in the tutorial for temperature estimation requires only one band. Moreover, USGS recommends that users refrain from relying on Landsat 8 Band 11 data in quantitative analysis of the Thermal Infrared Sensor data (see Changes to Thermal Infrared Sensor (TIRS) data by USGS).

LUKU **28**

Warnings

Warning [12]: The following signature will be excluded if using Maximum Likelihood. Why?

The ROI is too small (or too homogeneous) for the *Maximum Likelihood* (page 152) algorithm because that ROI has a singular covariance matrix. You should create larger ROIs or don't use the Maximum Likelihood algorithm in the classification process.

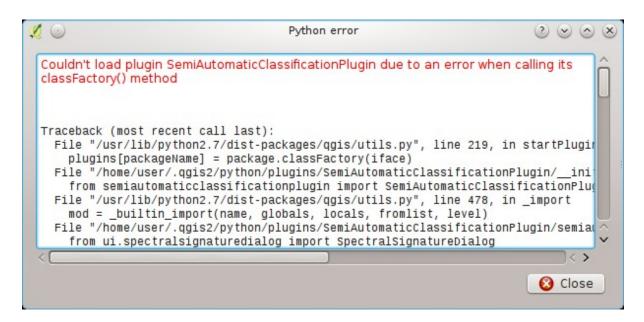
Errors

How can I report an error?

If you found an error of the Semi-Automatic Classification Plugin please follow these steps in order to collect the required information (log file):

- 1. close QGIS if already open;
- 2. open QGIS, open the Plugin tab *Debug* (page 119) and check the checkbox *Records events in a log file* :
- 3. click the button *Test dependencies* in the tab *Debug* (page 119);
- 4. load the data in QGIS (or open a previously saved QGIS project) and repeat all the steps that cause the error in the Plance of the error of the Plance of the error of the Plance of the error of the
 - if the issue could be related to the image data, please use this sample dataset ;
- 5. if an error message appears (like the one in the following image), copy the whole content of the message in a text file;
- 6. open the tab *Debug* (page 119) and uncheck the checkbox *Records events in a log file*, then click the

button **1** and save the **log file** (which is a text file containing information about the Plugin processes);


- 7. open the log file and copy the whole content of the file;
- 8. join the Facebook group or the Google+ community, create a new post and copy the error message and the **log file** (or attach them).

Virtual raster creation issues. Why?

The automatic creation of the virtual raster after Landsat conversion to reflectance is not required for the classification. Errors could happen if the output destination path contains special characters (such as accented letters) or spaces; try to rename directories (e.g. rename new directory to new_directory). If you still get the same error you can create a virtual raster manually.

0	Semi-Automatic Classification Plugin	\odot
load images 🛛 🍂 Tools 🔶 Prep	rocessing 📄 Postprocessing 🔛 Band calc 🚄 Band set	S Batch Settings <
nterface		
Processing		
lebug		
Log file		
Record events in a Log file		1
Test		
Test dependencies 🕟		

Fig. 29.1: Debug

Error [26] 'The version of Numpy is outdated'. Why?

QGIS 32bit could have an older version of Numpy as default; in order to update Numpy:

- 1. download this file (which is based on WinPython installer and PyParsing);
- 2. extract the file with 7-zip;
- 3. copy the content of the extracted directory inside the directory apps\Python27\Lib\site-packages inside the QGIS installation directory (e.g. C:\Program Files (x86)\QGIS Chugiak\apps\Python27\Lib\site-packages) overwriting the files pyparsing, numpy, matplotlib, and scipy.

Alternatively, you should be able to install QGIS and Numpy with the OSGEO4W advanced installer.

Error 'Plugin is damaged. Python said: ascii'. Why?

It could be related to a wrong installation. Please, uninstall QGIS and install it again with administrative rights. Delete also the directory .qgis2 in your user directory. Then run QGIS 2 and try to install the plugin following the *Liitännäisen asennus* (page 7) guide.

Also, it could be related to the user name containing special characters. Please try the installation creating a new user without special characters (e.g. user).

Also, if the error message contains something like: sfnt4 = sfnt4.decode('ascii').lower()

it could be related to a known issue of Matplotlib (a Python library); in order to solve this, you should (as reported at stackoverflow):

- 1. open in a text editor the file font_manager.py which is inside the directory C:\PROGRA~1\QGISCH~1\apps\Python27\lib\site-packages\matplotlib\
- 2. search for the line sfnt4 = sfnt4.decode('ascii').lower()
- 3. and replace it with the line sfnt4 = sfnt4.decode('ascii', 'ignore').lower()

Alternatively, try to install QGIS through the OSGEO4W installer, which includes an updated Matplotlib version.

Error [50] 'Internet error'. Unable to download Sentinel-2 images. Why?

The error message usually includes some information about the issue. First, check the user name and password.

Also, there could be an interruption of the service. For Sentinel-2 images please check this website https://scihub. copernicus.eu/news/ for messages about the state of the service.

In case you still get the same error, please follow these steps How can I report an error? (page 265).

Error [56] 'SSL connection error'. Unable to download Sentinel-2 images. Why?

First, check the user name and password.

This issue could be related to SSL protocols (TLS v1.1 and TLS v1.2) required for Sentinel-2 download. As described here https://docs.python.org/2/library/ssl.html the protocols TLS v1.1 and TLS v1.2 are available only in Python 2.7.9+ with openssl version 1.0.1+. QGIS could have a previous version of Python where TLS v1.1 and TLS v1.2 are not available. Therefore the Sentinel-2 download process fails.

A temporary solution for Windows OS:

Warning: this could break other QGIS functions, but fortunately you can install multiple versions of QGIS.

- 1. Close QGIS if open
- 2. Download and install Python for 32bit or for 64bit according to the installed version of QGIS
- 3. Copy and replace C:\python27\python.exe to "QGIS installation folder"\bin\ (e.g. C:\Program Files (x86)\QGIS Chugiak\bin\)
- 4. Copy and replace C:\python27\pythonw.exe to "QGIS installation folder"\bin\
- 5. Copy and replace all the content of C:\python27\ to "QGIS installation folder"\apps\python27\
- 6. Now start QGIS and if everything went well you should be able to search and download Sentinel-2 images using SCP

In case you still get the same error, please follow these steps How can I report an error? (page 265).

This plugin is broken 'matplotlib requires pyparsing >= 1.5.6'. Why?

It is related to this issue https://hub.qgis.org/issues/14952 which should affect QGIS 32bit only. The installation of QGIS 64bit should work. As a solution you can install a previous version of QGIS 2.8 32bit .

Error installing the plugin, possible missing dependencies. Why?

The plugin requires the installation of GDAL, NumPy, SciPy and Matplotlib, which should be installed along with QGIS. If the plugin installation fails, and you get a message about possible missing dependencies, you should try to install or update QGIS and the required dependencies. Notice that in order to avoid this error, python dependencies should not be installed through Anaconda.

Various

What can I do with the SCP?

SCP allows for the **land cover classification** of remote sensing images through *Supervised Classification* (page 149). You can produce a land cover raster using one of the *Classification Algorithms* (page 151) available in SCP. These algorithms require spectral signatures or ROIs as input (for definitions please read *Brief Introduction to Remote Sensing* (page 137)) that define the land cover classes to be identified in the image.

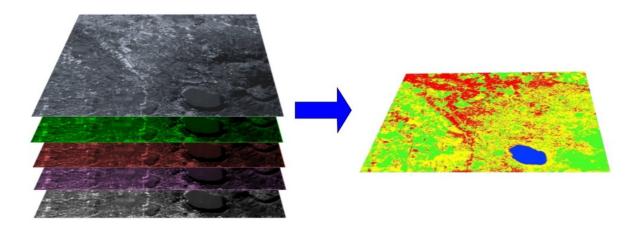


Fig. 30.1: A multispectral image processed to produce a land cover classification (Landsat image provided by USGS)

SCP can work with **multispectral images** acquired by satellites, airplanes, or drones. Also, *SCP* allows for the direct search and download of free images (see *Download images* (page 51)). You cannot use orthophotos with less than 4 bands, SAR data, and LIDAR data with SCP.

Input image in *SCP* is called *Band set* (page 110), which is used as input for the classification. *SCP* provides several tools for the *Preprocessing* (page 77) of downloaded images, such as the conversion to reflectance and manipulation of bands.

Classification results can be assessed with the tools *Accuracy* (page 91) and *Classification report* (page 94). Also, rasters can be manipulated using *Postprocessing* (page 91) tools such as *Classification to vector* (page 96),

Reclassification (page 96), *Edit raster* (page 99) directly, *Classification sieve* (page 101), *Classification erosion* (page 104), and *Classification dilation* (page 104).

The *Spectral Signature Plot* (page 121) and *Scatter Plot* (page 127) allow for the **analysis of spectral signatures and ROIs**. Also, several *Tools* (page 65) are available for easing the ROI creation and editing spectral signatures.

Raster calculation is available through the seamless integration of the tool *Band calc* (page 104) with bands in the *Band set* (page 110), calculating mathematical expressions and spectral indices. Also, an output raster can be calculated based on *Decision rules* (page 108).

The tool Batch (page 113) allows for the automatic execution of several SCP functions using a scripting interface.

See the *Perusoppaat* (page 171) for more information and examples.

How to contribute to SCP

You can contribute to *SCP* by fixing and adding functionalities (see *Where is the source code of SCP*? (page 272)), or translating the user manual (see *How can I translate this user manual to another language*? (page 271)).

Also, you can donate to this project at the following link https://fromgistors.blogspot.com/p/donations.html .

Free and valuable resources about remote sensing and GIS

The following links are valuable resources:

- The Landsat 8 Data Users Handbook by USGS;
- The Landsat 7 Science Data Users Handbook by NASA;
- Remote Sensing Note by JARS.
- Webinar: Fundamentals of Remote Sensing by NASA.
- Webinar: NASA Remote Sensing for Land Management by NASA.
- Webinar: Creating and Using Normalized Difference Vegetation Index (NDVI) from Satellite Imagery by NASA.
- Webinar: Remote Sensing of Forest Cover and Change Assessment for Carbon Monitoring by NASA.
- Webinar: Introduction to Remote Sensing for Conservation Management by NASA.

Other tutorials about SCP, also in languages other than English?

There are several tutorials about SCP on the internet. Following an incomplete list of these resources:

- French: Suivre l'impact des feux de forêts par imagerie satellite avec le plugin Qgis SCP;
- German: 2015 Jakob Erfassung von Landnutzungsveränderungen mit FOSS Image Processing Tools;
- Italian: Classificazione e Mosaico di Varie Immagini Landsat;
- Korean: QGIS Semi-Automatic Classification Plugin;
- Portuguese: Classificacao supervisionada de imagens Sentinel-2 com QGIS e SCP;
- Portuguese: Avaliação do erro de uma imagem de satélite usando o QGIS e o SCP;
- Portuguese: Conversão Sentinel-2 para refletância com QGIS SCP;
- Portuguese: Criar composições coloridas no QGIS com SCP;
- Portuguese: Corte de imagem Sentinel-2 usand QGIS e SCP;
- Portuguese: Classificação Supervisionada de Imagens Orbitais com o Semi-Automatic Classification Plugin;

- Portuguese: Tutorial Classificação e caracterização de imagens de satélites;
- Portuguese: Aprendizagem Supervisionada usando o SCP no QGIS;
- Portuguese: Classificação supervisionada utilizando o QGIS e SCP;
- Russian: Landsat Semi-Automatic Classification Plugin QGIS;
- Spanish: Ejercicio Clasificación Semiautomática Plugin (SCP);
- Spanish: Aplicaciones de Teledetección con el QGIS y el plugin Semi-Automatic Classification;
- Spanish: Descarga de Landsat 8, 7, 5 y 4 Semi Automatic Classification Plugin Qgis 2.8;
- Swedish: Landsat 8 och fjärranalys med QGIS;
- Ukrainian: Semi-Automatic Classification 5.0;
- Ukrainian: ;

How can I translate this user manual to another language?

It is possible to easily translate the user manual to any language, because it is written in reStructuredText as markup language (using Sphinx). Therefore, your contribution is fundamental for the translation of the manual to your language. The following guide illustrates the main steps for the translation, which can be performed:

- using the free online service Transifex;
- using the gettext .po files.

Before translating, please read this document from the QGIS translation guide, which helps you understand the reStructuredText.

Method 1. Translation using the free online service Transifex

This is probably the easiest way to translate the manual using an online service.

1. Join the Semi-automatic Classification Manual project

Go to the page https://www.transifex.com/semi-automatic-classification/ semi-automatic-classification-plugin-manual and click the button Help translate. You can sign in using your Google or Facebook account, or with a free registration.

2. Select your language

Select your language and click the button Join team. If your language is not listed, click the button Request language.

3. Translation

There are several files to be translated, which refer to the sections of the SCP documentation. To translate the SCP interface you should select the file semiautomaticclassificationplugin.ts.

Method 2. Translation using the gettext .po files

In order to use this method, you should be familiar with GitHub. This translation method allows for the translation of the PO files locally.

1. Download the translation files

Go to the GitHub project https://github.com/semiautomaticgit/ SemiAutomaticClassificationManual_v4/tree/master/locale and download the .po files of your language (you can add your language, if it is not listed), or you can fork the repository. Every file .po is a text file that refers to a section of the User Manual.

2. Edit the translation files

Now you can edit the .po files. It is convenient to edit those file using one of the following programs: for instance Poedit for Windows and Mac OS X, or Gtranslator for Linux or OmegaT (Java based) for Windows, Linux and Mac OS X. These editors allow for an easy translation of every sentence in the User Manual.

Where is the source code of SCP?

You can find the source code of SPC is at the following link https://github.com/semiautomaticgit/ SemiAutomaticClassificationPlugin