

Semi-Automatic Classification Plugin Documentation

5.0.0.1

Luca Congedo

August 29, 2016

Contents

Ι	Introduction	1
II	Plugin Installation	5
1	Installation in Windows 32 bit1.1QGIS download and installation1.2Semi-Automatic Classification Plugin installation1.3Configuration of the plugin	9 9 9 10
2	 2.1 QGIS download and installation	11 11 11 12
3	 3.1 QGIS download and installation	15 15 15 16
4	 4.1 QGIS download and installation	19 19 19 20
5	 5.1 QGIS download and installation	23 23 23 24
Π	I The Interface of SCP	27
6	SCP menu	29
7	SCP Tools	31
8	8.1 Image control 8.2 Temporary ROI	33 33 34 34
9	9.1 SCP input	37 38 40

10			49
	10.1	Download images	51
	10.2	Tools	62
	10.3	Preprocessing	75
	10.4	Postprocessing	86
	10.5	Band calc	97
	10.6	Band set	.03
	10.7	Batch	.06
	10.8	Settings	.09
11	G	1 Class Army Dist	1.5
11		ral Signature Plot 1 Plot Signature list 1	15
	11.1		.13
12	Scatte	er Plot	21
		Scatter list	
	_		
IV	Br	ief Introduction to Remote Sensing1	25
12	Docio	Definitions 1	29
13		GIS definition	
		Remote Sensing definition	
		Sensors	
		Radiance and Reflectance 1	
		Spectral Signature	
		Landsat Satellite	
		Sentinel-2 Satellite	
		ASTER Satellite	
		Color Composite	
		Principal Component Analysis	
		Pan-sharpening	
	13.11		55
14			37
	14.1	Land Cover	.37
	14.2	Supervised Classification	.37
	14.3	Training Areas	.38
	14.4	Classes and Macroclasses	.38
	14.5	Classification Algorithms	.39
	14.6	Spectral Distance	.44
	14.7	Classification Result	46
	14.8	Accuracy Assessment	46
1.7			40
15			49
			49
		Top Of Atmosphere (TOA) Reflectance	
		Surface Reflectance	
	15.4	DOS1 Correction	.50
16	Conve	ersion to Temperature	153
		Conversion to At-Satellite Brightness Temperature	
		Estimation of Land Surface Temperature	
		•	
17	Refer	rences 1	55

V	Bas	sic Tutorials	157
VI	[T]	hematic Tutorials	161
VI	I S	emi-Automatic OS	165
18	Insta	llation in VirtualBox	169
VI	III I	Frequently Asked Questions	173
19	Plugi 19.1	in installation How to install the plugin manually?	177 . 177
20	20.1 20.2 20.3 20.4 20.5 20.6 20.7	ProcessingWhich image bands should I use for a semi-automatic classification?Which Landsat bands can be converted to reflectance by the SCP?Can I apply the conversion to Sentinel-2 images download from the web?How are converted Sentinel-2 images that have different resolutions?Can I apply the Landsat conversion and DOS correction to clipped bands?Can I apply the DOS correction to bands with black border (i.e. with NoData value)?How to remove cloud cover from images?How do I create a virtual raster manually in QGIS?After pan-sharpening of Landsat 8 images, why NIR bands still have 30m resolution?	. 179 . 179 . 179 . 180 . 180 . 180 . 180
21	21.1 21.2 21.3 21.4	essingI get classification errors. How can I improve the accuracy?Is it possible to use the same training input for multiple images?What is the difference between classes and macroclasses?Can I use SCP with images from drones or aerial photographs?Why using only Landsat 8 band 10 in the estimation of surface temperature?	. 181 . 181 . 181
22	Warı 22.1	nings Warning [12]: The following signature will be excluded if using Maximum Likelihood. Why?.	183 . 183
23	Erro 23.1 23.2 23.3 23.4 23.5 23.6 23.7	rs How can I report an error? Virtual raster creation issues. Why? Error [26] 'The version of Numpy is outdated'. Why? Error 'Plugin is damaged. Python said: ascii'. Why? Error [50] 'Internet error'. Unable to download Sentinel-2 images. Why? Error [56] 'SSL connection error'. Unable to download Sentinel-2 images. Why? This plugin is broken 'matplotlib requires pyparsing >= 1.5.6'. Why?	. 186 . 187 . 187 . 187
24	Vario 24.1 24.2 24.3 24.4 24.5 24.6	What can I do with the SCP?	. 190 . 190 . 190 . 191

Part I

Introduction

Developed by Luca Congedo, the **Semi-Automatic Classification Plugin** (*SCP*) is a free open source plugin for QGIS that allows for the semi-automatic classification (also known as supervised classification) of remote sensing images. It provides several tools for the download of free images, the preprocessing, the postprocessing, and the raster calculation (please see *What can I do with the SCP*? (page 189)).

The **overall objective** of *SCP* is to provide a set of intertwined tools for raster processing in order to make an automatic workflow and ease the land cover classification, which could be performed also by people whose main field is not remote sensing. The first version of the *SCP* was written by Luca Congedo in 2012 for the ACC Dar Project in order to create a tool for the classification of land cover in an affordable and automatic fashion (read this working paper). Following versions of *SCP* were developed as personal commitment to the remote sensing field and open source software. *SCP* version 5 (codename: Kourou) is developed in the frame of Luca Congedo's PhD in Landscape and Environment at Sapienza University of Rome.

http://www.youtube.com/watch?v=K2mIa66e6h0

This **user manual** provides information about the *Plugin Installation* (page 7) of SPC and the *The Interface of SCP* (page 29), with detailed information about all the functions. In addition, the *Brief Introduction to Remote Sensing* (page 127) illustrates the basic concepts and definitions which are required for using the *SCP*.

Basic Tutorials (page 159) are available for learning the main functions of *SCP* and *Thematic Tutorials* (page 163) illustrate specific tools.

You are kindly invited to **contribute to SCP** (see *How to contribute to SCP* (page 190)) and join the Facebook group or the Google+ Community. Several thousand people have already joined and posted hundreds of questions and comments. Also, please read the *Frequently Asked Questions* (page 175).

For more information and tutorials visit the official site

How to cite:

Congedo Luca (2016). *Semi-Automatic Classification Plugin User Manual*. DOI: http://dx.doi.org/10.13140/RG.2.1.1219.3524

License:

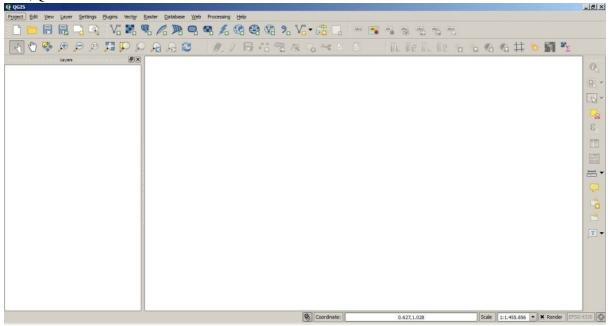
Except where otherwise noted, content of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Semi-Automatic Classification Plugin is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License. Semi-Automatic Classification Plugin is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Semi-Automatic Classification Plugin. If not, see http://www.gnu.org/licenses/.

Part II

Plugin Installation

The Semi-Automatic Classification Plugin requires the installation of GDAL, OGR, NumPy, SciPy and Matplotlib (already bundled with QGIS).


This chapter describes the installation of the Semi-Automatic Classification Plugin for the supported Operating Systems.

Installation in Windows 32 bit

1.1 QGIS download and installation

- Download the latest QGIS version 32 bit from here (the direct download of QGIS 2.8 from this link);
- Execute the QGIS installer with administrative rights, accepting the default configuration.

Now, QGIS 2 is installed.

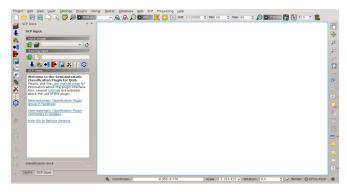
1.2 Semi-Automatic Classification Plugin installation

• Run QGIS 2;

•	Fre	om ti	he m	ain me	enu, s	elect	Plu	gins	> M	anage	e a	nd	Ins	sta	ll Plugins;						
				Settings																	
				3 3	Man	age and I	nstall Plug le	gins	Q	Q /	C		\mathbb{V}_{0}	9.	V: • 🖧 🗔 🕴	bc 📑	ab	abc	(abc)	abc	abe

• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;

TIP: in case of issues or an offline installation is required see *How to install the plugin manually*? (page 177).

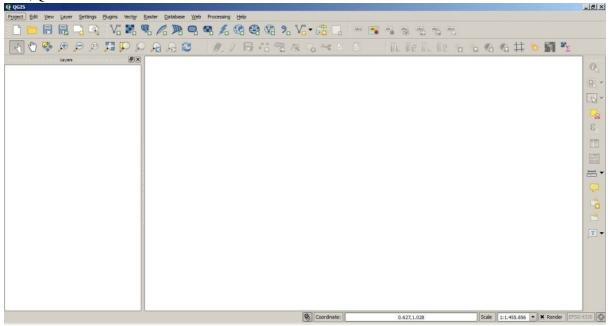

stalled	Remove empty layers from the m	Semi-Automatic Classification Plugin
ot installed	Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the
ogradeable	Rss menu	processing of multispectral or hyperspectral remote sensing images, which provides a
	RT MapServer Exporter	set of tools for pre processing and post processing.
ttings	RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-automatic
	RT QSpider	supervised classification of remote sensing images, providing tools to expedite the creation of ROIs (training
	RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training areas can be automatically calculated and displayed in a spectral signature plot. It is possible to import spectral
	Rample Rasters	automatically calculated and displayed in a spectral signature plot. It is possible to import spectral signatures from external sources. Also, a tool allows for the selection and download of spectral signatures
	📑 SaTSViz	from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Several tools are available fo
	📄 ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification process (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification previews).
	🌸 Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assessment, land cover change, classificati
	SelectPlusFR	report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy and Matplotlib. Also, a virtual
	SelectTools	machine is available http://fromgistors.blogspot.com/p/semi-automatic-os.html . Keywords: 土地被覆分類 监 分素 土地覆盖分素 教師付き分類 المنبق المراضي Classificação da Cobertura do Solo Clasificación de la
	selenext	Cobertura de la Tierra Classification de la Couverture du Sol классификация землепользования
	Semi-Automatic Classification Pl	Klassifizierung der Landbedeckung Classificazione della Copertura del Suolo. For more information please visit http://fromgistors.blogspot.com/
	Send2GE	visic ricip.//itonigiscols.biogspoc.com/
	SENSUM Earth Observation Tools	☆☆☆☆☆☆ 25 rating vote(s), 38811 downloads
	SG Diagram Downloader	
	Shapefile Encoding Fixer	Tags: raster,landsat,spectral signature,classification,land cover,accuracy,scatter plot,supervised classification,dos1,clip,remote sensing,mask,analysis,land cover change
	ShelD8	More info: homepage tracker code repository
	Shortcut Manager	Author: Luca Congedo
	shotoobs	Author: Euca Congedo
	SimpleReports	Upgrade all Install plugin

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

Al 🛄 💭 Plugir	installed successfully:			6
Sinstelid Not installed Upgradeable Settings Set	oty layers from the main Seem plugin Plugin f process set of tr supervise area) th area	i-Automatic Classificati or the semi-automatic supervised classi ing of multispectral or hyperspectral re obs for pre processing and post proces y Luca Congedo, the semi-automatic Classification of dassification or remote sensing ungase, provid rough region growing or multiple ROI creation. It form estrang accurace, Akoo, a tod allows for th	fication designed to expedit mote sensing images, which ising. on Plugin (SCP) allows for the semi- ling tools to expedite the creation - ne spectral signatures of training a ture plot. It is possible to import sp e selection and download of spect	-automatic of ROIs (training reas can be rectral tral signatures
SelectPlus ⁶ SelectPlus ⁶ SelectTools Select Sen3-Auton Sen32 Sen32 Se Sinsun Fa Se Dagram	r mat EPSG CRS Pugn R Minimum ats ClassRication PI ClassRication PI ClassRication PI ClassRication PI ClassRication PI ClassRication Picer ClassRication Picer ClassRication Picer	USGS Spectral Library (http://peedab.or.usgs.goo coessing passe (umgo elgoping, Landat conver Distance, Maximum Likelinovi, Spectral Angle M Ising (Spectral Angle M) Ising	sion to reflectance), the classificatio paping algorithms, and classificatio uracy assessment. Land cover chan (kmpr); Scilv and Matplotto, Jako, (a) da Cobertura do Solo Clasifica- do kraccotykucuja zenenonusiona opertura del Suolo. For more inform Analysis, Landsat, Land Cover Chi	on process n previews), ge, dassification , a virtual 土地被覆分類 监督 ión de la ния nation please

1.3 Configuration of the plugin

Now, the Semi-Automatic Classification Plugin is installed and a dock and a toolbar should be added to QGIS. Also, a SCP menu is available in the Menu Bar of QGIS. It is possible to move the *SCP Tools* (page 31) and the dock according to your needs, as in the following image.



Installation in Windows 64 bit

2.1 QGIS download and installation

- Download the latest QGIS version 64 bit from here (the direct download of QGIS 2.8 from this link);
- Execute the QGIS installer with administrative rights, accepting the default configuration.

Now, QGIS 2 is installed.

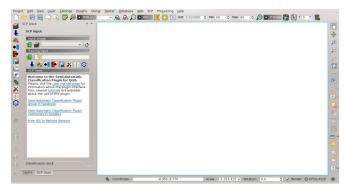
2.2 Semi-Automatic Classification Plugin installation

• Run QGIS 2;

• From the main menu, select Plugins	> Manage and Install Plugins;
Project Edit View Layer Settings Plugins Vector Raster Database	
🗋 🛅 📑 📑 🧠 🔍 🌦 Manage and Install Plugins	

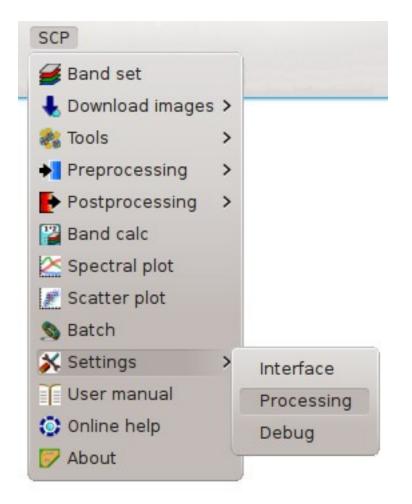
• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;

TIP: in case of issues or an offline installation is required see *How to install the plugin manually*? (page 177).


stalled	RiverGIS	Semi-Automatic Classification Plugin
t installed	Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the processing of multispectral or hyperspectral remote sensing images, which provides a
gradeable	RT MapServer Exporter	set of tools for pre processing and post processing.
ttings	RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-automatic
	RT QSpider	supervised classification of remote sensing images, providing tools to expedite the creation of ROIs (train
	RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training areas can be automatically calculated and displayed in a spectral signature plot. It is possible to import spectral
	Sample Rasters	signatures from external sources. Also, a tool allows for the selection and download of spectral signature
	SaTSViz	from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Several tools are available for
	ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification process (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification previews),
	🌸 Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assessment, land cover change, classificat
	SelectPlusFR	report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy and Matplotlib. Also, a virtual machine is available http://fromgistors.blogspot.com/p/semi-automatic-os.html . Keywords: 土地被蛋分類 淵
	SelectTools	machine is available http://rongistors.biogspot.com/p/semi-auconauc-os.html . Keywords: 土地被進分類 盗 分素 土地覆盖分类 教師付き分類 المنبف استخدام الاراض
	in selenext	Cobertura de la Tierra Classification de la Couverture du Sol классификация землепользования
	Semi-Automatic Classification Pl	Klassifizierung der Landbedeckung Classificazione della Copertura del Suolo. For more information please visit http://fromgistors.blogspot.com/
	Send2GE	
	SENSUM Earth Observation Tools	會會會會會 25 rating vote(s), 38811 downloads
	SG Diagram Downloader	
	Shapefile Encoding Fixer	Tags: raster,landsat,spectral signature,classification,land cover,accuracy,scatter plot,supervised classification.dos1.clip.remote sensing.mask,analysis.land cover change
	ShelDB	More info: homepage tracker code repository
	Shortcut Manager	Author: Luca Congedo
	shptoobs	Hannin Laca congeto
	SimpleReports	Uograde al Instali pluoin

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

The second second second			
Installed Instruited Upproteitike Settings	Remove empty layers from the m ² Remove empty layers from the m ² Remove the second Remove the second	Semi-Automatic Classification Plug Bugossi of the semi-automatic supervised dasification design processing of multipocetral of hyperspectral renote sensing to close for pre processing and post processing. When by use compare, the semi-automatic lassification Plugn (CP) al- sing of the semi-automatic lassification Plugn (CP) al- sing of the selection of the selection and in the processing plase (maps shoring Laborator Sector Sector automatic laboration (CP) and al- sing of the selection and in the processing plase (maps shoring Laborator Sector automatic laboration (CP) and al- and the post processing plase (maps shoring Laborator al- and the post processing plase (maps shoring Laborator al- and the post processing the post post plase shoring Laborator al- and the post processing the post plase shoring Laborator al- and the post plase	ned to expedite the images, which provides a lilows for the semi-automatic addets the creation of RoIs (trainin turse of training areas can be solic to import peetral addets the creation of RoIs (training the second second second second between the second second second between the second second second second second second second second the second second second second second the second secon


2.3 Configuration of the plugin

Now, the Semi-Automatic Classification Plugin is installed and a dock and a toolbar should be added to QGIS. Also, a SCP menu is available in the Menu Bar of QGIS. It is possible to move the *SCP Tools* (page 31) and the dock according to your needs, as in the following image.

The configuration of available RAM is recommended in order to reduce the processing time. From the SCP menu

(page 29) select Settings > Processing.

In the *Settings* (page 109), set the Available RAM (MB) to a value that should be half of the system RAM. For instance, if your system has 2GB of RAM, set the value to 1024MB.

\odot	Semi-Automatic Classification Plugi	in	\odot
nload images 🆓 Tools	ocessing 📑 Postprocessing 🔛 Band cal	lc 🥩 Band set 🔊 Batch 🗡 Settin	gs < >
Interface			
Processing			
Classification process			
Play sound when finished	Use virtual raster for temp files	Raster compression	
RAM Available RAM (MB)		10	24 🗘
Temporary directory			
/tmp/semiautomaticclassification	n		
Debug			

Installation in Ubuntu Linux

3.1 QGIS download and installation

- Open a terminal and type:
- sudo apt-get update
- Press Enter and type the user password;
- Type in a terminal:

sudo apt-get install qgis python-matplotlib python-scipy

• Press Enter and wait until the software is downloaded and installed.

Now, QGIS 2 is installed.

0000 QGIS Project Edit View Layer Settings Plugins Vector Raster Help 🗋 💼 🖶 🖓 🖓 🕲 🖏 🖓 🧶 🙊 🔍 🧛 💭 🖓 🖓 🖉 🔍 🖉 🔍 🕲 👘 🔛 🔚 💭 🖓 🖄 👘 🔛 👘 //·/ B·: ? / / B ·: ? B · * B · * * * * * * * * * V_D^{*} Layers (C) (X 9 Po P VB 90 V. -4 S Coordinate: -1.193,-0.172 Scale 1.453.774 💌 🗷 Render EPSG:4326 🕥 🛕

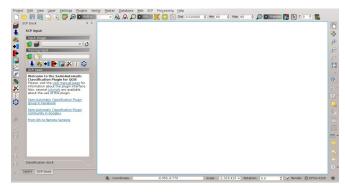
3.2 Semi-Automatic Classification Plugin installation

- Run QGIS 2;
- From the main menu, select Plugins > Manage and Install Plugins;

Project	Edit	View	Layer	Settings	Plugins	Vector	Raster	Help										
			13	<u>راس</u> 😵	🍓 Mana	ige and Ir	nstall Plug	jins	Q	Q	0	- Q.	0.		8	 -00		- 0
			1		🔧 Pytho	on Consol	e			753	~	18	2013	-W		<u>10-01</u>	[material	2

• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;

TIP: in case of issues or an offline installation is required see *How to install the plugin manually*? (page 177).


Installed	Remove empty layers from the maps RiverGIS	Semi-Automatic Classification Plugin	
Not installed	Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the	
Upgradeable	Rss menu	processing of multispectral or hyperspectral remote sensing images, which provide	es a
opp account	RT MapServer Exporter	set of tools for pre processing and post processing.	
Settings	RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-automat	ic
	RT QSpider	supervised classification of remote sensing images, providing tools to expedite the creation of ROIs (t	trainin
	RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training areas can automatically calculated and displayed in a spectral signature plot. It is possible to import spectral	be
	Sample Rasters	signatures from external sources. Also, a tool allows for the selection and download of spectral signa	tures
	SaTSViz	from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Several tools are availab	
	ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification proces (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification preview	SS NC)
	ह Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assessment, land cover change, class	ificatio
	SelectPlusFR	report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy and Matplotlib. Also, a virtual machine is available http://fromgistors.blogspot.com/p/semi-automatic-os.html . Keywords: 土地被蛋分	
1	SelectTools	分素 土地覆盖分素 教師付き分類 تصنبه استخدام الأراضي Classificação da Cobertura do Solo Clasificación de la	19 20 8
	selenext	Cobertura de la Tierra Classification de la Couverture du Sol классификация землепользования	
	Semi-Automatic Classification Pl	Klassifizierung der Landbedeckung Classificazione della Copertura del Suolo. For more information ple visit http://fromaistors.blogspot.com/	lase
1	Send2GE		
	SENSUM Earth Observation Tools		
	🔗 SG Diagram Downloader	Tags: raster.landsat.spectral signature.classification.land cover.accuracy.scatter plot.supervised	
	Shapefile Encoding Fixer	lags: raster, landsat, spectral signature, classification, land cover, accuracy, scatter plot, supervised classification, dos1, clip, remote sensing, mask, analysis, land cover change	
	shelD8	More info: homepage tracker code repository	
	Shortcut Manager	Author: Luca Congedo	
	🚔 shptoobs		
	SimpleReports	Upgrade al Instal pl	

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

	Searc	21			
Not installed		Remove empty layers from the m	Semi-Automatic Classification Plu	igin	E
Upgradeable	×	Road graph plugin	Plugin for the semi-automatic supervised classification des	signed to expedite the	
Settings		💏 Rss menu	processing of multispectral or hyperspectral remote sensi		
secongs		RT MapServer Exporter	set of tools for pre processing and post processing.		
		RT Omero		N allow for the second as here	
		RT QSpider	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCF supervised classification of remote sensing images, providing tools to e	2) allows for the semi-auton expedite the creation of ROI	s (trainin
		RuGeocoder	areas) through region growing or multiple ROI creation. The spectral sig	gnatures of training areas c	an be
		Sample Rasters	automatically calculated and displayed in a spectral signature plot. It is signatures from external sources. Also, a tool allows for the selection a		
1		SaTSViz	from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.l	html). Several tools are avail	ilable for
		ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflect (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorit		
		Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assess	nent, land cover change, da	assificati
		P SelectPlusFR	report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy machine is available http://fromgistors.blogspot.com/p/semi-automatic-		
		SelectTools	machine is available http://fromgistors.biogspot.com/p/semi-automatic- 分衆 土地運差分类 豹師付き分類 المنبغ استخداء الأراضي Classificação da Cobert		
		🚔 selenext	Cobertura de la Tierra Classification de la Couverture du Sol классифия	ация землепользования	
	×	F Semi-Automatic Classification Pl	Klassifizierung der Landbedeckung Classificazione della Copertura del S visit http://fromgistors.blogspot.com/	suolo. For more information	please
		Send2GE			
		SENSUM Earth Observation Tools	含含含含含 25 rating vote(s), 38811 downloads		
		SG Diagram Downloader	Category: Baster		
		Shapefile Encoding Fixer	Tags: Raster, Classification, Land Cover, Remote Sensing, Analysis, Lan	dsat, Land Cover Change,	Accuracy
		ShelD8	Supervised classification Spectral signature Mask Scatter plot. Clin. Dr.	051	

3.3 Configuration of the plugin

Now, the Semi-Automatic Classification Plugin is installed and a dock and a toolbar should be added to QGIS. Also, a SCP menu is available in the Menu Bar of QGIS. It is possible to move the *SCP Tools* (page 31) and the dock according to your needs, as in the following image.

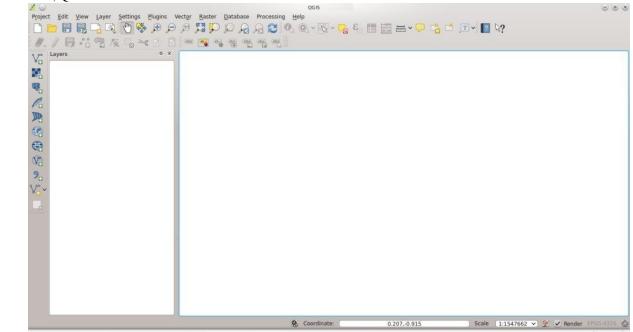
The configuration of available RAM is recommended in order to reduce the processing time. From the SCP menu

```
(page 29) select Settings > Processing.
  SCP
  🛃 Band set
  👆 Download images >
  🚓 Tools
                      >
  ➡ Preprocessing
                      >
  Postprocessing
                      >
  🝟 Band calc
  🔀 Spectral plot
  💉 Scatter plot
  S Batch
  X Settings
                      >
                          Interface
  User manual
                          Processing
  🔅 Online help
                          Debug
  About
```

In the *Settings* (page 109), set the Available RAM (MB) to a value that should be half of the system RAM. For instance, if your system has 2GB of RAM, set the value to 1024MB.

0	Semi-Automatic Classification Plugi	in (c	00
load images 🛛 🃸 Tools 🔶 Prepr	ocessing 📑 Postprocessing 🔛 Band cal	ic 🥩 Band set 🦠 Batch メ Settings	< :
Interface			
Processing			
Classification process			
 Play sound when finished 	Use virtual raster for temp files	 Raster compression 	
RAM Available RAM (MB)		1024	4 0
Temporary directory			
/tmp/semiautomaticclassification	n		
<u></u> ,			
Debug			

Installation in Debian Linux


4.1 QGIS download and installation

- Open a terminal and type:
- sudo apt-get update
- Press Enter and type the user password;
- Type in a terminal:

sudo apt-get install qgis python-matplotlib python-scipy

• Press Enter and wait until the software is downloaded and installed.

Now, QGIS 2 is installed.

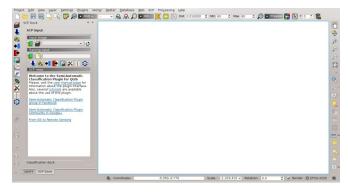
4.2 Semi-Automatic Classification Plugin installation

- Run QGIS 2;
- From the main menu, select Plugins > Manage and Install Plugins;

								Database						
	7 📑		<u>_</u>	1	🏠 Mana	age and I	nstall Plug	gins	R	30	·	3	📰 🕶 🤇	- T -
1. 1	/ 8	00	2 19		ne Pytho	on Conso	le	abc	abc	abe H				

• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;

TIP: in case of issues or an offline installation is required see *How to install the plugin manually*? (page 177).


rstalled	Remove empty layers from the mut RiverGIS	Semi-Automatic Classification Plugin	
ot installed X	Rammur RT Musiceve Exporter RT Omero RT Opsider Rudiescoder Sample Raters Sample Raters Sample Matters Sample Matters Sample Matters Sample Sample Sa	Plugin for the semi-automatic supervised classification designed to expedite the processing of multispectral or hyperspectral remote sensing images, which pr set of tools for pre processing and post processing. Within the semi-autispectral region growing or number Rol reaction Flugin (SCP) allows for the semi-autispectral region growing or number Rol reaction. The spectral approaches of training area spratners from external sources. Also, a tool allows for the selection and download of spectral aroms the Unity/jecediab crugge sovipestral-labored. The Spectral approaches of training area spratners from external sources. Also, a tool allows for the selection and download of spectral from the USGS Spectral Library full-/jecediab crugge sovipestral-labored. Multi, Several tools are a protein to external sources. Also, a tool allows for the selection and download of spectral more the USGS Spectral Library full projection to version, excurcay assessment, land cover change, report, This plugin resumes the initialization of GOAL, OGR, Numpy, SpPr and Matpiolis, Alao, at the spectral download and activate and the spectral download and perturbation of GOAL, OGR, Numpy, SpPr and Matpiolis, Alao, at the Spectral download and perturbation and the post processing phase (Coversion to version to version).	ovides a omatic DIs (training s can be al signatures vailable for rrocess eviews), classification irtual 被分類 监督
	Selenext Semi-Automatic Classification Pl Send2GE SENSUM Earth Observation Tools SG Diagram Downloader	Cobertura de la Tierra Classification de la Couverture du Sol vacacxb,waujus zemenona.oaa-usu Kassifizierung de Landbedekcung Classificazione della Copertura del Suolo. Tomore informativ visit http://tiongistors.blogspot.com/ ************************************	
	Shapefile Encoding Fixer ShelDB Shortout Manager	classification.dos.1.clip.remote sensing.mask,analysis.land cover change More info: <u>homepage tracker code repository</u> Author: Luca Congedo	
	shptoobs		istall plugin

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

Installed	Sear	dh		
Not installed	F	Remove empty layers from the main RiverGIS	Semi-Automatic Classification Plugin	E
Upgradeable	×	Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the	10
Settings		💏 Rss menu	processing of multispectral or hyperspectral remote sensing images, which pr	
secongs		RT MapServer Exporter	set of tools for pre processing and post processing.	
		RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-aut	a marking
		RT QSpider	supervised classification of remote sensing images, providing tools to expedite the creation of R	
		RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training area	
		Sample Rasters	automatically calculated and displayed in a spectral signature plot. It is possible to import spect signatures from external sources. Also, a tool allows for the selection and download of spectral	
		SaTSViz	from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Several tools are a	vailable for
		ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification p (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification p	
		Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assessment, land cover change,	classificatio
		SelectPlusFR	report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy and Matplotlib. Also, a v machine is available http://fromgistors.blogspot.com/p/semi-automatic-os.html . Keywords: +#6	
		RelectTools	machine is available http://rongistors.biogspot.com/p/semi-automatic-os.ndml . Keywords. 工地 分素 土地運搬分素 教師付き分類 المنبغ السنخداء الأراضي	
		n selenext	Cobertura de la Tierra Classification de la Couverture du Sol классификация землепользования Klassifizierung der Landbedeckung Classificazione della Copertura del Suolo. For more informati	
	×	Semi-Automatic Classification Pl	visit http://fromgistors.blogspot.com/	on please
		Send2GE		
		SENSUM Earth Observation Tools	含含含含含含 25 rating vote(s), 38811 downloads	
		SG Diagram Downloader	Category: Raster	
		Shapefile Encoding Fixer	Tags: Raster, Classification, Land Cover, Remote Sensing, Analysis, Landsat, Land Cover Chang	e, Accuracy,
		ShelD8	Supervised classification Spectral signature Mask Scatter plot. Clin. DOS1	

4.3 Configuration of the plugin

Now, the Semi-Automatic Classification Plugin is installed and a dock and a toolbar should be added to QGIS. Also, a SCP menu is available in the Menu Bar of QGIS. It is possible to move the *SCP Tools* (page 31) and the dock according to your needs, as in the following image.

The configuration of available RAM is recommended in order to reduce the processing time. From the SCP menu

```
(page 29) select Settings > Processing.
  SCP
  🛃 Band set
  👆 Download images >
  🚓 Tools
                      >
  ➡ Preprocessing
                      >
  Postprocessing
                      >
  🝟 Band calc
  🔀 Spectral plot
  💉 Scatter plot
  S Batch
  X Settings
                      >
                          Interface
  User manual
                          Processing
  🔅 Online help
                          Debug
  About
```

In the *Settings* (page 109), set the Available RAM (MB) to a value that should be half of the system RAM. For instance, if your system has 2GB of RAM, set the value to 1024MB.

0	Semi-Automatic Classification Plugi	in (c	00
load images 🛛 🃸 Tools 🔶 Prepr	ocessing 📑 Postprocessing 🔛 Band cal	ic 🥩 Band set 🦠 Batch メ Settings	< :
Interface			
Processing			
Classification process			
 Play sound when finished 	Use virtual raster for temp files	 Raster compression 	
RAM Available RAM (MB)		1024	4 0
Temporary directory			
/tmp/semiautomaticclassification	n		
<u></u> ,			
Debug			

Installation in Mac OS

5.1 QGIS download and installation

- Download and install the latest version of QGIS and GDAL from here .
- In addition, download and install the python modules Numpy, Scipy, and Matplotlib from this link .

Now, QGIS 2 is installed.

0											QG	IS													00	
Projec				Settings			ector	Raster	Help																	
=	•		3 3	- 🕐	🀳 🔎	P	Þ	11 9	pr	R	A	8	= Ø ₀	0	•	• 💪	8		• 🖓		8	T	- = 💽	₿?		
= /// -	/ 6	•	n 1%	>			= (aba)	-		e) (abg	-	(abd Cal	2.2													
Vo	Layers				6	×																				
P																										
•																										
₹8 ? ₀																										
V																										
											8	Coordi	inate:	[-1.19	3,-0.17	72	Sc	ale	1.453.	774 💌	✓ Rer	der	EPSG:4326	

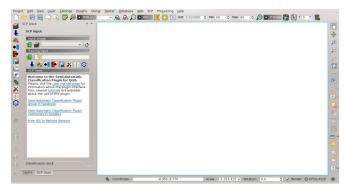
5.2 Semi-Automatic Classification Plugin installation

• Run QGIS 2;

• F	rom t	the m	ain me	enu, sele	ct Plu	gins	>Man	age	and	Install	Plugins;			
				Settings										
			_		🌲 Mana	ige and Ir	istall Plug e	jins	- 🗟 🖉	A 2 • Q	® • 💀 •	_ ع [· 🖓

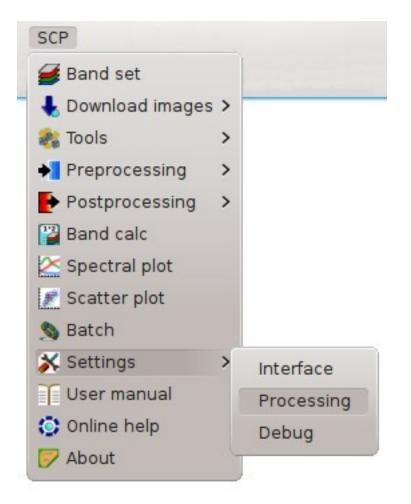
• From the menu All, select the Semi-Automatic Classification Plugin and click the button Install plugin;

TIP: in case of issues or an offline installation is required see *How to install the plugin manually*? (page 177).


stalled	RiverGIS	Semi-Automatic Classification Plugin
t installed	Road graph plugin	Plugin for the semi-automatic supervised classification designed to expedite the processing of multispectral or hyperspectral remote sensing images, which provides a
gradeable	RT MapServer Exporter	set of tools for pre processing and post processing.
ttings	RT Omero	Written by Luca Congedo, the Semi-Automatic Classification Plugin (SCP) allows for the semi-automatic
	RT QSpider	supervised classification of remote sensing images, providing tools to expedite the creation of ROIs (train
	RuGeocoder	areas) through region growing or multiple ROI creation. The spectral signatures of training areas can be automatically calculated and displayed in a spectral signature plot. It is possible to import spectral
	Sample Rasters	signatures from external sources. Also, a tool allows for the selection and download of spectral signature
8	SaTSViz	from the USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html). Several tools are available for
	ScriptRunner	the pre processing phase (image clipping, Landsat conversion to reflectance), the classification process (Minimum Distance, Maximum Likelihood, Spectral Angle Mapping algorithms, and classification previews),
	🚔 Search & format EPSG CRS Plugin	and the post processing phase (conversion to vector, accuracy assessment, land cover change, classificat
	SelectPlusFR	report). This plugin requires the installation of GDAL, OGR, Numpy, SciPy and Matplotlib. Also, a virtual machine is available http://fromgistors.blogspot.com/p/semi-automatic-os.html . Keywords: 土地被蛋分類 當
	P SelectTools	machine is available http://fromgistors.biogspot.com/p/semi-aucomatic-os.html . Keywords: 土地接近分類 盗 分素 土地覆盖分素 教師付き分類 (成)の しの
	in selenext	Cobertura de la Tierra Classification de la Couverture du Sol классификация землепользования
	Semi-Automatic Classification Pl	Klassifizierung der Landbedeckung Classificazione della Copertura del Suolo. For more information please visit http://fromgistors.blogspot.com/
	Send2GE	
	SENSUM Earth Observation Tools	會會會會會 25 rating vote(s), 38811 downloads
	SG Diagram Downloader	
	Shapefile Encoding Fixer	Tags: raster,landsat,spectral signature,classification,land cover,accuracy,scatter plot,supervised classification.dos1.clip.remote sensing.mask,analysis,land cover change
	ShelDB	More info: homepage tracker code repository
	Shortcut Manager	Author: Luca Congedo
	shptoobs	Addition: Edical Congelio
	SimpleReports	Upgrade al Install plugin

• The SCP should be automatically activated; however, be sure that the Semi-Automatic Classification Plugin is checked in the menu Installed (the restart of QGIS could be necessary to complete the SCP installation);

Sectored Sectore			
Intakei en Net-malled Usprakuble K Settroja	Rosmen RT Hapdiener Exporter RT Owen RT Opdien Rufkecoder Santhy	Semi-Automatic Classification Plugi Brossing of the semi-automatic supervised classification design processing of unbitispectral of hyperspectral remote sensing in semi-automatic supervised classification of semi- sensity through request hyperspectral remote semi- ter and through request here the setter and and the hyperspectral larray (through classification of the setter and the hyperspectral larray (through classification of the setter and the hyperspectral larray (through classification of all converting the setter and protection of the setter and setter and through classification of the hyperspectral larray (through classification of all converting the setter and protection of the setter and setter and through classification of the hyperspectral larray (through classification of all converting the setter and protection of the setter and through classification of all converting the setter and protection of the setter and through classification of all converting the setter and the setter setter and the protection of the setter and the sett	ed to expedite the mages, which provides a low soft of the semi-automatic date the oreation of ROIS (brain date the oreation of ROIS (brain and the semi-automatic able to import spectral brain of the semi-automatic several tools are available for units dates and signatures and dassification previewal), land cover drange, dassification and dassification previewal), land cover drange, dassification do solo Classificación de la do solo Classificación


5.3 Configuration of the plugin

Now, the Semi-Automatic Classification Plugin is installed and a dock and a toolbar should be added to QGIS. Also, a SCP menu is available in the Menu Bar of QGIS. It is possible to move the *SCP Tools* (page 31) and the dock according to your needs, as in the following image.

The configuration of available RAM is recommended in order to reduce the processing time. From the SCP menu

(page 29) select Settings > Processing.

In the *Settings* (page 109), set the Available RAM (MB) to a value that should be half of the system RAM. For instance, if your system has 2GB of RAM, set the value to 1024MB.

0	Semi-Automatic Classification Plugi	in (c	00
load images 🛛 🃸 Tools 🔶 Prepr	ocessing 📑 Postprocessing 🔛 Band cal	ic 🥩 Band set 🦠 Batch メ Settings	< :
Interface			
Processing			
Classification process			
 Play sound when finished 	Use virtual raster for temp files	 Raster compression 	
RAM Available RAM (MB)		1024	4 0
Temporary directory			
/tmp/semiautomaticclassification	n		
<u></u> ,			
Debug			

Part III

The Interface of SCP

CHAPTER 6

SCP menu

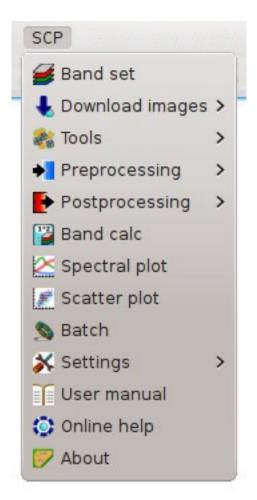


Figure 6.1: SCP menu

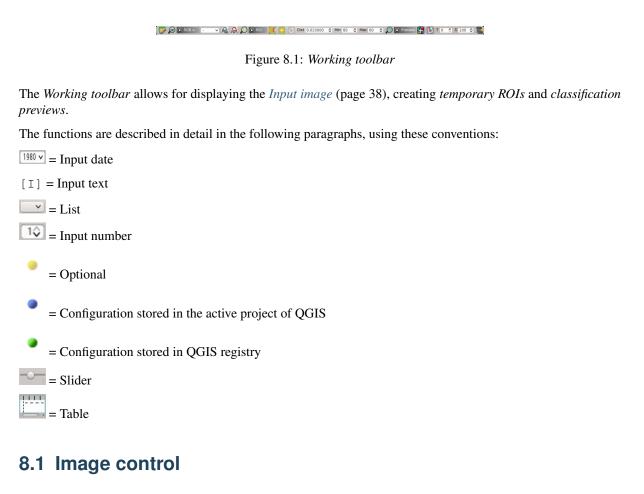
The SCP menu allows for the selection of the main functions of the Main Interface Window (page 49), the Spectral Signature Plot (page 115), and the Scatter Plot (page 121).

Band set (page 103);
Download images (page 51);
Tools (page 62);

- Postprocessing (page 86);
- Band calc (page 97);
- Spectral Signature Plot (page 115);
- Scatter Plot (page 121);
- S Batch (page 106);
- Settings (page 109);
- User manual: open the online user manual in a web browser;
- *Online help*: open the Online help in a web browser; also, a Facebook group and a Google+ Community are available for sharing information and asking for help about SCP;

CHAPTER 7

SCP Tools


Figure 7.1: SCP Tools

The toolbar SCP Tools allows for the selection of the main functions of the Main Interface Window (page 49), the Spectral Signature Plot (page 115), and the Scatter Plot (page 121).

- Seand set (page 103);
 Download images (page 51);
 Tools (page 62);
 Preprocessing (page 75);
 Postprocessing (page 86);
 Postprocessing (page 97);
 Spectral Signature Plot (page 115);
 Scatter Plot (page 121);
 Sectings (page 109);
 Ver manual: open the online user manual in a web browser;
 - *Online help*: open the Online help in a web browser; also, a Facebook group and a Google+ Community are available for sharing information and asking for help about SCP;

CHAPTER 8

Working toolbar

- EP: show the Main Interface Window (page 49);
- Zoom the map to the extent of *Input image* (page 38);
- *RGB* : use the button to show/hide the *Input image* (page 38) in the map; from the list select a Color Composite (page 134) that is applied to the Input image (page 38); new color composites can be entered typing the band numbers separated by - or ; or , (e.g. RGB = 4-3-2 or RGB = 4:3;2 or RGB = 4,3,2);
- 2013: display the input image stretching the minimum and maximum values according to cumulative count of current map extent;

• A: display the input image stretching the minimum and maximum values according to standard deviation of current map extent;

8.2 Temporary ROI

A *temporary ROI* is a temporary polygon displayed in the map, which can be saved permanently in the *Training input* (page 38). A *temporary ROI* can be drawn manually or using a *Region Growing Algorithm* (page 138).

- P: zoom the map to the extent of *temporary ROI*;
- *ROI*: use the button to show/hide the *temporary ROI* and the *Training input* in the map;
- Let activate the pointer to create a *temporary ROI* by drawing a polygon in the map; left click on the map to define the ROI vertices and right click to define the last vertex closing the polygon; press the keyboard button CTRL to add a multipart polygon; press the keyboard buttons CTRL + Z for removing the last multipart polygon;
- **I**: activate the pointer to create a *temporary ROI* using the region growing algorithm; left click on the map for creating the ROI; right click on the map for displaying the spectral signature of a pixel of the *Input image* (page 38) in the *Spectral Signature Plot* (page 115); press the keyboard button CTRL to add a multipart polygon (new parts are not created if overlapping to other parts); press the keyboard buttons CTRL + Z for removing the last multipart polygon;
- Create a *temporary ROI* using the region growing algorithm at the same seed pixel as the previous one; it is useful after changing the *region growing parameters*;

Region growing parameters: the following parameters are required for the ROI creation using a region growing algorithm of

- *Dist* : set the interval which defines the maximum spectral distance between the seed pixel and the surrounding pixels (in radiometry unit);
- *Min* : set the minimum area of a ROI (in pixel unit); this setting overrides the Range radius until the minimum ROI size is reached; if Rapid ROI on band is checked, then ROI will have at least the size defined Min ROI size; if Rapid ROI on band is unchecked, then ROI could have a size smaller than Min ROI size;
- *Max* : set the maximum width of a ROI (i.e. the side length of a square, centred at the seed pixel, which inscribes the ROI) in pixel unit;

8.3 Classification preview

Classification preview allows for displaying temporary classifications (i.e. classification previews). Classification previews are useful for testing the algorithm in a small area of the *Input image* (page 38), before classifying the entire image which can be time consuming (see *Classification output* (page 46)).

Classification preview is performed according to the parameters defined in Classification algorithm (page 45).

In addition to the classification raster, an *Algorithm raster* (page 144) can be displayed, which is useful for assessing the distance of a pixel classified as class X from the corresponding spectral signature X. In *Classification previews*, black pixels are distant from the corresponding spectral signature (i.e. probably a new ROI, or spectral

signature, should be collected in that area) and white pixels are closer to the corresponding spectral signature (i.e. probably the spectral signature identifies correctly those pixels).

After the creation of a new preview, old previews are placed in QGIS Layers inside a layer group named Class_temp_group (custom name can be defined in *Temporary group name* (page 111)) and are deleted when the QGIS session is closed.

WARNING: Classification previews are automatically deleted from disk when the QGIS session is closed; a QGIS message (that can be ignored) could ask for the path of missing layers when opening a previously saved project.

- Zoom the map to the extent of the last *Classification preview* (page 34);
- Preview: use the button to show/hide the last *Classification preview* (page 34) in the map;
- activate the pointer for the creation of a *Classification preview* (page 34); left click the map to start the classification process and display the classification preview; right click to start the classification process and show the *Algorithm raster* (page 144) of the preview;
- Create a new *Classification preview* (page 34) centred at the same pixel as the previous one;
- *T* :: change dynamically the classification preview transparency, which is useful for comparing the classification to other layers;
- *S* : size of the preview in pixel unit (i.e. the side length of a square, centred at the clicked pixel);
- We remove from QGIS the *classification previews* that are archived in the *Class_temp_group*;

SCP dock

- SCP input (page 38)
 - Input image (page 38)
 - Training input (page 38)
 - SCP news (page 40)
- Classification dock (page 40)
 - ROI Signature list (page 40)
 - *ROI creation* (page 42)
 - Macroclasses (page 44)
 - Classification algorithm (page 45)
 - Classification output (page 46)

The SCP dock allows for the definition of inputs, the creation of ROIs (Regions Of Interest) and spectral signatures, and the classification of an input image.

The *Input image* (page 38), to be classified, can be a multi-band raster or a set of single bands defined in the *Band* set (page 103).

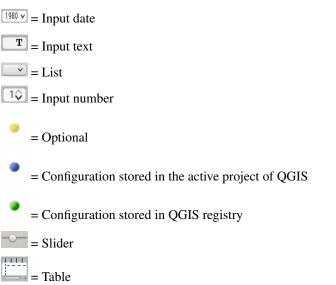
The *Training input* (page 38), created with *SCP*, stores the ROI polygons and spectral signatures used for the land cover classification of the *Input image* (page 38).

ROIs are polygons used for the definition of the spectral characteristics of land cover classes. *SCP* allows for the creation of *temporary ROI polygons* using a region growing algorithm or drawn manually. Using the region growing algorithm the image is segmented around a pixel seed including spectrally homogeneous pixels. *Temporary ROI polygons* can be saved in the *Training input* (page 38) along with the spectral signatures of the ROI. It is worth pointing out that classification is always based on spectral signatures.

In SCP, land cover classes (and ROIs) are defined with a system of *Classes (Class ID)* and *Macroclasses (Macroclass ID)* (see *Classes and Macroclasses* (page 138)) that are used for the classification process; each *Macroclass ID* is related to a *Macroclass Information* (e.g. macroclass name) and each *Class ID* is related to a *Class Information* (e.g. class name), but only *Macroclass ID* and *Class ID* are used for the classification process.

Training input is composed of a vector part (i.e. a shapefile) and a spectral signature part which are independent. The attribute table of the vector contains four fields as in the following table.

Training	input fields
Trouting	input fields


Description	Field name	Field type
Macroclass ID	MC_ID	int
Macroclass Information	MC_info	string
Class ID	C_ID	int
Class Information	C_info	string

Spectral signatures of classes are calculated from the ROIs and saved in the *Training input* (page 38). In addition, spectral signatures can be imported from other sources (see *Import signatures* (page 64)).

The use of the *Macroclass ID* or *Class ID* for classifications is defined with the option *Use MC ID or C ID* in the *Classification algorithm* (page 45). It is worth highlighting that when using *Macroclass ID* all the spectral signatures are evaluated separately and each pixel is classified with the corresponding *MC ID* (i.e. there is no combination of signatures before the classification).

The **classification** can be performed for the entire image (*Classification output* (page 46)) or a part of it, creating a *Classification preview* (page 34).

The functions are described in detail in the following paragraphs, using these conventions:

9.1 SCP input

9.1.1 Input image

This section allows for the selection of the image to be classified. Raster files must be already loaded in QGIS.

Input image can be a multi-band raster or a set of single bands defined in the *Band set* (page 103). If a multi-band raster is selected, raster bands are listed in the *Band set* (page 103).

- Le: open one or more raster files and add them *Band set* (page 103);
- *Solution*: epse the *Band set* (page 103);
- *Input image* : select the input image from a list of multi-spectral images loaded in QGIS; if the *Band set* (page 103) is defined, then this list will contain the item << *band set* >>;
- U: refresh layer list;

9.1.2 Training input

The training input is a file .scp created in *SCP* (i.e. a zip file containing a shapefile and an xml file) used for storing ROIs and spectral signatures.

Warning: Signature list files saved with previous versions of *SCP* are not compatible with SPC 5; however you can import a ROI shapefile using the tool *Import shapefile* (page 67).

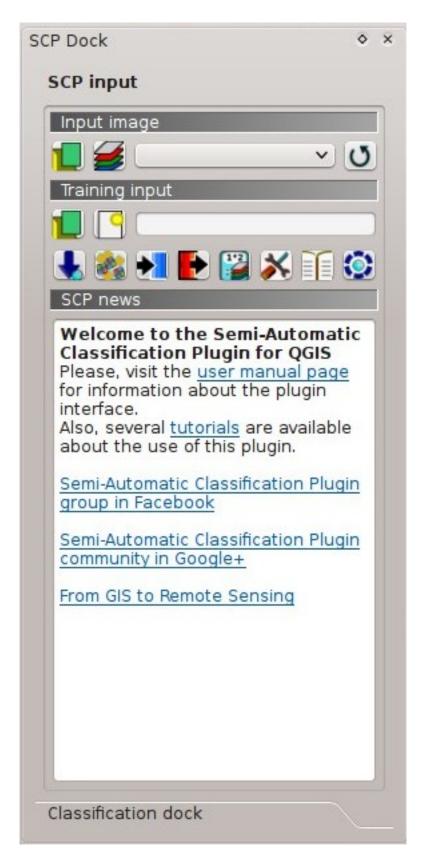


Figure 9.1: SCP input

ROIs and spectral signatures are displayed in the *ROI Signature list* (page 40). ROIs and spectral signatures can be imported from other sources (see *Import signatures* (page 64)) and exported (see *Export signatures* (page 68)). ROIs are displayed in QGIS as vector file (in order to prevent data loss, you should not edit this layer using QGIS functions).

- Let: open a training input file; ROIs and spectral signatures are loaded in *ROI Signature list* (page 40); the vector part of the training input is loaded in QGIS;
- Let create an empty training input file (.scp); the vector part of the training input is loaded in QGIS; also a backup file is created (a file .scp.backup in the same directory as the file .scp) when the training input file is saved;
- *Training input* **T** : it displays the path to the training input file;
- Weights: open the Download images (page 51);
- $\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}$: open the *Tools* (page 62);
- **7**: open the *Preprocessing* (page 75);
- **L**: open the *Postprocessing* (page 86);
 - **E**: open the *Band calc* (page 97);
- **P**: open the **Settings** (page 109);
- $\blacksquare \equiv \blacksquare$: open the online user manual in a web browser;
- we copen the Online help in a web browser; also, a Facebook group and a Google+ Community are available for sharing information and asking for help about *SCP*;

9.1.3 SCP news

This section displays news about the *SCP* and related services. News are downloaded on startup (internet connection required). It can be enabled or disabled in the settings *Dock* (page 111).

9.2 Classification dock

The *Classification dock* is designed to manage the **spectral signatures**, and **classify** the *Input image* (page 38).

9.2.1 ROI Signature list

The *ROI Signature list* displays the ROI polygons and spectral signatures contained in the *Training input* (page 38). If an item is a ROI polygon, double click the item to zoom to that ROI in the map. Items in the table can be highlighted with the mouse left click.

Changes in the *ROI Signature list* are applied to the file *Training input* (page 38) only when the QGIS project is saved. ROIs can be edited, deleted and merged from this table.

WARNING: In order to avoid data loss, do not edit the vector *Training input* using the QGIS tools. Use only the tools of *SCP* for managing the *Training input*.

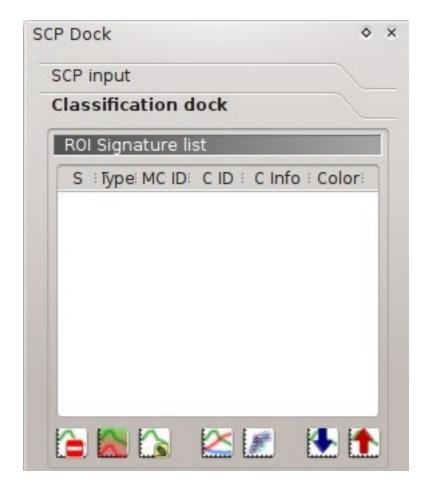


Figure 9.2: ROI Signature list

• ROI Signature list:

- S: selection checkbox; only the spectral signatures checked in this list are used for the classification process;
- *Type*: type of the item:
 - * *R* = only ROI polygon;
 - * *S* = only spectral signature;
 - * B = both ROI and spectral signature;
- MC ID: ROI Macroclass ID [int]; it can be edited with a single click; MC Info is displayed in Macroclasses (page 44); if the ID of a spectral signature is set 0, then pixels belonging to this signature are labelled as unclassified;
- *C ID*: ROI Class ID [int]; it can be edited with a single click;
- C Info: ROI Class Information [text]; it can be edited with a single click;
- Color: C ID color; double click to select a color for the class that is used in the classification; if the ID of a spectral signature is set 0, then pixels belonging to this signature are labelled as unclassified;
- : delete highlighted ROIs and signatures:
- merge highlighted spectral signatures or ROIs obtaining a new signature calculated as the average of signature values for each band (covariance matrix is excluded);
- S: calculate spectral signatures of highlighted ROIs;
- : show the ROI spectral signature in the *Spectral Signature Plot* (page 115); spectral signature is calculated from the *Input image* (page 38);
- : open the *Scatter Plot* (page 121);
- open the tab *Export signatures* (page 68);
- : open the tab *Import signatures* (page 64);

9.2.2 ROI creation

ROI creation is complementary to the Working toolbar (page 33) and it allows for saving ROIs to the Training input (page 38) defining classes and macroclasses. A Band set (page 103) must be defined before the ROI creation, and ROI polygons must be inside the area of the Band set.

- MC ID 😳 ROI Macroclass ID [int]; the corresponding MC Info is loaded if already defined in Macroclasses (page 44);
- *MC Info* **T** : ROI Macroclass information [text]; style and information for macroclasses are defined in Macroclasses (page 44);
- *C ID* : ROI Class ID [int];
- *C Info* **T** : ROI Class information [text];

ROI creation
MC ID 1 S MC Info MC 1
CID 1 🗘 CInfo C1
Calculate sig. 🗬
✓ Display NDVI ✓
Rapid ROI band
O Automatic refresh ROI
O Automatic plot
Macroclasses
Classification algorithm
Classification output

Figure 9.3: ROI creation

- **C**: delete the last saved ROI from the *Training input* (page 38);
- *Calculate sig.* : if checked, while saving a ROI, the spectral signature thereof is calculated (from *Input image* (page 38) pixels under ROI polygon) and saved to *Training input* (page 38) (calculation time depends on the band number of *Input image* (page 38));
- **C**: save the temporary ROI to the *Training input* (page 38) using the defined classes and macroclasses; ROI is displayed in the *ROI Signature list* (page 40);
- 🗹 Display 🗔

• : if the ROI creation pointer is active (see *Working toolbar* (page 33)), the pixel value of selected

- NDVI (Normalized Difference Vegetation Index); NDVI requires the near-infrared and red bands;
- EVI (Enhanced Vegetation Index); EVI requires the blue, near-infrared and red bands converted to reflectance; wavelengths must be defined in the *Band set* (page 103);
- Custom; use the custom expression defined in the following line *Expression*;
- Expression : set a custom expression; expression is based on the Band set; bands are defined as bandset#b + band number (e.g. bandset#b1 for the first band of the Band set); for example NDVI for a Landsat image would be (bandset#b4 bandset#b3)/(bandset#b4 + bandset#b3);
- *Rapid ROI band* : if checked, temporary ROI is created with region growing using only one *Input image* (page 38) band (i.e. region growing is rapider); the band is defined by the *Band set* number; if unchecked, ROI is the result of the intersection between ROIs calculated on every band (i.e. region growing is slower, but ROI is spectrally homogeneous in every band);

- • Automatic refresh ROI: calculate automatically a new temporary ROI while Region growing parameters in the Working toolbar (page 33) are being changed;
- *Automatic plot*: calculate automatically the temporary ROI spectral signature and display it in the *Spectral Signature Plot* (page 115) (MC Info of this spectral signature is set tempo_ROI);

9.2.3 Macroclasses

ROI creation			
Macroclass	es		
MC ID :	MC Info	Color	
			+
Classification	ctulo		
classification	style		-
Load qml			
Classification	algorithm		
Classification	output		

Figure 9.4: Macroclasses

Macroclasses allows for the definition of **Macroclass names and colors** (used to display the results of *Classification preview* (page 34) and *Classification output* (page 46)). According to *Classification algorithm* (page 45), classifications performed using *C ID* have the colors defined for classes in the *ROI Signature list* (page 40); classifications performed using *MC ID* have the colors defined in the *Macroclasses* (page 44).

MC IDs are automatically added to this table when a new ROI is saved to the *ROI Signature list* (page 40) (if the *MC ID* is not already in the list). Settings are stored in *Training input* (page 38).

- Macroclasses
 - *MC ID*: Macroclass ID [int]; it can be edited with a single click;
 - MC Info: Macroclass Information [text]; it can be edited with a single click;
 - Color: MC ID color; double click to select a color for the class that is used in the classification;

1: add a new row to the table;

• 📥: delete the highlighted rows from the table;

Classification style

In addition, a previously saved *classification style* (QGIS .qml file) can be loaded and used for classification style.

Load qml : select a .qml file overriding the colors defined for *C ID* or *MC ID*;
reset style to default (i.e. use the colors defined for *C ID* or *MC ID*);

9.2.4 Classification algorithm

ROI creation
Macroclasses
Classification algorithm
Use MC ID 🗸 C ID
Algorithm
Minimum Distance 🗸 Threshold (0.000 🗘 📉
Land Cover Signature Classification
Use 🗌 LCS 📄 Algorithm 📄 only overlap 🌅
Classification output

Figure 9.5: Classification algorithm

The *Classification algorithm* includes several functions for the classification process used also during the *Classification preview* (page 34).

- Use $MCID \subseteq CID$: if MCID is checked, the classification is performed using the Macroclass ID (code MC ID of the signature); if C ID is checked, the classification is performed using the Class ID (code C ID of the signature);
- for the Algorithm band weight (page 69) for the definition of band weights;

Algorithm

Classification is performed using the selected algorithm.

• ____ : available *Classification Algorithms* (page 139) are:

- Minimum Distance (page 140);
- Maximum Likelihood (page 140);

- Spectral Angle Mapping (page 141);
- Threshold 😳 📍 : it allows for the definition of a classification threshold (applied to all the spectral signatures); for
 - for Minimum Distance, pixels are unclassified if distance is greater than threshold value;
 - for Maximum Likelihood, pixels are unclassified if probability is less than threshold value (max 100);
 - for Spectral Angle Mapping, pixels are unclassified if spectral angle distance is greater than threshold value (max 90);

sopen the *Signature threshold* (page 70) for the definition of signature thresholds;

Land Cover Signature Classification

Land Cover Signature Classification (page 142) is a classification that can be used as alternative or in combination with the *Algorithm* (page 45) (see *LCS threshold* (page 71)). Pixels belonging to two or more different classes (or macroclasses) are classified as *Class overlap* with raster value = -1000.

- Use CCS Algorithm only overlap: if LCS is checked, the Land Cover Signature Classification is used; if Algorithm is checked, the selected Algorithm (page 45) is used for unclassified pixels of the Land Cover Signature Classification; if only overlap is checked, the selected Algorithm (page 45) is used only for class overlapping pixels of the Land Cover Signature Classification; unclassified pixels of the Land Cover Signature Classification are left unclassified;
- Comparent the LCS threshold (page 71);

9.2.5 Classification output

Classification output allows for the classification of the *Input image* (page 38) according to the parameters defined in *Classification algorithm* (page 45).

Classification raster is a file .tif (a QGIS style file .qml is saved along with the classification); also other outputs can be optionally calculated. Outputs are loaded in QGIS after the calculation.

- Apply mask : if checked, a shapefile can be selected for masking the classification output (i.e. the area outside the shapefile is not classified);
- *Create vector* : if checked, in addition to the classification raster, a classification shapefile is saved in the same directory and with the same name as the *Classification output*; conversion to vector can also be performed at a later time (see *Classification to vector* (page 90));
- Classification report : if checked, a report about the land cover classification is calculated and saved as a .csv file in the same directory and with the same name (with the suffix _report) as the Classification output; report can also be performed at a later time (see Classification report (page 89));
- Save algorithm files : if checked, the Algorithm raster (page 144) is saved, in addition to the classification raster, in the same directory as the *Classification output*; a raster for each spectral signature used as input (with the suffix _sig_MC ID_C ID) and a general algorithm raster (with the suffix _alg_raster) are created;

ROI creation
Macroclasses
Classification algorithm
Classification output
Apply mask
Create vector Classification report
Save algorithm files

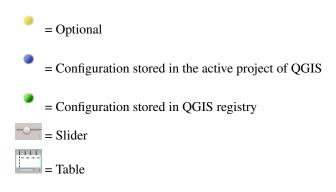
Figure 9.6: Classification output

• Choose the output destination and start the image classification;

CHAPTER 10

Main Interface Window

- Landsat download (page 51)
- Sentinel-2 download (page 55)
- ASTER download (page 59)
- *Tools* (page 62)
 - Multiple ROI Creation (page 62)
 - Import signatures (page 64)
 - Export signatures (page 68)
 - Algorithm band weight (page 69)
 - *Signature threshold* (page 70)
 - *LCS threshold* (page 71)
 - *RGB list* (page 73)
- Preprocessing (page 75)
 - Landsat (page 75)
 - Sentinel-2 (page 77)
 - *ASTER* (page 79)
 - Clip multiple rasters (page 81)
 - Split raster bands (page 83)
 - *PCA* (page 84)
 - Vector to raster (page 85)
- *Postprocessing* (page 86)
 - Accuracy (page 86)
 - *Land cover change* (page 88)
 - *Classification report* (page 89)
 - Classification to vector (page 90)
 - *Reclassification* (page 91)
 - *Edit raster* (page 92)
 - *Classification sieve* (page 94)
 - Classification erosion (page 97)
 - Classification dilation (page 97)
- *Band calc* (page 97)
 - Band list (page 100)
 - *Expression* (page 100)
 - Index calculation (page 101)
 - *Decision rules* (page 101)
 - Output raster (page 103)
- *Band set* (page 103)
 - Band list (page 103)
 - Band set definition (page 103)
 - Band set tools (page 106)
- *Batch* (page 106)
 - *Batch* (page 106)
 - *Run* (page 109)
- Settings (page 109)
 - Interface (page 109)
 - Processing (page 113)
 - *Debug* (page 113)


The Main Interface Window is composed of several tabs and subtabs. The functions are described in detail in the following paragraphs, using these conventions:

1980 v = Input date

T = Input text

🚬 = List

= Input number

10.1 Download images

The tab **Non-Download images** includes the tools for searching and downloading free remote sensing images. An internet connection is required.

10.1.1 Landsat download

		Semi-A	utomatic Classificatio	on Plugin		0
占 Download im	ages 🛛 🆓 Tools 🔹	Preprocessing	Postprocessing	鼝 Band calc	😸 Band set	S & Batch
🔩 Landsat dov	wnload 🌏 Sentine	el-2 download	ASTER download			
Login https://er	s.cr.usgs.gov					
User			Password			🖌 remembe
Searcharea						
UL X (Lon)	ULY (L	at)	LR X (Lon)	LR Y (L	at)	💽 💽 Show 🕇
Search						
Satellites L8 OI	LI/TIRS 🗸	Date from 1	980-01-01 🗸 to 20	18-12-31 🗸	Max cl	loud cover (%) 🛛 100 🗘
Filter						Find 🛴
Landsat images						
Image list						
	ImageID	AcquisitionDate	CloudCover	Path	Row :	min_lat 🕴 👝
	ImagelD	AcquisitionDate	CloudCover	Path :	Row :	min_lat
	ImageID	AcquisitionDate:	CloudCover :	Path	Row	min_lat 💠
	ImageID	AcquisitionDate:	CloudCover :	Path	Row	min_lat 🕴 🕡
	ImageID	i AcquisitionDate	CloudCover :	Path	Row	min_lat i
	ImageID	:4cquisitionDate:	CloudCover 💈	Path :	Row	min_lat :
		:4cquisitionDate:	CloudCover 3	Path	Row	min_lat
< C Download opti	ons		CloudCover :		Row	min_lat
< Compare the second se	ons n Amazon Web Servi	ces, Google Earth E	ngine, USGS EarthEx		Row :	min_lat
< Compare the second se	ons	ces, Google Earth E	ngine, USGS EarthEx		Row	min_lat : ()

This tab allows for searching and downloading the whole archive of *Landsat Satellite* (page 131) images (from 1 MSS to 8 OLI), acquired from the 80s to present days. Search is performed through the CMR Search API

developed by NASA.

Landsat images are freely available through the services: EarthExplorer, Google Earth Engine, and the Amazon Web Services (AWS) (for Landsat 8). This tool attempts to download images first from *Amazon Web Services* and *Google Earth Engine*; only if images are not available, the download is performed through the service *EarthExplorer* in order to prevent the server from becoming saturated.

Images are downloaded as compressed archives (this tool allows for the download of single bands for Landsat 8 images provided by the *Amazon Web Services*). Also, automatic conversion to reflectance of downloaded bands is available.

Login https://ers.cr.usgs.gov/

USGS EROS credentials (https://ers.cr.usgs.gov) are required for downloads from EarthExplorer . Login using your USGS EROS credentials or register for free at https://ers.cr.usgs.gov/register .

- User **T** : enter the user name;
 Password **T** : enter the password;
- *remember*: remember user name and password in QGIS;

Search area

Define the search area by entering the coordinates (longitude and latitude) of an Upper Left (UL) point and Lower Right (LR) point, or interactively drawing an area in the map.

The definition of a search area is required before searching the images.

- *UL X (Lon)* : set the UL longitude;
- *UL Y (Lat)* : set the UL latitude;
- *LR X (Lon)* : set the LR longitude;
- *LR Y (Lat)* 10: set the LR latitude;
- Show: show or hide the search area drawn in the map;
- to set the LR point; the area is displayed in the map;

Search

Define the search settings such as date of acquisition, maximum cloud cover, or specify Landsat satellites.

- *Satellites* : set the Landsat satellites;
- *Date from* 1980 v: set the starting date of acquisition;
- to 1980 v: set the ending date of acquisition;
- *Max cloud cover (%)* : maximum cloud cover in the image;
- *Filter* **T**: set a filter such as the Image ID of Landsat images (e.g. LC81910312015006LGN00); it is possible to enter multiple Image IDs separated by comma or semicolon (e.g. LC81910312015006LGN00, LC81910312013224LGN00); filtered images must be inside the search area;

• *Find* Find the images in the search area; results are displayed inside the table in *Landsat images* (page 53); results are added to previous results;

Tip: Search results (and the number thereof) depend on the defined area extent and the range of dates. In order to get more results, perform multiple searches defining smaller area extent and narrow acquisition dates (from and to).

Landsat images

- *Image list*: found images are displayed in this table, which includes the following fields;
 - ImageID: the Landsat Image ID;
 - AcquisitionDate: date of acquisition of Landsat image;
 - *CloudCover*: percentage of cloud cover in the image;
 - Path: WRS path of the image;
 - *Row*: WRS row of the image;
 - *min_lat*: minimum latitude of the image;
 - *min_lon*: minimum longitude of the image;
 - *max_lat*: maximum latitude of the image;
 - *max_lon*: maximum longitude of the image;
 - USGScollection: USGS collection code of the image;
 - Preview: URL of the image preview;
 - *collection*: collection code of the image;

Selection: It is the set of the s

- : remove highlighted images from the list;
- **•** remove all images from the list;

Download options

Landsat 8 bands

This tab allows for the selection of single bands (only for Landsat 8 images provided by the Amazon Web Services).

- *Band* X: select bands for download;
- : select or deselect all bands;

Download

Download the Landsat images in the *Landsat images* (page 53). During the download it is recommended not to interact with QGIS.

Download is performed according to image availability from the services EarthExplorer, Google Earth Engine, or the Amazon Web Services (AWS). If the image is not available for download it is possible to check the availability thereof on http://earthexplorer.usgs.gov/.

• (0		Semi-Automatic Cl	assification Plugir	1		\odot
1	Download images	🍇 Tools 🔶 Preproce	essing 📑 Postpi	rocessing 🔡 E	Band calc 援 Ban	d set 🔊 Batch	🗙 s < >
1	🗞 Landsat download	🜏 Sentinel-2 downloa	d 💐 ASTER dow	vnload			
I	Login https://ers.cr.us	gs.gov					
1	Jser		Password			🖌 re	member
	Searcharea JLX (Lon)	ULY (Lat)	LR X (Lo	n)	LR Y (Lat)) 💽 SI	now 🕂
l	Search						
-	Satellites L8 OLI/TIRS	▶ Date fr	rom 1980-01-01	✔ to 2018-12-3	1 🗸	Max cloud cover (%)	100 🗘
1	Filter						Find <u>Q</u>
	Landsat images						
	Download options						
	Landsat 8 bands						
	Band 1	✓ Band 2	✓ Band 3	✓ Band 4	Band 5	Band 6	
	Band 7	Band 8 (Panchromatic)	Band 9	Band 10	Band 11	Band QA	
	Download (from Ama	zon Web Services, Google	Earth Engine, USGS	S EarthExplorer)			
	 Only if preview in 	Layers 🗸 Preprocess imag	res 🗸 Load bands	in OGIS		(
	(Siny in preview in	alers (reprocess minut	es vicou builds				

Figure 10.2: Download options

- *Only if preview in Layers*: if checked, download only those images listed in *Landsat images* (page 53) which are also listed in the QGIS layer panel;
- Preprocess images: if checked, bands are automatically converted after the download, according to the settings defined in *Landsat* (page 75);
- *Load bands in QGIS*: if checked, bands are loaded in QGIS after the download;
- ①: export the download links to a text file;
 - Start the download process of all the images listed in *Landsat images* (page 53);

10.1.2 Sentinel-2 download

\odot		Semi-Automatic Classific	ation Plugin	0
Download image	es 🖓 Tools 🔶 Prepr	ocessing Postprocess	ing 🔛 Band calc 💋 B	and set 🔊 Batch 🗼 S <
头 Landsat downl	oad 🜏 Sentinel-2 downl	oad 🛛 👯 ASTER download		
Login Sentinels				
Service https://scil	hub.copernicus.eu/s2			
User 🗌		Password		🗸 remember
Searcharea				
UL X (Lon)	UL Y (Lat)	LR X (Lon)	LR Y (Lat)	• Show 🕂
Sentinel images Image list	ImageName	Granule 4	AcquisitionDate: Zone	: CloudCover : 🕡
<)		
Download options				
Download				

Sentinel-2 is a European satellite launched in 2015, developed in the frame of Copernicus land monitoring services, which acquires 13 spectral bands (see *Sentinel-2 Satellite* (page 133)). This tab allows for searching and downloading the free Sentinel-2 images (Level-1C) from the Sentinels Scientific Data Hub (using the Data Hub API).

Sentinel-2 satellite has a swath width of 290km. Sentinel-2 Level-1C images are delivered in granules (also called tiles) with a side of 100km in UTM/WGS84 projection. This tool allows for the selection and download of granules and bands.

Tip: In case of errors please see *Error* [50] 'Internet error'. Unable to download Sentinel-2 images. Why? (page 187) and *Error* [56] 'SSL connection error'. Unable to download Sentinel-2 images. Why? (page 187).

Login Sentinels

In order to access to Sentinel data a free registration is required at https://scihub.copernicus.eu/userguide/1SelfRegistration (other services may require different registrations). After the registration, enter the user name and password for accessing data.

- Service **T** : enter the service URL (default is https://scihub.copernicus.eu/s2); other mirror services that share the same infrastructure can be used (such as https://scihub.copernicus.eu/dhus, https://finhub.nsdc.fmi.fi, https://data.sentinel.zamg.ac.at);
- **____**: reset the default service https://scihub.copernicus.eu/s2);
- *User* **T** : enter the user name;
- *Password* **T** : enter the password;
- *remember*: remember user name and password in QGIS;

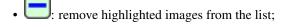
Area coordinates

Define the search area by entering the coordinates (longitude and latitude) of an Upper Left (UL) point and Lower Right (LR) point, or interactively drawing an area in the map. The definition of a search area is required before searching the images.

- *UL X (Lon)* : set the UL longitude;
- *UL Y (Lat)* : set the UL latitude;
- *LR X (Lon)* : set the LR longitude;
- *LR Y (Lat)* 10: set the LR latitude;
- • *Show*: show or hide the search area drawn in the map;
- Control to set the UL point and right click to set the UL point and right click to set the UL point; the area is displayed in the map;

Search

Define search settings such as the date of acquisition or search for specific Sentinel images using the Image ID or name.


- *Date from* 1980 v: set the starting date of acquisition;
- to $1980 \, \mathbf{v}$: set the ending date of acquisition;
- *Max cloud cover* (%) 12: maximum cloud cover in the image;
- *Filter* **T**: set a filter such as the Image Name of Sentinel images (e.g. S2A_OPER_PRD_MSIL1C_PDMC_20160419T190217_R022_V20160419T101026);

• *Find* Find the images in the search area; results are displayed inside the table in *Sentinel images* (page 57); results are added to previous results;

Tip: Search results (and the number thereof) depend on the defined area extent and the range of dates. In order to get more results, perform multiple searches defining smaller area extent and narrow acquisition dates (from and to).

Sentinel images

- *Image list*: found images are displayed in this table, which includes the following fields;
 - ImageName: the Sentinel Image Name;
 - Granule: the single granule name;
 - AcquisitionDate: date of acquisition of Sentinel image;
 - Zone: tile zone according to the US-MGRS naming convention;
 - CloudCover: percentage of cloud cover in the image;
 - *min_lat*: minimum latitude of the image;
 - *min_lon*: minimum longitude of the image;
 - *max_lat*: maximum latitude of the image;
 - *max_lon*: maximum longitude of the image;
 - *Size*: the size of the image (unused);
 - *Preview*: URL of the image overview;
 - *GranulePreview*: URL of the granule preview; if available, preview is downloaded from the Amazon Web Services;
 - ImageID: the Sentinel Image ID;
- Strain display preview of highlighted granules in the map;
- Kole is the map: overview of highlighted images in the map; overview is roughly georeferenced on the fly; overviews could not be available when using mirror services;

• remove all images from the list;

Download options

This tab allows for the selection of single bands.

- *Band* X: select bands for download;
 - select or deselect all bands;

2	Semi-Automatic Classification Plugin	\odot \odot
	😓 Download images 🛛 🆓 Tools 🔰 Preprocessing 📄 Postprocessing 🔛 Band calc 🛛 🥩 Band set 🔊 Batc	h 🔆 S < 🔸
	🔩 Landsat download 🔍 Sentinel-2 download 🥞 ASTER download	
	Login Sentinels	
	Service https://scihub.copernicus.eu/s2	
	User Password	remember
	Search area ULX (Lon) ULY (Lat) LRX (Lon) LRY (Lat)	Show +
	Search Date from 2015-07-01 ▼ to 2018-12-31 ▼ Max cloud cover (%) 100 ♀ Filter	Find 🧕
	Sentinel images Download options	
	Sentinel-2 bands	
	✓ Band 1 ✓ Band 2 ✓ Band 3 ✓ Band 4 ✓ Band 5 ✓ Band 6	
	✓ Band 7 ✓ Band 8 ✓ Band 8A ✓ Band 9 ✓ Band 10 ✓ Band 11 ✓ Band 1	2
	Download	
	✓ Only if preview in Layers ✓ Preprocess images ✓ Load bands in QGIS	1

Figure 10.4: Download options

Download

Download the Sentinel-2 images in the *Sentinel images* (page 57). Bands selected in *Download options* (page 57) are downloaded. Also, the metadata files (a .xml file whose name contains MTD_SAFL1C and a .xml file whose name contains MTD_L1C) and the cloud mask file (a .gml file whose name contains MSK_CLOUDS) are downloaded.

During the download it is recommended not to interact with QGIS.

- *Only if preview in Layers*: if checked, download only those images listed in *Sentinel images* (page 57) which are also listed in the QGIS layer panel;
- *Preprocess images*: if checked, bands are automatically converted after the download, according to the settings defined in *Sentinel-2* (page 77);
- *Load bands in QGIS*: if checked, bands are loaded in QGIS after the download;
- 1: export the download links to a text file;

Start the download process of all the images listed in *Sentinel images* (page 57);

10.1.3 ASTER download

This tab allows for searching and downloading the whole archive of free images L1T acquired by *ASTER Satellite* (page 133) since 2000. Search is performed through the CMR Search API developed by NASA. The ASTER L1T data products are retrieved from the online Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool.

Also, automatic conversion to reflectance of downloaded bands is available.

Login https://urs.earthdata.nasa.gov

EOSDIS Earthdata credentials (https://urs.earthdata.nasa.gov) are required for download. Login using your *EOS-DIS Earthdata* credentials or register for free at https://urs.earthdata.nasa.gov/users/new.

- User **T** : enter the user name;
- *Password* **T** : enter the password;
- *remember*: remember user name and password in QGIS;

Search area

Define the search area by entering the coordinates (longitude and latitude) of an Upper Left (UL) point and Lower Right (LR) point, or interactively drawing an area in the map.

The definition of a search area is required before searching the images.

- *UL X (Lon)* : set the UL longitude;
- *UL Y (Lat)* : set the UL latitude;
- *LR X (Lon)* : set the LR longitude;

Semi-Automatic Classification Plugin 😔 😂 🗞
😓 Download images 🖓 Tools 🏓 Preprocessing 📑 Postprocessing 🔛 Band calc 🥩 Band set 🦠 Batch 🗩 S < >
🐛 Landsat download 🛛 🐛 Sentinel-2 download 🛛 🤽 ASTER download
Login https://urs.earthdata.nasa.gov
User Password V remember
Searcharea
UL X (Lon) UL Y (Lat) LR X (Lon) LR Y (Lat) O Show 🕂
Search
Satellites ASTER Level 1T Date from 2000-01-01 to 2018-12-31 Max cloud cover (%) 100 Image: Cover (%) Image: Cover
Filter Find 💭
ASTER images
Image list
ImageID #AcquisitionDate: CloudCover #ImageDisplayID: DayNightFlag #
Download (from NASA EOSDIS Land Processes DAAC)
✓ Only if preview in Layers ✓ Preprocess images ✓ Load bands in QGIS

- *LR Y (Lat)* 10: set the LR latitude;
- • *Show*: show or hide the search area drawn in the map;
- to set the LR point; the area is displayed in the map;

Search

Define the search settings such as date of acquisition, maximum cloud cover, or specify ASTER satellites.

- *Satellites* : set the ASTER satellites (unused);
- Date from $1980 \vee$: set the starting date of acquisition;
- to $1980 \, \mathbf{v}$: set the ending date of acquisition;
- *Max cloud cover (%)* 12: maximum cloud cover in the image;
- *Filter* **T**: set a filter such as the Image ID of ASTER images; it is possible to enter multiple Image IDs separated by comma or semicolon; filtered images must be inside the search area;
- *Find* **>**: find the images in the search area; results are displayed inside the table in *ASTER images* (page 61); results are added to previous results;

Tip: Search results (and the number thereof) depend on the defined area extent and the range of dates. In order to get more results, perform multiple searches defining smaller area extent and narrow acquisition dates (from and to).

ASTER images

Image list: found images are displayed in this table, which includes the following fields;

- ImageID: the ASTER Image ID;
- AcquisitionDate: date of acquisition of ASTER image;
- *CloudCover*: percentage of cloud cover in the image;
- ImageDisaplyID: the ASTER Image ID;
- DayNightFlag: flag for acquisition during day or night;
- *min_lat*: minimum latitude of the image;
- *min_lon*: minimum longitude of the image;
- *max_lat*: maximum latitude of the image;
- *max_lon*: maximum longitude of the image;
- Service: download service of the image;
- *Preview*: URL of the image preview;
- *collection*: collection code of the image;
- Steep to the fly; see the second seco
- 🔲: remove highlighted images from the list;

• remove all images from the list;

Download

Download the ASTER images in the ASTER images (page 61). During the download it is recommended not to interact with QGIS.

- *Only if preview in Layers*: if checked, download only those images listed in *ASTER images* (page 61) which are also listed in the QGIS layer panel;
- *Preprocess images*: if checked, bands are automatically converted after the download, according to the settings defined in *ASTER* (page 79);
- *Load bands in QGIS*: if checked, bands are loaded in QGIS after the download;

Start the download process of all the images listed in ASTER images (page 61);

10.2 Tools

The tab Tools includes several tools for manipulating ROIs and spectral signatures.

10.2.1 Multiple ROI Creation

This tab allows for the automatic creation of ROIs, useful for the rapid classification of multi-temporal images, or for accuracy assessment. Given a list of point coordinates and ROI options, this tool performs the region growing of ROIs. Created ROIs are automatically saved to the *Training input* (page 38).

Create random points

- *Number of points* 12: set a number of points that will be created when *Create points* is clicked;
- *Image area is divided in cells where the size thereof is defined in the combobox (image unit, usually meters); points defined in Number of random points are created randomly within each cell;*
- *Image min distance (10):* if checked, random points have a minimum distance defined in the combobox (image unit, usually meters); setting a minimum distance can result in fewer points than the number defined in *Number of points*;
- *Create points* : create random points inside the *input image* area;

Point coordinates and ROI definition

Point coordinates and ROI definition: table containing the following fields;

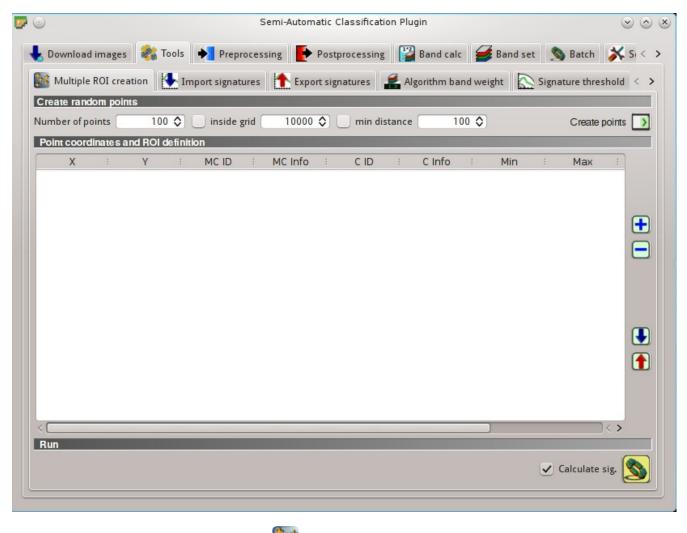


Figure 10.6: Multiple ROI Creation

- *X* : point X coordinate (float);
- *Y* : point Y coordinate (float);
- MC ID: ROI Macroclass ID (int);
- MC Info: ROI Macroclass information (text);
- C ID: ROI Class ID (int);
- C Info: ROI Class information (text);
- *Min* : the minimum area of a ROI (in pixel unit);
- *Max* : the maximum width of a ROI (in pixel unit);
- *Dist* : the interval which defines the maximum spectral distance between the seed pixel and the surrounding pixels (in radiometry unit);
- *Rapid ROI band* : if a band number is defined, ROI is created only using the selected band, similarly to *Rapid ROI band* in *ROI creation* (page 42);
- . add a new row to the table; all the table fields must be filled for the ROI creation;
- delete the highlighted rows from the table;
- Import a point list from text file to the table; every line of the text file must contain values separated by tabs of X, Y, MC ID, MC Info, Class ID, C Info, Min, Max, Dist, and optionally the Rapid ROI band;
- ①: export the point list to text file;

Run

- *Calculate sig.*: if checked, the spectral signature is calculated while the ROI is saved to *Training input* (page 38);
- Start the ROI creation process for all the points and save ROIs to the *Training input* (page 38);

10.2.2 Import signatures

The tab *Import signatures* allows for importing spectral signatures from various sources.

Import library file

This tool allows for importing spectral signatures from various sources: a previously saved *Training input* (page 38) (.scp file); a USGS Spectral Library (.asc file); a previously exported CSV file. In case of USGS Spectral Library, the library is automatically sampled according to the image band wavelengths defined in the *Band set* (page 103), and added to the *ROI Signature list* (page 40);

• *Select a file* : open a file to be imported in the *Training input* (page 38);

Download Images Tools Preprocessing Postprocessing Band calc Select a file: SCP file (*.scp); USGS library (*.asc); ASTER library (*.txt); CSV (*.csv)	
Import library file	ignature threshold < >
Select a file: SCP file (*.scp) ; USGS library (*.asc) ; ASTER library (*.txt) ; CSV (*.csv)	
Import shapefile	
Download USGS Spectral Library	

Figure 10.7: Import library file

)	Semi-Au	tomatic Classification Plugin		\odot
Download Images 🛛 👸	Tools 🔶 Preprocessing	Postprocessing 🔡 Ba	and calc 🥩 Band set 🔊 B	atch 🔀 S <
Multiple ROI creation	Import signatures	Export signatures 🛛 🚅 Algori	ithm band weight 🛛 📐 Signature	e threshold < >
Import library file				
Import shapefile				
Select a shapefile (*.shp	p)			
Shapefile fields				
MCID field	MC Info field	C ID field	C Info field	
) [) [V	~
			✓ Calculate sig. Import s	hapefile 🕟
			_	
Download USGS Spectral	Library			

Figure 10.8: Import shapefile

Import shapefile

This tool allows for importing a shapefile, selecting the corresponding fields of the Training input (page 38).

- *Select a shapefile* : open a shapefile;
- *MC ID field* select the shapefile field corresponding to MC ID;
- *MC Info field* select the shapefile field corresponding to MC Info;
- *C ID field* : select the shapefile field corresponding to C ID;
- *C Info field* : select the shapefile field corresponding to C Info;
- *Calculate sig.*: if checked, the spectral signature is calculated while the ROI is saved to *Training input* (page 38);
- *Import shapefile* import all the shapefile polygons as ROIs in the *Training input* (page 38);

Download USGS Spectral Library

tiple ROI creation import signatures import signatures import signatures import signature thresh library file shapefile bad USGS Spectral Library t a chapter t a library import spectral library	
library file shapefile bad USGS Spectral Library t a chapter t a library Import spectral librar	
shapefile pad USGS Spectral Library t a chapter t a library Import spectral librar	
bad USGS Spectral Library t a chapter t a library Import spectral library	
t a chapter	
t a library	~
Import spectral librar	
	~
ry Description (requires internet connection)	
Multiple ROI creation Import signatures Export signatures Algorithm band weight Signature thread Import library file Import shapefile Download USGS Spectral Library Select a chapter Select a library Import spectral librar Library Description (requires Internet connection) USGS Spectral Library downloaded from http://speclab.cr.usgs.gov/spectral-lib.html.	
ownload Images 💸 Tools	
ownload Images 💸 Tools 🕎 Preprocessing 💽 Postprocessing 😰 Band calc 🕌 Band set 🔊 Batch 🛠 Multiple ROI creation 🔛 Import signatures 💽 Export signatures 🚅 Algorithm band weight 💽 Signature threshold port library file port shapefile wnload USGS Spectral Library elect a chapter elect a library Import spectral library Import spectral library Library Description (requires Internet connection) SGS Spectral Library downloaded from http://speclab.cr.usgs.gov/spectral-lib.html. Leference: R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly, and S. J. Sutley, 2007, USGS Digital Spectral Library	
ownload Images 💸 Tools 🕎 Preprocessing 💽 Postprocessing 😰 Band calc 🗭 Band set 🔊 Batch 🛠 Multiple ROI creation 🔛 Import signatures 🏠 Export signatures 🚅 Algorithm band weight 🔊 Signature threshold port library file port shapefile wnload USGS Spectral Library elect a chapter elect a library Import spectral library Import spectral library Library Description (requires Internet connection) SGSS Spectral Library downloaded from http://speclab.cr.usgs.gov/spectral-lib.html. Leference: R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly, and S. J. Sutley, 2007, USGS Digital Spectral Library	
wuload Images 🏽 Tools 🕎 Preprocessing 💽 Postprocessing 💟 Band calc	
rence: R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly, and S. J. Sutley, 2007, USGS Digital Spectral Libr	
	rary

Figure 10.9: Download USGS Spectral Library

The tab *Download USGS Spectral Library* allows for the download of the USGS spectral library (Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J., 2007, USGS digital spectral library splib06a:

U.S. Geological Survey, Digital Data Series 231).

The libraries are grouped in chapters including Minerals, Mixtures, Coatings, Volatiles, Man-Made, Plants, Vegetation Communities, Mixtures with Vegetation, and Microorganisms. An internet connection is required.

- *Select a chapter* : select one of the library chapters; after the selection, chapter libraries are shown in *Select a library*;
- *Select a library* select one of the libraries; the library description is displayed in the frame *Library description*;
- *Import spectral library* : download the library and add the sampled spectral signature to the *ROI Signature list* (page 40) using the parameters defined in *ROI creation* (page 42); the library is automatically sampled according to the image band wavelengths defined in the *Band set* (page 103), and added to the *ROI Signature list* (page 40);

Tip: Spectral libraries downloaded from the USGS Spectral Library can be used with Minimum Distance or Spectral Angle Mapping algorithms, but not Maximum Likelihood because this algorithm needs the covariance matrix that is not included in the spectral libraries.

	Semi-Automatic Classification Plugin	o ⊗
	👆 Download images 🔹 Tools 🔸 Preprocessing 📑 Postprocessing 📔 Band calc 🚄 Band set 🔊 Batch 🗼 Si	>
1	👫 Multiple ROI creation 🔛 Import signatures 👔 Export signatures 🚅 Algorithm band weight 🔝 Signature threshold <	>
	Export Export as SCP file (*.scp)	
	Export as CSV file (.csv)	

10.2.3 Export signatures

This tool allows for exporting the signatures highlighted in the ROI Signature list (page 40).

- *Export as SCP file* : create a new .scp file and export highlighted ROIs and spectral signatures as *SCP* file (* .scp);
- : open a directory, and export highlighted spectral signatures as individual CSV files • Export as CSV file (* .csv) separated by semicolon (;);

10.2.4 Algorithm band weight

Semi-Automatic Classification Plugin	\odot \otimes \otimes
😓 Download images 🛭 🍪 Tools 🔸 Preprocessing 📄 Postprocessing 🔛 Band calc 😹 Band set 🔊 Batch	X Si < 🗲
🞼 Multiple ROI creation 🔛 Import signatures 🏦 Export signatures 🚅 Algorithm band weight 🔝 Signature thresh	hold < >
Band weight	
Band number : Band name : Weight	1
	
Automatic weight	
Set weight 1.00 \diamond	

This tab allows for the definition of band weights that are useful for improving the spectral separability of materials at certain wavelengths (bands). During the classification process, band values and spectral signature values are multiplied by the corresponding band weights, thus modifying the spectral distances.

Band weight

- Band weight: table containing the following fields;
 - Band number : number of the band in the Band set;
 - Band name : name of the band;
 - *Weight* : weight of the band; this value can be edited;

Automatic weight

- **•** reset all band weights to 1;
- *Set weight* : set the defined value as weight for all the highlighted bands in the table;

10.2.5 Signature threshold

Semi-Automatic Classification Plugin	\odot \odot \otimes
👆 Download images 🔹 Tools 📦 Preprocessing 💽 Postprocessing 🔛 Band calc 🥩 Band set 🔊 Ba	tch 🕺 S < 🔸
ation [Import signatures [Export signatures 🚅 Algorithm band weight 🔝 Signature threshold 🌄 LCS t	threshold < >
Signature threshold	
MC ID : MC Info: C ID : C Info : MD Threshold : ML Threshold : SAM Threshold	1
Automatic thresholds	
Set threshold 0.0000 \bigcirc \bigcirc Set threshold = σ^{*} 1.0 \diamondsuit \bigcirc	

Figure 10.12: Signature threshold

This tab allows for the definition of a classification threshold for each spectral signature. All the signatures contained in the *Training input* (page 38) are listed. This is useful for improving the classification results, especially when spectral signatures are similar. Thresholds of signatures are saved in the *Training input* (page 38).

If threshold is 0 then no threshold is applied. Depending on the selected *Classification algorithm* (page 45) the threshold value is evaluated differently:

- for Minimum Distance, pixels are unclassified if distance is greater than threshold value;
- for Maximum Likelihood, pixels are unclassified if probability is less than threshold value (max 100);
- for Spectral Angle Mapping, pixels are unclassified if spectral angle distance is greater than threshold value (max 90).

Signature threshold

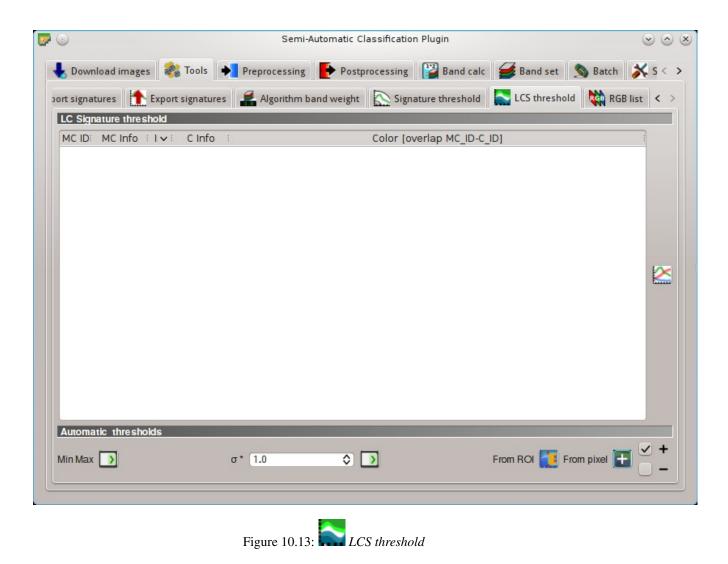
- Signature threshold: table containing the following fields;
 - MC ID: signature Macroclass ID;
 - MC Info: signature Macroclass Information;
 - C ID: signature Class ID;
 - C Info: signature Class Information;
 - MD Threshold: Minimum Distance threshold; this value can be edited;
 - *ML Threshold*: Maximum Likelihood threshold; this value can be edited;
 - SAM Threshold: Spectral Angle Mapping threshold; this value can be edited;

reset all signatures thresholds to 0 (i.e. no threshold used);

Automatic thresholds

- Set threshold 💷 : set the defined value as threshold for all the highlighted signatures in the table;
- Set threshold = $\sigma * 10$ >: for all the highlighted signatures, set an automatic threshold calculated as the distance (or angle) between mean signature and (mean signature + ($\sigma * v$)), where σ is the standard deviation and v is the defined value; currently works for Minimum Distance and Spectral Angle Mapping;

10.2.6 LCS threshold


This tab allows for setting the signature thresholds used by Land Cover Signature Classification (page 142). All the signatures contained in the Training input (page 38) are listed; also, signature thresholds are saved in the Training input (page 38).

Overlapping signatures (belonging to different classes or macroclasses) are highlighted in orange in the table LC Signature threshold; the overlapping check is performed considering MC ID or C ID according to the setting Use

MC ID C ID in Classification algorithm (page 45). Overlapping signatures sharing the same ID are not highlighted.

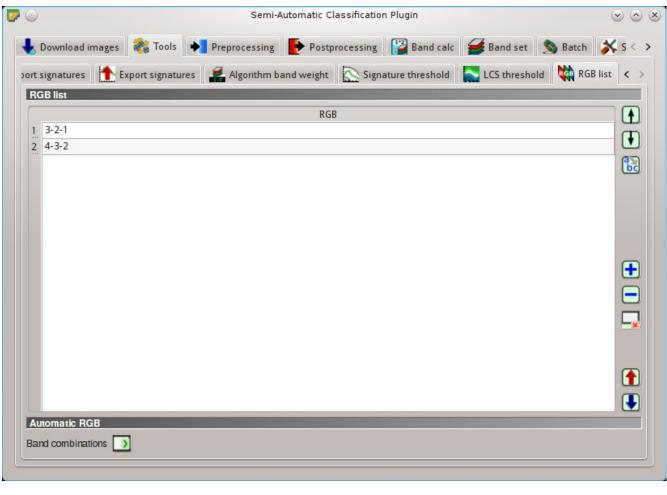
LC Signature threshold

- *LC Signature threshold*: table containing the following fields;
 - MC ID: signature Macroclass ID;
 - MC Info: signature Macroclass Information;
 - C ID: signature Class ID;
 - C Info: signature Class Information;
 - Color [overlap MC_ID-C_ID]: signature color; also, the combination MC ID-C ID is displayed in case of overlap with other signatures (see Land Cover Signature Classification (page 142));
 - Min B X: minimum value of band X; this value can be edited;
 - Max B X: maximum value of band X; this value can be edited;

• Show the ROI spectral signature in the *Spectral Signature Plot* (page 115); spectral signature is calculated from the *Input image* (page 38);

Automatic thresholds

Set thresholds automatically for highlighted signatures in the table *LC Signature threshold*; if no signature is highlighted, then the threshold is applied to all the signatures.


- *Min Max* : set the threshold based on the minimum and maximum of each band;
- $\sigma * \square \square$: set an automatic threshold calculated as (band value + ($\sigma * v$)), where σ is the standard deviation of each band and v is the defined value;
- From ROI .: set the threshold using the temporary ROI pixel values, according to the following checkboxes:
 - 🗹 +: if checked, signature threshold is extended to include pixel signature;
 - 🗹 –: if checked, signature threshold is reduced to exclude pixel signature;
- *From pixel* **E**: set the threshold by clicking on a pixel, according to the following checkboxes:
 - 🗹 +: if checked, signature threshold is extended to include pixel signature;
 - 🗹 –: if checked, signature threshold is reduced to exclude pixel signature;

10.2.7 RGB list

This tab allows for managing the RGB *Color Composite* (page 134) used in the list *RGB*= of the *Image control* (page 33).

RGB list

- D.C.D.
 - *RGB list*: table containing the following fields;
 - *RGB*: RGB combination; this field can be manually edited;
- 12: move highlighted RGB combination upward;
- : move highlighted RGB combination downward;
- b bc: automatically sort RGB combinations by name;
- **L**: add a row to the table;
- : remove highlighted rows from the table;
- **____**: clear all RGB combinations from *RGB list*;

- **(f**): export the *RGB list* to a file (i.e. .csv);
- U: import a previously saved *RGB list* from file (i.e. .csv);

Automatic RGB

• *Band combinations* add the combinations of all bands (i.e. permutation) to the *RGB list* (page 73) (e.g. 1-2-3, 1-2-4, ..., 3-2-1);

10.3 Preprocessing

The tab *Preprocessing* provides several tools for data manipulation which are useful before the actual classification process.

10.3.1 Landsat

	Semi-Automatic Classification Plugin 😒 🔿 🔅	
	😓 Download images 🛭 🇞 Tools 🔸 Preprocessing 📑 Postprocessing 🔛 Band calc 🛛 🥩 Band set 🔊 Batch 🔉 Si < ゝ	
	Landsat conversion to TOA reflectance and brightness temperature	
Download images Tools Preprocessing Postprocessing Band calc Band set Band set Image: Sentinel-2 ASTER Clip multiple rasters Split raster bands PCA Vector to Landsat conversion to TOA reflectance and brightness temperature Directory containing Landsat bands Select MTL file (if not in Landsat directory) Brightness temperature in Celsius Apply DOS1 atmospheric correction Perform pansharpening (Landsat 7 or 8) Create Band set and use Band set tools Metadata Satellite Date (YYYY-MM-DD)		
	Select MTL file (if not in Landsat directory)	
	Brightness temperature in Celsius	
Download images Tools Preprocessing Postprocessing Band calc Band set Batch For a start of the star		
	Perform pansharpening (Landsat 7 or 8)	
Download images Tools Preprocessing Postprocessing Band calc Band set Batch S Batch S Indicate conversion to TOA reflectance and brightness temperature Directory containing Landsat bands Select MTL file (if not in Landsat directory) Brightness temperature in Celsius Apply DOS1 atmospheric correction Vise NoData value (image has black border) Perform pansharpening (Landsat 7 or 8) Create Band set and use Band set tools Metadata Satellite Date (YYYY-MM-DD) Sunelevation Earth sun distance Band RADIANCE_MULT RADIANCE_ADD REFLECTANCE_MULT REFLECTAN		
	Satellite Date (YYYY-MM-DD) Sun elevation Earth sun distance	
 Apply DOS1 atmospheric correction Perform pansharpening (Landsat 7 or 8) Create Band set and use Band set tools Metadata Satellite Date (YYYY-MM-DD) 	Band RADIANCE_MULT RADIANCE_ADD REFLECTANCE_MULT REFLECTANCE	
	Run	
L		

Figure 10.15: Eandsat

This tab allows for the conversion of Landsat 1, 2, and 3 MSS and Landsat 4, 5, 7, and 8 images from DN (i.e. Digital Numbers) to the physical measure of Top Of Atmosphere reflectance (TOA), or the application of a simple atmospheric correction using the DOS1 method (Dark Object Subtraction 1), which is an image-based technique (for more information about the Landsat conversion to TOA and DOS1 correction, see *Image conversion to reflectance* (page 149)). Pan-sharpening is also available; for more information read *Pan-sharpening* (page 135).

Once the input is selected, available bands are listed in the metadata table.

Landsat conversion to TOA reflectance and brightness temperature

- *Directory containing Landsat bands* : open a directory containing Landsat bands; names of Landsat bands must end with the corresponding number; if the metadata file is included in this directory then *Metadata* (page 76) are automatically filled;
- Select MTL file : if the metadata file is not included in the Directory containing Landsat bands, select the path of the metadata file in order to fill the Metadata (page 76) automatically;
- *Brightness temperature in Celsius*: if checked, convert brightness temperature to Celsius (if a Landsat thermal band is listed in *Metadata* (page 76)); if unchecked temperature is in Kelvin;
- Apply DOS1 atmospheric correction: if checked, the DOS1 Correction (page 150) is applied to all the bands (thermal bands excluded);
- Use NoData value (image has black border) 12: if checked, pixels having NoData value are not counted during conversion and the DOS1 calculation of DNmin; it is useful when image has a black border (usually pixel value = 0);
- *Perform pan-sharpening*: if checked, a Brovey Transform is applied for the *Pan-sharpening* (page 135) of Landsat bands;
- *Create Band set and use Band set tools*: if checked, the *Band set* is created after the conversion; also, the *Band set* is processed according to the tools checked in the *Band set* (page 103);

Metadata

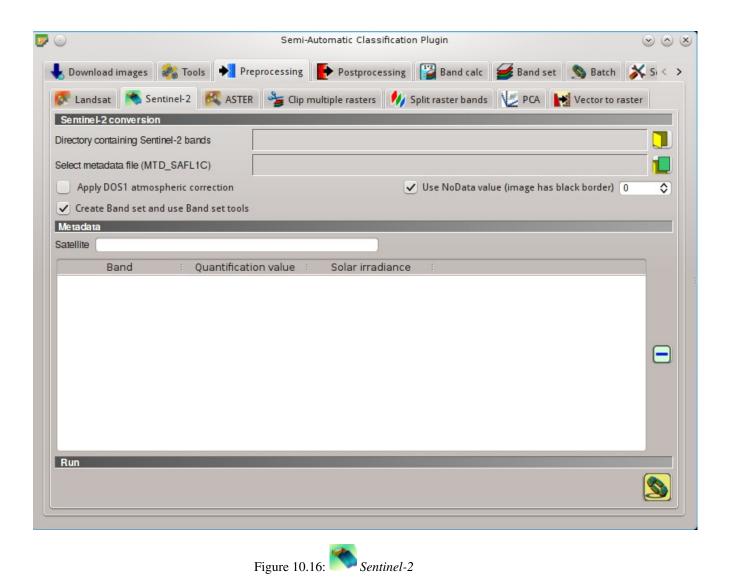
All the bands found in the *Directory containing Landsat bands* are listed in the table *Metadata*. If the Landsat metadata file (a .txt or .met file with the suffix MTL) is provided, then *Metadata* are automatically filled. For information about *Metadata* fields read this page and this one .

- *Satellite* **T**: satellite name (e.g. Landsat8);
- *Date* **T**: date acquired (e.g. 2013-04-15);
- *Sun elevation* 12: Sun elevation in degrees;
- *Earth sun distance* 12: Earth Sun distance in astronomical units (automatically calculated if *Date* is filled;
- : remove highlighted bands from the table *Metadata*;
- Metadata: table containing the following fields;
 - Band: band name;
 - RADIANCE_MULT: multiplicative rescaling factor;
 - RADIANCE_ADD: additive rescaling factor;

- *REFLECTANCE_MULT*: multiplicative rescaling factor;
- REFLECTANCE_ADD: additive rescaling factor;
- RADIANCE_MAXIMUM: radiance maximum;
- *REFLECTANCE_MAXIMUM*: reflectance maximum;
- K1_CONSTANT: thermal conversion constant;
- K2_CONSTANT: thermal conversion constant;
- LMAX: spectral radiance that is scaled to QCALMAX;
- LMIN: spectral radiance that is scaled to QCALMIN;
- QCALMAX: minimum quantized calibrated pixel value;
- QCALMIN: maximum quantized calibrated pixel value;

Run

select an output directory and start the conversion process; only bands listed in the table *Metadata* are converted; converted bands are saved in the output directory with the prefix RT_ and automatically loaded in QGIS;


10.3.2 Sentinel-2

This tab allows for the conversion of **Sentinel-2** images to the physical measure of Top Of Atmosphere reflectance (TOA), or the application of a simple atmospheric correction using the DOS1 method (Dark Object Subtraction 1), which is an image-based technique (for more information about conversion to TOA and DOS1 correction, see *Image conversion to reflectance* (page 149)).

Once the input is selected, available bands are listed in the metadata table.

Sentinel-2 conversion

- *Directory containing Sentinel-2 bands* : open a directory containing Sentinel-2 bands; names of Sentinel-2 bands must end with the corresponding number; if the metadata file is included in this directory then *Metadata* (page 79) are automatically filled;
- Brightness temperature in Celsius: if checked, convert brightness temperature to Celsius (if a Landsat thermal band is listed in Metadata (page 76)); if unchecked temperature is in Kelvin;
- Apply DOS1 atmospheric correction: if checked, the DOS1 Correction (page 150) is applied to all the bands;
- Use NoData value (image has black border) 10: if checked, pixels having NoData value are not counted during conversion and the DOS1 calculation of DNmin; it is useful when image has a black border (usually pixel value = 0);
- Create Band set and use Band set tools: if checked, the Band set is created after the conversion; also, the Band set is processed according to the tools checked in the Band set (page 103);

Metadata

All the bands found in the *Directory containing Sentinel-2 bands* are listed in the table *Metadata*. If the Sentinel-2 metadata file (a .xml file whose name contains MTD_SAFL1C) is provided, then *Metadata* are automatically filled. For information about *Metadata* fields read this informative page.

- *Satellite* **T**: satellite name (e.g. Sentinel-2A);
- , : remove highlighted bands from the table *Metadata*;

Metadata: table containing the following fields;

- Band: band name;
- Quantification value: value for conversion to TOA reflectance;
- Solar irradiance: solar irradiance of band;

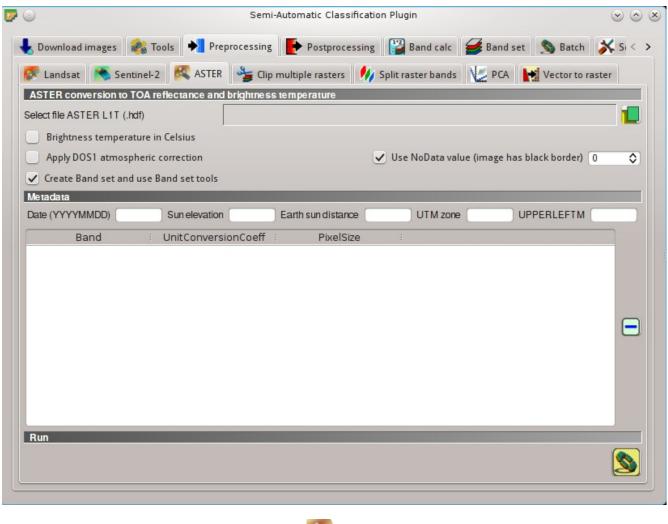
Run

select an output directory and start the conversion process; only bands listed in the table *Metadata* are converted; converted bands are saved in the output directory with the prefix RT_ and automatically loaded in QGIS;

10.3.3 ASTER

This tab allows for the conversion of **ASTER L1T** images to the physical measure of Top Of Atmosphere reflectance (TOA), or the application of a simple atmospheric correction using the DOS1 method (Dark Object Subtraction 1), which is an image-based technique (for more information about conversion to TOA and DOS1 correction, see *Image conversion to reflectance* (page 149)).

Once the input is selected, available bands are listed in the metadata table.


ASTER conversion

- *Select file ASTER L1T* : select an ASTER image (file .hdf);
- Apply DOS1 atmospheric correction: if checked, the DOS1 Correction (page 150) is applied to all the bands;
- Use NoData value (image has black border) 10: if checked, pixels having NoData value are not counted during conversion and the DOS1 calculation of DNmin; it is useful when image has a black border (usually pixel value = 0);
- *Create Band set and use Band set tools*: if checked, the *Band set* is created after the conversion; also, the *Band set* is processed according to the tools checked in the *Band set* (page 103);

Metadata

All the bands found in the *Select file ASTER L1T* are listed in the table *Metadata*. For information about *Metadata* fields visit the ASTER page.

• *Date* **T**: date acquired (e.g. 20130415);

- Sun elevation 12: Sun elevation in degrees;
- Earth sun distance 12: Earth Sun distance in astronomical units (automatically calculated if Date is filled;
- *UTM zone* **T**: UTM zone code of the image;
- UPPERLEFTM T: coordinates of the upper left corner of the image;

: remove highlighted bands from the table *Metadata*;

- *Metadata*: table containing the following fields;
 - Band: band name;
 - *UnitConversionCoeff*: value for radiance conversion;
 - PixelSize: solar irradiance of band;

Run

exercises: select an output directory and start the conversion process; only bands listed in the table *Metadata* are converted; converted bands are saved in the output directory with the prefix RT_ and automatically loaded in QGIS;

10.3.4 Clip multiple rasters

This tab allows for cutting several image bands at once, using a rectangle defined with point coordinates or a boundary defined with a shapefile.

Raster list

• O: refresh layer list;

Clip coordinates

Set the Upper Left (UL) and Lower Right (LR) point coordinates of the rectangle used for clipping; it is possible to enter the coordinates manually. Alternatively use a shapefile.

- UL X $\square \bigcirc$: set the UL X coordinate;
- *UL Y* 12: set the UL Y coordinate;
- LR X 12: set the LR X coordinate;
- LR Y $\square \bigcirc$: set the LR Y coordinate;
- • *Show*: show or hide the clip area drawn in the map;
- Control to the the term of term

• •	Semi-Automa	atic Classification Plug	gin		\odot
👆 Download images 🛛 🆓 Tools	Preprocessing	Postprocessing 📔	Band calc	Band set 🔊	Batch 🕺 S < ゝ
🐼 Landsat 🙈 Sentinel-2	ASTER 🎽 Clip multipl	e rasters 🛛 約 Split ra	aster bands	💋 PCA 🛛 💽 Ve	ctor to raster
Raster list					
					U
Clip coordinates ULX ULY		LRY			• Show +
Use shapefile for clipping					v (5)
Use temporary ROI for clipping					
NoData value 0 🗘		Ou	tput name prefix	clip	
Run		_	_		

Figure 10.18: ******Clip multiple rasters*

- Use shapefile for clipping : if checked, use the selected shapefile (already loaded in QGIS) for clipping; UL and LR coordinates are ignored;
- Use temporary ROI for clipping: if checked, use a temporary ROI (see ROI creation (page 42)) for clipping; UL and LR coordinates are ignored;
- U: refresh layer list;
- *NoData value* 12: if checked, set the value for NoData pixels (e.g. pixels outside the clipped area);
- *Output name prefix* **T**: set the prefix for output file names (default is clip);

Run

: choose an output destination and clip selected rasters; only rasters selected in the *Raster list* (page 81) are clipped and automatically loaded in QGIS;

10.3.5 Split raster bands

)	Semi-Automatic Classification Plugin	\odot
o Download images 🛛 鷸 Too	s 🙌 Preprocessing 📑 Postprocessing 🔛 Band cal	lc 🥩 Band set 🔊 Batch 💸 Si <
🔀 Landsat 🛛 📉 Sentinel-2	🕰 ASTER 🏂 Clip multiple rasters 🏼 🅠 Split raster ban	nds 🔰 PCA 💽 Vector to raster
Raster input		
Select a multiband raster		<u>ن</u> (۲
Dutput name prefix	split	
Run		
		S

Split a multiband raster to single bands.

Raster input


- *Select a multiband raster* **___**: select a multiband raster already loaded in QGIS;
- . U: refresh layer list;
- *Output name prefix* **T**: set the prefix for output file names (default is split);

Run

Solution: Choose the output destination and split selected raster; output bands are automatically loaded in QGIS;

10.3.6 PCA

• 💿	Semi-Automatic Classification Plugin	$\odot \odot $
👆 Download images 🛛 鷸 Tools 🔶 Prep	processing 📑 Postprocessing 🔛 Band calc 🚄 Ba	nd set 🦠 Batch 🗼 Si < 🗲
🐼 Landsat 📉 Sentinel-2 🌌 ASTER	🔧 Clip multiple rasters 🛛 🏘 Split raster bands 🛛 🐙 P	CA Vector to raster
Input		
Principal Components Analysis of Band	1.004	
Number of components 2		se NoData value 0 🗘
	0	
Run		
Output		

This tab allows for the PCA (Principal Component Analysis (page 134)) of bands loaded in the Band set.

Principal Component Analysis of Band set

- *Number of components* 10: if checked, set the number of calculated components; if unchecked, all the components are calculated;
- Use NoData value 12: if checked, set the value of NoData pixels, ignored during the calculation;

Run

: select an output directory and start the calculation process; principal components are calculated and saved as raster files; also, the details about the PCA are displayed in the tab *Output* and saved in a .txt file in the output directory;

10.3.7 Vector to raster

7 🖸	Semi-Automatic Classification Plugin	00
👆 Download images 🛛 🎄 Tools 🔶	Preprocessing 📑 Postprocessing 🔛 Band calc 💋 Band set	S Batch 🕺 S < >
🐼 Landsat 📉 Sentinel-2 🥂	ASTER 🛛 🏂 Clip multiple rasters 🛛 🚧 Split raster bands 🛛 🐙 PCA 📘	Vector to raster
Select the vector		~ U
✓ Use the value field of the vector		~)
Use constant value	[1	\$
Select the type of conversion	Center of pixels	~
Select the reference raster		<u>ک</u> ~
Run		

Figure 10.21: Vector to raster

This tab allows for the conversion of a vector to raster format.

• Select the vector **___**: select a vector already loaded in QGIS;

- U: refresh layer list;
- Use the value field of the vector : if checked, the selected field is used as attribute for the conversion; pixels of the output raster have the same values as the vector attribute;
- Use constant value 12: if checked, the polygons are converted to raster using the selected constant
- Select the type of conversion : select the type of conversion between *Center of pixels* and *All pixels touched*:
 - Center of pixels: during the conversion, vector is compared to the reference raster; output raster pixels are attributed to a polygon if pixel center is within that polygon;
 - All pixels touched: during the conversion, vector is compared to the reference raster; output raster pixels are attributed to a polygon if pixel touches that polygon;
- Select the reference raster : select a reference raster; pixels of the output raster have the same size and alignment as the reference raster;

• U: refresh layer list;

Run

choose the output destination and start the conversion to raster;

10.4 Postprocessing

Postprocessing provides several functions that can be applied to the classification output.

10.4.1 Accuracy

This tab allows for the validation of a classification (read Accuracy Assessment (page 146)). Classification is compared to a reference raster or reference shapefile (which is automatically converted to raster). If a shapefile is selected as reference, it is possible to choose a field describing class values.

Several statistics are calculated such as overall accuracy, user's accuracy, producer's accuracy, and Kappa hat. The output is an error raster that is a .tif file showing the errors in the map, where pixel values represent the categories of comparison (i.e. combinations identified by the ErrorMatrixCode in the error matrix) between the classification and reference. Also, a text file containing the error matrix (i.e. a . CSV file separated by tab) is created with the same name defined for the .tif file.

Input

- Select the classification to assess : select a classification raster (already loaded in QGIS);
- . U: refresh layer list;
- Select the reference shapefile or raster : select a raster or a shapefile (already loaded in QGIS), used as reference layer (ground truth) for the accuracy assessment;

• U: refresh layer list;

)	Semi-Automatic	Classification Plugin		0
Download images 🛛 👬 F	Preprocessing 📑 Post	processing 🔡 Band calc	Sand set S Batc	h 🕺 Si <
Accuracy	Classification report	Classification to vector	🔂 Reclassification	Edit ra <
nput				
Select the classification to assess				~ U
Select the reference shapefile or raster				- U
ocident ine relicionate antippente or relater	Shapefile field			
Run	_			
Dutput				

• *Shapefile field* : if a shapefile is selected as reference, select a shapefile field containing numeric class values;

Run

echoose the output destination and start the calculation; the error matrix is displayed in the tab *Output* and the error raster is loaded in QGIS;

10.4.2 Land cover change

)	Semi-Automatic Classification Plugin	0
Download images 🛛 🍓 Tools 🔶	Preprocessing 📄 Postprocessing 🔛 Band calc 🥩 Band set	S Batch 🕺 Si <
Accuracy 🔀 Land cover change	🔡 🔛 Classification report 🛛 👫 Classification to vector 🛛 🕵 Reclassifi	cation 📕 Edit ra <
nput	new classification	
Select the reference classification		~ ()
Select the new classification		<u></u>
Report unchanged pixels		C
Run		
Dutput		

The tab Land cover change allows for the comparison between two classifications in order to assess land cover changes. Output is a land cover change raster (i.e. a file .tif showing the changes in the map, where each pixel represents a category of comparison (i.e. combinations) between the two classifications, which is the ChangeCode in the land cover change statistics) and a text file containing the land cover change statistics (i.e. a file .csv separated by tab, with the same name defined for the .tif file).

Input

• Select the reference classification : select a reference classification raster (already loaded in QGIS);

- . U: refresh layer list;
- *Select the new classification* : select a new classification raster (already loaded in QGIS), to be compared with the reference classification;
- U: refresh layer list;
- *Report unchanged pixels*: if checked, report also unchanged pixels (having the same value in both classifications);

Run

: choose the output destination and start the calculation; the land cover change statistics are displayed in the tab *Output* (and saved in a text file) and the land cover change raster is loaded in QGIS;

10.4.3 Classification report

9	Semi-Au	tomatic Classificatio	on Plugin			0
ownload images 🛛 🍪 Tools 🔶	Preprocessing	Postprocessing	📔 Band calc	Sand set	S Batch	X Si <
Accuracy 🛛 🔀 Land cover change	Classificatio	n report 🛛 👫 Class	sification to vector	🛃 Reclassifi	cation	Edit ra <
Input						
Select the classification	_					~ U
	•					
0	•					
Run	_		_	_		
Output						

This tab allows for the calculation of class statistics such as number of pixels, percentage and area (area unit is defined from the image itself).

Input

- Select the classification : select a classification raster (already loaded in QGIS);
- U: refresh layer list;
- Use NoData value 12: if checked, NoData' value will be excluded from the report;

Run

• Choose the output destination and start the calculation; the report is saved in a text file and displayed in the tab *Output*;

10.4.4 Classification to vector

9	Semi-Automatic C	lassification Plugin		\odot
🖌 Download images 🛛 🍂 Tools 🔶	Preprocessing Postp	rocessing 🔛 Band calc	🥩 Band set 🔊 Ba	atch 🕺 Si <
Accuracy 🔀 Land cover change	Classification report	Classification to vector	😝 Reclassification	Edit ra < 💙
Select the classification				~ U
Symbology				
✓ Use code from Signature list C_ID				~
Run				
Run				8
Run				8

This tab allows for the conversion of a classification raster to vector shapefile.

• Select the classification : select a classification raster (already loaded in QGIS);

. U: refresh layer list;

Symbology

- Use code from Signature list : if checked, color and class information are defined from ROI Signature list (page
 - MC ID: use the ID of macroclasses;
 - C ID: use the ID of classes;

Run

10.4.5 Reclassification

\odot	Semi-Automatic Class	sification Plugin		\odot
👆 Download images 🛛 鷸 Tools	Preprocessing Postproc	essing 🔛 Band calc	😸 Band set 🔊 Batch	🔆 Si < 🔉
😝 Classification to vector 🚦	Reclassification Edit raster	Classification sieve	Classification erosion	s a < >
Select the classification				<u>v</u> 🕐
Values CID to MCID values			Calculate unique v	alues 🚺
Old value	Ne	ew value		
				•
Symbology				
✓ Use code from Signature list	MC_ID			~
Run				
				S

This tab allows for the reclassification (i.e. assigning a new class code to raster pixels). In particular, it eases the conversion from C ID to MC ID values.

- Select the classification : select a classification raster (already loaded in QGIS);
- U: refresh layer list;

Values

• *calculate C ID to MC ID values*: if checked, the reclassification table is filled according to the *ROI*

Signature list (page 40) when Calculate unique values is clicked;

- *Calculate unique values* : calculate unique values in the classification and fill the reclassification table;
- *Values*: table containing the following fields;
 - Old value: set the expression defining old values to be reclassified; Old value can be a value or an expressions defined using the variable name raster (custom names can be defined in Variable name for expressions (page 111)), following Python operators (e.g. raster > 3 select all pixels having value > 3; raster > 5 | raster < 2 select all pixels having value > 5 or < 2; raster >= 2 & raster <= 5 select all pixel values between 2 and 5);</p>
 - *New value*: set the new value for the old values defined in Old value;
- : add a row to the table;
- : remove highlighted rows from the table;

Symbology

- *Use code from Signature list* : if checked, color and class information are defined from *ROI Signature list* (page 1)
 - MC ID: use the ID of macroclasses;
 - C ID: use the ID of classes;

Run

Schoose the output destination and start the calculation; reclassified raster is loaded in QGIS;

10.4.6 Edit raster

This tab allows for the direct editing of pixel values in a raster. Only pixels beneath ROI polygons or vector polygons are edited.

Attention: the input raster is directly edited; it is recommended to create a **backup copy** of the input raster before using this tool in order to prevent data loss.

This tool can rapidly edit large rasters, especially when editing polygons are small, because pixel values are edited directly.

• Select the input raster **___**: select a raster (already loaded in QGIS);

• U: refresh layer list;

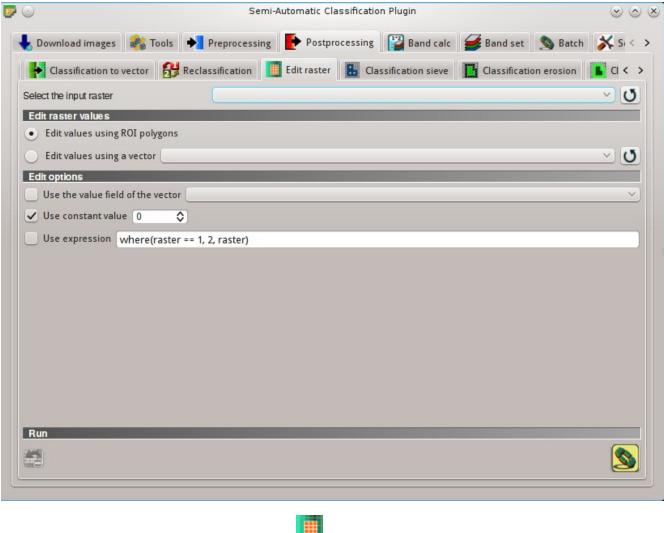


Figure 10.27: *Edit raster*

Edit raster values

- *Edit values using ROI polygons*: if checked, raster is edited using temporary ROI polygons in the map;
- *Edit values using a vector if checked, raster is edited using all the polygons of selected vector;*
- U: refresh layer list;

Edit options

- Use the value field of the vector : if checked, raster is edited using the selected vector (in *Edit values using a vector*) and the polygon values of selected vector field;
- *Use constant value* 12: if checked, raster is edited using the selected constant value;
- Use expression **T**: if checked, raster is edited according to the entered expression; the expression must contain one or more where; the following example expression where (raster == 1, 2, raster) is already entered, which sets 2 where raster equals 1, and leaves unchanged the values where raster is not equal to 1;

Run

- **I**: undo the last raster edit (available only when using ROI polygons);
- Solution: edit the raster;

10.4.7 Classification sieve

This tab allows for the replacement of isolated pixel values with the value of the largest neighbour patch (based on GDAL Sieve). It is useful for removing small patches from a classification.

- Select the classification : select a raster (already loaded in QGIS);
- U: refresh layer list;
- *Size threshold* 12: size of the patch to be replaced (in pixel unit); all patches smaller the selected number of pixels will be replaced by the value of the largest neighbour patch;
- *Pixel connection* : select the type of pixel connection:
 - 4: in a 3x3 window, diagonal pixels are not considered connected;
 - 8: in a 3x3 window, diagonal pixels are considered connected;

Run

Solution: choose the output destination and start the calculation;

9 🛛	Semi-Automatic Classificatio	on Plugin	\odot \odot \otimes
👆 Download images 🛛 🆓 Tools 🔶 I	Preprocessing Postprocessing	🚰 Band calc 🥩 Band set 🔊	Batch 🔉 Si < 🔸
to vector 🛛 🔀 Reclassification 📲 Edit	traster 🔛 Classification sieve	Classification erosion	tion dilation
Select the classification			~ U
Size threshold	2 🔷	Pixel connection	4 🗸
Run			

Figure 10.28: Classification sieve

0	Semi-Automatio	c Classification Plugin	0
5 Download images 🛛 🏤	Tools 🔶 Preprocessing 🛃 Po	stprocessing 📲 Band calc 💋 Band s	set 🔊 Batch 🗩 Si <
vector 🔠 Reclassificatio	on 📕 Edit raster 🔝 Classificat	ion sieve 🔛 Classification erosion	Classification dilation <
elect the classification			<u>ن</u> (۲
lass values			
ize in pixels	1 💠	Pixel connection	4 ~
Run			
			S

Figure 10.29: Classification erosion

10.4.8 Classification erosion

This tab allows for removing the border of a class patch (erosion), defining the class values to be eroded and the number of pixels from the border. It is useful for classification refinement.

- *Select the classification* **___**: select a raster (already loaded in QGIS);
- U: refresh layer list;
- *Class values* **T**: set the class values to be eroded; class values must be separated by , and can be used to define a range of values (e.g. 1, 3–5, 8 will select classes 1, 3, 4, 5, 8); if the text is red then the expression contains errors;
- *Size in pixels* 12: number of pixels to be eroded from the border;
- *Pixel connection* **___**: select the type of pixel connection:
 - 4: in a 3x3 window, diagonal pixels are not considered connected;
 - 8: in a 3x3 window, diagonal pixels are considered connected;

Run

: choose the output destination and start the calculation;

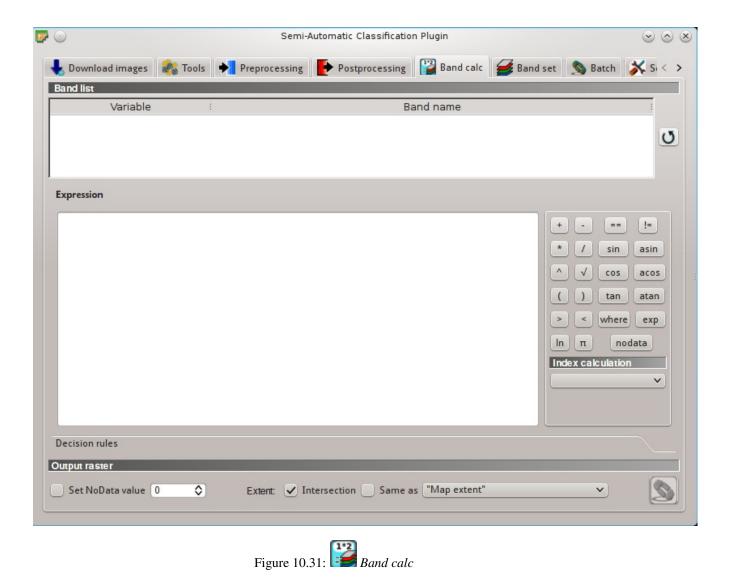
10.4.9 Classification dilation

This tab allows for dilating the border of a class patch, defining the class values to be dilated and the number of pixels from the border. It is useful for classification refinement.

- Select the classification : select a raster (already loaded in QGIS);
- . U: refresh layer list;
- *Class values* **T**: set the class values to be dilated; class values must be separated by , and can be used to define a range of values (e.g. 1, 3–5, 8 will select classes 1, 3, 4, 5, 8); if the text is red then the expression contains errors;
- *Size in pixels* 12: number of pixels to be dilated from the border;
- *Pixel connection* **___**: select the type of pixel connection:
 - 4: in a 3x3 window, diagonal pixels are not considered connected;
 - 8: in a 3x3 window, diagonal pixels are considered connected;

Run

• Solution: Choose the output destination and start the calculation;


10.5 Band calc

The Band calc allows for the **raster calculation for bands** (i.e. calculation of pixel values) using NumPy functions. Raster bands must be already loaded in QGIS. Input rasters must be in the same projection.

In addition, it is possible to calculate a raster using decision rules.

9	Semi-Automati	c Classification Plugin	
y Download images 🛛 🆓	Tools 🔶 Preprocessing 📑 Po	stprocessing 📔 Band calc 💋 Band s	et 🔊 Batch 🔆 Si <
vector 🛃 Reclassificati	on 📕 Edit raster 🔛 Classificat	ion sieve 🛛 🔛 Classification erosion	Classification dilation <
elect the classification			~ U
lass values			
ize in pixels	1 🔷	Pixel connection	4 ~
Run			

Figure 10.30: Classification dilation

10.5.1 Band list

- Band list: table containing a list of single band rasters (already loaded in QGIS);
 - *Variable*: variable name defined automatically for every band (e.g. raster1, raster2);
 - Band name: band name (i.e. the layer name in QGIS);
- U: refresh image list;

10.5.2 Expression

Enter a mathematical expression for raster bands. In particular, NumPy functions can be used with the prefix np. (e.g. np.log10 (raster1)). For a list of NumPy functions see the NumPy page.

The expression can work with both Variable and Band name (between double quotes). Also, bands in the Band set (page 103) can be referenced directly; for example bandset #b1 refers to band 1 of the Band set. Double click on any item in the Band list (page 100) for adding its name to the expression. In addition, the following variables related to *Band set* (page 103) the are available:

- "#BLUE#": the band with the center wavelength closest to 0.475 μm ;
- "#RED#": the band with the center wavelength closest to 0.65 μm ;
- "#NIR#": the band with the center wavelength closest to 0.85 μm ;

If text in the *Expression* is green, then the syntax is correct; if text is red, then the syntax is incorrect and it is not possible to execute the calculation.

It is possible to enter multiple expressions separated by newlines such as the following example:

```
"raster1" + "raster2"
"raster3" - "raster4"
```

The above example calculates two new rasters in the output directory with the suffix _1 (e.g. calc_raster_1) for the first expression and _2 (e.g. calc_raster_2) for the second expression. Also, it is possible to define the output name using the symbol @ followed by the name, such as the following example:

```
"raster1" + "raster2" @ calc_1
```

"raster3" - "raster4" @ calc 2

The following buttons are available:

- +: plus;
- -: minus;
- *: product;
- /: ratio;
- ^: power;
- V: square-root;
- (: open parenthesis;
-): close parenthesis;
- >: greater then;
- <: less then;
- *ln*: natural logarithm;
- π : pi;

- ==: equal;
- *!*=: not equal;
- sin: sine;
- asin: inverse sine;
- cos: cosine;
- *acos*: inverse cosine;
- *tan*: tangent;
- *atan*: inverse tangent;
- where: conditional expression according to the syntax where(condition , value if true, value if false) (e.g. where("raster1" == 1, 2, "raster1"));
- *exp*: natural exponential;
- nodata: NoData value of raster (e.g. nodata("raster1")); it can be used as value in the expression
 (e.g. where("raster1" == nodata("raster1"), 0, "raster1"));

10.5.3 Index calculation

Index calculation allows for entering a spectral index expression.

- *Index calculation* : list of spectral indices:
 - NDVI: if selected, the NDVI calculation is entered in the *Expression* ((("#NIR#" "#RED#") / ("#NIR#" + "#RED#") @ NDVI));
 - EVI: if selected, the EVI calculation is entered in the Expression (2.5 * ("#NIR#" "#RED#") / ("#NIR#" + 6 * "#RED#" 7.5 * "#BLUE#" + 1) @ EVI);

10.5.4 Decision rules

Decision rules allows for the calculation of an output raster based on rules. Rules are conditional statements based on other rasters; if the *Rule* is true, the corresponding *Value* is assigned to the output pixel.

Rules are verified from the first to the last row in the table; if the first *Rule* is false, the next *Rule* is verified for that pixel, until the last rule. If multiple rules are true for a certain pixel, the value of the first *Rule* is assigned to that pixel. The NoData value is assigned to those pixels where no *Rule* is true.

```
Decision rules: table containing the following fields;
```

- *Value*: the value assigned to pixels if the *Rule* is true;
- Rule: the rule to be verified (e.g. "raster1" > 0); multiple conditional statements can be entered separated by; (e.g. "raster1" > 0; "raster2" < 1 which means to set the Value where raster1 > 0 and raster2 < 1);</p>

: delete the highlighted rows from the table;

: clear the table;

0	Semi-Automatic Classification Plugin			\odot \odot			
👆 Download images	赣 Tools 🔸	Preprocessing	Postprocessin	g 🔛 Band calc	Band set	S Batch	<mark>∦</mark> Si < →
Band list							
Variable	i			Band name			1
							J
Expression							
Decision rules							
Value :			Rule				
							•
							-
Output raster	_						
Set NoData value	0	Extent: 🕑 Inte	ersection 📃 Same	as ("Map extent"		~	5

- (f): export the rules to a text file that can be imported later;
 - : import rules from a text file;

10.5.5 Output raster

The output raster is a .tif file, with the same spatial resolution and projection of input rasters; if input rasters have different spatial resolutions, then the highest resolution (i.e. minimum pixel size) is used for output raster.

- Use NoData value 12: if checked, set the value of NoData pixels in output raster;
- Extent: if the following options are unchecked, the output raster extent will include the extents of all input rasters;
 - *Intersection*: if checked, the extent of output raster equals the intersection of input raster extents (i.e. minimum extent);
 - Same as : if checked, the extent of output raster equals the extent of "Map extent" (the extent of the map currently displayed) or a selected layer;
- Expression is active and text is green, choose the output destination and start the calculation based on Expression; if Decision rules is active and text is green, choose the output destination and start the calculation based on Decision rules;

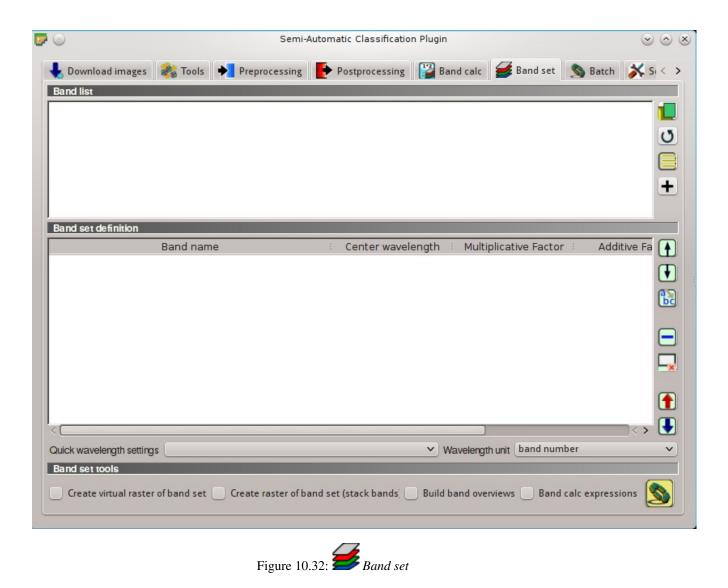
10.6 Band set

This tab allows for the definition of a set of single band rasters (*Band set*) used as *Input image*. The Center wavelength of bands should be defined in order to use several functions of *SCP*.

If a *Band set* of single band rasters is defined, then the item << band set >> will be listed in the *Working toolbar* (page 33) as *input image*.

The Band set definition is saved with the QGIS project.

10.6.1 Band list


List of single band rasters loaded in QGIS.

- U: refresh list of raster bands loaded in QGIS;
- : select all raster bands;
- : add selected rasters to the *Band set*.

10.6.2 Band set definition

Definition of bands composing the *input image*.

If the *Center wavelength* of bands is not defined, the band number is used and some *SCP* tools will be disabled. It is possible to define a multiplicative rescaling factor and additive rescaling factor for each band (for instance using the

values in Landsat metadata), which are used on the fly (i.e. pixel value = original pixel value *
multiplicative rescaling factor + additive rescaling factor) during the processing.

- Band set definition: table containing the following fields;
 - *Band name* : name of the band; name cannot be edited;
 - *Center wavelength* : center of the wavelength of the band;
 - *Multiplicative Factor* : multiplicative rescaling factor;
 - *Additive Factor* : additive rescaling factor;
- : move highlighted bands upward;
- UU: move highlighted bands downward;
- **b**: sort automatically bands by name, giving priority to the ending numbers of name;
- : remove highlighted bands from the *Band set*;
- **Example**: clear all bands from *Band set*;
- **(1)**: export the *Band set* to a file;
- 1. import a previously saved *Band set* from file;
- Quick wavelength settings 🔤 📍 : rapid definition of band center wavelength for the following satellite sensors:
 - ASTER;
 - GeoEye-1;
 - Landsat 8 OLI;
 - Landsat 7 ETM+;
 - Landsat 5 TM;
 - Landsat 4 TM;
 - Landsat 1, 2, and 3 MSS;
 - Pleiades;
 - QuickBird;
 - RapidEye;
 - Sentinel-2;
 - SPOT 4;
 - SPOT 5;
 - SPOT 6;
 - WorldView-2 and WorldView-3;

- *Wavelength unit* **___** : select the wavelength unit among:
 - Band number: no unit, only band number;
 - μm : micrometres;
 - nm: nanometres;

10.6.3 Band set tools

It is possible to perform several processes directly on Band set.

- *Create virtual raster of band set*: if checked, create a virtual raster of bands;
- Create raster of band set (stack bands): if checked, stack all the bands and create a unique .tif raster;
- *Build band overviews*: if checked, build raster overviews (i.e. pyramids) for improving display performance; overview files are created in the same directory as bands;
- *Band calc expression*: if checked, calculate the *Expression* (page 100) entered in *Band calc* (page 97); it is recommended the use of *Band set* variables in the expression (e.g. bandset#b1);
- Since the output destination and start the process;

10.7 Batch

This tab allows for the automatic execution (batch) of several SCP functions using a scripting interface.

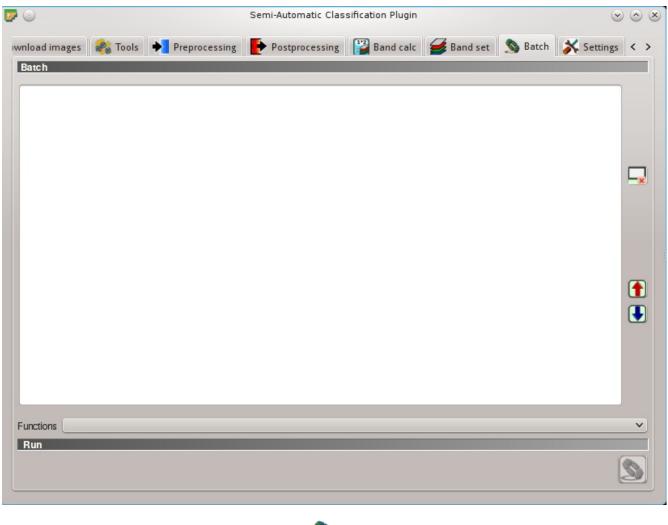
10.7.1 Batch

Enter a batch expression; each function must be in a new line. Functions have the following structure:

function name; function options

Each functions has options, identified by a name, with the following structure:

option name: option argument


Options must be separated by the character ; . Each function option represents an option in the corresponding interface of SCP; option arguments of type text must be between the character '; in case of checkboxes, the value 1 represents checked, while the value 0 represents unchecked.


According to the function, some of the options are mandatory while other options can be omitted from the expression. Option names that contain path require the full path to a file. Some options that require multiple arguments such as lists; lists must be separated by , .

If the expression contains errors, the text is red.

- - : import a previously saved batch expression from file;

Functions: the following functions are available with the corresponding options;

- Accuracy (page 86): calculate accuracy (accuracy;classification_file_path : '';reference_file_path : '';shapefile_field_name : '';output_raster_path : '');
- ASTER (page 79): ASTER conversion of (aster_conversion; input_raster_path : '';celsius_temperature : 0;apply_dos1 : 0;use_nodata : 1;nodata_value : 0;create_bandset : 1;output_dir : '');
- Band calc (page 97): band calculation (band_calc;expression :
 '';output_raster_path : '';extent_same_as_raster_name :
 '';extent_intersection : 1;set_nodata : 0;nodata_value : 0);
- Classification output (page 46): perform classification (classification; use_macroclass : 0; algorithm_name : 'Minimum Distance'; use_lcs : 0; use_lcs_algorithm : 0; use_lcs_only_overlap : 0; apply_mask : 0; mask_file_path : ''; vector_output : 0; classification_report : 0; save_algorithm_files : 0; output_classification_path : '');
- Classification dilation (page 97): dilation of a classification
 (classification_dilation;input_raster_path : '';class_values :
 '';size_in_pixels : 1;pixel_connection : 4;output_raster_path :
 '');
- Classification erosion (page 97): erosion of a classification
 (classification_erosion; input_raster_path : ''; class_values :
 ''; size_in_pixels : 1; pixel_connection : 4; output_raster_path :
 '');
- Classification report (page 89): report of a classification (classification_report;input_raster_path : '';use_nodata : 0;nodata_value : 0;output_report_path : '');
- Classification sieve (page 94): classification sieve(classification_sieve; input_raster_path : '';size_threshold : 2;pixel_connection : 4;output_raster_path : '');
- Classification to vector (page 90): convert classification to vector (classification_to_vector;input_raster_path : '';use_signature_list_code : 1;code_field : 'C_ID';output_vector_path : '');
- Clip multiple rasters (page 81): clip multiple rasters (clip_multiple_rasters; input_raster_path : '';output_dir : '';use_shapefile : 0;shapefile_path : '';ul_x : '';ul_y : '';lr_x : '';lr_y : '';nodata_value : 0;output_name_prefix : 'clip');
- Edit raster (page 92): edit raster values using a shapefile (edit_raster_using_shapefile;input_raster_path : '';input_vector_path : '';vector_field_name : '';constant_value : 0;expression : 'where(raster == 1, 2, raster)');
- Land cover change (page 88): calculate land cover change (land_cover_change; reference_raster_path : ''; new_raster_path : ''; output_raster_path : '');
- Landsat (page 75): Landsat conversion (landsat_conversion; input_dir : '';mtl_file_path : '';celsius_temperature : 0;apply_dos1 : 0;use_nodata : 1;nodata_value : 0;pansharpening : 0;create_bandset : 1;output_dir : '');
- PCA (page 84): Principal Component Analysis (pca;use_number_of_components : 0, number_of_components : 2;use_nodata : 1;nodata_value : 0;output_dir : '');

- *Reclassification* (page 91): raster reclassification (reclassification; input_raster_path
 - : '';value_list : 'oldVal-newVal;oldVal-newVal';use_signature_list_code
 - : 1;code_field : 'MC_ID';output_raster_path : '');
- Sentinel-2 (page 77): Sentinel-2 conversion(sentinel_conversion; input_dir : '';mtd_safl1c_file_path : '';apply_dos1 : 0;use_nodata : 1;nodata_value : 0;create_bandset : 1;output_dir : '');
- Split raster bands (page 83): split raster to single bands (split_raster_bands; input_raster_path : ''; output_dir : ''; output_name_prefix : 'split');
- Vector to raster (page 85): convert vector to raster (vector_to_raster;vector_file_path : '';use_value_field : 1;vector_field_name : '';constant_value : 1;reference_raster_path : '';type_of_conversion : 'Center of pixels';output_raster_path : '');

In addition, the following functions are available:

- Add raster to QGIS: add a raster to QGIS (add_raster; input_raster_path : ''; input_raster_name : '');
- Create Band set: create a Band set (create_bandset;raster_path_list : '';center_wavelength : '';multiplicative_factor : '';additive_factor : '');
- Open training input: open a training input file (open_training_input; training_file_path
 '');
- Set working directory: set a working directory (argument is the path to a directory) (!working_dir!;'');

If a working directory is defined, !working_dir! can be entered in other functions where a path is required (e.g. add_raster;input_raster_path : '!working_dir!/raster1.tif';input_raster_name : 'raster1.tif'); An example of batch expression is:

```
!working_dir!; '/home/user/Desktop/temp/'
add_raster;input_raster_path : '!working_dir!/raster1.tif';input_raster_name : 'raster1.tif'
band_calc;expression : 'where("raster1.tif" > 1, 1,0)';output_raster_path : '!working_dir!/calc1.
band_calc;expression : '"raster1.tif" * "calc1.tif";output_raster_path : '!working_dir!/calc2.ti
```

10.7.2 Run

: if text in the batch expression is green, start the batch processes;

10.8 Settings

The tab *Settings* allows for the customization of *SCP*.

10.8.1 Interface

Customization of the interface.

Field names of training input MCID field MC_ID MC_info C_ID C_info Rol style Rol color Transparency Variable name for expressions (tab Reclassification and Edit raster) Variable name (raster) Temporary group name Group name (Class_temp_group) Dock	0			Semi-Aut	omatic Classifi	cation Plugin					\odot
Interface Field names of training input MC ID field MC Info field C ID field C Info field MC_ID MC_info C_ID C_info Image: Comparison of training input comparis	load images	褖 Tools	Preprocess	ing 📑 Post	processing	Band calc	😸 Band	set 🥊	Batch	X Settir	ngs <
MCID field MCInfo field CID field CInfo field MC_ID MC_info C_ID C_info ROI style ROI color Transparency Variable name for expressions (tab Reclassification and Edit raster) Variable name raster Temporary group name Group name Class_temp_group Dock	Interface										
MC_ID MC_info C_ID C_info ROI style ROI color Transparency Variable name for expressions (tab Reclassification and Edit raster) Variable name raster Temporary group name Group name Class_temp_group Dock	Field names	of training in	nput								
ROI style ROI color Transparency Variable name for expressions (tab Reclassification and Edit raster) Variable name raster Temporary group name Group name (Class_temp_group Dock	MCID field		MC Info fie	ld	C ID fiel	d		C Info fie	ld		
ROI color Transparency Variable name for expressions (tab Reclassification and Edit raster) Variable name raster Temporary group name Group name Class_temp_group Dock	MC_ID		MC_info		C_ID			C_info			
Variable name for expressions (tab Reclassification and Edit raster) Variable name raster Temporary group name Group name Class_temp_group Dock	ROI style		_								
Variable name for expressions (tab Reclassification and Edit raster) Variable name raster Temporary group name Group name Class_temp_group Dock	ROI color 📒	Transp	parency	12 11	1	-0		57	1	21 I	
Temporary group name Group name Class_temp_group Class_te	Variable nam	e for expres	ssions (tab Recla	ssification and l	Editraster)	1 1		1	1	1 1	-
Temporary group name Group name Class_temp_group Class_te	Variable name	raster									
Dock	Temporary g	roup name									
Dock	Group name	Class_temp_§	group								
	Dock			_			_		_	_	-
✓ Download news on startup		news on sta	urtup								
	Processing										
Processing	Debug										

Figure 10.34: Interface

Field names of training input

Set the names of fields in the Training input (page 38). Changing field names should usually be avoided.

- *MC ID field* **T** : name of the Macroclass ID field (default is MC_ID);
- *MC Info field* **T** : name of the Macroclass Information field (default is MC_info);
- *C ID field* **T** : name of the Class ID field (default is C_ID);
- *C Info field* **T** : name of the Class Information field (default is C_info);
- **Example**: reset field names to default;

ROI style

Change ROI color and transparency for a better visualization of temporary ROIs on the map.

- *ROI color* : button for changing ROI color;
- *Transparency* : change ROI transparency;
- **____**: reset ROI color and transparency to default;

Variable name for expressions

Set the variable name used in expressions of the Reclassification (page 91) and Edit raster (page 92).

- *Variable name* **I** : set variable name (default is raster);
- **- x**: reset variable name to default;

Temporary group name

Set the temporary group name in QGIS Layers used for temporary layers .

- *Group name* **T** : set group name (default is Class_temp_group);
- \rightarrow **\square**: reset group name to default;

Dock

• *Download news on startup*: if checked, news about the *SCP* and related services are downloaded on startup and displayed in *Dock*;

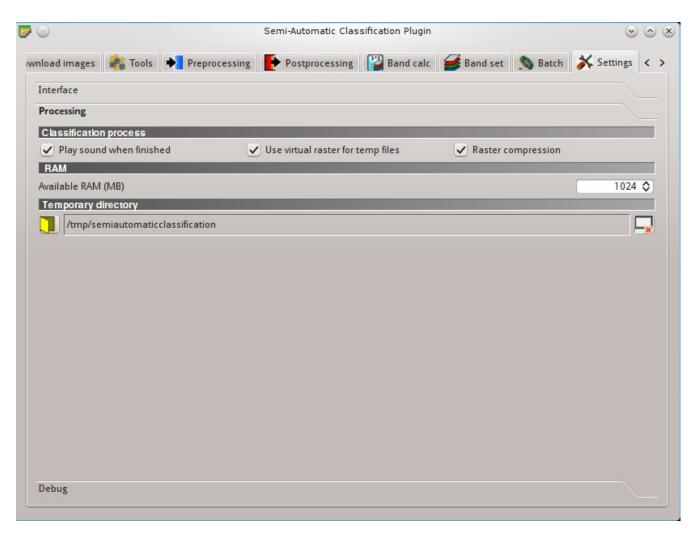


Figure 10.35: Processing

10.8.2 Processing

Classification process

- *Play sound when finished* : if checked, play a sound when the classification process is completed;
- *Use virtual rasters for temp files* : if checked, create virtual rasters for certain temporary files, instead of creating real rasters; it is useful for reducing disk space usage during calculations;
- *Raster compression* : if checked, a lossless compression (DEFLATE or PACKBITS) is applied to raster outputs in order to save disk space; it is recommended to check this option, however compressed files are sometimes larger than files without compression;

RAM

• *Available RAM (MB)* : set the available RAM (in MB) that is used during the processes in order to improve the *SCP* performance; this value should be half of the system RAM (e.g. 1024MB if system has 2GB of RAM); in case of errors, set a value lower than 512MB;

Temporary directory

- . : select a new temporary directory where temporary files are saved during processing; the path to the current temporary directory is displayed; default is a system temporary directory;
- **T**: reset to default temporary directory;

10.8.3 Debug

Debugging utilities for the creation of a Log file (i.e. recording of *SCP* activities for reporting issues) and testing *SCP* dependencies.

If you found a plugin error, please read How can I report an error? (page 185).

Log file

- *Records events in a log file* : if checked, start recording events in a Log file;
- **III**: export the Log file (i.e. a .txt file);
- **EX**: clear the content of Log file;

Test

• *Test dependencies* : test *SCP* dependencies (GDAL, GDAL subprocess, NumPy, SciPy, Matplotlib, Internet connection); results are displayed in a window;

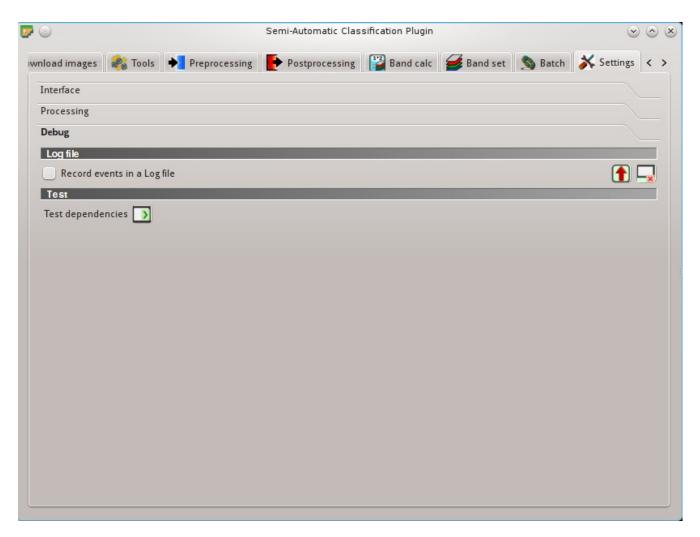


Figure 10.36: Debug

Spectral Signature Plot

The window *Spectral Signature Plot* includes several functions for displaying spectral signature values as a function of wavelength (defined in the *Band set* (page 103)). Signatures can be added to the Spectral Signature Plot through the *SCP dock* (page 37).

The window *Spectral Signature Plot* includes also some functions useful for the definition of value ranges used by the *Land Cover Signature Classification* (page 142) (see *LCS threshold* (page 71)).

Overlapping signatures (belonging to different classes or macroclasses) are highlighted in orange in the table *Plot Signature list* (page 115); the overlapping check is performed considering *MC ID* or *C ID* according to the setting

 $Use \bowtie MC ID \bowtie C ID$ in *Classification algorithm* (page 45). Overlapping signatures sharing the same ID are not highlighted.

The functions are described in detail in the following paragraphs, using these conventions:

- Input date
 Image: Input text
 Image: Input text
 Image: Input number
 Image: Input number
 Image: Optional
 Image: Input number
 Image: Optional
 Image: Input number
 Image: Input number
 Image: Input number
 Image: Input number
 Image: I
- = Slider
 - 🔤 = Table

11.1 Plot Signature list

• Signature list:

- S: checkbox field; if checked, the spectral signature is displayed in the plot;
- MC ID: signature Macroclass ID;
- MC Info: signature Macroclass Information;
- C ID: signature Class ID;

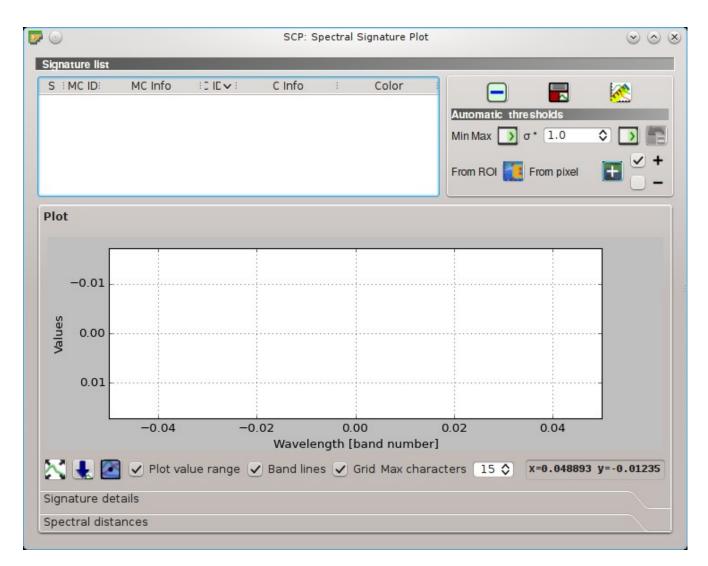


Figure 11.1: Spectral Signature Plot

- C Info: signature Class Information;
- *Color [overlap MC_ID-C_ID]*: signature color; also, the combination *MC ID-C ID* is displayed in case of overlap with other signatures (see *Land Cover Signature Classification* (page 142));
- *Min B* X: minimum value of band X; this value can be edited;
- *Max B* X: maximum value of band X; this value can be edited;

: remove highlighted signatures from this list;

- **E**: add highlighted spectral signatures to *ROI Signature list* (page 40);
- Calculate the spectral distances of spectral signatures displayed in the plot; distances are reported in the tab *Spectral distances* (page 118);

11.1.1 Automatic thresholds

Set thresholds automatically for highlighted signatures in the table *Plot Signature list* (page 115); if no signature is highlighted, then the threshold is applied to all the signatures.

- *Min Max* : set the threshold based on the minimum and maximum of each band;
- $\sigma * \square \square$: set an automatic threshold calculated as (band value + ($\sigma * v$)), where σ is the standard deviation of each band and v is the defined value;
- **E**: undo the last automatic thresholds;
- From ROI **E**: set the threshold using the temporary ROI pixel values, according to the following checkboxes:
 - 🗹 +: if checked, signature threshold is extended to include pixel signature;
 - ≤ −: if checked, signature threshold is reduced to exclude pixel signature;
- *From pixel* **iii**: set the threshold by clicking on a pixel, according to the following checkboxes:
 - 🗹 +: if checked, signature threshold is extended to include pixel signature;
 - 🗹 –: if checked, signature threshold is reduced to exclude pixel signature;

11.1.2 Plot

Left click and hold inside the plot to move the view of the plot. Use the mouse wheel to zoom in and out the view of the plot. Right click and hold inside the plot to zoom in a specific area of the plot. Legend inside the plot can be moved using the mouse.

Plot commands:

- A sutomatically fit the plot to data;
- save the plot image to file (available formats are . jpg, .png, and .pdf);

- **Construct**: activate the cursor for interactively changing the value range of highlighted signatures in the plot; click the plot to set the minimum or maximum value of a band (also for several signatures simultaneously); cursor is deactivated when moving outside the plot area;
- *Plot value range*: if checked, plot the value range for each signature (semi-transparent area);
- *Band lines*: if checked, display a vertical line for each band (center wavelength);
- Since Grid: if checked, display a grid;
- *Max characters* 12: set the maximum length of text in the legend;
- *x y*: display x y coordinates of mouse cursor inside the plot;

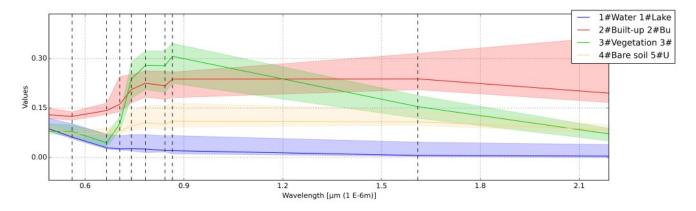


Figure 11.2: Spectral Signature: Example of spectral signature plot

11.1.3 Signature details

Display the details about spectral signatures (i.e. Wavelength, Values, and Standard deviation). In case of signatures calculated from ROIs, the ROI size (number of pixels) is also displayed.

11.1.4 Spectral distances

Display spectral distances of signatures (see *Plot Signature list* (page 115)), which are useful for assessing ROI separability (see *Spectral Distance* (page 144)).

The following spectral distances are calculated :

- *Jeffries-Matusita Distance* (page 144): range [0 = identical, 2 = different]; useful in particular for *Maximum Likelihood* (page 140) classifications;
- *Spectral Angle* (page 145): range [0 = identical, 90 = different]; useful in particular for *Spectral Angle Mapping* (page 141) classifications;
- Euclidean Distance (page 145): useful in particular for Minimum Distance (page 140) classifications;
- *Bray-Curtis Similarity* (page 146): range [0 = different, 100 = identical]; useful in general;

Values are displayed in red if signatures are particularly similar.

P 🔾				SCP: S	pectral	Signature Plo	t	\odot \odot \otimes
Sign	ature list	_						
S	MC ID:	MC Info	E C ID E	C Info	ŧ	Color	Automatic thresholds Min Max σ * 1.0	≥
							From ROI E From pixel	∎
Plot	t							
Sig	nature d	letails						
Spe	ectral dist	ances						

Figure 11.3: Spectral Signature: Signature details

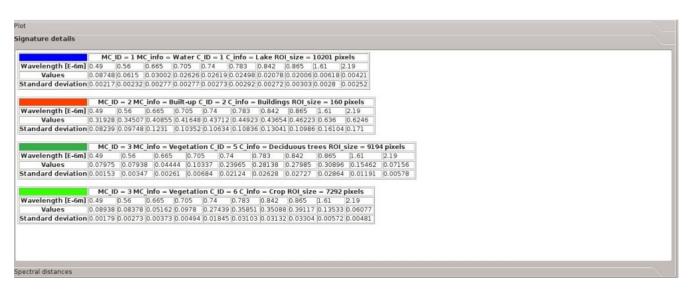


Figure 11.4: Spectral Signature: Example of signature details

P	\odot			SCP: S	pectral	Signature Plo	ot	\odot \odot \otimes
	Signature list							
	S IMC IDI	MC Info	: CID :	C Info	+	Color	Automatic thresholds Min Max Σσ* 1.0	 ≥ > > +
							From ROI 🚺 From pixel	
	Plot							
	Signature de							
	Spectral dis	stances						
8								
L								

Figure 11.5: Spectral Signature: Spectral distances

Plot		
ignature details		
ipectral distances		
Bray-Curtis similarity [%	3/27.9528874113	-
	MC_ID = 2 MC_info = Built-up C_ID = 2 C_info = Buildings	
and the second	MC_ID = 3 MC_info = Vegetation C_ID = 5 C_info = Deciduous trees	
Jeffries-Matusita distance	e 1.99999999999	
Spectral angle	31.7900209201	
Euclidean distance	1.00566895221	
Bray-Curtis similarity [%	3 53.1869149551	
	MC ID = 2 MC info = Built-up C ID = 2 C info = Buildings	
	MC_ID = 3 MC_info = Vegetation C_ID = 6 C_info = Crop	Г
Jeffries-Matusita distance	ce 2.0	
Spectral angle	36.4808416193	
Euclidean distance	0.98272739517	L
Bray-Curtis similarity [%	58.9113857176	
	MC ID = 3 MC info = Vegetation C ID = 5 C info = Deciduous trees	
	MC ID = 3 MC info = Vegetation C ID = 6 C info = Crop	
Jeffries-Matusita distand	e 1.99999997758	
Spectral angle	5.72524359651	
Euclidean distance	0.140149128722	
Bray-Curtis similarity [%	90.896321367	L

Figure 11.6: Spectral Signature: Example of spectral distances

CHAPTER 12

Scatter Plot

The window *Scatter plot* displays pixel values for two raster bands as points in the 2D space. Scatter plots are useful for assessing ROI separability between two bands.

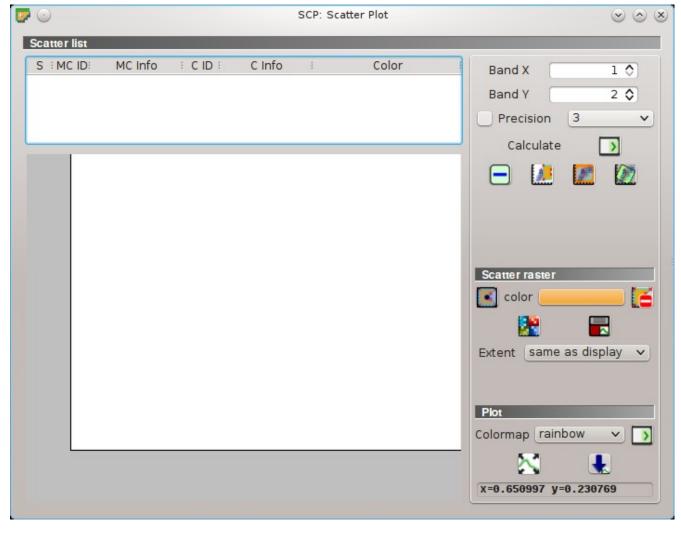
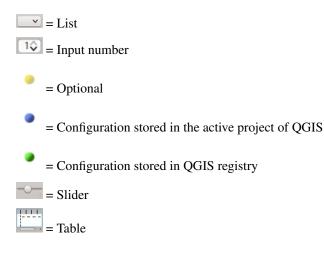



Figure 12.1: Scatter Plot

The functions are described in detail in the following paragraphs, using these conventions:

1980 v = Input date

T = Input text

12.1 Scatter list

• Scatter list:

- S: checkbox field; if checked, the spectral signature is displayed in the plot;
- *MC ID*: signature Macroclass ID;
- MC Info: signature Macroclass Information;
- *C ID*: signature Class ID;
- C Info: signature Class Information;
- *Color*: color field; double click to select a color for the plot;
- *Band X* 12: X band of the plot;
- *Band Y* 10: Y band of the plot;
- Precision : use custom precision for calculation (precision should be selected according to pixel values):
 - $-4 = 10^{-4}$
 - $-3 = 10^{-3}$
 - $-2 = 10^{-2}$
 - $-1 = 10^{-1}$
 - -0 = 1
 - -1 = 10
 - $-2 = 10^2$
 - $-3 = 10^3$
- *Calculate* calculate the scatter plot for the ROIs checked in the list;
- - remove highlighted signatures from this list;
- Line: add a temporary scatter plot to the list (as MC Info = tempScatter) and start the plot calculation of the last temporary ROI (see *Working toolbar* (page 33));

• Let a temporary scatter plot to the list (as MC Info = tempScatter) and start the plot calculation of pixels in current display extent;

add a temporary scatter plot to the list (as MC Info = tempScatter) and start the plot calculation of the entire image;

WARNING: Using a precision value that is too high can result in slow calculation or failure.

12.1.1 Scatter raster

This tool allows for the drawing of selection polygons inside the scatter plot; these selection polygons are used for creating a *Scatter raster* that is a temporary raster classified according to the intersection of scatter plots and drawn polygons.

Pixels of the *Input image* (page 38) are classified, according to scatter plot bands, if pixel values are in the range of intersection between scatter plots and selection polygons (polygons should not overlap). The value assigned to the *Scatter raster* pixels is the sequential number of selection polygon; also the raster color is derived from the selection polygon.

After the creation of a new *Scatter raster*, old rasters are placed in QGIS Layers inside a layer group named Class_temp_group (custom name can be defined in *Temporary group name* (page 111)) and are deleted when the QGIS session is closed.

- Left: activate the cursor for interactively drawing a polygon in the plot; left click on the plot to define the vertices and right click to define the last vertex closing the polygon;
- color: select the color of polygon (which is used also in the Scatter raster);
- **E**: remove all the selection polygons from the plot;
- calculate the *Scatter raster* and display it in the map;
- **C**: calculate the spectral signature of the *Scatter raster* (considering all the classified pixels) using the *Input image* (page 38), and save the signature to the *ROI Signature list* (page 40);
- *Extent* : extent of the *Scatter raster*; available options are:
 - Same as display: extent is the same as map display;
 - Same as image: extent is the same as the whole image;

12.1.2 Plot

Left click and hold inside the plot to move the view of the plot. Use the mouse wheel to zoom in and out the view of the plot. Right click and hold inside the plot to zoom in a specific area of the plot.

• *Colormap* : select a colormap that is applied to highlighted scatter plots in the list when is clicked; if no scatter plot is highlighted then the colormap is applied to all the scatter plots;

~

- automatically fit the plot to data;
- **X**: save the plot image to file (available formats are . jpg, .png, and .pdf);
- *x y*: display x y coordinates of mouse cursor inside the plot;

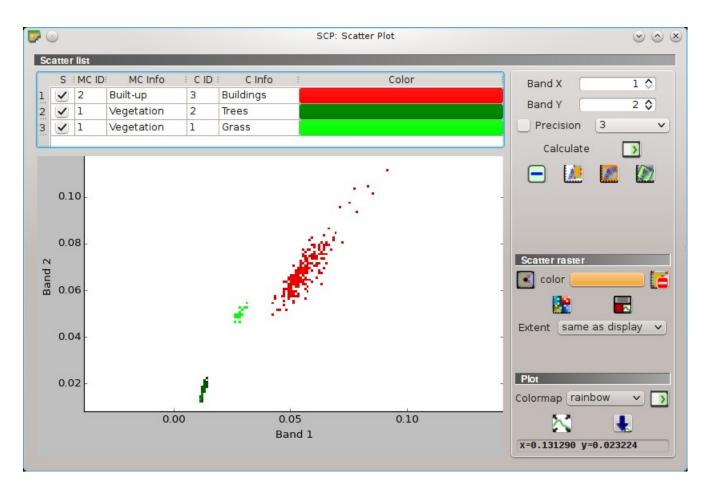


Figure 12.2: Example Scatter Plot

Part IV

Brief Introduction to Remote Sensing

- *Basic Definitions* (page 129)
 - GIS definition (page 129)
 - Remote Sensing definition (page 129)
 - Sensors (page 131)
 - Radiance and Reflectance (page 131)
 - *Spectral Signature* (page 131)
 - Landsat Satellite (page 131)
 - Sentinel-2 Satellite (page 133)
 - ASTER Satellite (page 133)
 - Color Composite (page 134)
 - Principal Component Analysis (page 134)
 - Pan-sharpening (page 135)
- Supervised Classification Definitions (page 137)
 - Land Cover (page 137)
 - Supervised Classification (page 137)
 - Training Areas (page 138)
 - Classes and Macroclasses (page 138)
 - Classification Algorithms (page 139)
 - Spectral Distance (page 144)
 - *Classification Result* (page 146)
 - Accuracy Assessment (page 146)
- Image conversion to reflectance (page 149)
 - Radiance at the Sensor's Aperture (page 149)
 - Top Of Atmosphere (TOA) Reflectance (page 149)
 - *Surface Reflectance* (page 150)
 - DOS1 Correction (page 150)
- Conversion to Temperature (page 153)
 - Conversion to At-Satellite Brightness Temperature (page 153)
 - Estimation of Land Surface Temperature (page 154)
- *References* (page 155)

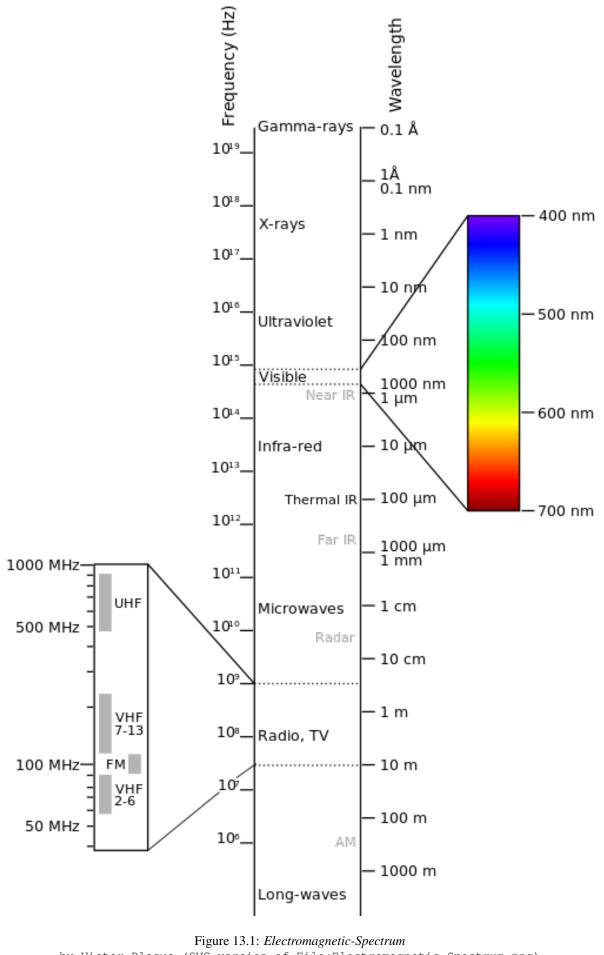
Basic Definitions

This chapter provides basic definitions about GIS and remote sensing. For other useful resources see *Free and valuable resources about remote sensing and GIS* (page 190).

13.1 GIS definition

There are several definitions of **GIS** (Geographic Information Systems), which is not simply a program. In general, GIS are systems that allow for the use of geographic information (data have spatial coordinates). In particular, GIS allow for the view, query, calculation and analysis of spatial data, which are mainly distinguished in raster or vector data structures. Vector is made of objects that can be points, lines or polygons, and each object can have one ore more attribute values; a raster is a grid (or image) where each cell has an attribute value (Fisher and Unwin, 2005). Several GIS applications use raster images that are derived from remote sensing.

13.2 Remote Sensing definition


A general definition of **Remote Sensing** is "the science and technology by which the characteristics of objects of interest can be identified, measured or analyzed the characteristics without direct contact" (JARS, 1993).

Usually, remote sensing is the measurement of the energy that is emanated from the Earth's surface. If the source of the measured energy is the sun, then it is called **passive remote sensing**, and the result of this measurement can be a digital image (Richards and Jia, 2006). If the measured energy is not emitted by the Sun but from the sensor platform then it is defined as **active remote sensing**, such as radar sensors which work in the microwave range (Richards and Jia, 2006).

The **electromagnetic spectrum** is "the system that classifies, according to wavelength, all energy (from short cosmic to long radio) that moves, harmonically, at the constant velocity of light" (NASA, 2013). Passive sensors measure energy from the optical regions of the electromagnetic spectrum: visible, near infrared (i.e. IR), shortwave IR, and thermal IR (see Figure *Electromagnetic-Spectrum* (page 130)).

The interaction between solar energy and materials depends on the wavelength; solar energy goes from the Sun to the Earth and then to the sensor. Along this path, **solar energy** is (NASA, 2013):

- **Transmitted** The energy passes through with a change in velocity as determined by the index of refraction for the two media in question.
- Absorbed The energy is given up to the object through electron or molecular reactions.
- **Reflected** The energy is returned unchanged with the angle of incidence equal to the angle of reflection. Reflectance is the ratio of reflected energy to that incident on a body. The wavelength reflected (not absorbed) determines the color of an object.
- **Scattered** The direction of energy propagation is randomly changed. Rayleigh and Mie scatter are the two most important types of scatter in the atmosphere.

by Victor Blacus (SVG version of File:Electromagnetic-Spectrum.png) [CC-BY-SA-3.0 (http://creativecommons.org/licen**Chapter 13**/3**Basic Definitions** via Wikimedia Commons

130

• **Emitted** - Actually, the energy is first absorbed, then re-emitted, usually at longer wavelengths. The object heats up.

13.3 Sensors

Sensors can be on board of airplanes or on board of satellites, measuring the electromagnetic radiation at specific ranges (usually called bands). As a result, the measures are quantized and converted into a digital image, where each picture elements (i.e. pixel) has a discrete value in units of Digital Number (DN) (NASA, 2013). The resulting images have different characteristics (resolutions) depending on the sensor. There are several kinds of **resolutions**:

- **Spatial resolution**, usually measured in pixel size, "is the resolving power of an instrument needed for the discrimination of features and is based on detector size, focal length, and sensor altitude" (NASA, 2013); spatial resolution is also referred to as geometric resolution or IFOV;
- **Spectral resolution**, is the number and location in the electromagnetic spectrum (defined by two wavelengths) of the spectral bands (NASA, 2013) in multispectral sensors, for each band corresponds an image;
- **Radiometric resolution**, usually measured in bits (binary digits), is the range of available brightness values, which in the image correspond to the maximum range of DNs; for example an image with 8 bit resolution has 256 levels of brightness (Richards and Jia, 2006);
- For satellites sensors, there is also the **temporal resolution**, which is the time required for revisiting the same area of the Earth (NASA, 2013).

13.4 Radiance and Reflectance

Sensors measure the **radiance**, which corresponds to the brightness in a given direction toward the sensor; it useful to define also the **reflectance** as the ratio of reflected versus total power energy.

13.5 Spectral Signature

The **spectral signature** is the reflectance as a function of wavelength (see Figure *Spectral Reflectance Curves of Four Different Targets* (page 132)); each material has a unique signature, therefore it can be used for material classification (NASA, 2013).

13.6 Landsat Satellite

Landsat is a set of multispectral satellites developed by the NASA (National Aeronautics and Space Administration of USA), since the early 1970's.

Landsat images are very used for environmental research. The resolutions of Landsat 4 and Landsat 5 sensors are reported in the following table (from http://landsat.usgs.gov/band_designations_landsat_satellites.php); also, Landsat temporal resolution is 16 days (NASA, 2013).

Landsat 4, Landsat 5 Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Blue	0.45 - 0.52	30
Band 2 - Green	0.52 - 0.60	30
Band 3 - Red	0.63 - 0.69	30
Band 4 - Near Infrared (NIR)	0.76 - 0.90	30
Band 5 - SWIR	1.55 - 1.75	30
Band 6 - Thermal Infrared	10.40 - 12.50	120 (resampled to 30)
Band 7 - SWIR	2.08 - 2.35	30

Landsat 4 and Landsat 5 Bands

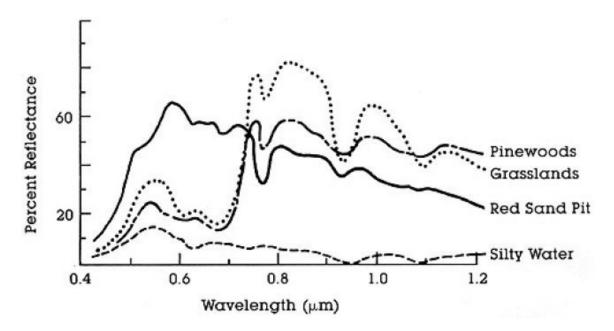


Figure 13.2: Spectral Reflectance Curves of Four Different Targets (from NASA, 2013)

The resolutions of Landsat 7 sensor are reported in the following table (from http://landsat.usgs.gov/band_designations_landsat_satellites.php); also, Landsat temporal resolution is 16 days (NASA, 2013).

Landsat 7 Bands

Landsat 7 Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Blue	0.45 - 0.52	30
Band 2 - Green	0.52 - 0.60	30
Band 3 - Red	0.63 - 0.69	30
Band 4 - Near Infrared (NIR)	0.77 - 0.90	30
Band 5 - SWIR	1.57 - 1.75	30
Band 6 - Thermal Infrared	10.40 - 12.50	60 (resampled to 30)
Band 7 - SWIR	2.09 - 2.35	30
Band 8 - Panchromatic	0.52 - 0.90	15

The resolutions of Landsat 8 sensor are reported in the following table (from http://landsat.usgs.gov/band_designations_landsat_satellites.php); also, Landsat temporal resolution is 16 days (NASA, 2013).

Landsat 8 Bands

Landsat 8 Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Coastal aerosol	0.43 - 0.45	30
Band 2 - Blue	0.45 - 0.51	30
Band 3 - Green	0.53 - 0.59	30
Band 4 - Red	0.64 - 0.67	30
Band 5 - Near Infrared (NIR)	0.85 - 0.88	30
Band 6 - SWIR 1	1.57 - 1.65	30
Band 7 - SWIR 2	2.11 - 2.29	30
Band 8 - Panchromatic	0.50 - 0.68	15
Band 9 - Cirrus	1.36 - 1.38	30
Band 10 - Thermal Infrared (TIRS) 1	10.60 - 11.19	100 (resampled to 30)
Band 11 - Thermal Infrared (TIRS) 2	11.50 - 12.51	100 (resampled to 30)

A vast archive of images is freely available from the U.S. Geological Survey . For more information about how to freely download Landsat images read this .

Images are identified with the paths and rows of the WRS (Worldwide Reference System for Landsat).

13.7 Sentinel-2 Satellite

Sentinel-2 Bands

Sentinel-2 is a multispectral satellite developed by the European Space Agency (ESA) in the frame of Copernicus land monitoring services. Sentinel-2 acquires 13 spectral bands with the spatial resolution of 10m, 20m and 60m depending on the band, as illustrated in the following table (ESA, 2015).

Sentinel-2 Bands	Central Wavelength [micrometers]	Resolution [meters]
Band 1 - Coastal aerosol	0.443	60
Band 2 - Blue	0.490	10
Band 3 - Green	0.560	10
Band 4 - Red	0.665	10
Band 5 - Vegetation Red Edge	0.705	20
Band 6 - Vegetation Red Edge	0.740	20
Band 7 - Vegetation Red Edge	0.783	20
Band 8 - NIR	0.842	10
Band 8A - Vegetation Red Edge	0.865	20
Band 9 - Water vapour	0.945	60
Band 10 - SWIR - Cirrus	1.375	60
Band 11 - SWIR	1.610	20
Band 12 - SWIR	2.190	20

Sentinel-2 images are freely available from the ESA website https://scihub.esa.int/dhus/ .

13.8 ASTER Satellite

The **ASTER** (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite was launched in 1999 by a collaboration between the Japanese Ministry of International Trade and Industry (MITI) and the NASA. ASTER has 14 bands whose spatial resolution varies with wavelength: 15m in the visible and near-infrared, 30m in the short wave infrared, and 90m in the thermal infrared (USGS, 2015). ASTER bands are illustrated in the following table (due to a sensor failure **SWIR data acquired since April 1, 2008 is not available**). An additional band 3B (backwardlooking near-infrared) provides stereo coverage.

ASIEK Banas		
ASTER Bands	Wavelength [micrometers]	Resolution [meters]
Band 1 - Green	0.52 - 0.60	15
Band 2 - Red	0.63 - 0.69	15
Band 3N - Near Infrared (NIR)	0.78 - 0.86	15
Band 4 - SWIR 1	1.60 - 1.70	30
Band 5 - SWIR 2	2.145 - 2.185	30
Band 6 - SWIR 3	2.185 - 2.225	30
Band 7 - SWIR 4	2.235 - 2.285	30
Band 8 - SWIR 5	2.295 - 2.365	30
Band 9 - SWIR 6	2.360 - 2.430	30
Band 10 - TIR 1	8.125 - 8.475	90
Band 11 - TIR 2	8.475 - 8.825	90
Band 12 - TIR 3	8.925 - 9.275	90
Band 13 - TIR 4	10.25 - 10.95	90
Band 14 - TIR 5	10.95 - 11.65	90

ASTER Bands

13.9 Color Composite

Often, a combination is created of three individual monochrome images, in which each is assigned a given color; this is defined **color composite** and is useful for photo interpretation (NASA, 2013). Color composites are usually expressed as:

"R G B = Br Bg Bb"

where:

- R stands for Red;
- G stands for Green;
- B stands for Blue;
- Br is the band number associated to the Red color;
- Bg is the band number associated to the Green color;
- Bb is the band number associated to the Blue color.

The following Figure *Color composite of a Landsat 8 image* (page 134) shows a color composite "R G B = 4 3 2" of a Landsat 8 image (for Landsat 7 the same color composite is R G B = 3 2 1; for Sentinel-2 is R G B = 4 3 2) and a color composite "R G B = 5 4 3" (for Landsat 7 the same color composite is R G B = 4 3 2; for Sentinel-2 is R G B = 8 4 3). The composite "R G B = 5 4 3" is useful for the interpretation of the image because vegetation pixels appear red (healthy vegetation reflects a large part of the incident light in the near-infrared wavelength, resulting in higher reflectance values for band 5, thus higher values for the associated color red).

RGB = 432

RGB = 543

Figure 13.3: Color composite of a Landsat 8 image Data available from the U.S. Geological Survey

13.10 Principal Component Analysis

Principal Component Analysis (PCA) is a method for reducing the dimensions of measured variables (bands) to the principal components (JARS, 1993).

Th principal component transformation provides a new set of bands (principal components) having the following characteristic: principal components are uncorrelated; each component has variance less than the previous com-

ponent. Therefore, this is an efficient method for extracting information and data compression (Ready and Wintz, 1973).

Given an image with N spectral bands, the principal components are obtained by matrix calculation (Ready and Wintz, 1973; Richards and Jia, 2006):

$$Y = D^t X$$

where:

- Y = vector of principal components
- $D = \text{matrix of eigenvectors of the covariance matrix } C_x \text{ in X space}$
- t denotes vector transpose

And X is calculated as:

X = P - M

- P = vector of spectral values associated with each pixel
- M = vector of the mean associated with each band

Thus, the mean of X associated with each band is 0. D is formed by the eigenvectors (of the covariance matrix C_x) ordered as the eigenvalues from maximum to minimum, in order to have the maximum variance in the first component. This way, the principal components are uncorrelated and each component has variance less than the previous component(Ready and Wintz, 1973).

Usually the first two components contain more than the 90% of the variance. For example, the first principal components can be displayed in a *Color Composite* (page 134) for highlighting *Land Cover* (page 137) classes, or used as input for *Supervised Classification* (page 137).

13.11 Pan-sharpening

Pan-sharpening is the combination of the spectral information of multispectral bands (MS), which have lower spatial resolution (for Landsat bands, spatial resolution is 30m), with the spatial resolution of a panchromatic band (PAN), which for Landsat 7 and 8 it is 15m. The result is a multispectral image with the spatial resolution of the panchromatic band (e.g. 15m). In *SCP*, a Brovey Transform is applied, where the pan-sharpened values of each multispectral band are calculated as (Johnson, Tateishi and Hoan, 2012):

$$MSpan = MS * PAN/I$$

where I is Intensity, which is a function of multispectral bands.

The following weights for I are defined, basing on several tests performed using the *SCP*. For Landsat 8, Intensity is calculated as:

$$I = (0.42 * Blueband + 0.98 * Greenband + 0.6 * Redband)/2$$

For Landsat 7, Intensity is calculated as:

I = (0.42 * Blueband + 0.98 * Greenband + 0.6 * Redband + NIRband)/3

Figure 13.4: Example of pan-sharpening of a Landsat 8 image. Left, original multispectral bands (30m); right, pan-sharpened bands (15m)

Data available from the U.S. Geological Survey

Supervised Classification Definitions

This chapter provides basic definitions about supervised classifications.

14.1 Land Cover

Land cover is the material at the ground, such as soil, vegetation, water, asphalt, etc. (Fisher and Unwin, 2005). Depending on the sensor resolutions, the number and kind of land cover classes that can be identified in the image can vary significantly.

14.2 Supervised Classification

A **semi-automatic classification** (also supervised classification) is an image processing technique that allows for the identification of materials in an image, according to their spectral signatures. There are several kinds of classification algorithms, but the general purpose is to produce a thematic map of the land cover.

Image processing and GIS spatial analyses require specific software such as the Semi-Automatic Classification Plugin for QGIS.

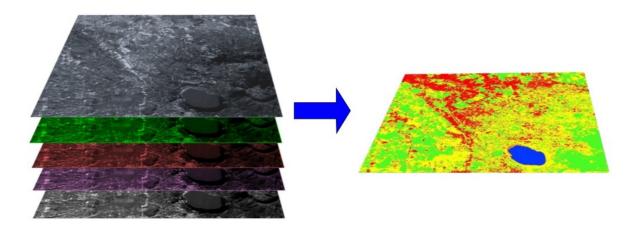


Figure 14.1: A multispectral image processed to produce a land cover classification (Landsat image provided by USGS)

14.3 Training Areas

Usually, supervised classifications require the user to select one or more Regions of Interest (ROIs, also Training Areas) for each land cover class identified in the image. **ROIs** are polygons drawn over homogeneous areas of the image that overlay pixels belonging to the same land cover class.

14.3.1 Region Growing Algorithm

The Region Growing Algorithm allows to select pixels similar to a seed one, considering the **spectral similarity** (i.e. spectral distance) of adjacent pixels. In *SCP* the Region Growing Algorithm is available for the training area creation. The parameter **distance** is related to the similarity of pixel values (the lower the value, the more similar are selected pixels) to the seed one (i.e. selected clicking on a pixel). An additional parameter is the **maximum width**, which is the side length of a square, centred at the seed pixel, which inscribes the training area (if all the pixels had the same value, the training area would be this square). The **minimum size** is used a constraint (for every single band), selecting at least the pixels that are more similar to the seed one until the number of selected pixels equals the minimum size.

In figure *Region growing example* (page 138) the central pixel is used as seed (image a) for the region growing of one band (image b) with the parameter spectral distance = 0.1; similar pixels are selected to create the training area (image c and image d).

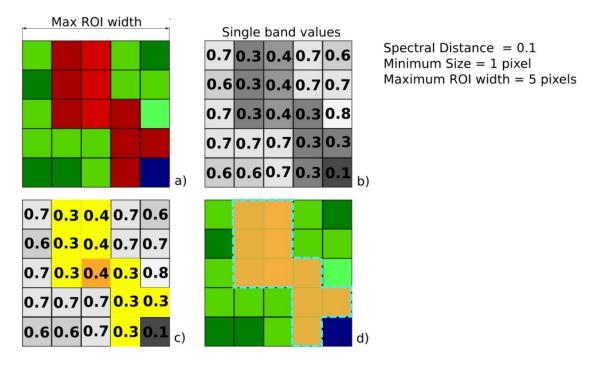


Figure 14.2: *Region growing example*

14.4 Classes and Macroclasses

Land cover classes are identified with an arbitrary ID code (i.e. Identifier). *SCP* allows for the definition of **Macroclass ID** (i.e. MC ID) and **Class ID** (i.e. C ID), which are the identification codes of land cover classes. A **Macroclass** is a group of ROIs having different Class ID, which is useful when one needs to classify materials that have different spectral signatures in the same land cover class. For instance, one can identify grass (e.g. ID class = 1 and Macroclass ID = 1) and trees (e.g. ID class = 2 and Macroclass ID = 1) as vegetation class (e.g. Macroclass ID = 1). Multiple Class IDs can be assigned to the same Macroclass ID, but the same Class ID cannot be assigned to multiple Macroclass IDs, as shown in the following table.

Macroclass name	Macroclass ID	Class name	Class ID
Vegetation	1	Grass	1
Vegetation	1	Trees	2
Built-up	2	Buildings	3
Built-up	2	Roads	4

Example of Macroclasses

Therefore, Classes are subsets of a Macroclass as illustrated in Figure Macroclass example (page 139).

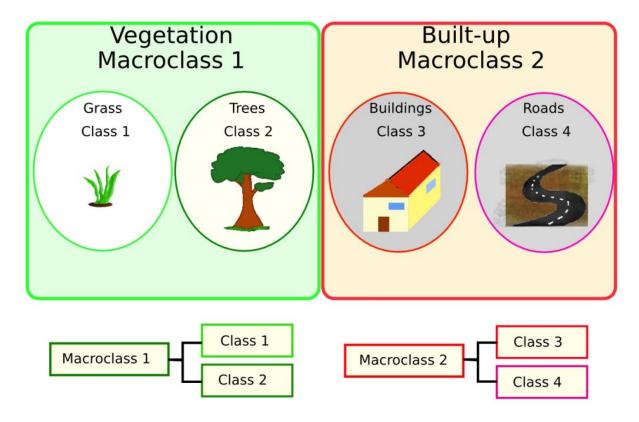


Figure 14.3: Macroclass example

If the use of Macroclass is not required for the study purpose, then the same Macroclass ID can be defined for all the ROIs (e.g. Macroclass ID = 1) and Macroclass values are ignored in the classification process.

14.5 Classification Algorithms

The **spectral signatures** (spectral characteristics) of reference land cover classes are calculated considering the values of pixels under each ROI having the same Class ID (or Macroclass ID). Therefore, the classification algorithm classifies the whole image by comparing the spectral characteristics of each pixel to the spectral characteristics of reference land cover classes. *SCP* implements the following classification algorithms.

14.5.1 Minimum Distance

Minimum Distance algorithm calculates the Euclidean distance d(x, y) between spectral signatures of image pixels and training spectral signatures, according to the following equation:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where:

- x = spectral signature vector of an image pixel;
- y = spectral signature vector of a training area;
- n = number of image bands.

Therefore, the distance is calculated for every pixel in the image, assigning the class of the spectral signature that is closer, according to the following discriminant function (adapted from Richards and Jia, 2006):

$$x \in C_k \iff d(x, y_k) < d(x, y_j) \forall k \neq j$$

where:

- $C_k = \text{land cover class } k;$
- y_k = spectral signature of class k;
- y_j = spectral signature of class j.

It is possible to define a threshold T_i in order to exclude pixels below this value from the classification:

$$\begin{aligned} x \in C_k \iff d(x,y_k) < d(x,y_j) \forall k \neq j \\ and \\ d(x,y_k) < T_i \end{aligned}$$

14.5.2 Maximum Likelihood

Maximum Likelihood algorithm calculates the probability distributions for the classes, related to Bayes' theorem, estimating if a pixel belongs to a land cover class. In particular, the probability distributions for the classes are assumed the of form of multivariate normal models (Richards & Jia, 2006). In order to use this algorithm, a sufficient number of pixels is required for each training area allowing for the calculation of the covariance matrix. The discriminant function, described by Richards and Jia (2006), is calculated for every pixel as:

$$g_k(x) = \ln p(C_k) - \frac{1}{2} \ln |\Sigma_k| - \frac{1}{2} (x - y_k)^t \Sigma_k^{-1} (x - y_k)$$

where:

- $C_k = \text{land cover class } k;$
- *x* = spectral signature vector of a image pixel;
- $p(C_k)$ = probability that the correct class is C_k ;
- $|\Sigma_k|$ = determinant of the covariance matrix of the data in class C_k ;
- Σ_k^{-1} = inverse of the covariance matrix;
- y_k = spectral signature vector of class k.

Therefore:

$$x \in C_k \iff g_k(x) > g_j(x) \forall k \neq j$$

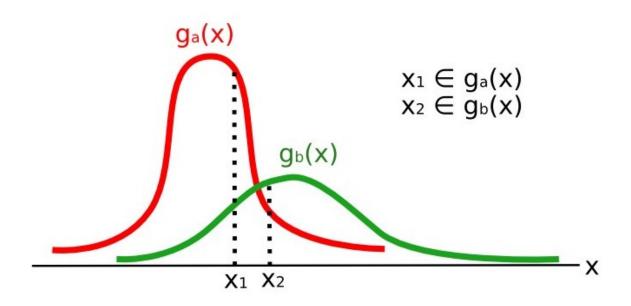


Figure 14.4: Maximum Likelihood example

In addition, it is possible to define a threshold to the discriminant function in order to exclude pixels below this value from the classification. Considering a threshold T_i the classification condition becomes:

$$\begin{aligned} x \in C_k \iff g_k(x) > g_j(x) \forall k \neq j \\ and \\ g_k(x) > T_i \end{aligned}$$

Maximum likelihood is one of the most common supervised classifications, however the classification process can be slower than *Minimum Distance* (page 140).

14.5.3 Spectral Angle Mapping

The Spectral Angle Mapping calculates the spectral angle between spectral signatures of image pixels and training spectral signatures. The spectral angle θ is defined as (Kruse et al., 1993):

$$\theta(x,y) = \cos^{-1}\left(\frac{\sum_{i=1}^{n} x_i y_i}{\left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} * \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}}}\right)$$

Where:

- x = spectral signature vector of an image pixel;
- y = spectral signature vector of a training area;
- n = number of image bands.

Therefore a pixel belongs to the class having the lowest angle, that is:

$$x \in C_k \iff \theta(x, y_k) < \theta(x, y_j) \forall k \neq j$$

where:

- C_k = land cover class k;
- y_k = spectral signature of class k;
- y_j = spectral signature of class j.

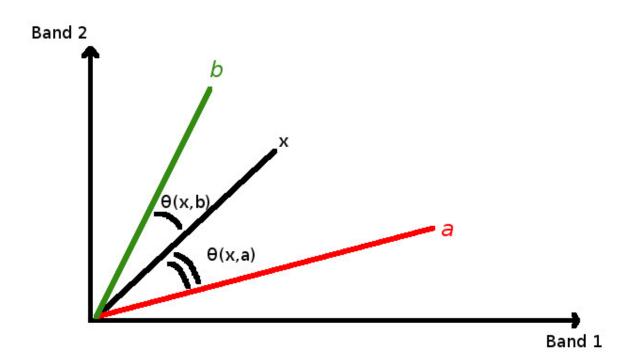


Figure 14.5: Spectral Angle Mapping example

In order to exclude pixels below this value from the classification it is possible to define a threshold T_i :

 $\begin{array}{l} x \in C_k \iff \theta(x,y_k) < \theta(x,y_j) \forall k \neq j \\ \\ and \\ \theta(x,y_k) < T_i \end{array}$

Spectral Angle Mapping is largely used, especially with hyperspectral data.

14.5.4 Parallelepiped Classification

Parallelepiped classification is an algorithm that considers a range of values for each band, forming a multidimensional parallelepiped that defines a land cover class. A pixel is classified if the values thereof are inside a parallelepiped. One of the major drawbacks is that pixels whose signatures lie in the overlapping area of two or more parallelepipeds cannot be classified (Richards and Jia, 2006).

14.5.5 Land Cover Signature Classification

Land Cover Signature Classification is available in *SCP* (see *Land Cover Signature Classification* (page 46)). This classification allows for the definition of spectral thresholds for each training input signature (a minimum value and a maximum value for each band). The thresholds of each training input signature define a spectral region belonging to a certain land cover class.

Spectral signatures of image pixels are compared to the training spectral signatures; a pixel belongs to class X if pixel spectral signature is completely contained in the spectral region defined by class X. In case of pixels falling inside overlapping regions or outside any spectral region, it is possible to use additional classification algorithms (i.e. *Minimum Distance* (page 140), *Maximum Likelihood* (page 140), *Spectral Angle Mapping* (page 141)) considering the spectral characteristics of the original input signature.

In the following image, a scheme illustrates the Land Cover Signature Classification for a simple case of two spectral bands x and y. User defined spectral regions define three classes $(g_a, g_b, \text{ and } g_c)$. Point p_1 belongs to

class g_a and point p_2 belongs to class g_b . However, point p_3 is inside the spectral regions of both classes g_b and g_c (overlapping regions); in this case, point p_3 will be unclassified or classified according to an additional classification algorithm. Point p_4 is outside any spectral region, therefore it will be unclassified or classified according to an additional classification algorithm. Given that point p_4 belongs to class g_c , the spectral region thereof could be extended to include point p_4 .

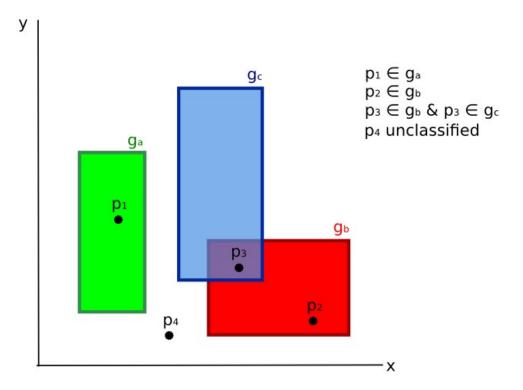


Figure 14.6: Land cover signature classification

This is similar to *Parallelepiped Classification* (page 142), with the exception that spectral regions are defined by user, and can be assigned independently for the upper and lower bounds. One can imagine spectral regions as the set of all the spectral signatures of pixels belonging to one class.

In figure *Plot of spectral ranges* (page 144) the spectral ranges of three classes $(g_a, g_b, \text{ and } g_c)$ are displayed; the colored lines inside the ranges (i.e. semi-transparent area) represent the spectral signatures of pixels that defined the upper and lower bounds of the respective ranges. Pixel p_1 (dotted line) belongs to class g_b because the spectral signature thereof is completely inside the range of class g_b (in the upper limit); pixel p_2 (dashed line) is unclassified because the spectral signature does not fall completely inside any range; pixel p_3 (dotted line) belongs to class g_a .

It is worth noticing that these spectral thresholds can be applied to any spectral signature, regardless of spectral characteristics thereof; this function can be very useful for separating similar spectral signatures that differ only in one band, defining thresholds that include or exclude specific signatures. In fact, classes are correctly separated if the spectral ranges thereof are not overlapping at least in one band. Of course, even if spectral regions are overlapping, chances are that no pixel will fall inside the overlapping region and be misclassified; which is the upper (or lower) bound of a range do not imply the existence, in the image, of any spectral signature having the maximum (or minimum) range values for all the bands (for instance pixel p_1 of figure *Plot of spectral ranges* (page 144) could not exist).

One of the main benefit of the *Land Cover Signature Classification* is that it is possible to select pixels and and include the signature thereof in a spectral range; therefore, the classification should be the direct representation of the class expected for every spectral signature. This is very suitable for the classification of a single land cover class (defined by specific spectral thresholds), and leave unclassified the rest of the image that is of no interest for the purpose of the classification.

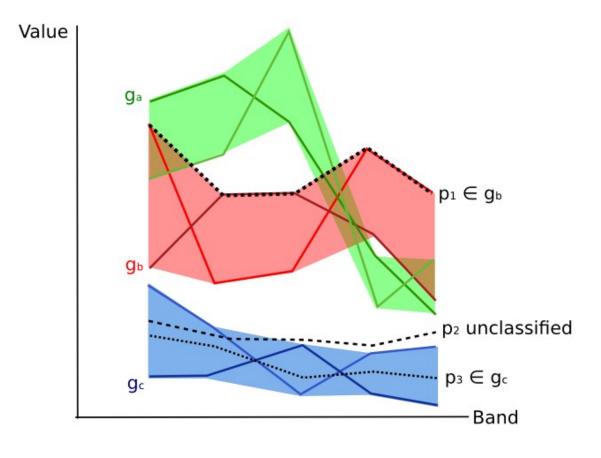


Figure 14.7: Plot of spectral ranges

14.5.6 Algorithm raster

An algorithm raster represents the "distance" (according to the definition of the classification algorithm) of an image pixel to a specific spectral signature.

In general, an algorithm raster is produced for every spectral signature used as training input. The value of every pixel is the result of the algorithm calculation for a specific spectral signature. Therefore, a pixel belongs to class X if the value of the algorithm raster corresponding to class X is the lowest in case of *Minimum Distance* (page 140) or *Spectral Angle Mapping* (page 141) (or highest in case of *Maximum Likelihood* (page 140)).

Given a classification, a combination of algorithm rasters can be produced, in order to create a raster with the lowest "distances" (i.e. pixels have the value of the algorithm raster corresponding to the class they belong in the classification). Therefore, this raster can be useful to identify pixels that require the collection of more similar spectral signatures (see *Classification preview* (page 34)).

14.6 Spectral Distance

It is useful to evaluate the spectral distance (or separability) between training signatures or pixels, in order to assess if different classes that are too similar could cause classification errors. The *SCP* implements the following algorithms for assessing similarity of spectral signatures.

14.6.1 Jeffries-Matusita Distance

Jeffries-Matusita Distance calculates the separability of a pair of probability distributions. This can be particularly meaningful for evaluating the results of *Maximum Likelihood* (page 140) classifications.

The Jeffries-Matusita Distance J_{xy} is calculated as (Richards and Jia, 2006):

$$J_{xy} = 2\left(1 - e^{-B}\right)$$

where:

$$B = \frac{1}{8}(x-y)^t \left(\frac{\Sigma_x + \Sigma_y}{2}\right)^{-1} (x-y) + \frac{1}{2} \ln \left(\frac{\left|\frac{\Sigma_x + \Sigma_y}{2}\right|}{\left|\Sigma_x\right|^{\frac{1}{2}} \left|\Sigma_y\right|^{\frac{1}{2}}}\right)$$

where:

- x =first spectral signature vector;
- *y* = second spectral signature vector;
- Σ_x = covariance matrix of sample x;
- Σ_y = covariance matrix of sample y;

The Jeffries-Matusita Distance is asymptotic to 2 when signatures are completely different, and tends to 0 when signatures are identical.

14.6.2 Spectral Angle

The Spectral Angle is the most appropriate for assessing the *Spectral Angle Mapping* (page 141) algorithm. The spectral angle θ is defined as (Kruse et al., 1993):

$$\theta(x,y) = \cos^{-1}\left(\frac{\sum_{i=1}^{n} x_i y_i}{(\sum_{i=1}^{n} x_i^2)^{\frac{1}{2}} * (\sum_{i=1}^{n} y_i^2)^{\frac{1}{2}}}\right)$$

Where:

- x = spectral signature vector of an image pixel;
- y = spectral signature vector of a training area;
- n = number of image bands.

Spectral angle goes from 0 when signatures are identical to 90 when signatures are completely different.

14.6.3 Euclidean Distance

The Euclidean Distance is particularly useful for the evaluating the result of *Minimum Distance* (page 140) classifications. In fact, the distance is defined as:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where:

- x =first spectral signature vector;
- *y* = second spectral signature vector;
- n = number of image bands.

The Euclidean Distance is 0 when signatures are identical and tends to increase according to the spectral distance of signatures.

14.6.4 Bray-Curtis Similarity

The Bray-Curtis Similarity is a statistic used for assessing the relationship between two samples (read this). It is useful in general for assessing the similarity of spectral signatures, and Bray-Curtis Similarity S(x, y) is calculated as:

$$S(x,y) = 100 - \left(\frac{\sum_{i=1}^{n} |(x_i - y_i)|}{\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i}\right) * 100$$

where:

- x =first spectral signature vector;
- *y* = second spectral signature vector;
- n = number of image bands.

The Bray-Curtis similarity is calculated as percentage and ranges from 0 when signatures are completely different to 100 when spectral signatures are identical.

14.7 Classification Result

The result of the classification process is a raster (see an example of Landsat classification in Figure *Landsat classification* (page 146)), where pixel values correspond to class IDs and each color represent a land cover class.

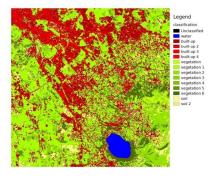


Figure 14.8: *Landsat classification* Data available from the U.S. Geological Survey

A certain amount of errors can occur in the land cover classification (i.e. pixels assigned to a wrong land cover class), due to spectral similarity of classes, or wrong class definition during the ROI collection.

14.8 Accuracy Assessment

After the classification process, it is useful to assess the accuracy of land cover classification, in order to identify and measure map errors. Usually, **accuracy assessment** is performed with the calculation of an error matrix, which is a table that compares map information with reference data (i.e. ground truth data) for a number of sample areas (Congalton and Green, 2009).

The following table is a scheme of error matrix, where k is the number of classes identified in the land cover classification, and n is the total number of collected sample units. The items in the major diagonal (aii) are the number of samples correctly identified, while the other items are classification error.

Scheme of Error Matrix

	Ground truth 1	Ground truth 2	 Ground truth k	Total
Class 1	a_{11}	a_{12}	 a_{1k}	a_{1+}
Class 2	a_{21}	a_{22}	 a_{2k}	a_{2+}
	•••		 	
Class k	a_{k1}	a_{k2}	 a_{kk}	a_{k+}
Total	a_{+1}	a_{+2}	 a_{+k}	n

Therefore, it is possible to calculate the overall accuracy as the ratio between the number of samples that are correctly classified (the sum of the major diagonal), and the total number of sample units n (Congalton and Green, 2009).

For further information, the following documentation is freely available: Landsat 7 Science Data User's Handbook, Remote Sensing Note, or Wikipedia.

Image conversion to reflectance

This chapter provides information about the conversion to reflectance implemented in SCP.

15.1 Radiance at the Sensor's Aperture

Radiance is the "flux of energy (primarily irradiant or incident energy) per solid angle leaving a unit surface area in a given direction", "Radiance is what is measured at the sensor and is somewhat dependent on reflectance" (NASA, 2011, p. 47).

Images such as Landsat or Sentinel-2 are composed of several bands and a metadata file which contains information required for the conversion to reflectance.

Landsat images are provided in radiance, scaled prior to output. for Landsat images **Spectral Radiance at the sensor's aperture** (L_{λ} , measured in [watts/(meter squared * ster * μm)]) is given by (https://landsat.usgs.gov/Landsat8_Using_Product.php):

$$L_{\lambda} = M_L * Q_{cal} + A_L$$

where:

- M_L = Band-specific multiplicative rescaling factor from Landsat metadata (RADI-ANCE_MULT_BAND_x, where x is the band number)
- A_L = Band-specific additive rescaling factor from Landsat metadata (RADIANCE_ADD_BAND_x, where x is the band number)
- Q_{cal} = Quantized and calibrated standard product pixel values (DN)

Sentinel-2 images (Level-1C) are already provided in *Top Of Atmosphere (TOA) Reflectance* (page 149), scaled prior to output (ESA, 2015).

15.2 Top Of Atmosphere (TOA) Reflectance

Images in radiance can be converted to Top Of Atmosphere (TOA) Reflectance (combined surface and atmospheric reflectance) in order to reduce the in between-scene variability through a normalization for solar irradiance. This TOA reflectance (ρ_p), which is the unitless ratio of reflected versus total power energy (NASA, 2011), is calculated by:

$$\rho_p = (\pi * L_\lambda * d^2) / (ESUN_\lambda * \cos\theta_s)$$

where:

- L_{λ} = Spectral radiance at the sensor's aperture (at-satellite radiance)
- *d* = Earth-Sun distance in astronomical units (provided with Landsat 8 metadata file, and an excel file is available from http://landsathandbook.gsfc.nasa.gov/excel_docs/d.xls)

- $ESUN_{\lambda}$ = Mean solar exo-atmospheric irradiances
- θ_s = Solar zenith angle in degrees, which is equal to θ_s = 90° θ_e where θ_e is the Sun elevation

It is worth pointing out that Landsat 8 images are provided with band-specific rescaling factors that allow for the direct conversion from DN to TOA reflectance.

Sentinel-2 images are already provided in scaled TOA reflectance, which can be converted to TOA reflectance with a simple calculation using the Quantification Value provided in the metadata (see https://sentinel.esa.int/documents/247904/349490/S2_MSI_Product_Specification.pdf).

15.3 Surface Reflectance

The effects of the atmosphere (i.e. a disturbance on the reflectance that varies with the wavelength) should be considered in order to measure the reflectance at the ground.

As described by Moran et al. (1992), the **land surface reflectance** (ρ) is:

$$\rho = [\pi * (L_{\lambda} - L_p) * d^2] / [T_v * ((ESUN_{\lambda} * \cos\theta_s * T_z) + E_{down})]$$

where:

- L_p is the path radiance
- T_v is the atmospheric transmittance in the viewing direction
- T_z is the atmospheric transmittance in the illumination direction
- E_{down} is the downwelling diffuse irradiance

Therefore, we need several atmospheric measurements in order to calculate ρ (physically-based corrections). Alternatively, it is possible to use **image-based techniques** for the calculation of these parameters, without in-situ measurements during image acquisition. It is worth mentioning that **Landsat Surface Reflectance High Level Data Products** for Landsat 8 are available (for more information read http://landsat.usgs.gov/CDR_LSR.php).

15.4 DOS1 Correction

The **Dark Object Subtraction** (DOS) is a family of image-based atmospheric corrections. Chavez (1996) explains that "the basic assumption is that within the image some pixels are in complete shadow and their radiances received at the satellite are due to atmospheric scattering (path radiance). This assumption is combined with the fact that very few targets on the Earth's surface are absolute black, so an assumed one-percent minimum reflectance is better than zero percent". It is worth pointing out that the accuracy of image-based techniques is generally lower than physically-based corrections, but they are very useful when no atmospheric measurements are available as they can improve the estimation of land surface reflectance. The **path radiance** is given by (Sobrino, et al., 2004):

$$L_p = L_{min} - L_{DO1\%}$$

where:

- L_{min} = "radiance that corresponds to a digital count value for which the sum of all the pixels with digital counts lower or equal to this value is equal to the 0.01% of all the pixels from the image considered" (Sobrino, et al., 2004, p. 437), therefore the radiance obtained with that digital count value (DN_{min})
- $L_{DO1\%}$ = radiance of Dark Object, assumed to have a reflectance value of 0.01

In particular for Landsat images:

$$L_{min} = M_L * DN_{min} + A_L$$

Sentinel-2 images are converted to radiance prior to DOS1 calculation.

The radiance of Dark Object is given by (Sobrino, et al., 2004):

$$L_{DO1\%} = 0.01 * [(ESUN_{\lambda} * \cos\theta_s * T_z) + E_{down}] * T_v / (\pi * d^2)$$

Therefore the path radiance is:

 $L_{p} = M_{L} * DN_{min} + A_{L} - 0.01 * [(ESUN_{\lambda} * \cos\theta_{s} * T_{z}) + E_{down}] * T_{v} / (\pi * d^{2})$

There are several DOS techniques (e.g. DOS1, DOS2, DOS3, DOS4), based on different assumption about T_v , T_z , and E_{down} . The simplest technique is the **DOS1**, where the following assumptions are made (Moran et al., 1992):

- $T_v = 1$
- $T_z = 1$
- $E_{down} = 0$

Therefore the **path radiance** is:

$$L_p = M_L * DN_{min} + A_L - 0.01 * ESUN_\lambda * \cos\theta_s / (\pi * d^2)$$

And the resulting land surface reflectance is given by:

$$\rho = [\pi * (L_{\lambda} - L_p) * d^2] / (ESUN_{\lambda} * \cos\theta_s)$$

ESUN [W /(m2 * μm)] values for Landsat sensors are provided in the following table.

ESUN values for Landsat bands

Band	Landsat 1	Landsat 2	Landsat 3	Landsat 4	Landsat 5	Landsat 7
	MSS*	MSS*	MSS*	TM*	TM*	ETM+**
1				1983	1983	1970
2				1795	1796	1842
3				1539	1536	1547
4	1823	1829	1839	1028	1031	1044
5	1559	1539	1555	219.8	220	225.7
6	1276	1268	1291			
7	880.1	886.6	887.9	83.49	83.44	82.06
8						1369

* from Chander, Markham, & Helder (2009)

** from http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html

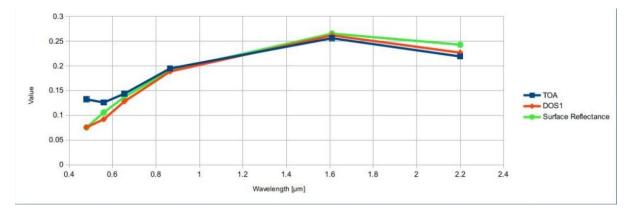
For Landsat 8, ESUN can be calculated as (from http://grass.osgeo.org/grass65/manuals/i.landsat.toar.html):

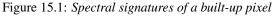
 $ESUN = (\pi * d^2) * RADIANCE_MAXIMUM/REFLECTANCE_MAXIMUM$

where RADIANCE_MAXIMUM and REFLECTANCE_MAXIMUM are provided by image metadata.

ESUN [W /(m2 * μm)] values for **Sentinel-2** sensor (provided in image metadata) are illustrated in the following table.

ESUN values for Sentinel-2 bands


Band	Sentinel-2
1	1913.57
2	1941.63
3	1822.61
4	1512.79
5	1425.56
6	1288.32
7	1163.19
8	1036.39
8A	955.19
9	813.04
10	367.15
11	245.59
12	85.25


ESUN [W /(m2 * μm)] values for ASTER sensor are illustrated in the following table (from Finn, et al., 2012).

ESUN values for ASTER bands

Band	ASTER
1	1848
2	1549
3	1114
4	225.4
5	86.63
6	81.85
7	74.85
8	66.49
9	59.85

An example of comparison of to TOA reflectance, DOS1 corrected reflectance and the Landsat Surface Reflectance High Level Data Products (ground truth) is provided in Figure *Spectral signatures of a built-up pixel* (page 152).

Comparison of TOA reflectance, DOS1 corrected reflectance and Landsat Surface Reflectance High Level Data Products

Conversion to Temperature

This chapter provides the basic information about the conversion to **At-Satellite Brightness Temperature** implemented in *SCP* and the estimation of **Land Surface Temperature**.

16.1 Conversion to At-Satellite Brightness Temperature

For thermal bands, the conversion of DN to At-Satellite Brightness Temperature is given by (from https://landsat.usgs.gov/Landsat8_Using_Product.php):

$$T_B = K_2/ln[(K_1/L_\lambda) + 1]$$

where:

- K_1 = Band-specific thermal conversion constant (in watts/meter squared * ster * μm)
- K_2 = Band-specific thermal conversion constant (in kelvin)

and L_{λ} is the Spectral Radiance at the sensor's aperture, measured in watts/(meter squared * ster * μm).

The K_1 and K_2 constants for Landsat sensors are provided in the following table.

Thermal Conversion Constants for Landsat

Constant	Landsat 4*	Landsat 5*	Landsat 7**
K_1	671.62	607.76	666.09
K_2	1284.30	1260.56	1282.71

* from Chander & Markham (2003)

** from NASA (2011)

For Landsat 8, the K_1 and K_2 values are provided in the image metadata file.

 K_1 and K_2 are calculated as (Jimenez-Munoz & Sobrino, 2010):

$$K_1 = c_1 / \lambda^5$$

$$K_2 = c_2/\lambda$$

where (Mohr, Newell, & Taylor, 2015):

- $c_1 = \text{first radiation constant} = 1.191 * 10^{-16} Wm^2 sr^{-1}$
- c_2 = second radiation constant = $1.4388 * 10^{-2} mK$

Therefore, for ASTER bands K_1 and K_2 are provided in the following table.

Thermal Conversion Constants for ASTER

Constant	Band 10	Band 11	Band 12	Band 13	Band 14
K_1	$3.024 * 10^3$	$2.460 * 10^3$	$1.909 * 10^3$	$8.900 * 10^2$	$6.464 * 10^2$
K_2	$1.733 * 10^3$	$1.663 * 10^3$	$1.581 * 10^3$	$1.357 * 10^3$	$1.273 * 10^3$

16.2 Estimation of Land Surface Temperature

Several studies have described the estimation of Land Surface Temperature. Land Surface Temperature can be calculated from At-Satellite Brightness Temperature T_B as (Weng, et al. 2004):

$$T = T_B / [1 + (\lambda * T_B / c_2) * ln(e)]$$

where:

- λ = wavelength of emitted radiance
- $c_2 = h * c/s = 1.4388 * 10^{-2} \text{ m K}$
- $h = \text{Planck's constant} = 6.626 * 10^{-34} \text{ J s}$
- $s = \text{Boltzmann constant} = 1.38 * 10^{-23} \text{ J/K}$
- c = velocity of light = 2.998×10^8 m/s

The values of λ for the thermal bands of Landsat and ASTER satellites can be calculated from the tables in *Landsat Satellite* (page 131) and *ASTER Satellite* (page 133).

Several studies used NDVI for the estimation of land surface emissivity (Sobrino, et al., 2004); other studies used a land cover classification for the definition of the land surface emissivity of each class (Weng, et al. 2004). For instance, the emissivity (*e*) values of various land cover types are provided in the following table (from Mallick, et al. 2012).

Emissivity values

Land surface	Emissivity e
Soil	0.928
Grass	0.982
Asphalt	0.942
Concrete	0.937

References

- Chander, G. & Markham, B. 2003. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges Geoscience and Remote Sensing, IEEE Transactions on, 41, 2674 - 2677
- Chavez, P. S. 1996. Image-Based Atmospheric Corrections Revisited and Improved Photogrammetric Engineering and Remote Sensing, [Falls Church, Va.] American Society of Photogrammetry, 62, 1025-1036
- Congalton, R. and Green, K., 2009. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton, FL: CRC Press
- ESA, 2015. Sentinel-2 User Handbook. Available at https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
- Finn, M.P., Reed, M.D, and Yamamoto, K.H. 2012. A Straight Forward Guide for Processing Radiance and Reflectance for EO-1 ALI, Landsat 5 TM, Landsat 7 ETM+, and ASTER. Unpublished Report from USGS/Center of Excellence for Geospatial Information Science, 8 p, http://cegis.usgs.gov/soil_moisture/pdf/A%20Straight%20Forward%20guide%20for%20Processing%20Radiance%20and%2
- Fisher, P. F. and Unwin, D. J., eds. 2005. Representing GIS. Chichester, England: John Wiley & Sons
- JARS, 1993. Remote Sensing Note. Japan Association on Remote Sensing. Available at http://www.jars1974.net/pdf/rsnote_e.html
- Jimenez-Munoz, J. C. & Sobrino, J. A. 2010. A Single-Channel Algorithm for Land-Surface Temperature Retrieval From ASTER Data IEEE Geoscience and Remote Sensing Letters, 7, 176-179
- Johnson, B. A., Tateishi, R. and Hoan, N. T., 2012. Satellite Image Pansharpening Using a Hybrid Approach for Object-Based Image Analysis ISPRS International Journal of Geo-Information, 1, 228. Available at http://www.mdpi.com/2220-9964/1/3/228)
- Kruse, F. A., et al., 1993. The Spectral Image Processing System (SIPS) Interactive Visualization and Analysis of Imaging spectrometer. Data Remote Sensing of Environment
- Mallick, J.; Singh, C. K.; Shashtri, S.; Rahman, A. & Mukherjee, S. 2012. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city International Journal of Applied Earth Observation and Geoinformation, 19, 348 - 358
- Mohr, P. J.; Newell, D. B. & Taylor, B. N. 2015. CODATA Recommended Values of the Fundamental Physical Constants: 2014 National Institute of Standards and Technology, Committee on Data for Science and Technology
- Moran, M.; Jackson, R.; Slater, P. & Teillet, P. 1992. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output Remote Sensing of Environment, 41, 169-184
- NASA (Ed.) 2011. Landsat 7 Science Data Users Handbook Landsat Project Science Office at NASA's Goddard Space Flight Center in Greenbelt. 186 http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf
- NASA, 2013. Landsat 7 Science Data User's Handbook. Available at http://landsathandbook.gsfc.nasa.gov

- Ready, P. and Wintz, P., 1973. Information Extraction, SNR Improvement, and Data Compression in Multispectral Imagery. IEEE Transactions on Communications, 21, 1123-1131
- Richards, J. A. and Jia, X., 2006. Remote Sensing Digital Image Analysis: An Introduction. Berlin, Germany: Springer.
- Sobrino, J.; Jiménez-Muñoz, J. C. & Paolini, L. 2004. Land surface temperature retrieval from LANDSAT TM 5 Remote Sensing of Environment, Elsevier, 90, 434-440
- USGS, 2015. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precision Terrain Corrected Registered At-Sensor Radiance Product (AST_L1T). AST_L1T Product User's Guide. USGS EROS Data Center.
- Weng, Q.; Lu, D. & Schubring, J. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, Elsevier Science Inc., Box 882 New York NY 10159 USA, 89, 467-483

Part V

Basic Tutorials

The following are very basic tutorials for land cover classification using the Semi-Automatic Classification Plugin (*SCP*). It is assumed that you have a basic knowledge of QGIS (you can find a guide to QGIS interface at this page).

Also, visit the blog From GIS to Remote Sensing for other tutorials such as:

- Supervised Classification of Hyperspectral Data;
- Monitoring Deforestation;
- Flood Monitoring;
- Estimation of Land Surface Temperature with Landsat Thermal Infrared Band;
- Land Cover Classification of Cropland.

For other unofficial tutorials, also in languages other than English, see *Other tutorials about SCP, also in languages other than English?* (page 190).

Part VI

Thematic Tutorials

The following are thematic tutorials. Before these tutorials, it is recommended to read the *Basic Tutorials* (page 159).

Also, visit the blog From GIS to Remote Sensing for other tutorials such as:

- Supervised Classification of Hyperspectral Data;
- Monitoring Deforestation;
- Flood Monitoring;
- Estimation of Land Surface Temperature with Landsat Thermal Infrared Band;
- Land Cover Classification of Cropland.

For other unofficial tutorials, also in languages other than English, see *Other tutorials about SCP, also in languages other than English?* (page 190).

Part VII

Semi-Automatic OS

The Semi-Automatic OS is a lightweight virtual machine for the land cover classification of remote sensing images. It includes the Semi-Automatic Classification Plugin for QGIS, already configured along with all the required dependencies.

Figure 17.1: Semi-Automatic OS desktop

The Semi-Automatic OS is based on Debian, and it is designed to require very little hardware resources. It uses LXDE and Openbox as main desktop environment. This virtual machine can be useful for testing the Semi-Automatic Classification Plugin, or when the installation of the required programs in the host system is problematic.

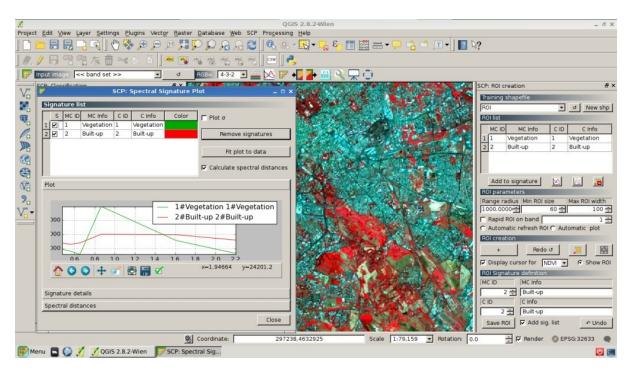
The Semi-Automatic OS is available as a 32 bit and 64 bit virtual machine that can be run in the open source VirtualBox, or any other virtualization program. The following is a guide for the installation of the Semi-Automatic OS in the open source program of virtualization VirtualBox.

Installation in VirtualBox

- 1. Download VirtualBox open source software (select a proper version depending on your OS) and install it; at the end of the installation restart the system;
- 2. Download the Semi-Automatic OS virtual machine (about 600 MB) from here (32 bit or 64 bit);
- 3. Extract the virtual machine content in a directory (it requires about 3 GB of disk space); the file is compressed in 7z format (if needed, download the open source extraction software from http://www.7-zip.org/);
- 4. Run VirtualBox and create a new Debian virtual machine;
 - (a) Click the New button;
 - (b) Type a name for the virtual machine (for instance Semi-Automatic OS); select Linux and Debian (32 or 64 bit) as Type and Version respectively; click Next;

File	Machine	Help						
New	Settings	Start	Discar	Create V	irtual Maci	hine		Details Snapshots
						Name Please c machine intend to used thr <u>N</u> ame: <u>Type</u> :	and operating system hoose a descriptive name for the new virtual and select the type of operating system you oinstall on it. The name you choose will be oughout VirtualBox to identify this machine. Semi-Automatic OS Linux • Debian (32 bit) •	al machines on your haven't created any virtual ss the e top

(c) Set the memory size; the more is the better, but this parameter should not exceed a half of he host system RAM (for instance if the host system has 1 GB of RAM, type 512 MB); click Next;


🖾 Or	acle VM V	irtualB	ox Manager	
File	Machine	Help		
O New	Settings	ے Start	Disca 🖾 Create Virtual Machine	Details Snapshots
			Weak of the output of the second s	al machines on your haven't created any virtual ss the e top or ation
				\$

(d) In the Hard drive settings select Use an existing virtual hard drive file and select the downloaded file SemiAutomaticOS.vmdk; click Create;

- 5. Start the Semi-Automatic OS by clicking the Start button;
- 6. It is recommended to install the virtualbox-guest-utils in the virtual machine, from the Menu > Preferences > Synaptic Package Manager; it allows for a better integration of the Semi-Automatic OS in the host system, such as: the resize of the system window, or the folder sharing.

The Semi-Automatic OS includes a sample dataset (Landsat 8 images available from the U.S. Geological Survey) that can be used for testing purposes.

Semi-Automatic OS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License. Semi-Automatic OS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. See http://www.gnu.org/licenses/.

Part VIII

Frequently Asked Questions

If you have comments or questions please join the Facebook group or the Google+ Community .

Before asking, please check the official site From GIS to Remote Sensing and the following Frequently Asked Questions.

- *Plugin installation* (page 177)
 - How to install the plugin manually? (page 177)
- Pre processing (page 179)
 - Which image bands should I use for a semi-automatic classification? (page 179)
 - Which Landsat bands can be converted to reflectance by the SCP? (page 179)
 - Can I apply the conversion to Sentinel-2 images download from the web? (page 179)
 - How are converted Sentinel-2 images that have different resolutions? (page 179)
 - Can I apply the Landsat conversion and DOS correction to clipped bands? (page 180)
 - Can I apply the DOS correction to bands with black border (i.e. with NoData value)? (page 180)
 - How to remove cloud cover from images? (page 180)
 - How do I create a virtual raster manually in QGIS? (page 180)
 - After pan-sharpening of Landsat 8 images, why NIR bands still have 30m resolution? (page 180)
- *Processing* (page 181)
 - I get classification errors. How can I improve the accuracy? (page 181)
 - Is it possible to use the same training input for multiple images? (page 181)
 - What is the difference between classes and macroclasses? (page 181)
 - *Can I use SCP with images from drones or aerial photographs?* (page 181)
 - Why using only Landsat 8 band 10 in the estimation of surface temperature? (page 182)
- Warnings (page 183)
 - Warning [12]: The following signature will be excluded if using Maximum Likelihood. Why? (page 183)
- Errors (page 185)
 - How can I report an error? (page 185)
 - Virtual raster creation issues. Why? (page 186)
 - Error [26] 'The version of Numpy is outdated'. Why? (page 186)
 - Error 'Plugin is damaged. Python said: ascii'. Why? (page 187)
 - Error [50] 'Internet error'. Unable to download Sentinel-2 images. Why? (page 187)
 - Error [56] 'SSL connection error'. Unable to download Sentinel-2 images. Why? (page 187)
 - This plugin is broken 'matplotlib requires pyparsing >= 1.5.6'. Why? (page 188)
- Various (page 189)
 - What can I do with the SCP? (page 189)
 - How to contribute to SCP (page 190)
 - Free and valuable resources about remote sensing and GIS (page 190)
 - Other tutorials about SCP, also in languages other than English? (page 190)
 - How can I translate this user manual to another language? (page 191)
 - Where is the source code of SCP? (page 191)

Plugin installation

19.1 How to install the plugin manually?

The SCP can be installed manually (this can be useful when an internet connection is not available, or the installation is required on multiple computers), following a few steps:

- 1. download the SCP zip archive from https://github.com/semiautomaticgit/SemiAutomaticClassificationPlugin/archive/master.z
- 2. extract the content of the archive (several files such as COPYING.txt and folders such as ui) in a new folder named SemiAutomaticClassificationPlugin (without -master);
- 3. open the QGIS plugins directory (in Windows usually C:\Users\username\.qgis2\python\plugins, in Linux and Mac usually /home/username/.qgis2/python/plugins/) and delete the folder SemiAutomaticClassificationPlugin if present;
- 4. copy the folder SemiAutomaticClassificationPlugin inside the QGIS plugins directory;
- 5. the plugin should be installed; start QGIS, open the Plugin Manager and be sure that Semi-Automatic Classification Plugin is checked.

Pre processing

20.1 Which image bands should I use for a semi-automatic classification?

In general, it is preferable to avoid thermal infrared bands. If you are using Landsat 4, 5 or 7 you should select bands: 1, 2, 3, 4, 5, 7 avoiding band 6 that is thermal infrared; for Landsat 8 you should select bands: 2, 3, 4, 5, 6, 7.

For Sentinel-2 images you can use bands: 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12.

20.2 Which Landsat bands can be converted to reflectance by the SCP?

All Landsat 1,2, and 3 MSS and Landsat 4, 5, 7, and 8 images downloaded from http://earthexplorer.usgs.gov/ and processed with the Level 1 Product Generation System (LPGS) can be converted to reflectance automatically by the SCP; products generated by the LPGS have a MTL file included that is required for the conversion. Since version 3.1.1 the *SCP* can also convert images from the Global Land Cover Facility (images available for free from ftp://ftp.glcf.umd.edu/glcf/Landsat/). In particular, images having an old format of the MTL file (or a .met file) can be processed through the automatic conversion to reflectance and the DOS correction. However, some images do not have the required information and cannot be processed. Also, notice that some images available from the Global Land Cover Facility are already converted to reflectance. For this process, image bands must be renamed in order to remove the final 0 if present (e.g. rename B10 to B1).

20.3 Can I apply the conversion to Sentinel-2 images download from the web?

Yes, you can convert also images downloaded from the web (actually the conversion is recommended). You should move all the bands (.jp2 files) and if available the .xml file whose name contains MDT_SAFL1C in the same directory. Then select this directory in *Sentinel-2 conversion* (page 77). Images are converted to reflectance.

20.4 How are converted Sentinel-2 images that have different resolutions?

During the conversion to reflectance, pixels of 20m bands are split in 4 pixels of 10m whose values are the same as the original 20m pixel. The purpose of this operation is to allow for the calculation between all the bands, without changing original values.

20.5 Can I apply the Landsat conversion and DOS correction to clipped bands?

Yes, you can clip the images before the conversion to reflectance and then copy the MTL file (contained in the Landsat dataset) inside the directory with the clipped bands. If you want to apply the DOS correction (which is an image based technique) you should convert the original Landsat bands (the entire image) and then clip the conversion output (i.e. bands converted to reflectance).

20.6 Can I apply the DOS correction to bands with black border (i.e. with NoData value)?

If you want to apply the DOS correction to an entire band which has NoData values (the black border with value = 0) then you have to check the checkbox Use NoData value and set the value to 0. This is because DOS is an image based technique, and NoData values must be excluded from the calculation.

20.7 How to remove cloud cover from images?

DOS1 correction does not remove clouds from the image. However, Landsat 8 images include Band 9 that identifies clouds (see this NASA site). You can use this band for the creation of a mask.

For other Landsat satellites, clouds can be masked using the approach described this paper.

Also, see the following video-tutorial.

20.8 How do I create a virtual raster manually in QGIS?

In order to create a multi-spectral virtual raster in QGIS:

- 1. from the menu Raster select Miscellaneous > Build Virtual Raster (catalog);
- 2. click the button Select... and select all the Landsat bands (in numerical order);
- 3. select the output file (for instance rgb.vrt); check Separate (bands will be separated) and click OK.

20.9 After pan-sharpening of Landsat 8 images, why NIR bands still have 30m resolution?

Landsat 8 panchromatic band doesn't acquire in the Near Infrared (NIR) region (see *Landsat Satellite* (page 131)). Therefore, the pan-sharpening process can't improve the resolution of NIR and SWIR bands (see *Pan-sharpening* (page 135)), which appear to have 30m resolution. However, raster all pan-sharpened rasters have 15m resolution to allow raster calculation.

Processing

21.1 I get classification errors. How can I improve the accuracy?

Several materials have similar spectral signatures (e.g. soil and built-up, or forest and other types of dense low vegetation), which can cause classification errors if ROIs, and spectral signatures thereof, are not acquired correctly. In order to improve the results, you can try to collect more ROIs over these areas, in order to train the algorithm for these very similar areas, also, display the spectral signatures of these areas in *Spectral Signature Plot* (page 115) to assess their similarity. You can also use a *Signature threshold* (page 70) for these signatures in order to reduce the variability thereof (only pixels very similar to the input signatures will be classified). The *Land Cover Signature Classification* (page 142) is also useful for classifying specific materials that can be spectrally similar to other ones.

21.2 Is it possible to use the same training input for multiple images?

Yes, it is possible if all the images have the same number of bands. However, if images are acquired in different months, land cover changes (especially of vegetation state) will affect the spectral signature (i.e. the same pixel has different spectral signature in different periods). Atmospheric effects could also affect the images differently. That could reduce classification accuracy. Therefore, it is suggested to collect always the ROIs and spectral signatures for every image.

21.3 What is the difference between classes and macroclasses?

Please see Classes and Macroclasses (page 138).

21.4 Can I use SCP with images from drones or aerial photographs?

Yes, you can use them if they have at least 4 bands. With less than 4 bands, semi-automatic classification algorithms are unable to classify the land cover correctly. Alternative classification methods exist, such as object oriented classification, which is not implemented in SCP.

21.5 Why using only Landsat 8 band 10 in the estimation of surface temperature?

Several methods were developed for estimating surface temperature. The method described in the tutorial for temperature estimation requires only one band. Moreover, USGS recommends that users refrain from relying on Landsat 8 Band 11 data in quantitative analysis of the Thermal Infrared Sensor data (see Changes to Thermal Infrared Sensor (TIRS) data by USGS).

Warnings

22.1 Warning [12]: The following signature will be excluded if using Maximum Likelihood. Why?

The ROI is too small (or too homogeneous) for the *Maximum Likelihood* (page 140) algorithm because that ROI has a singular covariance matrix. You should create larger ROIs or don't use the Maximum Likelihood algorithm in the classification process.

Errors

23.1 How can I report an error?

If you found an error of the Semi-Automatic Classification Plugin please follow these steps in order to collect the required information (log file):

- 1. close QGIS if already open;
- open QGIS, open the Plugin tab *Debug* (page 113) and check the checkbox Records events in a log file;

\odot			Semi-Automatic Clas	sification Plugin			\odot
nload images	🇞 Tools	Preprocessing	Postprocessing	Band calc	Sand set	S Batch	X Settings < 🗧
Interface							
Processing							
Debug							
Log file		_	_				
Record ev	ents in a Log	file					1
Test							
Test depende	ncies 🚺						

Figure 23.1: Debug

3. click the button Test dependencies in the tab *Debug* (page 113);

- 4. load the data in QGIS (or open a previously saved QGIS project) and repeat all the steps that cause the error in the Plance of the error of the Plance of the error of the
 - if the issue could be related to the image data, please use this sample dataset ;
- 5. if an error message appears (like the one in the following image), copy the whole content of the message in a text file;

1 💿	Python error	$\odot \odot \odot$
Couldn't load plugin (classFactory() metho	SemiAutomaticClassificationPlugin due to an error d	r when calling its
plugins[package File "/home/user/ from semiautoma File "/usr/lib/py mod = _builtin_ File "/home/user/	ent call last): thon2.7/dist-packages/qgis/utils.py", line 2 Name] = package.classFactory(iface) .qgis2/python/plugins/SemiAutomaticClassific ticclassificationplugin import SemiAutomatic thon2.7/dist-packages/qgis/utils.py", line 4 import(name, globals, locals, fromlist, leve .qgis2/python/plugins/SemiAutomaticClassific lsignaturedialog import SpectralSignatureDia	cationPlugin/ini ClassificationPlu 78, in _import el) cationPlugin/semia
		Close

Figure 23.2: Error message

- 6. open the tab *Debug* (page 113) and uncheck the checkbox Records events in a log file, then click the button Export Log file and save the log file (which is a text file containing information about the Plugin processes);
- 7. open the log file and copy the whole content of the file;
- 8. join the Facebook group or the Google+ community, create a new post and copy the error message and the **log file** (or attach them).

23.2 Virtual raster creation issues. Why?

The automatic creation of the virtual raster after Landsat conversion to reflectance is not required for the classification. Errors could happen if the output destination path contains special characters (such as accented letters) or spaces; try to rename directories (e.g. rename new directory to new_directory). If you still get the same error you can create a virtual raster manually.

23.3 Error [26] 'The version of Numpy is outdated'. Why?

QGIS 32bit could have an older version of Numpy as default; in order to update Numpy:

- 1. download this file (which is based on WinPython installer and PyParsing);
- 2. extract the file with 7-zip;
- 3. copy the content of the extracted directory inside the directory apps\Python27\Lib\site-packages inside the QGIS installation directory (e.g. C:\Program Files (x86)\QGIS Chugiak\apps\Python27\Lib\site-packages) overwriting the files pyparsing, numpy, matplotlib, and scipy.

Alternatively, you should be able to install QGIS and Numpy with the OSGEO4W advanced installer.

23.4 Error 'Plugin is damaged. Python said: ascii'. Why?

It could be related to a wrong installation. Please, uninstall QGIS and install it again with administrative rights. Delete also the directory .qgis2 in your user directory. Then run QGIS 2 and try to install the plugin following the *Plugin Installation* (page 7) guide.

Also, it could be related to the user name containing special characters. Please try the installation creating a new user without special characters (e.g. user).

Also, if the error message contains something like: sfnt4 = sfnt4.decode('ascii').lower()

it could be related to a known issue of Matplotlib (a Python library); in order to solve this, you should (as reported at stackoverflow):

- 1. open in a text editor the file font_manager.py which is inside the directory C:\PROGRA~1\QGISCH~1\apps\Python27\lib\site-packages\matplotlib\
- 2. search for the line sfnt4 = sfnt4.decode('ascii').lower()
- 3. and replace it with the line sfnt4 = sfnt4.decode('ascii', 'ignore').lower()

Alternatively, try to install QGIS through the OSGEO4W installer, which includes an updated Matplotlib version.

23.5 Error [50] 'Internet error'. Unable to download Sentinel-2 images. Why?

The error message usually includes some information about the issue. First, check the user name and password.

Also, there could be an interruption of the service. For Sentinel-2 images please check this website https://scihub.copernicus.eu/news/ for messages about the state of the service.

In case you still get the same error, please follow these steps How can I report an error? (page 185).

23.6 Error [56] 'SSL connection error'. Unable to download Sentinel-2 images. Why?

First, check the user name and password.

This issue could be related to SSL protocols (TLS v1.1 and TLS v1.2) required for Sentinel-2 download. As described here https://docs.python.org/2/library/ssl.html the protocols TLS v1.1 and TLS v1.2 are available only in Python 2.7.9+ with openssl version 1.0.1+. QGIS could have a previous version of Python where TLS v1.1 and TLS v1.2 are not available. Therefore the Sentinel-2 download process fails.

A temporary solution for Windows OS:

Warning: this could break other QGIS functions, but fortunately you can install multiple versions of QGIS.

- 1. Close QGIS if open
- 2. Download and install Python for 32bit or for 64bit according to the installed version of QGIS
- 3. Copy and replace C:\python27\python.exe to "QGIS installation folder"\bin\(e.g. C:\Program Files (x86)\QGIS Chugiak\bin\)
- 4. Copy and replace C:\python27\pythonw.exe to "QGIS installation folder"\bin\
- 5. Copy and replace all the content of C:\python27\ to "QGIS installation folder"\apps\python27\
- 6. Now start QGIS and if everything went well you should be able to search and download Sentinel-2 images using SCP

In case you still get the same error, please follow these steps *How can I report an error?* (page 185).

23.7 This plugin is broken 'matplotlib requires pyparsing >= 1.5.6'. Why?

It is related to this issue https://hub.qgis.org/issues/14952 which should affect QGIS 32bit only. The installation of QGIS 64bit should work. As a solution you can install a previous version of QGIS 2.8 32bit .

Various

24.1 What can I do with the SCP?

SCP allows for the **land cover classification** of remote sensing images through *Supervised Classification* (page 137). You can produce a land cover raster using one of the *Classification Algorithms* (page 139) available in SCP. These algorithms require spectral signatures or ROIs as input (for definitions please read *Brief Introduction to Remote Sensing* (page 127)) that define the land cover classes to be identified in the image.

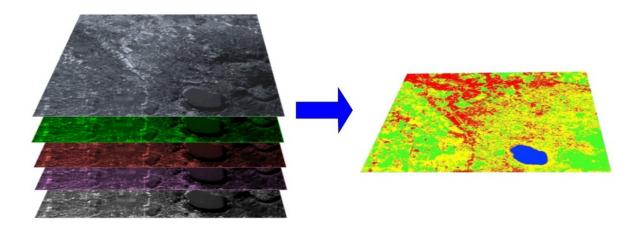


Figure 24.1: A multispectral image processed to produce a land cover classification (Landsat image provided by USGS)

SCP can work with **multispectral images** acquired by satellites, airplanes, or drones. Also, *SCP* allows for the direct search and download of free images (see *Download images* (page 51)). You cannot use orthophotos with less than 4 bands, SAR data, and LIDAR data with SCP.

Input image in *SCP* is called *Band set* (page 103), which is used as input for the classification. *SCP* provides several tools for the *Preprocessing* (page 75) of downloaded images, such as the conversion to reflectance and manipulation of bands.

Classification results can be assessed with the tools *Accuracy* (page 86) and *Classification report* (page 89). Also, rasters can be manipulated using *Postprocessing* (page 86) tools such as *Classification to vector* (page 90), *Reclassification* (page 91), *Edit raster* (page 92) directly, *Classification sieve* (page 94), *Classification erosion* (page 97), and *Classification dilation* (page 97).

The *Spectral Signature Plot* (page 115) and *Scatter Plot* (page 121) allow for the **analysis of spectral signatures and ROIs**. Also, several *Tools* (page 62) are available for easing the ROI creation and editing spectral signatures.

Raster calculation is available through the seamless integration of the tool *Band calc* (page 97) with bands in the *Band set* (page 103), calculating mathematical expressions and spectral indices. Also, an output raster can be

calculated based on Decision rules (page 101).

The tool *Batch* (page 106) allows for the automatic execution of several *SCP* functions using a scripting interface. See the ref:*tutorials* for more information and examples.

24.2 How to contribute to SCP

You can contribute to *SCP* by fixing and adding functionalities (see *Where is the source code of SCP*? (page 191)), or translating the user manual (see *How can I translate this user manual to another language*? (page 191)).

Also, you can donate to this project at the following link http://fromgistors.blogspot.com/p/donations.html .

24.3 Free and valuable resources about remote sensing and GIS

The following links are remote sensing and Landsat images:

- The Landsat 8 Data Users Handbook by USGS;
- The Landsat 7 Science Data Users Handbook by NASA;
- Remote Sensing Note by JARS.
- Webinar: Fundamentals of Remote Sensing by NASA.
- Webinar: NASA Remote Sensing for Land Management by NASA.
- Webinar: Creating and Using Normalized Difference Vegetation Index (NDVI) from Satellite Imagery by NASA.
- Webinar: Remote Sensing of Forest Cover and Change Assessment for Carbon Monitoring by NASA.
- Webinar: Introduction to Remote Sensing for Conservation Management by NASA.

24.4 Other tutorials about SCP, also in languages other than English?

There are several tutorials about SCP on the internet. Following an incomplete list of these resources:

- French: Suivre l'impact des feux de forêts par imagerie satellite avec le plugin Qgis SCP;
- German: 2015 Jakob Erfassung von Landnutzungsveränderungen mit FOSS Image Processing Tools;
- Italian: Classificazione e Mosaico di Varie Immagini Landsat;
- Korean: QGIS Semi-Automatic Classification Plugin;
- Portuguese: Classificação Supervisionada de Imagens Orbitais com o Semi-Automatic Classification Plugin;
- Portuguese: Tutorial Classificação e caracterização de imagens de satélites;
- Portuguese: Aprendizagem Supervisionada usando o SCP no QGIS;
- Portuguese: Classificação supervisionada utilizando o QGIS e SCP;
- Russian: Landsat Semi-Automatic Classification Plugin QGIS;
- Spanish: Ejercicio Clasificación Semiautomática Plugin (SCP);
- Spanish: Aplicaciones de Teledetección con el QGIS y el plugin Semi-Automatic Classification;
- Spanish: Descarga de Landsat 8, 7, 5 y 4 Semi Automatic Classification Plugin Qgis 2.8;
- Swedish: Landsat 8 och fjärranalys med QGIS;

• Ukrainian:

24.5 How can I translate this user manual to another language?

It is possible to easily translate the user manual to any language, because it is written in reStructuredText as markup language (using Sphinx). Therefore, your contribution is fundamental for the translation of the manual to your language. The following guide illustrates the main steps for the translation, which can be performed:

• using the free online service Transifex;

:

• using the gettext .po files.

Method 1. Translation using the free online service Transifex

This is probably the easiest way to translate the manual using an online service.

1. Transifex free registration

Go to the Transifex login page (https://www.transifex.com/signin/). You can sign in using your Google or Facebook account, or with a free registration.

2. Join the Semi-automatic Classification Manual project

Go to the page https://www.transifex.com/semi-automatic-classification/semi-automatic-classification-plugin-4-manual/. Select your language and click the button Join team. If your language is not listed, click the button Request language.

3. Translation

There are several files to be translated, which refer to the sections of the *SCP* manual. The translation is performed through an online application, which shows you each sentence in the original English version, and a text editor allows for the translation to your language. This should make the translation process very rapid and easy.

Method 2. Translation using the gettext .po files

In order to use this method, you should be familiar with GitHub. This translation method allows for the translation of the PO files locally.

1. Download the translation files

Go to the GitHub project https://github.com/semiautomaticgit/SemiAutomaticClassificationManual_v4/tree/master/local and download the .po files of your language (you can add your language, if it is not listed), or you can fork the repository. Every file .po is a text file that refers to a section of the User Manual.

2. Edit the translation files

Now you can edit the .po files. It is convenient to edit those file using one of the following programs: for instance Poedit for Windows and Mac OS X, or Gtranslator for Linux or OmegaT (Java based) for Windows, Linux and Mac OS X. These editors allow for an easy translation of every sentence in the User Manual.

24.6 Where is the source code of SCP?

You can find the source code of SPC is at the following link https://github.com/semiautomaticgit/SemiAutomaticClassificationPlugin