
Semester.ly Documentation
Release 1.0

Semester.ly Technologies, LLC

Feb 02, 2019

Contents

1 What We Believe In 3
1.1 Course registration should be easy . 3
1.2 Education should be collaborative . 3
1.3 Students know best . 3

Python Module Index 75

i

ii

Semester.ly Documentation, Release 1.0

Note: Want your school on Semester.ly? We want it too! Want to see a new feature to help your peers? Let’s make it
happen. We want to help you make the impact you want to see. We’ll even find you something impactful to work on
if you’re not sure where to start.

Built for students by students. Semester.ly is a web platform created to bring modern technology to the most difficult
and archaic parts of higher education. It all started with one problem, universal across all college campuses: course
registration is a pain. Spreadsheets, sticky notes, PDFs of course evaluations, and an outdated registration platform....it
is all too much in the heat of classes and exams. We set out with the mission to make college more collaborative and
more stress free.

Contents 1

Semester.ly Documentation, Release 1.0

2 Contents

CHAPTER 1

What We Believe In

Today, we work to solve many more exciting problems in this space across many more universities. However, our
fundamental beliefs remain the same:

Course registration should be easy

Picking the right classes should be quick and painless. We believe high quality, centralized, and shareable
information makes for better decision making. By doing the legwork for you, Semester.ly gives you more
time to study for your courses, and decreases the time spent studying which classes to take.

Education should be collaborative

Studies show the positive impact that friendship has in higher education classrooms. Having courses
with friends and a tigther knit university community increases student success and retention. That’s why
Semester.ly helps students find courses with friends and helps new students make new friends in their
classes.

Students know best

Universities can’t keep up with technology. Most university systems aren’t even mobile responsive! For-
get about using social media. That’s why Semester.ly is built by students, and always will be. That’s why
we are open source. Oh, and it’s why we use emojis .

Installation

This guide will bring you through the steps of creating a local Semester.ly server and development environment. It will
walk through the setup of the core ecosystems we work within: Django/Python and React/Node/JS. It will additionally

3

Semester.ly Documentation, Release 1.0

require the setup of a PostgreSQL database.

Fork/Clone The Repository

Forking Semester.ly will create your own version of Semester.ly listed on your GitHub! Cloning your Semester.ly
fork will create a directory with all of the code required to run your own local development server. Navigate to the
directory you wish to work from, then execute:

1. Fork navigate to our GitHub repository then, in the top-right corner of the page, click Fork.

2. Clone by executing this line on the command line:

Note: ATTENTION: Be sure to replace [YOUR-USERNAME] with your own git username

git clone https://github.com/[YOUR-USERNAME]/semesterly

Option 1: Set up using Docker

Steps are below on getting your local development environment running:

1. Download and install docker for your environment (Windows/Mac/Linux are supporter)

https://www.docker.com/get-started

2. Create semesterly/local_settings.py as follows:

DEBUG = True

TEMPLATE_DEBUG = DEBUG

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'postgres',
'USER': 'postgres',
'PASSWORD': '',
'HOST': 'db',
'PORT': '5432',

}
}

Note: ATTENTION: When you clone the repo, you get a folder called semesterly and inside there
is another folder called semesterly. Put this in the second semesterly folder.

3. Edit semesterly/dev_credentials.py and add a value for JHU_API_KEY in single quotes like below. You
can request this API KEY from http://sis.jhu.edu/api.

'JHU_API_KEY': 'xxxxxxxx',

Note: ATTENTION: This is also in the second semesterly directory.

4 Chapter 1. What We Believe In

https://github.com/noahpresler/semesterly
https://www.docker.com/get-started
http://sis.jhu.edu/api

Semester.ly Documentation, Release 1.0

Now run this command in your terminal to make sure that this file isn’t tracked by Git and your API key
stays local to you.

git update-index --skip-worktree semesterly/dev_credentials.py

3. Add this entry to your hosts file as follows (This file is in c:WindowsSystem32driversetchosts or /etc/hosts)

127.0.0.1 sem.ly jhu.sem.ly

Note: ATTENTION: If you’re working on other schools, add their URLs here as well (i.e.
uoft.sem.ly for University of Toronto).

4. Launch terminal or a command window and run:

docker-compose build

docker-compose up

The build command creates a local Database and build of your source code. The up command runs
everything. Be careful not to build when you don’t need to as this will destroy your entire database
and you’ll need to ingest/digest again to get your course data (which takes about 30 minutes).

You now have Semester.ly running. If this is the first time, you will want some data which done in
the next step.

5. Getting JHU data for a given term. In a new terminal run the following

docker exec -it $(docker ps -q -f ancestor=semesterly) /bin/bash

* OR if that doesn't work
docker exec -it $(docker ps -q -f ancestor=semesterly) shell

This will put you inside of the shell. Now you can get courses by running these commands:

python manage.py ingest jhu --term Spring --years 2018

python manage.py digest jhu

6. Open a browser and visit http://jhu.sem.ly:8000 and hack away.

You can skip ahead to Advanced Configuration or How it All Works now.

Option 2: Setup using a Python Virtual Environment

Make sure you have installed Python 2.7. If you have not you can follow this. Please also download the python
installer, PIP (install guide). We will now install and setup a python virtual environment. This keeps your dependencies
for other projects and classes seperate from those required for Semester.ly.

Install virtualenv:

sudo pip install virtualenv

Create a virtual environment called venv:

virtualenv -p /usr/bin/python2.7 venv

To enter your virtual environment, execute the following code from your Semesterly directory:

1.3. Students know best 5

http://jhu.sem.ly:8000
https://wiki.python.org/moin/BeginnersGuide/Download
https://pip.pypa.io/en/stable/installing/

Semester.ly Documentation, Release 1.0

source venv/bin/activate

Note: Be sure to execute the above “source” command anytime you are working on Semesterly!

Check your OS info

If you’re on a posix OS (Mac, Ubuntu, Fedora, CentOS, etc.) this is how you check what version of OS you’re on.

uname -n

Install PostgreSQL

Before installing the python requirements, you must make sure to have PostgreSQL setup on your device.

On mac, install Homebrew and run:

brew install postgres
pg_ctl -D /usr/local/var/postgres start && brew services start postgresql

On Ubuntu 14.x.x use apt-get:

sudo apt-get install postgresql python-psycopg2 libpq-dev libxslt-dev libxml2-dev

On Ubuntu 16.x.x use apt:

sudo apt install postgresql python-psycopg2 libpq-dev libxslt-dev libxml2-dev

On CentOS / Fedora use yum:

sudo yum install postgresql gcc python-lxml postgresql-libs libxslt-devel libxml2-
→˓devel

Install Python Requirements

Note: ATTENTION MAC USERS: you must install the xcode command line tools via xcode-select
--install before proceeding. You may also need to update openssl. If so, please follow this guide.

All python dependencies are kept in a file called requirements.txt. Anytime a dependency is added or changed,
we update it in this file. To bring your virutal environment up to date with all of these requirements easily, simply
execute:

pip install --upgrade pip
pip install -r requirements.txt

There are python modules that are missing from requirements.txt. Install them with:

pip install pyyaml pygments kombu==3.0.33 billiard

6 Chapter 1. What We Believe In

http://brew.sh/
https://medium.com/@katopz/how-to-upgrade-openssl-8d005554401

Semester.ly Documentation, Release 1.0

Install Node Packages

Node and node package manager are the backbone of our frontend setup. To begin, install Node Package Manager
(npm).

On mac:

brew install node

On Ubuntu 14.x.x:

wget -qO- https://deb.nodesource.com/setup_6.x | sudo bash -
sudo apt-get install nodejs
sudo apt-get install npm

On Ubuntu 16.x.x:

wget -qO- https://deb.nodesource.com/setup_6.x | sudo bash -
sudo apt install nodejs
sudo apt install npm

On CentOS / Fedora:

sudo yum install -y gcc-c++ make
curl -sL https://rpm.nodesource.com/setup_6.x | sudo -E bash -
sudo yum install nodejs

Then use the newly installed Node Package Manager (npm) to install all javascript dependencies. When you execute
this command, it reads from the file package.json which specifies all dependencies, their versions, and some
additional node related configurations:

sudo npm install

Setup Your Dev Environment

Now that all of the requirements are installed, its time to get your environment up and running.

Setup Your Database

Semester.ly stores objects like courses, timetables, and students in a Postgres database. Let’s get one setup for you.

Let’s first initialize Postgres using the default user account postgres

Note: If using Linux log into this account with

sudo -i -u postgres

Then, enter Postgres environment with

psql postgres

1.3. Students know best 7

Semester.ly Documentation, Release 1.0

Note: If you see an error in CentOS / Fedora, it’s most likely due to postgres is not running. Initialize it with sudo
service postgresql initdb && sudo service postgresql start.

Here you can enter SQL to create/manipulate/access databases. Let’s create a Semester.ly database. Enter:

CREATE DATABASE semesterly;

Then, create a database user, set myusername and mypassword to whatever you wish

CREATE USER myusername WITH PASSWORD 'mypassword';

Finally, grant all access to the created database to your new user, myusername:

GRANT ALL PRIVILEGES ON DATABASE semesterly TO myusername;

Great. You are all set. Enter the following to quit psql:

\q

Note: If using Linux exit postgres by

exit

Note: For CentOS / Fedora, Change all occurances of ident to md5 in pg_hba.conf. You can modify the file
through sudo vim /var/lib/pgsql9/data/pg_hba.conf. After you change it, restart postgres with
sudo service postgresql restart.

Create Local Settings

Now that you have a database created we need to inform Django of the configuration. Do so by creating a new file
called local_settings.py and placing it in the semesterly/ directory within your workspace. You should
find that there is already a similar file called settings.py found in the same folder.

The contents of this file should be:

DEBUG = True

TEMPLATE_DEBUG = DEBUG

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'semesterly',
'USER': 'myusername',
'PASSWORD': 'mypassword',
'HOST': 'localhost',
'PORT': '5432',

}
}

8 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

Note: Be sure to change the values of myusername and mypassword to the values you chose when creating your
user!

Migrate Your Database

Now that Django knows about the database, it can conform the empty database to our schema. Simply execute:

python manage.py migrate

Edit your /etc/hosts

For development purposes, we map http://sem.ly:8000 to http://localhost:8000. To do this locally, execute the follow-
ing line of bash:

sudo sh -c "echo '127.0.0.1 sem.ly jhu.sem.ly uoft.sem.ly vandy.sem.ly chapman.
→˓sem.ly umich.sem.ly gw.sem.ly umd.sem.ly' >> /etc/hosts"

Note: If you add a school, be sure to add it to this file!

Set your Environment Type

Add the following line to either your ~/.bashrc or ~/.zshrc which tells webpack you are running a development
environment:

export NODE_ENV=development

Then source ~/.bashrc or source ~/.zshrc

And make sure the following line returns “development”

echo $NODE_ENV

Install & Run Webpack

Webpack compiles our React componenets into one application wide javascript bundle. We use chromedriver to test
them.

To install them if you are testing in chrome install:

npm install -g webpack chromedriver

To install them if you are using firefox or a 32 bit operating system (like lubuntu) run:

npm install -g webpack

Then run it with:

npm run watch

1.3. Students know best 9

http://sem.ly:8000
http://localhost:8000

Semester.ly Documentation, Release 1.0

Note: Always leave npm run watch running. It will continuously watch your javascript files and recompile
automatically upon any edits/changes.

Running the Server

Now, the moment you’ve all been waiting for! Let’s run the server! (Be sure to leave the last npm run watch
command running)

python manage.py runserver

Navigate to http://sem.ly:8000, and if everything loads, you should be all set :). You did it!

Your Final Setup

Great work. Your Semester.ly local environment is all setup.

Don’t forget: whenever you are working on Semester.ly you should have one terminal running the server (via
python manage.py runserver), and one running webpack (via npm run watch).

Note: Don’t forget to always work from your virtual environment! From the root directory, just execute source
/venv/bin/activate to enter it.

Happy hacking! To fill up your database, be sure to checkout Loading the Database.

Loading the Database

To load the database you must ingest (create the course JSON), validate (make sure the data makes sense), and digest
(load the JSON into the database). You can do so using the following commands:

Ingest

Note: If you have ingested before and still have the JSON file on your device, you may skip ingesting and simply
digest the old data. This is useful if you are resetting your database during development and wish to quickly reload
course data.

python manage.py ingest [SCHOOLCODE]

You may leave out the school code to parse all schools. This will run for a substantial amount of time and is not
recommended.

Note: To parse JHU data, you will need to acquire an API access key from SIS. Add the key to
dev_credentials.py in the semesterly/ directory.

10 Chapter 1. What We Believe In

http://sem.ly:8000

Semester.ly Documentation, Release 1.0

Digest

python manage.py digest [SCHOOLCODE]

You may leave out the school code to digest all schools.

Learn More & Advanced Usage

There are advanced methods for using these tools. Detailed options can be viewed by running

python manage.py [command] --help

For example, you can use the term and year flags to parse only a specific term:

.. code-block:: bash

python manage.py ingest [SCHOOLCODE] –term Fall –year 2017

If you are developing a parser or contributing to the pipeline design, you will more than likely need to learn more.
Checkout Data Pipeline Documentation or Add a School

Note: This step is not neccessary for most developers. Only continue reading this section if you need to override
the test secrets (API keys/credentials) provided by Semester.ly (which are for testing only).

Advanced Configuration

Semester.ly makes use of several secrets which allow it to interact securely with third party software providers. These
providers include Facebook (for oauth and social graph), Google (oauth), and university APIs.

In order for Semester.ly to run out of the box, we have included credentials to test Google and Facebook applications
for development purposes. We override these keys for production use thereby keeping our client secrets... well, secrets!
These provided credentials can be found in semesterly/dev_credentials.py:

SECRETS = {
#Credentials for a test application for Semester.ly (+ Google/Facebook)
'SECRET_KEY': ...,
'HASHING_SALT': ...,
'GOOGLE_API_KEY': ...,
'SOCIAL_AUTH_GOOGLE_OAUTH2_KEY': ...,
'SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET': ...,
'SOCIAL_AUTH_FACEBOOK_KEY': ...,
'SOCIAL_AUTH_FACEBOOK_SECRET': ...,
'FB_TEST_EMAIL': ...,
'FB_TEST_PASS': ...,

#Not essential for testing, but can be filled in for advanced usage
...

}

Overriding/Setting Secrets

However, if you wish to override these credentials or add login credentials for a school which requires a client secret,
you may add your key/value pair to semesterly/sensitive.py. This file is gitignored and will be kept private

1.3. Students know best 11

Semester.ly Documentation, Release 1.0

so you can safely store the private information you wish within this file. It should have a format indentical to SECRETS
above and in semesterly/dev_credentials.py.

Using Secrets

In order to properly access a secret from anywhere within the code, simply import the get_secret function and use
it to access the secret by key:

from semesterly.settings import get_secret
hashids = Hashids(salt=get_secret('HASHING_SALT'))

This will check the following locations for the secret (in order, using the first value it finds), throwing an error if it
does not find the key at all:

1. Check OS environment variables

2. Check semesterly/sensitive.py

3. Default to semesterly/dev_credentials.py

4. Error

How it All Works

A high level description of how Semester.ly works, and what parts do what

Semester.ly pulls data about courses, exams, ratings, and more from all across the internet. It saves this data into
a custom representation within a Postgres database. The data is retrieved using a variety of webscraping, HTML
parsing, and information retrieval techniques which we’ve built into our own mini-library of utilities. This data
is entered into the database via the Django ORM (Object-Relational Mapping). The ORM allows us to query the
database and create rows using python code as if these rows were objects.

We manipulate and access this same data using Django views to respond to any web requests directed to our server.
For example, when a user clicks on a course to open the course modal, the browser issues a request asking for the data
related to that course. Our Django views respond with a JSON representation of the course data for rendering on the
UI.

The browser knows when and how to make these requests, as well as how to generate the UI based on the responses
using React and Redux. React and Redux maintain application state and use Javascript to render HTML based on
that state.

Finally, this HTML is styled with SCSS for an appealing, cohesively styled user experience!

The Apps that Make Semester.ly

The overall, the Semester.ly application is made up of many smaller apps which each handle some collection of logic
that makes Semester.ly tick! Each app encapsulates a set of urls which map a request to a view, views which respond
to requests with HTML/JSON/etc, models which represent tables in the database, and tests which ensure Functionality
behaves as expected.

12 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

App
Name

Key Models/Functionality Description

SemesterlyRoot app. No core models, views,
or functionality.

Delegates urls to sub-apps, contains end-to-end tests, other
configuration.

TimetableModels: Course, Section,
Offering, Timetable, Textbook,
Evaluations

Timetable generation and all models required for timetable
representation.

Courses Course Serializer, Views for
returning course info

Functionality for accessing course data, the course modal, course
pages

Auth-
pipe

Authentication, login, signup Authentication pipeline functions for the authentication of users,
creation of students, and loading of social data via Python Social
Auth

Ana-
lytics

Models: SharedTimetable,
DeviceCookie, Feature Views

Tracks analytics on the usage of features as objects in the database.
Renders a dashboard at /analytics.

Ex-
ams

Final exam share model, views for
serving final exam schedule

Contains the logic for inferring exam schedules from course
schedules

Inte-
gra-
tions

Integration views Functionality for integrating school specific code to appear in
search or in the course modal

SearchesAdvanced search, basic search Views for parsing queries and returning course data
Stu-
dents

Student, Personal Timetables,
Reactions, Personal Event

All logic for logged-in specific users. Creating and saving a
personal timetable, reacting to courses, saving custom events.

Pars-
ing

Scrapers, parsers, parsing utilities Home of the data pipeline that fills our database

Learning The Stack

Note: Learning a new thing can be scary. Especially when all you have are some docs and a massive code base to
learn from. That’s why we are here to help you learn, build, and contribute. Ask us questions! contact@semester.ly

Our Stack

Component Technology Style/Methodology Tutorials
Database PostgreSQL Django ORM Making Queries with Django
Backend Framework Django PEP8 Writing your first Django app
Frontend Framework React Redux/Airbnb React Basics, React, Redux.
CSS Framework SCSS BEM/Airbnb CSS Basics, SCSS, BEM

Tutorials and Resources

Learning the Backend

Django is a Python Web framework that provides a huge number of tools for web developers to quickly write scalable
code with minimal configuration. It is used all over the tech industry by companies like Spotify, Instagram, YouTube,
and DropBox!

Writing your first Django app is the official Django tutorial. It is top notch! The official documentation can be found
at the same url and provides high quality information about how to build with this modern web framework.

1.3. Students know best 13

https://github.com/omab/python-social-auth
https://github.com/omab/python-social-auth
mailto:contact@semester.ly
https://docs.djangoproject.com/en/1.11/topics/db/queries/
https://docs.djangoproject.com/en/1.11/intro/tutorial01/
https://github.com/noahpresler/React-Tutorial
https://egghead.io/courses/react-fundamentals
https://egghead.io/courses/getting-started-with-redux
https://www.w3schools.com/css/
http://sass-lang.com/guide
http://getbem.com/introduction/
https://docs.djangoproject.com/en/1.11/intro/tutorial01/

Semester.ly Documentation, Release 1.0

Learning React/Redux

React is a Javascript library created by Facebook for “building user interfaces”. It allows developers to make encapsu-
lated components that can be written once and used anywhere.

Redux is state container that makes React development easier to manage long term!

If you’re a beginner, we’ve created a React tutorial that will teach you the basics of developing a React app all via
codepen. This is a great way to get started!

We highly recommend continuing with React via EggHead’s React Fundamentals video which teaches you everything
you’ll need to know.

Finally, finish off with EggHead’s Redux tutorial. You’ll be a pro after that!

Learning CSS/SCSS

The most important step is to learn the CSS basics.

With that, you can dive into SCSS, a css preprocesor.

For development, we use the BEM methedology (learn about BEM here!) and the Airbnb style guide.

Learning Scraping/Parsing

Our own tutorial, coming soon!

How to Contribute

Contributing to Semester.ly follows the following simple workflow:

1. Fork the Repository

2. Make Changes (fix a bug, create a feature)

3. Open a Pull Request (and see your code go live!)

Fork the Repository

Follow the instructions in the installation portion of the documentation, see Installation

Make Changes (fix a bug, create a feature)

Add the Upstream Repo

You’re going to want to add the original project repo as an upstream repo in your forked project:

git remote add upstream git@github.com:noahpresler/semesterly.git

This way you can push to your fork as “origin” and the main repo as “upstream”. You’ll only ever do this
once.

14 Chapter 1. What We Believe In

https://github.com/noahpresler/React-Tutorial
https://egghead.io/courses/react-fundamentals
https://egghead.io/courses/getting-started-with-redux
https://www.w3schools.com/css/
http://sass-lang.com/guide
http://getbem.com/introduction/
https://github.com/airbnb/css

Semester.ly Documentation, Release 1.0

Syncing With Upstream

To stay up to date with upstream/master, you’ll consistently want to checkout the master branch, fetch the
upstream changes. Merge these into your local master branch and push that merge. These lines do exactly
that:

git checkout master
git fetch upstream
git merge upstream/master
git push origin master

Create a Working Branch

Now you’ll want to checkout a branch off master to work on. This is the branch you will merge into
upstream when you are done. Just do:

git checkout -b mybranchname

Make Some Changes, Add and Commit

After you’ve made edits, git add your files, then commit. One way to do this:

git commit -a
git push origin mybranchname

Note: What If Upstream Has Changed? Just pull and rebase onto those changes and push. You may
find conflicts, that’s to be expected!

git pull --rebase upstream master
git push origin mybranchname

Open a Pull Request (and see your code go live!)

So you’ve made your changes, and you’ve pushed them to your branch. To open a PR, simply head over to your fork
at: https://github.com/YOURGITHUBUSERNAME/semesterly. Click on “Pull Request”, choose the upstream repo
“master” as the destination, and your forked repo’s branch (the one you’ve been working on) as the source, and pick
the merge and squash option!

Awesome! You’ve made a PR. Once its merged, your code will be a part of the Semester.ly open source GitHub
repository and will be deployed for tens of thousands of students to use/benefit from.

Note: A PR must pass a few checks before it can be merged.

LGTM: Before your PR is merged, you’ll need to pass a peer review to ensure that all the changes are clean and high
quality. Usually, you’ll get an “lgtm” (the comment which triggers this check to pass) or a few minor edits will be
requested. This helps us maintain a quality code base and helps contrbutors learn and grow as engineers!

PR Body: Your pull request should reference a git issue if a related issue has been created. Additionally, it must
provide an in depth description of why the changes were made, what they do, and how they do it. This message can
be formatted as “WHY:, WHAT:....., HOW:.....”, but it can take any form if this does not suit your case.

1.3. Students know best 15

https://github.com/YOURGITHUBUSERNAME/semesterly

Semester.ly Documentation, Release 1.0

Tests & Builds Pass: All tests and builds, as run by TravisCI must pass.

Linting Satisfied: All files must successfully pass our code style checks. You can check that your code has no errors
by running:

npm run lint

You can learn more about how lint checking is done by reading Learning The Stack.

Add a School

Adding a new school is easy and can be done in a few simple steps:

1. Run the Scaffolder

2. Develop the Parser

3. Parse and Test

Run the Scaffolder

Running the makeschool command will create a directory for your school, creating a configuration file, a stub for the
parser, etc. Run the following for your school:

python manage.py makeschool --name "University of Toronto" --code "uoft" --regex "([A-
→˓Z]{2,8}\\s\\d{3})"

Don’t forget to add this new school to your /etc/hosts! (Check here for a reminder on how: Setup Your Dev Environ-
ment)

Develop the Parser

Note: Notify us if you intend to add a school! Create a GitHub issue with the tag new_school. We can help you out
and lend a hand while also keeping track of who’s working on what!

The scaffolder created the stub of your parser. It provides the start function and two outer loops that iterate over each
provided term and year. Your goal is to fill the inside of this so that for each year and term, you collect the course
data for that term/year.

What this boils down to is the following template:

for year in years:
for term in terms:

departments = get_departments(term, year)

for department in departments:

courses = get_courses(department)

for course in courses:
self.ingestor['course_code'] = ...
self.ingestor['department'] = ...

16 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

self.ingestor['description'] = ...
...
self.ingestor.ingest_course()

for section in sections:
self.ingestor['section_code'] = ...
self.ingestor['section_type'] = ...
self.ingestor['year'] = ...
self.ingestor['term'] = ...
...
self.ingestor.ingest_section()

for meeting in meetings:
...
self.ingestor.ingest_meeting()

Breaking it down

The code starts out by getting the departments. It doesn’t have to, but often it is easiest to go department
by department. The parser then collects the courses for that department. We will talk about how it does
this later in How To Fill The Ingestor.

For each course, the parser fills the ingestor with the fields related to the course (e.g. description, the
course code). Once complete, it calls ingest_course to execute the creation of the course.

It then repeats this process for the sections belonging to that course, and for each section, the meetings
(individual meeting times) belonging to the section.

Everything else is handled by the BaseParser and the ingestor for you.

How To Fill The Ingestor

As shown by the code sample above, filling the ingestor is as easy as filling a python dictionary. The only question
that remains is how to collect the data to fill it with.

The answer is by pulling it from the internet of course! Luckily we have a tool called the Requester which helps
developers like you to request information from a web course catalogue or API.

Using the Requester

By inheriting from the BaseParser, your parser comes with its own requester that can be used like this:

markup = self.requester.get('www.siteorapi.com')

or:

markup = self.requester.post('www.siteorapi.com', data=form)

It will automatically return a markedup version of the data returned by the request (automatically detecting
JSON/XML/HTML).

Note: The requester will maintain a session for you, making sure the proper cookies are stored and sent with all future
requests. It also randomizes the user agent. Future updates will automatically parallelize and throttle requests (a great

1.3. Students know best 17

http://docs.python-requests.org/en/master/user/advanced/
https://pypi.python.org/pypi/fake-useragent

Semester.ly Documentation, Release 1.0

project to contribute to the data pipeline).

Parsing JSON

In the event that your source of course data returns JSON, life is easy. You can find the fields and pull them out by
simply treating the JSON as a python dictionary when the requester returns it.

Parsing HTML (or XML)

If, instead, your site is marked up with HTML, we use BeautifulSoup4 (BS4) to find certain divs and map the data
inside of those divs to the fields of the ingestor.

Let’s say the HTML looks like this:

<body>
<div class="course-wrapper">

<h1>EN.600.123</h1>
<h4>Some Course Name</h4>
More Info
....

</div>
<div class="course-wrapper">

...
</div>
...

</body>

We can then write the get courses function as follows:

def get_courses(self, department):
soup = self.requester.get('urltothisdepartment.com')
return soup.find_all(class_='course-wrapper')

And we can fill the ingestor based on these courses by:

courses = self.get_courses(department)
for course in courses:

self.ingestor['course_code'] = course.find('h4').get_text()
...

To get section data, we can follow the “More Info” link and parse the resulting HTML in the same way:

section_html = self.requester.get(course.find('a')['href'])

Note: You can learn more about BS4 by reading their documentation . It is an extensive library that provides many
excellent utilities for parsing HTML/XML.

Parse and Test

When you’re ready you can go ahead and run your parser. You can do this by:

18 Chapter 1. What We Believe In

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Semester.ly Documentation, Release 1.0

python manage.py ingest [SCHOOL_CODE]

Replacing SCHOOL_CODE with whatever your school’s code (e.g. jhu) is. This will start the ingestion process,
creating a file data/courses.json in your school’s directory.

If, along the way, your ingestion fails to validate, the ingestor will throw useful errors to let you know how or why!

Once it runs to completion, you can digest the JSON, entering it into the database by running:

python manage.py digest [SCHOOL_CODE]

Note: To learn more, checkout the Data Pipeline Documentation

How to Run & Write Tests

Running Tests

Frontend

Run all tests:

npm test

Run single test:

npm test -- static/js/redux/__tests__/schema.test.js

Backend

Run all tests:

python manage.py test

Run all tests for a single app:

python manage.py test timetable

Run single test suite:

python manage.py test timetable.tests.UrlsTest

Run single test case:

python manage.py test timetable.tests.UrlTest.test_urls_call_correct_views

Run tests without resetting db:

python manage.py test -k

Our current test runner will only run db setup if the tests you’re running touch the db.

1.3. Students know best 19

Semester.ly Documentation, Release 1.0

Writing Tests

Unit Tests

Contributors are encouraged to write unit tests for changed or new code. By separating out logic into simple pure
functions, you can isolate the behaviour you care about in your unit tests, and not worry about testing for side effects.
Following the design principles outlined in the resources from the Learning The Stack section helps with this. For
example, extracting all code that extract information from the state into selectors, which are pure functions that take
the state (or some part of it) as input and output some data, will make it easy to test and change any state related
behavior. Sometimes you may want to test behaviour that can’t be extracted into a pure function, or that touches
external interfaces. There are a number of strategies you can use in these cases.

Integration Tests

In the frontend, for testing the logic for rendering a component, look into snapshot tests. For testing async (thunk)
action creators, our current tests create a store with desired initial state, dispatch the action, and then check that the
action had the desired effect on the state. Backend requests are mocked using the nock library.

For testing views, we use django’s built in client to send requests to the backend. It’s also possible to use django’s
request factory to create requests to provide directly as input to your views.

End to End Tests

As the name implies, end to end tests test the entire app at once by simulating a semesterly user. When writing or
changing end to end tests, it is recommended to familiarize yourself with the methods provided in SeleniumTestCase,
which make it easy to perform certain actions on the app.

Backend Documentation

Timetable App

The timetable app is the core application that has been a part of Semester.ly since our very first release. The timetable
app does the heavy lifting for timetable generation, sharing, and viewing.

Models

class timetable.models.Course(*args, **kwargs)
Represents a course at a school, made unique by its course code. Courses persist across semesters and years.
Their presence in a semester or year is indicated by the existence of sections assigned to that course for that
semester or year. This is why a course does not have fields like professor, those varies.

The course model maintains only attributes which tend not to vary across semesters or years.

A course has many Section which a student can enroll in.

school
CharField – the school code corresponding to the school for the course

code
CharField – the course code without indication of section (E.g. EN.600.100)

name
CharField – the general name of the course (E.g. Calculus I)

20 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

description
TextField – the explanation of the content of the courzse

notes
TextField, optional – usually notes pertaining to registration (e.g. Lab Fees)

info
TextField, optional – similar to notes

unstopped_description
TextField – automatically generated description without stopwords

campus
CharField, optional – an indicator for which campus the course is taught on

prerequisites
TextField, optional – courses required before taking this course

corequisites
TextField, optional – courses required concurrently with this course

exclusions
TextField, optional – reasons why a student would not be able to take this

num_credits
FloatField – the number of credit hours this course is worth

areas
CharField – comma seperated list of all degree areas this course satisfies

department
CharField – department offering course (e.g. Computer Science)

level
CharField – indicator of level of course (e.g. 100, 200, Upper, Lower, Grad)

cores
CharField – core areas satisfied by this course

geneds
CharField – geneds satisfied by this course

related_courses
ManyToManyField of Course, optional – courses computed similar to this course

same_as
ForeignKey – If this course is the same as another course, provide Foreign key

vector
PickleObjectField – the vector representation of a course transformed from course vectorizer

get_avg_rating()
Calculates the avg rating for a course, -1 if no ratings. Includes all courses that are marked as the same by
the self.same_as field on the model nstance.

Returns the average course rating

Return type (float)

get_reactions(student=None)
Return a list of dicts for each type of reaction (by title) for this course. Each dict has:

title: the title of the reaction

count: number of reactions with this title that this course has received

1.3. Students know best 21

https://docs.python.org/3/library/functions.html#float

Semester.ly Documentation, Release 1.0

reacted: True if the student provided has given a reaction with this title

class timetable.models.CourseIntegration(id, course, integration, json)

class timetable.models.Evaluation(*args, **kwargs)
A review of a course represented as a score out of 5, a summary/comment, along with the professor and year the
review is in subject of.

course (ForeignKey to Course): the course this evaluation belongs to

score (FloatField): score out of 5.0 summary (TextField): text with information about why the rating
was given professor (CharField): the professor(s) this review pertains to year (CharField): the year of the
review course_code (Charfield): a string of the course code, along with section indicator

class timetable.models.Integration(id, name)

class timetable.models.Offering(*args, **kwargs)
An Offering is the most granular part of the Course heirarchy. An offering may be looked at as the backend
equivalent of a single slot on a timetable. For each day/time which a section meets, an offering is created.abs

section
ForeignKey to Section – the section which is the parent of this offering

day
CharField – the day the course is offered (single character M,T,W,R,F,S,U)

time_start
CharField – the time the slot starts in 24hrs time in the format (HH:MM) or (H:MM)

time_end
CharField – the time it ends in 24hrs time in the format (HH:MM) or (H:MM)

location
CharField, optional – the location the course takes place, defaulting to TBA if not provided

class timetable.models.Section(*args, **kwargs)
Represents one (of possibly many) choice(s) for a student to enroll in a Course for a specific semester. Since
this model is specific to a semester, it contains enrollment data, instructor information, textbooks, etc.

A section can come in different forms. For example, a lecture which is required for every student. However, it
can also be a tutorial or practical. During timetable generation we allow a user to select one of each, and we can
automatically choose the best combonation for a user as well.

A section has many offerings related to it. For example, section 1 of a Course could have 3 offerings (one that
meets each day: Monday, Wednesday, Friday). Section 2 of a Course could have 3 other offerings (one that
meets each: Tuesday, Thursday).

course
Course – The course this section belongs to

meeting_section
CharField – the name of the section (e.g. 001, L01, LAB2)

size
IntegerField – the capacity of the course (the enrollment cap)

enrolment
IntegerField – the number of students registered so far

waitlist
IntegerField – the number of students waitlisted so far

waitlist_size
IntegerField – the max size of the waitlist

22 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

section_type
CharField – the section type, example ‘L’ is lecture, ‘T’ is tutorial, P is practical

instructors
CharField – comma seperated list of instructors

semester
ForeignKey to Semester – the semester for the section

textbooks
ManyToManyField of Textbook – textbooks for this section via the TextbookLink model

was_full
BooleanField – whether the course was full during the last parse

get_textbooks()
Returns the textbook info using tb.get_info() for each textbook

class timetable.models.Semester(*args, **kwargs)
Represents a semester which is composed of a name (e.g. Spring, Fall) and a year (e.g. 2017).

name
CharField – the name (e.g. Spring, Fall)

year
CharField – the year (e.g. 2017, 2018)

class timetable.models.Textbook(*args, **kwargs)
A textbook which is associated with sections of courses. Stores information from the Amazon product API
including a detail url and ISBN.

isbn
BigIntegerField – the primary (unique) key ISBN number

detail_url
URLField – url to the detail page on Amazon.com

image_url
URLField – url to product image hosted on Amazon.com

author
CharField – authors first and last name

title
CharField – the title of the book

class timetable.models.TextbookLink(*args, **kwargs)
This model serves as a ManyToMany link betwen a Section anda textbook. The reason for this additional
model is because the edge that connects a Section has a label which is whether that textbook is required.
Thus, a seperate model/table exists to link the two with this label.abs

textbook
ForeignKey to Textbook – the textbook

is_required
BooleanField – whether or not the textbook is required

section
Section – the section the textbook is linked to

1.3. Students know best 23

Semester.ly Documentation, Release 1.0

Views

class timetable.views.TimetableLinkView(**kwargs)
A subclass of FeatureFlowView (see Flows Documentation) for the viewing of shared timetable links.
Provides the logic for preloading the shared timetable into initData when a user hits the corresponding url. The
frontend can then act on this data to load the shared timetable for viewing.

Additionally, on POST provides the functionality for the creation of shared timetables.

get_feature_flow(request, slug)
Overrides FeatureFlowView get_feature_flow method. Takes the slug, decrypts the hashed database
id, and either retrieves the corresponding timetable or hits a 404.

post(request)
Creates a SharedTimetable and returns the hashed database id as the slug for the url which students
then share and access.

class timetable.views.TimetableView(**kwargs)
This view is responsible for responding to any requests dealing with the generation of timetables and the satis-
faction of constraits provided by the frontend/user.

post(request)
Generate best timetables given the user’s selected courses

Serializers

Utils

class timetable.utils.DisplayTimetable(slots, has_conflict, name=’‘, events=None, id=None)
Object that represents the frontend’s interpretation of a timetable.

classmethod from_model(timetable)
Create DisplayTimetable from Timetable instance.

class timetable.utils.Slot(course, section, offerings, is_optional, is_locked)

course
Alias for field number 0

is_locked
Alias for field number 4

is_optional
Alias for field number 3

offerings
Alias for field number 2

section
Alias for field number 1

class timetable.utils.Timetable(courses, sections, has_conflict)

courses
Alias for field number 0

has_conflict
Alias for field number 2

24 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

sections
Alias for field number 1

timetable.utils.add_meeting_and_check_conflict(day_to_usage, new_meeting, school)
Takes a @day_to_usage dictionary and a @new_meeting section and returns a tuple of the updated day_to_usage
dict and a boolean which is True if conflict, False otherwise.

timetable.utils.courses_to_slots(courses, locked_sections, semester, optional_course_ids)
Return a list of lists of Slots. Each Slot sublist represents the list of possibilities for a given course and section
type, i.e. a valid timetable consists of any one slot from each sublist.

timetable.utils.find_slots_to_fill(start, end, school)
Take a @start and @end time in the format found in the coursefinder (e.g. 9:00, 16:30), and return the indices
of the slots in thet array which represents times from 8:00am to 10pm that would be filled by the given @start
and @end. For example, for uoft input: ‘10:30’, ‘13:00’ output: [5, 6, 7, 8, 9]

timetable.utils.get_current_semesters(school)
List of semesters ordered by academic temporality.

For a given school, get the possible semesters ordered by the most recent year for each semester that has course
data, and return a list of (semester name, year) pairs.

timetable.utils.get_day_to_usage(custom_events, school)
Initialize day_to_usage dictionary, which has custom events blocked out.

timetable.utils.get_hour_from_string_time(time_string)
Get hour as an int from time as a string.

timetable.utils.get_hours_minutes(time_string)
Return tuple of two integers representing the hour and the time given a string representation of time. e.g. ‘14:20’
-> (14, 20)

timetable.utils.get_minute_from_string_time(time_string)
Get minute as an int from time as a string.

timetable.utils.get_time_index(hours, minutes, school)
Take number of hours and minutes, and return the corresponding time slot index

timetable.utils.get_xproduct_indicies(lists)
Takes a list of lists and returns two lists of indicies needed to iterate through the cross product of the input.

timetable.utils.slots_to_timetables(slots, school, custom_events, with_conflicts)
Generate timetables in a depth-first manner based on a list of slots.

timetable.utils.update_locked_sections(locked_sections, cid, locked_section, semester)
Take cid of new course, and locked section for that course and toggle its locked status (ie if was locked, unlock
and vice versa.

Courses App

The courses app deals with the accesing course information, the sharing of courses, and the rendering of the course/all
course pages.

Views

class courses.views.CourseDetail(**kwargs)
View that handles individual course entities.

1.3. Students know best 25

Semester.ly Documentation, Release 1.0

get(request, sem_name, year, course_id)
Return detailed data about a single course. Currently used for course modals.

class courses.views.CourseModal(**kwargs)
A FeatureFlowView for loading a course share link which directly opens the course modal on the frontend.
Therefore, this view overrides the get_feature_flow method to fill intData with the detailed course json for the
modal.abs

Saves a SharedCourseView for analytics purposes.

courses.views.all_courses(request, *args, **kwargs)
Generates the full course directory page. Includes links to all courses and is sorted by department.

courses.views.course_page(request, *args, **kwargs)
Generates a static course page for the provided course code and school (via subdomain). Completely outside of
the React framework purely via Django templates.

courses.views.get_classmates_in_course(request, school, sem_name, year, course_id)
Finds all classmates for the authenticated user who also have a timetable with the given course.

Utils

courses.utils.get_sections_by_section_type(course, semester)
Return a map from section type to Sections for a given course and semester.

courses.utils.sections_are_filled(sections)
Return True if all sections are filled beyond their max enrollment.

Serializers

class courses.serializers.CourseSerializer(instance=None, data=<class
rest_framework.fields.empty>, **kwargs)

Serialize a Course into a dictionary with detailed information about the course, and all related entities (eg
Sections). Used for search results and course modals. Takes a context with parameters: school: str (required)
semester: Semester (required) student: Student (optional)

get_evals(course)
Flag all eval instances s.t. there exists repeated term+year values. :returns: List of modified evaluation
dictionaries (added flag ‘unique_term_year’)

get_popularity_percent(course)
Return percentage of course capacity that is filled by registered students.

get_regexed_courses(course)
Given course data, search for all occurrences of a course code in the course description and prereq info
and return a map from course code to course name for each course code.

courses.serializers.get_section_dict(section)
Returns a dictionary of a section including indicator of whether that section is filled

Student App

The Student model is an abstraction over the Django user to provide us with a more full user profile including infor-
mation pulled from social authentication via Google and/or Facebook. This app handles utilities for overriding the
Python Social Auth authentication pipeline, while also handling the functionality for logged in users.

26 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

The student app also encapsulates all models tied directly to a user like PersonalTimetables, PersonalEvents, Reactions,
and notification tokens.

Models

Models pertaining to Students.

class student.models.PersonalEvent(*args, **kwargs)
A custom event that has been saved to a user’s PersonalTimetable so that it persists across refresh, device, and
session. Marks when a user is not free. Courses are scheduled around it.abs

class student.models.PersonalTimetable(*args, **kwargs)
Database object representing a timetable created (and saved) by a user.

A PersonalTimetable belongs to a Student, and contains a list of Courses and Sections that it represents.

class student.models.Reaction(*args, **kwargs)
Database object representing a reaction to a course.

A Reaction is performed by a Student on a Course, and can be one of REACTION_CHOICES below. The
reaction itself is represented by its title field.

class student.models.RegistrationToken(*args, **kwargs)
A push notification token for Chrome noitification via Google Cloud Messaging

class student.models.Student(*args, **kwargs)
Database object representing a student.

A student is the core user of the app. Thus, a student will have a class year, major, friends, etc. An object is only
created for the user if they have signed up (that is, signed out users are not represented by Student objects).

Views

class student.views.ClassmateView(**kwargs)
Handles the computation of classmates for a given course, timetable, or simply the count of all classmates for a
given timetable.

get(request, sem_name, year)

Returns

If the query parameter ‘count’ is present Information regarding the number of friends
only:

{
"id": Course with the most friends,
"count": The maximum # of friends in a course,
"total_count": the total # in all classes on timetable,

}

If the query parameter course_ids is present a list of dictionaries representing past class-
mates and current classmates. These are students who the authenticated user is friends with
and who has social courses enabled.:

[{
"course_id":6137,
"past_classmates":[...],
"classmates":[...]

}, ...]

1.3. Students know best 27

Semester.ly Documentation, Release 1.0

Otherwise a list of friends and non-friends alike who have social_all enabled to be dispalyed
in the “find-friends” modal. Sorted by the number courses the authenticated user shares.:

[{
"name": "...",
"is_friend": Whether or not the user is current user's friend,
"profile_url": link to FB profile,
"shared_courses": [...],
"peer": Info about the user,

}, ...]

class student.views.GCalView(**kwargs)
Handles interactions with the Google Calendar API V3 for pulling and/or sending calendars and calendar events.

post(request)
Takes the timetable in request.body and creates a weekly recurring event on Google calendar for each slot
in a given week. Names the Google Calendar “Semester.ly Schedule” if unnamed, otherwise “[Timetable
Name] - Semester.ly”.

class student.views.ReactionView(**kwargs)
Manages the creation of Reactions to courses.

post(request)
Create a Reaction for the given course id, with the given title matching one of the possible emojis. If
already present, remove that reaction.

class student.views.UserTimetableView(**kwargs)
Responsible for the viewing and managing of all Students’ PersonalTimetable.

delete(request, sem_name, year, tt_name)
Deletes a PersonalTimetable by name/year/term.

get(request, sem_name, year)
Returns student’s personal timetables

post(request)
Duplicates a personal timetable if a ‘source’ is provided. Else, creates a personal timetable based on the
courses, custom events, preferences, etc. which are provided.

update_events(tt, events)
Replace tt’s events with input events. Deletes all old events to avoid buildup in db

class student.views.UserView(**kwargs)
Handles the accessing and mutating of user information and preferences.

delete(request)
Delete this user and all of its data

get(request)
Renders the user profile/stats page which indicates all of a student’s reviews of courses, what social they
have connected, whether notificaitons are enabled, etc.

patch(request)
Updates a user settings to match the corresponding values passed in the request body. (e.g. social_courses,
class_year, major)

student.views.accept_tos(request)
Accepts the terms of services for a user, saving the datetime the terms were accepted.

28 Chapter 1. What We Believe In

https://docs.python.org/3/library/datetime.html#module-datetime

Semester.ly Documentation, Release 1.0

student.views.create_unsubscribe_link(student)
Generates a unsubscribe link which directs to the student unsubscribe view.

student.views.get_friend_count_from_course_id(school, student, course_id, semester)
Computes the number of friends a user has in a given course for a given semester.

Ignores whether or not those friends have social courses enabled. Never exposes those user’s names or infroma-
tion. This count is used purely to upsell user’s to enable social courses.

student.views.log_ical_export(*args, **kwargs)
Logs that a calendar was exported on the frotnend and indicates it was downloaded rather than exported to
Google calendar.

student.views.unsubscribe(request, student_id, token)
If the student matches the token and the tokens is valid , unsubscribes user from emails marking stu-
dent.emails_enabled to false. Redirects to index.

Utils

student.utils.get_classmates_from_course_id(school, student, course_id, semester,
friends=None, include_same_as=False)

Get’s current and past classmates (students with timetables containing the provided course ID). Classmates must
have social_courses enabled to be included. If social_sections is enabled, info about what section they are in is
also passed.

Parameters

• school (str) – the school code (e.g. ‘jhu’)

• student (Student) – the student for whom to find classmates

• course_id (int) – the database id for the course

• semester (Semester) – the semester that is current (to check for)

• friends (list of Students) – if provided, does not re-query for friends list, uses
provided list.

• include_same_as (bool) – If provided as true, searches for classmates in any courses
marked as “same as” in the database.

student.utils.get_classmates_from_tts(student, course_id, tts)
Returns a list of classmates a student has from a list of other user’s timetables. This utility does the leg work for
get_classmates_from_course_id() by taking either a list of current or past timetables and finding
classmates relevant to that list.

If both students have social_offerings enabled, adds information about what sections the student is enrolled in
on each classmate.

student.utils.get_student(request)

Returns the student belonging to the authenticated user

Return type (Student)

student.utils.get_student_tts(student, school, semester)
Returns serialized list of a student’s PersonalTimetable objects ordered by last updated for passing to the
frontend.

student.utils.next_weekday(d, weekday)
Given a current date, d, and a target weekday, calculate the next occurence (moving in the future) of that
weekday.

1.3. Students know best 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Semester.ly Documentation, Release 1.0

Returns the next weekday of the given type

Return type (datetime.datetime)

Serializers

student.serializers.get_student_dict(school, student, semester)
Return serialized representation of a student.

Searches App

Searches app provides a useful, efficient and scalable search backend using basic techinques of information retrieval.

Each course model contains a vector stored as a pickled scipy sparse vector. This vector represents this course. Upon
search, a vectorizer creates a similar vector representation for that query. We then fetch ~100 candidates for serving
as search results. These canidates are then sorted by the cosine similarity between their vector and the query vector.

To increase accuracy and provide for a clean search experience for key use cases, the search places a heavier weight
on courses with matching titles. However, description and other fields are searched as well.

Views

class searches.views.CourseSearchList(**kwargs)
Course Search List.

get(request, query, sem_name, year)
Return vectorized search results.

post(request, query, sem_name, year)
Return advanced search results.

Utils

class searches.utils.Searcher
Searcher class implements baseline search and vectorized search based on information retrieval techniques.

get_acronym(name)
Returns an acronym of a course name.

get_cosine_sim(sparse_vec1, sparse_vec2)
Computes cosine similarity between two sparse vectors.

get_most_relevant_filtered_courses(query, course_filtered)
Returns the most relevant filtered courses given a query from filtered course objects.

get_score(course, query, query_vector)
Computes similarity score based on cosine similarity and match between query and course name.

get_similarity(query, course)
Vectorizes query and returns a cosine similarity score between query and course vector.

load_count_vectorizer()
Loads english dictionary count vectorizer pickle object.

matches_name(query, course_name)
Returns a score (2, 1, 0) of a query match to course name.

30 Chapter 1. What We Believe In

https://docs.python.org/3/library/datetime.html#datetime.datetime

Semester.ly Documentation, Release 1.0

print_similiarity_scores(courses, query)
Prints all course similarity scores given a query (for debugging).

vectorize_query(query)
Vectorizes a user’s query using count vectorizer.

vectorized_search(school, query, semester)
Returns filtered courses that are most relevant to a given query.

wordify(course_vector)
Converts a course vector back into string using count vectorizer.

class searches.utils.Vectorizer
Vectorizer class creates a dictionary over courses and build course vectors using count vectorizer.

course_to_str(name, description, area, weight)
Returns a string representation of a course using a Porter Stemmer.

doc_to_lower_stem_str(doc)
Converts words in document(string) to lowercase, stemmed words.

vectorize()
Vectorize function transforms and saves entire course objects into course vectors using TF-IDF.

searches.utils.baseline_search(school, query, semester)
Baseline search returns courses that are contained in the name from a query (legacy code).

searches.utils.course_desc_contains_token(token)
Returns a query set of courses where tokens are contained in descriptions.

searches.utils.course_name_contains_token(token)
Returns a query set of courses where tokens are contained in code or name.

Exams App

The exams app provides minimal infrastructure for concluding exam periods based on a timetable. So far it only
supports rule based scheduling meaning “If Monday 9-12, exam is 5/12 2-5pm” and is only used at Johns Hopkins.
However, the infrastructure can be used for any school using a rule based approach.

Models

class exams.models.FinalExamShare(*args, **kwargs)
Database object representing a shared final exam schedule. A final exam schedule belongs to a Student and
contains the list of classes which the user needs to check finals for

Views

Final Exam Scheduler

Example Implementation

class exams.jhu_final_exam_scheduler.JHUFinalExamScheduler
Database Object that has a list of JHU’s rules for the current semester. Should be updated every semester.
Initialize each Rule with select fields depending on what determines whether the Rule is valid for. See Final
Exam Scheduler for more information

1.3. Students know best 31

Semester.ly Documentation, Release 1.0

Agreement App

In order to use our system, users must agree to our privacy policy/terms and conditions.

When a user is not logged in, this is done implicitly (no click to accept is required). Out of respect for our users and
to be fully transparent, we surface a banner when the user is not logged in to bring this implicity agreement to their
attention.

When a user is logged in, the agreement must be explicity. During signup the user is prompted to agree to the terms
and must do so in order to continue using the application. If the documents have been updated since the user last
agreed, they will be notified of this change and once again asked to agree to the updated terms/policy.

Models

class agreement.models.Agreement(*args, **kwargs)
Database object representing updates to the ToS/privacy policy.

E2E Test Utils

class semesterly.test_utils.SeleniumTestCase(*args, **kwargs)
This test case extends the Django StaticLiveServerTestCase. It creates a selenium ChromeDriver instance on
setUp of each test. It navigates to the live url for the static live server. It also provides utilities and assertions for
navigating and testing presence of elements or behavior.

img_dir
str – Directory to save screenshots on failure.

driver
WebDriver – Chrome WebDriver instance.

timeout
int – Socket default timeout.

add_course(course_idx, n_slots, n_master_slots, by_section=’‘, code=None)
Adds a course via search results and asserts the corresponding number of slots are found

Parameters

• course_idx (int) – index into the search results corresponding the to course to add

• n_slots (int) – the number of slots expected after add

• n_master_slots (int) – the number of master slots expected after add

• by_section (str, optional) – if provided adds the specific section of the course

• code (str, optional) – the course code to add, validates presence if provided

add_course_from_course_modal(n_slots, n_master_slots)
Adds a course via the course modal action. Requires that the course modal be open.

allow_conflicts_add(n_slots)
Allows conflicts via the conflict alert action, then validates that the course was added

assert_friend_image_found(friend)
Asserts that the provided friend’s image is found on the page

assert_friend_in_modal(friend)
Asserts that the provided friend’s image is found on the modal

32 Chapter 1. What We Believe In

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Semester.ly Documentation, Release 1.0

assert_invisibility(locator, root=None)
Asserts the invisibility of the provided element

Parameters

• locator – A tuple of (By.*, ‘indentifier’)

• root (bool, optional) – The root element to search from, root of DOM if None

assert_loader_completes()
Asserts that the semester.ly page loader has completed

assert_n_elements_found(locator, n_elements, root=None)
Asserts that n_elements are found by the provided locator

assert_ptt_const_across_refresh()
Refreshes the browser and asserts that the tuple version of the personal timetable is equivalent to pre-
refresh

assert_ptt_equals(ptt)
Asserts equivalency between the provided ptt tuple and the current ptt

assert_slot_presence(n_slots, n_master_slots)
Assert n_slots and n_master_slots are on the page

change_ptt_name(name)
Changes personal timetable name to the provided title

change_term(term, clear_alert=False)
Changes the term to the provided term by matching the string to the string found in the semester dropdown
on Semester.ly

clear_tutorial()
Clears the tutorial modal for first time users

click_off()
Clears the focus of the driver

close_course_modal()
Closes the course modal using the (x) button

complete_user_settings_basics(major, class_year)
Completes major/class year/TOS agreement via the welcome modal

Parameters

• major (str) – Student’s major

• class_year (str) – Student’s class year

create_friend(first_name, last_name, **kwargs)
Creates a friend of the primary (first) user

create_personal_timetable_obj(friend, courses, semester)
Creates a personal timetable object belonging to the provided user with the given courses and semester

create_ptt(name=None)
Create a personaltimetable with the provided name when provided

description(*args, **kwds)
A context manager which wraps a group of code and adds details to any exceptions thrown by the enclosed
lines. Upon such an exception, the context manager will also take a screenshot of the current state of
self.driver, writing a PNG to self.img_dir, labeled by the provided description and a timetstamp.

1.3. Students know best 33

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Semester.ly Documentation, Release 1.0

enter_search_query(query)
Enters the provided query into the search box

execute_action_expect_alert(action, alert_text_contains=’‘)
Executes the provided action, asserts that an alert appears and validates that the alert text contains the
provided string (when provided)

find(locator, get_all=False, root=None, clickable=False, hidden=False)
Locates element in the DOM and returns it when found.

Parameters

• locator – A tuple of (By.*, ‘indentifier’)

• get_all (bool, optional) – If true, will return list of matching elements

• root (bool, optional) – The root element to search from, root of DOM if None

• clickable (bool, optional) – If true, waits for clickability of element

• hidden (bool, optional) – If true, will allow for hidden elements

Returns The WebElement object returned by self.driver (Selenium)

follow_and_validate_url(url, validate)
Opens a new window, switches to it, gets the url and validates it using the provided validating function.

Parameters

• url (str) – the url to follow and validate

• validate (func) – the function which validates the new page

follow_share_link_from_slot()
Click the share link on the slot and follow it then validate the course modal

get_elements_as_text(locator)
Gets elements using self.get and represents them as text

get_test_url(school, path=’‘)
Get’s the live server testing url for a given school.

Parameters

• school (str) – the string for which to create the test url

• path (str) – the appended path to file or page with trailing /

Returns the testing url

init_screenshot_dir()
Initializes directory to which we store test failure screenshots

lock_course()
Locks the first course on the timetable

login_via_fb(email, password)
Login user via fb by clicking continue with Facebook in the signup modal, entering the user’s credentials
into Facebook, then returns to Semester.ly

Parameters

• email (str) – User’s email

• password (str) – User’s password

34 Chapter 1. What We Believe In

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Semester.ly Documentation, Release 1.0

login_via_google(email, password, **kwargs)
Mocks the login of a user via Google by clicking continue with Facebook in the signup modal. Then
manually creates and logins a user. All kwargs are passed to the user model on creation (e.g. name and
email).

Parameters

• email (str) – User’s email

• password (str) – User’s password

open_and_query_adv_search(query, n_results=None)
Open’s the advanced search modal and types in the provided query, asserting that n_results are then re-
turned

open_course_modal_from_search(course_idx)
Opens course modal from search by search result index

open_course_modal_from_slot(course_idx)
Opens the course modal from the nth slot

ptt_to_tuple()
Converts personal timetable to a tuple representation

remove_course(course_idx, from_slot=False, n_slots_expected=None)
Removes a course from the user’s timetable, asserts master slot is removed.

Parameters

• course_idx (int) – the index of the course for which to remove

• from_slot (bool, optional) – if provided, removes via slot rather than via a mas-
ter_slot

• n_slots_expected (int, optional) – if provided, asserts n slots found after re-
moval

remove_course_from_course_modal(n_slots_expected=None)
Removes course via the action within the course’s course modal. Requires that the course modal be open.

save_ptt()
Saves the user’s current personal timetable and returs a tuple representation

save_user_settings()
Saves user setttings by clicking the button, asserts that the modal is then invisible

search_course(query, n_results)
Searches a course and asserts n_results elements are found

select_nth_adv_search_result(index, semester)
Selects the nth advanced search result with a click. Validates the course modal body displayed in the search
reuslts

share_timetable(courses)
Clicks the share button via the top bar and validates it. Validation is done by following the url and checking
the timetable using the validate_timetable function

switch_to_ptt(name)
Switches to the personal timetable with matching name

take_alert_action()
Takes the action provided by the alert by clicking the button on when visible

1.3. Students know best 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Semester.ly Documentation, Release 1.0

validate_course_modal()
Validates the course modal displays proper course data

validate_course_modal_body(course, modal, semester)
Validates the course modal body displays credits, name, code, etc.

validate_timeable(courses)
Validate timetable by checking that for each course provided, a slot exists with that course’s name and
course code.

semesterly.test_utils.force_login(user, driver, base_url)
Forces the login of the provided user setting all cookies. Function will refresh the provided drivfer and the user
will be logged in to that session.

class semesterly.test_utils.function_returns_true(func)
An expectation for checking if the provided function returns true

class semesterly.test_utils.n_elements_to_be_found(locator, n_)
An expectation for checking if the n elements are found locator, text

class semesterly.test_utils.text_to_be_present_in_element_attribute(locator,
text_, at-
tribute_)

An expectation for checking if the given text is present in the element’s locator, text

class semesterly.test_utils.text_to_be_present_in_nth_element(locator, text_, in-
dex_)

An expectation for checking if the given text is present in the nth element’s locator, text

class semesterly.test_utils.url_matches_regex(pattern)
Expected Condition which waits until the browser’s url matches the provided regex

Helpers App

Decorators

helpers.decorators.validate_subdomain(view_func)
Validates subdomain, redirecting user to index iof the school is invalid.

Mixins

class helpers.mixins.FeatureFlowView(**kwargs)
Template that handles GET requests by rendering the homepage. Feature_name or get_feature_flow() can be
overridden to launch a feature or action on homepage load.

get_feature_flow(request, *args, **kwargs)
Return data needed for the feature flow for this HomeView. A name value is automatically added in .get()
using the feature_name class variable. A semester value can also be provided, which will change the initial
semester state of the home page.

class helpers.mixins.ValidateSubdomainMixin
Mixin which validates subdomain, redirecting user to index if the school is not in ACTIVE_SCHOOLS.

Authentication Pipeline

36 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

Views

class authpipe.views.RegistrationTokenView(**kwargs)
Handles registration and deletion of tokens for maintaining chrome notifications for users who choose to enable
the feature.

put(request)
Creates a notification token for the user.

Utils

authpipe.utils.associate_students(strategy, details, response, user, *args, **kwargs)
Part of our custom Python Social Auth authentication pipeline. If a user already has an account associated with
an email, associates that user with the new backend.

authpipe.utils.check_student_token(student, token)
Validates a token: checks that it is at most 2 days old and that it matches the currently authenticated student.

authpipe.utils.create_student(strategy, details, response, user, *args, **kwargs)
Part of the Python Social Auth pipeline which creates a student upon signup. If student already exists, updates
information from Facebook or Google (depending on the backend).

Saves friends and other information to fill database.

Flows Documentation

Initalization

When a user loads the home timetable page, FeatureFlowView inside of timetable.utils is used to handle
the request. On initial page load, the frontend requires some data to initialize the redux state, like information about
the current user, the list of possible semesters for the school, and the list of student integrations. This initial data is
created inside of the view, and passed in as a single json string in the response context:

class FeatureFlowView(ValidateSubdomainMixin, APIView):

def get(self, request, *args, **kwargs):
...gather values for init_data

init_data = {
'school': self.school,
'currentUser': get_user_dict(self.school, self.student, sem),
'currentSemester': curr_sem_index,
'allSemesters': all_semesters,
'uses12HrTime': self.school in AM_PM_SCHOOLS,
'studentIntegrations': integrations,
'examSupportedSemesters': map(all_semesters.index,

final_exams_available.get(self.
→˓school, [])),

'featureFlow': dict(feature_flow, name=self.feature_name)
}

return render(request, 'timetable.html', {'init_data': json.
→˓dumps(init_data)})

1.3. Students know best 37

Semester.ly Documentation, Release 1.0

which makes the init_data variable accessible in timetable.html. This dumped json string is then passed to the
frontend as a global variable:

<script type="text/javascript">
var initData = "{{init_data|escapejs}}";

</script>

And then parsed inside of the setup() function in init.jsx

const setup = () => (dispatch) => {
initData = JSON.parse(initData);

// pass init data into the redux state
dispatch({ type: ActionTypes.INIT_STATE, data: initData });

// do other logic with initData...
};

In other words, the data that the frontend requires is retrieved/calculated inside of FeatureFlowView, and then
passed to the frontend as global variable initData. The frontend then does any logic it needs based on that data
inside of setup() in init.jsx. Any data that needs to be reused later on from initData should be passed in to
the redux state so that the only global variable uses appear in setup().

Feature Flows

One such piece of data that is passed to the frontend is a featureFlow object. This object is obtained as the
return value of .get_feature_flow(), in addition to a name: self.feature_name key value pair. In
the default implementation, this is just the dictionary {name: None}:

class FeatureFlowView(ValidateSubdomainMixin, APIView):
feature_name = None

def get_feature_flow(self, request, *args, **kwargs):
return {}

def get(self, request, *args, **kwargs):
...
feature_flow = self.get_feature_flow(request, *args, **kwargs)
init_data = {

...
'featureFlow': dict(feature_flow, name=self.feature_name)

}

return render(request, 'timetable.html', {'init_data': json.
→˓dumps(init_data)})

This feature flow value can be used to store any extra information that the frontend needs for any endpoints that
would require initial data to be loaded. For example, when loading a timetable share link, the frontend also needs
to get data about the timetable that is being shared - instead of making a request to the backend after page load, this
information can be provided by the backend directly by passing this information in the feature flow. It is easy to write
new views that pass different data and have custom logic by subclassing FeatureFlowView and overwriting the
get_feature_flow() method and the .feature_name class attribute.

Having this data all stored under the key featureFlow in init_data ensures two things. Firstly, it makes explicit
that there can only be one feature flow in play at a time (we can’t load a timetable share link and a course share link at
the same time), and secondly, it allows the frontend to know where to look for any feature data and act accordingly. In
practice, this is done by switching on the name of the feature flow:

38 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

const setup = () => (dispatch) => {
initData = JSON.parse(initData);

dispatch({ type: ActionTypes.INIT_STATE, data: initData });

// do other logic with initData...

dispatch(handleFlows(initData.featureFlow));
};

const handleFlows = featureFlow => (dispatch) => {
switch (featureFlow.name) {

case 'SIGNUP':
dispatch({ type: ActionTypes.TRIGGER_SIGNUP_MODAL });
break;

case 'USER_ACQ':
dispatch({ type: ActionTypes.TRIGGER_ACQUISITION_MODAL });
break;

case 'SHARE_TIMETABLE':
dispatch({ type: ActionTypes.CACHED_TT_LOADED });
dispatch(lockTimetable(featureFlow.sharedTimetable, true,

→˓initData.currentUser.isLoggedIn));
break;

// ... etc.
default:

// unexpected feature name
break;

}
};

Example

To help understand how feature flows work, let’s go through the code for an example feature flow: course sharing. In
order to implement course sharing, we want to create a new view/endpoint that retrieves course data based on the url
and passes it to the frontend, which would then update the redux state and dispatch an action to open the course modal.

We start be defining a new endpoint for this feature flow:

url(r'course/(?P<code>.+?)/(?P<sem_name>.+?)/(?P<year>.+?)/*$',
courses.views.CourseModal.as_view())

Then we create a new FeatureFlowView for this endpoint which needs to do two things: define a name for the
feature flow, which the frontend look at to determine what action to do, and return the course data that the frontend
needs inside of get_feature_flow():

class CourseModal(FeatureFlowView):
feature_name = "SHARE_COURSE"

def get_feature_flow(self, request, code, sem_name, year):
semester, _ = Semester.objects.get_or_create(name=sem_name,

→˓year=year)
code = code.upper()
course = get_object_or_404(Course, school=self.school, code=code)
course_json = get_detailed_course_json(self.school, course, semester,

→˓ self.student)

1.3. Students know best 39

Semester.ly Documentation, Release 1.0

analytics
SharedCourseView.objects.create(

student=self.student,
shared_course=course,

).save()

return {'sharedCourse': course_json, 'semester': semester}

The frontend can now add a new case in handleFlows to perform logic for this feature flow:

const handleFlows = featureFlow => (dispatch) => {
switch (featureFlow.name) {

...
case 'SHARE_COURSE':

dispatch(setCourseInfo(featureFlow.sharedCourse));
dispatch(fetchCourseClassmates(featureFlow.sharedCourse.id));
break;

// ... etc.
default:

// unexpected feature name
break;

}
};

Shortcuts

Some feature flows don’t require any extra data - they simply require the frontend to know that a feature flow is being
run. For example, for the signup feature flow, loading the page at /signup should simply open the signup modal,
which requires no extra logic or data other than knowing that it should occur. We could do this by writing a new view:

class SignupModal(FeatureFlowView):
feature_name = "SIGNUP"

We do not need to implement .get_feature_flow() since the frontend doesn’t require any extra data and the
default implementation already returns an empty dictionary. We can simplify this by simply declaring this view directly
inside of the urls file:

url(r'^signup/*$/', FeatureFlowView.as_view(feature_name='SIGNUP')

see https://github.com/noahpresler/semesterly/pull/838 for the original pull request implementing feature flows

Data Pipeline Documentation

Semester.ly’s data pipeline provides the infrastructure by which the database is filled with course information. Whether
a given University offers an API or an online course catalogue, this pipeline lends developers an easy framework to
work within to pull that information and save it in our Django Model format.

General System Workflow

1. Pull HTML/JSON markup from a catalogue/API

2. Map the fields of the mark up to the fields of our ingestor (by simply filling a python dictionary).

3. The ingestor preprocesses the data, validates it, and writes it to JSON.

40 Chapter 1. What We Believe In

https://github.com/noahpresler/semesterly/pull/838

Semester.ly Documentation, Release 1.0

4. Load the JSON into the database.

Note: This process happens automatically via Django/Celery Beat Periodict Tasks. You can learn more about these
schedule tasks below (Scheduled Tasks).

Steps 1 and 2 are what we call parsing – an operation that is non-generalizable across all Universities. Often a new
parser must be written. For more information on this, read Add a School.

Parsing Library Documentation

Base Parser

class parsing.library.base_parser.BaseParser(school, config=None, output_path=None, out-
put_error_path=None, break_on_error=True,
break_on_warning=False,
skip_duplicates=True, dis-
play_progress_bar=False, validate=True,
tracker=None)

Bases: object

Abstract base parser for data pipeline parsers.

extractor
parsing.library.extractor.Extractor

ingestor
parsing.library.ingestor.Ingestor

requester
parsing.library.requester.Requester

school
str – School that parser is for.

end()
Finish the parse.

start(**kwargs)
Start the parse.

Parameters **kwargs – expanded in child parser.

Requester

class parsing.library.requester.Requester
Bases: object

get(url, params=’‘, session=None, cookies=None, headers=None, verify=True, **kwargs)
HTTP GET.

Parameters

• url (str) – url to query

• params (dict) – payload dictionary of HTTP params (default None)

• cookies (None, optional) – Description

1.3. Students know best 41

https://github.com/celery/django-celery-beat
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

Semester.ly Documentation, Release 1.0

• headers (None, optional) – Description

• verify (bool, optional) – Description

• **kwargs – Description

Examples

TODO

http_request(do_http_request, type, parse=True, quiet=True, timeout=60, throttle=<function
<lambda>>)

Perform HTTP request.

Parameters

• do_http_request – function that returns request object

• type (str) – GET, POST, HEAD

• parse (bool, optional) – Specifies if return should be parsed. Autodetects parse
type as html, xml, or json.

• quiet (bool, optional) – suppress output if True (default True)

• timeout (int, optional) – Description

• throttle (lambda, optional) – Description

Returns if parse is False soup: soupified/jsonified text of http request

Return type request object

static markup(response)
Autodects html, json, or xml format in response.

Parameters response – raw response object

Returns markedup response

new_user_agent()

overwrite_header(new_headers)

post(url, data=’‘, params=’‘, cookies=None, headers=None, verify=True, **kwargs)
HTTP POST.

Parameters

• url (str) – url to query

• data (str, optional) – HTTP form key-value dictionary

• params (dict) – payload dictionary of HTTP params

• cookies (None, optional) – Description

• headers (None, optional) – Description

• verify (bool, optional) – Description

• **kwargs – Description

42 Chapter 1. What We Believe In

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Semester.ly Documentation, Release 1.0

Ingestor

exception parsing.library.ingestor.IngestionError(data, *args)
Bases: parsing.library.exceptions.PipelineError

Ingestor error class.

args

message

exception parsing.library.ingestor.IngestionWarning(data, *args)
Bases: parsing.library.exceptions.PipelineWarning

Ingestor warning class.

args

message

class parsing.library.ingestor.Ingestor(config, output, break_on_error=True,
break_on_warning=False, dis-
play_progress_bar=True,
skip_duplicates=True, validate=True,
tracker=<parsing.library.tracker.NullTracker ob-
ject>)

Bases: dict

Ingest parsing data into formatted json.

Mimics functionality of dict.

ALL_KEYS
set – Set of keys supported by Ingestor.

break_on_error
bool – Break/cont on errors.

break_on_warning
bool – Break/cont on warnings.

school
str – School code (e.g. jhu, gw, umich).

skip_duplicates
bool – Skip ingestion for repeated definitions.

tracker
library.tracker – Tracker object.

UNICODE_WHITESPACE
TYPE – regex that matches Unicode whitespace.

validate
bool – Enable/disable validation.

validator
library.validator – Validator instance.

ALL_KEYS = set([’school_subdivision_code’, ‘code’, ‘isbn’, ‘author’, ‘prerequisites’, ‘instr’, ‘meetings’, ‘year’, ‘time_end’, ‘homepage’, ‘offerings’, ‘course_name’, ‘semester’, ‘cost’, ‘coreqs’, ‘fees’, ‘num_credits’, ‘detail_url’, ‘campus’, ‘size’, ‘remaining_seats’, ‘loc’, ‘fee’, ‘time_start’, ‘descr’, ‘title’, ‘meeting_section’, ‘section’, ‘section_type’, ‘enrolment’, ‘kind’, ‘dept_name’, ‘same_as’, ‘score’, ‘location’, ‘school’, ‘dept’, ‘department_code’, ‘instructor_name’, ‘areas’, ‘type’, ‘geneds’, ‘website’, ‘sections’, ‘description’, ‘waitlist’, ‘corequisites’, ‘start_time’, ‘instructors’, ‘term’, ‘dept_code’, ‘credits’, ‘section_code’, ‘course’, ‘section_name’, ‘date’, ‘capacity’, ‘instructor’, ‘school_subdivision_name’, ‘day’, ‘department’, ‘instr_name’, ‘department_name’, ‘waitlist_size’, ‘dates’, ‘name’, ‘level’, ‘textbooks’, ‘final_exam’, ‘enrollment’, ‘required’, ‘days’, ‘summary’, ‘prereqs’, ‘instr_names’, ‘instrs’, ‘image_url’, ‘end_time’, ‘time’, ‘cores’, ‘course_code’, ‘where’, ‘exclusions’])

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

1.3. Students know best 43

https://docs.python.org/3/library/stdtypes.html#dict

Semester.ly Documentation, Release 1.0

end()
Finish ingesting.

Close i/o, clear internal state, write meta info

fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

has_key(k)→ True if D has a key k, else False

ingest_course()
Create course json from info in model map.

Returns course

Return type dict

ingest_eval()
Create evaluation json object.

Returns eval

Return type dict

ingest_meeting(section, clean_only=False)
Create meeting ingested json map.

Parameters section (dict) – validated section object

Returns meeting

Return type dict

ingest_section(course)
Create section json object from info in model map.

Parameters course (dict) – validated course object

Returns section

Return type dict

ingest_textbook()
Create textbook json object.

Returns textbook

Return type dict

ingest_textbook_link(section=None)
Create textbook link json object.

Parameters section (None, dict, optional) – Description

Returns textbook link.

Return type dict

items()→ list of D’s (key, value) pairs, as 2-tuples

iteritems()→ an iterator over the (key, value) items of D

iterkeys()→ an iterator over the keys of D

itervalues()→ an iterator over the values of D

keys()→ list of D’s keys

44 Chapter 1. What We Believe In

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Semester.ly Documentation, Release 1.0

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ list of D’s values

viewitems()→ a set-like object providing a view on D’s items

viewkeys()→ a set-like object providing a view on D’s keys

viewvalues()→ an object providing a view on D’s values

Validator

exception parsing.library.validator.MultipleDefinitionsWarning(data, *args)
Bases: parsing.library.validator.ValidationWarning

Duplicated key in data definition.

args

message

exception parsing.library.validator.ValidationError(data, *args)
Bases: parsing.library.exceptions.PipelineError

Validator error class.

args

message

exception parsing.library.validator.ValidationWarning(data, *args)
Bases: parsing.library.exceptions.PipelineWarning

Validator warning class.

args

message

class parsing.library.validator.Validator(config, tracker=None, relative=True)
Validation engine in parsing data pipeline.

config
DotDict – Loaded config.json.

course_code_regex
re – Regex to match course code.

kind_to_validation_function
dict – Map kind to validation function defined within this class.

KINDS
set – Kinds of objects that validator validates.

1.3. Students know best 45

https://docs.python.org/3/library/re.html#module-re
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set

Semester.ly Documentation, Release 1.0

relative
bool – Enforce relative ordering in validation.

seen
dict – Running monitor of seen courses and sections

tracker
parsing.library.tracker.Tracker

KINDS = set([’textbook_link’, ‘datalist’, ‘meeting’, ‘section’, ‘textbook’, ‘course’, ‘config’, ‘eval’, ‘directory’, ‘instructor’, ‘final_exam’])

static file_to_json(path, allow_duplicates=False)
Load file pointed to by path into json object dictionary.

Parameters

• path (str) –

• allow_duplicates (bool, optional) – Allow duplicate keys in JSON.

Returns JSON-compliant dictionary.

Return type dict

classmethod load_schemas(schema_path=None)
Load JSON validation schemas.

NOTE: Will load schemas as static variable (i.e. once per definition), unless schema_path is specifi-
cally defined.

Parameters schema_path (None, str, optional) – Override default schema_path

static schema_validate(data, schema, resolver=None)
Validate data object with JSON schema alone.

Parameters

• data (dict) – Data object to validate.

• schema – JSON schema to validate against.

• resolver (None, optional) – JSON Schema reference resolution.

Raises jsonschema.exceptions.ValidationError – Invalid object.

validate(data, transact=True)
Validation entry/dispatcher.

Parameters data (list, dict) – Data to validate.

validate_course(course)
Validate course.

Parameters course (DotDict) – Course object to validate.

Raises

• MultipleDefinitionsWarning – Course has already been validated in same ses-
sion.

• ValidationError – Invalid course.

validate_directory(directory)
Validate directory.

Parameters directory (str, dict) – Directory to validate. May be either path or object.

46 Chapter 1. What We Believe In

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Semester.ly Documentation, Release 1.0

Raises ValidationError – encapsulated IOError

validate_eval(course_eval)
Validate evaluation object.

Parameters course_eval (DotDict) – Evaluation to validate.

Raises ValidationError – Invalid evaulation.

validate_final_exam(final_exam)
Validate final exam.

NOTE: currently unused.

Parameters final_exam (DotDict) – Final Exam object to validate.

Raises ValidationError – Invalid final exam.

validate_instructor(instructor)
Validate instructor object.

Parameters instructor (DotDict) – Instructor object to validate.

Raises ValidationError – Invalid instructor.

validate_location(location)
Validate location.

Parameters location (DotDict) – Location object to validate.

Raises ValidationWarning – Invalid location.

validate_meeting(meeting)
Validate meeting object.

Parameters meeting (DotDict) – Meeting object to validate.

Raises

• ValidationError – Invalid meeting.

• ValidationWarning – Description

validate_section(section)
Validate section object.

Parameters section (DotDict) – Section object to validate.

Raises

• MultipleDefinitionsWarning – Invalid section.

• ValidationError – Description

validate_self_contained(data_path, break_on_error=True, break_on_warning=False,
output_error=None, display_progress_bar=True, mas-
ter_log_path=None)

Validate JSON file as without ingestor.

Parameters

• data_path (str) – Path to data file.

• break_on_error (bool, optional) – Description

• break_on_warning (bool, optional) – Description

• output_error (None, optional) – Error output file path.

1.3. Students know best 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Semester.ly Documentation, Release 1.0

• display_progress_bar (bool, optional) – Description

• master_log_path (None, optional) – Description

• break_on_error –

• break_on_warning –

• display_progress_bar –

Raises ValidationError – Description

validate_textbook_link(textbook_link)
Validate textbook link.

Parameters textbook_link (DotDict) – Textbook link object to validate.

Raises ValidationError – Invalid textbook link.

validate_time_range(start, end)
Validate start time and end time.

There exists an unhandled case if the end time is midnight.

Parameters

• start (str) – Start time.

• end (str) – End time.

Raises ValidationError – Time range is invalid.

static validate_website(url)
Validate url by sending HEAD request and analyzing response.

Parameters url (str) – URL to validate.

Raises ValidationError – URL is invalid.

Logger

class parsing.library.logger.JSONColoredFormatter(fmt=None, datefmt=None)
Bases: logging.Formatter

converter()

localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,
tm_sec,tm_wday,tm_yday,tm_isdst)

Convert seconds since the Epoch to a time tuple expressing local time. When ‘seconds’ is not passed in,
convert the current time instead.

format(record)

formatException(ei)
Format and return the specified exception information as a string.

This default implementation just uses traceback.print_exception()

formatTime(record, datefmt=None)
Return the creation time of the specified LogRecord as formatted text.

This method should be called from format() by a formatter which wants to make use of a formatted time.
This method can be overridden in formatters to provide for any specific requirement, but the basic be-
haviour is as follows: if datefmt (a string) is specified, it is used with time.strftime() to format the creation

48 Chapter 1. What We Believe In

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Formatter

Semester.ly Documentation, Release 1.0

time of the record. Otherwise, the ISO8601 format is used. The resulting string is returned. This function
uses a user-configurable function to convert the creation time to a tuple. By default, time.localtime() is
used; to change this for a particular formatter instance, set the ‘converter’ attribute to a function with the
same signature as time.localtime() or time.gmtime(). To change it for all formatters, for example if you
want all logging times to be shown in GMT, set the ‘converter’ attribute in the Formatter class.

usesTime()
Check if the format uses the creation time of the record.

class parsing.library.logger.JSONFormatter(fmt=None, datefmt=None)
Bases: logging.Formatter

Simple JSON extension of Python logging.Formatter.

converter()

localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,
tm_sec,tm_wday,tm_yday,tm_isdst)

Convert seconds since the Epoch to a time tuple expressing local time. When ‘seconds’ is not passed in,
convert the current time instead.

format(record)
Format record message.

Parameters record (logging.LogRecord) – Description

Returns Prettified JSON string.

Return type str

formatException(ei)
Format and return the specified exception information as a string.

This default implementation just uses traceback.print_exception()

formatTime(record, datefmt=None)
Return the creation time of the specified LogRecord as formatted text.

This method should be called from format() by a formatter which wants to make use of a formatted time.
This method can be overridden in formatters to provide for any specific requirement, but the basic be-
haviour is as follows: if datefmt (a string) is specified, it is used with time.strftime() to format the creation
time of the record. Otherwise, the ISO8601 format is used. The resulting string is returned. This function
uses a user-configurable function to convert the creation time to a tuple. By default, time.localtime() is
used; to change this for a particular formatter instance, set the ‘converter’ attribute to a function with the
same signature as time.localtime() or time.gmtime(). To change it for all formatters, for example if you
want all logging times to be shown in GMT, set the ‘converter’ attribute in the Formatter class.

usesTime()
Check if the format uses the creation time of the record.

class parsing.library.logger.JSONStreamWriter(obj, type_=<type ‘list’>, level=0)
Bases: object

Context to stream JSON list to file.

BRACES
TYPE – Open close brace definitions.

file
dict – Current object being JSONified and streamed.

first
bool – Indicator if first write has been done by streamer.

1.3. Students know best 49

https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Semester.ly Documentation, Release 1.0

level
int – Nesting level of streamer.

type_
dict, list – Actual type class of streamer (dict or list).

Examples

>>> with JSONStreamWriter(sys.stdout, type_=dict) as streamer:
... streamer.write('a', 1)
... streamer.write('b', 2)
... streamer.write('c', 3)
{

"a": 1,
"b": 2,
"c": 3

}
>>> with JSONStreamWriter(sys.stdout, type_=dict) as streamer:
... streamer.write('a', 1)
... with streamer.write('data', type_=list) as streamer2:
... streamer2.write({0:0, 1:1, 2:2})
... streamer2.write({3:3, 4:'4'})
... streamer.write('b', 2)
{

"a": 1,
"data":
[

{
0: 0,
1: 1,
2: 2

},
{

3: 3,
4: "4"

}
],
"b": 2

}

BRACES = {<type ‘dict’>: (‘{‘, ‘}’), <type ‘list’>: (‘[’, ‘]’)}

enter()
Wrapper for self.__enter__.

exit()
Wrapper for self.__exit__.

write(*args, **kwargs)
Write to JSON in streaming fasion.

Picks either write_obj or write_key_value

Parameters

• *args – pass-through

• **kwargs – pass-through

Returns return value of appropriate write function.

50 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

Raises ValueError – type_ is not of type list or dict.

write_key_value(key, value=None, type_=<type ‘list’>)
Write key, value pair as string to file.

If value is not given, returns new list streamer.

Parameters

• key (str) – Description

• value (str, dict, None, optional) – Description

• type (str, optional) – Description

Returns None if value is given, else new JSONStreamWriter

write_obj(obj)
Write obj as JSON to file.

Parameters obj (dict) – Serializable obj to write to file.

parsing.library.logger.colored_json(j)

Tracker

class parsing.library.tracker.NullTracker(*args, **kwargs)
Bases: parsing.library.tracker.Tracker

Dummy tracker used as an interface placeholder.

BROADCAST_TYPES = set([’TERM’, ‘STATS’, ‘YEAR’, ‘SCHOOL’, ‘MODE’, ‘TIME’, ‘DEPARTMENT’, ‘INSTRUCTOR’])

add_viewer(viewer, name=None)
Add viewer to broadcast queue.

Parameters

• viewer (Viewer) – Viewer to add.

• name (None, str, optional) – Name the viewer.

broadcast(broadcast_type)
Do nothing.

department

end()
End tracker and report to viewers.

get_viewer(name)
Get viewer by name.

Will return arbitrary match if multiple viewers with same name exist.

Parameters name (str) – Viewer name to get.

Returns Viewer instance if found, else None

Return type Viewer

has_viewer(name)
Determine if name exists in viewers.

Parameters name (str) – The name to check against.

1.3. Students know best 51

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Semester.ly Documentation, Release 1.0

Returns True if name in viewers else False

Return type bool

instructor

mode

remove_viewer(name)
Remove all viewers that match name.

Parameters name (str) – Viewer name to remove.

report()
Do nothing.

school

start()
Start timer of tracker object.

stats

term

time

year

class parsing.library.tracker.Tracker
Bases: object

Tracks specified attributes and broadcasts to viewers.

@property attributes are defined for all BROADCAST_TYPES

BROADCAST_TYPES = set([’TERM’, ‘STATS’, ‘YEAR’, ‘SCHOOL’, ‘MODE’, ‘TIME’, ‘DEPARTMENT’, ‘INSTRUCTOR’])

add_viewer(viewer, name=None)
Add viewer to broadcast queue.

Parameters

• viewer (Viewer) – Viewer to add.

• name (None, str, optional) – Name the viewer.

broadcast(broadcast_type)
Broadcast tracker update to viewers.

Parameters broadcast_type (str) – message to go along broadcast bus.

Raises TrackerError – if broadcast_type is not in BROADCAST_TYPE.

end()
End tracker and report to viewers.

get_viewer(name)
Get viewer by name.

Will return arbitrary match if multiple viewers with same name exist.

Parameters name (str) – Viewer name to get.

Returns Viewer instance if found, else None

Return type Viewer

52 Chapter 1. What We Believe In

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Semester.ly Documentation, Release 1.0

has_viewer(name)
Determine if name exists in viewers.

Parameters name (str) – The name to check against.

Returns True if name in viewers else False

Return type bool

remove_viewer(name)
Remove all viewers that match name.

Parameters name (str) – Viewer name to remove.

report()
Notify viewers that tracker has ended.

start()
Start timer of tracker object.

exception parsing.library.tracker.TrackerError(data, *args)
Bases: parsing.library.exceptions.PipelineError

Tracker error class.

args

message

Viewer

class parsing.library.viewer.ETAProgressBar
Bases: parsing.library.viewer.Viewer

receive(tracker, broadcast_type)

report(tracker)
Do nothing.

class parsing.library.viewer.Hoarder
Bases: parsing.library.viewer.Viewer

Accumulate a log of some properties of the tracker.

receive(tracker, broadcast_type)
Receive an update from a tracker.

Ignore all broadcasts that are not TIME.

Parameters

• tracker (parsing.library.tracker.Tracker) – Tracker receiving update
from.

• broadcast_type (str) – Broadcast message from tracker.

report(tracker)
Do nothing.

schools
Get schools attribute (i.e. self.schools).

Returns Value of schools storage value.

Return type dict

1.3. Students know best 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Semester.ly Documentation, Release 1.0

class parsing.library.viewer.StatProgressBar(stat_format=’‘, statistics=None)
Bases: parsing.library.viewer.Viewer

Command line progress bar viewer for data pipeline.

SWITCH_SIZE = 100

receive(tracker, broadcast_type)
Incremental update to progress bar.

report(tracker)
Do nothing.

class parsing.library.viewer.StatView
Bases: parsing.library.viewer.Viewer

Keeps view of statistics of objects processed pipeline.

KINDS
tuple – The kinds of objects that can be tracked. TODO - move this to a shared space w/Validator

LABELS
tuple – The status labels of objects that can be tracked.

stats
dict – The view itself of the stats.

KINDS = (‘course’, ‘section’, ‘meeting’, ‘textbook’, ‘evaluation’, ‘offering’, ‘textbook_link’, ‘eval’)

LABELS = (‘valid’, ‘created’, ‘new’, ‘updated’, ‘total’)

receive(tracker, broadcast_type)
Receive an update from a tracker.

Ignore all broadcasts that are not STATUS.

Parameters

• tracker (parsing.library.tracker.Tracker) – Tracker receiving update
from.

• broadcast_type (str) – Broadcast message from tracker.

report(tracker=None)
Dump stats.

class parsing.library.viewer.TimeDistributionView
Bases: parsing.library.viewer.Viewer

Viewer to analyze time distribution.

Calculates granularity and holds report and 12, 24hr distribution.

distribution
dict – Contains counts of 12 and 24hr sightings.

granularity
int – Time granularity of viewed times.

receive(tracker, broadcast_type)
Receive an update from a tracker.

Ignore all broadcasts that are not TIME.

Parameters

54 Chapter 1. What We Believe In

https://docs.python.org/3/library/stdtypes.html#str

Semester.ly Documentation, Release 1.0

• tracker (parsing.library.tracker.Tracker) – Tracker receiving update
from.

• broadcast_type (str) – Broadcast message from tracker.

report(tracker)
Do nothing.

class parsing.library.viewer.Timer(format=’%(elapsed)s’, **kwargs)
Bases: progressbar.widgets.FormatLabel, progressbar.widgets.
TimeSensitiveWidgetBase

Custom timer created to take away ‘Elapsed Time’ string.

INTERVAL = datetime.timedelta(0, 0, 100000)

check_size(progress)

mapping = {u’seconds’: (u’seconds_elapsed’, None), u’max’: (u’max_value’, None), u’value’: (u’value’, None), u’elapsed’: (u’total_seconds_elapsed’, <function format_time>), u’start’: (u’start_time’, None), u’finished’: (u’end_time’, None), u’last_update’: (u’last_update_time’, None)}

required_values = []

class parsing.library.viewer.Viewer
Bases: object

A view that is updated via a tracker object broadcast or report.

receive(tracker, broadcast_type)
Incremental updates of tracking info.

Parameters

• tracker (Tracker) – Tracker instance.

• broadcast_type (str) – Broadcast type emitted by tracker.

report(tracker)
Report all tracked info.

Parameters tracker (Tracker) – Tracker instance.

exception parsing.library.viewer.ViewerError(data, *args)
Bases: parsing.library.exceptions.PipelineError

Viewer error class.

args

message

Digestor

class parsing.library.digestor.Absorb(school, meta)
Bases: parsing.library.digestor.DigestionStrategy

Load valid data into Django db.

meta
dict – Meta-information to use for DataUpdate object

school
str

classmethod digest_section(parmams, clean=True)

1.3. Students know best 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Semester.ly Documentation, Release 1.0

static remove_offerings(section_obj)
Remove all offerings associated with a section.

Parameters section_obj (Section) – Description

static remove_section(section_code, course_obj)
Remove section specified from database.

Parameters

• section (dict) – Description

• course_obj (Course) – Section part of this course.

wrap_up()
Update time updated for school at wrap_up of parse.

class parsing.library.digestor.Burp(school, meta, output=None)
Bases: parsing.library.digestor.DigestionStrategy

Load valid data into Django db and output diff between input and db data.

absorb
Vommit – Digestion strategy.

vommit
Absorb – Digestion strategy.

wrap_up()

class parsing.library.digestor.DigestionAdapter(school, cached)
Bases: object

Converts JSON defititions to model compliant dictionay.

cache
dict – Caches Django objects to avoid redundant queries.

school
str – School code.

adapt_course(course)
Adapt course for digestion.

Parameters course (dict) – course info

Returns Adapted course for django object.

Return type dict

Raises DigestionError – course is None

adapt_meeting(meeting, section_model=None)
Adapt meeting to Django model.

Parameters

• meeting (TYPE) – Description

• section_model (None, optional) – Description

Yields dict

Raises DigestionError – meeting is None.

adapt_section(section, course_model=None)
Adapt section to Django model.

56 Chapter 1. What We Believe In

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

Semester.ly Documentation, Release 1.0

Parameters

• section (TYPE) – Description

• course_model (None, optional) – Description

Returns formatted section dictionary

Return type dict

Raises DigestionError – Description

adapt_textbook(textbook)
Adapt textbook to model dictionary.

Parameters textbook (dict) – validated textbook.

Returns Description

Return type dict

adapt_textbook_link(textbook_link, textbook_model=None, section_model=None)
Adapt textbook link to model dictionary.

Parameters

• textbook_link (dict) – validated

• textbook_model (model, None, optional) –

• section_model (model, None, optional) –

Yields dict – model compliant

exception parsing.library.digestor.DigestionError(data, *args)
Bases: parsing.library.exceptions.PipelineError

Digestor error class.

args

message

class parsing.library.digestor.DigestionStrategy
Bases: object

wrap_up()
Do whatever needs to be done to wrap_up digestion session.

class parsing.library.digestor.Digestor(school, meta, tracker=<parsing.library.tracker.NullTracker
object>)

Bases: object

Digestor in data pipeline.

adapter
DigestionAdapter – Adapts

cache
dict – Caches recently used Django objects to be used as foriegn keys.

data
TYPE – The data to be digested.

meta
dict – meta data associated with input data.

1.3. Students know best 57

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Semester.ly Documentation, Release 1.0

MODELS
dict – mapping from object type to Django model class.

school
str – School to digest.

strategy
DigestionStrategy – Load and/or diff db depending on strategy

tracker
parsing.library.tracker.Tracker – Description

MODELS = {‘textbook_link’: <class ‘timetable.models.TextbookLink’>, ‘offering’: <class ‘timetable.models.Offering’>, ‘section’: <class ‘timetable.models.Section’>, ‘textbook’: <class ‘timetable.models.Textbook’>, ‘course’: <class ‘timetable.models.Course’>, ‘semester’: <class ‘timetable.models.Semester’>, ‘evaluation’: <class ‘timetable.models.Evaluation’>}

digest(data, diff=True, load=True, output=None)
Digest data.

digest_course(course)
Create course in database from info in json model.

Returns django course model object

digest_meeting(meeting, section_model=None)
Create offering in database from info in model map.

Parameters section_model – JSON course model object

Return: Offerings as generator

digest_section(section, course_model=None)
Create section in database from info in model map.

Parameters course_model – django course model object

Keyword Arguments clean (boolean) – removes course offerings associated with section
if set

Returns django section model object

digest_textbook(textbook)
Digest textbook.

Parameters textbook (dict) –

digest_textbook_link(textbook_link, textbook_obj=None, section_obj=None)
Digest textbook link.

Parameters

• textbook_link (dict) – Description

• textbook_obj (Textbook, None, optional) –

• section_obj (Section, None, optional) –

wrap_up()

class parsing.library.digestor.Vommit(output)
Bases: parsing.library.digestor.DigestionStrategy

Output diff between input and db data.

diff(kind, inmodel, dbmodel, hide_defaults=True)
Create a diff between input and existing model.

Parameters

58 Chapter 1. What We Believe In

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Semester.ly Documentation, Release 1.0

• kind (str) – kind of object to diff.

• inmodel (model) – Description

• dbmodel (model) – Description

• hide_defaults (bool, optional) – hide values that are defaulted into db

Returns Diff

Return type dict

static get_model_defaults()

remove_defaulted_keys(kind, dct)

wrap_up()

Exceptions

exception parsing.library.exceptions.ParseError(data, *args)
Bases: parsing.library.exceptions.PipelineError

Parser error class.

args

message

exception parsing.library.exceptions.ParseJump(data, *args)
Bases: parsing.library.exceptions.PipelineWarning

Parser exception used for control flow.

args

message

exception parsing.library.exceptions.ParseWarning(data, *args)
Bases: parsing.library.exceptions.PipelineWarning

Parser warning class.

args

message

exception parsing.library.exceptions.PipelineError(data, *args)
Bases: parsing.library.exceptions.PipelineException

Data-pipeline error class.

args

message

exception parsing.library.exceptions.PipelineException(data, *args)
Bases: exceptions.Exception

Data-pipeline exception class.

Should never be constructed directly. Use:

• PipelineError

• PipelineWarning

1.3. Students know best 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Semester.ly Documentation, Release 1.0

args

message

exception parsing.library.exceptions.PipelineWarning(data, *args)
Bases: parsing.library.exceptions.PipelineException, exceptions.UserWarning

Data-pipeline warning class.

args

message

Extractor

class parsing.library.extractor.Extraction(key, container, patterns)
Bases: tuple

container
Alias for field number 1

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

key
Alias for field number 0

patterns
Alias for field number 2

parsing.library.extractor.extract_info_from_text(text, inject=None, extrac-
tions=None, use_lowercase=True,
splice_text=True)

Attempt to extract info from text and put it into course object.

NOTE: Currently unstable and unused as it introduces too many bugs. Might reconsider for later use.

Parameters

• text (str) – text to attempt to extract information from

• extractions (None, optional) – Description

• inject (None, optional) – Description

• use_lowercase (bool, optional) – Description

Returns the text trimmed of extracted information

Return type str

Utils

class parsing.library.utils.DotDict(dct)
Bases: dict

Dot notation access for dictionary.

Supports set, get, and delete.

60 Chapter 1. What We Believe In

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Semester.ly Documentation, Release 1.0

Examples

>>> d = DotDict({'a': 1, 'b': 2, 'c': {'ca': 31}})
>>> d.a, d.b
(1, 2)
>>> d['a']
1
>>> d['a'] = 3
>>> d.a, d['b']
(3, 2)
>>> d.c.ca, d.c['ca']
(31, 31)

as_dict()
Return pure dictionary representation of self.

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

fromkeys(S[, v])→ New dict with keys from S and values equal to v.
v defaults to None.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

has_key(k)→ True if D has a key k, else False

items()→ list of D’s (key, value) pairs, as 2-tuples

iteritems()→ an iterator over the (key, value) items of D

iterkeys()→ an iterator over the keys of D

itervalues()→ an iterator over the values of D

keys()→ list of D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ list of D’s values

viewitems()→ a set-like object providing a view on D’s items

viewkeys()→ a set-like object providing a view on D’s keys

viewvalues()→ an object providing a view on D’s values

class parsing.library.utils.SimpleNamespace(**kwargs)

parsing.library.utils.clean(dirt)
Recursively clean json-like object.

list::

• remove None elements

1.3. Students know best 61

Semester.ly Documentation, Release 1.0

• None on empty list

dict::

• filter out None valued key, value pairs

• None on empty dict

basestring::

• convert unicode whitespace to ascii

• strip extra whitespace

• None on empty string

Parameters dirt – the object to clean

Returns Cleaned dict, cleaned list, cleaned string, or pass-through.

parsing.library.utils.dict_filter_by_dict(a, b)
Filter dictionary a by b.

dict or set Items or keys must be string or regex. Filters at arbitrary depth with regex matching.

Parameters

• a (dict) – Dictionary to filter.

• b (dict) – Dictionary to filter by.

Returns Filtered dictionary

Return type dict

parsing.library.utils.dict_filter_by_list(a, b)

parsing.library.utils.dir_to_dict(path)
Recursively create nested dictionary representing directory contents.

Parameters path (str) – The path of the directory.

Returns Dictionary representation of the directory.

Return type dict

parsing.library.utils.iterrify(x)
Create iterable object if not already.

Will wrap str types in extra iterable eventhough str is iterable.

Examples

>>> for i in iterrify(1):
... print(i)
1
>>> for i in iterrify([1]):
... print(i)
1
>>> for i in iterrify('hello'):
... print(i)
'hello'

62 Chapter 1. What We Believe In

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Semester.ly Documentation, Release 1.0

parsing.library.utils.make_list(x=None)
Wrap in list if not list already.

If input is None, will return empty list.

Parameters x – Input.

Returns Input wrapped in list.

Return type list

parsing.library.utils.pretty_json(obj)
Prettify object as JSON.

Parameters obj (dict) – Serializable object to JSONify.

Returns Prettified JSON.

Return type str

parsing.library.utils.safe_cast(val, to_type, default=None)
Attempt to cast to specified type or return default.

Parameters

• val – Value to cast.

• to_type – Type to cast to.

• default (None, optional) – Description

Returns Description

Return type to_type

parsing.library.utils.time24(time)
Convert time to 24hr format.

Parameters time (str) – time in reasonable format

Returns 24hr time in format hh:mm

Return type str

Raises ParseError – Unparseable time input.

parsing.library.utils.titlize(name)
Format name into pretty title.

Will uppercase roman numerals. Will lowercase conjuctions and prepositions.

Examples

>>> titlize('BIOLOGY OF CANINES II')
Biology of Canines II

parsing.library.utils.update(d, u)
Recursive update to dictionary w/o overwriting upper levels.

1.3. Students know best 63

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Semester.ly Documentation, Release 1.0

Examples

>>> update({0: {1: 2, 3: 4}}, {1: 2, 0: {5: 6, 3: 7}})
{0: {1: 2}}

Parsing Models Documentation

class parsing.models.DataUpdate(*args, **kwargs)
Stores the date/time that the school’s data was last updated.

Scheduled updates occur when digestion into the database completes.

school
CharField – the school code that was updated (e.g. jhu)

semester
ForeignKey to Semester – the semester for the update

last_updated
DateTimeField – the datetime last updated

reason
CharField – the reason it was updated (default Scheduled Update)

update_type
CharField – which field was updated

UPDATE_TYPE
tuple of tuple – Update types allowed.

COURSES
str – Update type.

EVALUATIONS
str – Update type.

MISCELLANEOUS
str – Update type.

TEXTBOOKS
str – Update type.

Scheduled Tasks

Frontend Documentation

The Structure

Note: to understand the file structure, it is best to complete the following tutorial: EggHead Redux. We follow the
same structure and conventions which are typical of React/Redux applications.

Our React/Redux frontend can be found in static/js/redux and has the following structure:

64 Chapter 1. What We Believe In

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://egghead.io/courses/getting-started-with-redux

Semester.ly Documentation, Release 1.0

static/js/redux
- __fixtures__
- __test_utils__
- __tests__
- actions
- constants
- helpers
- init.jsx
- reducers
- ui
- util.jsx

Let’s break down this file structure a bit by exploring what lives in each section.

__fixtures__: JSON fixtures used as props to components during tests.

__test_utils__: mocks and other utilities helpful for testing.

__tests__: unit tests, snapshot tests, all frontend driven tests.

actions: all Redux/Thunk actions dispatched by various components. More info on this (more info on
this below: Actions)

constants: application-wide constant variables

init.jsx: handles application initialization. Handles flows (see Flows Documentation), the passing of
initial data to the frontend, and on page load methods.

reducers: Redux state reducers. (To understand what part of state each reducer handles, see Reducers).

ui: all components and containers. (For more info see What Components Live Where).

util.jsx: utility functions useful to the entire application.

Init.jsx

This file is responsible for the initialization of the application. It creates a Redux store from the root reducer, then takes
care of all initialization. Only in init.jsx do we reference JSON passed from the backend via timetable.html.

It is this JSON, called initData which we read into state as our initial state for the redux application. However,
sometimes there are special flows that a user could follow that might change the initial state of the application at page
load. For this we use flows which are documented more thoroughly at the following link: Flows Documentation.

Other actions required for page initialization are also dispatched from init.jsx including those which load cached
timetables from the browser, alerts that show on page load, the loading of user’s timetables if logged in, and the
triggering of the user agreement modal when appropriate.

Finally, init.jsx renders <SemesterlyContainer /> to the DOM. This is the root of the application.

Actions

The actions directory follows this structure:

static/js/redux/actions
- calendar_actions.jsx - exporting the calendar (ical, google)
- exam_actions.jsx - final exam scheduling/sharing
- modal_actions.jsx - openning/closing/manipulating all modals
- school_actions.jsx - getting school info
- search_actions.jsx - search/adv search

1.3. Students know best 65

Semester.ly Documentation, Release 1.0

- timetable_actions.jsx - fetching/loading/manipulating timetables
- user_actions.jsx - user settings/friends/logged in functionality

Reducers

The reducers directory follows this structure:

static/js/redux/reducers
- alerts_reducer.jsx - visibility of alerts
- calendar_reducer.jsx
- classmates_reducer.jsx
- course_info_reducer.jsx
- course_sections_reducer.jsx
- custom_slots_reducer.jsx
- exploration_modal_reducer.jsx
- final_exams_modal_reducer.jsx
- friends_reducer.jsx
- integration_modal_reducer.jsx
- integrations_reducer.jsx
- notification_token_reducer.jsx
- optional_courses_reducer.jsx
- peer_modal_reducer.jsx
- preference_modal_reducer.jsx
- preferences_reducer.jsx
- root_reducer.jsx
- save_calendar_modal_reducer.jsx
- saving_timetable_reducer.jsx
- school_reducer.jsx
- search_results_reducer.jsx
- semester_reducer.jsx
- signup_modal_reducer.jsx
- terms_of_service_banner_reducer.jsx
- terms_of_service_modal_reducer.jsx
- textbook_modal_reducer.jsx
- timetables_reducer.jsx
- ui_reducer.jsx
- user_acquisition_modal_reducer.jsx
- user_info_reducer.jsx

What Components Live Where

All of the components live under the /ui directory which follow the following structure:

static/js/redux/ui
- alerts
| - ...
- containers
| - ...
- modals
| - ...
- ...

General components live directly under /ui/ and their containers live under /ui/contaners. However alerts
(those little popups that show up in the top right of the app), live under /ui/alerts, and all modals live under
/ui/modals. Their containers live under their respective sub-directories.

66 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

1.3. Students know best 67

Semester.ly Documentation, Release 1.0

Modals

Component File Screenshot De-
scrip-
tion

course_modal_body.
jsx

course_modal.jsx

exploration_modal.
jsx

final_exams_modal.
jsx

peer_modal.jsx

preference_modal.
jsx

save_calendar_modal.
jsx

signup_modal.jsx

textbook_modal.
jsx

tut_modal.jsx

user_acquisition_modal.
jsx

user_settings_modal.
jsx

68 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

1.3. Students know best 69

Semester.ly Documentation, Release 1.0

General Components

Component File Screenshot De-
scrip-
tion

alert.jsx

calendar.jsx

calendar.jsx

course_modal_section.
jsx

credit_ticker.jsx

custom_slot.jsx

day_calendar.jsx

evaluation_list.
jsx

evaluation.jsx

master_slot.jsx

pagination.jsx

reaction.jsx

search_bar.jsx

search_result.jsx

search_side_bar.
jsx

semesterly.jsx

side_bar.jsx

side_scroller.jsx

slot_hover_tip.
jsx

slot_manager.jsx

slot.jsx

social_profile.
jsx

sort_menu.jsx

terms_of_service_banner.
jsx

terms_of_service_modal.
jsx

timetable_loader.
jsx

timetable_name_input.
jsx

top_bar.jsx

70 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

HTML/SCSS Documentation

Note: Although we write SCSS, you’ll notice we use the SassLint tool and Sassloader. SASS is an older version of
SCSS and SCSS still uses the old SASS compiler. Please don’t write SASS, we’re a SCSS shop. You can read about
it briefly here.

What’s in SCSS, What’s not?

Written in SCSS:

1. Web Application

Written in plain CSS:

1. Splash pages

2. Pages for SEO

3. Emails and unsubscribe pages

4. basically everything that is not the web app

File Structure

All of our SCSS is in static/css/timetable and is broken down into 5 folders. The main.scss ties all the
other SCSS files together importing them in the correct order.

Folder Use
Base colors.scss and fonts.scss
Vendors any scss that came from a package that we wanted to customize heavily
Framework grid.scss and page_layout.scss
Modules styles for modular parts of our UI
Partials component specific styles

All of the other CSS files in the static/css folder is either used for various purposes outlined above.

Linting and Codestyle

Note: Although we write SCSS, you’ll notice we use the SassLint tool and Sassloader. SASS is an older version of
SCSS and SCSS still uses the old SASS compiler. Please don’t write SASS, we’re a SCSS shop. You can read about
it briefly here.

We use SASSLint with Airbnb’s .scss-lint.yml file converted into .sass-lint.yml. Some things to take
note of are

1. All colors must be declared as variables in colors.scss. Try your best to use the existing colors in that file

2. Double quotes

3. Keep nesting below 3 levels, use BEM

4. Use shortened property values when possible, i.e. margin: 0 3px instead of margin: 0 3px 0 3px

5. If a property is 0 don’t specify units

1.3. Students know best 71

https://stackoverflow.com/questions/5654447/whats-the-difference-between-scss-and-sass/
https://stackoverflow.com/questions/5654447/whats-the-difference-between-scss-and-sass/
https://stackoverflow.com/questions/5654447/whats-the-difference-between-scss-and-sass/
https://stackoverflow.com/questions/5654447/whats-the-difference-between-scss-and-sass/

Semester.ly Documentation, Release 1.0

Refer to our .sass-lint.yml for more details and if you’re using intelliJ or some IDE, use the sass-lint module to
highlight code-style errors/warnings as you code.

Design/Branding Guidelines

Fonts & Colors

72 Chapter 1. What We Believe In

Semester.ly Documentation, Release 1.0

Logo Usage

Logos

You can download logos and favicon files here

Editing This Documentation

Building the Docs

From the docs directory, execute the following command to rebuild all editted pages:

make html

To rebuild all pages, you may want to do a clean build:

make clean && make html

1.3. Students know best 73

https://drive.google.com/open?id=0BzXL0vLjAYlLcGhHWlIyYUZBcmc

Semester.ly Documentation, Release 1.0

Viewing the Docs Locally

From the docs directory, open the index file from the build directory with the command:

open _build/html/index.html

Editing the Docs

All Django modules are documented via Sphinx AutoDoc. To edit this documentation, update the docstrings on the
relevant functions/classes.

To update the handwritten docs, edit the relevant .rst files which are included by filename from index.rst.

Note: Be sure no warnings or errors are printed as output during the build process. Travis will build these docs and
the build will fail on error.

74 Chapter 1. What We Believe In

http://www.sphinx-doc.org/en/stable/ext/autodoc.html

Python Module Index

a
agreement.models, 32
authpipe.utils, 37
authpipe.views, 37

c
courses.serializers, 26
courses.utils, 26
courses.views, 25

e
exams.final_exam_scheduler, 31
exams.jhu_final_exam_scheduler, 31
exams.models, 31
exams.views, 31

h
helpers.decorators, 36
helpers.mixins, 36

p
parsing.library.base_parser, 41
parsing.library.digestor, 55
parsing.library.exceptions, 59
parsing.library.extractor, 60
parsing.library.ingestor, 43
parsing.library.logger, 48
parsing.library.requester, 41
parsing.library.tracker, 51
parsing.library.utils, 60
parsing.library.validator, 45
parsing.library.viewer, 53
parsing.models, 64
parsing.tasks, 64

s
searches.utils, 30
searches.views, 30
semesterly.test_utils, 32

student.models, 27
student.serializers, 30
student.utils, 29
student.views, 27

t
timetable.models, 20
timetable.serializers, 24
timetable.utils, 24
timetable.views, 24

75

Index

A
Absorb (class in parsing.library.digestor), 55
absorb (parsing.library.digestor.Burp attribute), 56
accept_tos() (in module student.views), 28
adapt_course() (parsing.library.digestor.DigestionAdapter

method), 56
adapt_meeting() (parsing.library.digestor.DigestionAdapter

method), 56
adapt_section() (parsing.library.digestor.DigestionAdapter

method), 56
adapt_textbook() (pars-

ing.library.digestor.DigestionAdapter method),
57

adapt_textbook_link() (pars-
ing.library.digestor.DigestionAdapter method),
57

adapter (parsing.library.digestor.Digestor attribute), 57
add_course() (semesterly.test_utils.SeleniumTestCase

method), 32
add_course_from_course_modal()

(semesterly.test_utils.SeleniumTestCase
method), 32

add_meeting_and_check_conflict() (in module
timetable.utils), 25

add_viewer() (parsing.library.tracker.NullTracker
method), 51

add_viewer() (parsing.library.tracker.Tracker method), 52
Agreement (class in agreement.models), 32
agreement.models (module), 32
all_courses() (in module courses.views), 26
ALL_KEYS (parsing.library.ingestor.Ingestor attribute),

43
allow_conflicts_add() (semesterly.test_utils.SeleniumTestCase

method), 32
areas (timetable.models.Course attribute), 21
args (parsing.library.digestor.DigestionError attribute), 57
args (parsing.library.exceptions.ParseError attribute), 59
args (parsing.library.exceptions.ParseJump attribute), 59
args (parsing.library.exceptions.ParseWarning attribute),

59
args (parsing.library.exceptions.PipelineError attribute),

59
args (parsing.library.exceptions.PipelineException

attribute), 59
args (parsing.library.exceptions.PipelineWarning at-

tribute), 60
args (parsing.library.ingestor.IngestionError attribute), 43
args (parsing.library.ingestor.IngestionWarning attribute),

43
args (parsing.library.tracker.TrackerError attribute), 53
args (parsing.library.validator.MultipleDefinitionsWarning

attribute), 45
args (parsing.library.validator.ValidationError attribute),

45
args (parsing.library.validator.ValidationWarning at-

tribute), 45
args (parsing.library.viewer.ViewerError attribute), 55
as_dict() (parsing.library.utils.DotDict method), 61
assert_friend_image_found()

(semesterly.test_utils.SeleniumTestCase
method), 32

assert_friend_in_modal()
(semesterly.test_utils.SeleniumTestCase
method), 32

assert_invisibility() (semesterly.test_utils.SeleniumTestCase
method), 32

assert_loader_completes()
(semesterly.test_utils.SeleniumTestCase
method), 33

assert_n_elements_found()
(semesterly.test_utils.SeleniumTestCase
method), 33

assert_ptt_const_across_refresh()
(semesterly.test_utils.SeleniumTestCase
method), 33

assert_ptt_equals() (semesterly.test_utils.SeleniumTestCase
method), 33

assert_slot_presence() (semesterly.test_utils.SeleniumTestCase
method), 33

76

Semester.ly Documentation, Release 1.0

associate_students() (in module authpipe.utils), 37
author (timetable.models.Textbook attribute), 23
authpipe.utils (module), 37
authpipe.views (module), 37

B
baseline_search() (in module searches.utils), 31
BaseParser (class in parsing.library.base_parser), 41
BRACES (parsing.library.logger.JSONStreamWriter at-

tribute), 49, 50
break_on_error (parsing.library.ingestor.Ingestor at-

tribute), 43
break_on_warning (parsing.library.ingestor.Ingestor at-

tribute), 43
broadcast() (parsing.library.tracker.NullTracker method),

51
broadcast() (parsing.library.tracker.Tracker method), 52
BROADCAST_TYPES (pars-

ing.library.tracker.NullTracker attribute),
51

BROADCAST_TYPES (parsing.library.tracker.Tracker
attribute), 52

Burp (class in parsing.library.digestor), 56

C
cache (parsing.library.digestor.DigestionAdapter at-

tribute), 56
cache (parsing.library.digestor.Digestor attribute), 57
campus (timetable.models.Course attribute), 21
change_ptt_name() (semesterly.test_utils.SeleniumTestCase

method), 33
change_term() (semesterly.test_utils.SeleniumTestCase

method), 33
check_size() (parsing.library.viewer.Timer method), 55
check_student_token() (in module authpipe.utils), 37
ClassmateView (class in student.views), 27
clean() (in module parsing.library.utils), 61
clear() (parsing.library.ingestor.Ingestor method), 43
clear() (parsing.library.utils.DotDict method), 61
clear_tutorial() (semesterly.test_utils.SeleniumTestCase

method), 33
click_off() (semesterly.test_utils.SeleniumTestCase

method), 33
close_course_modal() (semesterly.test_utils.SeleniumTestCase

method), 33
code (timetable.models.Course attribute), 20
colored_json() (in module parsing.library.logger), 51
complete_user_settings_basics()

(semesterly.test_utils.SeleniumTestCase
method), 33

config (parsing.library.validator.Validator attribute), 45
container (parsing.library.extractor.Extraction attribute),

60

converter() (parsing.library.logger.JSONColoredFormatter
method), 48

converter() (parsing.library.logger.JSONFormatter
method), 49

copy() (parsing.library.ingestor.Ingestor method), 43
copy() (parsing.library.utils.DotDict method), 61
corequisites (timetable.models.Course attribute), 21
cores (timetable.models.Course attribute), 21
count() (parsing.library.extractor.Extraction method), 60
Course (class in timetable.models), 20
course (timetable.models.Section attribute), 22
course (timetable.utils.Slot attribute), 24
course_code_regex (parsing.library.validator.Validator at-

tribute), 45
course_desc_contains_token() (in module searches.utils),

31
course_name_contains_token() (in module

searches.utils), 31
course_page() (in module courses.views), 26
course_to_str() (searches.utils.Vectorizer method), 31
CourseDetail (class in courses.views), 25
CourseIntegration (class in timetable.models), 22
CourseModal (class in courses.views), 26
COURSES (parsing.models.DataUpdate attribute), 64
courses (timetable.utils.Timetable attribute), 24
courses.serializers (module), 26
courses.utils (module), 26
courses.views (module), 25
courses_to_slots() (in module timetable.utils), 25
CourseSearchList (class in searches.views), 30
CourseSerializer (class in courses.serializers), 26
create_friend() (semesterly.test_utils.SeleniumTestCase

method), 33
create_personal_timetable_obj()

(semesterly.test_utils.SeleniumTestCase
method), 33

create_ptt() (semesterly.test_utils.SeleniumTestCase
method), 33

create_student() (in module authpipe.utils), 37
create_unsubscribe_link() (in module student.views), 28

D
data (parsing.library.digestor.Digestor attribute), 57
DataUpdate (class in parsing.models), 64
day (timetable.models.Offering attribute), 22
delete() (student.views.UserTimetableView method), 28
delete() (student.views.UserView method), 28
department (parsing.library.tracker.NullTracker attribute),

51
department (timetable.models.Course attribute), 21
description (timetable.models.Course attribute), 21
description() (semesterly.test_utils.SeleniumTestCase

method), 33
detail_url (timetable.models.Textbook attribute), 23

Index 77

Semester.ly Documentation, Release 1.0

dict_filter_by_dict() (in module parsing.library.utils), 62
dict_filter_by_list() (in module parsing.library.utils), 62
diff() (parsing.library.digestor.Vommit method), 58
digest() (parsing.library.digestor.Digestor method), 58
digest_course() (parsing.library.digestor.Digestor

method), 58
digest_meeting() (parsing.library.digestor.Digestor

method), 58
digest_section() (parsing.library.digestor.Absorb class

method), 55
digest_section() (parsing.library.digestor.Digestor

method), 58
digest_textbook() (parsing.library.digestor.Digestor

method), 58
digest_textbook_link() (parsing.library.digestor.Digestor

method), 58
DigestionAdapter (class in parsing.library.digestor), 56
DigestionError, 57
DigestionStrategy (class in parsing.library.digestor), 57
Digestor (class in parsing.library.digestor), 57
dir_to_dict() (in module parsing.library.utils), 62
DisplayTimetable (class in timetable.utils), 24
distribution (parsing.library.viewer.TimeDistributionView

attribute), 54
doc_to_lower_stem_str() (searches.utils.Vectorizer

method), 31
DotDict (class in parsing.library.utils), 60
driver (semesterly.test_utils.SeleniumTestCase attribute),

32

E
end() (parsing.library.base_parser.BaseParser method),

41
end() (parsing.library.ingestor.Ingestor method), 43
end() (parsing.library.tracker.NullTracker method), 51
end() (parsing.library.tracker.Tracker method), 52
enrolment (timetable.models.Section attribute), 22
enter() (parsing.library.logger.JSONStreamWriter

method), 50
enter_search_query() (semesterly.test_utils.SeleniumTestCase

method), 33
ETAProgressBar (class in parsing.library.viewer), 53
Evaluation (class in timetable.models), 22
EVALUATIONS (parsing.models.DataUpdate attribute),

64
exams.final_exam_scheduler (module), 31
exams.jhu_final_exam_scheduler (module), 31
exams.models (module), 31
exams.views (module), 31
exclusions (timetable.models.Course attribute), 21
execute_action_expect_alert()

(semesterly.test_utils.SeleniumTestCase
method), 34

exit() (parsing.library.logger.JSONStreamWriter
method), 50

extract_info_from_text() (in module pars-
ing.library.extractor), 60

Extraction (class in parsing.library.extractor), 60
extractor (parsing.library.base_parser.BaseParser at-

tribute), 41

F
FeatureFlowView (class in helpers.mixins), 36
file (parsing.library.logger.JSONStreamWriter attribute),

49
file_to_json() (parsing.library.validator.Validator static

method), 46
FinalExamShare (class in exams.models), 31
find() (semesterly.test_utils.SeleniumTestCase method),

34
find_slots_to_fill() (in module timetable.utils), 25
first (parsing.library.logger.JSONStreamWriter attribute),

49
follow_and_validate_url()

(semesterly.test_utils.SeleniumTestCase
method), 34

follow_share_link_from_slot()
(semesterly.test_utils.SeleniumTestCase
method), 34

force_login() (in module semesterly.test_utils), 36
format() (parsing.library.logger.JSONColoredFormatter

method), 48
format() (parsing.library.logger.JSONFormatter method),

49
formatException() (pars-

ing.library.logger.JSONColoredFormatter
method), 48

formatException() (pars-
ing.library.logger.JSONFormatter method),
49

formatTime() (parsing.library.logger.JSONColoredFormatter
method), 48

formatTime() (parsing.library.logger.JSONFormatter
method), 49

from_model() (timetable.utils.DisplayTimetable class
method), 24

fromkeys() (parsing.library.ingestor.Ingestor method), 44
fromkeys() (parsing.library.utils.DotDict method), 61
function_returns_true (class in semesterly.test_utils), 36

G
GCalView (class in student.views), 28
geneds (timetable.models.Course attribute), 21
get() (courses.views.CourseDetail method), 25
get() (parsing.library.ingestor.Ingestor method), 44
get() (parsing.library.requester.Requester method), 41
get() (parsing.library.utils.DotDict method), 61

78 Index

Semester.ly Documentation, Release 1.0

get() (searches.views.CourseSearchList method), 30
get() (student.views.ClassmateView method), 27
get() (student.views.UserTimetableView method), 28
get() (student.views.UserView method), 28
get_acronym() (searches.utils.Searcher method), 30
get_avg_rating() (timetable.models.Course method), 21
get_classmates_from_course_id() (in module stu-

dent.utils), 29
get_classmates_from_tts() (in module student.utils), 29
get_classmates_in_course() (in module courses.views),

26
get_cosine_sim() (searches.utils.Searcher method), 30
get_current_semesters() (in module timetable.utils), 25
get_day_to_usage() (in module timetable.utils), 25
get_elements_as_text() (semesterly.test_utils.SeleniumTestCase

method), 34
get_evals() (courses.serializers.CourseSerializer method),

26
get_feature_flow() (helpers.mixins.FeatureFlowView

method), 36
get_feature_flow() (timetable.views.TimetableLinkView

method), 24
get_friend_count_from_course_id() (in module stu-

dent.views), 29
get_hour_from_string_time() (in module timetable.utils),

25
get_hours_minutes() (in module timetable.utils), 25
get_minute_from_string_time() (in module

timetable.utils), 25
get_model_defaults() (parsing.library.digestor.Vommit

static method), 59
get_most_relevant_filtered_courses()

(searches.utils.Searcher method), 30
get_popularity_percent() (courses.serializers.CourseSerializer

method), 26
get_reactions() (timetable.models.Course method), 21
get_regexed_courses() (courses.serializers.CourseSerializer

method), 26
get_score() (searches.utils.Searcher method), 30
get_section_dict() (in module courses.serializers), 26
get_sections_by_section_type() (in module courses.utils),

26
get_similarity() (searches.utils.Searcher method), 30
get_student() (in module student.utils), 29
get_student_dict() (in module student.serializers), 30
get_student_tts() (in module student.utils), 29
get_test_url() (semesterly.test_utils.SeleniumTestCase

method), 34
get_textbooks() (timetable.models.Section method), 23
get_time_index() (in module timetable.utils), 25
get_viewer() (parsing.library.tracker.NullTracker

method), 51
get_viewer() (parsing.library.tracker.Tracker method), 52
get_xproduct_indicies() (in module timetable.utils), 25

granularity (parsing.library.viewer.TimeDistributionView
attribute), 54

H
has_conflict (timetable.utils.Timetable attribute), 24
has_key() (parsing.library.ingestor.Ingestor method), 44
has_key() (parsing.library.utils.DotDict method), 61
has_viewer() (parsing.library.tracker.NullTracker

method), 51
has_viewer() (parsing.library.tracker.Tracker method), 52
helpers.decorators (module), 36
helpers.mixins (module), 36
Hoarder (class in parsing.library.viewer), 53
http_request() (parsing.library.requester.Requester

method), 42

I
image_url (timetable.models.Textbook attribute), 23
img_dir (semesterly.test_utils.SeleniumTestCase at-

tribute), 32
index() (parsing.library.extractor.Extraction method), 60
info (timetable.models.Course attribute), 21
ingest_course() (parsing.library.ingestor.Ingestor

method), 44
ingest_eval() (parsing.library.ingestor.Ingestor method),

44
ingest_meeting() (parsing.library.ingestor.Ingestor

method), 44
ingest_section() (parsing.library.ingestor.Ingestor

method), 44
ingest_textbook() (parsing.library.ingestor.Ingestor

method), 44
ingest_textbook_link() (parsing.library.ingestor.Ingestor

method), 44
IngestionError, 43
IngestionWarning, 43
Ingestor (class in parsing.library.ingestor), 43
ingestor (parsing.library.base_parser.BaseParser at-

tribute), 41
init_screenshot_dir() (semesterly.test_utils.SeleniumTestCase

method), 34
instructor (parsing.library.tracker.NullTracker attribute),

52
instructors (timetable.models.Section attribute), 23
Integration (class in timetable.models), 22
INTERVAL (parsing.library.viewer.Timer attribute), 55
is_locked (timetable.utils.Slot attribute), 24
is_optional (timetable.utils.Slot attribute), 24
is_required (timetable.models.TextbookLink attribute),

23
isbn (timetable.models.Textbook attribute), 23
items() (parsing.library.ingestor.Ingestor method), 44
items() (parsing.library.utils.DotDict method), 61
iteritems() (parsing.library.ingestor.Ingestor method), 44

Index 79

Semester.ly Documentation, Release 1.0

iteritems() (parsing.library.utils.DotDict method), 61
iterkeys() (parsing.library.ingestor.Ingestor method), 44
iterkeys() (parsing.library.utils.DotDict method), 61
iterrify() (in module parsing.library.utils), 62
itervalues() (parsing.library.ingestor.Ingestor method), 44
itervalues() (parsing.library.utils.DotDict method), 61

J
JHUFinalExamScheduler (class in ex-

ams.jhu_final_exam_scheduler), 31
JSONColoredFormatter (class in parsing.library.logger),

48
JSONFormatter (class in parsing.library.logger), 49
JSONStreamWriter (class in parsing.library.logger), 49

K
key (parsing.library.extractor.Extraction attribute), 60
keys() (parsing.library.ingestor.Ingestor method), 44
keys() (parsing.library.utils.DotDict method), 61
kind_to_validation_function (pars-

ing.library.validator.Validator attribute),
45

KINDS (parsing.library.validator.Validator attribute), 45,
46

KINDS (parsing.library.viewer.StatView attribute), 54

L
LABELS (parsing.library.viewer.StatView attribute), 54
last_updated (parsing.models.DataUpdate attribute), 64
level (parsing.library.logger.JSONStreamWriter at-

tribute), 49
level (timetable.models.Course attribute), 21
load_count_vectorizer() (searches.utils.Searcher

method), 30
load_schemas() (parsing.library.validator.Validator class

method), 46
location (timetable.models.Offering attribute), 22
lock_course() (semesterly.test_utils.SeleniumTestCase

method), 34
log_ical_export() (in module student.views), 29
login_via_fb() (semesterly.test_utils.SeleniumTestCase

method), 34
login_via_google() (semesterly.test_utils.SeleniumTestCase

method), 34

M
make_list() (in module parsing.library.utils), 62
mapping (parsing.library.viewer.Timer attribute), 55
markup() (parsing.library.requester.Requester static

method), 42
matches_name() (searches.utils.Searcher method), 30
meeting_section (timetable.models.Section attribute), 22
message (parsing.library.digestor.DigestionError at-

tribute), 57

message (parsing.library.exceptions.ParseError attribute),
59

message (parsing.library.exceptions.ParseJump attribute),
59

message (parsing.library.exceptions.ParseWarning
attribute), 59

message (parsing.library.exceptions.PipelineError at-
tribute), 59

message (parsing.library.exceptions.PipelineException
attribute), 60

message (parsing.library.exceptions.PipelineWarning at-
tribute), 60

message (parsing.library.ingestor.IngestionError at-
tribute), 43

message (parsing.library.ingestor.IngestionWarning at-
tribute), 43

message (parsing.library.tracker.TrackerError attribute),
53

message (parsing.library.validator.MultipleDefinitionsWarning
attribute), 45

message (parsing.library.validator.ValidationError at-
tribute), 45

message (parsing.library.validator.ValidationWarning at-
tribute), 45

message (parsing.library.viewer.ViewerError attribute),
55

meta (parsing.library.digestor.Absorb attribute), 55
meta (parsing.library.digestor.Digestor attribute), 57
MISCELLANEOUS (parsing.models.DataUpdate at-

tribute), 64
mode (parsing.library.tracker.NullTracker attribute), 52
MODELS (parsing.library.digestor.Digestor attribute),

57, 58
MultipleDefinitionsWarning, 45

N
n_elements_to_be_found (class in semesterly.test_utils),

36
name (timetable.models.Course attribute), 20
name (timetable.models.Semester attribute), 23
new_user_agent() (parsing.library.requester.Requester

method), 42
next_weekday() (in module student.utils), 29
notes (timetable.models.Course attribute), 21
NullTracker (class in parsing.library.tracker), 51
num_credits (timetable.models.Course attribute), 21

O
Offering (class in timetable.models), 22
offerings (timetable.utils.Slot attribute), 24
open_and_query_adv_search()

(semesterly.test_utils.SeleniumTestCase
method), 35

80 Index

Semester.ly Documentation, Release 1.0

open_course_modal_from_search()
(semesterly.test_utils.SeleniumTestCase
method), 35

open_course_modal_from_slot()
(semesterly.test_utils.SeleniumTestCase
method), 35

overwrite_header() (parsing.library.requester.Requester
method), 42

P
ParseError, 59
ParseJump, 59
ParseWarning, 59
parsing.library.base_parser (module), 41
parsing.library.digestor (module), 55
parsing.library.exceptions (module), 59
parsing.library.extractor (module), 60
parsing.library.ingestor (module), 43
parsing.library.logger (module), 48
parsing.library.requester (module), 41
parsing.library.tracker (module), 51
parsing.library.utils (module), 60
parsing.library.validator (module), 45
parsing.library.viewer (module), 53
parsing.models (module), 64
parsing.tasks (module), 64
patch() (student.views.UserView method), 28
patterns (parsing.library.extractor.Extraction attribute), 60
PersonalEvent (class in student.models), 27
PersonalTimetable (class in student.models), 27
PipelineError, 59
PipelineException, 59
PipelineWarning, 60
pop() (parsing.library.ingestor.Ingestor method), 44
pop() (parsing.library.utils.DotDict method), 61
popitem() (parsing.library.ingestor.Ingestor method), 45
popitem() (parsing.library.utils.DotDict method), 61
post() (parsing.library.requester.Requester method), 42
post() (searches.views.CourseSearchList method), 30
post() (student.views.GCalView method), 28
post() (student.views.ReactionView method), 28
post() (student.views.UserTimetableView method), 28
post() (timetable.views.TimetableLinkView method), 24
post() (timetable.views.TimetableView method), 24
prerequisites (timetable.models.Course attribute), 21
pretty_json() (in module parsing.library.utils), 63
print_similiarity_scores() (searches.utils.Searcher

method), 30
ptt_to_tuple() (semesterly.test_utils.SeleniumTestCase

method), 35
put() (authpipe.views.RegistrationTokenView method),

37

R
Reaction (class in student.models), 27
ReactionView (class in student.views), 28
reason (parsing.models.DataUpdate attribute), 64
receive() (parsing.library.viewer.ETAProgressBar

method), 53
receive() (parsing.library.viewer.Hoarder method), 53
receive() (parsing.library.viewer.StatProgressBar

method), 54
receive() (parsing.library.viewer.StatView method), 54
receive() (parsing.library.viewer.TimeDistributionView

method), 54
receive() (parsing.library.viewer.Viewer method), 55
RegistrationToken (class in student.models), 27
RegistrationTokenView (class in authpipe.views), 37
related_courses (timetable.models.Course attribute), 21
relative (parsing.library.validator.Validator attribute), 45
remove_course() (semesterly.test_utils.SeleniumTestCase

method), 35
remove_course_from_course_modal()

(semesterly.test_utils.SeleniumTestCase
method), 35

remove_defaulted_keys() (pars-
ing.library.digestor.Vommit method), 59

remove_offerings() (parsing.library.digestor.Absorb static
method), 55

remove_section() (parsing.library.digestor.Absorb static
method), 56

remove_viewer() (parsing.library.tracker.NullTracker
method), 52

remove_viewer() (parsing.library.tracker.Tracker
method), 53

report() (parsing.library.tracker.NullTracker method), 52
report() (parsing.library.tracker.Tracker method), 53
report() (parsing.library.viewer.ETAProgressBar

method), 53
report() (parsing.library.viewer.Hoarder method), 53
report() (parsing.library.viewer.StatProgressBar method),

54
report() (parsing.library.viewer.StatView method), 54
report() (parsing.library.viewer.TimeDistributionView

method), 55
report() (parsing.library.viewer.Viewer method), 55
Requester (class in parsing.library.requester), 41
requester (parsing.library.base_parser.BaseParser at-

tribute), 41
required_values (parsing.library.viewer.Timer attribute),

55

S
safe_cast() (in module parsing.library.utils), 63
same_as (timetable.models.Course attribute), 21
save_ptt() (semesterly.test_utils.SeleniumTestCase

method), 35

Index 81

Semester.ly Documentation, Release 1.0

save_user_settings() (semesterly.test_utils.SeleniumTestCase
method), 35

schema_validate() (parsing.library.validator.Validator
static method), 46

school (parsing.library.base_parser.BaseParser attribute),
41

school (parsing.library.digestor.Absorb attribute), 55
school (parsing.library.digestor.DigestionAdapter at-

tribute), 56
school (parsing.library.digestor.Digestor attribute), 58
school (parsing.library.ingestor.Ingestor attribute), 43
school (parsing.library.tracker.NullTracker attribute), 52
school (parsing.models.DataUpdate attribute), 64
school (timetable.models.Course attribute), 20
schools (parsing.library.viewer.Hoarder attribute), 53
search_course() (semesterly.test_utils.SeleniumTestCase

method), 35
Searcher (class in searches.utils), 30
searches.utils (module), 30
searches.views (module), 30
Section (class in timetable.models), 22
section (timetable.models.Offering attribute), 22
section (timetable.models.TextbookLink attribute), 23
section (timetable.utils.Slot attribute), 24
section_type (timetable.models.Section attribute), 22
sections (timetable.utils.Timetable attribute), 24
sections_are_filled() (in module courses.utils), 26
seen (parsing.library.validator.Validator attribute), 46
select_nth_adv_search_result()

(semesterly.test_utils.SeleniumTestCase
method), 35

SeleniumTestCase (class in semesterly.test_utils), 32
Semester (class in timetable.models), 23
semester (parsing.models.DataUpdate attribute), 64
semester (timetable.models.Section attribute), 23
semesterly.test_utils (module), 32
setdefault() (parsing.library.ingestor.Ingestor method), 45
setdefault() (parsing.library.utils.DotDict method), 61
share_timetable() (semesterly.test_utils.SeleniumTestCase

method), 35
SimpleNamespace (class in parsing.library.utils), 61
size (timetable.models.Section attribute), 22
skip_duplicates (parsing.library.ingestor.Ingestor at-

tribute), 43
Slot (class in timetable.utils), 24
slots_to_timetables() (in module timetable.utils), 25
start() (parsing.library.base_parser.BaseParser method),

41
start() (parsing.library.tracker.NullTracker method), 52
start() (parsing.library.tracker.Tracker method), 53
StatProgressBar (class in parsing.library.viewer), 53
stats (parsing.library.tracker.NullTracker attribute), 52
stats (parsing.library.viewer.StatView attribute), 54
StatView (class in parsing.library.viewer), 54

strategy (parsing.library.digestor.Digestor attribute), 58
Student (class in student.models), 27
student.models (module), 27
student.serializers (module), 30
student.utils (module), 29
student.views (module), 27
SWITCH_SIZE (parsing.library.viewer.StatProgressBar

attribute), 54
switch_to_ptt() (semesterly.test_utils.SeleniumTestCase

method), 35

T
take_alert_action() (semesterly.test_utils.SeleniumTestCase

method), 35
term (parsing.library.tracker.NullTracker attribute), 52
text_to_be_present_in_element_attribute (class in

semesterly.test_utils), 36
text_to_be_present_in_nth_element (class in

semesterly.test_utils), 36
Textbook (class in timetable.models), 23
textbook (timetable.models.TextbookLink attribute), 23
TextbookLink (class in timetable.models), 23
TEXTBOOKS (parsing.models.DataUpdate attribute), 64
textbooks (timetable.models.Section attribute), 23
time (parsing.library.tracker.NullTracker attribute), 52
time24() (in module parsing.library.utils), 63
time_end (timetable.models.Offering attribute), 22
time_start (timetable.models.Offering attribute), 22
TimeDistributionView (class in parsing.library.viewer),

54
timeout (semesterly.test_utils.SeleniumTestCase at-

tribute), 32
Timer (class in parsing.library.viewer), 55
Timetable (class in timetable.utils), 24
timetable.models (module), 20
timetable.serializers (module), 24
timetable.utils (module), 24
timetable.views (module), 24
TimetableLinkView (class in timetable.views), 24
TimetableView (class in timetable.views), 24
title (timetable.models.Textbook attribute), 23
titlize() (in module parsing.library.utils), 63
Tracker (class in parsing.library.tracker), 52
tracker (parsing.library.digestor.Digestor attribute), 58
tracker (parsing.library.ingestor.Ingestor attribute), 43
tracker (parsing.library.validator.Validator attribute), 46
TrackerError, 53
type_ (parsing.library.logger.JSONStreamWriter at-

tribute), 50

U
UNICODE_WHITESPACE (pars-

ing.library.ingestor.Ingestor attribute), 43

82 Index

Semester.ly Documentation, Release 1.0

unstopped_description (timetable.models.Course at-
tribute), 21

unsubscribe() (in module student.views), 29
update() (in module parsing.library.utils), 63
update() (parsing.library.ingestor.Ingestor method), 45
update() (parsing.library.utils.DotDict method), 61
update_events() (student.views.UserTimetableView

method), 28
update_locked_sections() (in module timetable.utils), 25
UPDATE_TYPE (parsing.models.DataUpdate attribute),

64
update_type (parsing.models.DataUpdate attribute), 64
url_matches_regex (class in semesterly.test_utils), 36
UserTimetableView (class in student.views), 28
UserView (class in student.views), 28
usesTime() (parsing.library.logger.JSONColoredFormatter

method), 49
usesTime() (parsing.library.logger.JSONFormatter

method), 49

V
validate (parsing.library.ingestor.Ingestor attribute), 43
validate() (parsing.library.validator.Validator method), 46
validate_course() (parsing.library.validator.Validator

method), 46
validate_course_modal() (semesterly.test_utils.SeleniumTestCase

method), 35
validate_course_modal_body()

(semesterly.test_utils.SeleniumTestCase
method), 36

validate_directory() (parsing.library.validator.Validator
method), 46

validate_eval() (parsing.library.validator.Validator
method), 47

validate_final_exam() (parsing.library.validator.Validator
method), 47

validate_instructor() (parsing.library.validator.Validator
method), 47

validate_location() (parsing.library.validator.Validator
method), 47

validate_meeting() (parsing.library.validator.Validator
method), 47

validate_section() (parsing.library.validator.Validator
method), 47

validate_self_contained() (pars-
ing.library.validator.Validator method), 47

validate_subdomain() (in module helpers.decorators), 36
validate_textbook_link() (pars-

ing.library.validator.Validator method), 48
validate_time_range() (parsing.library.validator.Validator

method), 48
validate_timeable() (semesterly.test_utils.SeleniumTestCase

method), 36

validate_website() (parsing.library.validator.Validator
static method), 48

ValidateSubdomainMixin (class in helpers.mixins), 36
ValidationError, 45
ValidationWarning, 45
Validator (class in parsing.library.validator), 45
validator (parsing.library.ingestor.Ingestor attribute), 43
values() (parsing.library.ingestor.Ingestor method), 45
values() (parsing.library.utils.DotDict method), 61
vector (timetable.models.Course attribute), 21
vectorize() (searches.utils.Vectorizer method), 31
vectorize_query() (searches.utils.Searcher method), 31
vectorized_search() (searches.utils.Searcher method), 31
Vectorizer (class in searches.utils), 31
Viewer (class in parsing.library.viewer), 55
ViewerError, 55
viewitems() (parsing.library.ingestor.Ingestor method),

45
viewitems() (parsing.library.utils.DotDict method), 61
viewkeys() (parsing.library.ingestor.Ingestor method), 45
viewkeys() (parsing.library.utils.DotDict method), 61
viewvalues() (parsing.library.ingestor.Ingestor method),

45
viewvalues() (parsing.library.utils.DotDict method), 61
Vommit (class in parsing.library.digestor), 58
vommit (parsing.library.digestor.Burp attribute), 56

W
waitlist (timetable.models.Section attribute), 22
waitlist_size (timetable.models.Section attribute), 22
was_full (timetable.models.Section attribute), 23
wordify() (searches.utils.Searcher method), 31
wrap_up() (parsing.library.digestor.Absorb method), 56
wrap_up() (parsing.library.digestor.Burp method), 56
wrap_up() (parsing.library.digestor.DigestionStrategy

method), 57
wrap_up() (parsing.library.digestor.Digestor method), 58
wrap_up() (parsing.library.digestor.Vommit method), 59
write() (parsing.library.logger.JSONStreamWriter

method), 50
write_key_value() (pars-

ing.library.logger.JSONStreamWriter method),
51

write_obj() (parsing.library.logger.JSONStreamWriter
method), 51

Y
year (parsing.library.tracker.NullTracker attribute), 52
year (timetable.models.Semester attribute), 23

Index 83

	What We Believe In
	Course registration should be easy
	Education should be collaborative
	Students know best

	Python Module Index

