

Examples: Available For Download

We have prepared a 2D waveform inversion example that is inexpensive enough to run on almost any laptop, desktop, or cluster. To run this simple checkboard inversion, see these step-by-step instructions.

Some additional examples are available for download. Please review the instructions for the 2D checkerboard test case to get a sense for how to run these other inversions.

Some 2D examples based on the Marmousi model are available here [http://tigress-web.princeton.edu/~rmodrak/2dElastic].

A 3D Cartesian checkerboard example is available here [http://tigress-web.princeton.edu/~rmodrak/3dElastic].

A 3D global 1-chunk example is available here [http://tigress-web.princeton.edu/~rmodrak/ExamplesGlobal]. Please note, the compressed archive for this example is very large (> 0.5 GB). [No longer available because of file size.]

At a minimimum, one processer is required for the 2D Marmousi examples, 16 processors are required for the 3D Cartesian example, and 64 processors are required for the global 1-chunk example. See here [http://seisflows.readthedocs.org/en/latest/usage/usage.html#system-configuration] for more information about running inversions in parallel.

Note: File hosting services are provided by my alma mater. The download server may become temporarily unavailable due to system maintenance or permanently unavailable due to expiration of my account.

Examples: Available Locally

Users with accounts on “tiger.princeton.edu” can run the following inversions without having to download files or recompile executables.

2D Regional and Global

	North America

	Southern California

	Global

	Deep Earth

2D Near Surface

	Marmousi offshore

	Marmousi onshore

	overthrust offshore

	overthrust onshore

	BP anticline

	BP salt diapir

3D Cartesian

	checkerboard

3D Global

	mideast

See these instructions for running inversions on our local cluster.

Documentation

	Usage

Usage

	Overview

	Installation
	Software Prerequisites

	Hardware Prerequisites

	Job Submission

	Solver Configuration
	Writing Custom Solver Interfaces

	Design Philosophy

	System Configuration
	Writing Custom System Interfaces

	Design Philosophy

	Developer Reference
	Parameter Files

Overview

SeisFlows is a Python waveform inversion package with a growing user base in academia and industry. So far, the package has been used for production runs with a billion or so model parameters and for research on oil and gas exploration, earthquake seismology, and general nonlinear optimization problems.

To provide flexibility, SeisFlows is very modular. Users are offered choices in each of the following categories:

	workflow

	system

	solver

	pre-processing

	post-processing

	nonlinear optimization

The thing that ties everything together is the workflow. Execution of a workflow is equivalent to stepping through the code contained in workflow.main. Users are free to customize the default ‘inversion’ and ‘migration’ workflows from the main package.

A number of options exist for system and solver. By isolating system and solver machinery, users can switch from one application to another with relative ease. For example, if the study area in an earthquake tomography project expands, users can trade a regional Cartesian solver for a global solver. If a PBS cluster goes offline and a SLURM cluster comes online to replace it, users can trade the PBS system interface for a SLURM system interface.

A selection of ready-to-go system and solver interfaces is provided in the main package. Through these interfaces, SeisFlows (or prototypes of it) have run on clusters managed by the Department of Defense, Chevron Corp., Total S.A., Princeton University and other universities and institutions.

Users can also choose from various pre-processing and post-processing options. In our terminology, pre-processing consists of signal processing operations performed on seismic traces prior to the gradient computation. Post-processing consists of regularization or image processing operations carried out after the gradient computation.

If desired functionality is missing from the main package, users can contribute their own classes or overload default ones.

Installation

To install Seisflows, first clone the repository:

git clone https://github.com/rmodrak/seisflows.git

Then set environment variables. Add the following lines to .bashrc (or modify accordingly if using a shell other than bash):

export PATH=$PATH:/path/to/seisflows/scripts
export PYTHONPATH=$PYTHONPATH:/path/to/seisflows

Software Prerequisites

SeisFlows requires Python 2.7, Numpy, Scipy and Obspy. Users will need to install these packages before being able to use SeisFlows.

Forward modeling software is also a prerequisite; see Solver Configuration for more information.

Hardware Prerequisites

Access to a computer cluster is required for most applications. Base classes are provided for several common cluster configurations, including PBS and SLURM. Nonstandard configurations can often be accommodated through modifications to one of the base classes; see System Configuration for details.

Job Submission

Each job must have it own working directory within which users must supply two input files, paths.py and parameters.py.

To begin executing a workflow, simply type sfrun within a working directory. If an inversion workflow and serial system configuration, for example, are specified in the parameters file, the inversion will begin executing immediately in serial. If a PBS, SLURM, or LSF system configuration is specified instead, execution may wait until required resources become available.

Once the workflow starts running, status information is displayed to the terminal or to the file output.log. By default, updated models and other inversion results are output to the working directory.

To get a sense for how it all works, try following the step by step instructions included here [http://seisflows.readthedocs.org/en/latest/instructions_remote.html].

Solver Configuration

SeisFlows includes Python interfaces for SPECFEM2D, SPECFEM3D, and SPECFEM3D_GLOBE. While the Python interfaces are part of the SeisFlows package, the solver source code must be downloaded separately through GitHub.

After downloading the solver source code, users must configure and compile it, following the instructions in the solver user manual. Summarized briefly, the configuration and compilation procedure is:

Prior to compilation, users need to run the configure script and prepare input files such as

	parameter file

	source file

	stations file.

To successfully run the configure, you may need to install compilers, libraries, and other software in your environment.

The result of compilation is a set of binary executables, such as

	mesher

	solver

	smoothing utility

	summing utility.

Note that if solver input files change, solver executables may need to be recompiled.

After compilation, solver input files must be gathered together in one directory and solver executables in another. The absolute paths to the directories containing input files and executables must be given in paths.py as follows:

SPECFEM_DATA = '/path/to/spcefem/input/files'
SPECFEM_BIN = '/path/to/specfem/executable/files'

Writing Custom Solver Interfaces

Besides SPECFEM2D, SPECFEM3D, and SPECFEM3D_GLOBE, SeisFlows can interface with other solvers capable of running forward and adjoint simulations. Users unaffiliated with the main SeisFlows developers have succeeded in interfacing with, for example, their own finite difference solvers. For information about writing custom solver interfaces, see Developer Reference.

Design Philosophy

Integration of the solver with the other workflow components can be challenging. Here we try to give an idea of the issues involved from both a developer and a user standpoint.

	Solver computations account for most of the cost of an inversion. As a result, the solver must be written in an efficient compiled language, and wrappers must be written to integrate the compiled code with other software components.

	There is currently no mechanism for automatically compiling executables for SPECFEM2D, SPECFEM3D, or SPECFEM3D_GLOBE. Users must prepare their own SPECFEM input files and then follow the compilation procedure in the SPECFEM documentation.

	As described above, SeisFlows uses two input files, paths.py and parameters.py. Problems could arise if parameters from SeisFlows input files conflict with parameters from solver input file. Users must make sure that there are no conflicts between SeisFlows parameters and solver parameters.

	In the solver routines, it’s natural to represent velocity models as dictionaries, with different keys corresponding to different material parameters. In the optimization routines, it’s natural to represent velocity models as vectors. To convert back and forth between these two representations, a pair of utility functions–split and merge–are included in solver.base.

System Configuration

SeisFlows can run on SLURM, PBS, and LSF clusters, as well as, for very small problems, laptops or desktops. A list of available system interface classes follows. By hiding environment details behind a python interface layer, these classes provide a consistent command set across different computing environments.

PBS_SM - For small inversions on PBS clusters. All resources are allocated at the beginning and all simulations are run within a single job. Requires that individual wavefield simulations run each on a single core, making this option suitable for small 2D inversions only.

PBS_LG - For large inversions on PBS clusters. The work of the inversion is divided between multiple jobs that are coordinated by a single long-running master job. Resources are allocated on a per simulation basis. Suitable for small to medium 3D inversions in which individual wavefield simulation span several or more nodes.

SLURM_SM - For small inversions on SLURM clusters. All resources are allocated at the beginning and all simulations are run within a single job. Requires that each individual wavefield simulation runs only a single core, making this option suitable for small 2D inversions only.

SLURM_LG - For large inversions on SLURM clusters. The work of the inversion is divided between multiple jobs that are coordinated by a single long-running master job. Resources are allocated on a per simulation basis. Suitable for 3D inversions in which individual wavefield simulation span several or more nodes.

SERIAL - Tasks that are normally carried out in parallel are instead carried out one at a time. Useful for debugging, but not much else.

MULTITHREADED - On desktops or laptops with multiple cores, allows embarrassingly parallel tasks to be carried out several at a time, rather than one at a time. Can be used to run small 2D inversions on a laptop or desktop.

LSF_SM - Same as SLURM_SM and PBS_SM, except for LSF clusters.

LSF_LG - Same as SLURM_LG and PBS_LG, except for LSF clusters.

Writing Custom System Interfaces

If your needs are more specialized, please view seisflows.system source code to get a sense for how to write your own custom system interfaces. In our experience, system interfaces require no more than a few hundred lines of code, so writing your own is generally possible once you are familiar with the SeisFlows framework and your own cluster environment.

Design Philosophy

To make SeisFlows work across different environments, our approach is to wrap system commands with a thin Python layer. To handle job submission, for example, we wrap the PBS command qsub and the SLURM command sbatch with a python utility called system.submit. The result is a consistent python interface across different clusters.

Filesystem settings can be adjusted by modifying values in the PATH dictionary, which is populated from paths.py. Output files and temporary files, by default, are written to the working directory. If a value for PATH.SCRATCH is supplied, temporary files are written there instead. If each compute node has its own local filesystem, a value for PATH.LOCAL can be supplied so that temporary files required only for a local process need not be written to the global filesystem.

As the size of an inversion grows, scalability and fault tolerance become increasingly important. If a single forward simulation spans more than one node, users must select pbs_lg or slurm_lg system configurations in parameters.py. If a forward simulation fits onto a single node, users should select pbs_sm or slurm_sm instead.

In SeisFlows, the overall approach to solving system interface problems is to use lightweight Python wrappers. For complex cluster configurations, heavier-weight solutions may be required. Users are referred to SAGA or Pegasus projects for ideas.

Developer Reference

To allow classes to work with one another, each must conform to an established interface. This means certain classes must implement certain methods, with specified input and output. Required methods include

	setup methods are generic methods, called from the main workflow script and meant to provide users the flexibility to perform any required setup tasks.

	check methods are the default mechanism for parameter declaration and checking and are called just once, prior to a job being submitted through the scheduler.

Besides required methods, classes may include any number of private methods or utility functions.

Parameter Files

parameters.py contains a list of parameter names and values. Prior to a job being submitted, parameters are checked so that errors can be detected without loss of queue time or wall time. Parameters are stored in a dictionary that is accessible from anywhere in the Python code. By convention, all parameter names must be upper case. Parameter values can be floats, integers, strings or any other Python data type. Parameters can be listed in any order.

paths.py contains a list of path names and values. Prior to a job being submitted, paths are checked so that errors can be detected without loss of queue time or wall time. Paths are stored in a dictionary that is accessible from anywhere in the Python code. By convention, all names must be upper case, and all values must be absolute paths. Paths can be listed in any order.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 seisflows	

 	
 	
 seisflows.optimize	

 	
 	
 seisflows.postprocess	

 	
 	
 seisflows.preprocess	

 	
 	
 seisflows.solver	

 	
 	
 seisflows.system	

 	
 	
 seisflows.tools	

 	
 	
 seisflows.workflow	

Index

 S

S

 	
 	seisflows (module)

 	seisflows.optimize (module)

 	seisflows.postprocess (module)

 	seisflows.preprocess (module)

 	
 	seisflows.solver (module)

 	seisflows.system (module)

 	seisflows.tools (module)

 	seisflows.workflow (module)

1. Download SeisFlows

To install Seisflows, first clone the repository:

git clone https://github.com/PrincetonUniversity/seisflows

Then set environment variables. If using bash, add the following lines to .bash_profile or .bashrc (or modify accordingly, if you are using a different shell):

export PATH=$PATH:/path/to/seisflows/scripts
export PYTHONPATH=$PYTHONPATH:/path/to/seisflows

2. Load example

After installing SeisFlows, users with accounts on tiger.princeton.edu can type sfexamples at the command line to interactively choose an example. Once an example is chosen, a parameters.py file and paths.py file will be copied to the current directory.

3. Run example

To submit a job, type sfrun from within the directory containing parameters.py and paths.py files. If the serial system option is specified in parameters.py, the job will begin executing immediately. If the tiger system configuration are specified, then the job will run under SLURM when sufficient resources become available. Once the job starts running, status information will be displayed to the terminal or to the file output.log.

After trying the example once to make sure everything is working, users can explore different inversion settings by modifying entries in parameters.py. Entries in paths.py correspond to actual locations on the tigress filesystem and cannot be changed.

If you experience problems, first check that you are using the latest version of SeisFlows. To update, type git pull within the directory containing SeisFlows source code.

1. Download SeisFlows

To run SeisFlows you’ll need a Unix system with Python 2.7, Numpy, Scipy, Obspy and standard Unix utilities. After these prerequisites are in place, from the command line type:

mkdir ~/packages
cd ~/packages
git clone https://github.com/lhuang-pvamu/seisflows.git

If you prefer a location other than ~/packages , modify the commands above and below accordingly.

2. Set environment variables

Add the following lines to ~/.bashrc (modify accordingly, if you are using a shell other than bash):

export PATH=$PATH:~/packages/seisflows/scripts
export PYTHONPATH=~/packages/seisflows

Don’t forget to update any open shells:

source ~/.bashrc

3. Run “system” test

Run the following test to make sure everything is working:

~/packages/seisflows/tests/run_test_system

If a ‘’hello’’ message is displayed, the test was successful.

4. Run nonlinear optimization test

Run the following test to make sure everything is working:

~/packages/seisflows/tests/run_test_optimize

If the optimization problems are solved in 60 iterations or fewer, the test was successful.

5. Configure and compile SPECFEM2D

First, download SPECFEM2D from GitHub:

cd ~/packages
git clone https://github.com/geodynamics/specfem2d.git

Next, configure and compile SPECFEM2D using ifort (preferred) or some other fortran compiler:

cd ~/packages/specfem2d
./configure FC=ifort
make all

(Since make by itself does not compile all the required utilities, be sure to remember to type make all.) For troubleshooting any compilation issues, please view SPECFEM2D’s manual and GitHub issues page.

6. Set up checkerboard test

Download the starting model and other input files required for the waveform inversion checkerboard test. For simplicity, let’s assume the checkerboard working directory will be placed in ~/tests (if you prefer a different location, then modify the following commands accordingly):

A directory ~/tests/checkers is now being created. Among other files, parameters.py and paths.py are being downloaded.

After the download completes, make sure that all paths specified in paths.py are correct. For example, if you compiled SPECFEM2D somewhere other than ~/packages/specfem2d-d745c542, you will need to modify the SPECFEM2D_BIN entry accordingly.

Next, take a minute to view the parameters.py file and note the close similarity between the first set of parameters and the directory structure [https://github.com/PrincetonUniversity/seisflows/tree/master/seisflows] of the SeisFlows repository.

Note: File hosting services are provided by my alma mater. The download server may become temporarily unavailable due to system maintenance or permanently unavailable due to expiration of my account.

7. Run checkerboard test in serial

To run the checkerboard test type:

sfclean ; sfrun

within ~/tests/checkers.

For now, the inversion will run only a single event on only a single processor. Once we verify that everything is working correctly in this case, we can move on to multiple events and multiple processors by modifying parameters.py.

8. Run checkerboard test in parallel

On a laptop or desktop with multiple cores, the work of an inversion can be carried out in parallel. To run the checkerboard example in parallel over events (that is, with multiple event simulations running at the same time on different cores), make the following changes to parameters.py:

	to invert all available events instead of just one event, change NTASK from 1 to 25

	change SYSTEM from serial to multithreaded

	add a parameter NPROCMAX and set it to the number of cores available on your machine.

Besides running in parallel over events, the work of an individual event simulation can be parallelized over model regions. See the SPECFEM3D user manual for more information. Both parallelization over events and over model regions can be used at the same time under SeisFlows. The current example, however, illustrates only event parallelism.

Besides serial and multithreaded settings for running SeisFlows on laptops and desktops, there are also PBS, SLURM, and LSF options for running on clusters. See here [http://seisflows.readthedocs.org/en/latest/usage/usage.html#system-configuration] for more information.

9. Visualize inversion results

Visualization requires software such as Pylab, Matlab, or Paraview.

With any such software, one approach for plotting SPECFEM2D models or kernels is to interpolate from the unstructured numerical mesh on which the model parameters are defined to a uniform rectangular grid. The Pylab script plot2d [http://tigress-web.princeton.edu/~rmodrak/visualize/plot2d] illustrates this approach.

Another method is to compute a Delaunay triangulation and plot the model or kernel over the unstructured mesh itself. A Pylab script plot2d_delaunay [http://tigress-web.princeton.edu/~rmodrak/visualize/plot2d_delaunay] is available for illustration.

To plot results from the checkerboard example using plot2d, run the following command from the working directory:

plot2d output/model_init/proc000000_x.bin \
 output/model_init/proc000000_z.bin \
 output/model_0001/proc000000_vs.bin

(The command line syntax is the same for the other script.) For either script to work, Pylab must be installed and the Pylab backend properly configured. If you prefer visualization software other than Pylab, feel free to use the above scripts for reference in writing your plotting own tools.

10. Creating your own examples

It may be clear by now that with SeisFlows, wave simulations must be performed using an external software package such as SPECFEM2D or SPECFEM3D. The ability to interface with external solvers ensures flexibility, and the choice of SPECFEM as a default option gives access to cutting-edge meshing and hardware accelaration capabilities. However, the use of external package also creates additional work for the user because, to carry set up one’s own inversion, one must become familiar not only with the SeisFlows package, but also with a separate solver package.

To move beyond the above checkerboard test case, familiarity with how to set up simulations with SPECFEM–in paricular with how to create models in SPECFEM’s idionsyncratic binary format–is essential. Issue #83 [https://github.com/rmodrak/seisflows/issues/83] may be helpful in this regard. Trying the two other examples available for download [https://github.com/rmodrak/seisflows/blob/master/docs/index.rst#examples-available-for-download] may also be useful.

Modules

	seisflows.optimize package
	Subpackages
	seisflows.optimize.lib package
	Submodules

	seisflows.optimize.lib.LBFGS module

	seisflows.optimize.lib.LCG module

	seisflows.optimize.lib.NLCG module

	seisflows.optimize.lib.line_search module

	Module contents

	Submodules

	seisflows.optimize.default module

	Module contents

	seisflows.postprocess package
	Submodules

	seisflows.postprocess.default module

	Module contents

	seisflows.preprocess package
	Submodules

	seisflows.preprocess.default module

	Module contents

	seisflows.seistools package
	Subpackages
	seisflows.seistools.segy package
	Submodules

	seisflows.seistools.segy.headers module

	seisflows.seistools.segy.reader module

	seisflows.seistools.segy.writer module

	Module contents

	Submodules

	seisflows.seistools.adjoint module

	seisflows.seistools.core module

	seisflows.seistools.graphics module

	seisflows.seistools.misfit module

	seisflows.seistools.signal module

	seisflows.seistools.specfem2d module

	seisflows.seistools.specfem3d module

	seisflows.seistools.specfem3d_globe module

	Module contents

	seisflows.solver package
	Submodules

	seisflows.solver.specfem2d module

	seisflows.solver.specfem3d module

	Module contents

	seisflows.system package
	Submodules

	seisflows.system.pbs_torque module

	seisflows.system.serial module

	seisflows.system.slurm module

	seisflows.system.slurm_big_job module

	Module contents

	seisflows.tools package
	Submodules

	seisflows.tools.arraytools module

	seisflows.tools.codetools module

	seisflows.tools.configtools module

	seisflows.tools.iotools module

	seisflows.tools.unix module

	Module contents

	seisflows.workflow package
	Submodules

	seisflows.workflow.inversion module

	seisflows.workflow.migration module

	seisflows.workflow.modeling module

	Module contents

seisflows.extensions.optimize package

Submodules

seisflows.extensions.optimize.GaussNewton module

seisflows.extensions.optimize.Newton module

Module contents

seisflows.extensions.solver package

Submodules

seisflows.extensions.solver.specfem2d_Microseismic module

seisflows.extensions.solver.specfem2d_SourceEncoding module

seisflows.extensions.solver.specfem3d_ChenTromp module

seisflows.extensions.solver.specfem3d_Thomsen module

seisflows.extensions.solver.specfem3d_legacy module

Module contents

seisflows.extensions.system package

Submodules

seisflows.extensions.system.Tiger module

seisflows.extensions.system.TigerBigJob module

Module contents

seisflows.extensions.workflow package

Submodules

seisflows.extensions.workflow.FwiGaussNewton module

seisflows.extensions.workflow.FwiNewton module

seisflows.extensions.workflow.FwiSourceEncoding module

seisflows.extensions.workflow.HeruModelUpdate module

Module contents

seisflows.extensions package

Subpackages

	seisflows.extensions.optimize package
	Submodules

	seisflows.extensions.optimize.GaussNewton module

	seisflows.extensions.optimize.Newton module

	Module contents

	seisflows.extensions.solver package
	Submodules

	seisflows.extensions.solver.specfem2d_Microseismic module

	seisflows.extensions.solver.specfem2d_SourceEncoding module

	seisflows.extensions.solver.specfem3d_ChenTromp module

	seisflows.extensions.solver.specfem3d_Thomsen module

	seisflows.extensions.solver.specfem3d_legacy module

	Module contents

	seisflows.extensions.system package
	Submodules

	seisflows.extensions.system.Tiger module

	seisflows.extensions.system.TigerBigJob module

	Module contents

	seisflows.extensions.workflow package
	Submodules

	seisflows.extensions.workflow.FwiGaussNewton module

	seisflows.extensions.workflow.FwiNewton module

	seisflows.extensions.workflow.FwiSourceEncoding module

	seisflows.extensions.workflow.HeruModelUpdate module

	Module contents

Module contents

seisflows.optimize.lib package

Submodules

seisflows.optimize.lib.LBFGS module

seisflows.optimize.lib.LCG module

seisflows.optimize.lib.NLCG module

seisflows.optimize.lib.line_search module

Module contents

seisflows.optimize package

Subpackages

	seisflows.optimize.lib package
	Submodules

	seisflows.optimize.lib.LBFGS module

	seisflows.optimize.lib.LCG module

	seisflows.optimize.lib.NLCG module

	seisflows.optimize.lib.line_search module

	Module contents

Submodules

seisflows.optimize.default module

Module contents

seisflows.postprocess package

Submodules

seisflows.postprocess.default module

Module contents

seisflows.preprocess package

Submodules

seisflows.preprocess.default module

Module contents

seisflows.seistools.segy package

Submodules

seisflows.seistools.segy.headers module

seisflows.seistools.segy.reader module

seisflows.seistools.segy.writer module

Module contents

seisflows.seistools package

Subpackages

	seisflows.seistools.segy package
	Submodules

	seisflows.seistools.segy.headers module

	seisflows.seistools.segy.reader module

	seisflows.seistools.segy.writer module

	Module contents

Submodules

seisflows.seistools.adjoint module

seisflows.seistools.core module

seisflows.seistools.graphics module

seisflows.seistools.misfit module

seisflows.seistools.signal module

seisflows.seistools.specfem2d module

seisflows.seistools.specfem3d module

seisflows.seistools.specfem3d_globe module

Module contents

seisflows.solver package

Submodules

seisflows.solver.specfem2d module

seisflows.solver.specfem3d module

Module contents

seisflows.system package

Submodules

seisflows.system.pbs_torque module

seisflows.system.serial module

seisflows.system.slurm module

seisflows.system.slurm_big_job module

Module contents

seisflows.tools package

Submodules

seisflows.tools.arraytools module

seisflows.tools.codetools module

seisflows.tools.configtools module

seisflows.tools.iotools module

seisflows.tools.unix module

Module contents

seisflows.workflow package

Submodules

seisflows.workflow.inversion module

seisflows.workflow.migration module

seisflows.workflow.modeling module

Module contents

seisflows package

Subpackages

	seisflows.extensions package
	Subpackages
	seisflows.extensions.optimize package
	Submodules

	seisflows.extensions.optimize.GaussNewton module

	seisflows.extensions.optimize.Newton module

	Module contents

	seisflows.extensions.solver package
	Submodules

	seisflows.extensions.solver.specfem2d_Microseismic module

	seisflows.extensions.solver.specfem2d_SourceEncoding module

	seisflows.extensions.solver.specfem3d_ChenTromp module

	seisflows.extensions.solver.specfem3d_Thomsen module

	seisflows.extensions.solver.specfem3d_legacy module

	Module contents

	seisflows.extensions.system package
	Submodules

	seisflows.extensions.system.Tiger module

	seisflows.extensions.system.TigerBigJob module

	Module contents

	seisflows.extensions.workflow package
	Submodules

	seisflows.extensions.workflow.FwiGaussNewton module

	seisflows.extensions.workflow.FwiNewton module

	seisflows.extensions.workflow.FwiSourceEncoding module

	seisflows.extensions.workflow.HeruModelUpdate module

	Module contents

	Module contents

	seisflows.optimize package
	Subpackages
	seisflows.optimize.lib package
	Submodules

	seisflows.optimize.lib.LBFGS module

	seisflows.optimize.lib.LCG module

	seisflows.optimize.lib.NLCG module

	seisflows.optimize.lib.line_search module

	Module contents

	Submodules

	seisflows.optimize.default module

	Module contents

	seisflows.postprocess package
	Submodules

	seisflows.postprocess.default module

	Module contents

	seisflows.preprocess package
	Submodules

	seisflows.preprocess.default module

	Module contents

	seisflows.seistools package
	Subpackages
	seisflows.seistools.segy package
	Submodules

	seisflows.seistools.segy.headers module

	seisflows.seistools.segy.reader module

	seisflows.seistools.segy.writer module

	Module contents

	Submodules

	seisflows.seistools.adjoint module

	seisflows.seistools.core module

	seisflows.seistools.graphics module

	seisflows.seistools.misfit module

	seisflows.seistools.signal module

	seisflows.seistools.specfem2d module

	seisflows.seistools.specfem3d module

	seisflows.seistools.specfem3d_globe module

	Module contents

	seisflows.solver package
	Submodules

	seisflows.solver.specfem2d module

	seisflows.solver.specfem3d module

	Module contents

	seisflows.system package
	Submodules

	seisflows.system.pbs_torque module

	seisflows.system.serial module

	seisflows.system.slurm module

	seisflows.system.slurm_big_job module

	Module contents

	seisflows.tools package
	Submodules

	seisflows.tools.arraytools module

	seisflows.tools.codetools module

	seisflows.tools.configtools module

	seisflows.tools.iotools module

	seisflows.tools.unix module

	Module contents

	seisflows.workflow package
	Submodules

	seisflows.workflow.inversion module

	seisflows.workflow.migration module

	seisflows.workflow.modeling module

	Module contents

Module contents

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Examples: Available For Download

 		
 Usage

 		
 Overview

 		
 Installation

 		
 Software Prerequisites

 		
 Hardware Prerequisites

 		
 Job Submission

 		
 Solver Configuration

 		
 Writing Custom Solver Interfaces

 		
 Design Philosophy

 		
 System Configuration

 		
 Writing Custom System Interfaces

 		
 Design Philosophy

 		
 Developer Reference

 		
 Parameter Files

