

    
      
          
            
  
Welcome to segmentation_models_pytorch’s documentation!


Contents:


	API
	Unet

	Linknet

	FPN

	PSPNet

	PAN











[image: logo]

Python library with Neural Networks for Image
Segmentation based on  PyTorch [https://pytorch.org/]



[image: PyPI version] [image: Build Status] [https://travis-ci.com/qubvel/segmentation_models.pytorch] [image: Generic badge] [https://shields.io/]



The main features of this library are:


	High level API (just two lines to create neural network)


	5 models architectures for binary and multi class segmentation
(including legendary Unet)


	46 available encoders for each architecture


	All encoders have pre-trained weights for faster and better
convergence





Contents


	Welcome to segmentation_models_pytorch’s documentation!


	Quick start


	Examples


	Models


	Architectures


	Encoders






	Models API


	Installation


	Competitions won with the library


	License


	Contributing


	Indices and tables











Quick start

Since the library is built on the PyTorch framework, created
segmentation model is just a PyTorch nn.Module, which can be created as
easy as:

import segmentation_models_pytorch as smp

model = smp.Unet()





Depending on the task, you can change the network architecture by
choosing backbones with fewer or more parameters and use pretrainded
weights to initialize it:

model = smp.Unet('resnet34', encoder_weights='imagenet')





Change number of output classes in the model:

model = smp.Unet('resnet34', classes=3, activation='softmax')





All models have pretrained encoders, so you have to prepare your data
the same way as during weights pretraining:

from segmentation_models_pytorch.encoders import get_preprocessing_fn

preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet')








Examples


	Training model for cars segmentation on CamVid dataset
here [https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb].


	Training SMP model with
Catalyst [https://github.com/catalyst-team/catalyst] (high-level
framework for PyTorch), Ttach [https://github.com/qubvel/ttach]
(TTA library for PyTorch) and
Albumentations [https://github.com/albu/albumentations] (fast
image augmentation library) -
here [https://github.com/catalyst-team/catalyst/blob/master/examples/notebooks/segmentation-tutorial.ipynb]
[image: Open In Colab] [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/segmentation-tutorial.ipynb]







Models


Architectures


	Unet [https://arxiv.org/abs/1505.04597]


	Linknet [https://arxiv.org/abs/1707.03718]


	FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf]


	PSPNet [https://arxiv.org/abs/1612.01105]


	PAN [https://arxiv.org/abs/1805.10180]





	
class segmentation_models_pytorch.Unet(encoder_name: str = 'resnet34', encoder_depth: int = 5, encoder_weights: str = 'imagenet', decoder_use_batchnorm: bool = True, decoder_channels: List[int] = (256, 128, 64, 32, 16), decoder_attention_type: Optional[str] = None, in_channels: int = 3, classes: int = 1, activation: Union[str, callable, None] = None, aux_params: Optional[dict] = None)

	Unet [https://arxiv.org/pdf/1505.04597] is a fully convolution neural network for image semantic segmentation


	Parameters

	
	encoder_name – name of classification model (without last dense layers) used as feature
extractor to build segmentation model.


	encoder_depth (int) – number of stages used in decoder, larger depth - more features are generated.
e.g. for depth=3 encoder will generate list of features with following spatial shapes
[(H,W), (H/2, W/2), (H/4, W/4), (H/8, W/8)], so in general the deepest feature tensor will have
spatial resolution (H/(2^depth), W/(2^depth)]


	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).


	decoder_channels – list of numbers of Conv2D layer filters in decoder blocks


	decoder_use_batchnorm – if True, BatchNormalisation layer between Conv2D and Activation layers
is used. If ‘inplace’ InplaceABN will be used, allows to decrease memory consumption.
One of [True, False, ‘inplace’]


	decoder_attention_type – attention module used in decoder of the model
One of [None, scse]


	in_channels – number of input channels for model, default is 3.


	classes – a number of classes for output (output shape - (batch, classes, h, w)).


	activation – activation function to apply after final convolution;
One of [sigmoid, softmax, logsoftmax, identity, callable, None]


	aux_params – if specified model will have additional classification auxiliary output
build on top of encoder, supported params:



	classes (int): number of classes


	pooling (str): one of ‘max’, ‘avg’. Default is ‘avg’.


	dropout (float): dropout factor in [0, 1)


	activation (str): activation function to apply “sigmoid”/”softmax” (could be None to return logits)














	Returns

	Unet



	Return type

	torch.nn.Module












Encoders








	Encoder

	Weights

	Params, M





	resnet18

	imagenet

	11M



	resnet34

	imagenet

	21M



	resnet50

	imagenet

	23M



	resnet101

	imagenet

	42M



	resnet152

	imagenet

	58M



	resnext50_32x4d

	imagenet

	22M



	resnext101_32x8d

	imagenetinstagram

	86M



	resnext101_32x16d

	instagram

	191M



	resnext101_32x32d

	instagram

	466M



	resnext101_32x48d

	instagram

	826M



	dpn68

	imagenet

	11M



	dpn68b

	imagenet+5k

	11M



	dpn92

	imagenet+5k

	34M



	dpn98

	imagenet

	58M



	dpn107

	imagenet+5k

	84M



	dpn131

	imagenet

	76M



	vgg11

	imagenet

	9M



	vgg11_bn

	imagenet

	9M



	vgg13

	imagenet

	9M



	vgg13_bn

	imagenet

	9M



	vgg16

	imagenet

	14M



	vgg16_bn

	imagenet

	14M



	vgg19

	imagenet

	20M



	vgg19_bn

	imagenet

	20M



	senet154

	imagenet

	113M



	se_resnet50

	imagenet

	26M



	se_resnet101

	imagenet

	47M



	se_resnet152

	imagenet

	64M



	se_resnext50_32x4d

	imagenet

	25M



	se_resnext101_32x4d

	imagenet

	46M



	densenet121

	imagenet

	6M



	densenet169

	imagenet

	12M



	densenet201

	imagenet

	18M



	densenet161

	imagenet

	26M



	inceptionresnetv2

	imagenetimagenet+background

	54M



	inceptionv4

	imagenetimagenet+background

	41M



	efficientnet-b0

	imagenet

	4M



	efficientnet-b1

	imagenet

	6M



	efficientnet-b2

	imagenet

	7M



	efficientnet-b3

	imagenet

	10M



	efficientnet-b4

	imagenet

	17M



	efficientnet-b5

	imagenet

	28M



	efficientnet-b6

	imagenet

	40M



	efficientnet-b7

	imagenet

	63M



	mobilenet_v2

	imagenet

	2M



	xception

	imagenet

	22M











Models API


	model.encoder - pretrained backbone to extract features of
different spatial resolution


	model.decoder - depends on models architecture
(Unet/Linknet/PSPNet/FPN)


	model.segmentation_head - last block to produce required number
of mask channels (include also optional upsampling and activation)


	model.classification_head - optional block which create
classification head on top of encoder


	model.forward(x) - sequentially pass x through model`s
encoder, decoder and segmentation head (and classification head if
specified)




Input channels parameter allow you to create models, which process
tensors with arbitrary number of channels. If you use pretrained weights
from imagenet - weights of first convolution will be reused for 1- or 2-
channels inputs, for input channels > 4 weights of first convolution
will be initialized randomly.

model = smp.FPN('resnet34', in_channels=1)
mask = model(torch.ones([1, 1, 64, 64]))





All models support aux_params parameters, which is default set to
None. If aux_params = None than classification auxiliary output
is not created, else model produce not only mask, but also label
output with shape NC. Classification head consist of
GlobalPooling->Dropout(optional)->Linear->Activation(optional) layers,
which can be configured by aux_params as follows:

aux_params=dict(
    pooling='avg',             # one of 'avg', 'max'
    dropout=0.5,               # dropout ratio, default is None
    activation='sigmoid',      # activation function, default is None
    classes=4,                 # define number of output labels
)
model = smp.Unet('resnet34', classes=4, aux_params=aux_params)
mask, label = model(x)





Depth parameter specify a number of downsampling operations in encoder,
so you can make your model lighted if specify smaller depth.

model = smp.Unet('resnet34', encoder_depth=4)








Installation

PyPI version:

$ pip install segmentation-models-pytorch





Latest version from source:

$ pip install git+https://github.com/qubvel/segmentation_models.pytorch








Competitions won with the library

Segmentation Models package is widely used in the image segmentation
competitions.
Here [https://github.com/qubvel/segmentation_models.pytorch/blob/master/HALLOFFAME.md]
you can find competitions, names of the winners and links to their
solutions.




License

Project is distributed under MIT
License [https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE]




Contributing

$ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev pytest -p no:cacheprovider





$ docker build -f docker/Dockerfile.dev -t smp:dev . && docker run --rm smp:dev python misc/generate_table.py








Indices and tables


	Index


	Module Index


	Search Page










          

      

      

    

  

    
      
          
            
  
API


Unet


	
class segmentation_models_pytorch.Unet(encoder_name: str = 'resnet34', encoder_depth: int = 5, encoder_weights: str = 'imagenet', decoder_use_batchnorm: bool = True, decoder_channels: List[int] = (256, 128, 64, 32, 16), decoder_attention_type: Optional[str] = None, in_channels: int = 3, classes: int = 1, activation: Union[str, callable, None] = None, aux_params: Optional[dict] = None)

	Unet [https://arxiv.org/pdf/1505.04597] is a fully convolution neural network for image semantic segmentation


	Parameters

	
	encoder_name – name of classification model (without last dense layers) used as feature
extractor to build segmentation model.


	encoder_depth (int) – number of stages used in decoder, larger depth - more features are generated.
e.g. for depth=3 encoder will generate list of features with following spatial shapes
[(H,W), (H/2, W/2), (H/4, W/4), (H/8, W/8)], so in general the deepest feature tensor will have
spatial resolution (H/(2^depth), W/(2^depth)]


	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).


	decoder_channels – list of numbers of Conv2D layer filters in decoder blocks


	decoder_use_batchnorm – if True, BatchNormalisation layer between Conv2D and Activation layers
is used. If ‘inplace’ InplaceABN will be used, allows to decrease memory consumption.
One of [True, False, ‘inplace’]


	decoder_attention_type – attention module used in decoder of the model
One of [None, scse]


	in_channels – number of input channels for model, default is 3.


	classes – a number of classes for output (output shape - (batch, classes, h, w)).


	activation – activation function to apply after final convolution;
One of [sigmoid, softmax, logsoftmax, identity, callable, None]


	aux_params – if specified model will have additional classification auxiliary output
build on top of encoder, supported params:



	classes (int): number of classes


	pooling (str): one of ‘max’, ‘avg’. Default is ‘avg’.


	dropout (float): dropout factor in [0, 1)


	activation (str): activation function to apply “sigmoid”/”softmax” (could be None to return logits)














	Returns

	Unet



	Return type

	torch.nn.Module












Linknet


	
class segmentation_models_pytorch.Linknet(encoder_name: str = 'resnet34', encoder_depth: int = 5, encoder_weights: Optional[str] = 'imagenet', decoder_use_batchnorm: bool = True, in_channels: int = 3, classes: int = 1, activation: Union[str, callable, None] = None, aux_params: Optional[dict] = None)

	Linknet [https://arxiv.org/pdf/1707.03718.pdf] is a fully convolution neural network for fast image semantic segmentation


Note

This implementation by default has 4 skip connections (original - 3).




	Parameters

	
	encoder_name – name of classification model (without last dense layers) used as feature
extractor to build segmentation model.


	encoder_depth (int) – number of stages used in decoder, larger depth - more features are generated.
e.g. for depth=3 encoder will generate list of features with following spatial shapes
[(H,W), (H/2, W/2), (H/4, W/4), (H/8, W/8)], so in general the deepest feature will have
spatial resolution (H/(2^depth), W/(2^depth)]


	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).


	decoder_use_batchnorm – if True, BatchNormalisation layer between Conv2D and Activation layers
is used. If ‘inplace’ InplaceABN will be used, allows to decrease memory consumption.
One of [True, False, ‘inplace’]


	in_channels – number of input channels for model, default is 3.


	classes – a number of classes for output (output shape - (batch, classes, h, w)).


	activation – activation function used in .predict(x) method for inference.
One of [sigmoid, softmax, callable, None]


	aux_params – if specified model will have additional classification auxiliary output
build on top of encoder, supported params:



	classes (int): number of classes


	pooling (str): one of ‘max’, ‘avg’. Default is ‘avg’.


	dropout (float): dropout factor in [0, 1)


	activation (str): activation function to apply “sigmoid”/”softmax” (could be None to return logits)














	Returns

	Linknet



	Return type

	torch.nn.Module












FPN


	
class segmentation_models_pytorch.FPN(encoder_name: str = 'resnet34', encoder_depth: int = 5, encoder_weights: Optional[str] = 'imagenet', decoder_pyramid_channels: int = 256, decoder_segmentation_channels: int = 128, decoder_merge_policy: str = 'add', decoder_dropout: float = 0.2, in_channels: int = 3, classes: int = 1, activation: Optional[str] = None, upsampling: int = 4, aux_params: Optional[dict] = None)

	FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf] is a fully convolution neural network for image semantic segmentation
:param encoder_name: name of classification model (without last dense layers) used as feature


extractor to build segmentation model.





	Parameters

	
	encoder_depth – number of stages used in decoder, larger depth - more features are generated.
e.g. for depth=3 encoder will generate list of features with following spatial shapes
[(H,W), (H/2, W/2), (H/4, W/4), (H/8, W/8)], so in general the deepest feature will have
spatial resolution (H/(2^depth), W/(2^depth)]


	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).


	decoder_pyramid_channels – a number of convolution filters in Feature Pyramid of FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf].


	decoder_segmentation_channels – a number of convolution filters in segmentation head of FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf].


	decoder_merge_policy – determines how to merge outputs inside FPN.
One of [add, cat]


	decoder_dropout – spatial dropout rate in range (0, 1).


	in_channels – number of input channels for model, default is 3.


	classes – a number of classes for output (output shape - (batch, classes, h, w)).


	activation (str, callable) – activation function used in .predict(x) method for inference.
One of [sigmoid, softmax2d, callable, None]


	upsampling – optional, final upsampling factor
(default is 4 to preserve input -> output spatial shape identity)


	aux_params – if specified model will have additional classification auxiliary output
build on top of encoder, supported params:



	classes (int): number of classes


	pooling (str): one of ‘max’, ‘avg’. Default is ‘avg’.


	dropout (float): dropout factor in [0, 1)


	activation (str): activation function to apply “sigmoid”/”softmax” (could be None to return logits)














	Returns

	FPN



	Return type

	torch.nn.Module












PSPNet


	
class segmentation_models_pytorch.PSPNet(encoder_name: str = 'resnet34', encoder_weights: Optional[str] = 'imagenet', encoder_depth: int = 3, psp_out_channels: int = 512, psp_use_batchnorm: bool = True, psp_dropout: float = 0.2, in_channels: int = 3, classes: int = 1, activation: Union[str, callable, None] = None, upsampling: int = 8, aux_params: Optional[dict] = None)

	PSPNet [https://arxiv.org/pdf/1612.01105.pdf] is a fully convolution neural network for image semantic segmentation


	Parameters

	
	encoder_name – name of classification model used as feature
extractor to build segmentation model.


	encoder_depth – number of stages used in decoder, larger depth - more features are generated.
e.g. for depth=3 encoder will generate list of features with following spatial shapes
[(H,W), (H/2, W/2), (H/4, W/4), (H/8, W/8)], so in general the deepest feature will have
spatial resolution (H/(2^depth), W/(2^depth)]


	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).


	psp_out_channels – number of filters in PSP block.


	psp_use_batchnorm – if True, BatchNormalisation layer between Conv2D and Activation layers
is used. If ‘inplace’ InplaceABN will be used, allows to decrease memory consumption.
One of [True, False, ‘inplace’]


	psp_dropout – spatial dropout rate between 0 and 1.


	in_channels – number of input channels for model, default is 3.


	classes – a number of classes for output (output shape - (batch, classes, h, w)).


	activation – activation function used in .predict(x) method for inference.
One of [sigmoid, softmax, callable, None]


	upsampling – optional, final upsampling factor
(default is 8 for depth=3 to preserve input -> output spatial shape identity)


	aux_params – if specified model will have additional classification auxiliary output
build on top of encoder, supported params:



	classes (int): number of classes


	pooling (str): one of ‘max’, ‘avg’. Default is ‘avg’.


	dropout (float): dropout factor in [0, 1)


	activation (str): activation function to apply “sigmoid”/”softmax” (could be None to return logits)














	Returns

	PSPNet



	Return type

	torch.nn.Module












PAN


	
class segmentation_models_pytorch.pan.model.PAN(encoder_name: str = 'resnet34', encoder_weights: str = 'imagenet', encoder_dilation: bool = True, decoder_channels: int = 32, in_channels: int = 3, classes: int = 1, activation: Union[str, callable, None] = None, upsampling: int = 4, aux_params: Optional[dict] = None)

	Implementation of _PAN (Pyramid Attention Network).
Currently works with shape of input tensor >= [B x C x 128 x 128] for pytorch <= 1.1.0
and with shape of input tensor >= [B x C x 256 x 256] for pytorch == 1.3.1


	Parameters

	
	encoder_name – name of classification model (without last dense layers) used as feature
extractor to build segmentation model.


	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).


	encoder_dilation – Flag to use dilation in encoder last layer.
Doesn’t work with [*ception*, vgg*, densenet*] backbones, default is True.


	decoder_channels – Number of Conv2D layer filters in decoder blocks


	in_channels – number of input channels for model, default is 3.


	classes – a number of classes for output (output shape - (batch, classes, h, w)).


	activation – activation function to apply after final convolution;
One of [sigmoid, softmax, logsoftmax, identity, callable, None]


	upsampling – optional, final upsampling factor
(default is 4 to preserve input -> output spatial shape identity)


	aux_params – if specified model will have additional classification auxiliary output
build on top of encoder, supported params:



	classes (int): number of classes


	pooling (str): one of ‘max’, ‘avg’. Default is ‘avg’.


	dropout (float): dropout factor in [0, 1)


	activation (str): activation function to apply “sigmoid”/”softmax” (could be None to return logits)














	Returns

	PAN



	Return type

	torch.nn.Module















          

      

      

    

  

    
      
          
            

Index



 F
 | L
 | P
 | U
 


F


  	
      	FPN (class in segmentation_models_pytorch)


  





L


  	
      	Linknet (class in segmentation_models_pytorch)


  





P


  	
      	PAN (class in segmentation_models_pytorch.pan.model)


  

  	
      	PSPNet (class in segmentation_models_pytorch)


  





U


  	
      	Unet (class in segmentation_models_pytorch), [1]


  







          

      

      

    

  _static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to segmentation_models_pytorch’s documentation!
        


        		
          API
          
            		
              Unet
            


            		
              Linknet
            


            		
              FPN
            


            		
              PSPNet
            


            		
              PAN
            


          


        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_images/488a4e8f2df009e6991bf54bb397aac9bde4649f.png
Segmenoation
Models






_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





