

Standard Energy Efficiency Data (SEED) Platform

The Standard Energy Efficiency Data (SEED) Platform™ is a web-based application
that helps organizations easily manage data on the energy performance of large
groups of buildings. Users can combine data from multiple sources, clean and
validate it, and share the information with others. The software application
provides an easy, flexible, and cost-effective method to improve the quality
and availability of data to help demonstrate the economic and environmental
benefits of energy efficiency, to implement programs, and to target investment
activity.

The SEED application is written in Python/Django, with AngularJS, Bootstrap,
and other JavaScript libraries used for the front-end. The back-end database
is required to be PostgreSQL.

The SEED web application provides both a browser-based interface for users to
upload and manage their building data, as well as a full set of APIs that app
developers can use to access these same data management functions.

Work on SEED Platform is managed by the National Renewable Energy Laboratory,
with funding from the U.S. Department of Energy.

	Getting Started
	Development Setup

	Deployment Guide
	AWS Setup

	General Linux Setup

	Migrations

	Monitoring

	API
	Authentication

	Payloads

	Responses

	API Endpoints

	Data Model
	parents and children

	manual-matching vs auto-matching

	what really happens to the BuildingSnapshot table on import (and when)

	what really happens to the CanonicalBuilding table on import (and when)

	organization

	*_source_id fields

	extra_data

	saving and possible data loss

	Data Quality

	Mapping
	Import

	Mapping

	Matching

	Pairing

	Modules
	Configuration

	Data Package

	Data Importer Package

	Features Package

	Green Button Package

	Landing Package

	Library Packages

	Mapping Package

	Managers Package

	Models

	Public Package

	SEED Package

	Serializers Package

	Tests Package

	URLs Package

	Utilities Package

	Views Package

	Developer Resources
	General Notes

	Django Notes

	AngularJS Integration Notes

	Logging

	BEDES Compliance and Managing Columns

	Resetting the Database

	Migrating the Database

	Testing

	Release Instructions

	License

	Help
	For SEED-Platform Users

	For SEED-Platform Developers

	Frequently Asked Questions
	Questions

	Issues

Updating this documentation

This python code documentation was generated by running the following:

$ pip install -r requirements/local.txt
$ sphinx-apidoc -o docs/source/modules . seed/lib/mcm seed/lib/superperms
$ cd docs
$ make html

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Development Setup

	Installation on OSX
	Quick Installation Instructions

	Prerequisites

	PostgreSQL 11.1

	PostGIS 2.5

	Python Packages

	NodeJS/npm

	Configure Django and Databases

	MapQuest API Key

	Run Django Migrations

	Django Admin User

	Install Redis

	Install JavaScript Dependencies

	Start the Server

	Login

	Installation using Docker
	Docker Native (Ubuntu)

	Docker Native (Windows/OSX)

	Building and Configuring Containers

Installation on OSX

These instructions are for installing and running SEED on Mac OSX in
development mode.

Quick Installation Instructions

This section is intended for developers who may already have their machine
ready for general development. If this is not the case, skip to Prerequisites. Note that SEED uses python 3.

	install Postgres 11.1 and redis for cache and message broker

	install PostGIS 2.5 and enable it on the database using CREATE EXTENSION postgis;

	use a virtualenv (if desired)

	git clone git@github.com:seed-platform/seed.git

	create a local_untracked.py in the config/settings folder and add CACHE and DB config (example local_untracked.py.dist)

	to enable geocoding, get MapQuest API key and attach it to your organization

	export DJANGO_SETTINGS_MODULE=config.settings.dev in all terminals used by SEED (celery terminal and runserver terminal)

	
	pip install -r requirements/local.txt
	
	for condas python, you way need to run this command to get pip install to succeed: conda install -c conda-forge python-crfsuite

	bin/install_javascript_dependencies.sh

	./manage.py migrate

	./manage.py create_default_user

	./manage.py runserver

	DJANGO_SETTINGS_MODULE=config.settings.dev celery -A seed worker -l info -c 4 –maxtasksperchild=1000 –events

	navigate to http://127.0.0.1:8000/app/#/profile/admin in your browser to add users to organizations

	main app runs at 127.0.0.1:8000/app

The python manage.py create_default_user will setup a default superuser
which must be used to access the system the first time. The management command
can also create other superusers.

./manage.py create_default_user --username=demo@seed.lbl.gov --organization=lbl --password=demo123

Prerequisites

These instructions assume you have MacPorts [https://www.macports.org/] or Homebrew [http://brew.sh/]. Your system
should have the following dependencies already installed:

	git (port install git or brew install git)

	graphviz (brew install graphviz)

	pyenv [https://github.com/pyenv/pyenv] (Recommended)

Note

Although you could install Python packages globally, this is the
easiest way to install Python packages. Setting these up first will
help avoid polluting your base Python installation and make it much
easier to switch between different versions of the code.

brew install pyenv
pyenv install <python3 version you want>
pyenv virtualenv <python3 version you want> seed
pyenv local seed

PostgreSQL 11.1

MacPorts:

sudo su - root
port install postgresql94-server postgresql94 postgresql94-doc
init db
mkdir -p /opt/local/var/db/postgresql94/defaultdb
chown postgres:postgres /opt/local/var/db/postgresql94/defaultdb
su postgres -c '/opt/local/lib/postgresql94/bin/initdb -D /opt/local/var/db/postgresql94/defaultdb'

At this point, you may want to add start/stop scripts or aliases to
~/.bashrc or your virtualenv ``postactivate`` script
(in ``~/.virtualenvs/{env-name}/bin/postactivate``).

alias pg_start='sudo su postgres -c "/opt/local/lib/postgresql94/bin/pg_ctl \
 -D /opt/local/var/db/postgresql94/defaultdb \
 -l /opt/local/var/db/postgresql94/defaultdb/postgresql.log start"'
alias pg_stop='sudo su postgres -c "/opt/local/lib/postgresql94/bin/pg_ctl \
 -D /opt/local/var/db/postgresql94/defaultdb stop"'

pg_start

sudo su - postgres
PATH=$PATH:/opt/local/lib/postgresql94/bin/

Homebrew:

brew install postgres
follow the post install instructions to add to launchagents or call
manually with `postgres -D /usr/local/var/postgres`
Skip the remaining Postgres instructions!

Configure PostgreSQL. Replace ‘seeddb’, ‘seeduser’ with desired db/user. By
default use password seedpass when prompted. Use the code block below in development only since
the seeduser is a SUPERUSER.

createuser -P seeduser
createdb `whoami`
psql -c 'CREATE DATABASE "seeddb" WITH OWNER = "seeduser";'
psql -c 'GRANT ALL PRIVILEGES ON DATABASE "seeddb" TO seeduser;'
psql -c 'ALTER ROLE seeduser SUPERUSER;

PostGIS 2.5

MacPorts:

Assuming you're still root from installing PostgreSQL,
port install postgis2

Homebrew:

brew install postgis

Configure PostGIS:

psql -d seeddb -c "CREATE EXTENSION postgis;"

For testing, give seed user superuser access:
psql -c 'ALTER USER seeduser CREATEDB;'

If upgrading from an existing database or existing local_untracked.py file, make sure to add the
MapQuest API Key and set the database engine to ‘ENGINE’: ‘django.contrib.gis.db.backends.postgis’.

Now exit any root environments, becoming just yourself (even though it’s not
that easy being green), for the remainder of these instructions.

Python Packages

Run these commands as your normal user id.

Change to a virtualenv (using virtualenvwrapper) or do the following as a
superuser. A virtualenv is usually better for development. Set the virtualenv
to seed.

workon seed

Make sure PostgreSQL command line scripts are in your PATH (if using MacPorts)

export PATH=$PATH:/opt/local/lib/postgresql94/bin

Some packages (uWSGI) may need to find your C compiler. Make sure you have
‘gcc’ on your system, and then also export this to the CC environment
variable:

export CC=gcc

Install requirements with pip

pip install -r requirements/local.txt

NodeJS/npm

Install npm [https://www.npmjs.com/]. You can do this by installing from nodejs.org [http://nodejs.org/], MacPorts, or
Homebrew:

MacPorts:

sudo port install npm

Homebrew:

brew install npm

Configure Django and Databases

In the config/settings directory, there must be a file called
local_untracked.py that sets up databases and a number of other things.
To create and edit this file, start by copying over the template

cd config/settings
cp local_untracked.py.dist local_untracked.py

Edit local_untracked.py. Open the file you created in your favorite editor. The PostgreSQL config section will look something like this:

postgres DB config
DATABASES = {
 'default': {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'seeddb',
 'USER': 'seeduser',
 'PASSWORD': 'seedpass',
 'HOST': 'localhost',
 'PORT': '5432',
 }
}

You may want to comment out the AWS settings.

For Redis, edit the CACHES and CELERY_BROKER_URL values to look like this:

CACHES = {
 'default': {
 'BACKEND': 'redis_cache.cache.RedisCache',
 'LOCATION': "127.0.0.1:6379",
 'OPTIONS': {'DB': 1},
 'TIMEOUT': 300
 }
}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1'

MapQuest API Key

Register for a MapQuest API key:
https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register

Visit the Manage Keys page:
https://developer.mapquest.com/user/me/apps
Either create a new key or use the key initially provided.
Copy the “Consumer Key” into the target organizations MapQuest API Key field under the organization’s settings page or directly within the DB.

Run Django Migrations

Change back to the root of the repository. Now run the migration script to set
up the database tables

export DJANGO_SETTINGS_MODULE=config.settings.dev
./manage.py migrate

Django Admin User

You need a Django admin (super) user.

./manage.py create_default_user --username=admin@my.org --organization=seedorg --password=badpass

Of course, you need to save this user/password somewhere, since this is what
you will use to login to the SEED website.

If you want to do any API testing (and of course you do!), you will need to
add an API KEY for this user. You can do this in postgresql directly:

psql seeddb seeduser
seeddb=> update landing_seeduser set api_key='DEADBEEF' where id=1;

The ‘secret’ key DEADBEEF is hard-coded into the test scripts.

Install Redis

You need to manually install Redis for Celery to work.

MacPorts:

sudo port install redis

Homebrew:

brew install redis
follow the post install instructions to add to launchagents or
call manually with `redis-server`

Install JavaScript Dependencies

The JS dependencies are installed using node.js package management (npm).

npm install

Start the Server

You should put the following statement in ~/.bashrc or add it to the
virtualenv post-activation script (e.g., in
~/.virtualenvs/seed/bin/postactivate).

export DJANGO_SETTINGS_MODULE=config.settings.dev

The combination of Redis, Celery, and Django have been encapsulated in a
single shell script, which examines existing processes and does not start
duplicate instances:

./bin/start-seed.sh

When this script is done, the Django stand-alone server will be running in
the foreground.

Login

Open your browser and navigate to http://127.0.0.1:8000

Login with the user/password you created before, e.g., admin@my.org and
badpass.

Note

these steps have been combined into a script called start-seed.sh.
The script will also not start Celery or Redis if they already seem
to be running.

Installation using Docker

Docker works natively on Linux, Mac OSX, and Windows 10. If you are using an older version of
Windows (and some older versions of Mac OSX), you will need to install Docker Toolbox.

Choose either Docker Native (Windows/OSX) or Docker Native (Ubuntu) to
install Docker.

Docker Native (Ubuntu)

Follow instructions [here](https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/).

	[Install Docker Compose](https://docs.docker.com/compose/install/)

Docker Native (Windows/OSX)

Following instructions (for Mac)[https://docs.docker.com/docker-for-mac/install/] or
(for Windows)[https://docs.docker.com/docker-for-windows/install/].

	[Install Docker Compose](https://docs.docker.com/compose/install/)

Building and Configuring Containers

	Run Docker Compose

docker-compose build

Be Patient [https://www.youtube.com/watch?v=f4hkPn0Un_Q] … If the containers build successfully, then start the containers

docker-compose up

Note that you may need to build the containers a couple times for everything to converge

	Login to container

The docker-compose file creates a default user and password. Below are the defaults but can
be overridden by setting environment variables.

username: user@seed-platform.org
password: super-secret-password

Note

Don’t forget that you need to reset your default username and password if you are going
to use these Docker images in production mode!

Deployment Guide

SEED is intended to be installed on Linux instances in the cloud (e.g. AWS), and on local hardware. SEED Platform does not officially support Windows for production deployment. If this is desired, see the Django notes [https://docs.djangoproject.com/en/1.7/howto/windows/].

	AWS Setup
	Prerequisites

	Python Dependencies

	JavaScript Dependencies

	Database Configuration

	Cache and Message Broker

	Running Celery the Background Task Worker

	Running a Production Web Server

	General Linux Setup
	Prerequisites

	Configure PostgreSQL

	Python Dependencies

	JavaScript Dependencies

	Django Database Configuration

	Cache and Message Broker

	Creating the initial user

	Running celery the background task worker

	Running the development web server

	Running a production web server

	Environment Variables

	Mail Services

	local_untracked.py

Migrations

Migrations are handles through Django; however, various versions have customs actions for the migrations. See the migrations page for more information.

Monitoring

Sentry

Sentry can monitor your webservers for any issues. To enable sentry add the following to
your local_untracked.py files after setting up your Sentry account on sentry.io.

The RAVEN_CONFIG is used for the backend and the SENTRY_JS_DSN is used for the frontend. At the moment,
it is recommended to setup two sentry projects, one for backend and one for frontend.

import raven

RAVEN_CONFIG = {
 'dsn': 'https://<user>:<key>@sentry.io/<job_id>',
 # If you are using git, you can also automatically configure the
 # release based on the git info.
 'release': raven.fetch_git_sha(os.path.abspath(os.curdir)),
}
SENTRY_JS_DSN = 'https://<key>@sentry.io/<job_id>'

AWS Setup

Amazon Web Services (AWS [http://aws.amazon.com/]) provides the preferred hosting for the SEED Platform.

seed is a Django Project [https://www.djangoproject.com/] and Django’s documentation is an excellent place for general
understanding of this project’s layout.

Prerequisites

Ubuntu server 14.04 or newer.

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install -y libpq-dev python-dev python-pip libatlas-base-dev \
gfortran build-essential g++ npm libxml2-dev libxslt1-dev git mercurial \
libssl-dev libffi-dev curl uwsgi-core uwsgi-plugin-python

PostgreSQL and Redis are not included in the above commands. For a quick installation on AWS it
is okay to install PostgreSQL and Redis locally on the AWS instance. If a more permanent and
scalable solution, it is recommended to use AWS’s hosted Redis (ElastiCache) and PostgreSQL service.

Note

postgresql >=9.4 is required to support JSON Type [https://www.postgresql.org/docs/9.4/datatype-json.html]

To install PostgreSQL and Redis locally
sudo apt-get install redis-server
sudo apt-get install postgresql postgresql-contrib

Amazon Web Services (AWS) Dependencies

The following AWS services are used for SEED:

	RDS (PostgreSQL >=9.4)

	ElastiCache (redis)

	SES

Python Dependencies

Clone the SEED repository from github

$ git clone git@github.com:SEED-platform/seed.git

enter the repo and install the python dependencies from requirements [https://github.com/SEED-platform/seed/blob/master/requirements/local.txt]

$ cd seed
$ sudo pip install -r requirements/local.txt

JavaScript Dependencies

npm is required to install the JS dependencies.

$ sudo apt-get install build-essential
$ sudo apt-get install curl

$ npm install

Database Configuration

Copy the local_untracked.py.dist file in the config/settings directory to
config/settings/local_untracked.py, and add a DATABASES configuration with your database username,
password, host, and port. Your database configuration can point to an AWS RDS instance or a PostgreSQL 9.4 database
instance you have manually installed within your infrastructure.

Database
DATABASES = {
 'default': {
 'ENGINE':'django.db.backends.postgresql_psycopg2',
 'NAME': 'seed',
 'USER': '',
 'PASSWORD': '',
 'HOST': '',
 'PORT': '',
 }
}

Note

In the above database configuration, seed is the database name, this
is arbitrary and any valid name can be used as long as the database exists.

create the database within the postgres psql shell:

CREATE DATABASE seed;

or from the command line:

createdb seed

create the database tables and migrations:

python manage.py syncdb
python manage.py migrate

create a superuser to access the system

$ python manage.py create_default_user --username=demo@example.com --organization=example --password=demo123

Note

Every user must be tied to an organization, visit /app/#/profile/admin
as the superuser to create parent organizations and add users to them.

Cache and Message Broker

The SEED project relies on redis [http://redis.io/] for both cache and message brokering, and
is available as an AWS ElastiCache [https://aws.amazon.com/elasticache/] service.
local_untracked.py should be updated with the CACHES and CELERY_BROKER_URL
settings.

CACHES = {
 'default': {
 'BACKEND': 'redis_cache.cache.RedisCache',
 'LOCATION': "seed-core-cache.ntmprk.0001.usw2.cache.amazonaws.com:6379",
 'OPTIONS': { 'DB': 1 },
 'TIMEOUT': 300
 }
}
CELERY_BROKER_URL = 'redis://seed-core-cache.ntmprk.0001.usw2.cache.amazonaws.com:6379/1'

Running Celery the Background Task Worker

Celery [http://www.celeryproject.org/] is used for background tasks (saving data, matching, creating
projects, etc) and must be connected to the message broker queue. From the
project directory, celery can be started:

celery -A seed worker -l INFO -c 2 -B --events --maxtasksperchild 1000

Running a Production Web Server

The preferred way to deploy with Docker is using docker swarm and docker stack.
Look at the deploy.sh script [https://github.com/SEED-platform/seed/blob/develop/deploy.sh] for implementation details.

The short version is to simply run the command below. Note that the passing of the docker-compose.yml filename is not required if using docker-compose.local.yml.

`bash
./deploy.sh docker-compose.local.yml
`

If deploying using a custom docker-compose yml file, then simple replace the name in the command above. This would be required if using the Open Efficiency Platform work (connecting SEED to Salesforce).

General Linux Setup

While Amazon Web Services (AWS [http://aws.amazon.com/]) provides the preferred hosting for SEED,
running on a bare-bones Linux server follows a similar setup, replacing the
AWS services with their Linux package counterparts, namely: PostgreSQL and
Redis.

SEED is a Django project [https://www.djangoproject.com/] and Django’s documentation
is an excellent place to general understanding of this project’s layout.

Prerequisites

Ubuntu server/desktop 16.04 or newer (18.04 recommended)

Install the following base packages to run SEED:

sudo apt update
sudo apt upgrade
sudo apt install libpq-dev python3-dev python3-pip libatlas-base-dev \
gfortran build-essential nodejs npm libxml2-dev libxslt1-dev git \
libssl-dev libffi-dev curl uwsgi-core uwsgi-plugin-python mercurial
sudo apt install redis-server
sudo apt install postgresql postgresql-contrib

Note

postgresql >=9.3 is required to support JSON Type [http://www.postgresql.org/docs/9.3/static/datatype-json.html]

Configure PostgreSQL

Replace ‘seeddb’, ‘seeduser’ with desired db/user. By
default use password seedpass when prompted

$ sudo su - postgres
$ createuser -P "seeduser"
$ createdb "seeddb" --owner="seeduser"
$ psql
postgres=# GRANT ALL PRIVILEGES ON DATABASE "seeddb" TO "seeduser";
postgres=# ALTER USER "seeduser" CREATEDB CREATEROLE SUPERUSER;
postgres=# \q
$ exit

Python Dependencies

clone the seed repository from github

$ git clone git@github.com:SEED-platform/seed.git

enter the repo and install the python dependencies from requirements [https://github.com/SEED-platform/seed/blob/master/requirements/local.txt]

$ cd seed
$ pip3 install -r requirements/local.txt

JavaScript Dependencies

$ npm install

Django Database Configuration

Copy the local_untracked.py.dist file in the config/settings directory to
config/settings/local_untracked.py, and add a DATABASES configuration with your database username, password,
host, and port. Your database configuration can point to an AWS RDS instance or a PostgreSQL 9.4 database instance
you have manually installed within your infrastructure.

Database
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'seeddb',
 'USER': 'seeduser',
 'PASSWORD': '<PASSWORD>',
 'HOST': 'localhost',
 'PORT': '5432',
 }
}

Note

Other databases could be used such as MySQL, but are not supported
due to the postgres-specific JSON Type [http://www.postgresql.org/docs/9.3/static/datatype-json.html]

In in the above database configuration, seed is the database name, this is arbitrary and any valid name can be
used as long as the database exists. Enter the database name, user, password you set above.

The database settings can be tested using the Django management command, python3 manage.py dbshell to connect to the
configured database.

create the database tables and migrations:

$ python3 manage.py migrate

Cache and Message Broker

The SEED project relies on redis [http://redis.io/] for both cache and message brokering, and
is available as an AWS ElastiCache [https://aws.amazon.com/elasticache/] service or with the redis-server
Linux package. (sudo apt install redis-server)

local_untracked.py should be updated with the CACHES and CELERY_BROKER_URL
settings.

CACHES = {
 'default': {
 'BACKEND': 'redis_cache.cache.RedisCache',
 'LOCATION': '127.0.0.1:6379',
 'OPTIONS': {'DB': 1},
 'TIMEOUT': 300
 }
}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1'

Creating the initial user

create a superuser to access the system

$ python3 manage.py create_default_user --username=admin@my.org --organization=lbnl --password=badpass

Note

Of course, you need to save this user/password somewhere, since this is what
you will use to login to the SEED website.

Every user must be tied to an organization, visit /app/#/profile/admin
as the superuser to create parent organizations and add users to them.

Running celery the background task worker

Celery [http://www.celeryproject.org/] is used for background tasks (saving data, matching, creating
projects, etc) and must be connected to the message broker queue. From the
project directory, celery can be started:

DJANGO_SETTINGS_MODULE=config.settings.dev celery -A seed worker -l info -c 2 -B --events --maxtasksperchild=1000

Running the development web server

The Django dev server (not for production use) can be a quick and easy way to
get an instance up and running. The dev server runs by default on port 8000
and can be run on any port. See Django’s runserver documentation [https://docs.djangoproject.com/en/1.6/ref/django-admin/#django-admin-runserver] for more
options.

$ python3 manage.py runserver --settings=config.settings.dev

Running a production web server

Our recommended web server is uwsgi sitting behind nginx. The python package uwsgi is needed for this, and
should install to /usr/local/bin/uwsgi We recommend using dj-static to load static files.

Note

The use of the dev settings file is production ready, and should be
used for non-AWS installs with DEBUG set to False for production use.

$ pip3 install uwsgi dj-static

Generate static files:

$ python3 manage.py collectstatic --settings=config.settings.prod

Update config/settings/local_untracked.py:

DEBUG = False
static files
STATIC_ROOT = 'collected_static'
STATIC_URL = '/static/'

Start the web server (this also starts celery):

$./bin/start-seed

Warning

Note that uwsgi has port set to 80. In a production setting, a dedicated web server such as NGINX would be
receiving requests on port 80 and passing requests to uwsgi running on a different port, e.g 8000.

Environment Variables

The following environment variables can be set within the ~/.bashrc file to
override default Django settings.

export SENTRY_DSN=https://xyz@app.getsentry.com/123
export DEBUG=False
export ONLY_HTTPS=True

Mail Services

AWS SES Service

In the AWS setup, we can use SES to provide an email service for Django. The service is
configured in the config/settings/local_untracked.py:

EMAIL_BACKEND = 'django_ses.SESBackend'

In general, the following steps are needed to configure SES:

	Access Amazon SES Console - Quickstart [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/quick-start.html]

	Login to Amazon SES Console. Verify which region we are using (e.g., us-east-1)

	Decide on email address that will be sending the emails and add them to the SES Verified Emails [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-email-addresses.html].

	Test that SES works as expected (while in the SES sandbox). Note that you will need to add the sender and recipient emails to the verified emails while in the sandbox.

	Update the local_untracked.py file or set the environment variables for the docker file.

	Once ready, move the SES instance out of the sandbox. Following instructions here [https://docs.aws.amazon.com/ses/latest/DeveloperGuide/request-production-access.html]

	(Optional) Set up Amazon Simple Notification Service (Amazon SNS) to notify you of bounced emails and other issues.

	(Optional) Use the AWS Management Console to set up Easy DKIM, which is a way to authenticate your emails. Amazon SES console will have the values for SPF and DKIM that you need to put into your DNS.

SMTP service

Many options for setting up your own SMTP [https://docs.djangoproject.com/en/2.0/ref/settings/#email-backend] service/server or using other SMTP
third party services are available and compatible including gmail [http://stackoverflow.com/questions/19264907/python-django-gmail-smtp-setup]. SMTP is not configured for working within Docker at the moment.

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

local_untracked.py

PostgreSQL DB config
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'seed',
 'USER': 'your-username',
 'PASSWORD': 'your-password',
 'HOST': 'your-host',
 'PORT': 'your-port',
 }
}

config for local storage backend
DOMAIN_URLCONFS = {'default': 'config.urls'}

CACHES = {
 'default': {
 'BACKEND': 'redis_cache.cache.RedisCache',
 'LOCATION': '127.0.0.1:6379',
 'OPTIONS': {'DB': 1},
 'TIMEOUT': 300
 }
}
CELERY_BROKER_URL = 'redis://127.0.0.1:6379/1'

SMTP config
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

static files
STATIC_ROOT = 'collected_static'
STATIC_URL = '/static/'

API

Authentication

Authentication is handled via an authorization token set in an HTTP header.
To request an API token, go to /app/#/profile/developer and click ‘Get a New API Key’.

Authenticate every API request with your username (email) and the API key via Basic Auth [https://en.wikipedia.org/wiki/Basic_access_authentication].

Using Python, use the requests library:

import requests

result = requests.get('https://seed-platform.org/api/v2/version/', auth=(user_email, api_key))
print result.json()

Using curl, pass the username and API key as follows:

curl -u user_email:api_key http://seed-platform.org/api/v2/version/

If authentication fails, the response’s status code will be 302, redirecting the user to /app/login.

Payloads

Many requests require a JSON-encoded payload and parameters in the query string of the url. A frequent
requirement is including the organization_id of the org you belong to. For example:

curl -u user_email:api_key https://seed-platform.org/api/v2/organizations/12/

Or in a JSON payload:

curl -u user_email:api_key \
 -d '{"organization_id":6, "role": "viewer"}' \
 https://seed-platform.org/api/v2/users/12/update_role/

Using Python:

params = {'organization_id': 6, 'role': 'viewer'}
result = requests.post('https://seed-platform.org/api/v2/users/12/update_role/',
 data=json.dumps(params),
 auth=(user_email, api_key))
print result.json()

Responses

Responses from all requests will be JSON-encoded objects, as specified in each endpoint’s documentation.
In the case of an error, most endpoints will return this instead of the expected payload (or an HTTP status code):

{
 "status": "error",
 "message": "explanation of the error here"
}

API Endpoints

A list of interactive endpoints are available by accessing the API menu item on the left navigation
pane within you account on your SEED instance.

To view a list of non-interactive endpoints without an account, view swagger [https://seed-platform.org/api/swagger/] on the development server.

Data Model

[image: _images/case-a.png]
[image: _images/case-b.png]
[image: _images/case-c.png]
[image: _images/case-d.png]
[image: _images/data-model.png]

Todo

Documentation below is out of state and needs updated.

Our primary data model is based on a tree structure with BuildingSnapshot
instances as nodes of the tree and the tip of the tree referenced by a
CanonicalBuilding.

Take the following example: a user has loaded a CSV file containing information
about one building and created the first BuildingSnapshot (BS0). At this point
in time, BS0 is linked to the first CanonicalBuilding (CB0), and CB0 is also
linked to BS0.

BS0 <-- CB0
BS0 --> CB0

These relations are represented in the database as foreign keys from the
BuildingSnapshot table to the CanonicalBuilding table, and from the
CanonicalBuilding table to the BuildingSnapshot table.

The tree structure comes to fruition when a building, BS0 in our case, is
matched with a new building, say BS1, enters the system and is auto-matched.

Here BS1 entered the system and was matched with BS0. When a match occurs,
a new BuildingSnapshot is created, BS2, with the fields from the existing
BuildingSnapshot, BS0, and the new BuildingSnapshot, BS1, merged
together. If both the existing and new BuildingSnapshot have data for a
given field, the new record’s fields are preferred and merged into the child, B3.

The fields from new snapshot are preferred because that is the newer of the
two records from the perspective of the system. By preferring the most recent fields
this allows for evolving building snapshots over time. For example, if an existing
canonical record has a Site EUI value of 75 and some changes happen to a building
that cause this to change to 80 the user can submit a new record with that change.

All BuildingSnapshot instances point to a CanonicalBuilding.

BS0 BS1
 \ /
 BS2 <-- CB0

BS0 --> CB0
BS1 --> CB0
BS2 --> CB0

parents and children

BuildingSnapshots also have linkage to other BuildingSnapshots in order to
keep track of their parents and children. This is represented in the
Django model as a many-to-many relation from BuildingSnapshot to BuildingSnapshot.
It is represented in the PostgreSQL database as an additional seed_buildingsnapshot_children
table.

In our case here, BS0 and BS1 would both have children BS2, and BS2 would
have parents BS0 and BS1.

Note

throughout most of the application, the search_buildings endpoint
is used to search or list active building. This is to say, buildings that
are pointed to by an active CanonicalBuilding.
The search_mapping_results endpoint allows the search of buildings
regardless of whether the BuildingSnapshot is pointed to by an active
CanonicalBuilding or not and this search is needed during the mapping
preview and matching sections of the application.

For illustration purposes let’s suppose BS2 and a new building BS3 match to form a child BS4.

	parent

	child

	BS0

	BS2

	BS1

	BS2

	BS2

	BS4

	BS3

	BS4

And the corresponding tree would look like:

BS0 BS1
 \ /
 BS2 BS3
 \ /
 BS4 <-- CB0

BS0 --> CB0
BS1 --> CB0
BS2 --> CB0
BS3 --> CB0
BS4 --> CB0

matching

During the auto-matching process, if a raw BuildingSnapshot matches an
existing BuildingSnapshot instance, then it will point to the existing
BuildingSnapshot instance’s CanonicalBuilding. In the case where there is no
existing BuildingSnapshot to match, a new CanonicalBuilding will be created, as
happened to B0 and C0 above.

	field

	BS0

	BS1

	BS2 (child)

	id1

	11

	11

	11

	id2

	
	12

	12

	id3

	13

	
	13

	id4

	14

	15

	15

manual-matching vs auto-matching

Since BuildingSnapshots can be manually matched, there is the possibility for
two BuildingSnapshots each with an active CanonicalBuilding to match and the
system has to choose to move only one CanonicalBuilding to the tip of the tree
for the primary BuildingSnapshot and deactivate the secondary
BuildingSnapshot’s CanonicalBuilding.

Take for example:

BS0 BS1
 \ /
 BS2 BS3
 \ /
 BS4 <-- CB0 (active: True) BS5 <-- CB1 (active: True)

If a user decides to manually match BS4 and BS5, the system will take the
primary BuildingSnapshot’s CanonicalBuilding and have it point to their
child and deactivate CB1. The deactivation is handled by setting a field
on the CanonicalBuilding instance, active, from True to False.

Here is what the tree would look like after the manual match of BS4 and
BS5:

BS0 BS1
 \ /
 BS2 BS3
 \ /
 BS4 BS5 <-- CB1 (active: False)
 \ /
 BS6 <-- CB0 (active: True)

Even though BS5 is pointed to by a CanonicalBuilding, CB1, BS5 will not be
returned by the normal search_buildings endpoint because the
CanonicalBuilding pointing to it has its field active set to False.

Note

anytime a match is unmatched the system will create a new
CanonicalBuilding or set an existing CanonicalBuilding’s active field to
True for any leaf BuildingSnapshot trees.

what really happens to the BuildingSnapshot table on import (and when)

The above is conceptually what happens but sometimes the devil is in the details.
Here is what happens to the BuildingSnapshot table in the database when records
are imported.

Every time a record is added at least two BuildingSnapshot records are created.

Consider the following simple record:

	Property Id

	Year Ending

	Property Floor Area

	Address 1

	Release Date

	499045

	2000

	1234

	1 fake st

	12/12/2000

The first thing the user is upload the file. When the user sees the
“Successful Upload!” dialog one record has been added to the
BuildingSnapshot table.

This new record has an id (73700 in this case) and a created and
modified timestamp. Then there are a lot of empty fields and a
source_type of 0. Then there is the extra_data column which contains
the contents of the record in key-value form:

	Address 1

	“1 fake st”

	Property Id

	“499045”

	Year Ending

	“2000”

	Release Date

	“12/12/2000”

	Property Floor Area

	“1234”

And a corresponding extra_data_sources that looks like

	Address 1

	73700

	Property Id

	73700

	Year Ending

	73700

	Release Date

	73700

	Property Floor Area

	73700

All of the fields that look like _source_id are also populated
with 73700 E.G. owner_postal_code_source_id.

The other fields of interest are the organization field which
is populated with the user’s default organization and the import_file_id
field which is populated with a reference to a data_importer_importfile record.

At this point the record has been created before the user hits the
“Continue to data mapping” button.

The second record (id = 73701) is created by the time the user gets to the screen
with the “Save Mappings” button. This second record has the following fields populated:

	id

	created

	modified

	pm_property_id

	year_ending

	gross_floor_area

	address_line_1

	release_date

	source_type (this is 2 instead of 0 as with the other record)

	import_file_id

	organization_id.

That is all. All other fields are empty. In this case that is all that happens.

Now consider the same user uploading a new file from the next year that looks like

	Property Id

	Year Ending

	Property Floor Area

	Address 1

	Release Date

	499045

	2000

	1234

	1 fake st

	12/12/2001

As before one new record is created on upload. This has id 73702 and follows the same
pattern as 73700. And similarly 73703 is created like 73701 before the “Save Mappings”
button appears.

However this time the system was able to make a match with an existing record.
After the user clicks the “Confirm mappings & start matching” button a new record
is created with ID 73704.

73704 is identical to 73703 (in terms of contents of the BuildingSnapshot table only)
with the following exceptions:

	created and modified timestamps are different

	match type is populated and has a value of 1

	confidence is populated and has a value of .9

	source_type is 4 instead of 2

	canonical_building_id is populated with a value

	import_file_id is NULL

	last_modified_by_id is populated with value 2 (This is a key into the landing_seeduser table)

	address_line_1_source_id is 73701

	gross_floor_area_source_id is populated with value 73701

	pm_property_id_source_id is populated with 73701

	release_date_source_id is populated with 73701

	year_ending_source_id is populated with 73701

what really happens to the CanonicalBuilding table on import (and when)

In addition to the BuildingSnapshot table the CanonicalBuilding table is also updated
during the import process. To summarize the above 5 records were created in the
BuildingSnapshot table:

	73700 is created from the raw 2000 data

	73701 is the mapped 2000 data,

	73702 is created from the raw 2001 data

	73703 is the mapped 2001 data

	73704 is the result of merging the 2000 and 2001 data.

In this process CanonicalBuilding is updated twice. First when the 2000 record is imported the
CanonicalBuilding gets populated with one new row at the end of the matching step.
I.E. when the user sees the “Load More Data” screen. At this point there is a new row that looks like

	id

	active

	canonical_building_id

	20505

	TRUE

	73701

At this point there is one new canonical building and that is the BuildingSnapshot with
id 73701. Next the user uploads the 2001 data. When the “Matching Results” screen
appears the CanonicalBuilding table has been updated. Now it looks like

	id

	active

	canonical_building_id

	20505

	TRUE

	73704

There is still only one canonical building but now it is the BuildingSnapshot record
that is the result of merging the 2000 and 2001 data: id = 73704.

organization

BuildingSnapshots belong to an Organization field that is a foreign key into the organization
model (orgs_organization in Postgres).

Many endpoints filter the buildings based on the organizations the requesting user
belongs to. E.G. get_buildings changes which fields are returned based on the
requesting user’s membership in the BuildingSnapshot’s organization.

*_source_id fields

Any field in the BuildingSnapshot table that is populated with data from a
submitted record will have a corresponding _source_id field. E.G
pm_property_id has pm_property_id_source_id,
address_line_1 has address_line_1_source_id,
etc…

These are foreign keys into the BuildingSnapshot that is the source of that
value. To extend the above table

	field

	BS0

	BS1

	BS2 (child)

	BS2 (child) _source_id

	id1

	11

	
	11

	BS0

	id2

	
	12

	12

	BS1

NOTE: The BuildingSnapshot records made from the raw input file have all the
_source_id fields populated with that record’s ID. The non-canonical BuildingSnapshot
records created from the mapped data have none set. The canonical BuildingSnapshot
records that are the result of merging two records have only the _source_id fields
set where the record itself has data. E.G. in the above address_line_1 is set to
“1 fake st.” so there is a value in the canonical BuildingSnapshot’s address_line_1_source_id
field. However there is no block number so block_number_source_id is empty. This
is unlike the two raw BuildingSnapshot records who also have no block_number but
nevertheless have a block_number_source_id populated.

extra_data

The BuildingSnapshot model has many “named” fields. Fields like “address_line_1”,
“year_built”, and “pm_property_id”. However the users are allowed to submit files
with arbitrary fields. Some of those arbitrary fields can be mapped to “named”
fields. E.G. “Street Address” can usually be mapped to “Address Line 1”.
For all the fields that cannot be mapped like that there is the extra_data field.

extra_data is Django json field that serves as key-value storage for other
user-submitted fields. As with the other “named” fields there is a corresponding
extra_data_sources field that serves the same role as the other _source_id fields.
E.G. If a BuildingSnapshot has an extra_data field that looks like

	an_unknown_field

	1

	something_else

	2

It should have an extra_data_sources field that looks like

	an_unknown_field

	some_BuildingSnapshot_id

	something_else

	another_BuildingSnapshot_id

saving and possible data loss

When saving a Property file some fields that are truncated if too long.
The following are truncated to 255 characters

	jurisdiction_tax_lot_id

	pm_property_id

	custom_id_1

	ubid

	lot_number

	block_number

	district

	owner

	owner_email

	owner_telephone

	owner_address

	owner_city_state

	owner_postal_code

And the following are truncated to 255:

	property_name

	address_line_1

	address_line_2

	city

	postal_code

	state_province

	building_certification

No truncation happens to any of the fields stored in extra_data.

Data Quality

Data quality checks are run after the data are paired or on-demand by selecting rows in the inventory
page and clicking the action button.

Mapping

This document describes the set of calls that occur from the web client or API
down to the back-end for the process of mapping.

An overview of the process is:

	Import - A file is uploaded and saved in the database

	Mapping - Mapping occurs on that file

	Matching / Merging

	Pairing

Import

From the web UI, the import process invokes seed.views.main.save_raw_data to save the data. When the data is
done uploading, we need to know whether it is a Portfolio Manager file, so we can add metadata to the record in the
database. The end of the upload happens in seed.data_importer.views.DataImportBackend.upload_complete. At this
point, the request object has additional attributes for Portfolio Manager files. These are saved in the model
seed.data_importer.models.ImportFile.

Mapping

After the data is saved, the UI invokes DataFileViewSet.mapping_suggestions to get the columns to
display on the mapping screen. This loads back the model that was mentioned above as an ImportFile instance, and
then the from_portfolio_manager property can be used to choose the branch of the code:

If it is a Portfolio Manager file the seed.common.mapper.get_pm_mapping method provides a high-level interface to
the Portfolio Manager mapping (see comments in the containing file, mapper.py), and the result is used to populate
the return value for this method, which goes back to the UI to display the mapping screen.

Otherwise the code does some auto-magical logic to try and infer the “correct” mapping.

Matching

Todo

document

Pairing

Todo

document

Modules

	Configuration
	Submodules

	Template Context

	Tests

	Utils

	Views

	WSGI

	Data Package
	Submodules

	BEDES

	Module contents

	Data Importer Package
	Submodules

	Managers

	Models

	URLs

	Utils

	Views

	Module contents

	Features Package
	Submodules

	Module contents

	Green Button Package
	Subpackages
	Green Button Tests Package

	Submodules

	seed.green_button.xml_importer module

	Module contents

	Landing Package
	Subpackages
	seed.landing.management package

	Submodules

	Forms

	Models

	Tests

	URLs

	Views

	Module contents

	Library Packages
	Submodules

	Module contents

	Mapping Package
	Submodules

	seed.mappings.mapper module

	seed.mappings.seed_mappings module

	Module contents

	Managers Package
	Subpackages
	Manager Tests Package

	Submodules

	JSON

	Module contents

	Models
	Submodules

	AuditLog

	Columns

	Cycles

	Joins

	Generic Models

	Projects

	Properties

	TaxLots

	Module contents

	Public Package
	Submodules

	Models

	Module contents

	SEED Package
	Subpackages
	Features Package

	Management Package

	Mapping Package

	Templatetags Package

	Test Helpers Package

	Tests Package

	Inheritance

	Submodules

	Decorators

	Factory

	Models

	Search

	Tasks

	Token Generator

	URLs

	Utils

	Views

	Module contents

	Serializers Package
	Submodules

	Serializers

	Labels

	Module contents

	Tests Package
	Submodules
	Test Helpers Package

	Admin Views

	Decorators

	Exporters

	Models

	Tasks

	Views

	Tests

	Utils

	URLs Package
	Submodules

	Accounts

	APIs

	Main

	Projects

	Utilities Package
	Submodules

	APIs

	Buildings

	Constants

	Mappings

	Organizations

	Projects

	Time

	Views Package
	Submodules

	Accounts

	APIs

	Main

	Meters

	Projects

	Module contents

Configuration

Submodules

Template Context

:copyright (c) 2014 - 2019, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Department of Energy) and contributors. All rights reserved. # NOQA
:author

	
config.template_context.sentry_js(request)

	

	
config.template_context.session_key(request)

	

Tests

Utils

:copyright (c) 2014 - 2019, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Department of Energy) and contributors. All rights reserved. # NOQA
:author

	
config.utils.de_camel_case(name)

	

Views

WSGI

Data Package

Submodules

BEDES

Module contents

Data Importer Package

Submodules

Managers

Models

URLs

Utils

Views

Module contents

Features Package

Submodules

Module contents

Green Button Package

Subpackages

	Green Button Tests Package
	Submodules

	XML Importer Tests

	Module contents

Submodules

seed.green_button.xml_importer module

Module contents

Green Button Tests Package

Submodules

XML Importer Tests

Module contents

Landing Package

Subpackages

	seed.landing.management package
	Subpackages
	Landing Management Package
	Submodules

	Update EULA

	Module contents

	Module contents

Submodules

Forms

Models

Tests

URLs

Views

Module contents

seed.landing.management package

Subpackages

	Landing Management Package
	Submodules

	Update EULA

	Module contents

Module contents

Landing Management Package

Submodules

Update EULA

Module contents

Library Packages

Submodules

Module contents

Mapping Package

Submodules

seed.mappings.mapper module

seed.mappings.seed_mappings module

Module contents

Managers Package

Subpackages

	Manager Tests Package
	Submodules

	Test JSON Manager

	Module contents

Submodules

JSON

Module contents

Manager Tests Package

Submodules

Test JSON Manager

Module contents

Models

Submodules

AuditLog

Columns

Cycles

Joins

Generic Models

Projects

Properties

TaxLots

Module contents

Public Package

Submodules

Models

Module contents

SEED Package

Subpackages

	Features Package
	Submodules

	Module contents

	Management Package
	Subpackages

	Module contents

	Mapping Package
	Submodules

	seed.mappings.mapper module

	seed.mappings.seed_mappings module

	Module contents

	Templatetags Package
	Submodules

	Breadcrumbs

	Test Helpers Package
	Subpackages
	Test Helper Factor Package
	Subpackages
	Test Helper Factory Lib Package
	Submodules

	Chomsky

	Submodules

	Helpers

	Module contents

	Tests Package
	Submodules
	Test Helpers Package
	Subpackages
	Test Helper Factor Package
	Subpackages
	Test Helper Factory Lib Package
	Submodules

	Chomsky

	Submodules

	Helpers

	Module contents

	Admin Views

	Decorators

	Exporters

	Models

	Tasks

	Views

	Tests

	Utils

Inheritance

Submodules

Decorators

Factory

Models

Search

Tasks

Token Generator

URLs

Utils

Views

Module contents

Features Package

Submodules

Module contents

Management Package

Subpackages

Module contents

Mapping Package

Submodules

seed.mappings.mapper module

seed.mappings.seed_mappings module

Module contents

Templatetags Package

Submodules

Breadcrumbs

Test Helpers Package

Subpackages

	Test Helper Factor Package
	Subpackages
	Test Helper Factory Lib Package
	Submodules

	Chomsky

	Submodules

	Helpers

Module contents

Test Helper Factor Package

Subpackages

	Test Helper Factory Lib Package
	Submodules

	Chomsky

Submodules

Helpers

Test Helper Factory Lib Package

Submodules

Chomsky

Tests Package

Submodules

	Test Helpers Package
	Subpackages

	Module contents

Admin Views

Decorators

Exporters

Models

Tasks

Views

Tests

Utils

Test Helpers Package

Subpackages

	Test Helper Factor Package
	Subpackages
	Test Helper Factory Lib Package
	Submodules

	Chomsky

	Submodules

	Helpers

Module contents

Test Helper Factor Package

Subpackages

	Test Helper Factory Lib Package
	Submodules

	Chomsky

Submodules

Helpers

Serializers Package

Submodules

Serializers

Labels

Module contents

Tests Package

Submodules

	Test Helpers Package
	Subpackages

	Module contents

Admin Views

Decorators

Exporters

Models

Tasks

Views

Tests

Utils

Test Helpers Package

Subpackages

	Test Helper Factor Package
	Subpackages
	Test Helper Factory Lib Package
	Submodules

	Chomsky

	Submodules

	Helpers

Module contents

Test Helper Factor Package

Subpackages

	Test Helper Factory Lib Package
	Submodules

	Chomsky

Submodules

Helpers

Test Helper Factory Lib Package

Submodules

Chomsky

URLs Package

Submodules

Accounts

APIs

Main

Projects

Utilities Package

Submodules

APIs

Buildings

Constants

Mappings

Organizations

Projects

Time

Views Package

Submodules

Accounts

APIs

Main

Meters

Projects

Module contents

Developer Resources

General Notes

Flake Settings

Flake is used to statically verify code syntax. If the developer is running
flake from the command line, they should ignore the following checks in order
to emulate the same checks as the CI machine.

	Code

	Description

	E402

	module level import not at top of file

	E501

	line too long (82 characters) or max-line = 100

	E731

	do not assign a lambda expression, use a def

	W503

	line break occurred before a binary operator

	W504

	line break occurred after a binary operator

To run flake locally call:

tox -e flake8

Django Notes

Adding New Fields to Database

Adding new fields to SEED can be complicated since SEED has a mix of typed fields (database fields) and extra data
fields. Follow the steps below to add new fields to the SEED database:

	Add the field to the PropertyState or the TaxLotState model. Adding fields to the Property or TaxLot models is more complicated and not documented yet.

	Add field to list in the following locations:

	models/columns.py: Column.DATABASE_COLUMNS

	TaxLotState.coparent or PropertyState.coparent: SQL query and keep_fields

	Run ./manage.py makemigrations

	Add in a Python script in the new migration to add in the new column into every organizations list of columns. Note that the new_db_fields will be the same as the data in the Column.DATABASE_COLUMNS that were added.

def forwards(apps, schema_editor):
 Column = apps.get_model("seed", "Column")
 Organization = apps.get_model("orgs", "Organization")

 new_db_fields = [
 {
 'column_name': 'geocoding_confidence',
 'table_name': 'PropertyState',
 'display_name': 'Geocoding Confidence',
 'data_type': 'number',
 }, {
 'column_name': 'geocoding_confidence',
 'table_name': 'TaxLotState',
 'display_name': 'Geocoding Confidence',
 'data_type': 'number',
 }
]

 # Go through all the organizatoins
 for org in Organization.objects.all():
 for new_db_field in new_db_fields:
 columns = Column.objects.filter(
 organization_id=org.id,
 table_name=new_db_field['table_name'],
 column_name=new_db_field['column_name'],
 is_extra_data=False,
)

 if not columns.count():
 new_db_field['organization_id'] = org.id
 Column.objects.create(**new_db_field)
 elif columns.count() == 1:
 # If the column exists, then just update the display_name and data_type if empty
 c = columns.first()
 if c.display_name is None or c.display_name == '':
 c.display_name = new_db_field['display_name']
 if c.data_type is None or c.data_type == '' or c.data_type == 'None':
 c.data_type = new_db_field['data_type']
 c.save()
 else:
 print(" More than one column returned")

class Migration(migrations.Migration):
 dependencies = [
 ('seed', '0090_auto_20180425_1154'),
]

 operations = [
 ... existing db migrations ...,
 migrations.RunPython(forwards),
]

	Run migrations ./manage.py migrate

	Run unit tests, fix failures. Below is a list of files that need to be fixed (this is not an exhaustive list)

	test_mapping_data.py:test_keys

	test_columns.py:test_column_retrieve_schema

	test_columns.py:test_column_retrieve_db_fields

	(Optional) Update example files to include new fields

	Test import workflow with mapping to new fields

AngularJS Integration Notes

Template Tags

Angular and Django both use {{ and }} as variable delimiters, and thus the AngularJS variable delimiters are
renamed {$ and $}.

window.BE.apps.seed = angular.module('BE.seed', ['$interpolateProvider'], function ($interpolateProvider) {
 $interpolateProvider.startSymbol("{$");
 $interpolateProvider.endSymbol("$}");
 }
);

Django CSRF Token and AJAX Requests

For ease of making angular $http requests, we automatically add the CSRF token to all $http requests as
recommended by http://django-angular.readthedocs.io/en/latest/integration.html#xmlhttprequest

window.BE.apps.seed.run(function ($http, $cookies) {
 $http.defaults.headers.common['X-CSRFToken'] = $cookies['csrftoken'];
});

Routes and Partials or Views

Routes in static/seed/js/seed.js (the normal angularjs app.js)

SEED_app.config(['stateHelperProvider', '$urlRouterProvider', '$locationProvider', function (stateHelperProvider, $urlRouterProvider, $locationProvider) {
 stateHelperProvider
 .state({
 name: 'home',
 url: '/',
 templateUrl: static_url + 'seed/partials/home.html'
 })
 .state({
 name: 'profile',
 url: '/profile',
 templateUrl: static_url + 'seed/partials/profile.html',
 controller: 'profile_controller',
 resolve: {
 auth_payload: ['auth_service', '$q', 'user_service', function (auth_service, $q, user_service) {
 var organization_id = user_service.get_organization().id;
 return auth_service.is_authorized(organization_id, ['requires_superuser']);
 }],
 user_profile_payload: ['user_service', function (user_service) {
 return user_service.get_user_profile();
 }]
 }
 });
}]);

HTML partials in static/seed/partials/

Logging

Information about error logging can be found here - https://docs.djangoproject.com/en/1.7/topics/logging/

Below is a standard set of error messages from Django.

A logger is configured to have a log level. This log level describes the severity of
the messages that the logger will handle. Python defines the following log levels:

DEBUG: Low level system information for debugging purposes
INFO: General system information
WARNING: Information describing a minor problem that has occurred.
ERROR: Information describing a major problem that has occurred.
CRITICAL: Information describing a critical problem that has occurred.

Each message that is written to the logger is a Log Record. The log record is stored
in the web server & Celery

BEDES Compliance and Managing Columns

Columns that do not represent hardcoded fields in the application are represented using
a Django database model defined in the seed.models module. The goal of adding new columns
to the database is to create seed.models.Column records in the database for each column to
import. Currently, the list of Columns is dynamically populated by importing data.

There are default mappings for ESPM are located here:

https://github.com/SEED-platform/seed/blob/develop/seed/lib/mappings/data/pm-mapping.json

Resetting the Database

This is a brief description of how to drop and re-create the database
for the seed application.

The first two commands below are commands distributed with the
Postgres database, and are not part of the seed application. The third
command below will create the required database tables for seed and
setup initial data that the application expects (initial columns for
BEDES). The last command below (spanning multiple lines) will create a
new superuser and organization that you can use to login to the
application, and from there create any other users or organizations
that you require.

Below are the commands for resetting the database and creating a new
user:

psql -c 'DROP DATABASE "seeddb"'
psql -c 'CREATE DATABASE "seeddb" WITH OWNER = "seeduser";'
psql -c 'GRANT ALL PRIVILEGES ON DATABASE "seeddb" TO seeduser;'
psql -c 'ALTER ROLE seeduser SUPERUSER;
psql -d seeddb -c "CREATE EXTENSION postgis;"
./manage.py migrate
./manage.py create_default_user \
 --username=demo@seed-platform.org \
 --password=password \
 --organization=testorg

Migrating the Database

Migrations are handles through Django; however, various versions have customs actions for the migrations. See the migrations page for more information based on the version of SEED.

Testing

JS tests can be run with Jasmine at the url /angular_js_tests/.

Python unit tests are run with

python manage.py test --settings=config.settings.test

	Note on geocode-related testing:
	Most of these tests use VCR.py and cassettes to capture and reuse recordings of HTTP requests and responses. Given that, unless you want to make changes and/or refresh the cassettes/recordings, there isn’t anything needed to run the geocode tests.

In the case that the geocoding logic/code is changed or you’d like to the verify the MapQuest API is still working as expected, you’ll need to run the tests with a small change. Namely, you’ll want to provide the tests with an API key via an environment variable called “TESTING_MAPQUEST_API_KEY” or within your local_untracked.py file with that same variable name.

In order to refresh the actual cassettes, you’ll just need to delete or move the old ones which can be found at “.seed/tests/data/vcr_cassettes”. The API key should be hidden within the cassettes, so these new cassettes can and should be pushed to GitHub.

Run coverage using

coverage run manage.py test --settings=config.settings.test
coverage report --fail-under=83

Python compliance uses PEP8 with flake8

flake8
or
tox -e flake8

JS Compliance uses jshint

jshint seed/static/seed/js

Release Instructions

To make a release do the following:

	Github admin user, on develop branch: update the package.json file with the most recent version number. Always use MAJOR.MINOR.RELEASE.

	Update the docs/sources/migrations.rst file with any required actions.

	Run the docs/scripts/change_log.py script and add the changes to the CHANGELOG.md file for the range of time between last release and this release. Only add the Closed Issues. Also make sure that all the pull requests have a related Issue in order to be included in the change log.

python docs/scripts/change_log.py –k GITHUB_API_TOKEN –s 2018-02-26 –e 2018-05-30

	Paste the results (remove unneeded Accepted Pull Requests) into the CHANGELOG.md. Make sure to cleanup the formatting.

	Make sure that any new UI needing localization has been tagged for translation, and that any new translation keys exist in the lokalise.co project. (see translation documentation).

	Once develop passes, then create a new PR from develop to master.

	Draft new Release from Github (https://github.com/SEED-platform/seed/releases).

	Include list of changes since previous release (i.e. the content in the CHANGELOG.md)

	Verify that the Docker versions are built and pushed to Docker hub (https://hub.docker.com/r/seedplatform/seed/tags/).

	Go to Read the Docs and enable the latest version to be active (https://readthedocs.org/dashboard/seed-platform/versions/)

License

Copyright (c) 2014 – 2019, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
from the U.S. Department of Energy) and contributors. All rights reserved.

1. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the copyright notice, this
list of conditions and the following disclaimer.
(2) Redistributions in binary form must reproduce the copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
(4) Neither the names Standard Energy Efficiency Data Platform, Standard
Energy Efficiency Data, SEED Platform, SEED, derivatives thereof nor
designations containing these names, may be used to endorse or promote
products derived from this software without specific prior written
permission from the U.S. Dept. of Energy.

2. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Help

For SEED-Platform Users

Please visit our User Support website for tutorials and documentation to help you learn how to use SEED-Platform.

https://sites.google.com/a/lbl.gov/seed/

There is also a link to the SEED-Platform Users forum, where you can connect with other users.

https://groups.google.com/forum/#!forum/seed-platform-users

For direct help on a specific problem, please email: SEED-Support@lists.lbl.gov

For SEED-Platform Developers

The Open Source code is available on the Github organization SEED-Platform:

https://github.com/SEED-platform

Please join the SEED-Platform Dev forum where you can connect with other developers.

https://groups.google.com/forum/#!forum/seed-platform-dev

Frequently Asked Questions

Here are some frequently asked questions and/or issues.

	Questions

	What is the SEED Platform?

	Issues

	Why is the domain set to example.com?

	Why aren’t the static assets being served correctly?

Questions

What is the SEED Platform?

The Standard Energy Efficiency Data (SEED) Platform™ is a web-based application
that helps organizations easily manage data on the energy performance of large
groups of buildings. Users can combine data from multiple sources, clean and
validate it, and share the information with others. The software application
provides an easy, flexible, and cost-effective method to improve the quality
and availability of data to help demonstrate the economic and environmental
benefits of energy efficiency, to implement programs, and to target investment
activity.

The SEED application is written in Python/Django, with AngularJS, Bootstrap,
and other JavaScript libraries used for the front-end. The back-end database
is required to be PostgreSQL.

The SEED web application provides both a browser-based interface for users to
upload and manage their building data, as well as a full set of APIs that app
developers can use to access these same data management functions.

Work on SEED Platform is managed by the National Renewable Energy Laboratory,
with funding from the U.S. Department of Energy.

Issues

Why is the domain set to example.com?

If you see example.com in the emails that are sent from your hosted version of SEED then you will
need to update your django sites object in the database.

$./manage.py shell

from django.contrib.sites.models import Site
one = Site.objects.all()[0]
one.domain = 'newdomain.org'
one.name = 'SEED'
one.save()

Why aren’t the static assets being served correctly?

Make sure that your local_untracked.py file does not have STATICFILES_STORAGE set to anything. If so,
then comment out that section and redeploy/recollect/compress your static assets.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 config	

 	
 	
 config.template_context	

 	
 	
 config.tests	

 	
 	
 config.utils	

Index

 C
 | D
 | S

C

 	
 	config.template_context (module)

 	
 	config.tests (module)

 	config.utils (module)

D

 	
 	de_camel_case() (in module config.utils)

S

 	
 	sentry_js() (in module config.template_context)

 	
 	session_key() (in module config.template_context)

Migrations

Django handles the migration of the database very well; however, there are various changes to SEED that may require some custom (manual) migrations. The migration documenation includes the required changes based on deployment and development for each release.

Version 2.5.1

	There are no manual migratios that are needed. The ./manage.py migrate command may take awhile

to run since the migration requires the recalculation of all the normalized addresses to parse
bldg correct and to cast the result as a string and not a bytestring.

Version 2.5.1

	The migrations should work by simply running ./manage.py migrate. There are no manual migrations needed for the 2.5.1 release.

Version 2.5.0

Docker-based Deployment

	Add the MapQuest API key to your organization.

	On deployment, the error below is indicative that you need to install the extensions in the postgres database. Run docker exec <posgres_container_id> update-postgis.sh.

django.db.utils.OperationalError: could not open extension control file “/usr/share/postgresql/11/extension/postgis.control”: No such file or directory

	If you are using a copied version of the docker-compose.yml file (e.g., for OEP support), then you need to change 127.0.0.1:5000/postgres to 127.0.0.1:5000/postgres-seed

Development

	Delete your bower directory rm -rf seed/static/vendors.

	Delete your css directory rm -rf seed/static/seed/css.

	Remove these lines from local_untracked.py if you have them.

DEFAULT_FILE_STORAGE = 'django.core.files.storage.FileSystemStorage'
STATICFILES_STORAGE = DEFAULT_FILE_STORAGE

	Run pip3 install -r requirements/local.txt.

	Run npm install from root checkout of SEED.

	If testing geocoding, then sign up for as a MapQuest Developer [https://developer.mapquest.com/plan_purchase/steps/business_edition/business_edition_free/register] and create a new MapQuest Key [https://developer.mapquest.com/user/me/apps].

	Add the key to the organization that you are using in development.

	Update your DATABASES engine to be django.contrib.gis.db.backends.postgis

DATABASES = {
 'default': {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'seeddb',
 'USER': 'seeduser',
 'PASSWORD': 'seedpass',
 'HOST': 'localhost',
 'PORT': '5432',
 }
}

	Run ./manage.py migrate

Translating SEED

	Update translations on lokalise [https://lokalise.co/project/3537487659ca9b1dce98a7.36378626/?view=multi].

	Copy lokalise.cfg.example to lokalise.cfg. Update API token.

	Run scripts

script/get_python_translations
script/get_angular_translations

	Verify and commit changes

Note: The lokalize website is the canonical source of data. If you
change the locale files locally, then you need to push them to
lokalize.

TL;DR

SEED is localized for more than just English, so a little more care is
needed as we add new UI. All translatable strings are held in either
per-language .json files (for Angular-controlled strings, which are
the majority), or .mo files (for strings supplied by Django).

At render time, SEED will sniff out the browser’s Accept: header.
Based on that, we choose the right file. The language files themselves
are key->value mappings from a translation “key” to a translated value.
Either Angular or Django will then swap that value into the DOM wherever
it sees the key. If no translation is available, the key remains in the
DOM. (There are some wrinkles with HTML styling and pluralization that
we’ll review below).

So, the basic flow on top of any new UI features is now:

	Tag any user-visible strings in the UI as “translatable.” There are
currently 12 (!) ways in which to do this; see below.

	Create the translation key at lokalise [https://lokalise.co/project/3537487659ca9b1dce98a7.36378626/?view=multi]. We’re using lokalise
because it can smooth over differences in the file formats that
Angular and Django require, and is a nice tool for managing the
process of getting translations done by a native speaker: we can put
up screenshots to clarify how the translated phrase is used, track
translation progress, etc.

	Get a translation done. As a placeholder, lokalise can provide an
auto-filled translation from Google Translate or a few other
services, but it’s fairly straightforward to order a professional
translation through lokalise.

	Pull new translation files into the right places in the source tree
and commit them. There are scripts under /scripts to make this
mostly automatic.

	Visually check that the containing UI looks OK with the translated
string(s). Some languages (eg. French, German) can be wordy relative
to English and cause UI elements like buttons to expand oddly. Adjust
the layout or adjust the translation as needed.

General philosophies / style

Don’t go crazy with indirection and interpolation

It’s probably better to err on the side of too many keys than to get
clever with interpolation or Angular expressions to avoid
near-duplicates of keys. The aim should be that there is at least one
place where a competent translator can see the whole string at once.

Compare:

<h2>{$:: inventory_type == 'taxlots' ?
 translations['INCLUDE_SHARED_TAXLOTS'] :
 translations['INCLUDE_SHARED

Data Quality Package

Inheritance

Submodules

Models

Tests

Views

seed.lib.mappings package

Submodules

seed.lib.mappings.mapper module

seed.lib.mappings.mapping_columns module

seed.lib.mappings.mapping_data module

seed.lib.mappings.test_mapper module

seed.lib.mappings.test_mapping_columns module

seed.lib.mappings.test_mapping_data module

Module contents

seed.lib.merging package

Submodules

seed.lib.merging.merging module

Module contents

Tests (Functional) Package

Submodules

Base

Page

Pages

 _images/case-a.png
Case A: 1 Building to 1 Parcel
Parcel 100

Building

Address 1

Source Data

Tax Assessor Data

One Tax Lot ID per record Building Data
TaxLotID | Address District Building 1D Tax Lot ID
100 44 West 1st Willow 30 100

Portfolio Manager Data
One PM record associated with one Tax Lot ID or Building ID

PMID | Building ID Tax Lot ID Energy Score | EUI Year Ending

1 30 100 76 15,000 12/31/2015

nav.xhtml

 Table of Contents

 		
 Standard Energy Efficiency Data (SEED) Platform

 		
 Getting Started

 		
 Development Setup

 		
 Installation on OSX

 		
 Installation using Docker

 		
 Deployment Guide

 		
 AWS Setup

 		
 Prerequisites

 		
 Python Dependencies

 		
 JavaScript Dependencies

 		
 Database Configuration

 		
 Cache and Message Broker

 		
 Running Celery the Background Task Worker

 		
 Running a Production Web Server

 		
 General Linux Setup

 		
 Prerequisites

 		
 Configure PostgreSQL

 		
 Python Dependencies

 		
 JavaScript Dependencies

 		
 Django Database Configuration

 		
 Cache and Message Broker

 		
 Creating the initial user

 		
 Running celery the background task worker

 		
 Running the development web server

 		
 Running a production web server

 		
 Environment Variables

 		
 Mail Services

 		
 local_untracked.py

 		
 Migrations

 		
 Monitoring

 		
 Sentry

 		
 API

 		
 Authentication

 		
 Payloads

 		
 Responses

 		
 API Endpoints

 		
 Data Model

 		
 parents and children

 		
 matching

 		
 manual-matching vs auto-matching

 		
 what really happens to the BuildingSnapshot table on import (and when)

 		
 what really happens to the CanonicalBuilding table on import (and when)

 		
 organization

 		
 *_source_id fields

 		
 extra_data

 		
 saving and possible data loss

 		
 Data Quality

 		
 Mapping

 		
 Import

 		
 Mapping

 		
 Matching

 		
 Pairing

 		
 Modules

 		
 Configuration

 		
 Submodules

 		
 Template Context

 		
 Tests

 		
 Utils

 		
 Views

 		
 WSGI

 		
 Data Package

 		
 Submodules

 		
 BEDES

 		
 Module contents

 		
 Data Importer Package

 		
 Submodules

 		
 Managers

 		
 Models

 		
 URLs

 		
 Utils

 		
 Views

 		
 Module contents

 		
 Features Package

 		
 Submodules

 		
 Module contents

 		
 Green Button Package

 		
 Subpackages

 		
 Submodules

 		
 seed.green_button.xml_importer module

 		
 Module contents

 		
 Landing Package

 		
 Subpackages

 		
 Submodules

 		
 Forms

 		
 Models

 		
 Tests

 		
 URLs

 		
 Views

 		
 Module contents

 		
 Library Packages

 		
 Submodules

 		
 Module contents

 		
 Mapping Package

 		
 Submodules

 		
 seed.mappings.mapper module

 		
 seed.mappings.seed_mappings module

 		
 Module contents

 		
 Managers Package

 		
 Subpackages

 		
 Submodules

 		
 JSON

 		
 Module contents

 		
 Models

 		
 Submodules

 		
 AuditLog

 		
 Columns

 		
 Cycles

 		
 Joins

 		
 Generic Models

 		
 Projects

 		
 Properties

 		
 TaxLots

 		
 Module contents

 		
 Public Package

 		
 Submodules

 		
 Models

 		
 Module contents

 		
 SEED Package

 		
 Subpackages

 		
 Inheritance

 		
 Submodules

 		
 Decorators

 		
 Factory

 		
 Models

 		
 Search

 		
 Tasks

 		
 Token Generator

 		
 URLs

 		
 Utils

 		
 Views

 		
 Module contents

 		
 Serializers Package

 		
 Submodules

 		
 Serializers

 		
 Labels

 		
 Module contents

 		
 Tests Package

 		
 Submodules

 		
 Admin Views

 		
 Decorators

 		
 Exporters

 		
 Models

 		
 Tasks

 		
 Views

 		
 Tests

 		
 Utils

 		
 URLs Package

 		
 Submodules

 		
 Accounts

 		
 APIs

 		
 Main

 		
 Projects

 		
 Utilities Package

 		
 Submodules

 		
 APIs

 		
 Buildings

 		
 Constants

 		
 Mappings

 		
 Organizations

 		
 Projects

 		
 Time

 		
 Views Package

 		
 Submodules

 		
 Accounts

 		
 APIs

 		
 Main

 		
 Meters

 		
 Projects

 		
 Module contents

 		
 Developer Resources

 		
 General Notes

 		
 Flake Settings

 		
 Django Notes

 		
 Adding New Fields to Database

 		
 AngularJS Integration Notes

 		
 Template Tags

 		
 Django CSRF Token and AJAX Requests

 		
 Routes and Partials or Views

 		
 Logging

 		
 BEDES Compliance and Managing Columns

 		
 Resetting the Database

 		
 Migrating the Database

 		
 Testing

 		
 Release Instructions

 		
 License

 		
 Help

 		
 For SEED-Platform Users

 		
 For SEED-Platform Developers

 		
 Frequently Asked Questions

 		
 Questions

 		
 What is the SEED Platform?

 		
 Issues

 		
 Why is the domain set to example.com?

 		
 Why arenâ��t the static assets being served correctly?

_images/case-d.png
Case D: Many buildings to many parcels (campus?)

Parcel 200 | Parcel 300 ‘ Parcel 450
b—
Address9 Building Address 12
Address 10 | | Building Building
+ 1
Address 11
Source Data
Tax Assessor Data
One Tax Lot ID per record Building Data
TaxlotID | Address District Building ID Tax Lot ID
200 1Adams Willow L1 200;300;400
300 2 West Willow [¥3 200
400 3 Exeter Willow 3 300;450
Portfolio Manager Data
Hierarchical campus to building:
One PM record for campus and multiple PM records for campus buildings related many to many to Tax Lots
PM ID Property Name | Parent Name ParentPMID | Tax Lot ID Energy Score EUI Year Ending
5 Lucky Campus | Lucky Campus 5 200;300;450 | - - 12/31/2013
6 Building 1 Lucky Campus 5 200;300;450 |59 107 12/31/2013
7 Building 2 Lucky Campus 5 200 62 268 12/31/2013
8 Building 3 Lucky Campus 5 300;450 74 961 12/31/2013

_images/data-model.png
TaxLot Tables

Property Tables

Faxtot . [Property
: [campus: oo
{current_view_id N pus
. curen et
FaxLotview :
i :
. fProperiyvien
.]
Jd : FK to Cygle:id
Mastothuditiop :
fid .
e .
e .
ey :
T .
Sierecot 4 .
escrion R
Fito MogoRocordit (NOT SHOWN) .
: (owner st
Fito ImportRecortia (NOT SHOWN) . [owmer eephons
. Fto Propeny:ia [owmer addes
' [owner_ciy_siate.
: [owner posial ode
Fcto Tatotit : =
N |buikding_portfolio_manager_identifier
luting_nome.eneay_saver.rster
[enrgy_soore
FraxLotPropertybzin e
fid |generation_date
Fto Opoia ot vew.s3 eease. dae
y_ven i Ste_suweaier_romaized
eyt e —— e
uront T R s =
jactive |space_alents.
(primary |building_certification

|BuidingromsEnargyScors fiids

fmponrecord_id

imergerecord id

FK to MargeRecord:d (NOT SHOWN)

FK 1o ImportRecordtia (NOT SHOWN).

_images/case-b.png
Case B: Many Buildings to 1 Parcel

Address 4

4

Parcel 101
Building >
Address 3
Address 5
Building
Address 2
Source Data
Tax Assessor Data Building Data
One Tax Lot ID per record Building ID Tax Lot ID
TaxLotID | Address District 101-A 101
101 15 Broadway Willow 101-B 101
Portfolio Manager Data
Multiple PM records associated with one Tax Lot ID or Building ID
PM ID Building ID Tax Lot ID Energy Score EUI Year Ending
2 101-A 101 66 12,000 12/31/2015
3 101-B 101 98 2,500 12/31/2015

_images/case-c.png
Case C: 1 Building to many Parcels

Parcel 200 Parcel 300 | Parcel 400
Address 6
—
Building Address8
I
Address 7
Source Data
Tax Assessor Data
One Tax Lot ID per record
TaxLotID | Address District Building Data
200 1 Adams Willow Building ID Tax Lot ID
300 2 West Willow 44 200;300;400
400 3 Exeter Willow
Portfolio Manager Data
One PM record or Building ID associated with Multiple Tax Lot IDs
PMID Building ID Tax Lot ID Energy Score EUI Year Ending
4 44 200;300;400 | 82 161,000 12/31/2015

_static/file.png

_static/minus.png

_static/plus.png

