

 Navigation

 	
 index

 	SecKCoin 1.0 documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/seckcoin/checkouts/1.0/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/seckcoin/checkouts/1.0/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	SecKCoin 1.0 documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/comment.png

seckcoin/doc/README.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

SecKCoin 0.8.x BETA

Copyright (c) 2009-2013 Bitcoin Developers
Copyright (c) 2011-2013 Litecoin Developers

Distributed under the MIT/X11 software license, see the accompanying
file COPYING or http://www.opensource.org/licenses/mit-license.php.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit [http://www.openssl.org/]. This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com), and UPnP software written by Thomas Bernard.

Intro

SecKCoin is a free open source peer-to-peer electronic cash system that is
completely decentralized, without the need for a central server or trusted
parties. Users hold the crypto keys to their own money and transact directly
with each other, with the help of a P2P network to check for double-spending.

Setup

You need the Qt4 run-time libraries to run SecKCoin-Qt. On Debian or Ubuntu:
sudo apt-get install libqtgui4

Unpack the files into a directory and run:

		bin/32/seckcoin-qt (GUI, 32-bit)

		bin/32/seckcoind (headless, 32-bit)

		bin/64/seckcoin-qt (GUI, 64-bit)

		bin/64/seckcoind (headless, 64-bit)

See the documentation at the SecKCoin Wiki [http://seckcoin.info]
for help and more information.

Other Pages

		Unix Build Notes

		OSX Build Notes

		Windows Build Notes

		Coding Guidelines

		Release Process

		Release Notes

		Multiwallet Qt Development

		Unit Tests

		Translation Process

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/release-process.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Release Process

###update (commit) version in sources

seckcoin-qt.pro
contrib/verifysfbinaries/verify.sh
doc/README*
share/setup.nsi
src/clientversion.h (change CLIENT_VERSION_IS_RELEASE to true)

###tag version in git

git tag -a v0.8.0

###write release notes. git shortlog helps a lot, for example:

git shortlog --no-merges v0.7.2..v0.8.0

##perform gitian builds

From a directory containing the seckcoin source, gitian-builder and gitian.sigs

export SIGNER=(your gitian key, ie bluematt, sipa, etc)
export VERSION=0.8.0
cd ./gitian-builder

Fetch and build inputs: (first time, or when dependency versions change)

mkdir -p inputs; cd inputs/
wget 'http://miniupnp.free.fr/files/download.php?file=miniupnpc-1.6.tar.gz' -O miniupnpc-1.6.tar.gz
wget 'http://www.openssl.org/source/openssl-1.0.1c.tar.gz'
wget 'http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz'
wget 'http://zlib.net/zlib-1.2.6.tar.gz'
wget 'ftp://ftp.simplesystems.org/pub/libpng/png/src/libpng-1.5.9.tar.gz'
wget 'http://fukuchi.org/works/qrencode/qrencode-3.2.0.tar.bz2'
wget 'http://downloads.sourceforge.net/project/boost/boost/1.50.0/boost_1_50_0.tar.bz2'
wget 'http://releases.qt-project.org/qt4/source/qt-everywhere-opensource-src-4.8.3.tar.gz'
cd ..
./bin/gbuild ../seckcoin/contrib/gitian-descriptors/boost-win32.yml
mv build/out/boost-win32-1.50.0-gitian2.zip inputs/
./bin/gbuild ../seckcoin/contrib/gitian-descriptors/qt-win32.yml
mv build/out/qt-win32-4.8.3-gitian-r1.zip inputs/
./bin/gbuild ../seckcoin/contrib/gitian-descriptors/deps-win32.yml
mv build/out/seckcoin-deps-0.0.5.zip inputs/

Build seckcoind and seckcoin-qt on Linux32, Linux64, and Win32:

./bin/gbuild --commit seckcoin=v${VERSION} ../seckcoin/contrib/gitian-descriptors/gitian.yml
./bin/gsign --signer $SIGNER --release ${VERSION} --destination ../gitian.sigs/ ../seckcoin/contrib/gitian-descriptors/gitian.yml
pushd build/out
zip -r seckcoin-${VERSION}-linux-gitian.zip *
mv seckcoin-${VERSION}-linux-gitian.zip ../../
popd
./bin/gbuild --commit seckcoin=v${VERSION} ../seckcoin/contrib/gitian-descriptors/gitian-win32.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-win32 --destination ../gitian.sigs/ ../seckcoin/contrib/gitian-descriptors/gitian-win32.yml
pushd build/out
zip -r seckcoin-${VERSION}-win32-gitian.zip *
mv seckcoin-${VERSION}-win32-gitian.zip ../../
popd

Build output expected:

		linux 32-bit and 64-bit binaries + source (seckcoin-${VERSION}-linux-gitian.zip)

		windows 32-bit binary, installer + source (seckcoin-${VERSION}-win32-gitian.zip)

		Gitian signatures (in gitian.sigs/${VERSION}[-win32]/(your gitian key)/

repackage gitian builds for release as stand-alone zip/tar/installer exe

Linux .tar.gz:

unzip seckcoin-${VERSION}-linux-gitian.zip -d seckcoin-${VERSION}-linux
tar czvf seckcoin-${VERSION}-linux.tar.gz seckcoin-${VERSION}-linux
rm -rf seckcoin-${VERSION}-linux

Windows .zip and setup.exe:

unzip seckcoin-${VERSION}-win32-gitian.zip -d seckcoin-${VERSION}-win32
mv seckcoin-${VERSION}-win32/seckcoin-*-setup.exe .
zip -r seckcoin-${VERSION}-win32.zip bitcoin-${VERSION}-win32
rm -rf seckcoin-${VERSION}-win32

Perform Mac build:

OSX binaries are created by Gavin Andresen on a 32-bit, OSX 10.6 machine.

qmake RELEASE=1 USE_UPNP=1 USE_QRCODE=1 seckcoin-qt.pro
make
export QTDIR=/opt/local/share/qt4 # needed to find translations/qt_*.qm files
T=$(contrib/qt_translations.py $QTDIR/translations src/qt/locale)
python2.7 share/qt/clean_mac_info_plist.py
python2.7 contrib/macdeploy/macdeployqtplus Bitcoin-Qt.app -add-qt-tr $T -dmg -fancy contrib/macdeploy/fancy.plist

Build output expected: Bitcoin-Qt.dmg

###Next steps:

		Code-sign Windows -setup.exe (in a Windows virtual machine) and
OSX Bitcoin-Qt.app (Note: only Gavin has the code-signing keys currently)

		upload builds to SourceForge

		create SHA256SUMS for builds, and PGP-sign it

		update seckcoin.org version
make sure all OS download links go to the right versions

		update forum version

		update wiki download links

		update wiki changelog: https://en.seckcoin.it/wiki/Changelog [https://en.bitcoin.it/wiki/Changelog]

Commit your signature to gitian.sigs:

pushd gitian.sigs
git add ${VERSION}/${SIGNER}
git add ${VERSION}-win32/${SIGNER}
git commit -a
git push # Assuming you can push to the gitian.sigs tree
popd

After 3 or more people have gitian-built, repackage gitian-signed zips:

From a directory containing seckcoin source, gitian.sigs and gitian zips

export VERSION=0.5.1
mkdir seckcoin-${VERSION}-linux-gitian
pushd seckcoin-${VERSION}-linux-gitian
unzip ../seckcoin-${VERSION}-linux-gitian.zip
mkdir gitian
cp ../seckcoin/contrib/gitian-downloader/*.pgp ./gitian/
for signer in $(ls ../gitian.sigs/${VERSION}/); do
 cp ../gitian.sigs/${VERSION}/${signer}/seckcoin-build.assert ./gitian/${signer}-build.assert
 cp ../gitian.sigs/${VERSION}/${signer}/seckcoin-build.assert.sig ./gitian/${signer}-build.assert.sig
done
zip -r seckcoin-${VERSION}-linux-gitian.zip *
cp seckcoin-${VERSION}-linux-gitian.zip ../
popd
mkdir seckcoin-${VERSION}-win32-gitian
pushd seckcoin-${VERSION}-win32-gitian
unzip ../seckcoin-${VERSION}-win32-gitian.zip
mkdir gitian
cp ../seckcoin/contrib/gitian-downloader/*.pgp ./gitian/
for signer in $(ls ../gitian.sigs/${VERSION}-win32/); do
 cp ../gitian.sigs/${VERSION}-win32/${signer}/seckcoin-build.assert ./gitian/${signer}-build.assert
 cp ../gitian.sigs/${VERSION}-win32/${signer}/seckcoin-build.assert.sig ./gitian/${signer}-build.assert.sig
done
zip -r seckcoin-${VERSION}-win32-gitian.zip *
cp seckcoin-${VERSION}-win32-gitian.zip ../
popd

		Upload gitian zips to SourceForge

		Celebrate

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/multiwallet-qt.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Multiwallet Qt Development and Integration Strategy

In order to support loading of multiple wallets in bitcoin-qt, a few changes in the UI architecture will be needed.
Fortunately, only four of the files in the existing project are affected by this change.

Three new classes have been implemented in three new .h/.cpp file pairs, with much of the functionality that was previously
implemented in the BitcoinGUI class moved over to these new classes.

The two existing files most affected, by far, are bitcoingui.h and bitcoingui.cpp, as the BitcoinGUI class will require
some major retrofitting.

Only requiring some minor changes is bitcoin.cpp.

Finally, three new headers and source files will have to be added to bitcoin-qt.pro.

Changes to class BitcoinGUI

The principal change to the BitcoinGUI class concerns the QStackedWidget instance called centralWidget.
This widget owns five page views: overviewPage, transactionsPage, addressBookPage, receiveCoinsPage, and sendCoinsPage.

A new class called WalletView inheriting from QStackedWidget has been written to handle all renderings and updates of
these page views. In addition to owning these five page views, a WalletView also has a pointer to a WalletModel instance.
This allows the construction of multiple WalletView objects, each rendering a distinct wallet.

A second class called WalletStack, also inheriting from QStackedWidget, has been written to handle switching focus between
different loaded wallets. In its current implementation, as a QStackedWidget, only one wallet can be viewed at a time -
but this can be changed later.

A third class called WalletFrame inheriting from QFrame has been written as a container for embedding all wallet-related
controls into BitcoinGUI. At present it just contains a WalletStack instance and does little more than passing on messages
from BitcoinGUI to the WalletStack, which in turn passes them to the individual WalletViews. It is a WalletFrame instance
that takes the place of what used to be centralWidget in BitcoinGUI. The purpose of this class is to allow future
refinements of the wallet controls with minimal need for further modifications to BitcoinGUI, thus greatly simplifying
merges while reducing the risk of breaking top-level stuff.

Changes to bitcoin.cpp

bitcoin.cpp is the entry point into bitcoin-qt, and as such, will require some minor modifications to provide hooks for
multiple wallet support. Most importantly will be the way it instantiates WalletModels and passes them to the
singleton BitcoinGUI instance called window. Formerly, BitcoinGUI kept a pointer to a single instance of a WalletModel.
The initial change required is very simple: rather than calling window.setWalletModel(&walletModel); we perform the
following two steps:

window.addWallet("~Default", &walletModel);
window.setCurrentWallet("~Default");

The string parameter is just an arbitrary name given to the default wallet. It’s been prepended with a tilde to avoid name collisions in the future with additional wallets.

The shutdown call window.setWalletModel(0) has also been removed. In its place is now:

window.removeAllWallets();

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

seckcoin/doc/coding.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Coding

Please be consistent with the existing coding style.

Block style:

bool Function(char* psz, int n)
{
 // Comment summarising what this section of code does
 for (int i = 0; i < n; i++)
 {
 // When something fails, return early
 if (!Something())
 return false;
 ...
 }

 // Success return is usually at the end
 return true;
}

		ANSI/Allman block style

		4 space indenting, no tabs

		No extra spaces inside parenthesis; please don’t do (this)

		No space after function names, one space after if, for and while

Variable names begin with the type in lowercase, like nSomeVariable.
Please don’t put the first word of the variable name in lowercase like
someVariable.

Common types:

n integer number: short, unsigned short, int, unsigned int, int64, uint64, sometimes char if used as a number
d double, float
f flag
hash uint256
p pointer or array, one p for each level of indirection
psz pointer to null terminated string
str string object
v vector or similar list objects
map map or multimap
set set or multiset
bn CBigNum

Locking/mutex usage notes

The code is multi-threaded, and uses mutexes and the
LOCK/TRY_LOCK macros to protect data structures.

Deadlocks due to inconsistent lock ordering (thread 1 locks cs_main
and then cs_wallet, while thread 2 locks them in the opposite order:
result, deadlock as each waits for the other to release its lock) are
a problem. Compile with -DDEBUG_LOCKORDER to get lock order
inconsistencies reported in the debug.log file.

Re-architecting the core code so there are better-defined interfaces
between the various components is a goal, with any necessary locking
done by the components (e.g. see the self-contained CKeyStore class
and its cs_KeyStore lock for example).

Threads

		StartNode : Starts other threads.

		ThreadGetMyExternalIP : Determines outside-the-firewall IP address, sends addr message to connected peers when it determines it.

		ThreadSocketHandler : Sends/Receives data from peers on port 8333.

		ThreadMessageHandler : Higher-level message handling (sending and receiving).

		ThreadOpenConnections : Initiates new connections to peers.

		ThreadTopUpKeyPool : replenishes the keystore’s keypool.

		ThreadCleanWalletPassphrase : re-locks an encrypted wallet after user has unlocked it for a period of time.

		SendingDialogStartTransfer : used by pay-via-ip-address code (obsolete)

		ThreadDelayedRepaint : repaint the gui

		ThreadFlushWalletDB : Close the wallet.dat file if it hasn’t been used in 500ms.

		ThreadRPCServer : Remote procedure call handler, listens on port 8332 for connections and services them.

		ThreadBitcoinMiner : Generates bitcoins

		ThreadMapPort : Universal plug-and-play startup/shutdown

		Shutdown : Does an orderly shutdown of everything

		ExitTimeout : Windows-only, sleeps 5 seconds then exits application

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/readme-qt.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

SecKCoin-Qt: Qt4 GUI for SecKCoin

Build instructions

Debian

First, make sure that the required packages for Qt4 development of your
distribution are installed, these are

for Debian and Ubuntu <= 11.10 :

apt-get install qt4-qmake libqt4-dev build-essential libboost-dev libboost-system-dev \
 libboost-filesystem-dev libboost-program-options-dev libboost-thread-dev \
 libssl-dev libdb4.8++-dev

for Ubuntu >= 12.04 (please read the ‘Berkely DB version warning’ below):

apt-get install qt4-qmake libqt4-dev build-essential libboost-dev libboost-system-dev \
 libboost-filesystem-dev libboost-program-options-dev libboost-thread-dev \
 libssl-dev libdb++-dev libminiupnpc-dev

For Qt 5 you need the following, otherwise you get an error with lrelease when running qmake:

apt-get install qt5-qmake libqt5gui5 libqt5core5 libqt5dbus5 qttools5-dev-tools

then execute the following:

qmake
make

Alternatively, install Qt Creator [http://qt-project.org/downloads/] and open the seckcoin-qt.pro file.

An executable named seckcoin-qt will be built.

Mac OS X

		Download and install the Qt Mac OS X SDK [http://qt-project.org/downloads/]. It is recommended to also install Apple’s Xcode with UNIX tools.

		Download and install either MacPorts [http://www.macports.org/install.php] or HomeBrew [http://mxcl.github.io/homebrew/].

		Execute the following commands in a terminal to get the dependencies using MacPorts:

sudo port selfupdate
sudo port install boost db48 miniupnpc

		Execute the following commands in a terminal to get the dependencies using HomeBrew:

brew update
brew install boost miniupnpc openssl berkeley-db4

		If using HomeBrew, edit seckcoin-qt.pro to account for library location differences. There’s a diff in contrib/homebrew/bitcoin-qt-pro.patch that shows what you need to change, or you can just patch by doing

patch -p1 < contrib/homebrew/bitcoin.qt.pro.patch

		Open the seckcoin-qt.pro file in Qt Creator and build as normal (cmd-B)

Build configuration options

UPnP port forwarding

To use UPnP for port forwarding behind a NAT router (recommended, as more connections overall allow for a faster and more stable seckcoin experience), pass the following argument to qmake:

qmake "USE_UPNP=1"

(in Qt Creator, you can find the setting for additional qmake arguments under “Projects” -> “Build Settings” -> “Build Steps”, then click “Details” next to qmake)

This requires miniupnpc for UPnP port mapping. It can be downloaded from
http://miniupnp.tuxfamily.org/files/. UPnP support is not compiled in by default.

Set USE_UPNP to a different value to control this:

		USE_UPNP=-
		no UPnP support, miniupnpc not required;

		USE_UPNP=0
		(the default) built with UPnP, support turned off by default at runtime;

		USE_UPNP=1
		build with UPnP support turned on by default at runtime.

Notification support for recent (k)ubuntu versions

To see desktop notifications on (k)ubuntu versions starting from 10.04, enable usage of the
FreeDesktop notification interface through DBUS using the following qmake option:

qmake "USE_DBUS=1"

Generation of QR codes

libqrencode may be used to generate QRCode images for payment requests.
It can be downloaded from http://fukuchi.org/works/qrencode/index.html.en, or installed via your package manager. Pass the USE_QRCODE
flag to qmake to control this:

		USE_QRCODE=0
		(the default) No QRCode support - libarcode not required

		USE_QRCODE=1
		QRCode support enabled

Berkely DB version warning

A warning for people using the static binary version of SecKCoin on a Linux/UNIX-ish system (tl;dr: Berkely DB databases are not forward compatible).

The static binary version of SecKCoin is linked against libdb4.8 (see also this Debian issue [http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=621425]).

Now the nasty thing is that databases from 5.X are not compatible with 4.X.

If the globally installed development package of Berkely DB installed on your system is 5.X, any source you
build yourself will be linked against that. The first time you run with a 5.X version the database will be upgraded,
and 4.X cannot open the new format. This means that you cannot go back to the old statically linked version without
significant hassle!

Ubuntu 11.10 warning

Ubuntu 11.10 has a package called ‘qt-at-spi’ installed by default. At the time of writing, having that package
installed causes seckcoin-qt to crash intermittently. The issue has been reported as launchpad bug 857790 [https://bugs.launchpad.net/ubuntu/+source/qt-at-spi/+bug/857790], but
isn’t yet fixed.

Until the bug is fixed, you can remove the qt-at-spi package to work around the problem, though this will presumably
disable screen reader functionality for Qt apps:

sudo apt-get remove qt-at-spi

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/translation_process.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Translations

The Qt GUI can be easily translated into other languages. Here’s how we
handle those translations.

Files and Folders

bitcoin-qt.pro

This file takes care of generating .qm files from .ts files. It is mostly
automated.

src/qt/bitcoin.qrc

This file must be updated whenever a new translation is added. Please note that
files must end with .qm, not .ts.

<qresource prefix="/translations">
 <file alias="en">locale/bitcoin_en.qm</file>
 ...
</qresource>

src/qt/locale/

This directory contains all translations. Filenames must adhere to this format:

bitcoin_xx_YY.ts or bitcoin_xx.ts

bitcoin_en.ts (Source file)

src/qt/locale/bitcoin_en.ts is treated in a special way. It is used as the
source for all other translations. Whenever a string in the code is changed
this file must be updated to reflect those changes. This can be accomplished
by running lupdate (included in the Qt SDK). Also, a custom script is used
to extract strings from the non-Qt parts. This script makes use of gettext,
so make sure that utility is installed (ie, apt-get install gettext on
Ubuntu/Debian):

python share/qt/extract_strings_qt.py
lupdate bitcoin-qt.pro -no-obsolete -locations relative -ts src/qt/locale/bitcoin_en.ts

Handling of plurals in the source file

When new plurals are added to the source file, it’s important to do the following steps:

		Open bitcoin_en.ts in Qt Linguist (also included in the Qt SDK)

		Search for %n, which will take you to the parts in the translation that use plurals

		Look for empty English Translation (Singular) and English Translation (Plural) fields

		Add the appropriate strings for the singular and plural form of the base string

		Mark the item as done (via the green arrow symbol in the toolbar)

		Repeat from step 2. until all singular and plural forms are in the source file

		Save the source file

Creating the pull-request

An updated source file should be merged to github and Transifex will pick it
up from there (can take some hours). Afterwards the new strings show up as “Remaining”
in Transifex and can be translated.

To create the pull-request you have to do:

git add src/qt/bitcoinstrings.cpp src/qt/locale/bitcoin_en.ts
git commit

Syncing with Transifex

We are using https://transifex.com as a frontend for translating the client.

https://www.transifex.com/projects/p/bitcoin/resource/tx/

The “Transifex client” (see: http://help.transifex.com/features/client/)
will help with fetching new translations from Transifex. Use the following
config to be able to connect with the client:

.tx/config

[main]
host = https://www.transifex.com

[bitcoin.tx]
file_filter = src/qt/locale/bitcoin_<lang>.ts
source_file = src/qt/locale/bitcoin_en.ts
source_lang = en

.tx/config (for Windows)

[main]
host = https://www.transifex.com

[bitcoin.tx]
file_filter = src\qt\locale\bitcoin_<lang>.ts
source_file = src\qt\locale\bitcoin_en.ts
source_lang = en

It is also possible to directly download new translations one by one from the Transifex website.

Fetching new translations

		tx pull -a

		update src/qt/bitcoin.qrc manually or via
ls src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bitcoin_\(.*\)\).ts/<file alias="\2">locale/\1.qm<\/file>/'

		git add new translations from src/qt/locale/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/release-notes.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

0.8.5.1 changes

Workaround negative version numbers serialization bug.

Fix out-of-bounds check (SecKCoin currently does not use this codepath, but we apply this
patch just to match Bitcoin 0.8.5.)

0.8.4.1 changes

CVE-2013-5700 Bloom: filter crash issue - SecKCoin 0.8.3.7 disabled bloom by default so was
unaffected by this issue, but we include their patches anyway just in case folks want to
enable bloomfilter=1.

CVE-2013-4165: RPC password timing guess vulnerability

CVE-2013-4627: Better fix for the fill-memory-with-orphaned-tx attack

Fix multi-block reorg transaction resurrection.

Fix non-standard disconnected transactions causing mempool orphans. This bug could cause
nodes running with the -debug flag to crash, although it was lot less likely on SecKCoin
as we disabled IsDust() in 0.8.3.x.

Mac OSX: use ‘FD_FULLSYNC’ with LevelDB, which will (hopefully!) prevent the database
corruption issues have experienced on OSX.

Add height parameter to getnetworkhashps.

Fix Norwegian and Swedish translations.

Minor efficiency improvement in block peer request handling.

0.8.3.7 changes

Fix CVE-2013-4627 denial of service, a memory exhaustion attack that could crash low-memory nodes.

Fix a regression that caused excessive writing of the peers.dat file.

Add option for bloom filtering.

Fix Hebrew translation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/build-msw.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

 Copyright (c) 2009-2013 Bitcoin Developers
Distributed under the MIT/X11 software license, see the accompanying
file COPYING or http://www.opensource.org/licenses/mit-license.php.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit [http://www.openssl.org/]. This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com), and UPnP software written by Thomas Bernard.

See readme-qt.rst for instructions on building SecKCoin-Qt, the
graphical user interface.

WINDOWS BUILD NOTES

Compilers Supported

TODO: What works?
Note: releases are cross-compiled using mingw running on Linux.

Dependencies

Libraries you need to download separately and build:

 default path download

OpenSSL \openssl-1.0.1c-mgw http://www.openssl.org/source/
Berkeley DB \db-4.8.30.NC-mgw http://www.oracle.com/technology/software/products/berkeley-db/index.html
Boost \boost-1.50.0-mgw http://www.boost.org/users/download/
miniupnpc \miniupnpc-1.6-mgw http://miniupnp.tuxfamily.org/files/

Their licenses:

OpenSSL Old BSD license with the problematic advertising requirement
Berkeley DB New BSD license with additional requirement that linked software must be free open source
Boost MIT-like license
miniupnpc New (3-clause) BSD license

Versions used in this release:

OpenSSL 1.0.1c
Berkeley DB 4.8.30.NC
Boost 1.50.0
miniupnpc 1.6

OpenSSL

MSYS shell:

un-tar sources with MSYS ‘tar xfz’ to avoid issue with symlinks (OpenSSL ticket 2377)
change ‘MAKE’ env. variable from ‘C:\MinGW32\bin\mingw32-make.exe’ to ‘/c/MinGW32/bin/mingw32-make.exe’

cd /c/openssl-1.0.1c-mgw
./config
make

Berkeley DB

MSYS shell:

cd /c/db-4.8.30.NC-mgw/build_unix
sh ../dist/configure --enable-mingw --enable-cxx
make

Boost

DOS prompt:

downloaded boost jam 3.1.18
cd \boost-1.50.0-mgw
bjam toolset=gcc --build-type=complete stage

MiniUPnPc

UPnP support is optional, make with USE_UPNP= to disable it.

MSYS shell:

cd /c/miniupnpc-1.6-mgw
make -f Makefile.mingw
mkdir miniupnpc
cp *.h miniupnpc/

SecKCoin

DOS prompt:

cd \seckcoin\src
mingw32-make -f makefile.mingw
strip seckcoind.exe

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/unit-tests.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Compiling/running seckcoind unit tests

seckcoind unit tests are in the src/test/ directory; they
use the Boost::Test unit-testing framework.

To compile and run the tests:

cd src
make -f makefile.unix test_seckcoin # Replace makefile.unix if you're not on unix
./test_seckcoin # Runs the unit tests

If all tests succeed the last line of output will be:
*** No errors detected

To add more tests, add BOOST_AUTO_TEST_CASE functions to the existing
.cpp files in the test/ directory or add new .cpp files that
implement new BOOST_AUTO_TEST_SUITE sections (the makefiles are
set up to add test/*.cpp to test_seckcoin automatically).

Compiling/running SecKCoin-Qt unit tests

Bitcoin-Qt unit tests are in the src/qt/test/ directory; they
use the Qt unit-testing framework.

To compile and run the tests:

qmake bitcoin-qt.pro BITCOIN_QT_TEST=1
make
./seckcoin-qt_test

To add more tests, add them to the src/qt/test/ directory,
the src/qt/test/test_main.cpp file, and bitcoin-qt.pro.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/build-unix.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

 Copyright (c) 2009-2013 Bitcoin Developers

Distributed under the MIT/X11 software license, see the accompanying
file COPYING or http://www.opensource.org/licenses/mit-license.php.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit [http://www.openssl.org/]. This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com), and UPnP software written by Thomas Bernard.

UNIX BUILD NOTES

To Build

cd src/
make -f makefile.unix # Headless seckcoin

See readme-qt.rst for instructions on building SecKCoin-Qt, the graphical user interface.

Dependencies

Library Purpose Description

libssl SSL Support Secure communications
libdb4.8 Berkeley DB Blockchain & wallet storage
libboost Boost C++ Library
miniupnpc UPnP Support Optional firewall-jumping support

miniupnpc [http://miniupnp.free.fr/] may be used for UPnP port mapping. It can be downloaded from here [http://miniupnp.tuxfamily.org/files/]. UPnP support is compiled in and
turned off by default. Set USE_UPNP to a different value to control this:

USE_UPNP= No UPnP support miniupnp not required
USE_UPNP=0 (the default) UPnP support turned off by default at runtime
USE_UPNP=1 UPnP support turned on by default at runtime

IPv6 support may be disabled by setting:

USE_IPV6=0 Disable IPv6 support

Licenses of statically linked libraries:
Berkeley DB New BSD license with additional requirement that linked
software must be free open source
Boost MIT-like license
miniupnpc New (3-clause) BSD license

		Versions used in this release:

		GCC 4.3.3

		OpenSSL 1.0.1c

		Berkeley DB 4.8.30.NC

		Boost 1.37

		miniupnpc 1.6

Dependency Build Instructions: Ubuntu & Debian

Build requirements:

sudo apt-get install build-essential
sudo apt-get install libssl-dev

for Ubuntu 12.04:

sudo apt-get install libboost-all-dev

db4.8 packages are available here [https://launchpad.net/~bitcoin/+archive/bitcoin].

Ubuntu precise has packages for libdb5.1-dev and libdb5.1++-dev,
but using these will break binary wallet compatibility, and is not recommended.

for other Ubuntu & Debian:

sudo apt-get install libdb4.8-dev
sudo apt-get install libdb4.8++-dev
sudo apt-get install libboost1.37-dev

(If using Boost 1.37, append -mt to the boost libraries in the makefile)

Optional:

sudo apt-get install libminiupnpc-dev (see USE_UPNP compile flag)

Notes

The release is built with GCC and then “strip bitcoind” to strip the debug
symbols, which reduces the executable size by about 90%.

miniupnpc

tar -xzvf miniupnpc-1.6.tar.gz
cd miniupnpc-1.6
make
sudo su
make install

Berkeley DB

You need Berkeley DB 4.8. If you have to build Berkeley DB yourself:

../dist/configure --enable-cxx
make

Boost

If you need to build Boost yourself:

sudo su
./bootstrap.sh
./bjam install

Security

To help make your seckcoin installation more secure by making certain attacks impossible to
exploit even if a vulnerability is found, you can take the following measures:

		Position Independent Executable
Build position independent code to take advantage of Address Space Layout Randomization
offered by some kernels. An attacker who is able to cause execution of code at an arbitrary
memory location is thwarted if he doesn’t know where anything useful is located.
The stack and heap are randomly located by default but this allows the code section to be
randomly located as well.

On an Amd64 processor where a library was not compiled with -fPIC, this will cause an error
such as: “relocation R_X86_64_32 against `......’ can not be used when making a shared object;”

To build with PIE, use:
make -f makefile.unix ... -e PIE=1

To test that you have built PIE executable, install scanelf, part of paxutils, and use:

 scanelf -e ./seckcoin

The output should contain:
TYPE
ET_DYN

		Non-executable Stack
If the stack is executable then trivial stack based buffer overflow exploits are possible if
vulnerable buffers are found. By default, bitcoin should be built with a non-executable stack
but if one of the libraries it uses asks for an executable stack or someone makes a mistake
and uses a compiler extension which requires an executable stack, it will silently build an
executable without the non-executable stack protection.

To verify that the stack is non-executable after compiling use:
scanelf -e ./seckcoin

the output should contain:
STK/REL/PTL
RW- R– RW-

The STK RW- means that the stack is readable and writeable but not executable.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/src/leveldb/CONTRIBUTING.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Contributing

We’d love to accept your code patches! However, before we can take them, we
have to jump a couple of legal hurdles.

Contributor License Agreements

Please fill out either the individual or corporate Contributor License
Agreement as appropriate.

		If you are an individual writing original source code and you’re sure you
own the intellectual property, then sign an individual CLA [https://developers.google.com/open-source/cla/individual].

		If you work for a company that wants to allow you to contribute your work,
then sign a corporate CLA [https://developers.google.com/open-source/cla/corporate].

Follow either of the two links above to access the appropriate CLA and
instructions for how to sign and return it.

Submitting a Patch

		Sign the contributors license agreement above.

		Decide which code you want to submit. A submission should be a set of changes
that addresses one issue in the issue tracker [https://github.com/google/leveldb/issues].
Please don’t mix more than one logical change per submission, because it makes
the history hard to follow. If you want to make a change
(e.g. add a sample or feature) that doesn’t have a corresponding issue in the
issue tracker, please create one.

		Submitting: When you are ready to submit, send us a Pull Request. Be
sure to include the issue number you fixed and the name you used to sign
the CLA.

Writing Code

If your contribution contains code, please make sure that it follows
the style guide [http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml].
Otherwise we will have to ask you to make changes, and that’s no fun for anyone.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/src/leveldb/README.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

 LevelDB is a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.

Authors: Sanjay Ghemawat (sanjay@google.com) and Jeff Dean (jeff@google.com)

Features

		Keys and values are arbitrary byte arrays.

		Data is stored sorted by key.

		Callers can provide a custom comparison function to override the sort order.

		The basic operations are Put(key,value), Get(key), Delete(key).

		Multiple changes can be made in one atomic batch.

		Users can create a transient snapshot to get a consistent view of data.

		Forward and backward iteration is supported over the data.

		Data is automatically compressed using the Snappy compression library [http://code.google.com/p/snappy].

		External activity (file system operations etc.) is relayed through a virtual interface so users can customize the operating system interactions.

		Detailed documentation [http://htmlpreview.github.io/?https://github.com/google/leveldb/blob/master/doc/index.html] about how to use the library is included with the source code.

Limitations

		This is not a SQL database. It does not have a relational data model, it does not support SQL queries, and it has no support for indexes.

		Only a single process (possibly multi-threaded) can access a particular database at a time.

		There is no client-server support builtin to the library. An application that needs such support will have to wrap their own server around the library.

Performance

Here is a performance report (with explanations) from the run of the
included db_bench program. The results are somewhat noisy, but should
be enough to get a ballpark performance estimate.

Setup

We use a database with a million entries. Each entry has a 16 byte
key, and a 100 byte value. Values used by the benchmark compress to
about half their original size.

LevelDB: version 1.1
Date: Sun May 1 12:11:26 2011
CPU: 4 x Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
CPUCache: 4096 KB
Keys: 16 bytes each
Values: 100 bytes each (50 bytes after compression)
Entries: 1000000
Raw Size: 110.6 MB (estimated)
File Size: 62.9 MB (estimated)

Write performance

The “fill” benchmarks create a brand new database, in either
sequential, or random order. The “fillsync” benchmark flushes data
from the operating system to the disk after every operation; the other
write operations leave the data sitting in the operating system buffer
cache for a while. The “overwrite” benchmark does random writes that
update existing keys in the database.

fillseq : 1.765 micros/op; 62.7 MB/s
fillsync : 268.409 micros/op; 0.4 MB/s (10000 ops)
fillrandom : 2.460 micros/op; 45.0 MB/s
overwrite : 2.380 micros/op; 46.5 MB/s

Each “op” above corresponds to a write of a single key/value pair.
I.e., a random write benchmark goes at approximately 400,000 writes per second.

Each “fillsync” operation costs much less (0.3 millisecond)
than a disk seek (typically 10 milliseconds). We suspect that this is
because the hard disk itself is buffering the update in its memory and
responding before the data has been written to the platter. This may
or may not be safe based on whether or not the hard disk has enough
power to save its memory in the event of a power failure.

Read performance

We list the performance of reading sequentially in both the forward
and reverse direction, and also the performance of a random lookup.
Note that the database created by the benchmark is quite small.
Therefore the report characterizes the performance of leveldb when the
working set fits in memory. The cost of reading a piece of data that
is not present in the operating system buffer cache will be dominated
by the one or two disk seeks needed to fetch the data from disk.
Write performance will be mostly unaffected by whether or not the
working set fits in memory.

readrandom : 16.677 micros/op; (approximately 60,000 reads per second)
readseq : 0.476 micros/op; 232.3 MB/s
readreverse : 0.724 micros/op; 152.9 MB/s

LevelDB compacts its underlying storage data in the background to
improve read performance. The results listed above were done
immediately after a lot of random writes. The results after
compactions (which are usually triggered automatically) are better.

readrandom : 11.602 micros/op; (approximately 85,000 reads per second)
readseq : 0.423 micros/op; 261.8 MB/s
readreverse : 0.663 micros/op; 166.9 MB/s

Some of the high cost of reads comes from repeated decompression of blocks
read from disk. If we supply enough cache to the leveldb so it can hold the
uncompressed blocks in memory, the read performance improves again:

readrandom : 9.775 micros/op; (approximately 100,000 reads per second before compaction)
readrandom : 5.215 micros/op; (approximately 190,000 reads per second after compaction)

Repository contents

See doc/index.html for more explanation. See doc/impl.html for a brief overview of the implementation.

The public interface is in include/*.h. Callers should not include or
rely on the details of any other header files in this package. Those
internal APIs may be changed without warning.

Guide to header files:

		include/db.h: Main interface to the DB: Start here

		include/options.h: Control over the behavior of an entire database,
and also control over the behavior of individual reads and writes.

		include/comparator.h: Abstraction for user-specified comparison function.
If you want just bytewise comparison of keys, you can use the default
comparator, but clients can write their own comparator implementations if they
want custom ordering (e.g. to handle different character encodings, etc.)

		include/iterator.h: Interface for iterating over data. You can get
an iterator from a DB object.

		include/write_batch.h: Interface for atomically applying multiple
updates to a database.

		include/slice.h: A simple module for maintaining a pointer and a
length into some other byte array.

		include/status.h: Status is returned from many of the public interfaces
and is used to report success and various kinds of errors.

		include/env.h:
Abstraction of the OS environment. A posix implementation of this interface is
in util/env_posix.cc

		include/table.h, include/table_builder.h: Lower-level modules that most
clients probably won’t use directly

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/share/certs/PrivateKeyNotes.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Code-signing private key notes

The private keys for these certificates were generated on Gavin’s main work machine,
following the certificate authoritys’ recommendations for generating certificate
signing requests.

For OSX, the private key was generated by Keychain.app on Gavin’s main work machine.
The key and certificate is in a separate, passphrase-protected keychain file that is
unlocked to sign the Bitcoin-Qt.app bundle.

For Windows, the private key was generated by Firefox running on Gavin’s main work machine.
The key and certificate were exported into a separate, passphrase-protected PKCS#12 file, and
then deleted from Firefox’s keystore. The exported file is used to sign the Windows setup.exe.

Threat analysis

Gavin is a single point of failure. He could be coerced to divulge the secret signing keys,
allowing somebody to distribute a Bitcoin-Qt.app or bitcoin-qt-setup.exe with a valid
signature but containing a malicious binary.

Or the machine Gavin uses to sign the binaries could be compromised, either remotely or
by breaking in to his office, allowing the attacker to get the private key files and then
install a keylogger to get the passphrase that protects them.

Threat Mitigation

“Air gapping” the machine used to do the signing will not work, because the signing
process needs to access a timestamp server over the network. And it would not
prevent the “rubber hose cryptography” threat (coercing Gavin to sign a bad binary
or divulge the private keys).

Windows binaries are reproducibly ‘gitian-built’, and the setup.exe file created
by the NSIS installer system is a 7zip archive, so you could check to make sure
that the bitcoin-qt.exe file inside the installer had not been tampered with.
However, an attacker could modify the installer’s code, so when the setup.exe
was run it compromised users’ systems. A volunteer to write an auditing tool
that checks the setup.exe for tampering, and checks the files in it against
the list of gitian signatures, is needed.

The long-term solution is something like the ‘gitian downloader’ system, which
uses signatures from multiple developers to determine whether or not a binary
should be trusted. However, that just pushes the problem to “how will
non-technical users securely get the gitian downloader code to start?”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/src/leveldb/WINDOWS.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Building LevelDB On Windows

Prereqs

Install the Windows Software Development Kit version 7.1 [http://www.microsoft.com/downloads/dlx/en-us/listdetailsview.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b].

Download and extract the Snappy source distribution [http://snappy.googlecode.com/files/snappy-1.0.5.tar.gz]

		Open the “Windows SDK 7.1 Command Prompt” :
Start Menu -> “Microsoft Windows SDK v7.1” > “Windows SDK 7.1 Command Prompt”

		Change the directory to the leveldb project

Building the Static lib

		32 bit Version

 setenv /x86
 msbuild.exe /p:Configuration=Release /p:Platform=Win32 /p:Snappy=..\snappy-1.0.5

		64 bit Version

 setenv /x64
 msbuild.exe /p:Configuration=Release /p:Platform=x64 /p:Snappy=..\snappy-1.0.5

Building and Running the Benchmark app

		32 bit Version

 setenv /x86
 msbuild.exe /p:Configuration=Benchmark /p:Platform=Win32 /p:Snappy=..\snappy-1.0.5
 Benchmark\leveldb.exe

		64 bit Version

 setenv /x64
 msbuild.exe /p:Configuration=Benchmark /p:Platform=x64 /p:Snappy=..\snappy-1.0.5
 x64\Benchmark\leveldb.exe

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seckcoin/doc/build-osx.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

Mac OS X seckcoind build instructions

Authors

		Laszlo Hanyecz solar@heliacal.net

		Douglas Huff dhuff@jrbobdobbs.org

		Colin Dean cad@cad.cx

		Gavin Andresen gavinandresen@gmail.com

License

Copyright (c) 2009-2012 Bitcoin Developers

Distributed under the MIT/X11 software license, see the accompanying
file COPYING or http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by the OpenSSL Project for use in
the OpenSSL Toolkit (http://www.openssl.org/).

This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com) and UPnP software written by Thomas Bernard.

Notes

See doc/readme-qt.rst for instructions on building SecKCoin-Qt, the
graphical user interface.

Tested on OS X 10.5 through 10.8 on Intel processors only. PPC is not
supported because it is big-endian.

All of the commands should be executed in a Terminal application. The
built-in one is located in /Applications/Utilities.

Preparation

You need to install XCode with all the options checked so that the compiler
and everything is available in /usr not just /Developer. XCode should be
available on your OS X installation media, but if not, you can get the
current version from https://developer.apple.com/xcode/. If you install
Xcode 4.3 or later, you’ll need to install its command line tools. This can
be done in Xcode > Preferences > Downloads > Components and generally must
be re-done or updated every time Xcode is updated.

There’s an assumption that you already have git installed, as well. If
not, it’s the path of least resistance to install Github for Mac [https://mac.github.com/]
(OS X 10.7+) or
Git for OS X [https://code.google.com/p/git-osx-installer/]. It is also
available via Homebrew or MacPorts.

You will also need to install Homebrew [http://mxcl.github.io/homebrew/]
or MacPorts [https://www.macports.org/] in order to install library
dependencies. It’s largely a religious decision which to choose, but, as of
December 2012, MacPorts is a little easier because you can just install the
dependencies immediately - no other work required. If you’re unsure, read
the instructions through first in order to assess what you want to do.
Homebrew is a little more popular among those newer to OS X.

The installation of the actual dependencies is covered in the Instructions
sections below.

Instructions: MacPorts

Install dependencies

Installing the dependencies using MacPorts is very straightforward.

sudo port install boost db48@+no_java openssl miniupnpc

Building seckcoind

		Clone the github tree to get the source code and go into the directory.

 git clone git@github.com:seckcoin-project/seckcoin.git seckcoin
 cd seckcoin

		Build seckcoind:

cd src
make -f makefile.osx

		It is a good idea to build and run the unit tests, too:

make -f makefile.osx test

Instructions: HomeBrew

Install dependencies using Homebrew

 brew install boost miniupnpc openssl berkeley-db4

Note: After you have installed the dependencies, you should check that the Brew installed version of OpenSSL is the one available for compilation. You can check this by typing

 openssl version

into Terminal. You should see OpenSSL 1.0.1e 11 Feb 2013.

If not, you can ensure that the Brew OpenSSL is correctly linked by running

 brew link openssl --force

Rerunning “openssl version” should now return the correct version.

Building seckcoind

		Clone the github tree to get the source code and go into the directory.

 git clone git@github.com:seckcoin-project/seckcoin.git seckcoin
 cd seckcoin

		Modify source in order to pick up the openssl library.

Edit makefile.osx to account for library location differences. There’s a
diff in contrib/homebrew/makefile.osx.patch that shows what you need to
change, or you can just patch by doing

patch -p1 < contrib/homebrew/makefile.osx.patch

		Build seckcoind:

cd src
make -f makefile.osx

		It is a good idea to build and run the unit tests, too:

make -f makefile.osx test

Creating a release build

A seckcoind binary is not included in the SecKCoin-Qt.app bundle. You can ignore
this section if you are building seckcoind for your own use.

If you are building litecond for others, your build machine should be set up
as follows for maximum compatibility:

All dependencies should be compiled with these flags:

-mmacosx-version-min=10.5 -arch i386 -isysroot /Developer/SDKs/MacOSX10.5.sdk

For MacPorts, that means editing your macports.conf and setting
macosx_deployment_target and build_arch:

macosx_deployment_target=10.5
build_arch=i386

... and then uninstalling and re-installing, or simply rebuilding, all ports.

As of December 2012, the boost port does not obey macosx_deployment_target.
Download http://gavinandresen-bitcoin.s3.amazonaws.com/boost_macports_fix.zip
for a fix. Some ports also seem to obey either build_arch or
macosx_deployment_target, but not both at the same time. For example, building
on an OS X 10.6 64-bit machine fails. Official release builds of SecKCoin-Qt are
compiled on an OS X 10.6 32-bit machine to workaround that problem.

Once dependencies are compiled, creating SecKCoin-Qt.app is easy:

make -f Makefile.osx RELEASE=1

Running

It’s now available at ./seckcoind, provided that you are still in the src
directory. We have to first create the RPC configuration file, though.

Run ./seckcoind to get the filename where it should be put, or just try these
commands:

echo -e "rpcuser=seckcoinrpc\nrpcpassword=$(xxd -l 16 -p /dev/urandom)" > "/Users/${USER}/Library/Application Support/SecKCoin/seckcoin.conf"
chmod 600 "/Users/${USER}/Library/Application Support/SecKCoin/seckcoin.conf"

When next you run it, it will start downloading the blockchain, but it won’t
output anything while it’s doing this. This process may take several hours.

Other commands:

./seckcoind --help # for a list of command-line options.
./seckcoind -daemon # to start the seckcoin daemon.
./seckcoind help # When the daemon is running, to get a list of RPC commands

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/file.png

seckcoin/README.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

SecKCoin integration/staging tree

http://www.seckcoin.org

Copyright (c) 2009-2013 Bitcoin Developers
Copyright (c) 2011-2013 Litecoin Developers

What is SecKCoin?

SecKCoin is a lite version of Bitcoin using scrypt as a proof-of-work algorithm.

		2.5 minute block targets

		subsidy halves in 840k blocks (~4 years)

		~84 million total coins

The rest is the same as Bitcoin.

		50 coins per block

		2016 blocks to retarget difficulty

For more information, as well as an immediately useable, binary version of
the SecKCoin client sofware, see http://www.seckcoin.org.

License

SecKCoin is released under the terms of the MIT license. See COPYING for more
information or see http://opensource.org/licenses/MIT.

Development process

Developers work in their own trees, then submit pull requests when they think
their feature or bug fix is ready.

If it is a simple/trivial/non-controversial change, then one of the SecKCoin
development team members simply pulls it.

If it is a more complicated or potentially controversial change, then the patch
submitter will be asked to start a discussion (if they haven’t already) on the
mailing list [http://sourceforge.net/mailarchive/forum.php?forum_name=bitcoin-development].

The patch will be accepted if there is broad consensus that it is a good thing.
Developers should expect to rework and resubmit patches if the code doesn’t
match the project’s coding conventions (see doc/coding.txt) or are
controversial.

The master branch is regularly built and tested, but is not guaranteed to be
completely stable. Tags [https://github.com/bitcoin/bitcoin/tags] are created
regularly to indicate new official, stable release versions of SecKCoin.

Testing

Testing and code review is the bottleneck for development; we get more pull
requests than we can review and test. Please be patient and help out, and
remember this is a security-critical project where any mistake might cost people
lots of money.

Automated Testing

Developers are strongly encouraged to write unit tests for new code, and to
submit new unit tests for old code.

Unit tests for the core code are in src/test/. To compile and run them:

cd src; make -f makefile.unix test

Unit tests for the GUI code are in src/qt/test/. To compile and run them:

qmake BITCOIN_QT_TEST=1 -o Makefile.test bitcoin-qt.pro
make -f Makefile.test
./seckcoin-qt_test

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

README.html

 Navigation

 		
 index

 		SecKCoin 1.0 documentation »

⏣SecKCoin (SKC) is a cryptocurrency developed by SecKC.

========================
#Blockchain Explorer [https://seckco.in/]

CONTRIBUTORS

Thanks to everyone who has contributed to the development of SKC.

		@corykennedy

		@rixon

		@myung.kang

		@0xktwo

		@hevnsnt

[image: SecKC]

⏣SKC Technical Details

		Coin Type: Pure PoW (https://en.bitcoin.it/wiki/Proof_of_work)

		Hashing Algorithm: Scrypt (https://en.bitcoin.it/wiki/Scrypt_proof_of_work)

		Time Between Blocks (in seconds): 86

		Block Reward: 1.337

		Block Reward Halving Rate: 840,000

		Daily Block Count: 1004.65

		Coins Generated Per Day: 1337’ish (do your own math, and back off it was the closest I could get)

⏣Requirements

		Wallet supports Windows, Linux & Slack! It does work with Wine + OSX.

		Use at your own risk.

		This software is currently detected as malware because it is “unknown” and mines cryptocurrency and is based off of “BitcoinMiner”. Since this application uses computer resources it is classififed as a potentially unwanted application (PUP).

		DO NOT USE THIS SOFTWARE ON PRODUCTION OR MISSION CRITICAL COMPUTER SYSTEMS. SECKC (or anyone involved with this project) IS NOT RESPONSIBILE FOR ANY PROBLEMS CAUSED FROM USE OF THIS SOFTWARE. I AM TYPING IN ALL CAPS SO YOU KNOW I AM SUPER SERIOUS GUYS!

		None of the authors, contributors, administrators, vandals, or anyone else connected with SecKC, in any way whatsoever, can be responsible for your use of this software or software contained in or linked from these repositories.

How to I use the ⏣SKC Wallet?

debian/jessie

In order to run the wallet, you will need to compile it yourself. The instructions below show how to get it running on Debian/Jessie.

		sudo apt-get install build-essential libboost-all-dev libcurl4-openssl-dev git qt-sdk libminiupnpc-dev libssl-dev libdb++-dev

		git clone https://github.com/SecKC/SecKCoin.git

		cd seckcoin/src

		make -f makefile.unix USE_UPNP=-

Neo-Node Info

		addnode=104.154.95.66:1337

		addnode=107.178.223.6:1337

Until further notice (watch #SecKCoin slack channel) DO NOT USE the windows client, as it is deprecated at this time. We are working to create another version.

		Paper Wallets now available! Thanks @hevnsnt!

How it Works

REBOOT CODE

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

