
SDN Internet Router (sir)
Documentation

Release 1

David Barroso

December 10, 2016

Contents

1 Features 3
1.1 Analytics . 3
1.2 Variables . 8

2 Architecture 11
2.1 Local Architecture . 11
2.2 Global Architecture . 13

3 API v1.0 Documentation 15
3.1 API . 15
3.2 Endpoints . 16

4 Use Cases 27
4.1 A commodity switch as a Peering Router . 27
4.2 A Software Defined Content Delivery Network . 29

5 How To: Generic Router 31
5.1 Scenario . 31
5.2 Enabling pmacct . 32
5.3 Enabling SIR agent . 37

6 How To: EOS 41
6.1 Scenario . 41
6.2 Deploying SIR Manually . 43
6.3 Deploying SIR Automatically . 45
6.4 Configuring EOS . 46
6.5 Accessing SIR . 46
6.6 Logging . 47
6.7 fib_optimizer . 48

i

ii

SDN Internet Router (sir) Documentation, Release 1

The SDN Internet Router, abbreviated SIR, is an agent that you can add to your router. The agent exposes information
that your router can’t expose by itself like the BGP table, traffic per BGP prefix or traffic per ASN. This data is
provided both via a WebUI and an API to access this data.

The agent is vendor agnostic as it gathers data using both BGP and netflow/sflow/ipfix. This means it can be attached
to any router or switch that supports those protocols.

Contents 1

SDN Internet Router (sir) Documentation, Release 1

2 Contents

CHAPTER 1

Features

The agent enhances your router adding some nice features that are exposed both via the WebUI and the API. You can
see some examples of the features in the following pages. Although the examples are shown using the WebUI all the
features are also available via the API. Actually, features are built first for the API so there is the possibility that you
can do something with the API but not with the WebUI.

1.1 Analytics

1.1.1 Top Prefixes

You can get the top N prefixes for a given period of time.

3

SDN Internet Router (sir) Documentation, Release 1

1.1.2 Top ASN’s

You can get the top ASN’s for a given period of time.

4 Chapter 1. Features

SDN Internet Router (sir) Documentation, Release 1

1.1.3 Search Prefixes

You can search for any prefix of any prefix-length and get back all the possible routes that you could choose to reach
it. You will not get only the longest prefix match but all the possible matches.

1.1. Analytics 5

SDN Internet Router (sir) Documentation, Release 1

Note: peer_ip_src is useful if you are sending data to the agent from different routers as it shows the IP of the
router that provided those prefixes. In this particular example we have two different routers sending data to the same
agent.

1.1.4 Search ASN’s

You can search for any ASN and see all the prefixes that either traverse and/or originated in that ASN. Set the op-
tion origin_as_only to indicate if you want to see only prefixes originated in that ASN or if you want prefixes
transiting that ASN as well.

6 Chapter 1. Features

SDN Internet Router (sir) Documentation, Release 1

Note: peer_ip_src is useful if you are sending data to the agent from different routers as it shows the IP of the
router that provided those prefixes. In this particular example we have two different routers sending data to the same
agent.

1.1.5 Offloaded Traffic

For a given period of time and a number of prefixes N, returns the amount of traffic matched if you had only the top N
prefixes installed in the FIB vs the Total Traffic.

1.1. Analytics 7

SDN Internet Router (sir) Documentation, Release 1

1.1.6 Simulate FIB Optimization

For a given period of time and a number of prefixes N, simulates how the switch/router would perform if you had only
the top N prefixes installed in the FIB vs the Total Traffic.

1.2 Variables

You can store in the agent and retrieve later any arbitrary data that you want. This is useful if you plan to write
applications that consumes data via the API to perform some actions. For example, in the example below you can
see a variable called fib_optimizer. The data in the content is the actual configuration for that application. The
application will retrieve the Top N prefixes via the API and install them in a commodity switch. Thanks to these
feature we can tweak the behavior of that application from a centralized management tool while allowing the device
to run independently.

8 Chapter 1. Features

SDN Internet Router (sir) Documentation, Release 1

Use this in any way you want. This will not influence how the agent performs. It’s just a convenient way for you to
store/retrieve some data for some applications that you might be running using the SIR API.

1.2. Variables 9

SDN Internet Router (sir) Documentation, Release 1

10 Chapter 1. Features

CHAPTER 2

Architecture

2.1 Local Architecture

The local architecture of the SIR agent is quite simple:

11

SDN Internet Router (sir) Documentation, Release 1

There are two main components:

• pmacct - This is a flow collector that is going to get BGP and flow information from your routers.

• SIR - This code is going to do some analytics with the data collected by pmacct and expose it to apps/users via
the WebUI and the API.

Users and applications can consume the data exposed by SIR and take peering or traffic engineering decisions. Appli-
cations and users can also store data in the agent. This is useful if you want to influence the behavior of some other
applications later on.

12 Chapter 2. Architecture

http://www.pmacct.net/

SDN Internet Router (sir) Documentation, Release 1

2.2 Global Architecture

Although each agent is meant to run independently the API allows you to combine/aggregate data from multiple
locations and take global decisions.

Once you have a global view of your global network and your traffic patterns you can do things like:

• Send users to a location where you know you are peering with the network that user belongs to.

• Redirect users to another POP where his/her network is reachable.

• Redirect users based on cost, latency, bandwidth or any other metric.

• Predict your global traffic patterns and optimize your capacity.

• Build reports to see who you should be peering with.

2.2. Global Architecture 13

SDN Internet Router (sir) Documentation, Release 1

14 Chapter 2. Architecture

CHAPTER 3

API v1.0 Documentation

3.1 API

3.1.1 Variables

When reading this documentation you will find variables in two forms:

• <variable>: Variables that are between <> have to be replaced by their values in the
URL. For example, /api/v1.0/variables/categories/<category> will turn into
/api/v1.0/variables/categories/my_category.

• variable: Variables that are NOT enclosed by <>:

• If the method is a GET variables that are between <> have to be replaced by their values
in the URL. For example, /api/v1.0/variables/categories/<category> will turn into
/api/v1.0/variables/categories/my_category.

• If the method is a POST or a PUT variables variables that are between <> have to be sent as a JSON object.

3.1.2 Responses

All the responses from the agent will be in JSON format and will include three sections:

• meta: Meta information about the response. For example, request_time, length of the response or if there was
any error.

• parameters: The parameters used for the call.

• result: The result of the call or a description of the error if there was any.

For example, for the following call:

/api/v1.0/analytics/top_prefixes?limit_prefixes=10&start_time=2015-07-13T14:00&end_time=2015-07-14T14:00&net_masks=20,24

You will get the following response:

1 {
2 "meta": {
3 "error": false,
4 "length": 10,
5 "request_time": 11.99163
6 },
7 "parameters": {
8 "end_time": "2015-07-14T14:00",

15

SDN Internet Router (sir) Documentation, Release 1

9 "exclude_net_masks": false,
10 "limit_prefixes": 10,
11 "net_masks": "20,24",
12 "start_time": "2015-07-13T14:00"
13 },
14 "result": [
15 {
16 "as_dst": 43650,
17 "key": "194.14.177.0/24",
18 "sum_bytes": 650537594
19 },
20 ...
21 {
22 "as_dst": 197301,
23 "key": "80.71.128.0/20",
24 "sum_bytes": 5106731
25 }
26]
27 }

3.2 Endpoints

3.2.1 Analytics Endpoint

/api/v1.0/analytics/top_prefixes

GET

Description Retrieves TOP prefixes sorted by the amount of bytes that they consumed during the specified period
of time.

Arguments

• start_time: Mandatory. Datetime in unicode string following the format %Y-%m-%dT%H:%M:%S. Starting
time of the range.

• end_time: Mandatory. Datetime in unicode string following the format %Y-%m-%dT%H:%M:%S. Ending time
of the range.

• limit_prefixes: Optional. Number of top prefixes to retrieve.

• net_masks: Optional. List of prefix lengths to filter in or out.

• exclude_net_masks: Optional. If set to any value it will return prefixes with a prefix length not included in
net_masks. If set to 0 it will return only prefixes with a prefix length included in net_masks. Default is 0.

• filter_proto: Optional. If you don’t set it you will get both IPv4 and IPv6 prefixes. If you set it to 4 you will get
only IPv4 prefixes. Otherwise, if you set it to 6 you will get IPv6 prefixes.

Returns A list of prefixes sorted by sum_bytes. The attribute sum_bytes is the amount of bytes consumed during
the specified time.

16 Chapter 3. API v1.0 Documentation

SDN Internet Router (sir) Documentation, Release 1

Examples

http://127.0.0.1:5000/api/v1.0/analytics/top_prefixes?limit_prefixes=10&start_time=2015-07-13T14:00&end_time=2015-07-14T14:00
http://127.0.0.1:5000/api/v1.0/analytics/top_prefixes?limit_prefixes=10&start_time=2015-07-13T14:00&end_time=2015-07-14T14:00&net_masks=20,24
http://127.0.0.1:5000/api/v1.0/analytics/top_prefixes?limit_prefixes=10&start_time=2015-07-13T14:00&end_time=2015-07-14T14:00&net_masks=20,24&exclude_net_masks=1

/api/v1.0/analytics/top_asns

GET

Description Retrieves TOP ASN’s sorted by the amount of bytes that they consumed during the specified period of
time.

Arguments

• start_time: Mandatory. Datetime in unicode string following the format %Y-%m-%dT%H:%M:%S. Starting
time of the range.

• end_time: Mandatory. Datetime in unicode string following the format %Y-%m-%dT%H:%M:%S. Ending time
of the range.

Returns A list of ASN’s sorted by sum_bytes. The attribute sum_bytes is the amount of bytes consumed during the
specified time.

Examples

http://127.0.0.1:5000/api/v1.0/analytics/top_asns?start_time=2015-07-13T14:00&end_time=2015-07-14T14:00

/api/v1.0/analytics/find_prefix/<prefix>/<prefix_length>

GET

Description Finds all prefixes in the system that contains the prefix <prefix>/<prefix_length>

Arguments

• <<prefix>>: Mandatory. IP prefix of the network you want to find.

• <<prefix_length>>: Mandatory. Prefix length of the network you want to find.

• date: Mandatory. Datetime in unicode string following the format ’%Y-%m-%dT%H:%M:%S’.

Returns It will return a dictionary where keys are the IP’s of the BGP peers peering with SIR. Each one will have a
list of prefixes that contain the prefix queried.

Examples

3.2. Endpoints 17

SDN Internet Router (sir) Documentation, Release 1

$ curl http://127.0.0.1:5000/api/v1.0/analytics/find_prefix/192.2.3.1/32\?date\=2015-07-22T05:00:01
{

"meta": {
"error": false,
"length": 2,
"request_time": 1.88076

},
"parameters": {
"date": "2015-07-22T05:00:01",
"prefix": "192.2.3.1/32"

},
"result": {
"193.182.244.0": [

{
"as_path": "1299 3356",
"bgp_nexthop": "62.115.48.29",
"comms": "1299:20000 8403:100 8403:2001",
"event_type": "dump",
"ip_prefix": "192.2.0.0/16",
"local_pref": 100,
"origin": 0,
"peer_ip_src": "193.182.244.0"

}
],
"193.182.244.64": [

{
"as_path": "1299 3356",
"bgp_nexthop": "80.239.132.249",
"comms": "1299:20000 8403:100 8403:2001",
"event_type": "dump",
"ip_prefix": "192.2.0.0/16",
"local_pref": 100,
"origin": 0,
"peer_ip_src": "193.182.244.64"

}
]

}
}

/api/v1.0/analytics/find_prefixes_asn/<asn>

GET

Description Finds all prefixes in the system that traverses and/or originates in <asn>

Arguments

• <<asn>>: Mandatory. ASN you want to query.

• date: Mandatory. Datetime in unicode string following the format ’%Y-%m-%dT%H:%M:%S’.

• origin_only: Optional. If set to any value it will return only prefixes that originate in <asn>.

Returns It will return a dictionary where keys are the IP’s of the BGP peers peering with SIR. Each one will have a
list of prefixes that traverses and/or originates in <asn>

18 Chapter 3. API v1.0 Documentation

SDN Internet Router (sir) Documentation, Release 1

Examples

curl http://127.0.0.1:5000/api/v1.0/analytics/find_prefixes_asn/345\?date\=2015-07-22T05:00:01\&origin_only=1
{

"meta": {
"error": false,
"length": 2,
"request_time": 1.15757

},
"parameters": {
"asn": "345",
"origin_only": "1",
"date": "2015-07-22T05:00:01"

},
"result": {
"193.182.244.0": [

{
"as_path": "1299 209 721 27064 575 306 345",
"bgp_nexthop": "62.115.48.29",
"comms": "1299:25000 8403:100 8403:2001",
"event_type": "dump",
"ip_prefix": "55.3.0.0/16",
"local_pref": 100,
"origin": 0,
"peer_ip_src": "193.182.244.0"

},
{

"as_path": "1299 209 721 27065 6025 345",
"bgp_nexthop": "62.115.48.29",
"comms": "1299:20000 8403:100 8403:2001",
"event_type": "dump",
"ip_prefix": "156.112.250.0/24",
"local_pref": 100,
"origin": 0,
"peer_ip_src": "193.182.244.0"

}
],
"193.182.244.64": [

{
"as_path": "1299 209 721 27064 575 306 345",
"bgp_nexthop": "80.239.132.249",
"comms": "1299:25000 8403:100 8403:2001",
"event_type": "dump",
"ip_prefix": "55.3.0.0/16",
"local_pref": 100,
"origin": 0,
"peer_ip_src": "193.182.244.64"

},
{

"as_path": "1299 209 721 27065 6025 345",
"bgp_nexthop": "80.239.132.249",
"comms": "1299:20000 8403:100 8403:2001",
"event_type": "dump",
"ip_prefix": "156.112.250.0/24",
"local_pref": 100,
"origin": 0,
"peer_ip_src": "193.182.244.64"

}

3.2. Endpoints 19

SDN Internet Router (sir) Documentation, Release 1

]
}

}

3.2.2 Variables Endpoint

/api/v1.0/variables

GET

Description Retrieves all the variables in the system.

Arguments

Returns A list of all the variables.

Examples
http://127.0.0.1:5000/api/v1.0/variables

POST

Description You can create a variable from the CLI with curl like this:

curl -i -H "Content-Type: application/json" -X POST -d '{"name": "test_var", "content": "whatever", "category": "development", "extra_vars": {"ads": "qwe", "asd": "zxc"}}' http://127.0.0.1:5000/api/v1.0/variables

Arguments

• content: Content of the variable.

• category: Category of the variable.

• name: Name of the variable.

• extra_vars: Use this field to add extra data to your variable. It is recommended to use a JSON string.

Returns The variable that was just created.

Examples

/api/v1.0/variables/categories

GET

Description Retrieves all the categories in the system.

Arguments

20 Chapter 3. API v1.0 Documentation

SDN Internet Router (sir) Documentation, Release 1

Returns A list of all the categories.

Examples
http://127.0.0.1:5000/api/v1.0/variables/categories

/api/v1.0/variables/categories/<category>

GET

Description Retrieves all the variables the belong to <category> in the system.

Arguments

• <category>: Category you want to query.

Returns A list of variables belonging to <category>.

Examples
http://127.0.0.1:5000/api/v1.0/variables/categories/<category>

/api/v1.0/variables/categories/<category>/<name>

GET

Description Retrieves the variable with <name> and <category>.

Arguments

• <category>: Category of the variable you want to retrieve.

• <name>: Name of the variable you want to retrieve.

Returns A list of variables belonging to <category>.

Examples
http://127.0.0.1:5000/api/v1.0/variables/categories/<category>/<name>

PUT

Description This API call allows you to modify all of some of the values of a variable. For example, you can update
the name and the extra_vars of a variable with the following command:

1 curl -i -H "Content-Type: application/json" -X PUT -d '{"name": "test_varc", "extra_vars": "{'my_param1': 'my_value1', 'my_param2': 'my_value2'}"}' http://127.0.0.1:5000/api/v1.0/variables/categories/development/test_vara HTTP/1.0 200 OK Content-Type: application/json Content-Length: 358 Server: Werkzeug/0.10.4 Python/2.7.8 Date: Tue, 21 Jul 2015 10:16:22 GMT
2 {
3 "meta": {
4 "error": false,
5 "length": 1,

3.2. Endpoints 21

SDN Internet Router (sir) Documentation, Release 1

6 "request_time": 0.0055
7 },
8 "parameters": {
9 "categories": "development",

10 "name": "test_vara"
11 },
12 "result": [
13 {
14 "category": "development",
15 "content": "whatever",
16 "extra_vars": "{my_param1: my_value1, my_param2: my_value2}",
17 "name": "test_varc"
18 }
19]
20 }

Arguments

• category: Optional. New category.

• content: Optional. New content.

• name: Optional. New name.

• <name>: Name of the variable you want to modify.

• <category>: Category of the variable you want to modify.

• extra_vars: Optional. New extra_vars.

Returns The variable with the new data.

Examples
http://127.0.0.1:5000/api/v1.0/variables/categories/<category>/<name>

DELETE

Description Deletes a variable. For example:

1 curl -i -X DELETE http://127.0.0.1:5000/api/v1.0/variables/categories/deveopment/test_vara HTTP/1.0 200 OK Content-Type: application/json Content-Length: 183 Server: Werkzeug/0.10.4 Python/2.7.8 Date: Tue, 21 Jul 2015 10:17:27 GMT
2 {
3 "meta": {
4 "error": false,
5 "length": 0,
6 "request_time": 0.0016
7 },
8 "parameters": {
9 "categories": "deveopment",

10 "name": "test_vara"
11 },
12 "result": []
13 }

22 Chapter 3. API v1.0 Documentation

SDN Internet Router (sir) Documentation, Release 1

Arguments

• <category>: Category of the variable you want to delete.

• <name>: Name of the variable you want to delete.

Returns An empty list.

Examples
http://127.0.0.1:5000/api/v1.0/variables/categories/<category>/<name>

3.2.3 Pmacct Endpoint

/api/v1.0/pmacct/dates

GET

Description Retrieves all the available dates in the system.

Arguments

Returns A list of all the available dates in the system.

Examples
http://127.0.0.1:5000/api/v1.0/pmacct/dates

/api/v1.0/pmacct/flows

GET

Description Retrieves all the available dates in the system.

Arguments

• start_time: Mandatory. Datetime in unicode string following the format ’%Y-%m-%dT%H:%M:%S’. Starting
time of the range.

• end_time: Mandatory. Datetime in unicode string following the format ’%Y-%m-%dT%H:%M:%S’. Ending
time of the range.

Returns A list of all the available dates in the system.

Examples
http://127.0.0.1:5000/api/v1.0/pmacct/flows?limit_prefixes=10&start_time=2015-07-14T14:00&end_time=2015-07-14T14:01
http://127.0.0.1:5000/api/v1.0/pmacct/flows?limit_prefixes=10&start_time=2015-07-13T14:00&end_time=2015-07-14T14:00

3.2. Endpoints 23

SDN Internet Router (sir) Documentation, Release 1

/api/v1.0/pmacct/bgp_prefixes

GET

Description Retrieves all the BGP prefixes in the system.

Arguments

• date: Mandatory. Datetime in unicode string following the format ’%Y-%m-%dT%H:%M:%S’.

Returns A list of all the available BGP prefixes in the system.

Examples
http://127.0.0.1:5000/api/v1.0/pmacct/bgp_prefixes?date=2015-07-16T11:00:01

/api/v1.0/pmacct/raw_bgp

GET

Description Retrieves the BGP raw data from pmacct. That includes AS PATH, local-pref, communities, etc....

Warning: Do it only if need it. If you have the full feed this can return hundreds of MB of data.

Arguments

• date: Mandatory. Datetime in unicode string following the format ’%Y-%m-%dT%H:%M:%S’.

Returns The raw data from pmacct.

Examples
http://127.0.0.1:5000/api/v1.0/pmacct/raw_bgp?date=2015-07-16T11:00:01

/api/v1.0/pmacct/purge_bgp

GET

Description Deletes all the BGP data that is older than older_than.

Arguments

• older_than: Mandatory. Datetime in unicode string following the format ’%Y-%m-%dT%H:%M:%S’.

Returns The list of files containing BGP data that was deleted.

24 Chapter 3. API v1.0 Documentation

SDN Internet Router (sir) Documentation, Release 1

Examples
http://127.0.0.1:5000/api/v1.0/pmacct/purge_bgp?older_than=2015-07-29T13:00:01

/api/v1.0/pmacct/purge_flows

GET

Description Deletes all the flows that are older than older_than.

Arguments

• older_than: Mandatory. Datetime in unicode string following the format ’%Y-%m-%dT%H:%M:%S’.

Returns The flows that were deleted.

Examples
http://127.0.0.1:5000/api/v1.0/pmacct/purge_flows?older_than=2015-07-29T13:00:01

3.2. Endpoints 25

SDN Internet Router (sir) Documentation, Release 1

26 Chapter 3. API v1.0 Documentation

CHAPTER 4

Use Cases

Here are some use cases for SIR. I will elaborate more on this use cases and add new ones soon enough. If you have
any don’t hesitate to let me know.

4.1 A commodity switch as a Peering Router

This is a simple and interesting use case. Once you start collecting data in your peering routers you will quickly realize
that you don’t use more than 30.000 prefixes daily. So why do you need a big and expensive router to hold the full
routing table? Wouldn’t be better and easier (and most probably cheaper) to hold the full routing table in the RIB and
just install the routes you need in the FIB?

With SIR you can easily see how many routes you need to offload your traffic and which routes you will need. Once
you have this information it’s just a matter of instructing your switch to accept those prefixes and keep the rest in
memory.

27

SDN Internet Router (sir) Documentation, Release 1

You can do that in different ways, being SRD the most stable and simplest way. Soon I will share an app that leverages

28 Chapter 4. Use Cases

SDN Internet Router (sir) Documentation, Release 1

on SIR to convert a cheap Arista 7280 switch into a peering router.

This was the original purpose when I started SIR. Although the scope of SIR has changed (before it was a monolitic
app and now it’s an agent that provides information via an aPI) you can see a presentation and a podcast about this
topic in the following links:

• http://youtu.be/o1njanXhQqM

• http://blog.ipspace.net/2015/01/sdn-router-spotify-on-software-gone-wild.html

4.2 A Software Defined Content Delivery Network

As mentioned in the global architecture, you can aggregate the data exposed by SIR. This aggregated data can tell you
many things:

• Which networks are connecting to yours at what times.

• How much throughput they need.

• From where you can deliver your content to those networks.

This aggregated data could be sent to hadoop to decide things like from which POP to serve your content to your users:

You could also add metrics from other sources. Metrics like:

• Cost of each link.

• Latency.

• Load of each site.

4.2. A Software Defined Content Delivery Network 29

http://youtu.be/o1njanXhQqM
http://blog.ipspace.net/2015/01/sdn-router-spotify-on-software-gone-wild.html

SDN Internet Router (sir) Documentation, Release 1

• Reliability.

Once all the data is in Hadoop you could try to analyze your global traffic pattern and metrics and redistribute users
to:

• Minimize transit costs.

• Maximize capacity usage.

• Improve user experience.

30 Chapter 4. Use Cases

CHAPTER 5

How To: Generic Router

5.1 Scenario

We want to deploy the SIR agent connecting with a generic router to add some visibility to our edge router. This
visibility will allows us to understand who we are sending traffic to and who to peer with.

We can’t run code in the generic router so we are going to deploy the agent on a linux machine in the Datacenter. This
shouldn’t be an issue as both BGP and netflow/sflow can be sent to a device that is not directly connected to the router.

31

SDN Internet Router (sir) Documentation, Release 1

Per se this is not very interesting, however, if you have a large network with several POPs, having this agent on each
location would give you a nice way of gathering and aggregating data.

5.2 Enabling pmacct

First, we have to install pmacct with JSON, IPv6 and SQLite3 support. Compiling pmacct for your specific distro is
out of the scope of this document but you can find below some instructions on how to do it for a debian based distro.

32 Chapter 5. How To: Generic Router

http://www.pmacct.net/

SDN Internet Router (sir) Documentation, Release 1

5.2.1 Compiling pmacct

These are some of the dependancies that you might need:

apt-get install libpcap-dev libsqlite3-dev libjansson-dev zlib1g-dev

And this is how to compile pmacct:

$ wget http://www.pmacct.net/pmacct-1.5.1.tar.gz
--2015-07-23 09:25:46-- http://www.pmacct.net/pmacct-1.5.1.tar.gz
Connecting to 127.0.0.1:3128... connected.
Proxy request sent, awaiting response... 200 OK
Length: 874563 (854K) [application/x-gzip]
Saving to: ‘pmacct-1.5.1.tar.gz’

100%[==>] 874,563 --.-K/s in 0.09s

2015-07-23 09:25:46 (9.80 MB/s) - ‘pmacct-1.5.1.tar.gz’ saved [874563/874563]

$ tar xzf pmacct-1.5.1.tar.gz
$ cd pmacct-1.5.1
$./configure --enable-sqlite3 --enable-jansson --enable-ipv6 --prefix=/pmacct-1.5.1
creating cache ./config.cache
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking whether make sets ${MAKE}... yes
checking for working aclocal-1.4... missing
checking for working autoconf... missing
checking for working automake-1.4... missing
checking for working autoheader... missing
checking for working makeinfo... missing
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking OS... Linux
checking hardware... x86_64
checking for ranlib... ranlib
checking whether to enable debugging compiler options... no
checking whether to relax compiler optimizations... no
checking whether to disable linking against shared objects... no
checking for dlopen... no
checking for dlopen in -ldl... yes
checking for gmake... no
checking for make... make
checking whether make sets ${MAKE}... (cached) yes
checking for __progname... yes
checking for extra flags needed to export symbols... --export-dynamic
checking for static inline... yes
checking endianess... little
checking unaligned accesses... ok
checking whether to enable L2 features... yes
checking whether to enable IPv6 code... yes
checking for inet_pton... yes
checking for inet_ntop... yes
checking whether to enable IPv4-mapped IPv6 sockets ... yes
checking whether to enable IP prefix labels... checking default locations for pcap.h... found in /usr/include
checking default locations for libpcap... no

5.2. Enabling pmacct 33

SDN Internet Router (sir) Documentation, Release 1

checking for pcap_dispatch in -lpcap... yes
checking for pcap_setnonblock in -lpcap... yes
checking packet capture type... linux
checking whether to enable MySQL support... checking how to run the C preprocessor... gcc -E
no
checking whether to enable PostgreSQL support... no
checking whether to enable MongoDB support... no
checking whether to enable SQLite3 support... yes
checking default locations for libsqlite3... not found
checking for sqlite3_open in -lsqlite3... yes
checking default locations for sqlite3.h... found in /usr/include
checking whether to enable RabbitMQ/AMQP support... no
checking whether to enable GeoIP support... no
checking whether to enable Jansson support... yes
checking default locations for Jansson library... not found
checking for json_object in -ljansson... yes
checking default locations for jansson.h... found in /usr/include
checking for ANSI C header files... no
checking for sys/wait.h that is POSIX.1 compatible... yes
checking for getopt.h... yes
checking for sys/select.h... yes
checking for sys/time.h... yes
checking for u_int64_t in sys/types.h... yes
checking for u_int32_t in sys/types.h... yes
checking for u_int16_t in sys/types.h... yes
checking for u_int8_t in sys/types.h... yes
checking for uint64_t in sys/types.h... no
checking for uint32_t in sys/types.h... no
checking for uint16_t in sys/types.h... no
checking for uint8_t in sys/types.h... no
checking whether to enable 64bit counters... yes
checking whether to enable multithreading in pmacct... yes
checking whether to enable ULOG support... no
checking return type of signal handlers... void
checking for strlcpy... no
checking for vsnprintf... no
checking for setproctitle... no
checking for mallopt... no

PLATFORM : x86_64
OS : Linux 3.13.0-34-generic
COMPILER : gcc
CFLAGS : -O2 -g -O2
LIBS : -ljansson -lsqlite3 -lpcap -ldl -lm -lz -lpthread
SERVER_LIBS ...: -lnfprobe_plugin -Lnfprobe_plugin/ -lsfprobe_plugin -Lsfprobe_plugin/ -lbgp -Lbgp/ -ltee_plugin -Ltee_plugin/ -lisis -Lisis/ -lbmp -Lbmp/
LDFLAGS : -Wl,--export-dynamic

Now type 'make' to compile the source code.

Are you willing to get in touch with other pmacct users?
Join the pmacct mailing-list by sending a message to pmacct-discussion-subscribe@pmacct.net

Need for documentation and examples?
Read the README file or go to http://wiki.pmacct.net/

updating cache ./config.cache
creating ./config.status

34 Chapter 5. How To: Generic Router

SDN Internet Router (sir) Documentation, Release 1

creating Makefile
creating src/Makefile
creating src/nfprobe_plugin/Makefile
creating src/sfprobe_plugin/Makefile
creating src/bgp/Makefile
creating src/tee_plugin/Makefile
creating src/isis/Makefile
creating src/bmp/Makefile
$ make
... (output omitted for clarity)
$ sudo make install
... (output omitted for clarity)

5.2.2 Configuring pmacct

To configure pmacct you will need to know the IP the router will use as source IP for both netflow and BGP. Once you
know, paste the following configuration in the file /pmacct-1.5.1/etc/pmacct.conf:

$ cd /pmacct-1.5.1
$ sudo mkdir etc
$ sudo vi etc/pmacct.conf
daemonize: true

plugins: sqlite3[simple]

sql_db[simple]: /pmacct-1.5.1/output/pmacct.db
sql_refresh_time[simple]: 3600
sql_history[simple]: 60m
sql_history_roundoff[simple]: h
sql_table[simple]: acct
sql_table_version[simple]: 9

aggregate: dst_net, dst_mask, dst_as

bgp_daemon: true
bgp_daemon_ip: $ROUTER_SRC_IP
bgp_daemon_max_peers: 1
bgp_table_dump_file: /pmacct-1.5.1/output/bgp-$peer_src_ip-%Y_%m_%dT%H_%M_%S.txt
bgp_table_dump_refresh_time: 3600

nfacctd_as_new: bgp
nfacctd_net: bgp
nfacctd_port: 9999
nfacctd_ip: $ROUTER_SRC_IP
nfacctd_time_new: true

Warning: Don’t forget to replace $ROUTER_SRC_IP with the IP of your router will use for both netflow and
BGP.

Now it’s time to setup the database:

$ sudo mkdir output
$ sudo sqlite3 output/pmacct.db << EOF
CREATE TABLE 'acct' (

'tag' INT(8) NOT NULL DEFAULT 0,
'class_id' CHAR(16) NOT NULL DEFAULT ' ',

5.2. Enabling pmacct 35

SDN Internet Router (sir) Documentation, Release 1

'mac_src' CHAR(17) NOT NULL DEFAULT '0:0:0:0:0:0',
'mac_dst' CHAR(17) NOT NULL DEFAULT '0:0:0:0:0:0',
'vlan' INT(4) NOT NULL DEFAULT 0,
'as_src' INT(8) NOT NULL DEFAULT 0,
'as_dst' INT(8) NOT NULL DEFAULT 0,
'ip_src' CHAR(15) NOT NULL DEFAULT '0.0.0.0',
'ip_dst' CHAR(15) NOT NULL DEFAULT '0.0.0.0',
'mask_dst' INTEGER(1) NOT NULL DEFAULT 0,
'port_src' INT(4) NOT NULL DEFAULT 0,
'port_dst' INT(4) NOT NULL DEFAULT 0,
'tcp_flags' INT(4) NOT NULL DEFAULT 0,
'ip_proto' CHAR(6) NOT NULL DEFAULT 0,
'tos' INT(4) NOT NULL DEFAULT 0,
'packets' INT NOT NULL,
'bytes' BIGINT NOT NULL,
'flows' INT NOT NULL DEFAULT 0,
'stamp_inserted' DATETIME NOT NULL DEFAULT '0000-00-00 00:00:00',
'stamp_updated' DATETIME,
'collumn' peer_as_srcINT(8) NOT NULL DEFAULT 0,
'peer_as_dst' INT(8) NOT NULL DEFAULT 0,
'peer_as_src' INT(8) NOT NULL DEFAULT 0,
'peer_dst_ip' TEXT NOT NULL DEFAULT '0.0.0.0',
PRIMARY KEY(tag,class_id,mac_src,mac_dst,vlan,as_src,as_dst,ip_src,ip_dst,mask_dst,port_src,port_dst,ip_proto,tos,stamp_inserted)

);
CREATE TABLE 'variables' (

'name' TEXT,
'content' TEXT,
'category' TEXT,
PRIMARY KEY(name,category)

);

CREATE INDEX acct_idx1 ON acct(stamp_updated);
CREATE INDEX acct_idx2 ON acct(stamp_updated, as_dst);
CREATE INDEX acct_idx3 ON acct(stamp_updated, ip_dst, mask_dst);

CREATE INDEX variables_idx1 ON variables(category);
EOF

Finally, it’s just a matter of starting pmacct:

$ sudo /pmacct-1.5.1/sbin/nfacctd -f /pmacct-1.5.1/etc/pmacct.conf

5.2.3 Configuring the Router

For the example we are going to use an ASR. Adapt the config for your network and your device. Configuring the
ASR is relatively easy, you only have to configure netflow to send the flows that you want to process and BGP to send
the prefixes you want to use for the aggregation. Here is an example:

flow exporter-map SIR
version v9
options interface-table timeout 60
template data timeout 60

!
transport udp 9999
source Loopback0
destination $PMACCT_IP

!

36 Chapter 5. How To: Generic Router

SDN Internet Router (sir) Documentation, Release 1

flow monitor-map SIR-FMM
record ipv4
exporter SIR
cache timeout active 60
cache timeout inactive 15

!
sampler-map SIR
random 1 out-of 10000

interface HundredGigE0/0/0/1
flow ipv4 monitor SIR-FMM sampler SIR egress

route-policy PASS
pass

end-policy

route-policy BLOCK
drop

end-policy

router bgp $AS
neighbor $PMACCT_IP
remote-as $AS
description SIR
update-source Loopback0
address-family ipv4 unicast
route-policy BLOCK in
route-policy PASS out

Warning: Don’t forget to replace $PMACCT_IP with the IP of the server where you are running pmacct and $AS
with your own AS.

Note: If you want you can configure several routers pointing to the same SIR agent. The only thing you have to
change is in pmacct’s configuration the parameter bgp_daemon_max_peers to the number of routrs that you are
going to configure.

5.3 Enabling SIR agent

This is super easy to do. First install using pip:

$ sudo pip install SIR
You are using pip version 6.0.8, however version 7.1.0 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
Collecting SIR

Downloading SIR-0.10.tar.gz (79kB)
100% |################################| 81kB 1.2MB/s

Collecting flask (from SIR)
Using cached Flask-0.10.1.tar.gz

Collecting ipaddress (from SIR)
Using cached ipaddress-1.0.14-py27-none-any.whl

Collecting PyYAML (from SIR)
Using cached PyYAML-3.11.tar.gz

Collecting Werkzeug>=0.7 (from flask->SIR)

5.3. Enabling SIR agent 37

SDN Internet Router (sir) Documentation, Release 1

Using cached Werkzeug-0.10.4-py2.py3-none-any.whl
Collecting Jinja2>=2.4 (from flask->SIR)

Downloading Jinja2-2.8-py2.py3-none-any.whl (263kB)
100% |################################| 266kB 1.1MB/s

Collecting itsdangerous>=0.21 (from flask->SIR)
Using cached itsdangerous-0.24.tar.gz

Collecting MarkupSafe (from Jinja2>=2.4->flask->SIR)
Using cached MarkupSafe-0.23.tar.gz

Installing collected packages: MarkupSafe, itsdangerous, Jinja2, Werkzeug, PyYAML, ipaddress, flask, SIR
Running setup.py install for MarkupSafe
building 'markupsafe._speedups' extension
clang -fno-strict-aliasing -fno-common -dynamic -I/usr/local/include -I/usr/local/opt/sqlite/include -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/usr/local/Cellar/python/2.7.8_2/Frameworks/Python.framework/Versions/2.7/include/python2.7 -c markupsafe/_speedups.c -o build/temp.macosx-10.10-x86_64-2.7/markupsafe/_speedups.o
clang -bundle -undefined dynamic_lookup -L/usr/local/lib -L/usr/local/opt/sqlite/lib build/temp.macosx-10.10-x86_64-2.7/markupsafe/_speedups.o -o build/lib.macosx-10.10-x86_64-2.7/markupsafe/_speedups.so

Running setup.py install for itsdangerous

Running setup.py install for PyYAML
checking if libyaml is compilable
clang -fno-strict-aliasing -fno-common -dynamic -I/usr/local/include -I/usr/local/opt/sqlite/include -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/usr/local/Cellar/python/2.7.8_2/Frameworks/Python.framework/Versions/2.7/include/python2.7 -c build/temp.macosx-10.10-x86_64-2.7/check_libyaml.c -o build/temp.macosx-10.10-x86_64-2.7/check_libyaml.o
build/temp.macosx-10.10-x86_64-2.7/check_libyaml.c:2:10: fatal error: 'yaml.h' file not found
#include <yaml.h>

^
1 error generated.
libyaml is not found or a compiler error: forcing --without-libyaml
(if libyaml is installed correctly, you may need to
specify the option --include-dirs or uncomment and
modify the parameter include_dirs in setup.cfg)

Running setup.py install for flask
Running setup.py install for SIR
Successfully installed Jinja2-2.8 MarkupSafe-0.23 PyYAML-3.11 SIR-0.10 Werkzeug-0.10.4 flask-0.10.1 ipaddress-1.0.14 itsdangerous-0.24

Now configure SIR. Edit file settings.py:

DATABASE = '/pmacct-1.5.1/output/pmacct.db' # Path to the db
BGP_FOLDER = '/pmacct-1.5.1/output' # Path to the folder where BGP info is
DEBUG = False # Set to True only if you are trying to develop and your environment is completely secure
SECRET_KEY = 'My_super_duper_secret_key' # Secret key. Keep it secret.
BIND_IP = '0.0.0.0' # IP you want to bind the service to
PORT= 8080 # Port you want to bind the service to

Note: You can place the settings.py file anywhere you like. However, you will have to set the
environment variable SIR_SETTINGS pointing towards it so it can be found. For example, export
SIR_SETTINGS=/path/to/settings.py.

Now you need an application server like UWSGI or gunicorn to run the application. There is tons of documentation
out there on how to run flask application. I suggest you to start here. For the sake of testing we can use gunicorn like
this:

$ sudo pip install gunicorn
You are using pip version 6.0.8, however version 7.1.0 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
Collecting gunicorn

Using cached gunicorn-19.3.0-py2.py3-none-any.whl
Installing collected packages: gunicorn

Compiling /private/var/folders/d9/9h8nsvsd2_vgt9y1l73jhhvr0000gn/T/pip-build-FcSaUJ/gunicorn/gunicorn/workers/_gaiohttp.py

38 Chapter 5. How To: Generic Router

http://flask.pocoo.org/docs/0.10/deploying/

SDN Internet Router (sir) Documentation, Release 1

Successfully installed gunicorn-19.3.0
$ sudo gunicorn sir.agent:app
[2015-07-30 13:21:30 +0200] [46008] [INFO] Starting gunicorn 19.3.0
[2015-07-30 13:21:30 +0200] [46008] [INFO] Listening at: http://127.0.0.1:8000 (46008)
[2015-07-30 13:21:30 +0200] [46008] [INFO] Using worker: sync
[2015-07-30 13:21:30 +0200] [46017] [INFO] Booting worker with pid: 46017

At this point you should be able to access SIR at http://127.0.0.1:8000.

5.3. Enabling SIR agent 39

http://127.0.0.1:8000

SDN Internet Router (sir) Documentation, Release 1

40 Chapter 5. How To: Generic Router

CHAPTER 6

How To: EOS

6.1 Scenario

We want to deploy the SIR agent inside an Arista switch. All the code will be run inside the same switch (no external
server will be needed). To run the application and present it to the user we will use the same application/HTTP server
that the eAPI is using.

This will give us extra visibility on how we are using the Arista switch and do smart things like optimizing the fib or
take peering decisions.

41

SDN Internet Router (sir) Documentation, Release 1

42 Chapter 6. How To: EOS

SDN Internet Router (sir) Documentation, Release 1

6.2 Deploying SIR Manually

If you want, you can deploy SIR manually. If you prefer to do it automatically go to the section Deploying SIR
Automatically.

Warning: Note that rebooting the switch will uninstall pmacct and SIR. The data will still be there but the
software has to be installed after every reboot. That’s why the automatic deployment is recommended.

6.2.1 pmacct

For simplicity I am providing both pmacct and the dependencies (jansson) precompiled. If you prefer you can compile
both yourself but that is outside the scope of this document. There are no changes from the original sources which you
can get in the following links:

• pmacct

• jansson

Getting pmacct

First you have to get all the related configuration files and copy them to the correct location:

lab#bash

Arista Networks EOS shell

[dbarroso@lab ~]$ cd /tmp/
[dbarroso@lab tmp]$ sudo ip netns exec ns-mgmtVRF wget https://sdn-internet-router-sir.readthedocs.io/en/latest/_static/eos_files.tar.gz
--2015-07-28 13:30:35-- https://sdn-internet-router-sir.readthedocs.io/en/latest/_static/eos_files.tar.gz
Resolving sdn-internet-router-sir.readthedocs.org... 162.209.114.75
Connecting to sdn-internet-router-sir.readthedocs.org|162.209.114.75|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1341140 (1.3M) [application/octet-stream]
Saving to: `eos_files.tar.gz'

100%[==>] 1,341,140 833K/s in 1.6s

2015-07-28 13:30:37 (833 KB/s) - `eos_files.tar.gz' saved [1341140/1341140]

[dbarroso@lab tmp]$ tar xvzf eos_files.tar.gz
eos_files/
eos_files/._.DS_Store
eos_files/.DS_Store
eos_files/pmacct/
eos_files/sir_nginx.conf
eos_files/sir_settings.py
eos_files/sir_uwsgi.ini
eos_files/pmacct/._.DS_Store
eos_files/pmacct/.DS_Store
eos_files/pmacct/libjansson.so.4
eos_files/pmacct/pmacct
eos_files/pmacct/pmacct.conf
eos_files/pmacct/pmacct.db
eos_files/pmacct/sfacctd

6.2. Deploying SIR Manually 43

http://www.pmacct.net/pmacct-1.5.0.tar.gz
http://www.digip.org/jansson/releases/jansson-2.7.tar.gz

SDN Internet Router (sir) Documentation, Release 1

[dbarroso@lab tmp]$ sudo cp eos_files/pmacct/pmacct.conf /etc/
[dbarroso@lab tmp]$ sudo cp eos_files/pmacct/pmacct /usr/bin/
[dbarroso@lab tmp]$ sudo cp eos_files/pmacct/sfacctd /usr/sbin/
[dbarroso@spine01 tmp]$ sudo cp eos_files/pmacct/libjansson.so.4 /usr/lib/
[dbarroso@lab tmp]$ sudo mkdir -p /mnt/drive/sir/output/bgp/

If the database doesn’t exist yet, now you can just copy the empty database:

[dbarroso@lab tmp]$ sudo cp eos_files/pmacct/pmacct.db /mnt/drive/sir/output/

And finally, start pmacct:

[dbarroso@lab tmp]$ sudo immortalize --log=/var/log/pmacct.log --daemonize /usr/sbin/sfacctd -f /etc/pmacct.conf

6.2.2 SIR

Installing SIR

Installing SIR is very easy. You can install it by using PIP as any other python package:

lab#bash

Arista Networks EOS shell

[dbarroso@lab ~]$ cd /tmp
[dbarroso@lab tmp]$ sudo ip netns exec ns-mgmtVRF pip install SIR
Downloading/unpacking SIR

Downloading SIR-0.10.tar.gz (79kB): 79kB downloaded
Running setup.py (path:/tmp/pip_build_root/SIR/setup.py) egg_info for package SIR

...
Successfully installed SIR flask ipaddress Werkzeug Jinja2 itsdangerous MarkupSafe
Cleaning up...

Enabling SIR

Instead of running our own HTTP and/or application server we are just going to use the services that EOS is already
using for their eAPI. For that you just have to copy a couple of configuration files that were provided in the same tar
file you downloaded before:

[dbarroso@lab tmp]$ sudo cp eos_files/sir_uwsgi.ini /etc/uwsgi/
[dbarroso@lab tmp]$ sudo cp eos_files/sir_nginx.conf /etc/nginx/external_conf/

Now, copy the configuration file for SIR:

[dbarroso@lab tmp]$ sudo cp eos_files/sir_settings.py /mnt/drive/sir/settings.py

Starting the application server and SIR

To start SIR you just have to start application server:

[dbarroso@lab tmp]$ sudo SIR_SETTINGS='/mnt/drive/sir/settings.py' immortalize --daemonize --log=/var/log/sir.uwsgi.log /usr/bin/uwsgi --ini /etc/uwsgi/sir_uwsgi.ini

And finally you have to restart the HTTP server back in the EOS CLI. Assuming you already have the eAPI enabled:

44 Chapter 6. How To: EOS

SDN Internet Router (sir) Documentation, Release 1

[dbarroso@lab tmp]$ exit
logout
lab#conf
lab(config)#management api http-commands
lab(config-mgmt-api-http-cmds)#shut
lab(config-mgmt-api-http-cmds)#no shut

6.3 Deploying SIR Automatically

If you want, you can deploy SIR automatically. If you prefer to do it manually go to the section Deploying SIR
Manually.

6.3.1 Requirements

SIR will use the same HTTP and application server than EOS’ eAPI so make sure it’s running.

6.3.2 Extensions

To install SIR and all of its dependencies automatically we are going to use EOS extensions (SWIX packages). This
will allow us to deploy all the files and do some post-install operations like reconfigure the HTTP/application servers,
start pmacct, initialize the database, etc. Everything is done automatically so sit back and enjoy :)

First, let’s get the extensions (make sure you are getting the latest versions, check the releases in the github page):

Get into the management VRF if needed
peer00.lab#routing-context vrf mgmtVRF
peer00.lab(vrf:mgmtVRF)#copy https://github.com/dbarrosop/sir/releases/download/v0.17/sir-0.17-1.noarch.swix extension:
Copy completed successfully.
peer00.lab(vrf:mgmtVRF)#copy https://github.com/dbarrosop/sir/releases/download/v0.17/pmacct_sir-0.1-1.noarch.swix extension:
Copy completed successfully.

Now we just have to install the extensions:

peer00.lab(vrf:mgmtVRF)#extension sir-0.17-1.noarch.swix
peer00.lab(vrf:mgmtVRF)#extension pmacct_sir-0.1-1.noarch.swix
peer00.lab(vrf:mgmtVRF)#show extensions
Name Version/Release Status extension
-- ------------------------- ------ ----
pmacct_sir-0.1-1.noarch.swix 0.1/1 A, I 1
sir-0.17-1.noarch.swix 0.17/1 A, I 1

A: available | NA: not available | I: installed | NI: not installed | F: forced

And that’s it!

Warning: If you reboot your switch the changes will be lost. To make them permanent execute copy
installed-extensions boot-extensions

6.3. Deploying SIR Automatically 45

SDN Internet Router (sir) Documentation, Release 1

6.4 Configuring EOS

No matter if you did the manual or the automated deployment, you have to configure EOS to peer with pmacct and
send sFlow data:

[dbarroso@lab tmp]$ exit
logout
lab# conf

sflow sample dangerous 10000
sflow polling-interval 1
sflow destination 127.0.0.9 9999
sflow source-interface $SOURCE_INTERFACE
sflow run

router bgp $AS
neighbor 127.0.0.9 transport remote-port 1179
neighbor 127.0.0.9 update-source $SOURCE_INTERFACE
neighbor 127.0.0.9 remote-as $AS
neighbor 127.0.0.9 description "SIR/pmacct"
neighbor 127.0.0.9 maximum-routes 12000

Warning: Don’t forget to replace $SOURCE_INTERFACE with the source-interface you want to use to connect
from your device to the agent and $AS with your own AS.

6.5 Accessing SIR

To access SIR you just have to go the same URL you would access the eAPI and add /sir/. For example, if the URL to
access the eAPI is https://lab.demo/ you can access SIR with https://lab.demo/sir/.

46 Chapter 6. How To: EOS

SDN Internet Router (sir) Documentation, Release 1

6.6 Logging

Both SIR and pmacct write logs into files:

• pmacct - /var/log/pmacct.log

• sir - /var/log/sir.uwsgi.log

Just access the files using common linux tools like tail‘ or ‘‘less:

lab#bash sudo tail /var/log/sir.uwsgi.log

*** Operational MODE: single process ***
added /usr/lib/python2.7/site-packages/ to pythonpath.
WSGI app 0 (mountpoint='') ready in 1 seconds on interpreter 0xf8463420 pid: 5702 (default app)

*** uWSGI is running in multiple interpreter mode ***
spawned uWSGI worker 1 (and the only) (pid: 5702, cores: 1)
[pid: 5702|app: 0|req: 1/1] ::ffff:10.210.20.240 () {44 vars in 713 bytes} [Wed Jul 29 12:25:20 2015] GET /sir/ => generated 699 bytes in 45 msecs (HTTP/1.1 200) 2 headers in 80 bytes (1 switches on core 0)
[pid: 5702|app: 0|req: 2/2] ::ffff:10.210.20.240 () {44 vars in 695 bytes} [Wed Jul 29 12:25:20 2015] GET /sir/static/style.css => generated 1862 bytes in 7 msecs via sendfile() (HTTP/1.1 200) 7 headers in 284 bytes (0 switches on core 0)
[pid: 5702|app: 0|req: 3/3] ::ffff:10.210.20.240 () {44 vars in 733 bytes} [Wed Jul 29 12:25:20 2015] GET /sir/static/highlight_styles/default.css => generated 2644 bytes in 2 msecs via sendfile() (HTTP/1.1 200) 7 headers in 285 bytes (0 switches on core 0)
[pid: 5702|app: 0|req: 4/4] ::ffff:10.210.20.240 () {44 vars in 696 bytes} [Wed Jul 29 12:25:20 2015] GET /sir/static/highlight.pack.js => generated 9057 bytes in 2 msecs via sendfile() (HTTP/1.1 200) 7 headers in 286 bytes (0 switches on core 0)
[pid: 5702|app: 0|req: 5/5] ::ffff:10.210.20.240 () {44 vars in 694 bytes} [Wed Jul 29 12:25:20 2015] GET /sir/static/scripts/Chart.js => generated 109610 bytes in 2 msecs via sendfile() (HTTP/1.1 200) 7 headers in 290 bytes (0 switches on core 0)

6.6. Logging 47

SDN Internet Router (sir) Documentation, Release 1

6.7 fib_optimizer

One of the main use cases of SIR is using a switch for peering purposes. Traditionally routers has been used for that
purpose as switches had limited routing table. However, with SIR and the fib_optimizer app you can use instead a
switch and bring down costs. For more information about this use case go to the section A commodity switch as a
Peering Router.

For more details about the fib_optimizer go to the github repo where the fib_optimizer lives. For instructions on how
to easily deploy it within EOS keep reading.

Warning: Disclaimer: Use the following instructions as reference. Adapt the configuration for your network.

6.7.1 Installing the fib_optimizer

To install the fib_optimizer we are going to use SWIX packages to simplify the operations:

Go to the management VRF if needed
peer00.lab#routing-context vrf mgmtVRF
peer00.lab(vrf:mgmtVRF)#copy https://github.com/dbarrosop/pySIR/releases/download/v0.45/pySIR-0.45-1.noarch.swix extension:
Copy completed successfully.
peer00.lab(vrf:mgmtVRF)#copy https://github.com/dbarrosop/sir_apps/releases/download/v0.1/fib_optimizer-0.1-1.noarch.swix extension:
Copy completed successfully.
peer00.lab(vrf:mgmtVRF)#extension pySIR-0.45-1.noarch.swix
peer00.lab(vrf:mgmtVRF)#extension fib_optimizer-0.1-1.noarch.swix
peer00.lab(vrf:mgmtVRF)#show extensions
Name Version/Release Status extension
-- ------------------------- ------ ----
fib_optimizer-0.1-1.noarch.swix 0.1/1 A, I 1
pmacct_sir-0.1-1.noarch.swix 0.1/1 A, I 1
pySIR-0.45-1.noarch.swix 0.45/1 A, I 1
sir-0.17-1.noarch.swix 0.17/1 A, I 1

A: available | NA: not available | I: installed | NI: not installed | F: forced

6.7.2 Configuring the fib_optimizer

To configure the fib_optimizer you will have to run some python code from some maching with access to the HTTPS
port of the switch.

First, install pySIR if you don’t have it already:

pip install pySIR

Now, execute inside your python shell the following code (modify the configuration parameters and base_url to meet
your needs):

from pySIR.pySIR import pySIR
import json

base_url = 'https://peer00.lab/sir'
configuration = {

'lem_prefixes': '24',
'max_lem_prefixes': 20000,
'max_lpm_prefixes': 16000,

48 Chapter 6. How To: EOS

https://github.com/dbarrosop/sir_apps/tree/master/fib_optimizer

SDN Internet Router (sir) Documentation, Release 1

'path': '/tmp/',
'age': 168,
'purge_older_than': 336,

}
sir = pySIR(base_url, verify_ssl=False)

sir.post_variables(category='apps', name='fib_optimizer', content = json.dumps(configuration))

If you want to modify any variable later on you can run the following code in your python shell:

from pySIR.pySIR import pySIR
import json

base_url = 'https://peer00.lab/sir'
configuration = {

'lem_prefixes': '24',
'max_lem_prefixes': 40000,
'max_lpm_prefixes': 16000,
'path': '/tmp/',
'age': 120,
'purge_older_than': 240,

}
sir = pySIR(base_url, verify_ssl=False)

sir.put_variables_by_category_and_name(category='apps', name='fib_optimizer', content = json.dumps(configuration))

6.7.3 Scheduling fib_optimizer

In order to run the fib_optimizer hourly you will need to add the following line to your switch’s configuration:

schedule fib_optimizer at 09:05:00 08/17/2015 interval 60 max-log-files 48 command bash sudo ip netns exec ns-mgmtVRF /usr/local/bin/fib_optimizer.py https://127.0.0.1/sir

Note: If you get a comment saying ! Schedule a command starting in past you can just ignore it.

Note: Replace ns-mgmtVRF with ns-$MGMT_VRF or default if you don’t have any.

This command is going to schedule the fib_optimizer to run every hour. You can run the fib_optimizer outside the
switch if you want, maybe in some server. In that case change the last argument to match the URL of SIR.

On every run, the fib_optimizer is going to create a few prefix-lists that we are going to use on a route-map to control
SRD (Selective Route Download).

6.7.4 Configuring SRD

SRD is a feature of some BGP implementations that allows you to pick some routers from the RIB and install them in
the FIB. The routes not installed will still be processed as usual. This means that, if other policies permit it, they will
be processed and forwarded to other BGP neighbors.

To enable SRD with EOS you only need to create a route-map (called SRD in our example) and execute:

router bgp $YOUR_ASN
bgp route install-map SRD

6.7. fib_optimizer 49

SDN Internet Router (sir) Documentation, Release 1

The content of the route-map can be anything, however, I recommend that you have at least:

route-map SRD permit 10
match as-path ASN_DC

!
route-map SRD permit 20

match as-path ASN_TRANSIT
!
route-map SRD permit 30

match ip address prefix-list fib_optimizer_lem_v4
!
route-map SRD permit 40

match ip address prefix-list fib_optimizer_lpm_v4
!

The first block is going to match the prefix-lists coming from your internal network, the second block is going to match
the prefixes coming from your transit provider:

ip as-path access-list ASN_DC permit ^$YOUR_INTERNAL_ASN$ any
ip as-path access-list ASN_TRANSIT permit ^$YOUR_TRANSIT_ASN$ any

These two blocks are going to ensure that all prefixes coming from your DC are going to accepted and that the prefix
coming from your transit provider (who is sending me the default route) is always installed. This will ensure that even
if SIR or the fib_optimizer fails, I will still be able to route traffic.

The third and fourth block will be the ones controlled by the fib_optimizer.

Warning: Disclaimer: Take this as what it is, an example. Adapt the configuration for your network. This works
for my network, it might not work for you. Even if you decide that this will work for you, you will still have to
change the as-path list to match your own ASN’s.

50 Chapter 6. How To: EOS

	Features
	Analytics
	Variables

	Architecture
	Local Architecture
	Global Architecture

	API v1.0 Documentation
	API
	Endpoints

	Use Cases
	A commodity switch as a Peering Router
	A Software Defined Content Delivery Network

	How To: Generic Router
	Scenario
	Enabling pmacct
	Enabling SIR agent

	How To: EOS
	Scenario
	Deploying SIR Manually
	Deploying SIR Automatically
	Configuring EOS
	Accessing SIR
	Logging
	fib_optimizer

