

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Scrimer 1.1 documentation

Welcome to Scrimer

Scrimer is a GNU/Linux pipeline for designing PCR and genotyping primers from transcriptomic data.

Scrimer has been published in a peer-reviewed journal, please cite this if you use the pipeline
or derive your own pipeline from our work:

Scrimer: designing primers from transcriptome data.

Mořkovský L, Pačes J, Rídl J, Reifová R.

Mol Ecol Resour. 2015 Nov;15(6):1415-20. doi: 10.1111/1755-0998.12403.

Note

We present Scrimer as an end-to-end solution, from raw reads to usable primers. This is intended to help
novice users, so they can better see the whole picture. However, this has an important downside - many steps in the pipeline
are quite complex on their own (contig assembly, read mapping, variant calling etc.), and appropriate
attention should be paid to checking the intermediate results.

In general, the most common solution for each given step is automatically chosen, using some reasonable default settings,
but also giving the user the option to choose another program - using standard formats for input and output. The fine tuning of each step
depending on the input data is up to the users.

Installation

Scrimer is a set of Python and Bash scripts that serve as a glue for several external programs.
The Python code is in the scrimer package, while Bash commands to run the Python scripts and the external
programs can be found in this documentation.

You can install Scrimer either to your own GNU/Linux machine, or use a prebuilt VirtualBox image:

	Scrimer installation

	Scrimer virtual machine

Additionally a demo data set [http://goo.gl/YDc5f9] is available (it is already included in the VirtualBox image).
It contains the whole project tree of one Scrimer run with all the intermediate files and an IGV session file,
which can be used to load all the relevant tracks to IGV at once.

Pipeline workflow

The workflow is divided into several steps. The intermediate results of these steps can be
visually inspected and checked for validity. There is no reason to continue with the process
when a step fails, as further results will not be meaningful. The whole pipeline is a series
of pre-made shell commands which are each supposed to be executed one after another by pasting them into the console.

The following pages describe these steps in detail, explain some choices
we made and suggest ways how to check validity of the intermediate results.

Under normal circumsances it should take about a day to push your data through the pipeline, if everything goes well.

	Set up project dependent settings

	Prepare the reference genome

	Remove cDNA synthesis adaptors

	Assemble reads into contigs

	Map contigs to the reference genome

	Map reads to the scaffold

	Detect and choose variants

	Design primers

	IGV with all data produced by Scrimer

Scrimer dataflow

Dataflow diagram of the pipeline. Inputs are in green, processing steps in yellow and results in red.
Arrows connecting steps are labelled with data format. This image was created using yEd.

[image: _images/dataflow.png]

Scrimer components

	Components of the Scrimer pipeline
	Components bound to the pipeline

	Tools for FASTA/FASTQ manipulation

	General purpose tools

Source code and reporting bugs

The source code and a bugtracker can be found at https://github.com/libor-m/scrimer.

License

Scrimer is licensed under the GNU Affero General Public License [http://www.gnu.org/licenses/agpl.html].
Contact the author if you’re interested in other licensing terms.

Author

Libor Morkovsky

Department of Zoology

Charles University in Prague

Czech Republic

morkovsk[at]natur.cuni.cz

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Scrimer installation

You need a default installation of Python 2.7 [1] with virtualenv [2].

create and activate new python virtual environment for scrimer
in home directory of current user
virtualenv ~/scrimer-env
. ~/scrimer-env/bin/activate

install cython in advance because of pybedtools
and distribute because of pyvcf
pip install cython distribute

now install scrimer from pypi
with it's additional dependencies (pyvcf, pysam, pybedtools)
pip install scrimer

Scrimer depends on several python modules, that should be installed automatically using the above procedrue.

	pysam [3] is used to manipulate the indexed fasta and bam files

	pybedtools [4] is used to read and write the annotations

	PyVCF [5] is used to access variants data

Special cases

If you’re in an environment where you’re not able to install virtualenv systemwide, we recommend using
the technique described at http://eli.thegreenplace.net/2013/04/20/bootstrapping-virtualenv/.

If you’re in a grid environment, this can help with paths that differ on different nodes

virtualnev --relocatable ~/scrimer-env

Non-python dependecies

Apart from the Python modules, the Scrimer pipeline relies on other tools that should be installed
in your PATH. Follow the installation instructions in each package.

For reference we recorded the commands used to install those dependencies in
the scrimer virtual box image. If your system is Debian 7, the commands could work verbatim.

	bedtools [8] is a dependency of pybedtools, used for manipulating with gff and bed files

	samtools [12] is used for manipulating short read alignments, and for calling variants

	LASTZ [7] is used to find the longest isotigs

	tabix [9] creates compressed and indexed verisions of annotation files

	GMAP [11] produces a spliced mapping of your contigs to the reference genome

	smalt [13] maps short reads to consensus contigs to discover variants

	GNU parallel [14] is used throughout the pipeline to speed up some lengthy calculations [34]

	blat and isPcr [15] are used to check the designed primers

	Primer3 [16] is used to find the most optimal primes sequences

	cutadapt [6] is used to remove cDNA synthesis primers.

Additional tools can be installed to provide some more options.

	FastQC [20] can be used to check the tag cleaning process

	agrep [21] and tre-agrep [22] can be used to check the tag cleaning process

	sort-alt [10] provides alphanumeric sorting of chromosome names, rename sort to sort-alt after compiling

	IGV [23] is great for visualizing the data when checking the results

	newbler [24] is the best option for assembling 454 mRNA data [32] [33]

	MIRA [25] does well with 454 transcriptome assembly as well [32] [33]

	sim4db [26] can be used as alternative spliced mapper,
part of the kmer suite, apply our patch [27] to get standard conformant output

	Pipe Viewer [28] can be used to display the progress of longer operations

	BioPython [18] and NumPy [19] are required for running 5prime_stats.py

	mawk [29], awk is often used in the pipeline, and mawk is usually an order of magnitude faster

	vcflib [31] has a nice interface for working with vcf files (but new bcftools are good as well)

Add installed tools to your PATH

To easily manage locations of the tools that you’re using with the Scrimer pipeline, create a text file
containing paths to directories, where binaries of your tools are located.
The format is one path per line, for example:

/opt/bedtools/bin
/opt/samtools-0.1.18
/opt/lastz/bin
/opt/tabix
/opt/gmap/bin
/data/samba/liborm/sw_testbed/smalt-0.7.4
/data/samba/liborm/sw_testbed/FastQC
/data/samba/liborm/sw_testbed/kmer/sim4db

Put this file to your virtual environment directory, e.g. ~/scrimer-env/paths.
You can run the following snippet when starting your work session:

export PATH=$(cat ~/scrimer-env/paths | tr "\n" ":"):$PATH

References

Python packages

	[1]	Python http://www.python.org/

	[2]	virtualenv http://www.virtualenv.org/en/latest/

	[3]	pysam http://code.google.com/p/pysam/

	[4]	pybedtools http://pythonhosted.org/pybedtools/

	[5]	PyVCF https://github.com/jamescasbon/PyVCF

	[6]	https://code.google.com/p/cutadapt/

Other software

	[7]	lastz http://www.bx.psu.edu/~rsharris/lastz/

	[8]	bedtools https://github.com/arq5x/bedtools2

	[9]	tabix http://www.htslib.org/, http://samtools.sourceforge.net/tabix.shtml

	[10]	sort-alt https://github.com/lh3/foreign/tree/master/sort

	[11]	gmap http://research-pub.gene.com/gmap/

	[12]	samtools http://www.htslib.org/, http://sourceforge.net/projects/samtools/files/

	[13]	smalt http://www.sanger.ac.uk/resources/software/smalt/,
we used 0.7.0.1, because the latest version (0.7.3) crashes

	[14]	GNU parallel http://www.gnu.org/software/parallel/

	[15]	http://users.soe.ucsc.edu/~kent/src/, get blatSrc35.zip and isPcr33.zip,
before make do export MACHTYPE and export BINDIR=<dir>

	[16]	http://primer3.sourceforge.net/

	[17]	https://code.google.com/p/ea-utils/

Optional software

	[18]	BioPython http://biopython.org/

	[19]	numpy http://www.numpy.org/

	[20]	FastQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

	[21]	agrep https://github.com/Wikinaut/agrep

	[22]	tre-agrep http://laurikari.net/tre/

	[23]	IGV http://www.broadinstitute.org/igv/

	[24]	newbler http://454.com/products/analysis-software/index.asp

	[25]	MIRA http://www.chevreux.org/projects_mira.html

	[26]	sim4db http://sourceforge.net/apps/mediawiki/kmer/index.php?title=Main_Page

	[27]	patch for sim4db gff output http://sourceforge.net/p/kmer/patches/2/

	[28]	Pipe Viewer http://www.ivarch.com/programs/pv.shtml

	[29]	mawk http://invisible-island.net/mawk/

	[30]	yEd http://www.yworks.com/en/products_yed_about.html

	[31]	vcflib https://github.com/ekg/vcflib

Papers

	[32]	(1, 2) Mundry,M. et al. (2012) Evaluating Characteristics of De Novo Assembly Software on 454 Transcriptome Data: A Simulation Approach. PLoS ONE, 7, e31410. DOI: http://dx.doi.org/10.1371/journal.pone.0031410

	[33]	(1, 2) Kumar,S. and Blaxter,M.L. (2010) Comparing de novo assemblers for 454 transcriptome data. BMC Genomics, 11, 571. DOI: http://dx.doi.org/10.1186/1471-2164-11-571

	[34]	Tange,O. (2011) GNU Parallel - The Command-Line Power Tool. ;login: The USENIX Magazine, 36, 42-47.

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Scrimer virtual machine

The virtual machine is the easiest way to test Scrimer. You get a computer preinstalled with Scrimer,
many of its dependencies and a test data set. The test data set is a complete scrimer run with all the
intermediate files generated from a subset of reads from our nightingale data set, using zebra finch
as a reference genome.

The machine is set up tu use 2 GB of RAM and one CPU. Those settings can be adjusted in the main VirtualBox
interface. We decieded to use 32 bit machine, because it is the most compatible setting. The downside is
that you cannot use more than 4 GB of RAM. We can provide 64 bit image on request.

Because of licensing issues, the image does not contain Newbler. Trinity is not included as well,
because of high memory requirements of the assembly. We recommend to perform the assembly on
a dedicated machine and then transfer the data back to the scrimer project directory.

Virtual machine installation

Installation steps (it should take less than 10 minutes):

	Install VirtualBox (https://www.virtualbox.org/wiki/Downloads). It works on Windows, Linux and Mac.

	Download the virtual machine image from http://goo.gl/Xf2cVU. You’ll get a single file with .ova extension
on your hard drive.

	You can either double click the .ova file, or run VirtualBox, and choose File > Import Appliance.
Follow the instructions after the import is started.

After a successful instalation you should see something like this (only the machine list will contain jsut one machine).
Check whether you can start the virtual machine: click Start in the main VirtualBox window:

[image: _images/vbox-main.png]
After a while you should see something like this:

[image: _images/vbox.png]
You don’t need to type anything into that window, just checking that it looks like the screenshot is enough.

Machine configuration details:

	Administrative user: root, password: debian

	Normal user: user, password: user

	ssh on port 2222

Windows

Install PuTTY and WinSCP. PuTTY will be used to control the virtual computer. WinSCP will be used to transfer
files between your computer and the virtual computer.

	PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html - look for putty.exe)

	WinSCP (http://winscp.net/eng/download.php - look for Installation package).

Mac OS X and Linux

Ssh is used to control the virtual computer. It should be installed in your computer.

Files can be transferred with scp, rsync or lftp (recommended)
from the command line. Scp and rsync could be already installed in your system,
if you want to use lftp, you’ll probably have to install it yourself.

Mac users that prefer grapical clients can use something like CyberDuck. See
http://apple.stackexchange.com/questions/25661/whats-a-good-graphical-sftp-utility-for-os-x .

Connecting to the virtual machine

Note

You need to start the virtual machine first!

Connect to control the machine

To control the machine, you need to connect to the ssh service.

In Windows this is done with PuTTY.

	start PuTTY

	fill Host Name: localhost

	fill Port: 2222

	click Open or press <Enter>

[image: _images/putty-config.png]
In the black wnidow that appears, type your credentials:

	login as: user

	user@localhost's password: user

[image: _images/putty.png]
In Mac OS X or Linux, this is done with ssh tool:

ssh -p 2222 user@localhost

Connect to copy files

In Windows, WinSCP is used to copy files to Linux machines. You use the same information
as for PuTTY to log in.

[image: _images/winscp.png]
In Mac OS X or Linux, the most simple command to copy a file into
a home directory of user on a running virtual machine is:

scp -P 2222 myfile user@localhost:~

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Set up project dependent settings

All commands in Scrimer scripts and this manual suppose that you will set some environment
variables that define your project and that you add the required tools into your PATH.

Directory layout

Here we present the layout that we use to organize all the data needed to run the pipeline.
The inputs together with intermediate (and final) results total to hundreds of files. Having those
files organized can help prevent mistakes.

Note

The method of organizing your data presented here is just our suggestion. Python scripts
doing most of the work are not dependent on any particular directory structure.

Genomes directory

We assume that genome data is shared among different projects and different people
on the same machine. Thus we place it in a location that is different from project specific data.
This is where the reference genome should be placed.

Project directory

A directory containing files specific for one input dataset. Various steps can be run with
various settings in the same project directory. We organize our files in a waterfall
structure of directories, where each directory name is prefixed with a two digit number.
The directory name is some short meaningful description of the step, the first digit in the
prefix corresponds to part of the process (read mapping, variant calling etc.), and the
second digit distinguishes substeps or runs with different settings.

To start a new project, create a new directory. To use Scrimer you have to convert your data
to the fastq format. Put your .fastq data in a subdirecotry called 00-raw.

project.sh

Create a file called project.sh in your project directory. It will consist of KEY=VALUE
lines that will define your project specific settings, and each time you want to use Scrimer
you’ll start by:

cd my/project/directory
. project.sh

Example project.sh :

number of cores you want to use for parallel calculations
CPUS=8

location of genome data in your system
you need write access to add a new reference genome to that location
GENOMES=/data/genomes

reference genome used
GENOME=taeGut1
GENOMEDIR=$GENOMES/$GENOME
GENOMEFA=$GENOMEDIR/$GENOME.fa

genome in blat format
GENOME2BIT=$GENOMEDIR/$GENOME.2bit

gmap index location
GMAP_IDX_DIR=$GENOMEDIR
GMAP_IDX=gmap_${GENOME}

smalt index
SMALT_IDX=$GENOMEDIR/smalt/${GENOME}k13s4

primers used to synthetize cDNA
(sequences were found in .pdf report from the company that did the normalization)
PRIMER1=AAGCAGTGGTATCAACGCAGAGTTTTTGTTTTTTTCTTTTTTTTTTNN
PRIMER2=AAGCAGTGGTATCAACGCAGAGTACGCGGG
PRIMER3=AAGCAGTGGTATCAACGCAGAGT

Adding the tools to your PATH

For each scrimer session, all the executables that are used have to be in one of
the directories mentioned in PATH.
You can set up your PATH easily by using the file you created during installation:

export PATH=$(cat ~/scrimer-env/paths | tr "\n" ":"):$PATH

Such line can be at the end of your project.sh file, so everythig is set up at once.

Alternatively you can copy all the tool executables into your virtual environment
bin directory (~/scrimer-env/bin).

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Prepare the reference genome

Download and prepare the reference genome

	A list of available genomes is at http://hgdownload.cse.ucsc.edu/downloads.html

	We download the full data set, but it’s possible to interrupt the download during xenoMrna (not needed, too big).

	md5sum is a basic utility that should be present in your system, otherwise check your packages (yum, apt-get, ...)

location of genome data that can be shared among users
mkdir -p $GENOMEDIR
cd $GENOMEDIR

rsync -avzP rsync://hgdownload.cse.ucsc.edu/goldenPath/$GENOME/bigZips/ .

check downloaded data integrity
md5sum -c md5sum.txt
cat *.md5 | md5sum -c

Now unpack the genome. This process differs for different genomes -
some are in single .fa, some are split by chromosomes. Some archives are tarbombs, so unpack
to directory chromFa to avoid a possible mess:

mkdir chromFa
tar xvzf chromFa.tar.gz -C chromFa

Create concatenated genome, use Heng Li’s sort-alt
to get the common ordering of chromosomes:

find chromFa -type f | sort-alt -N | xargs cat > $GENOME.fa

Download all needed annotations

Annotation data is best obtained in UCSC table browser
in BED format and then sorted and indexed by BEDtools

For example: http://genome.ucsc.edu/cgi-bin/hgTables?db=taeGut1:

directory where annotations are stored
ANNOT=annot
sortBed -i $ANNOT/ensGene.bed > $ANNOT/ensGene.sorted.bed
bgzip $ANNOT/ensGene.sorted.bed
tabix -p bed $ANNOT/ensGene.sorted.bed.gz

FIXME: rozepsat
Or using compressed files:

zcat -d $ANNOT/refSeqGenes.bed.gz | sortBed | bgzip > $ANNOT/refSeqGenes.sorted.bed.gz
zcat -d $ANNOT/ensGenes.bed.gz | sortBed | bgzip > $ANNOT/ensGenes.sorted.bed.gz
tabix -p bed $ANNOT/ensGenes.sorted.bed.gz
tabix -p bed $ANNOT/refSeqGenes.sorted.bed.gz

Build indexes for all programs used in the pipeline

Some programs need a preprocessed form of the genome, to speed up their operation.

index chromosome positions in the genome file for samtools
samtools faidx $GENOMEFA

build gmap index for zebra finch
with some newer versions it is necessary to use -B <path/to/bindir>
beware, this requires quite a lot of memory (gigabytes)
gmap_build -d $GMAP_IDX -D $GMAP_IDX_DIR $GENOMEFA

smalt index
needed only for speeding up sim4db
mkdir -p $GENOMEDIR/smalt
smalt index -s 4 $SMALT_IDX $GENOMEFA

convert to blat format
faToTwoBit $GENOMEFA $GENOME2BIT

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Remove cDNA synthesis adaptors

Quality check of the raw data

Results of the quality check of the raw data can be used as a reference point
to check the improvements done by this step.

IN=00-raw
OUT=10-fastqc
mkdir $OUT
fastqc --outdir=$OUT --noextract --threads=$CPUS $IN/*.fastq

Split the files by multiplex tags

If you used multiplexing during library preparation, your reads have either
already been split in your sequencing facility, or you have to split the
reads according to the ‘barcodes’ stored in the sequences yourself.

	for 454, this is done by sfffile, you have to convert resulting sff files to fastq format

	for Illumina this can be done e.g. by eautils [https://code.google.com/p/ea-utils/]

IN=03-sff
OUT=04-sff-split
mkdir -p $OUT

parallel -j 1 sfffile -s RLMIDs -o $OUT/{/.} {} ::: $IN/*.sff

Remove cDNA synthesis primers with cutadapt

Another source of noise in the data is the primers that were used for reverse transcription
of mRNA and for the following PCR amplification of cDNA. We remove them using cutadapt.

If you have more or less than three primers, you have to change the command by adding/removing
--anywhere= parts.

data from previous steps
IN=10-mid-split
OUT=12-cutadapt
mkdir $OUT

cut out the evrogen sequences using GNU parallel and cutadapt
cutadapt supports only 'N' wildcards, no ambiguity codes
parallel -j $CPUS "cutadapt --anywhere=$PRIMER1 --anywhere=$PRIMER2 --anywhere=$PRIMER3 \
 --error-rate=0.2 --overlap=15 --minimum-length=40 \
 --output=$OUT/{/.}.fastq --rest-file=$OUT/{/.}.rest {}" ::: $IN/*.fastq > $OUT/cutadapt.log

Check the results

It is necessary to check the results of adaptor cutting.

First you can check how many of the primers were missed by cutadapt. agrep uses a different
matching algorithm than cutadapt, so some remaining hits are usually found.
/dev/null is used as the second input to agrep so the filenames are output.

NERR=5
parallel agrep -c -$NERR "$PRIMER3" {} /dev/null ::: $OUT/*.fastq|grep -v /dev

The next thing to check is the logs produced by cutadapt.
Results for our data - 454 Titanium data from Smart kit synthesized cDNA:

	~70% trimmed reads

	~10% trimmed basepairs

	~10% too short reads

grep -A5 Processed $OUT/cutadapt.log | less

The mean length of the removed sequences should be close to length of the adapter (31 in this case):

less $OUT/cutadapt.log

Lengths of removed sequences (5')
length count expected
5 350 264.7
6 146 66.2
...
30 6414 0.0
31 63398 0.0
32 6656 0.0
...

The size of the .rest files is 1/500 of the .fastq (should be 1/250 for .fasta)

ls -l $OUT

The fastqc checks should be +- ok.

fastqc --outdir=13-fastqc --noextract --threads=8 $OUT/*.fastq

Visual debugging

If something in the previous checks looks weird, look directly at the data. Substitute filenames below with
the names of your files.

Look where the primers are in the sequence. tre-agrep is used to color the output of agrep, because
agrep throughput is ~ 42 MB/s while tre-agrep throughput is ~ 2 MB/s.

FQFILE=$IN/G3UKN3Q01.fasta
NERR=5
agrep -n -$NERR "$PRIMER3" $FQFILE |tre-agrep -$NERR "$PRIMER3" --color|less -S -R

To find out how many differences should be allowed in the pattern matching, we try to find a value of NERR
where the primer sequence starts to match randomly inside the reads, and not only in at the beginning.
Notice the ^ in the first command, marking the start of the read.

agrep -c -$NERR "^$PRIMER3" $FQFILE && agrep -c -$NERR "$PRIMER3" $FQFILE

numbers for tag-cleaned G59B..
4 errors: 11971 12767
5 errors: 16366 17566
6 errors: 17146 23858
7 errors: 18041 67844

In our sample results, numbers start to diverge for NERR > 5, so 5 is a good choice.

Read count statistics

For a single file:

read count statistics
@ can be in the beginning of quality string, so filter the rows in order

count of sequences
awk '((NR%4) == 1)' $FQFILE | wc -l
or more effective
echo $(($(wc -l $FQFILE) / 4))

count of sequenced bases
awk '((NR%4) == 2)' $FQFILE | wc -m

For all files in OUT:

parallel, IO bound task, so run one process a time
OUT=12-cutadapt
echo "read_count base_count filename"
parallel -j 1 'echo $(gawk "((NR%4) == 1)" {} | wc -l) $(gawk "((NR%4) == 2)" {} | wc -m) {}' ::: $OUT/*.fastq

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Assemble reads into contigs

Use newbler to assemble the reads

Here newbler is used to assemble the contigs. For 3 GB of read data the assembly took 25 CPU hours and 15 GB RAM.

IN=12-cutadapt
OUT=22-newbler
CPUS=19

run full assembly
runAssembly -o $OUT -cdna -cpu $CPUS -m $IN/*.fastq

Remove contigs that are similar to each other

The aim is to get one transcript per locus, preferably the longest one. Otherwise the read mapping
process would be faced with many ambiguous locations. We achieve this by:

	doing all-to-all comparison within the isotigs

	grouping isotigs that are similar up to given thresholds of coverage and identity,
(disjoint sets forest graph algorithm is used)

	and selecting only the longest contig for each group

IN=22-newbler
OUT=$IN
SEQFILE=$IN/454Isotigs.fna
MINCOVERAGE=90
MINIDENTITY=95

taken from lastz human-chimp example, should be report only highly similar hits
filter self matches with awk
lastz $SEQFILE[multiple] $SEQFILE \
 --step=10 --seed=match12 --notransition --exact=20 --noytrim \
 --match=1,5 --ambiguous=n \
 --coverage=$MINCOVERAGE --identity=$MINIDENTITY \
 --format=general:name1,size1,start1,name2,size2,start2,strand2,identity,coverage \
 | awk '($1 != $4)' > $SEQFILE.lastz-self

takes 8 minutes, finds 190K pairs

find the redundant sequences
tail -n +2 $SEQFILE.lastz-self | find_redundant_sequences.py > $SEQFILE.redundant

add the short sequences to discard list
grep '>' $SEQFILE | awk '{ sub(/length=/,"",$3); sub(/^>/, "", $1); if($3 - 0 < 300) print $1;}' >> $SEQFILE.redundant

get rid of the redundant ones
seq_filter_by_id.py $SEQFILE.redundant 1 $SEQFILE fasta - $SEQFILE.filtered

Check the results

check the input contig length distribution
grep '>' $SEQFILE | awk '{ sub(/length=/,"",$3); print $3}' | histogram.py -b 30

view how many contigs we got after filtering
grep -c '>' $SEQFILE.filtered

Assembling Illumina data

Trinity [http://trinityrnaseq.sourceforge.net/] gives fairly good results for transcriptome assembly from Illumina data.
Simple Trinity usage looks like:

as mentioned on the homepage
Trinity --seqType fq --JM 50G --left reads_1.fq --right reads_2.fq --CPU 6

Some more tips on assembling ‘perfect’ transcripts [ftp://flamingo.bio.indiana.edu/evigene/docs/perfect-mrna-assembly-2013jan.txt] by Don Gilbert.

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Map contigs to the reference genome

Mapping options

GMAP

INFILE=20-jp-contigs/lu_master500_v2.fna.filtered
OUT=30-tg-gmap
mkdir $OUT

OUTFILE=$OUT/$(basename ${INFILE%%.*}).gmap.gff3

gmap -D $GMAP_IDX_DIR -d $GMAP_IDX -f gff3_gene -B 3 -x 30 -t $CPUS\
 --cross-species $INFILE > $OUTFILE

sim4db

Sim4db is considerably slow, but it has an option to provide a mapping script. We exploit this by
creating a mapping script by using fast short read aligner with fragments of contigs we want to map,
and then convert hits of those short reads into candidate mapping locations.

Please use the patched version sim4db to obtain correct mapping coordinates in the gff files.

INFILE=20-newbler/454Isotigs.fna.filtered
OUT=31-tg-sim4db
mkdir $OUT

these values are derived, it's not necessary to change them
FRAGS=$OUT/${INFILE##*/}.frags
SMALT_OUT=$FRAGS.cigar
SIM4_SCR=${FRAGS%.*}.sim4scr
OUT0=${FRAGS%.*}.tmp.gff3
OUTFILE=${FRAGS%.*}.gff3

Use smalt as a fast mapper to find all +-50 kBase windows for predicting
exon/gene models with sim4db:

create fragments, using slightly modified fasta_fragments.py from lastz distribution
cat $INFILE | fasta_fragments.py --step=80 > $FRAGS

map the fragments with smalt (takes few minutes), reporting all hits (-d -1) scoring over 60
smalt_x86_64 map -n 8 -f cigar -o $SMALT_OUT -d -1 -m 60 $SMALT_IDX $FRAGS

construct the script for sim4db
cat $SMALT_OUT | cigar_to_sim4db_scr.py $GENOMEFA.fai | sort --key=5n,5 > $SIM4_SCR

Run sim4db using the script. (It takes several seconds for the whole genome.):

sim4db -genomic $GENOMEFA -cdna $INFILE -script $SIM4_SCR -output $OUT0 -gff3 -interspecies -mincoverage 70 -minidentity 90 -minlength 60 -alignments -threads $CPUS

fix chromosome names
sed s/^[0-9][0-9]*:chr/chr/ $OUT0 > $OUTFILE

Transfer genome annotations to our contigs

Annotate our sequences using data from similar sequences in the reference genome. Annotations are transferred
in coordinates relative to each of the mapped contigs. The input annotation data have to be sorted and indexed with tabix. Multiple contig mappings and multiple reference annotations can be used.

use multiple mappings like this:
COORDS="30-tg-gmap/lu_master300_v2.gmap.gff3 31-tg-sim4db/lu_master500_v2.fna.filtered.gff3"
use multiple annots like this:
ANNOTS="$GENOMEDIR/annot/ensGene_s.bed.gz $GENOMEDIR/annot/refSeq_s.bed.gz"
COORDS=30-tg-gmap/454Isotigs.gmap.gff3
ANNOTS=$GENOMEDIR/ensGene.sorted.gz
OUT=32-liftover
mkdir -p $OUT

for C in $COORDS
do
 liftover.py "$C" $ANNOTS > $OUT/${C##*/}-lo.gff3
done

Create a ‘transcript scaffold’ using the annotations

Construct a ‘transcript scaffold’ (contigs joined in their order of appearance on reference genome chromosomes).
This is mainly because of viewing convenience with IGV. ‘N’ gaps should be larger than the longest read size
to avoid mapping of the reads across gaps:

filtered contigs
INFILE=20-newbler/454Isotigs.fna.filtered
transferred annotations from previous step
ANNOTS=32-liftover/*-lo.gff3
output directory
OUT=33-scaffold
name of the output 'genome'
GNAME=sc-demo

mkdir $OUT
OUTGFF=$OUT/$GNAME.gff3

scaffold.py $INFILE $ANNOTS $OUT/$GNAME.fasta $OUTGFF

index the new genome
samtools faidx $OUT/$GNAME.fasta

sort, compress and index the merged annotations
so they can be used further down in the pipeline
OUTFILE=${OUTGFF%.*}.sorted.gff3

sortBed -i $OUTGFF > $OUTFILE
bgzip $OUTFILE
tabix -p gff $OUTFILE.gz

The transcript scaffold with the sorted .sorted.gff3 is the first thing worth loading to IGV.

	[1]	http://sourceforge.net/apps/mediawiki/kmer/index.php?title=Getting_Started_with_Sim4db

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Map reads to the scaffold

Map all the reads using smalt

Set up variables:

data from previous steps
SCAFFOLD=33-scaffold/sc-demo.fasta
INFILES=10-cutadapt/*.fastq
OUT=40-map-smalt

SMALT_IDX=${SCAFFOLD%/*}/smalt/${SCAFFOLD##*/}-k13s4

Create index for the scaffold and map the reads.
Mapping 3 GB of reads (fastq format) takes ~5 hours in 8 threads on Intel Xeon E5620, 0.5 GB memory
per each mapping.
This step would benefit from parallelization even on multiple machines (not implemented here).

create smalt index
mkdir -p ${SMALT_IDX%/*}
smalt index -s 4 $SMALT_IDX $SCAFFOLD

map each file, smalt is multithreaded so feed the files sequentially
mkdir -p $OUT
parallel -j 1 "smalt map -n $CPUS -p -f sam -o $OUT/{/.}.sam $SMALT_IDX {}" ::: $INFILES

Illumina reads can be maped e.g. with bwa
bwa index $SCAFFOLD
parallel -j 1 "bwa mem -t $CPUS $SCAFFOLD {} > $OUT/{/.}.sam" ::: $INFILES

Merge mapping output to single file

Create a fasta index for the scaffold:

samtools faidx $SCAFFOLD

Create readgroups.txt

According to your sample wet lab details, create a readgroups.txt file.
Because samtools merge -r attaches read group to each alignment (line) in the input
according to the original filename, the format is ($BASENAME is the fastq file name
without suffix, $SAMPLE is your biological sample, ${BASENAME%%.*} is the dna library name,
all tab separated):

@RG ID:$BASENAME SM:$SAMPLE LB:${BASENAME%%.*} PL:LS454 DS:$SPECIES

The library name (LB) is important because of rmdup,
description (DS) is here used to identify the species.

Note

The order of the rows matters for the vcf output,
the sample columns order is probably the order of first appearance in the @RG.

The following code generates most of the readgroups.txt file, you
have to reorder lines and fill the places marked with ‘??’:

OUT=40-map-smalt
DIR=10-cutadapt

find $DIR -name '*.fastq' | xargs -n1 basename | sed s/.fastq// | awk '{OFS="\t";lb=$0;sub(/\..*$/,"",lb);print "@RG", "ID:" $0, "SM:??", "LB:" lb, "PL:LS454", "DS:??";}' > $OUT/readgroups.txt

edit the file (ctrl-o enter ctrl-x saves and exits the editor)
nano $OUT/readgroups.txt

sort the readgroups according to species
<$OUT/readgroups.txt sort -k6,6 > $OUT/readgroups-s.txt

Prepare the sam files

Extract the sequence headers from the first .sam file (other files should have identical headers):

SAMFILE=$(echo $OUT/*.sam | awk '{print $1;}')
samtools view -S -t $SCAFFOLD.fai -H $SAMFILE > $OUT/sequences.txt
cat $OUT/sequences.txt $OUT/readgroups-s.txt > $OUT/sam-header.txt

samtools merge requires sorted alignments, sort them in parallel. This creates .bam files
in the output directory:

parallel -j $CPUS "samtools view -but $SCAFFOLD.fai {} | samtools sort - {.}" ::: $OUT/*.sam

Merge

Merge all the alignments. Do not remove duplicates because the duplicate
detection algorithm is based on the read properties of genomic DNA ([1], [2]).

samtools merge -ru -h $OUT/sam-header.txt - $OUT/*.bam | samtools sort - $OUT/alldup
samtools index $OUT/alldup.bam

Check the results

Unmapped read counts.

parallel -j $CPUS 'echo $(cut -f2 {}|grep -c "^4$") {}' ::: $OUT/*.sam

Mapping statistics

samtools idxstats $OUT/alldup.bam | awk '{map += $3; unmap += $4;} END {print unmap/map;}'

Coverage sums for IGV

igvtools count -z 5 -w 25 -e 250 $OUT/alldup.bam $OUT/alldup.bam.tdf ${CONTIGS%.*}.genome

	[1]	http://seqanswers.com/forums/showthread.php?t=6543

	[2]	http://seqanswers.com/forums/showthread.php?t=5424

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Detect and choose variants

Call variants with samtools

Set up input and output for the current step:

SCAFFOLD=33-scaffold/sc-demo.fasta
ALIGNS=40-map-smalt/alldup.bam

outputs
OUT=50-variants
VARIANTS=$OUT/demo-variants
mkdir -p $OUT

Run the variant calling in parallel. Takes 3 hours for 15 samples on a single Intel Xeon E5620:

vcfutils.pl splitchr $SCAFFOLD.fai | parallel -j $CPUS "samtools mpileup -DSu -L 10000 -f $SCAFFOLD -r {} $ALIGNS | bcftools view -bvcg - > $OUT/part-{}.bcf"

samtools > 0.1.19
vcfutils.pl splitchr $SCAFFOLD.fai | parallel -j $CPUS "samtools mpileup -u -t DP,SP -L 10000 -f $SCAFFOLD -r {} $ALIGNS | bcftools call -O b -vm - > $OUT/part-{}.bcf"

Merge the intermediate results. vcfutils.pl is used to generate the correct ordering of parts, as in the .fai:

vcfutils.pl splitchr $SCAFFOLD.fai | xargs -i echo $OUT/part-{}.bcf | xargs -x bcftools cat > $VARIANTS-raw.bcf
bcftools index $VARIANTS-raw.bcf

samtools > 0.1.19
workaround for https://github.com/samtools/bcftools/issues/134
vcfutils.pl splitchr $SCAFFOLD.fai | parallel "bcftools view -O z $OUT/part-{}.bcf > $OUT/{.}.vcf.gz && bcftools index $OUT/{.}.vcf.gz"
bcftools concat -O b $OUT/*.vcf.gz > $VARIANTS-raw.bcf
bcftools index $VARIANTS-raw.bcf

Remove the intermediate results, if the merge was ok:

vcfutils.pl splitchr $SCAFFOLD.fai | xargs -i echo $OUT/part-{}.bcf | xargs rm

Call variants with FreeBayes

This is an alternative to the previous section. FreeBayes uses local realignment around INDELs, so the
variant calling for 454 data should be better.

SCAFFOLD=33-scaffold/sc-demo.fasta
ALIGNS=40-map-smalt/alldup.bam
OUT=51-var-freebayes

GNAME=$(echo ${SCAFFOLD##*/} | cut -d. -f1)
mkdir -p $OUT
vcfutils.pl splitchr $SCAFFOLD.fai | parallel -j $CPUS "freebayes -f $SCAFFOLD -r {} $ALIGNS > $OUT/${GNAME}-{}.vcf"

join the results
OFILE=$OUT/variants-raw.vcf

headers
FILE=$(find $OUT -name ${GNAME}-*.vcf | sort | head -1)
<$FILE egrep '^#' > $OFILE
the rest in .fai order
vcfutils.pl splitchr $SCAFFOLD.fai | parallel -j 1 "egrep -v '^#' $OUT/${GNAME}-{}.vcf >> $OFILE"

filter the variants on quality (ignore the warning messages)
<$OFILE bcftools view -i 'QUAL > 20' -O z > $OUT/variants-qual.vcf.gz
tabix -p vcf $OUT/variants-qual.vcf.gz

Filter variants

We’re interested in two kinds of variant qualities

	all possible variants so they can be avoided in primer design

	high confidence variants that can be used to answer our questions

Filtering strategy:

	use predefined samtools filtering
	indels caused by 454 homopolymer problems generally have low quality scores,
so they should be filtered at this stage

	remove uninteresting information (for convenient viewing in IGV)
	overall low coverage sites (less than 3 reads per sample - averaged, to avoid discarding
some otherwise interesting information because of one bad sample)

	select the interesting variants, leave the rest in the file flagged as ‘uninteresting’
	only SNPs

	at least 3 reads per sample

	no shared variants between the two species

Samtools filtering

Quite high strand bias in RNASeq data can be expected, so don’t filter on strand bias
(-1 0). Use the defaults for other settings of vcfutils varFilter command:

	minimum RMS mapping quality for SNPs [10]

	minimum read depth [2]

	maximum read depth [10000000]

	minimum number of alternate bases [2]

	SNP within INT bp around a gap to be filtered [3]

	window size for filtering adjacent gaps [10]

	min P-value for baseQ bias [1e-100]

	min P-value for mapQ bias [0]

	min P-value for end distance bias [0.0001]

	FLOAT min P-value for HWE (plus F<0) [0.0001]

bcftools view $VARIANTS-raw.bcf | vcfutils.pl varFilter -1 0 | bgzip > $VARIANTS-filtered.vcf.gz
tabix -p vcf $VARIANTS-filtered.vcf.gz

Convenience filtering

The required average depth per sample can be adjusted here.
Using pv as a progress meter. pv can be substituted by cat:

filter on average read depth and site quality
VCFINPUT=$VARIANTS-filtered.vcf.gz
VCFOUTPUT=$VARIANTS-filt2.vcf.gz
pv -p $VCFINPUT | bgzip -d | vcf_filter.py --no-filtered - avg-dps --avg-depth-per-sample 5 sq --site-quality 30 | bgzip > $VCFOUTPUT

samtools > 0.1.19 produce conflicting info tags, get rid of it if the above filtering fails
pv -p $VCFINPUT | bgzip -d | sed 's/,Version="3"//' | vcf_filter.py --no-filtered - avg-dps --avg-depth-per-sample 5 sq --site-quality 30 | bgzip > $VCFOUTPUT

freebayes output
zcat $OUT/variants-qual.vcf.gz| vcfutils.pl varFilter -1 0 | vcf_filter.py --no-filtered - avg-dps --avg-depth-per-sample 5 sq --site-quality 30 | bgzip > $OUT/demo-filt1.vcf.gz

Interesting variants

The filtered out variants are kept in the file, only marked as filtered out. This way both
the selected and non-selected variants can be checked in IGV. Required minumum depth per sample can be adjusted here:

samtools files
VCFINPUT=$VARIANTS-filt2.vcf.gz
VCFOUTPUT=$VARIANTS-selected.vcf.gz

freebayes files
VCFINPUT=$OUT/demo-filt1.vcf.gz
VCFOUTPUT=$OUT/demo-selected.vcf.gz

<$VCFINPUT pv -p | zcat | vcf_filter.py - dps --depth-per-sample 3 snp-only contrast-samples --sample-names lu02 lu14 lu15 | bgzip > $VCFOUTPUT
tabix -p vcf $VCFOUTPUT

Check the results

Extract calculated variant qualities, so the distribution
can be checked (-> common power law distribution, additional peak at 999):

zcat $VCFINPUT | grep -v '^#' | cut -f6 > $VCFINPUT.qual
and visualize externally

or directly in terminal, using bit.ly data_hacks tools
zcat $VCFINPUT | grep -v '^#' | cut -f6 | histogram.py -b 30

Count selected variants:

zcat -d $VCFOUTPUT | grep -c PASS

Count variants on chromosome Z:

zcat -d $VCFOUTPUT | grep PASS | grep -c ^chrZ

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

Design primers

Design primers with Primer3

Set inputs and outputs for this step:

VARIANTS=50-variants/demo-variants-selected.vcf.gz
SCAFFOLD=33-scaffold/sc-demo.fasta
ANNOTS=33-scaffold/sc-demo.sorted.gff3.gz

GFFILE=demo-primers.gff3
OUT=60-gff-primers

GFF=$OUT/$GFFILE
PRIMERS=${GFF%.*}.sorted.gff3.gz
mkdir -p $OUT

for all selected variants design pcr and genotyping primers
takes about a minute for 1000 selected variants, 5 MB gzipped vcf, 26 MB uncompressed genome, 5 MB gzipped gff
default values are set for SNaPshot
export PRIMER3_CONFIG=/opt/primer3/primer3_config/
design_primers.py $SCAFFOLD $ANNOTS $VARIANTS > $GFF

use --primer-pref to set preferred length of genotyping primer
this is useful for other genotyping methods, like MALDI-TOF
design_primers.py --primer-pref 15 --primer-max 25 $SCAFFOLD $ANNOTS $VARIANTS > $GFF

Sort and index the annotation before using it in IGV. For a small set of primers it is not necessary to
compress and index the file, IGV can handle raw files as well.

sortBed -i $GFF | bgzip > $PRIMERS
tabix -f -p gff $PRIMERS

Create a region list for IGV to quickly inspect all the primers.

<$GFF awk 'BEGIN{OFS="\t";} /pcr-product/ {match($9, "ID=[^;]+"); print $1, $4, $5, substr($9, RSTART+3, RLENGTH);}' > ${GFF%.*}.bed

Convert scaffold to the blat format

SCAFFOLD2BIT=$OUT/${SCAFFOLD##*/}.2bit
faToTwoBit $SCAFFOLD $SCAFFOLD2BIT

Validate primers with blat/isPcr

Recommended parameters for PCR primers in blat [1]: -tileSize=11, -stepSize=5

Get the primer sequences, in formats for isPcr and blat:

PRIMERS_BASE=${PRIMERS%%.*}
extract_primers.py $PRIMERS isPcr > $PRIMERS_BASE.isPcr
extract_primers.py $PRIMERS > $PRIMERS_BASE.fa

Check against transcriptome data and the reference genome:

select one of those a time:
TARGET=$SCAFFOLD2BIT
TARGET=$GENOME2BIT

TARGET_TAG=$(basename ${TARGET%%.*})
isPcr -out=psl $TARGET $PRIMERS_BASE.isPcr $PRIMERS_BASE.isPcr.$TARGET_TAG.psl
blat -minScore=15 -tileSize=11 -stepSize=5 -maxIntron=0 $TARGET $PRIMERS_BASE.fa $PRIMERS_BASE.$TARGET_TAG.psl

Note

TODO: It would be nice to add the annotations found by isPcr to the primer gff3 tags (not implemented yet).

Check the results

Count and check all places where primer3 reported problems:

<$GFF grep gt-primer | grep -c 'PROBLEMS='
<$GFF grep gt-primer | grep 'PROBLEMS=' | less -S

count unique variants with available primer set
<$GFF grep gt-primer|grep -v PROBLEM|egrep -o 'ID=[^;]+'|cut -c-13|sort -u|wc -l

Use agrep to find similar sequences in the transcript scaffold, to check if the
sensitivity settings of blat are OK. Line wrapping in fasta can lead to false negatives,
but at least some primers should yield hits:

agrep is quite enough for simple checks on assemblies of this size (30 MB)
SEQ=GCACATTTCATGGTCTCCAA
agrep $SEQ $SCAFFOLD|grep $SEQ

Import your primers to any spreadsheet program with some selected information on each
primer. Use copy and paste, the file format is tab separated values. When there is more
than one genotyping primer for one PCR product, the information on the PCR product is repeated.

extract_primers.py $PRIMERS table > $PRIMERS_BASE.tsv

	[1]	http://genomewiki.ucsc.edu/index.php/Blat-FAQ

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrimer 1.1 documentation

IGV with all data produced by Scrimer

[image: _images/igv.png]

Tracks, from top to bottom:

	genome navigator, ‘genome’ produced in Map contigs to the reference genome

	alldup.bam coverage - total coverage for the region, produced in Map reads to the scaffold

	lx5-variants-selected.vcf.gz - summary of the variants, filtered variants
are shown in lighter color,
produced in Detect and choose variants

	sample list - provides detailed information on variants in each sample

	alldup.bam - details on coverage and SNP (colored) / INDEL (black), in the context menu
choose Group alignments by > sample and Color alignments by > read group,
produced in Map reads to the scaffold

	sequence

	lx5-primers.gff3 - resulting primers, hover with mouse for details on calculated properties,
produced in Design primers

	lx5.sorted.gff3.gz - annotations for the scaffold - predicted and transferred exons,
produced in Map contigs to the reference genome

	floating window with a list of designed primers, produced in Design primers

How to get to this view

	run IGV (version 2.2 is used here)

	Genomes > Load genome from file, choose your scaffold

	load all the tracks by File > Load from File

	rearrange tracks according to your preference by dragging the label with the mouse

	choose Regions > Import Regions, pick the .bed file created in Design primers,
choose Regions > Region Navigator

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Scrimer 1.1 documentation

Components of the Scrimer pipeline

Components bound to the pipeline

Transfer annotation from the reference genome to the contigs

File: scripts/liftover.py

Input

	gff file produced by the exon predictor software

	set of bed files containing the features to be transfered
to the cDNA

Output

	‘inverted’ gff file annotating exons in the transcripts
and containing also all the features from the other input files,
if they were overlapping with the predicted exons

Author: Libor Morkovsky, 2012

Create a contig scaffold according to contig hits in the reference genome

File: scripts/scaffold.py

Input

	fasta file with the original sequences

	set of gff files with exon features having the Target attribute
(product of liftover.py)

	other gff/bed files to remap to the genome

Output

	fasta with the input sequences pasted with 100 Ns
	unambiguos sequences assigned to ‘chromosomes’ in the order
of the template genome (that was used to generate the Target exon mappings)

	ambiguos (having more than one possible chromosome) assigned to chrAmb

	unmapped sequences assigned to chrUnmapped (to distinguish from chrUn in target genome)

	gff file with the locations of the input sequences (gene)
and remapped contents of the input gff files

Algorithm

	go through the input gff files, construct a dictionary {read_name -> {chr -> location}}

	add the lowest coordinate found on a given chromosome (overwriting previous values)

	sort the list with single candidate locations with ‘chromocompare’

Author: Libor Morkovsky, 2012

Design primers using sequences, annotations and selected variants

File: scripts/design_primers.py

Input

	reference sequence (fasta with samtools fai index)

	annotations (gff3, has to contain exon entries)

	filtered variants (vcf, primers are designed for variants with PASS)

Output

	PCR and genotyping primers selected using primer3 (gff3)

Algorithm

	there is only a few selected variants, so the least amount of work
will be to do the work only for variants

	for each of the selected variants
	request exons

	apply the technical constraints
(minimal primer length of 20 from the edge of an exon)

	patch exon sequence to mark positions of known variants

	find suitable genotyping primers

	design PCR primers to flank the (usable) genotyping primers

Author: Libor Morkovsky, 2012, 2014

Export primers from gff3 to the FASTA, tabular or isPcr format

File: scripts/extract_primers.py

Input

	gff file containing primers

	optional output format

Output

	fa/isPcr file with the primer sequences

Algorithm

	for each line in gff

	fa output:
if current line has a SEQUENCE attribute, output it

	ispcr output:
only pcr primers are of interest, and in equivalent pairs
on encountering gt-xx put it to dict keyed by Parent
if there are both entries output and remove from dict

Author: Libor Morkovsky, 2012

Tools for FASTA/FASTQ manipulation

Given pairs of matching sequences, create clusters and find the longest representative

File: scripts/find_redundant_sequences.py

Given pairs of ‘almost identical’ sequences create clusters of sequences.
From each cluster select the longest sequence. Output names of all other
sequences (for example to remove them from the data afterwards).

Uses disjoint sets forest to store the clusters so it should scale to millions of sequences.

Input

	custom formated (--format=general:name1,size1,start1,name2,size2,start2,strand2,identity,coverage)
output from lastz on standard input

Output

	names of sequences that were selected as reduntant

Filter sequences in a FASTQ file based on their position in the file

File: scripts/fastq_kill_lines.py

Input

	FASTQ file

	list of indices (0 based)

Output

	FASTQ file without the given sequences

Author: Libor Morkovsky, 2012

Filter sequences in FASTQ, FASTA based on their identifier

File: scripts/seq_filter_by_id.py

Taken from BioPython. FASTA and FASTQ readers are pasted in the file,
so the program is standalone.

Filter a FASTA, FASTQ or SSF file with IDs from a tabular file.

Takes six command line options, tabular filename, ID column numbers (comma
separated list using one based counting), input filename, input type (e.g.
FASTA or SFF) and two output filenames (for records with and without the
given IDs, same format as input sequence file).

If either output filename is just a minus sign, that file is not created.
This is intended to allow output for just the matched (or just the non-matched)
records.

When filtering an SFF file, any Roche XML manifest in the input file is
preserved in both output files.

Note in the default NCBI BLAST+ tabular output, the query sequence ID is
in column one, and the ID of the match from the database is in column two.
Here sensible values for the column numbers would therefore be “1” or “2”.

This tool is a short Python script which requires Biopython 1.54 or later
for SFF file support. If you use this tool in scientific work leading to a
publication, please cite the Biopython application note:

Cock et al 2009. Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 25(11) 1422-3.
http://dx.doi.org/10.1093/bioinformatics/btp163 pmid:19304878.

This script is copyright 2010 by Peter Cock, SCRI, UK. All rights reserved.
See accompanying text file for licence details (MIT/BSD style).

This is version 0.0.1 of the script.

Break sequences in FASTA file into fragments

File: scripts/fasta_fragments.py

Taken from lastz. Break sequences in a fasta file into fragments, so
some kind of short read aligner can be used for further processing.

Break a fasta file into fragments.

$$$ todo: spread out the fragment starts so that the last fragment ends at the
$$$.. end of a sequence, if possible

$$$ todo: find runs of N and reset the fragment start position to skip past
$$$.. such runs

$$$ liborm(2012): fixed to read only the seq name, not the full line

General purpose tools

Primer3 wrapper

File: scrimer/primer3_connector.py

A Python interface to the primer3_core executable.

	TODO: it is not possible to keep a persistent primer3 process

	using subprocess module - communicate() terminates the input
stream and waits for the process to finish

Author: Libor Morkovsky 2012

	
class primer3_connector.BoulderIO

	Provides Python interface for BoulderIO format used by Primer3.

	
classmethod deparse(records)

	Accepts a dict or a list of dicts, produces a BoulderIO string (KEY=VAL\n)
with records separated by '=\n'.

	
classmethod parse(string)

	Parse a BoulderIO string (KEY=VAL\n)
return a list of records, where each record is a dictionary
end of the string implies a single '=\n' (record separator).

	
class primer3_connector.Primer3(p3path='primer3_core', **kwargs)

	Wraps Primer3 executable. kwargs are converted to strings and used as default parameters
for each call of primer3 binary.

	
call(records)

	Merge each of the records with default_params, the record taking precedence,
call the primer3 binary,
parse the output and return a list of dictionaries,
{RIGHT:[], LEFT:[], PAIR:[], INTERNAL:[]} for each input record
uppercase keys (in the result) are the original names from BoulderIO format,
lowercase keys have no direct equivalent in primer3 output (position, other-keys)

Convert CIGAR matches to sim4db ‘script’

File: scripts/cigar_to_sim4db_scr.py

Script that parses CIGAR file
produced by aligning fragments of contigs to a genome (tested with smalt output)
and outputs a ‘script’ for limiting the exon model regions of sim4db.

Input

	output of some read mapper in CIGAR format

	all the fragments must be reported by the aligner

	the fragment names have to be in the same order as the master sequences

	the fragments must be named like readname_number (like fasta_fragments.py does)

	all the hits from one read must follow each other

Output

	sim4db ‘script’

Algorithm

	load chromosome definition file

	parse the hits:
- extract read name
- check if hit is in known chromosome (report error otherwise)
- for each hit create +-50 KB region clipped to chromosome ends
- when a read name different from the previous one is encountered, merge all the regions
- output each contiguos region as a script line

Author: Libor Morkovsky, 2012

Count different bases in 5’ end of reads in FASTQ

File: scripts/5prime_stats.py

Find the most common letter in first n bases of reads in FASTQ file.
Useful for finding and recognizing primer sequences in the reads.

Variant filters for PyVCF vcf_filter.py

File: scrimer/pyvcf_filters.py

Implementation of vcf filters for pyvcf vcf_filter.py.

Author: Libor Morkovsky 2012

	
class pyvcf_filters.DistinguishingVariants(args)

	Given a group of samples, choose variants that
are not shared with the rest of the samples

	
classmethod customize_parser(parser)

	

	
filter_name()

	

	
name = 'contrast-samples'

	

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Scrimer 1.1 documentation

 Python Module Index

 5 |
 c |
 d |
 e |
 f |
 l |
 p |
 s

 			

 		
 5	

 	
 	
 5prime_stats	

 			

 		
 c	

 	
 	
 cigar_to_sim4db_scr	

 			

 		
 d	

 	
 	
 design_primers	

 			

 		
 e	

 	
 	
 extract_primers	

 			

 		
 f	

 	
 	
 fasta_fragments	

 	
 	
 fastq_kill_lines	

 	
 	
 find_redundant_sequences	

 			

 		
 l	

 	
 	
 liftover	

 			

 		
 p	

 	
 	
 primer3_connector	

 	
 	
 pyvcf_filters	

 			

 		
 s	

 	
 	
 scaffold	

 	
 	
 seq_filter_by_id	

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Scrimer 1.1 documentation

Index

 Symbols
 | B
 | C
 | D
 | E
 | F
 | L
 | N
 | P
 | S

Symbols

 	

 	5prime_stats (module)

B

 	

 	BoulderIO (class in primer3_connector)

C

 	

 	call() (primer3_connector.Primer3 method)

 	cigar_to_sim4db_scr (module)

 	

 	customize_parser() (pyvcf_filters.DistinguishingVariants class method)

D

 	

 	deparse() (primer3_connector.BoulderIO class method)

 	design_primers (module)

 	

 	DistinguishingVariants (class in pyvcf_filters)

E

 	

 	extract_primers (module)

F

 	

 	fasta_fragments (module)

 	fastq_kill_lines (module)

 	

 	filter_name() (pyvcf_filters.DistinguishingVariants method)

 	find_redundant_sequences (module)

L

 	

 	liftover (module)

N

 	

 	name (pyvcf_filters.DistinguishingVariants attribute)

P

 	

 	parse() (primer3_connector.BoulderIO class method)

 	Primer3 (class in primer3_connector)

 	

 	primer3_connector (module)

 	pyvcf_filters (module)

S

 	

 	scaffold (module)

 	

 	seq_filter_by_id (module)

 Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

 _static/ajax-loader.gif

_static/plus.png

_static/down-pressed.png

install-script.html

 Navigation

 		
 index

 		
 modules |

 		Scrimer 1.1 documentation »

Install non python dependencies

Sequence of commands used to install the non-python dependencies.

Create a software direcotry

mkdir sw
cd sw

bedtools

cd ~/sw
wget -O - https://github.com/arq5x/bedtools2/releases/download/v2.22.0/bedtools-2.22.0.tar.gz|tar xvz
cd bedtools2/
make
sudo cp -R bin /opt/bedtools
echo /opt/bedtools/bin >> paths

samtools and tabix

samtools and htslib do not support optional installation prefix
so they're installed in system directories
cd ~/sw
wget -O - 'http://downloads.sourceforge.net/project/samtools/samtools/1.1/samtools-1.1.tar.bz2?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fsamtools%2Ffiles%2Fsamtools%2F1.1%2F&ts=1416174418&use_mirror=netcologne'|tar xvj
cd samtools-1.1
sudo apt-get install -y ncurses-dev
make && sudo make install

tabix, bgzip
cd htslib-1.1
make && sudo make install

vcfutils.pl
wget -O - http://sourceforge.net/projects/samtools/files/samtools/1.1/bcftools-1.1.tar.bz2/download|tar xvj
cd bcftools-1.1/
make && sudo make install

lastz

cd ~/sw
echo /opt/lastz/bin >> paths
wget -O - http://www.bx.psu.edu/miller_lab/dist/lastz-1.02.00.tar.gz|tar xvz
cd lastz-distrib-1.02.00/
remove -Werror from the makefile
nano src/Makefile
make
LASTZ_INSTALL=/opt/lastz/bin sudo -E make install

gmap

cd ~/sw
echo /opt/gmap/bin >> paths
wget -O - http://research-pub.gene.com/gmap/src/gmap-gsnap-2014-10-22.tar.gz|tar xvz
cd gmap-2014-10-22/
./configure --prefix=/opt/gmap
make && sudo make install

smalt

cd ~/sw
echo /opt/smalt/bin >> paths
git clone http://git.code.sf.net/p/smalt/code smalt
cd smalt/
./configure --prefix=/opt/smalt
make && sudo make install

parallel

Parallel is a ‘system’ utility, install systemwide.

cd ~/sw
wget -O - http://ftp.gnu.org/gnu/parallel/parallel-latest.tar.bz2|tar xj
cd parallel-20141022/
./configure
make
sudo make install

blat and ispcr

cd ~/sw
echo /opt/kent/bin >> paths
sudo apt-get install unzip libpng-dev
wget http://users.soe.ucsc.edu/~kent/src/blatSrc35.zip
wget http://users.soe.ucsc.edu/~kent/src/isPcr.zip
unzip '*.zip'
mkdir kent_bin
export MACHTYPE
export BINDIR=~/sw/kent_bin
cd blatSrc/
make
cd ../isPcrSrc/
cd isPcr/isPcr/

remove BINDIR=.. and -Werror
nano ../../inc/common.mk

make
cd ~/sw/kent_bin
sudo mkdir -p /opt/kent/bin
sudo cp * /opt/kent/bin

Primer3

cd ~/sw
echo /opt/primer3/bin >> paths
wget -O - 'http://downloads.sourceforge.net/project/primer3/primer3/2.3.6/primer3-src-2.3.6.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Fprimer3%2Ffiles%2F&ts=1416259162&use_mirror=heanet'|tar xvz
cd primer3-2.3.6/src
make
sudo mkdir -p /opt/primer3/bin
sudo cp long_seq_tm_test ntdpal ntthal oligotm primer3_core /opt/primer3/bin
sudo cp -R primer3_config /opt/primer3

cutadapt

activate scrimer ve, if not already activated
. ~/scrimer-env/bin/activate
pip install cutadapt

FastQC

cd ~/sw
echo /opt/FastQC >> paths
sudo apt-get install openjdk-7-jre
wget http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.2.zip
unzip fastqc_v0.11.2.zip
sudo cp -R FastQC /opt
sudo chmod +x /opt/FastQC/fastqc

agrep and tre-agrep

cd ~/sw
git clone https://github.com/Wikinaut/agrep.git
cd agrep/
make
cp agrep ~/scrimer-env/bin

sudo apt-get install -y tre-agrep

sort-alt

cd ~/sw
git clone https://github.com/lh3/foreign.git
cd foreign/sort/
make
cp sort ~/scrimer-env/bin/sort-alt

pv

Pv is a ‘system’ utility, install systemwide.

cd ~/sw
wget -O - http://www.ivarch.com/programs/sources/pv-1.5.7.tar.bz2|tar xvj
cd pv-1.5.7/
./configure
make && sudo make install

mawk

Mawk is a ‘system’ utility, install systemwide.

cd ~/sw
wget -O - http://invisible-island.net/datafiles/release/mawk.tar.gz|tar xvz
cd mawk-1.3.4-20141027/
./configure
make && sudo make install

bit.ly data hacks

. ~/scrimer-env/bin/activate
pip install data_hacks

freebayes

sudo apt-get install cmake
cd ~/sw
git clone --recursive git://github.com/ekg/freebayes.git
cd freebayes/
no ./configure, installed systemwide
make && sudo make install

bwa

cd ~/sw
git clone https://github.com/lh3/bwa.git
cd bwa
change 'CC = gcc' to 'CC = gcc -msse2'
nano Makefile
make
cp bwa ~/scrimer-env/bin

 © Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

_static/putty-config.png
Basic optons for your PuTTY session
‘Specty the destnation you want to connct to
Host Name fr IP address) Pot

3
Comesiontpe:
Tenet O Rlogn © SSH O Seral

Tenet

SSH
Seral

_static/putty.png
1ogin as: user
luser@localnost's password:
Linux node 3.2.0-4-486 #1 Debian 3.2.63-2 1686

The programs included with the Debian GNU/Linux system are free software;
[the exact aistribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

bebian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
pernitted by applicable law.

You have mat1.

Last login: Fri Oce 24 01:45:07 2014

laserenode:-$ I

search.html

 Navigation

 		
 index

 		
 modules |

 		Scrimer 1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013,2014 Libor Morkovsky.
 Created using Sphinx 1.3.1.

_images/vbox.png
Debian GNU/Linux 7 node ttyl

node 1ogin: _

_static/winscp.png

_images/vbox-main.png
Oracle VM Virtual B

Ele Machine Help

D & D [—

New Settngs Start Discard

B geszi= 5 General

@roneeior F——

05 Type: Debian
@ NGS-kurz-2014-X64

@onered OF B system
. e vencry: 05018 .
D oot Order: gy, COIDVDROM Hard Dk scrimer-demo

Accelerstion: VT-x/AVD-Y, Nested Paging

L -

Display.

Video Memory: 128
Remote Desktop Server: Disabled

@ storage

e
IDE Secondary Master (CD/DVD): Empty

SaTA
SATA Port 0 scrimer-demo-gisk ymd (Nomal, 12,00 G8)

B Audio

Host Driver: Windows DirectSound
Controler: 1CH ACS7

_images/winscp.png

_images/dataflow.png
off

fasta, gff, bed

detailed info on designed primers

primers

_static/vbox.png
Debian GNU/Linux 7 node ttyl

node 1ogin: _

_static/vbox-main.png
Oracle VM Virtual B

Ele Machine Help

D & D [—

New Settngs Start Discard

B geszi= 5 General

@roneeior F——

05 Type: Debian
@ NGS-kurz-2014-X64

@onered OF B system
. e vencry: 05018 .
D oot Order: gy, COIDVDROM Hard Dk scrimer-demo

Accelerstion: VT-x/AVD-Y, Nested Paging

L -

Display.

Video Memory: 128
Remote Desktop Server: Disabled

@ storage

e
IDE Secondary Master (CD/DVD): Empty

SaTA
SATA Port 0 scrimer-demo-gisk ymd (Nomal, 12,00 G8)

B Audio

Host Driver: Windows DirectSound
Controler: 1CH ACS7

_images/putty-config.png
Basic optons for your PuTTY session
‘Specty the destnation you want to connct to
Host Name fr IP address) Pot

3
Comesiontpe:
Tenet O Rlogn © SSH O Seral

Tenet

SSH
Seral

_static/up-pressed.png

_images/putty.png
1ogin as: user
luser@localnost's password:
Linux node 3.2.0-4-486 #1 Debian 3.2.63-2 1686

The programs included with the Debian GNU/Linux system are free software;
[the exact aistribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

bebian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
pernitted by applicable law.

You have mat1.

Last login: Fri Oce 24 01:45:07 2014

laserenode:-$ I

_images/igv.png
S

_static/minus.png

_static/comment.png

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

