

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Scrapy 1.2.0dev2 documentation

Scrapy 1.2 documentation

This documentation contains everything you need to know about Scrapy.

Getting help

Having trouble? We’d like to help!

	Try the FAQ – it’s got answers to some common questions.

	Looking for specific information? Try the Index or Module Index.

	Search for information in the archives of the scrapy-users mailing list [https://groups.google.com/forum/#!forum/scrapy-users], or
post a question [https://groups.google.com/forum/#!forum/scrapy-users].

	Ask a question in the #scrapy IRC channel.

	Report bugs with Scrapy in our issue tracker [https://github.com/scrapy/scrapy/issues].

First steps

	Scrapy at a glance

	Understand what Scrapy is and how it can help you.

	Installation guide

	Get Scrapy installed on your computer.

	Scrapy Tutorial

	Write your first Scrapy project.

	Examples

	Learn more by playing with a pre-made Scrapy project.

Basic concepts

	Command line tool

	Learn about the command-line tool used to manage your Scrapy project.

	Spiders

	Write the rules to crawl your websites.

	Selectors

	Extract the data from web pages using XPath.

	Scrapy shell

	Test your extraction code in an interactive environment.

	Items

	Define the data you want to scrape.

	Item Loaders

	Populate your items with the extracted data.

	Item Pipeline

	Post-process and store your scraped data.

	Feed exports

	Output your scraped data using different formats and storages.

	Requests and Responses

	Understand the classes used to represent HTTP requests and responses.

	Link Extractors

	Convenient classes to extract links to follow from pages.

	Settings

	Learn how to configure Scrapy and see all available settings.

	Exceptions

	See all available exceptions and their meaning.

Built-in services

	Logging

	Learn how to use Python’s builtin logging on Scrapy.

	Stats Collection

	Collect statistics about your scraping crawler.

	Sending e-mail

	Send email notifications when certain events occur.

	Telnet Console

	Inspect a running crawler using a built-in Python console.

	Web Service

	Monitor and control a crawler using a web service.

Solving specific problems

	Frequently Asked Questions

	Get answers to most frequently asked questions.

	Debugging Spiders

	Learn how to debug common problems of your scrapy spider.

	Spiders Contracts

	Learn how to use contracts for testing your spiders.

	Common Practices

	Get familiar with some Scrapy common practices.

	Broad Crawls

	Tune Scrapy for crawling a lot domains in parallel.

	Using Firefox for scraping

	Learn how to scrape with Firefox and some useful add-ons.

	Using Firebug for scraping

	Learn how to scrape efficiently using Firebug.

	Debugging memory leaks

	Learn how to find and get rid of memory leaks in your crawler.

	Downloading and processing files and images

	Download files and/or images associated with your scraped items.

	Ubuntu packages

	Install latest Scrapy packages easily on Ubuntu

	Deploying Spiders

	Deploying your Scrapy spiders and run them in a remote server.

	AutoThrottle extension

	Adjust crawl rate dynamically based on load.

	Benchmarking

	Check how Scrapy performs on your hardware.

	Jobs: pausing and resuming crawls

	Learn how to pause and resume crawls for large spiders.

Extending Scrapy

	Architecture overview

	Understand the Scrapy architecture.

	Downloader Middleware

	Customize how pages get requested and downloaded.

	Spider Middleware

	Customize the input and output of your spiders.

	Extensions

	Extend Scrapy with your custom functionality

	Core API

	Use it on extensions and middlewares to extend Scrapy functionality

	Signals

	See all available signals and how to work with them.

	Item Exporters

	Quickly export your scraped items to a file (XML, CSV, etc).

All the rest

	Release notes

	See what has changed in recent Scrapy versions.

	Contributing to Scrapy

	Learn how to contribute to the Scrapy project.

	Versioning and API Stability

	Understand Scrapy versioning and API stability.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Scrapy at a glance

Scrapy is an application framework for crawling web sites and extracting
structured data which can be used for a wide range of useful applications, like
data mining, information processing or historical archival.

Even though Scrapy was originally designed for web scraping [https://en.wikipedia.org/wiki/Web_scraping], it can also be
used to extract data using APIs (such as Amazon Associates Web Services [https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html]) or
as a general purpose web crawler.

Walk-through of an example spider

In order to show you what Scrapy brings to the table, we’ll walk you through an
example of a Scrapy Spider using the simplest way to run a spider.

So, here’s the code for a spider that follows the links to the top
voted questions on StackOverflow and scrapes some data from each page:

import scrapy

class StackOverflowSpider(scrapy.Spider):
 name = 'stackoverflow'
 start_urls = ['http://stackoverflow.com/questions?sort=votes']

 def parse(self, response):
 for href in response.css('.question-summary h3 a::attr(href)'):
 full_url = response.urljoin(href.extract())
 yield scrapy.Request(full_url, callback=self.parse_question)

 def parse_question(self, response):
 yield {
 'title': response.css('h1 a::text').extract_first(),
 'votes': response.css('.question .vote-count-post::text').extract_first(),
 'body': response.css('.question .post-text').extract_first(),
 'tags': response.css('.question .post-tag::text').extract(),
 'link': response.url,
 }

Put this in a file, name it to something like stackoverflow_spider.py
and run the spider using the runspider command:

scrapy runspider stackoverflow_spider.py -o top-stackoverflow-questions.json

When this finishes you will have in the top-stackoverflow-questions.json file
a list of the most upvoted questions in StackOverflow in JSON format, containing the
title, link, number of upvotes, a list of the tags and the question content in HTML,
looking like this (reformatted for easier reading):

[{
 "body": "... LONG HTML HERE ...",
 "link": "http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-an-unsorted-array",
 "tags": ["java", "c++", "performance", "optimization"],
 "title": "Why is processing a sorted array faster than an unsorted array?",
 "votes": "9924"
},
{
 "body": "... LONG HTML HERE ...",
 "link": "http://stackoverflow.com/questions/1260748/how-do-i-remove-a-git-submodule",
 "tags": ["git", "git-submodules"],
 "title": "How do I remove a Git submodule?",
 "votes": "1764"
},
...]

What just happened?

When you ran the command scrapy runspider somefile.py, Scrapy looked for a
Spider definition inside it and ran it through its crawler engine.

The crawl started by making requests to the URLs defined in the start_urls
attribute (in this case, only the URL for StackOverflow top questions page)
and called the default callback method parse, passing the response object as
an argument. In the parse callback we extract the links to the
question pages using a CSS Selector with a custom extension that allows to get
the value for an attribute. Then we yield a few more requests to be sent,
registering the method parse_question as the callback to be called for each
of them as they finish.

Here you notice one of the main advantages about Scrapy: requests are
scheduled and processed asynchronously. This
means that Scrapy doesn’t need to wait for a request to be finished and
processed, it can send another request or do other things in the meantime. This
also means that other requests can keep going even if some request fails or an
error happens while handling it.

While this enables you to do very fast crawls (sending multiple concurrent
requests at the same time, in a fault-tolerant way) Scrapy also gives you
control over the politeness of the crawl through a few settings. You can do things like setting a download delay between
each request, limiting amount of concurrent requests per domain or per IP, and
even using an auto-throttling extension that tries
to figure out these automatically.

Finally, the parse_question callback scrapes the question data for each
page yielding a dict, which Scrapy then collects and writes to a JSON file as
requested in the command line.

Note

This is using feed exports to generate the
JSON file, you can easily change the export format (XML or CSV, for example) or the
storage backend (FTP or Amazon S3 [https://aws.amazon.com/s3/], for example). You can also write an
item pipeline to store the items in a database.

What else?

You’ve seen how to extract and store items from a website using Scrapy, but
this is just the surface. Scrapy provides a lot of powerful features for making
scraping easy and efficient, such as:

	Built-in support for selecting and extracting data
from HTML/XML sources using extended CSS selectors and XPath expressions,
with helper methods to extract using regular expressions.

	An interactive shell console (IPython aware) for trying
out the CSS and XPath expressions to scrape data, very useful when writing or
debugging your spiders.

	Built-in support for generating feed exports in
multiple formats (JSON, CSV, XML) and storing them in multiple backends (FTP,
S3, local filesystem)

	Robust encoding support and auto-detection, for dealing with foreign,
non-standard and broken encoding declarations.

	Strong extensibility support, allowing you to plug
in your own functionality using signals and a
well-defined API (middlewares, extensions, and
pipelines).

	
	Wide range of built-in extensions and middlewares for handling:

	
	cookies and session handling

	HTTP features like compression, authentication, caching

	user-agent spoofing

	robots.txt

	crawl depth restriction

	and more

	A Telnet console for hooking into a Python
console running inside your Scrapy process, to introspect and debug your
crawler

	Plus other goodies like reusable spiders to crawl sites from Sitemaps [http://www.sitemaps.org] and
XML/CSV feeds, a media pipeline for automatically downloading images (or any other media) associated with the scraped
items, a caching DNS resolver, and much more!

What’s next?

The next steps for you are to install Scrapy,
follow through the tutorial to learn how to organize
your code in Scrapy projects and join the community [http://scrapy.org/community/]. Thanks for your
interest!

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Installation guide

Installing Scrapy

Note

Check Platform specific installation notes first.

The installation steps assume that you have the following things installed:

	Python [https://www.python.org/] 2.7

	pip [https://pip.pypa.io/en/latest/installing/] and setuptools [https://pypi.python.org/pypi/setuptools] Python packages. Nowadays pip [https://pip.pypa.io/en/latest/installing/] requires and
installs setuptools [https://pypi.python.org/pypi/setuptools] if not installed. Python 2.7.9 and later include
pip [https://pip.pypa.io/en/latest/installing/] by default, so you may have it already.

	lxml [http://lxml.de/]. Most Linux distributions ships prepackaged versions of lxml.
Otherwise refer to http://lxml.de/installation.html

	OpenSSL [https://pypi.python.org/pypi/pyOpenSSL]. This comes preinstalled in all operating systems, except Windows
where the Python installer ships it bundled.

You can install Scrapy using pip (which is the canonical way to install Python
packages). To install using pip run:

pip install Scrapy

Platform specific installation notes

Anaconda

Note

For Windows users, or if you have issues installing through pip, this is
the recommended way to install Scrapy.

If you already have installed Anaconda [http://docs.continuum.io/anaconda/index] or Miniconda [http://conda.pydata.org/docs/install/quick.html], the company
Scrapinghub [http://scrapinghub.com] maintains official conda packages for Linux, Windows and OS X.

To install Scrapy using conda, run:

conda install -c scrapinghub scrapy

Windows

	Install Python 2.7 from https://www.python.org/downloads/

You need to adjust PATH environment variable to include paths to
the Python executable and additional scripts. The following paths need to be
added to PATH:

C:\Python27\;C:\Python27\Scripts\;

To update the PATH open a Command prompt and run:

c:\python27\python.exe c:\python27\tools\scripts\win_add2path.py

Close the command prompt window and reopen it so changes take effect, run the
following command and check it shows the expected Python version:

python --version

	Install pywin32 from http://sourceforge.net/projects/pywin32/

Be sure you download the architecture (win32 or amd64) that matches your system

	(Only required for Python<2.7.9) Install pip [https://pip.pypa.io/en/latest/installing/] from
https://pip.pypa.io/en/latest/installing/

Now open a Command prompt to check pip is installed correctly:

pip --version

	At this point Python 2.7 and pip package manager must be working, let’s
install Scrapy:

pip install Scrapy

Ubuntu 9.10 or above

Don’t use the python-scrapy package provided by Ubuntu, they are
typically too old and slow to catch up with latest Scrapy.

Instead, use the official Ubuntu Packages, which already
solve all dependencies for you and are continuously updated with the latest bug
fixes.

If you prefer to build the python dependencies locally instead of relying on
system packages you’ll need to install their required non-python dependencies
first:

sudo apt-get install python-dev python-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-dev libssl-dev

You can install Scrapy with pip after that:

pip install Scrapy

Note

The same non-python dependencies can be used to install Scrapy in Debian
Wheezy (7.0) and above.

Archlinux

You can follow the generic instructions or install Scrapy from AUR Scrapy package:

yaourt -S scrapy

Mac OS X

Building Scrapy’s dependencies requires the presence of a C compiler and
development headers. On OS X this is typically provided by Apple’s Xcode
development tools. To install the Xcode command line tools open a terminal
window and run:

xcode-select --install

There’s a known issue [https://github.com/pypa/pip/issues/2468] that
prevents pip from updating system packages. This has to be addressed to
successfully install Scrapy and its dependencies. Here are some proposed
solutions:

	(Recommended) Don’t use system python, install a new, updated version
that doesn’t conflict with the rest of your system. Here’s how to do it using
the homebrew [http://brew.sh/] package manager:

	Install homebrew [http://brew.sh/] following the instructions in http://brew.sh/

	Update your PATH variable to state that homebrew packages should be
used before system packages (Change .bashrc to .zshrc accordantly
if you’re using zsh [http://www.zsh.org/] as default shell):

echo "export PATH=/usr/local/bin:/usr/local/sbin:$PATH" >> ~/.bashrc

	Reload .bashrc to ensure the changes have taken place:

source ~/.bashrc

	Install python:

brew install python

	Latest versions of python have pip bundled with them so you won’t need
to install it separately. If this is not the case, upgrade python:

brew update; brew upgrade python

	(Optional) Install Scrapy inside an isolated python environment.

This method is a workaround for the above OS X issue, but it’s an overall
good practice for managing dependencies and can complement the first method.

virtualenv [https://virtualenv.pypa.io/en/latest/] is a tool you can use to create virtual environments in python.
We recommended reading a tutorial like
http://docs.python-guide.org/en/latest/dev/virtualenvs/ to get started.

After any of these workarounds you should be able to install Scrapy:

pip install Scrapy

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Scrapy Tutorial

In this tutorial, we’ll assume that Scrapy is already installed on your system.
If that’s not the case, see Installation guide.

We are going to use Open directory project (dmoz) [https://www.dmoz.org/] as
our example domain to scrape.

This tutorial will walk you through these tasks:

	Creating a new Scrapy project

	Defining the Items you will extract

	Writing a spider to crawl a site and extract
Items

	Writing an Item Pipeline to store the
extracted Items

Scrapy is written in Python [https://www.python.org/]. If you’re new to the language you might want to
start by getting an idea of what the language is like, to get the most out of
Scrapy. If you’re already familiar with other languages, and want to learn
Python quickly, we recommend Learn Python The Hard Way [http://learnpythonthehardway.org/book/]. If you’re new to programming
and want to start with Python, take a look at this list of Python resources
for non-programmers [https://wiki.python.org/moin/BeginnersGuide/NonProgrammers].

Creating a project

Before you start scraping, you will have to set up a new Scrapy project. Enter a
directory where you’d like to store your code and run:

scrapy startproject tutorial

This will create a tutorial directory with the following contents:

tutorial/
 scrapy.cfg # deploy configuration file

 tutorial/ # project's Python module, you'll import your code from here
 __init__.py

 items.py # project items file

 pipelines.py # project pipelines file

 settings.py # project settings file

 spiders/ # a directory where you'll later put your spiders
 __init__.py
 ...

Defining our Item

Items are containers that will be loaded with the scraped data; they work
like simple Python dicts. While you can use plain Python dicts with Scrapy,
Items provide additional protection against populating undeclared fields,
preventing typos. They can also be used with Item Loaders, a mechanism with helpers to conveniently populate Items.

They are declared by creating a scrapy.Item class and defining
its attributes as scrapy.Field objects, much like in an ORM
(don’t worry if you’re not familiar with ORMs, you will see that this is an
easy task).

We begin by modeling the item that we will use to hold the site’s data obtained
from dmoz.org. As we want to capture the name, url and description of the
sites, we define fields for each of these three attributes. To do that, we edit
items.py, found in the tutorial directory. Our Item class looks like this:

import scrapy

class DmozItem(scrapy.Item):
 title = scrapy.Field()
 link = scrapy.Field()
 desc = scrapy.Field()

This may seem complicated at first, but defining an item class allows you to use other handy
components and helpers within Scrapy.

Our first Spider

Spiders are classes that you define and Scrapy uses to scrape information from a
domain (or group of domains).

They define an initial list of URLs to download, how to follow links, and how
to parse the contents of pages to extract items.

To create a Spider, you must subclass scrapy.Spider and define some attributes:

	name: identifies the Spider. It must be
unique, that is, you can’t set the same name for different Spiders.

	start_urls: a list of URLs where the
Spider will begin to crawl from. The first pages downloaded will be those
listed here. The subsequent URLs will be generated successively from data
contained in the start URLs.

	parse(): a method of the spider, which will
be called with the downloaded Response object of each
start URL. The response is passed to the method as the first and only
argument.

This method is responsible for parsing the response data and extracting
scraped data (as scraped items) and more URLs to follow.

The parse() method is in charge of processing
the response and returning scraped data (as Item
objects) and more URLs to follow (as Request objects).

This is the code for our first Spider; save it in a file named
dmoz_spider.py under the tutorial/spiders directory:

import scrapy

class DmozSpider(scrapy.Spider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]

 def parse(self, response):
 filename = response.url.split("/")[-2] + '.html'
 with open(filename, 'wb') as f:
 f.write(response.body)

Crawling

To put our spider to work, go to the project’s top level directory and run:

scrapy crawl dmoz

This command runs the spider with name dmoz that we’ve just added, that
will send some requests for the dmoz.org domain. You will get an output
similar to this:

2014-01-23 18:13:07-0400 [scrapy] INFO: Scrapy started (bot: tutorial)
2014-01-23 18:13:07-0400 [scrapy] INFO: Optional features available: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Overridden settings: {}
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled extensions: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled downloader middlewares: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled spider middlewares: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled item pipelines: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Spider opened
2014-01-23 18:13:08-0400 [scrapy] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: None)
2014-01-23 18:13:09-0400 [scrapy] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
2014-01-23 18:13:09-0400 [scrapy] INFO: Closing spider (finished)

Note

At the end you can see a log line for each URL defined in start_urls.
Because these URLs are the starting ones, they have no referrers, which is
shown at the end of the log line, where it says (referer: None).

Now, check the files in the current directory. You should notice two new files
have been created: Books.html and Resources.html, with the content for the respective
URLs, as our parse method instructs.

What just happened under the hood?

Scrapy creates scrapy.Request objects
for each URL in the start_urls attribute of the Spider, and assigns
them the parse method of the spider as their callback function.

These Requests are scheduled, then executed, and scrapy.http.Response
objects are returned and then fed back to the spider, through the
parse() method.

Extracting Items

Introduction to Selectors

There are several ways to extract data from web pages. Scrapy uses a mechanism
based on XPath [https://www.w3.org/TR/xpath] or CSS [https://www.w3.org/TR/selectors] expressions called Scrapy Selectors. For more information about selectors and other extraction
mechanisms see the Selectors documentation.

Here are some examples of XPath expressions and their meanings:

	/html/head/title: selects the <title> element, inside the <head>
element of an HTML document

	/html/head/title/text(): selects the text inside the aforementioned
<title> element.

	//td: selects all the <td> elements

	//div[@class="mine"]: selects all div elements which contain an
attribute class="mine"

These are just a couple of simple examples of what you can do with XPath, but
XPath expressions are indeed much more powerful. To learn more about XPath, we
recommend this tutorial to learn XPath through examples [http://zvon.org/comp/r/tut-XPath_1.html], and this tutorial to learn “how
to think in XPath” [http://plasmasturm.org/log/xpath101/].

Note

CSS vs XPath: you can go a long way extracting data from web pages
using only CSS selectors. However, XPath offers more power because besides
navigating the structure, it can also look at the content: you’re
able to select things like: the link that contains the text ‘Next Page’.
Because of this, we encourage you to learn about XPath even if you
already know how to construct CSS selectors.

For working with CSS and XPath expressions, Scrapy provides
Selector class and convenient shortcuts to avoid
instantiating selectors yourself every time you need to select something from a
response.

You can see selectors as objects that represent nodes in the document
structure. So, the first instantiated selectors are associated with the root
node, or the entire document.

Selectors have four basic methods (click on the method to see the complete API
documentation):

	xpath(): returns a list of selectors, each of
which represents the nodes selected by the xpath expression given as
argument.

	css(): returns a list of selectors, each of
which represents the nodes selected by the CSS expression given as argument.

	extract(): returns a unicode string with the
selected data.

	re(): returns a list of unicode strings
extracted by applying the regular expression given as argument.

Trying Selectors in the Shell

To illustrate the use of Selectors we’re going to use the built-in Scrapy
shell, which also requires IPython [http://ipython.org/] (an extended Python console)
installed on your system.

To start a shell, you must go to the project’s top level directory and run:

scrapy shell "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/"

Note

Remember to always enclose urls in quotes when running Scrapy shell from
command-line, otherwise urls containing arguments (ie. & character)
will not work.

This is what the shell looks like:

[... Scrapy log here ...]

2014-01-23 17:11:42-0400 [scrapy] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x3636b50>
[s] item {}
[s] request <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] settings <scrapy.settings.Settings object at 0x3fadc50>
[s] spider <Spider 'default' at 0x3cebf50>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser

In [1]:

After the shell loads, you will have the response fetched in a local
response variable, so if you type response.body you will see the body
of the response, or you can type response.headers to see its headers.

More importantly response has a selector attribute which is an instance of
Selector class, instantiated with this particular response.
You can run queries on response by calling response.selector.xpath() or
response.selector.css(). There are also some convenience shortcuts like response.xpath()
or response.css() which map directly to response.selector.xpath() and
response.selector.css().

So let’s try it:

In [1]: response.xpath('//title')
Out[1]: [<Selector xpath='//title' data=u'<title>Open Directory - Computers: Progr'>]

In [2]: response.xpath('//title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>']

In [3]: response.xpath('//title/text()')
Out[3]: [<Selector xpath='//title/text()' data=u'Open Directory - Computers: Programming:'>]

In [4]: response.xpath('//title/text()').extract()
Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']

In [5]: response.xpath('//title/text()').re('(\w+):')
Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']

Extracting the data

Now, let’s try to extract some real information from those pages.

You could type response.body in the console, and inspect the source code to
figure out the XPaths you need to use. However, inspecting the raw HTML code
there could become a very tedious task. To make it easier, you can
use Firefox Developer Tools or some Firefox extensions like Firebug. For more
information see Using Firebug for scraping and Using Firefox for scraping.

After inspecting the page source, you’ll find that the web site’s information
is inside a element, in fact the second element.

So we can select each element belonging to the site’s list with this
code:

response.xpath('//ul/li')

And from them, the site’s descriptions:

response.xpath('//ul/li/text()').extract()

The site’s titles:

response.xpath('//ul/li/a/text()').extract()

And the site’s links:

response.xpath('//ul/li/a/@href').extract()

As we’ve said before, each .xpath() call returns a list of selectors, so we can
concatenate further .xpath() calls to dig deeper into a node. We are going to use
that property here, so:

for sel in response.xpath('//ul/li'):
 title = sel.xpath('a/text()').extract()
 link = sel.xpath('a/@href').extract()
 desc = sel.xpath('text()').extract()
 print title, link, desc

Note

For a more detailed description of using nested selectors, see
Nesting selectors and
Working with relative XPaths in the Selectors
documentation

Let’s add this code to our spider:

import scrapy

class DmozSpider(scrapy.Spider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]

 def parse(self, response):
 for sel in response.xpath('//ul/li'):
 title = sel.xpath('a/text()').extract()
 link = sel.xpath('a/@href').extract()
 desc = sel.xpath('text()').extract()
 print title, link, desc

Now try crawling dmoz.org again and you’ll see sites being printed
in your output. Run:

scrapy crawl dmoz

Using our item

Item objects are custom Python dicts; you can access the
values of their fields (attributes of the class we defined earlier) using the
standard dict syntax like:

>>> item = DmozItem()
>>> item['title'] = 'Example title'
>>> item['title']
'Example title'

So, in order to return the data we’ve scraped so far, the final code for our
Spider would be like this:

import scrapy

from tutorial.items import DmozItem

class DmozSpider(scrapy.Spider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]

 def parse(self, response):
 for sel in response.xpath('//ul/li'):
 item = DmozItem()
 item['title'] = sel.xpath('a/text()').extract()
 item['link'] = sel.xpath('a/@href').extract()
 item['desc'] = sel.xpath('text()').extract()
 yield item

Note

You can find a fully-functional variant of this spider in the dirbot [https://github.com/scrapy/dirbot]
project available at https://github.com/scrapy/dirbot

Now crawling dmoz.org yields DmozItem objects:

[scrapy] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
 {'desc': [u' - By David Mertz; Addison Wesley. Book in progress, full text, ASCII format. Asks for feedback. [author website, Gnosis Software, Inc.\n],
 'link': [u'http://gnosis.cx/TPiP/'],
 'title': [u'Text Processing in Python']}
[scrapy] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
 {'desc': [u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192, has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'],
 'link': [u'http://www.informit.com/store/product.aspx?isbn=0130211192'],
 'title': [u'XML Processing with Python']}

Following links

Let’s say, instead of just scraping the stuff in Books and Resources pages,
you want everything that is under the Python directory [http://www.dmoz.org/Computers/Programming/Languages/Python/].

Now that you know how to extract data from a page, why not extract the links
for the pages you are interested, follow them and then extract the data you
want for all of them?

Here is a modification to our spider that does just that:

import scrapy

from tutorial.items import DmozItem

class DmozSpider(scrapy.Spider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
 "http://www.dmoz.org/Computers/Programming/Languages/Python/",
]

 def parse(self, response):
 for href in response.css("ul.directory.dir-col > li > a::attr('href')"):
 url = response.urljoin(href.extract())
 yield scrapy.Request(url, callback=self.parse_dir_contents)

 def parse_dir_contents(self, response):
 for sel in response.xpath('//ul/li'):
 item = DmozItem()
 item['title'] = sel.xpath('a/text()').extract()
 item['link'] = sel.xpath('a/@href').extract()
 item['desc'] = sel.xpath('text()').extract()
 yield item

Now the parse() method only extract the interesting links from the page,
builds a full absolute URL using the response.urljoin method (since the links can
be relative) and yields new requests to be sent later, registering as callback
the method parse_dir_contents() that will ultimately scrape the data we want.

What you see here is the Scrapy’s mechanism of following links: when you yield
a Request in a callback method, Scrapy will schedule that request to be sent
and register a callback method to be executed when that request finishes.

Using this, you can build complex crawlers that follow links according to rules
you define, and extract different kinds of data depending on the page it’s
visiting.

A common pattern is a callback method that extract some items, looks for a link
to follow to the next page and then yields a Request with the same callback
for it:

def parse_articles_follow_next_page(self, response):
 for article in response.xpath("//article"):
 item = ArticleItem()

 ... extract article data here

 yield item

 next_page = response.css("ul.navigation > li.next-page > a::attr('href')")
 if next_page:
 url = response.urljoin(next_page[0].extract())
 yield scrapy.Request(url, self.parse_articles_follow_next_page)

This creates a sort of loop, following all the links to the next page until it
doesn’t find one – handy for crawling blogs, forums and other sites with
pagination.

Another common pattern is to build an item with data from more than one page,
using a trick to pass additional data to the callbacks.

Note

As an example spider that leverages this mechanism, check out the
CrawlSpider class for a generic spider
that implements a small rules engine that you can use to write your
crawlers on top of it.

Storing the scraped data

The simplest way to store the scraped data is by using Feed exports, with the following command:

scrapy crawl dmoz -o items.json

That will generate an items.json file containing all scraped items,
serialized in JSON [https://en.wikipedia.org/wiki/JSON].

In small projects (like the one in this tutorial), that should be enough.
However, if you want to perform more complex things with the scraped items, you
can write an Item Pipeline. As with Items, a
placeholder file for Item Pipelines has been set up for you when the project is
created, in tutorial/pipelines.py. Though you don’t need to implement any item
pipelines if you just want to store the scraped items.

Next steps

This tutorial covered only the basics of Scrapy, but there’s a lot of other
features not mentioned here. Check the What else? section in
Scrapy at a glance chapter for a quick overview of the most important ones.

Then, we recommend you continue by playing with an example project (see
Examples), and then continue with the section
Basic concepts.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Examples

The best way to learn is with examples, and Scrapy is no exception. For this
reason, there is an example Scrapy project named dirbot [https://github.com/scrapy/dirbot], that you can use to
play and learn more about Scrapy. It contains the dmoz spider described in the
tutorial.

This dirbot [https://github.com/scrapy/dirbot] project is available at: https://github.com/scrapy/dirbot

It contains a README file with a detailed description of the project contents.

If you’re familiar with git, you can checkout the code. Otherwise you can
download a tarball or zip file of the project by clicking on Downloads [https://github.com/scrapy/dirbot/downloads].

The scrapy tag on Snipplr [http://snipplr.com/all/tags/scrapy/] is used for sharing code snippets such as spiders,
middlewares, extensions, or scripts. Feel free (and encouraged!) to share any
code there.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Command line tool

New in version 0.10.

Scrapy is controlled through the scrapy command-line tool, to be referred
here as the “Scrapy tool” to differentiate it from the sub-commands, which we
just call “commands” or “Scrapy commands”.

The Scrapy tool provides several commands, for multiple purposes, and each one
accepts a different set of arguments and options.

(The scrapy deploy command has been removed in 1.0 in favor of the
standalone scrapyd-deploy. See Deploying your project [http://scrapyd.readthedocs.org/en/latest/deploy.html].)

Configuration settings

Scrapy will look for configuration parameters in ini-style scrapy.cfg files
in standard locations:

	/etc/scrapy.cfg or c:\scrapy\scrapy.cfg (system-wide),

	~/.config/scrapy.cfg ($XDG_CONFIG_HOME) and ~/.scrapy.cfg ($HOME)
for global (user-wide) settings, and

	scrapy.cfg inside a scrapy project’s root (see next section).

Settings from these files are merged in the listed order of preference:
user-defined values have higher priority than system-wide defaults
and project-wide settings will override all others, when defined.

Scrapy also understands, and can be configured through, a number of environment
variables. Currently these are:

	SCRAPY_SETTINGS_MODULE (see Designating the settings)

	SCRAPY_PROJECT

	SCRAPY_PYTHON_SHELL (see Scrapy shell)

Default structure of Scrapy projects

Before delving into the command-line tool and its sub-commands, let’s first
understand the directory structure of a Scrapy project.

Though it can be modified, all Scrapy projects have the same file
structure by default, similar to this:

scrapy.cfg
myproject/
 __init__.py
 items.py
 pipelines.py
 settings.py
 spiders/
 __init__.py
 spider1.py
 spider2.py
 ...

The directory where the scrapy.cfg file resides is known as the project
root directory. That file contains the name of the python module that defines
the project settings. Here is an example:

[settings]
default = myproject.settings

Using the scrapy tool

You can start by running the Scrapy tool with no arguments and it will print
some usage help and the available commands:

Scrapy X.Y - no active project

Usage:
 scrapy <command> [options] [args]

Available commands:
 crawl Run a spider
 fetch Fetch a URL using the Scrapy downloader
[...]

The first line will print the currently active project if you’re inside a
Scrapy project. In this example it was run from outside a project. If run from inside
a project it would have printed something like this:

Scrapy X.Y - project: myproject

Usage:
 scrapy <command> [options] [args]

[...]

Creating projects

The first thing you typically do with the scrapy tool is create your Scrapy
project:

scrapy startproject myproject

That will create a Scrapy project under the myproject directory.

Next, you go inside the new project directory:

cd myproject

And you’re ready to use the scrapy command to manage and control your
project from there.

Controlling projects

You use the scrapy tool from inside your projects to control and manage
them.

For example, to create a new spider:

scrapy genspider mydomain mydomain.com

Some Scrapy commands (like crawl) must be run from inside a Scrapy
project. See the commands reference below for more
information on which commands must be run from inside projects, and which not.

Also keep in mind that some commands may have slightly different behaviours
when running them from inside projects. For example, the fetch command will use
spider-overridden behaviours (such as the user_agent attribute to override
the user-agent) if the url being fetched is associated with some specific
spider. This is intentional, as the fetch command is meant to be used to
check how spiders are downloading pages.

Available tool commands

This section contains a list of the available built-in commands with a
description and some usage examples. Remember, you can always get more info
about each command by running:

scrapy <command> -h

And you can see all available commands with:

scrapy -h

There are two kinds of commands, those that only work from inside a Scrapy
project (Project-specific commands) and those that also work without an active
Scrapy project (Global commands), though they may behave slightly different
when running from inside a project (as they would use the project overridden
settings).

Global commands:

	startproject

	settings

	runspider

	shell

	fetch

	view

	version

Project-only commands:

	crawl

	check

	list

	edit

	parse

	genspider

	bench

startproject

	Syntax: scrapy startproject <project_name>

	Requires project: no

Creates a new Scrapy project named project_name, under the project_name
directory.

Usage example:

$ scrapy startproject myproject

genspider

	Syntax: scrapy genspider [-t template] <name> <domain>

	Requires project: yes

Create a new spider in the current project.

This is just a convenience shortcut command for creating spiders based on
pre-defined templates, but certainly not the only way to create spiders. You
can just create the spider source code files yourself, instead of using this
command.

Usage example:

$ scrapy genspider -l
Available templates:
 basic
 crawl
 csvfeed
 xmlfeed

$ scrapy genspider -d basic
import scrapy

class $classname(scrapy.Spider):
 name = "$name"
 allowed_domains = ["$domain"]
 start_urls = (
 'http://www.$domain/',
)

 def parse(self, response):
 pass

$ scrapy genspider -t basic example example.com
Created spider 'example' using template 'basic' in module:
 mybot.spiders.example

crawl

	Syntax: scrapy crawl <spider>

	Requires project: yes

Start crawling using a spider.

Usage examples:

$ scrapy crawl myspider
[... myspider starts crawling ...]

check

	Syntax: scrapy check [-l] <spider>

	Requires project: yes

Run contract checks.

Usage examples:

$ scrapy check -l
first_spider
 * parse
 * parse_item
second_spider
 * parse
 * parse_item

$ scrapy check
[FAILED] first_spider:parse_item
>>> 'RetailPricex' field is missing

[FAILED] first_spider:parse
>>> Returned 92 requests, expected 0..4

list

	Syntax: scrapy list

	Requires project: yes

List all available spiders in the current project. The output is one spider per
line.

Usage example:

$ scrapy list
spider1
spider2

edit

	Syntax: scrapy edit <spider>

	Requires project: yes

Edit the given spider using the editor defined in the EDITOR
setting.

This command is provided only as a convenience shortcut for the most common
case, the developer is of course free to choose any tool or IDE to write and
debug his spiders.

Usage example:

$ scrapy edit spider1

fetch

	Syntax: scrapy fetch <url>

	Requires project: no

Downloads the given URL using the Scrapy downloader and writes the contents to
standard output.

The interesting thing about this command is that it fetches the page how the
spider would download it. For example, if the spider has a USER_AGENT
attribute which overrides the User Agent, it will use that one.

So this command can be used to “see” how your spider would fetch a certain page.

If used outside a project, no particular per-spider behaviour would be applied
and it will just use the default Scrapy downloader settings.

Usage examples:

$ scrapy fetch --nolog http://www.example.com/some/page.html
[... html content here ...]

$ scrapy fetch --nolog --headers http://www.example.com/
{'Accept-Ranges': ['bytes'],
 'Age': ['1263 '],
 'Connection': ['close '],
 'Content-Length': ['596'],
 'Content-Type': ['text/html; charset=UTF-8'],
 'Date': ['Wed, 18 Aug 2010 23:59:46 GMT'],
 'Etag': ['"573c1-254-48c9c87349680"'],
 'Last-Modified': ['Fri, 30 Jul 2010 15:30:18 GMT'],
 'Server': ['Apache/2.2.3 (CentOS)']}

view

	Syntax: scrapy view <url>

	Requires project: no

Opens the given URL in a browser, as your Scrapy spider would “see” it.
Sometimes spiders see pages differently from regular users, so this can be used
to check what the spider “sees” and confirm it’s what you expect.

Usage example:

$ scrapy view http://www.example.com/some/page.html
[... browser starts ...]

shell

	Syntax: scrapy shell [url]

	Requires project: no

Starts the Scrapy shell for the given URL (if given) or empty if no URL is
given. Also supports UNIX-style local file paths, either relative with
./ or ../ prefixes or absolute file paths.
See Scrapy shell for more info.

Usage example:

$ scrapy shell http://www.example.com/some/page.html
[... scrapy shell starts ...]

parse

	Syntax: scrapy parse <url> [options]

	Requires project: yes

Fetches the given URL and parses it with the spider that handles it, using the
method passed with the --callback option, or parse if not given.

Supported options:

	--spider=SPIDER: bypass spider autodetection and force use of specific spider

	--a NAME=VALUE: set spider argument (may be repeated)

	--callback or -c: spider method to use as callback for parsing the
response

	--pipelines: process items through pipelines

	--rules or -r: use CrawlSpider
rules to discover the callback (i.e. spider method) to use for parsing the
response

	--noitems: don’t show scraped items

	--nolinks: don’t show extracted links

	--nocolour: avoid using pygments to colorize the output

	--depth or -d: depth level for which the requests should be followed
recursively (default: 1)

	--verbose or -v: display information for each depth level

Usage example:

$ scrapy parse http://www.example.com/ -c parse_item
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 1 <<<
Scraped Items --
[{'name': u'Example item',
 'category': u'Furniture',
 'length': u'12 cm'}]

Requests ---
[]

settings

	Syntax: scrapy settings [options]

	Requires project: no

Get the value of a Scrapy setting.

If used inside a project it’ll show the project setting value, otherwise it’ll
show the default Scrapy value for that setting.

Example usage:

$ scrapy settings --get BOT_NAME
scrapybot
$ scrapy settings --get DOWNLOAD_DELAY
0

runspider

	Syntax: scrapy runspider <spider_file.py>

	Requires project: no

Run a spider self-contained in a Python file, without having to create a
project.

Example usage:

$ scrapy runspider myspider.py
[... spider starts crawling ...]

version

	Syntax: scrapy version [-v]

	Requires project: no

Prints the Scrapy version. If used with -v it also prints Python, Twisted
and Platform info, which is useful for bug reports.

bench

New in version 0.17.

	Syntax: scrapy bench

	Requires project: no

Run a quick benchmark test. Benchmarking.

Custom project commands

You can also add your custom project commands by using the
COMMANDS_MODULE setting. See the Scrapy commands in
scrapy/commands [https://github.com/scrapy/scrapy/tree/master/scrapy/commands] for examples on how to implement your commands.

COMMANDS_MODULE

Default: '' (empty string)

A module to use for looking up custom Scrapy commands. This is used to add custom
commands for your Scrapy project.

Example:

COMMANDS_MODULE = 'mybot.commands'

Register commands via setup.py entry points

Note

This is an experimental feature, use with caution.

You can also add Scrapy commands from an external library by adding a
scrapy.commands section in the entry points of the library setup.py
file.

The following example adds my_command command:

from setuptools import setup, find_packages

setup(name='scrapy-mymodule',
 entry_points={
 'scrapy.commands': [
 'my_command=my_scrapy_module.commands:MyCommand',
],
 },
)

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Spiders

Spiders are classes which define how a certain site (or a group of sites) will be
scraped, including how to perform the crawl (i.e. follow links) and how to
extract structured data from their pages (i.e. scraping items). In other words,
Spiders are the place where you define the custom behaviour for crawling and
parsing pages for a particular site (or, in some cases, a group of sites).

For spiders, the scraping cycle goes through something like this:

	You start by generating the initial Requests to crawl the first URLs, and
specify a callback function to be called with the response downloaded from
those requests.

The first requests to perform are obtained by calling the
start_requests() method which (by default)
generates Request for the URLs specified in the
start_urls and the
parse method as callback function for the
Requests.

	In the callback function, you parse the response (web page) and return either
dicts with extracted data, Item objects,
Request objects, or an iterable of these objects.
Those Requests will also contain a callback (maybe
the same) and will then be downloaded by Scrapy and then their
response handled by the specified callback.

	In callback functions, you parse the page contents, typically using
Selectors (but you can also use BeautifulSoup, lxml or whatever
mechanism you prefer) and generate items with the parsed data.

	Finally, the items returned from the spider will be typically persisted to a
database (in some Item Pipeline) or written to
a file using Feed exports.

Even though this cycle applies (more or less) to any kind of spider, there are
different kinds of default spiders bundled into Scrapy for different purposes.
We will talk about those types here.

scrapy.Spider

	
class scrapy.spiders.Spider

	This is the simplest spider, and the one from which every other spider
must inherit (including spiders that come bundled with Scrapy, as well as spiders
that you write yourself). It doesn’t provide any special functionality. It just
provides a default start_requests() implementation which sends requests from
the start_urls spider attribute and calls the spider’s method parse
for each of the resulting responses.

	
name

	A string which defines the name for this spider. The spider name is how
the spider is located (and instantiated) by Scrapy, so it must be
unique. However, nothing prevents you from instantiating more than one
instance of the same spider. This is the most important spider attribute
and it’s required.

If the spider scrapes a single domain, a common practice is to name the
spider after the domain, with or without the TLD [https://en.wikipedia.org/wiki/Top-level_domain]. So, for example, a
spider that crawls mywebsite.com would often be called
mywebsite.

	
allowed_domains

	An optional list of strings containing domains that this spider is
allowed to crawl. Requests for URLs not belonging to the domain names
specified in this list (or their subdomains) won’t be followed if
OffsiteMiddleware is enabled.

	
start_urls

	A list of URLs where the spider will begin to crawl from, when no
particular URLs are specified. So, the first pages downloaded will be those
listed here. The subsequent URLs will be generated successively from data
contained in the start URLs.

	
custom_settings

	A dictionary of settings that will be overridden from the project wide
configuration when running this spider. It must be defined as a class
attribute since the settings are updated before instantiation.

For a list of available built-in settings see:
Built-in settings reference.

	
crawler

	This attribute is set by the from_crawler() class method after
initializating the class, and links to the
Crawler object to which this spider instance is
bound.

Crawlers encapsulate a lot of components in the project for their single
entry access (such as extensions, middlewares, signals managers, etc).
See Crawler API to know more about them.

	
settings

	Configuration for running this spider. This is a
Settings instance, see the
Settings topic for a detailed introduction on this subject.

	
logger

	Python logger created with the Spider’s name. You can use it to
send log messages through it as described on
Logging from Spiders.

	
from_crawler(crawler, *args, **kwargs)

	This is the class method used by Scrapy to create your spiders.

You probably won’t need to override this directly because the default
implementation acts as a proxy to the __init__() method, calling
it with the given arguments args and named arguments kwargs.

Nonetheless, this method sets the crawler and settings
attributes in the new instance so they can be accessed later inside the
spider’s code.

	Parameters:	
	crawler (Crawler instance) – crawler to which the spider will be bound

	args (list) – arguments passed to the __init__() method

	kwargs (dict) – keyword arguments passed to the __init__() method

	
start_requests()

	This method must return an iterable with the first Requests to crawl for
this spider.

This is the method called by Scrapy when the spider is opened for
scraping when no particular URLs are specified. If particular URLs are
specified, the make_requests_from_url() is used instead to create
the Requests. This method is also called only once from Scrapy, so it’s
safe to implement it as a generator.

The default implementation uses make_requests_from_url() to
generate Requests for each url in start_urls.

If you want to change the Requests used to start scraping a domain, this is
the method to override. For example, if you need to start by logging in using
a POST request, you could do:

class MySpider(scrapy.Spider):
 name = 'myspider'

 def start_requests(self):
 return [scrapy.FormRequest("http://www.example.com/login",
 formdata={'user': 'john', 'pass': 'secret'},
 callback=self.logged_in)]

 def logged_in(self, response):
 # here you would extract links to follow and return Requests for
 # each of them, with another callback
 pass

	
make_requests_from_url(url)

	A method that receives a URL and returns a Request
object (or a list of Request objects) to scrape. This
method is used to construct the initial requests in the
start_requests() method, and is typically used to convert urls to
requests.

Unless overridden, this method returns Requests with the parse()
method as their callback function, and with dont_filter parameter enabled
(see Request class for more info).

	
parse(response)

	This is the default callback used by Scrapy to process downloaded
responses, when their requests don’t specify a callback.

The parse method is in charge of processing the response and returning
scraped data and/or more URLs to follow. Other Requests callbacks have
the same requirements as the Spider class.

This method, as well as any other Request callback, must return an
iterable of Request and/or
dicts or Item objects.

	Parameters:	response (Response) – the response to parse

	
log(message[, level, component])

	Wrapper that sends a log message through the Spider’s logger,
kept for backwards compatibility. For more information see
Logging from Spiders.

	
closed(reason)

	Called when the spider closes. This method provides a shortcut to
signals.connect() for the spider_closed signal.

Let’s see an example:

import scrapy

class MySpider(scrapy.Spider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = [
 'http://www.example.com/1.html',
 'http://www.example.com/2.html',
 'http://www.example.com/3.html',
]

 def parse(self, response):
 self.logger.info('A response from %s just arrived!', response.url)

Return multiple Requests and items from a single callback:

import scrapy

class MySpider(scrapy.Spider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = [
 'http://www.example.com/1.html',
 'http://www.example.com/2.html',
 'http://www.example.com/3.html',
]

 def parse(self, response):
 for h3 in response.xpath('//h3').extract():
 yield {"title": h3}

 for url in response.xpath('//a/@href').extract():
 yield scrapy.Request(url, callback=self.parse)

Instead of start_urls you can use start_requests() directly;
to give data more structure you can use Items:

import scrapy
from myproject.items import MyItem

class MySpider(scrapy.Spider):
 name = 'example.com'
 allowed_domains = ['example.com']

 def start_requests(self):
 yield scrapy.Request('http://www.example.com/1.html', self.parse)
 yield scrapy.Request('http://www.example.com/2.html', self.parse)
 yield scrapy.Request('http://www.example.com/3.html', self.parse)

 def parse(self, response):
 for h3 in response.xpath('//h3').extract():
 yield MyItem(title=h3)

 for url in response.xpath('//a/@href').extract():
 yield scrapy.Request(url, callback=self.parse)

Spider arguments

Spiders can receive arguments that modify their behaviour. Some common uses for
spider arguments are to define the start URLs or to restrict the crawl to
certain sections of the site, but they can be used to configure any
functionality of the spider.

Spider arguments are passed through the crawl command using the
-a option. For example:

scrapy crawl myspider -a category=electronics

Spiders receive arguments in their constructors:

import scrapy

class MySpider(scrapy.Spider):
 name = 'myspider'

 def __init__(self, category=None, *args, **kwargs):
 super(MySpider, self).__init__(*args, **kwargs)
 self.start_urls = ['http://www.example.com/categories/%s' % category]
 # ...

Spider arguments can also be passed through the Scrapyd schedule.json API.
See Scrapyd documentation [http://scrapyd.readthedocs.org/en/latest/].

Generic Spiders

Scrapy comes with some useful generic spiders that you can use to subclass
your spiders from. Their aim is to provide convenient functionality for a few
common scraping cases, like following all links on a site based on certain
rules, crawling from Sitemaps [http://www.sitemaps.org], or parsing an XML/CSV feed.

For the examples used in the following spiders, we’ll assume you have a project
with a TestItem declared in a myproject.items module:

import scrapy

class TestItem(scrapy.Item):
 id = scrapy.Field()
 name = scrapy.Field()
 description = scrapy.Field()

CrawlSpider

	
class scrapy.spiders.CrawlSpider

	This is the most commonly used spider for crawling regular websites, as it
provides a convenient mechanism for following links by defining a set of rules.
It may not be the best suited for your particular web sites or project, but
it’s generic enough for several cases, so you can start from it and override it
as needed for more custom functionality, or just implement your own spider.

Apart from the attributes inherited from Spider (that you must
specify), this class supports a new attribute:

	
rules

	Which is a list of one (or more) Rule objects. Each Rule
defines a certain behaviour for crawling the site. Rules objects are
described below. If multiple rules match the same link, the first one
will be used, according to the order they’re defined in this attribute.

This spider also exposes an overrideable method:

	
parse_start_url(response)

	This method is called for the start_urls responses. It allows to parse
the initial responses and must return either an
Item object, a Request
object, or an iterable containing any of them.

Crawling rules

	
class scrapy.spiders.Rule(link_extractor, callback=None, cb_kwargs=None, follow=None, process_links=None, process_request=None)

	link_extractor is a Link Extractor object which
defines how links will be extracted from each crawled page.

callback is a callable or a string (in which case a method from the spider
object with that name will be used) to be called for each link extracted with
the specified link_extractor. This callback receives a response as its first
argument and must return a list containing Item and/or
Request objects (or any subclass of them).

Warning

When writing crawl spider rules, avoid using parse as
callback, since the CrawlSpider uses the parse method
itself to implement its logic. So if you override the parse method,
the crawl spider will no longer work.

cb_kwargs is a dict containing the keyword arguments to be passed to the
callback function.

follow is a boolean which specifies if links should be followed from each
response extracted with this rule. If callback is None follow defaults
to True, otherwise it defaults to False.

process_links is a callable, or a string (in which case a method from the
spider object with that name will be used) which will be called for each list
of links extracted from each response using the specified link_extractor.
This is mainly used for filtering purposes.

process_request is a callable, or a string (in which case a method from
the spider object with that name will be used) which will be called with
every request extracted by this rule, and must return a request or None (to
filter out the request).

CrawlSpider example

Let’s now take a look at an example CrawlSpider with rules:

import scrapy
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor

class MySpider(CrawlSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com']

 rules = (
 # Extract links matching 'category.php' (but not matching 'subsection.php')
 # and follow links from them (since no callback means follow=True by default).
 Rule(LinkExtractor(allow=('category\.php',), deny=('subsection\.php',))),

 # Extract links matching 'item.php' and parse them with the spider's method parse_item
 Rule(LinkExtractor(allow=('item\.php',)), callback='parse_item'),
)

 def parse_item(self, response):
 self.logger.info('Hi, this is an item page! %s', response.url)
 item = scrapy.Item()
 item['id'] = response.xpath('//td[@id="item_id"]/text()').re(r'ID: (\d+)')
 item['name'] = response.xpath('//td[@id="item_name"]/text()').extract()
 item['description'] = response.xpath('//td[@id="item_description"]/text()').extract()
 return item

This spider would start crawling example.com’s home page, collecting category
links, and item links, parsing the latter with the parse_item method. For
each item response, some data will be extracted from the HTML using XPath, and
an Item will be filled with it.

XMLFeedSpider

	
class scrapy.spiders.XMLFeedSpider

	XMLFeedSpider is designed for parsing XML feeds by iterating through them by a
certain node name. The iterator can be chosen from: iternodes, xml,
and html. It’s recommended to use the iternodes iterator for
performance reasons, since the xml and html iterators generate the
whole DOM at once in order to parse it. However, using html as the
iterator may be useful when parsing XML with bad markup.

To set the iterator and the tag name, you must define the following class
attributes:

	
iterator

	A string which defines the iterator to use. It can be either:

	'iternodes' - a fast iterator based on regular expressions

	'html' - an iterator which uses Selector.
Keep in mind this uses DOM parsing and must load all DOM in memory
which could be a problem for big feeds

	'xml' - an iterator which uses Selector.
Keep in mind this uses DOM parsing and must load all DOM in memory
which could be a problem for big feeds

It defaults to: 'iternodes'.

	
itertag

	A string with the name of the node (or element) to iterate in. Example:

itertag = 'product'

	
namespaces

	A list of (prefix, uri) tuples which define the namespaces
available in that document that will be processed with this spider. The
prefix and uri will be used to automatically register
namespaces using the
register_namespace() method.

You can then specify nodes with namespaces in the itertag
attribute.

Example:

class YourSpider(XMLFeedSpider):

 namespaces = [('n', 'http://www.sitemaps.org/schemas/sitemap/0.9')]
 itertag = 'n:url'
 # ...

Apart from these new attributes, this spider has the following overrideable
methods too:

	
adapt_response(response)

	A method that receives the response as soon as it arrives from the spider
middleware, before the spider starts parsing it. It can be used to modify
the response body before parsing it. This method receives a response and
also returns a response (it could be the same or another one).

	
parse_node(response, selector)

	This method is called for the nodes matching the provided tag name
(itertag). Receives the response and an
Selector for each node. Overriding this
method is mandatory. Otherwise, you spider won’t work. This method
must return either a Item object, a
Request object, or an iterable containing any of
them.

	
process_results(response, results)

	This method is called for each result (item or request) returned by the
spider, and it’s intended to perform any last time processing required
before returning the results to the framework core, for example setting the
item IDs. It receives a list of results and the response which originated
those results. It must return a list of results (Items or Requests).

XMLFeedSpider example

These spiders are pretty easy to use, let’s have a look at one example:

from scrapy.spiders import XMLFeedSpider
from myproject.items import TestItem

class MySpider(XMLFeedSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com/feed.xml']
 iterator = 'iternodes' # This is actually unnecessary, since it's the default value
 itertag = 'item'

 def parse_node(self, response, node):
 self.logger.info('Hi, this is a <%s> node!: %s', self.itertag, ''.join(node.extract()))

 item = TestItem()
 item['id'] = node.xpath('@id').extract()
 item['name'] = node.xpath('name').extract()
 item['description'] = node.xpath('description').extract()
 return item

Basically what we did up there was to create a spider that downloads a feed from
the given start_urls, and then iterates through each of its item tags,
prints them out, and stores some random data in an Item.

CSVFeedSpider

	
class scrapy.spiders.CSVFeedSpider

	This spider is very similar to the XMLFeedSpider, except that it iterates
over rows, instead of nodes. The method that gets called in each iteration
is parse_row().

	
delimiter

	A string with the separator character for each field in the CSV file
Defaults to ',' (comma).

	
quotechar

	A string with the enclosure character for each field in the CSV file
Defaults to '"' (quotation mark).

	
headers

	A list of the rows contained in the file CSV feed which will be used to
extract fields from it.

	
parse_row(response, row)

	Receives a response and a dict (representing each row) with a key for each
provided (or detected) header of the CSV file. This spider also gives the
opportunity to override adapt_response and process_results methods
for pre- and post-processing purposes.

CSVFeedSpider example

Let’s see an example similar to the previous one, but using a
CSVFeedSpider:

from scrapy.spiders import CSVFeedSpider
from myproject.items import TestItem

class MySpider(CSVFeedSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com/feed.csv']
 delimiter = ';'
 quotechar = "'"
 headers = ['id', 'name', 'description']

 def parse_row(self, response, row):
 self.logger.info('Hi, this is a row!: %r', row)

 item = TestItem()
 item['id'] = row['id']
 item['name'] = row['name']
 item['description'] = row['description']
 return item

SitemapSpider

	
class scrapy.spiders.SitemapSpider

	SitemapSpider allows you to crawl a site by discovering the URLs using
Sitemaps [http://www.sitemaps.org].

It supports nested sitemaps and discovering sitemap urls from
robots.txt [http://www.robotstxt.org/].

	
sitemap_urls

	A list of urls pointing to the sitemaps whose urls you want to crawl.

You can also point to a robots.txt [http://www.robotstxt.org/] and it will be parsed to extract
sitemap urls from it.

	
sitemap_rules

	A list of tuples (regex, callback) where:

	regex is a regular expression to match urls extracted from sitemaps.
regex can be either a str or a compiled regex object.

	callback is the callback to use for processing the urls that match
the regular expression. callback can be a string (indicating the
name of a spider method) or a callable.

For example:

sitemap_rules = [('/product/', 'parse_product')]

Rules are applied in order, and only the first one that matches will be
used.

If you omit this attribute, all urls found in sitemaps will be
processed with the parse callback.

	
sitemap_follow

	A list of regexes of sitemap that should be followed. This is is only
for sites that use Sitemap index files [http://www.sitemaps.org/protocol.html#index] that point to other sitemap
files.

By default, all sitemaps are followed.

	
sitemap_alternate_links

	Specifies if alternate links for one url should be followed. These
are links for the same website in another language passed within
the same url block.

For example:

<url>
 <loc>http://example.com/</loc>
 <xhtml:link rel="alternate" hreflang="de" href="http://example.com/de"/>
</url>

With sitemap_alternate_links set, this would retrieve both URLs. With
sitemap_alternate_links disabled, only http://example.com/ would be
retrieved.

Default is sitemap_alternate_links disabled.

SitemapSpider examples

Simplest example: process all urls discovered through sitemaps using the
parse callback:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
 sitemap_urls = ['http://www.example.com/sitemap.xml']

 def parse(self, response):
 pass # ... scrape item here ...

Process some urls with certain callback and other urls with a different
callback:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
 sitemap_urls = ['http://www.example.com/sitemap.xml']
 sitemap_rules = [
 ('/product/', 'parse_product'),
 ('/category/', 'parse_category'),
]

 def parse_product(self, response):
 pass # ... scrape product ...

 def parse_category(self, response):
 pass # ... scrape category ...

Follow sitemaps defined in the robots.txt [http://www.robotstxt.org/] file and only follow sitemaps
whose url contains /sitemap_shop:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
 sitemap_urls = ['http://www.example.com/robots.txt']
 sitemap_rules = [
 ('/shop/', 'parse_shop'),
]
 sitemap_follow = ['/sitemap_shops']

 def parse_shop(self, response):
 pass # ... scrape shop here ...

Combine SitemapSpider with other sources of urls:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
 sitemap_urls = ['http://www.example.com/robots.txt']
 sitemap_rules = [
 ('/shop/', 'parse_shop'),
]

 other_urls = ['http://www.example.com/about']

 def start_requests(self):
 requests = list(super(MySpider, self).start_requests())
 requests += [scrapy.Request(x, self.parse_other) for x in self.other_urls]
 return requests

 def parse_shop(self, response):
 pass # ... scrape shop here ...

 def parse_other(self, response):
 pass # ... scrape other here ...

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Selectors

When you’re scraping web pages, the most common task you need to perform is
to extract data from the HTML source. There are several libraries available to
achieve this:

	BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] is a very popular web scraping library among Python
programmers which constructs a Python object based on the structure of the
HTML code and also deals with bad markup reasonably well, but it has one
drawback: it’s slow.

	lxml [http://lxml.de/] is an XML parsing library (which also parses HTML) with a pythonic
API based on ElementTree [https://docs.python.org/2/library/xml.etree.elementtree.html]. (lxml is not part of the Python standard
library.)

Scrapy comes with its own mechanism for extracting data. They’re called
selectors because they “select” certain parts of the HTML document specified
either by XPath [https://www.w3.org/TR/xpath] or CSS [https://www.w3.org/TR/selectors] expressions.

XPath [https://www.w3.org/TR/xpath] is a language for selecting nodes in XML documents, which can also be
used with HTML. CSS [https://www.w3.org/TR/selectors] is a language for applying styles to HTML documents. It
defines selectors to associate those styles with specific HTML elements.

Scrapy selectors are built over the lxml [http://lxml.de/] library, which means they’re very
similar in speed and parsing accuracy.

This page explains how selectors work and describes their API which is very
small and simple, unlike the lxml [http://lxml.de/] API which is much bigger because the
lxml [http://lxml.de/] library can be used for many other tasks, besides selecting markup
documents.

For a complete reference of the selectors API see
Selector reference

Using selectors

Constructing selectors

Scrapy selectors are instances of Selector class
constructed by passing text or TextResponse
object. It automatically chooses the best parsing rules (XML vs HTML) based on
input type:

>>> from scrapy.selector import Selector
>>> from scrapy.http import HtmlResponse

Constructing from text:

>>> body = '<html><body>good</body></html>'
>>> Selector(text=body).xpath('//span/text()').extract()
[u'good']

Constructing from response:

>>> response = HtmlResponse(url='http://example.com', body=body)
>>> Selector(response=response).xpath('//span/text()').extract()
[u'good']

For convenience, response objects expose a selector on .selector attribute,
it’s totally OK to use this shortcut when possible:

>>> response.selector.xpath('//span/text()').extract()
[u'good']

Using selectors

To explain how to use the selectors we’ll use the Scrapy shell (which
provides interactive testing) and an example page located in the Scrapy
documentation server:

http://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Here’s its HTML code:

<html>
 <head>
 <base href='http://example.com/' />
 <title>Example website</title>
 </head>
 <body>
 <div id='images'>
 Name: My image 1

 Name: My image 2

 Name: My image 3

 Name: My image 4

 Name: My image 5

 </div>
 </body>
</html>

First, let’s open the shell:

scrapy shell http://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Then, after the shell loads, you’ll have the response available as response
shell variable, and its attached selector in response.selector attribute.

Since we’re dealing with HTML, the selector will automatically use an HTML parser.

So, by looking at the HTML code of that
page, let’s construct an XPath for selecting the text inside the title tag:

>>> response.selector.xpath('//title/text()')
[<Selector (text) xpath=//title/text()>]

Querying responses using XPath and CSS is so common that responses include two
convenience shortcuts: response.xpath() and response.css():

>>> response.xpath('//title/text()')
[<Selector (text) xpath=//title/text()>]
>>> response.css('title::text')
[<Selector (text) xpath=//title/text()>]

As you can see, .xpath() and .css() methods return a
SelectorList instance, which is a list of new
selectors. This API can be used for quickly selecting nested data:

>>> response.css('img').xpath('@src').extract()
[u'image1_thumb.jpg',
 u'image2_thumb.jpg',
 u'image3_thumb.jpg',
 u'image4_thumb.jpg',
 u'image5_thumb.jpg']

To actually extract the textual data, you must call the selector .extract()
method, as follows:

>>> response.xpath('//title/text()').extract()
[u'Example website']

If you want to extract only first matched element, you can call the selector .extract_first()

>>> response.xpath('//div[@id="images"]/a/text()').extract_first()
u'Name: My image 1 '

It returns None if no element was found:

>>> response.xpath('//div[@id="not-exists"]/text()').extract_first() is None
True

A default return value can be provided as an argument, to be used instead of None:

>>> response.xpath('//div[@id="not-exists"]/text()').extract_first(default='not-found')
'not-found'

Notice that CSS selectors can select text or attribute nodes using CSS3
pseudo-elements:

>>> response.css('title::text').extract()
[u'Example website']

Now we’re going to get the base URL and some image links:

>>> response.xpath('//base/@href').extract()
[u'http://example.com/']

>>> response.css('base::attr(href)').extract()
[u'http://example.com/']

>>> response.xpath('//a[contains(@href, "image")]/@href').extract()
[u'image1.html',
 u'image2.html',
 u'image3.html',
 u'image4.html',
 u'image5.html']

>>> response.css('a[href*=image]::attr(href)').extract()
[u'image1.html',
 u'image2.html',
 u'image3.html',
 u'image4.html',
 u'image5.html']

>>> response.xpath('//a[contains(@href, "image")]/img/@src').extract()
[u'image1_thumb.jpg',
 u'image2_thumb.jpg',
 u'image3_thumb.jpg',
 u'image4_thumb.jpg',
 u'image5_thumb.jpg']

>>> response.css('a[href*=image] img::attr(src)').extract()
[u'image1_thumb.jpg',
 u'image2_thumb.jpg',
 u'image3_thumb.jpg',
 u'image4_thumb.jpg',
 u'image5_thumb.jpg']

Nesting selectors

The selection methods (.xpath() or .css()) return a list of selectors
of the same type, so you can call the selection methods for those selectors
too. Here’s an example:

>>> links = response.xpath('//a[contains(@href, "image")]')
>>> links.extract()
[u'Name: My image 1
',
 u'Name: My image 2
',
 u'Name: My image 3
',
 u'Name: My image 4
',
 u'Name: My image 5
']

>>> for index, link in enumerate(links):
... args = (index, link.xpath('@href').extract(), link.xpath('img/@src').extract())
... print 'Link number %d points to url %s and image %s' % args

Link number 0 points to url [u'image1.html'] and image [u'image1_thumb.jpg']
Link number 1 points to url [u'image2.html'] and image [u'image2_thumb.jpg']
Link number 2 points to url [u'image3.html'] and image [u'image3_thumb.jpg']
Link number 3 points to url [u'image4.html'] and image [u'image4_thumb.jpg']
Link number 4 points to url [u'image5.html'] and image [u'image5_thumb.jpg']

Using selectors with regular expressions

Selector also has a .re() method for extracting
data using regular expressions. However, unlike using .xpath() or
.css() methods, .re() returns a list of unicode strings. So you
can’t construct nested .re() calls.

Here’s an example used to extract image names from the HTML code above:

>>> response.xpath('//a[contains(@href, "image")]/text()').re(r'Name:\s*(.*)')
[u'My image 1',
 u'My image 2',
 u'My image 3',
 u'My image 4',
 u'My image 5']

There’s an additional helper reciprocating .extract_first() for .re(),
named .re_first(). Use it to extract just the first matching string:

>>> response.xpath('//a[contains(@href, "image")]/text()').re_first(r'Name:\s*(.*)')
u'My image 1'

Working with relative XPaths

Keep in mind that if you are nesting selectors and use an XPath that starts
with /, that XPath will be absolute to the document and not relative to the
Selector you’re calling it from.

For example, suppose you want to extract all <p> elements inside <div>
elements. First, you would get all <div> elements:

>>> divs = response.xpath('//div')

At first, you may be tempted to use the following approach, which is wrong, as
it actually extracts all <p> elements from the document, not only those
inside <div> elements:

>>> for p in divs.xpath('//p'): # this is wrong - gets all <p> from the whole document
... print p.extract()

This is the proper way to do it (note the dot prefixing the .//p XPath):

>>> for p in divs.xpath('.//p'): # extracts all <p> inside
... print p.extract()

Another common case would be to extract all direct <p> children:

>>> for p in divs.xpath('p'):
... print p.extract()

For more details about relative XPaths see the Location Paths [https://www.w3.org/TR/xpath#location-paths] section in the
XPath specification.

Using EXSLT extensions

Being built atop lxml [http://lxml.de/], Scrapy selectors also support some EXSLT [http://exslt.org/] extensions
and come with these pre-registered namespaces to use in XPath expressions:

	prefix
	namespace
	usage

	re
	http://exslt.org/regular-expressions
	regular expressions [http://exslt.org/regexp/index.html]

	set
	http://exslt.org/sets
	set manipulation [http://exslt.org/set/index.html]

Regular expressions

The test() function, for example, can prove quite useful when XPath’s
starts-with() or contains() are not sufficient.

Example selecting links in list item with a “class” attribute ending with a digit:

>>> from scrapy import Selector
>>> doc = """
... <div>
...
... <li class="item-0">first item
... <li class="item-1">second item
... <li class="item-inactive">third item
... <li class="item-1">fourth item
... <li class="item-0">fifth item
...
... </div>
... """
>>> sel = Selector(text=doc, type="html")
>>> sel.xpath('//li//@href').extract()
[u'link1.html', u'link2.html', u'link3.html', u'link4.html', u'link5.html']
>>> sel.xpath('//li[re:test(@class, "item-\d$")]//@href').extract()
[u'link1.html', u'link2.html', u'link4.html', u'link5.html']
>>>

Warning

C library libxslt doesn’t natively support EXSLT regular
expressions so lxml [http://lxml.de/]‘s implementation uses hooks to Python’s re module.
Thus, using regexp functions in your XPath expressions may add a small
performance penalty.

Set operations

These can be handy for excluding parts of a document tree before
extracting text elements for example.

Example extracting microdata (sample content taken from http://schema.org/Product)
with groups of itemscopes and corresponding itemprops:

>>> doc = """
... <div itemscope itemtype="http://schema.org/Product">
... Kenmore White 17" Microwave
...
... <div itemprop="aggregateRating"
... itemscope itemtype="http://schema.org/AggregateRating">
... Rated 3.5/5
... based on 11 customer reviews
... </div>
...
... <div itemprop="offers" itemscope itemtype="http://schema.org/Offer">
... $55.00
... <link itemprop="availability" href="http://schema.org/InStock" />In stock
... </div>
...
... Product description:
... 0.7 cubic feet countertop microwave.
... Has six preset cooking categories and convenience features like
... Add-A-Minute and Child Lock.
...
... Customer reviews:
...
... <div itemprop="review" itemscope itemtype="http://schema.org/Review">
... Not a happy camper -
... by Ellie,
... <meta itemprop="datePublished" content="2011-04-01">April 1, 2011
... <div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
... <meta itemprop="worstRating" content = "1">
... 1/
... 5stars
... </div>
... The lamp burned out and now I have to replace
... it.
... </div>
...
... <div itemprop="review" itemscope itemtype="http://schema.org/Review">
... Value purchase -
... by Lucas,
... <meta itemprop="datePublished" content="2011-03-25">March 25, 2011
... <div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
... <meta itemprop="worstRating" content = "1"/>
... 4/
... 5stars
... </div>
... Great microwave for the price. It is small and
... fits in my apartment.
... </div>
... ...
... </div>
... """
>>> sel = Selector(text=doc, type="html")
>>> for scope in sel.xpath('//div[@itemscope]'):
... print "current scope:", scope.xpath('@itemtype').extract()
... props = scope.xpath('''
... set:difference(./descendant::*/@itemprop,
... .//*[@itemscope]/*/@itemprop)''')
... print " properties:", props.extract()
... print

current scope: [u'http://schema.org/Product']
 properties: [u'name', u'aggregateRating', u'offers', u'description', u'review', u'review']

current scope: [u'http://schema.org/AggregateRating']
 properties: [u'ratingValue', u'reviewCount']

current scope: [u'http://schema.org/Offer']
 properties: [u'price', u'availability']

current scope: [u'http://schema.org/Review']
 properties: [u'name', u'author', u'datePublished', u'reviewRating', u'description']

current scope: [u'http://schema.org/Rating']
 properties: [u'worstRating', u'ratingValue', u'bestRating']

current scope: [u'http://schema.org/Review']
 properties: [u'name', u'author', u'datePublished', u'reviewRating', u'description']

current scope: [u'http://schema.org/Rating']
 properties: [u'worstRating', u'ratingValue', u'bestRating']

>>>

Here we first iterate over itemscope elements, and for each one,
we look for all itemprops elements and exclude those that are themselves
inside another itemscope.

Some XPath tips

Here are some tips that you may find useful when using XPath
with Scrapy selectors, based on this post from ScrapingHub’s blog [https://blog.scrapinghub.com/2014/07/17/xpath-tips-from-the-web-scraping-trenches/].
If you are not much familiar with XPath yet,
you may want to take a look first at this XPath tutorial [http://www.zvon.org/comp/r/tut-XPath_1.html].

Using text nodes in a condition

When you need to use the text content as argument to an XPath string function [https://www.w3.org/TR/xpath/#section-String-Functions],
avoid using .//text() and use just . instead.

This is because the expression .//text() yields a collection of text elements – a node-set.
And when a node-set is converted to a string, which happens when it is passed as argument to
a string function like contains() or starts-with(), it results in the text for the first element only.

Example:

>>> from scrapy import Selector
>>> sel = Selector(text='Click here to go to the Next Page')

Converting a node-set to string:

>>> sel.xpath('//a//text()').extract() # take a peek at the node-set
[u'Click here to go to the ', u'Next Page']
>>> sel.xpath("string(//a[1]//text())").extract() # convert it to string
[u'Click here to go to the ']

A node converted to a string, however, puts together the text of itself plus of all its descendants:

>>> sel.xpath("//a[1]").extract() # select the first node
[u'Click here to go to the Next Page']
>>> sel.xpath("string(//a[1])").extract() # convert it to string
[u'Click here to go to the Next Page']

So, using the .//text() node-set won’t select anything in this case:

>>> sel.xpath("//a[contains(.//text(), 'Next Page')]").extract()
[]

But using the . to mean the node, works:

>>> sel.xpath("//a[contains(., 'Next Page')]").extract()
[u'Click here to go to the Next Page']

Beware of the difference between //node[1] and (//node)[1]

//node[1] selects all the nodes occurring first under their respective parents.

(//node)[1] selects all the nodes in the document, and then gets only the first of them.

Example:

>>> from scrapy import Selector
>>> sel = Selector(text="""
....: <ul class="list">
....: 1
....: 2
....: 3
....:
....: <ul class="list">
....: 4
....: 5
....: 6
....: """)
>>> xp = lambda x: sel.xpath(x).extract()

This gets all first elements under whatever it is its parent:

>>> xp("//li[1]")
[u'1', u'4']

And this gets the first element in the whole document:

>>> xp("(//li)[1]")
[u'1']

This gets all first elements under an parent:

>>> xp("//ul/li[1]")
[u'1', u'4']

And this gets the first element under an parent in the whole document:

>>> xp("(//ul/li)[1]")
[u'1']

When querying by class, consider using CSS

Because an element can contain multiple CSS classes, the XPath way to select elements
by class is the rather verbose:

*[contains(concat(' ', normalize-space(@class), ' '), ' someclass ')]

If you use @class='someclass' you may end up missing elements that have
other classes, and if you just use contains(@class, 'someclass') to make up
for that you may end up with more elements that you want, if they have a different
class name that shares the string someclass.

As it turns out, Scrapy selectors allow you to chain selectors, so most of the time
you can just select by class using CSS and then switch to XPath when needed:

>>> from scrapy import Selector
>>> sel = Selector(text='<div class="hero shout"><time datetime="2014-07-23 19:00">Special date</time></div>')
>>> sel.css('.shout').xpath('./time/@datetime').extract()
[u'2014-07-23 19:00']

This is cleaner than using the verbose XPath trick shown above. Just remember
to use the . in the XPath expressions that will follow.

Built-in Selectors reference

	
class scrapy.selector.Selector(response=None, text=None, type=None)

	An instance of Selector is a wrapper over response to select
certain parts of its content.

response is an HtmlResponse or an
XmlResponse object that will be used for selecting and
extracting data.

text is a unicode string or utf-8 encoded text for cases when a
response isn’t available. Using text and response together is
undefined behavior.

type defines the selector type, it can be "html", "xml" or None (default).

If type is None, the selector automatically chooses the best type
based on response type (see below), or defaults to "html" in case it
is used together with text.

If type is None and a response is passed, the selector type is
inferred from the response type as follows:

	"html" for HtmlResponse type

	"xml" for XmlResponse type

	"html" for anything else

Otherwise, if type is set, the selector type will be forced and no
detection will occur.

	
xpath(query)

	Find nodes matching the xpath query and return the result as a
SelectorList instance with all elements flattened. List
elements implement Selector interface too.

query is a string containing the XPATH query to apply.

Note

For convenience, this method can be called as response.xpath()

	
css(query)

	Apply the given CSS selector and return a SelectorList instance.

query is a string containing the CSS selector to apply.

In the background, CSS queries are translated into XPath queries using
cssselect [https://pypi.python.org/pypi/cssselect/] library and run .xpath() method.

Note

For convenience this method can be called as response.css()

	
extract()

	Serialize and return the matched nodes as a list of unicode strings.
Percent encoded content is unquoted.

	
re(regex)

	Apply the given regex and return a list of unicode strings with the
matches.

regex can be either a compiled regular expression or a string which
will be compiled to a regular expression using re.compile(regex)

	
register_namespace(prefix, uri)

	Register the given namespace to be used in this Selector.
Without registering namespaces you can’t select or extract data from
non-standard namespaces. See examples below.

	
remove_namespaces()

	Remove all namespaces, allowing to traverse the document using
namespace-less xpaths. See example below.

	
__nonzero__()

	Returns True if there is any real content selected or False
otherwise. In other words, the boolean value of a Selector is
given by the contents it selects.

SelectorList objects

	
class scrapy.selector.SelectorList

	The SelectorList class is a subclass of the builtin list
class, which provides a few additional methods.

	
xpath(query)

	Call the .xpath() method for each element in this list and return
their results flattened as another SelectorList.

query is the same argument as the one in Selector.xpath()

	
css(query)

	Call the .css() method for each element in this list and return
their results flattened as another SelectorList.

query is the same argument as the one in Selector.css()

	
extract()

	Call the .extract() method for each element in this list and return
their results flattened, as a list of unicode strings.

	
re()

	Call the .re() method for each element in this list and return
their results flattened, as a list of unicode strings.

	
__nonzero__()

	returns True if the list is not empty, False otherwise.

Selector examples on HTML response

Here’s a couple of Selector examples to illustrate several concepts.
In all cases, we assume there is already a Selector instantiated with
a HtmlResponse object like this:

sel = Selector(html_response)

	Select all <h1> elements from an HTML response body, returning a list of
Selector objects (ie. a SelectorList object):

sel.xpath("//h1")

	Extract the text of all <h1> elements from an HTML response body,
returning a list of unicode strings:

sel.xpath("//h1").extract() # this includes the h1 tag
sel.xpath("//h1/text()").extract() # this excludes the h1 tag

	Iterate over all <p> tags and print their class attribute:

for node in sel.xpath("//p"):
 print node.xpath("@class").extract()

Selector examples on XML response

Here’s a couple of examples to illustrate several concepts. In both cases we
assume there is already a Selector instantiated with an
XmlResponse object like this:

sel = Selector(xml_response)

	Select all <product> elements from an XML response body, returning a list
of Selector objects (ie. a SelectorList object):

sel.xpath("//product")

	Extract all prices from a Google Base XML feed [https://support.google.com/merchants/answer/160589?hl=en&ref_topic=2473799] which requires registering
a namespace:

sel.register_namespace("g", "http://base.google.com/ns/1.0")
sel.xpath("//g:price").extract()

Removing namespaces

When dealing with scraping projects, it is often quite convenient to get rid of
namespaces altogether and just work with element names, to write more
simple/convenient XPaths. You can use the
Selector.remove_namespaces() method for that.

Let’s show an example that illustrates this with GitHub blog atom feed.

First, we open the shell with the url we want to scrape:

$ scrapy shell https://github.com/blog.atom

Once in the shell we can try selecting all <link> objects and see that it
doesn’t work (because the Atom XML namespace is obfuscating those nodes):

>>> response.xpath("//link")
[]

But once we call the Selector.remove_namespaces() method, all
nodes can be accessed directly by their names:

>>> response.selector.remove_namespaces()
>>> response.xpath("//link")
[<Selector xpath='//link' data=u'<link xmlns="http://www.w3.org/2005/Atom'>,
 <Selector xpath='//link' data=u'<link xmlns="http://www.w3.org/2005/Atom'>,
 ...

If you wonder why the namespace removal procedure isn’t always called by default
instead of having to call it manually, this is because of two reasons, which, in order
of relevance, are:

	Removing namespaces requires to iterate and modify all nodes in the
document, which is a reasonably expensive operation to perform for all
documents crawled by Scrapy

	There could be some cases where using namespaces is actually required, in
case some element names clash between namespaces. These cases are very rare
though.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Items

The main goal in scraping is to extract structured data from unstructured
sources, typically, web pages. Scrapy spiders can return the extracted data
as Python dicts. While convenient and familiar, Python dicts lack structure:
it is easy to make a typo in a field name or return inconsistent data,
especially in a larger project with many spiders.

To define common output data format Scrapy provides the Item class.
Item objects are simple containers used to collect the scraped data.
They provide a dictionary-like [https://docs.python.org/2/library/stdtypes.html#dict] API with a convenient syntax for declaring
their available fields.

Various Scrapy components use extra information provided by Items:
exporters look at declared fields to figure out columns to export,
serialization can be customized using Item fields metadata, trackref
tracks Item instances to help finding memory leaks
(see Debugging memory leaks with trackref), etc.

Declaring Items

Items are declared using a simple class definition syntax and Field
objects. Here is an example:

import scrapy

class Product(scrapy.Item):
 name = scrapy.Field()
 price = scrapy.Field()
 stock = scrapy.Field()
 last_updated = scrapy.Field(serializer=str)

Note

Those familiar with Django [https://www.djangoproject.com/] will notice that Scrapy Items are
declared similar to Django Models [https://docs.djangoproject.com/en/dev/topics/db/models/], except that Scrapy Items are much
simpler as there is no concept of different field types.

Item Fields

Field objects are used to specify metadata for each field. For
example, the serializer function for the last_updated field illustrated in
the example above.

You can specify any kind of metadata for each field. There is no restriction on
the values accepted by Field objects. For this same
reason, there is no reference list of all available metadata keys. Each key
defined in Field objects could be used by a different component, and
only those components know about it. You can also define and use any other
Field key in your project too, for your own needs. The main goal of
Field objects is to provide a way to define all field metadata in one
place. Typically, those components whose behaviour depends on each field use
certain field keys to configure that behaviour. You must refer to their
documentation to see which metadata keys are used by each component.

It’s important to note that the Field objects used to declare the item
do not stay assigned as class attributes. Instead, they can be accessed through
the Item.fields attribute.

Working with Items

Here are some examples of common tasks performed with items, using the
Product item declared above. You will
notice the API is very similar to the dict API [https://docs.python.org/2/library/stdtypes.html#dict].

Creating items

>>> product = Product(name='Desktop PC', price=1000)
>>> print product
Product(name='Desktop PC', price=1000)

Getting field values

>>> product['name']
Desktop PC
>>> product.get('name')
Desktop PC

>>> product['price']
1000

>>> product['last_updated']
Traceback (most recent call last):
 ...
KeyError: 'last_updated'

>>> product.get('last_updated', 'not set')
not set

>>> product['lala'] # getting unknown field
Traceback (most recent call last):
 ...
KeyError: 'lala'

>>> product.get('lala', 'unknown field')
'unknown field'

>>> 'name' in product # is name field populated?
True

>>> 'last_updated' in product # is last_updated populated?
False

>>> 'last_updated' in product.fields # is last_updated a declared field?
True

>>> 'lala' in product.fields # is lala a declared field?
False

Setting field values

>>> product['last_updated'] = 'today'
>>> product['last_updated']
today

>>> product['lala'] = 'test' # setting unknown field
Traceback (most recent call last):
 ...
KeyError: 'Product does not support field: lala'

Accessing all populated values

To access all populated values, just use the typical dict API [https://docs.python.org/2/library/stdtypes.html#dict]:

>>> product.keys()
['price', 'name']

>>> product.items()
[('price', 1000), ('name', 'Desktop PC')]

Other common tasks

Copying items:

>>> product2 = Product(product)
>>> print product2
Product(name='Desktop PC', price=1000)

>>> product3 = product2.copy()
>>> print product3
Product(name='Desktop PC', price=1000)

Creating dicts from items:

>>> dict(product) # create a dict from all populated values
{'price': 1000, 'name': 'Desktop PC'}

Creating items from dicts:

>>> Product({'name': 'Laptop PC', 'price': 1500})
Product(price=1500, name='Laptop PC')

>>> Product({'name': 'Laptop PC', 'lala': 1500}) # warning: unknown field in dict
Traceback (most recent call last):
 ...
KeyError: 'Product does not support field: lala'

Extending Items

You can extend Items (to add more fields or to change some metadata for some
fields) by declaring a subclass of your original Item.

For example:

class DiscountedProduct(Product):
 discount_percent = scrapy.Field(serializer=str)
 discount_expiration_date = scrapy.Field()

You can also extend field metadata by using the previous field metadata and
appending more values, or changing existing values, like this:

class SpecificProduct(Product):
 name = scrapy.Field(Product.fields['name'], serializer=my_serializer)

That adds (or replaces) the serializer metadata key for the name field,
keeping all the previously existing metadata values.

Item objects

	
class scrapy.item.Item([arg])

	Return a new Item optionally initialized from the given argument.

Items replicate the standard dict API [https://docs.python.org/2/library/stdtypes.html#dict], including its constructor. The
only additional attribute provided by Items is:

	
fields

	A dictionary containing all declared fields for this Item, not only
those populated. The keys are the field names and the values are the
Field objects used in the Item declaration.

Field objects

	
class scrapy.item.Field([arg])

	The Field class is just an alias to the built-in dict [https://docs.python.org/2/library/stdtypes.html#dict] class and
doesn’t provide any extra functionality or attributes. In other words,
Field objects are plain-old Python dicts. A separate class is used
to support the item declaration syntax
based on class attributes.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Item Loaders

Item Loaders provide a convenient mechanism for populating scraped Items. Even though Items can be populated using their own
dictionary-like API, Item Loaders provide a much more convenient API for
populating them from a scraping process, by automating some common tasks like
parsing the raw extracted data before assigning it.

In other words, Items provide the container of
scraped data, while Item Loaders provide the mechanism for populating that
container.

Item Loaders are designed to provide a flexible, efficient and easy mechanism
for extending and overriding different field parsing rules, either by spider,
or by source format (HTML, XML, etc) without becoming a nightmare to maintain.

Using Item Loaders to populate items

To use an Item Loader, you must first instantiate it. You can either
instantiate it with a dict-like object (e.g. Item or dict) or without one, in
which case an Item is automatically instantiated in the Item Loader constructor
using the Item class specified in the ItemLoader.default_item_class
attribute.

Then, you start collecting values into the Item Loader, typically using
Selectors. You can add more than one value to
the same item field; the Item Loader will know how to “join” those values later
using a proper processing function.

Here is a typical Item Loader usage in a Spider, using
the Product item declared in the Items
chapter:

from scrapy.loader import ItemLoader
from myproject.items import Product

def parse(self, response):
 l = ItemLoader(item=Product(), response=response)
 l.add_xpath('name', '//div[@class="product_name"]')
 l.add_xpath('name', '//div[@class="product_title"]')
 l.add_xpath('price', '//p[@id="price"]')
 l.add_css('stock', 'p#stock]')
 l.add_value('last_updated', 'today') # you can also use literal values
 return l.load_item()

By quickly looking at that code, we can see the name field is being
extracted from two different XPath locations in the page:

	//div[@class="product_name"]

	//div[@class="product_title"]

In other words, data is being collected by extracting it from two XPath
locations, using the add_xpath() method. This is the
data that will be assigned to the name field later.

Afterwards, similar calls are used for price and stock fields
(the latter using a CSS selector with the add_css() method),
and finally the last_update field is populated directly with a literal value
(today) using a different method: add_value().

Finally, when all data is collected, the ItemLoader.load_item() method is
called which actually returns the item populated with the data
previously extracted and collected with the add_xpath(),
add_css(), and add_value() calls.

Input and Output processors

An Item Loader contains one input processor and one output processor for each
(item) field. The input processor processes the extracted data as soon as it’s
received (through the add_xpath(), add_css() or
add_value() methods) and the result of the input processor is
collected and kept inside the ItemLoader. After collecting all data, the
ItemLoader.load_item() method is called to populate and get the populated
Item object. That’s when the output processor is
called with the data previously collected (and processed using the input
processor). The result of the output processor is the final value that gets
assigned to the item.

Let’s see an example to illustrate how the input and output processors are
called for a particular field (the same applies for any other field):

l = ItemLoader(Product(), some_selector)
l.add_xpath('name', xpath1) # (1)
l.add_xpath('name', xpath2) # (2)
l.add_css('name', css) # (3)
l.add_value('name', 'test') # (4)
return l.load_item() # (5)

So what happens is:

	Data from xpath1 is extracted, and passed through the input processor of
the name field. The result of the input processor is collected and kept in
the Item Loader (but not yet assigned to the item).

	Data from xpath2 is extracted, and passed through the same input
processor used in (1). The result of the input processor is appended to the
data collected in (1) (if any).

	This case is similar to the previous ones, except that the data is extracted
from the css CSS selector, and passed through the same input
processor used in (1) and (2). The result of the input processor is appended to the
data collected in (1) and (2) (if any).

	This case is also similar to the previous ones, except that the value to be
collected is assigned directly, instead of being extracted from a XPath
expression or a CSS selector.
However, the value is still passed through the input processors. In this
case, since the value is not iterable it is converted to an iterable of a
single element before passing it to the input processor, because input
processor always receive iterables.

	The data collected in steps (1), (2), (3) and (4) is passed through
the output processor of the name field.
The result of the output processor is the value assigned to the name
field in the item.

It’s worth noticing that processors are just callable objects, which are called
with the data to be parsed, and return a parsed value. So you can use any
function as input or output processor. The only requirement is that they must
accept one (and only one) positional argument, which will be an iterator.

Note

Both input and output processors must receive an iterator as their
first argument. The output of those functions can be anything. The result of
input processors will be appended to an internal list (in the Loader)
containing the collected values (for that field). The result of the output
processors is the value that will be finally assigned to the item.

The other thing you need to keep in mind is that the values returned by input
processors are collected internally (in lists) and then passed to output
processors to populate the fields.

Last, but not least, Scrapy comes with some commonly used processors built-in for convenience.

Declaring Item Loaders

Item Loaders are declared like Items, by using a class definition syntax. Here
is an example:

from scrapy.loader import ItemLoader
from scrapy.loader.processors import TakeFirst, MapCompose, Join

class ProductLoader(ItemLoader):

 default_output_processor = TakeFirst()

 name_in = MapCompose(unicode.title)
 name_out = Join()

 price_in = MapCompose(unicode.strip)

 # ...

As you can see, input processors are declared using the _in suffix while
output processors are declared using the _out suffix. And you can also
declare a default input/output processors using the
ItemLoader.default_input_processor and
ItemLoader.default_output_processor attributes.

Declaring Input and Output Processors

As seen in the previous section, input and output processors can be declared in
the Item Loader definition, and it’s very common to declare input processors
this way. However, there is one more place where you can specify the input and
output processors to use: in the Item Field
metadata. Here is an example:

import scrapy
from scrapy.loader.processors import Join, MapCompose, TakeFirst
from w3lib.html import remove_tags

def filter_price(value):
 if value.isdigit():
 return value

class Product(scrapy.Item):
 name = scrapy.Field(
 input_processor=MapCompose(remove_tags),
 output_processor=Join(),
)
 price = scrapy.Field(
 input_processor=MapCompose(remove_tags, filter_price),
 output_processor=TakeFirst(),
)

>>> from scrapy.loader import ItemLoader
>>> il = ItemLoader(item=Product())
>>> il.add_value('name', [u'Welcome to my', u'website'])
>>> il.add_value('price', [u'€', u'1000'])
>>> il.load_item()
{'name': u'Welcome to my website', 'price': u'1000'}

The precedence order, for both input and output processors, is as follows:

	Item Loader field-specific attributes: field_in and field_out (most
precedence)

	Field metadata (input_processor and output_processor key)

	Item Loader defaults: ItemLoader.default_input_processor() and
ItemLoader.default_output_processor() (least precedence)

See also: Reusing and extending Item Loaders.

Item Loader Context

The Item Loader Context is a dict of arbitrary key/values which is shared among
all input and output processors in the Item Loader. It can be passed when
declaring, instantiating or using Item Loader. They are used to modify the
behaviour of the input/output processors.

For example, suppose you have a function parse_length which receives a text
value and extracts a length from it:

def parse_length(text, loader_context):
 unit = loader_context.get('unit', 'm')
 # ... length parsing code goes here ...
 return parsed_length

By accepting a loader_context argument the function is explicitly telling
the Item Loader that it’s able to receive an Item Loader context, so the Item
Loader passes the currently active context when calling it, and the processor
function (parse_length in this case) can thus use them.

There are several ways to modify Item Loader context values:

	By modifying the currently active Item Loader context
(context attribute):

loader = ItemLoader(product)
loader.context['unit'] = 'cm'

	On Item Loader instantiation (the keyword arguments of Item Loader
constructor are stored in the Item Loader context):

loader = ItemLoader(product, unit='cm')

	On Item Loader declaration, for those input/output processors that support
instantiating them with an Item Loader context. MapCompose is one of
them:

class ProductLoader(ItemLoader):
 length_out = MapCompose(parse_length, unit='cm')

ItemLoader objects

	
class scrapy.loader.ItemLoader([item, selector, response,]**kwargs)

	Return a new Item Loader for populating the given Item. If no item is
given, one is instantiated automatically using the class in
default_item_class.

When instantiated with a selector or a response parameters
the ItemLoader class provides convenient mechanisms for extracting
data from web pages using selectors.

	Parameters:	
	item (Item object) – The item instance to populate using subsequent calls to
add_xpath(), add_css(),
or add_value().

	selector (Selector object) – The selector to extract data from, when using the
add_xpath() (resp. add_css()) or replace_xpath()
(resp. replace_css()) method.

	response (Response object) – The response used to construct the selector using the
default_selector_class, unless the selector argument is given,
in which case this argument is ignored.

The item, selector, response and the remaining keyword arguments are
assigned to the Loader context (accessible through the context attribute).

ItemLoader instances have the following methods:

	
get_value(value, *processors, **kwargs)

	Process the given value by the given processors and keyword
arguments.

Available keyword arguments:

	Parameters:	re (str or compiled regex) – a regular expression to use for extracting data from the
given value using extract_regex() method,
applied before processors

Examples:

>>> from scrapy.loader.processors import TakeFirst
>>> loader.get_value(u'name: foo', TakeFirst(), unicode.upper, re='name: (.+)')
'FOO`

	
add_value(field_name, value, *processors, **kwargs)

	Process and then add the given value for the given field.

The value is first passed through get_value() by giving the
processors and kwargs, and then passed through the
field input processor and its result
appended to the data collected for that field. If the field already
contains collected data, the new data is added.

The given field_name can be None, in which case values for
multiple fields may be added. And the processed value should be a dict
with field_name mapped to values.

Examples:

loader.add_value('name', u'Color TV')
loader.add_value('colours', [u'white', u'blue'])
loader.add_value('length', u'100')
loader.add_value('name', u'name: foo', TakeFirst(), re='name: (.+)')
loader.add_value(None, {'name': u'foo', 'sex': u'male'})

	
replace_value(field_name, value, *processors, **kwargs)

	Similar to add_value() but replaces the collected data with the
new value instead of adding it.

	
get_xpath(xpath, *processors, **kwargs)

	Similar to ItemLoader.get_value() but receives an XPath instead of a
value, which is used to extract a list of unicode strings from the
selector associated with this ItemLoader.

	Parameters:	
	xpath (str) – the XPath to extract data from

	re (str or compiled regex) – a regular expression to use for extracting data from the
selected XPath region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_xpath('//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.get_xpath('//p[@id="price"]', TakeFirst(), re='the price is (.*)')

	
add_xpath(field_name, xpath, *processors, **kwargs)

	Similar to ItemLoader.add_value() but receives an XPath instead of a
value, which is used to extract a list of unicode strings from the
selector associated with this ItemLoader.

See get_xpath() for kwargs.

	Parameters:	xpath (str) – the XPath to extract data from

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.add_xpath('name', '//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.add_xpath('price', '//p[@id="price"]', re='the price is (.*)')

	
replace_xpath(field_name, xpath, *processors, **kwargs)

	Similar to add_xpath() but replaces collected data instead of
adding it.

	
get_css(css, *processors, **kwargs)

	Similar to ItemLoader.get_value() but receives a CSS selector
instead of a value, which is used to extract a list of unicode strings
from the selector associated with this ItemLoader.

	Parameters:	
	css (str) – the CSS selector to extract data from

	re (str or compiled regex) – a regular expression to use for extracting data from the
selected CSS region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_css('p.product-name')
HTML snippet: <p id="price">the price is $1200</p>
loader.get_css('p#price', TakeFirst(), re='the price is (.*)')

	
add_css(field_name, css, *processors, **kwargs)

	Similar to ItemLoader.add_value() but receives a CSS selector
instead of a value, which is used to extract a list of unicode strings
from the selector associated with this ItemLoader.

See get_css() for kwargs.

	Parameters:	css (str) – the CSS selector to extract data from

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.add_css('name', 'p.product-name')
HTML snippet: <p id="price">the price is $1200</p>
loader.add_css('price', 'p#price', re='the price is (.*)')

	
replace_css(field_name, css, *processors, **kwargs)

	Similar to add_css() but replaces collected data instead of
adding it.

	
load_item()

	Populate the item with the data collected so far, and return it. The
data collected is first passed through the output processors to get the final value to assign to each
item field.

	
nested_xpath(xpath)

	Create a nested loader with an xpath selector.
The supplied selector is applied relative to selector associated
with this ItemLoader. The nested loader shares the Item
with the parent ItemLoader so calls to add_xpath(),
add_value(), replace_value(), etc. will behave as expected.

	
nested_css(css)

	Create a nested loader with a css selector.
The supplied selector is applied relative to selector associated
with this ItemLoader. The nested loader shares the Item
with the parent ItemLoader so calls to add_xpath(),
add_value(), replace_value(), etc. will behave as expected.

	
get_collected_values(field_name)

	Return the collected values for the given field.

	
get_output_value(field_name)

	Return the collected values parsed using the output processor, for the
given field. This method doesn’t populate or modify the item at all.

	
get_input_processor(field_name)

	Return the input processor for the given field.

	
get_output_processor(field_name)

	Return the output processor for the given field.

ItemLoader instances have the following attributes:

	
item

	The Item object being parsed by this Item Loader.

	
context

	The currently active Context of this
Item Loader.

	
default_item_class

	An Item class (or factory), used to instantiate items when not given in
the constructor.

	
default_input_processor

	The default input processor to use for those fields which don’t specify
one.

	
default_output_processor

	The default output processor to use for those fields which don’t specify
one.

	
default_selector_class

	The class used to construct the selector of this
ItemLoader, if only a response is given in the constructor.
If a selector is given in the constructor this attribute is ignored.
This attribute is sometimes overridden in subclasses.

	
selector

	The Selector object to extract data from.
It’s either the selector given in the constructor or one created from
the response given in the constructor using the
default_selector_class. This attribute is meant to be
read-only.

Nested Loaders

When parsing related values from a subsection of a document, it can be
useful to create nested loaders. Imagine you’re extracting details from
a footer of a page that looks something like:

Example:

<footer>
 Like Us
 Follow Us
 Email Us
</footer>

Without nested loaders, you need to specify the full xpath (or css) for each value
that you wish to extract.

Example:

loader = ItemLoader(item=Item())
load stuff not in the footer
loader.add_xpath('social', '//footer/a[@class = "social"]/@href')
loader.add_xpath('email', '//footer/a[@class = "email"]/@href')
loader.load_item()

Instead, you can create a nested loader with the footer selector and add values
relative to the footer. The functionality is the same but you avoid repeating
the footer selector.

Example:

loader = ItemLoader(item=Item())
load stuff not in the footer
footer_loader = loader.nested_xpath('//footer')
footer_loader.add_xpath('social', 'a[@class = "social"]/@href')
footer_loader.add_xpath('email', 'a[@class = "email"]/@href')
no need to call footer_loader.load_item()
loader.load_item()

You can nest loaders arbitrarily and they work with either xpath or css selectors.
As a general guideline, use nested loaders when they make your code simpler but do
not go overboard with nesting or your parser can become difficult to read.

Reusing and extending Item Loaders

As your project grows bigger and acquires more and more spiders, maintenance
becomes a fundamental problem, especially when you have to deal with many
different parsing rules for each spider, having a lot of exceptions, but also
wanting to reuse the common processors.

Item Loaders are designed to ease the maintenance burden of parsing rules,
without losing flexibility and, at the same time, providing a convenient
mechanism for extending and overriding them. For this reason Item Loaders
support traditional Python class inheritance for dealing with differences of
specific spiders (or groups of spiders).

Suppose, for example, that some particular site encloses their product names in
three dashes (e.g. ---Plasma TV---) and you don’t want to end up scraping
those dashes in the final product names.

Here’s how you can remove those dashes by reusing and extending the default
Product Item Loader (ProductLoader):

from scrapy.loader.processors import MapCompose
from myproject.ItemLoaders import ProductLoader

def strip_dashes(x):
 return x.strip('-')

class SiteSpecificLoader(ProductLoader):
 name_in = MapCompose(strip_dashes, ProductLoader.name_in)

Another case where extending Item Loaders can be very helpful is when you have
multiple source formats, for example XML and HTML. In the XML version you may
want to remove CDATA occurrences. Here’s an example of how to do it:

from scrapy.loader.processors import MapCompose
from myproject.ItemLoaders import ProductLoader
from myproject.utils.xml import remove_cdata

class XmlProductLoader(ProductLoader):
 name_in = MapCompose(remove_cdata, ProductLoader.name_in)

And that’s how you typically extend input processors.

As for output processors, it is more common to declare them in the field metadata,
as they usually depend only on the field and not on each specific site parsing
rule (as input processors do). See also:
Declaring Input and Output Processors.

There are many other possible ways to extend, inherit and override your Item
Loaders, and different Item Loaders hierarchies may fit better for different
projects. Scrapy only provides the mechanism; it doesn’t impose any specific
organization of your Loaders collection - that’s up to you and your project’s
needs.

Available built-in processors

Even though you can use any callable function as input and output processors,
Scrapy provides some commonly used processors, which are described below. Some
of them, like the MapCompose (which is typically used as input
processor) compose the output of several functions executed in order, to
produce the final parsed value.

Here is a list of all built-in processors:

	
class scrapy.loader.processors.Identity

	The simplest processor, which doesn’t do anything. It returns the original
values unchanged. It doesn’t receive any constructor arguments, nor does it
accept Loader contexts.

Example:

>>> from scrapy.loader.processors import Identity
>>> proc = Identity()
>>> proc(['one', 'two', 'three'])
['one', 'two', 'three']

	
class scrapy.loader.processors.TakeFirst

	Returns the first non-null/non-empty value from the values received,
so it’s typically used as an output processor to single-valued fields.
It doesn’t receive any constructor arguments, nor does it accept Loader contexts.

Example:

>>> from scrapy.loader.processors import TakeFirst
>>> proc = TakeFirst()
>>> proc(['', 'one', 'two', 'three'])
'one'

	
class scrapy.loader.processors.Join(separator=u' ')

	Returns the values joined with the separator given in the constructor, which
defaults to u' '. It doesn’t accept Loader contexts.

When using the default separator, this processor is equivalent to the
function: u' '.join

Examples:

>>> from scrapy.loader.processors import Join
>>> proc = Join()
>>> proc(['one', 'two', 'three'])
u'one two three'
>>> proc = Join('
')
>>> proc(['one', 'two', 'three'])
u'one
two
three'

	
class scrapy.loader.processors.Compose(*functions, **default_loader_context)

	A processor which is constructed from the composition of the given
functions. This means that each input value of this processor is passed to
the first function, and the result of that function is passed to the second
function, and so on, until the last function returns the output value of
this processor.

By default, stop process on None value. This behaviour can be changed by
passing keyword argument stop_on_none=False.

Example:

>>> from scrapy.loader.processors import Compose
>>> proc = Compose(lambda v: v[0], str.upper)
>>> proc(['hello', 'world'])
'HELLO'

Each function can optionally receive a loader_context parameter. For
those which do, this processor will pass the currently active Loader
context through that parameter.

The keyword arguments passed in the constructor are used as the default
Loader context values passed to each function call. However, the final
Loader context values passed to functions are overridden with the currently
active Loader context accessible through the ItemLoader.context()
attribute.

	
class scrapy.loader.processors.MapCompose(*functions, **default_loader_context)

	A processor which is constructed from the composition of the given
functions, similar to the Compose processor. The difference with
this processor is the way internal results are passed among functions,
which is as follows:

The input value of this processor is iterated and the first function is
applied to each element. The results of these function calls (one for each element)
are concatenated to construct a new iterable, which is then used to apply the
second function, and so on, until the last function is applied to each
value of the list of values collected so far. The output values of the last
function are concatenated together to produce the output of this processor.

Each particular function can return a value or a list of values, which is
flattened with the list of values returned by the same function applied to
the other input values. The functions can also return None in which
case the output of that function is ignored for further processing over the
chain.

This processor provides a convenient way to compose functions that only
work with single values (instead of iterables). For this reason the
MapCompose processor is typically used as input processor, since
data is often extracted using the
extract() method of selectors, which returns a list of unicode strings.

The example below should clarify how it works:

>>> def filter_world(x):
... return None if x == 'world' else x
...
>>> from scrapy.loader.processors import MapCompose
>>> proc = MapCompose(filter_world, unicode.upper)
>>> proc([u'hello', u'world', u'this', u'is', u'scrapy'])
[u'HELLO, u'THIS', u'IS', u'SCRAPY']

As with the Compose processor, functions can receive Loader contexts, and
constructor keyword arguments are used as default context values. See
Compose processor for more info.

	
class scrapy.loader.processors.SelectJmes(json_path)

	Queries the value using the json path provided to the constructor and returns the output.
Requires jmespath (https://github.com/jmespath/jmespath.py) to run.
This processor takes only one input at a time.

Example:

>>> from scrapy.loader.processors import SelectJmes, Compose, MapCompose
>>> proc = SelectJmes("foo") #for direct use on lists and dictionaries
>>> proc({'foo': 'bar'})
'bar'
>>> proc({'foo': {'bar': 'baz'}})
{'bar': 'baz'}

Working with Json:

>>> import json
>>> proc_single_json_str = Compose(json.loads, SelectJmes("foo"))
>>> proc_single_json_str('{"foo": "bar"}')
u'bar'
>>> proc_json_list = Compose(json.loads, MapCompose(SelectJmes('foo')))
>>> proc_json_list('[{"foo":"bar"}, {"baz":"tar"}]')
[u'bar']

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Scrapy shell

The Scrapy shell is an interactive shell where you can try and debug your
scraping code very quickly, without having to run the spider. It’s meant to be
used for testing data extraction code, but you can actually use it for testing
any kind of code as it is also a regular Python shell.

The shell is used for testing XPath or CSS expressions and see how they work
and what data they extract from the web pages you’re trying to scrape. It
allows you to interactively test your expressions while you’re writing your
spider, without having to run the spider to test every change.

Once you get familiarized with the Scrapy shell, you’ll see that it’s an
invaluable tool for developing and debugging your spiders.

Configuring the shell

If you have IPython [http://ipython.org/] installed, the Scrapy shell will use it (instead of the
standard Python console). The IPython [http://ipython.org/] console is much more powerful and
provides smart auto-completion and colorized output, among other things.

We highly recommend you install IPython [http://ipython.org/], specially if you’re working on
Unix systems (where IPython [http://ipython.org/] excels). See the IPython installation guide [http://ipython.org/install.html]
for more info.

Scrapy also has support for bpython [http://www.bpython-interpreter.org/], and will try to use it where IPython [http://ipython.org/]
is unavailable.

Through scrapy’s settings you can configure it to use any one of
ipython, bpython or the standard python shell, regardless of which
are installed. This is done by setting the SCRAPY_PYTHON_SHELL environment
variable; or by defining it in your scrapy.cfg:

[settings]
shell = bpython

Launch the shell

To launch the Scrapy shell you can use the shell command like
this:

scrapy shell <url>

Where the <url> is the URL you want to scrape.

shell also works for local files. This can be handy if you want
to play around with a local copy of a web page. shell understands
the following syntaxes for local files:

UNIX-style
scrapy shell ./path/to/file.html
scrapy shell ../other/path/to/file.html
scrapy shell /absolute/path/to/file.html

File URI
scrapy shell file:///absolute/path/to/file.html

Note

When using relative file paths, be explicit and prepend them
with ./ (or ../ when relevant).
scrapy shell index.html will not work as one might expect (and
this is by design, not a bug).

Because shell favors HTTP URLs over File URIs,
and index.html being syntactically similar to example.com,
shell will treat index.html as a domain name and trigger
a DNS lookup error:

$ scrapy shell index.html
[... scrapy shell starts ...]
[... traceback ...]
twisted.internet.error.DNSLookupError: DNS lookup failed:
address 'index.html' not found: [Errno -5] No address associated with hostname.

shell will not test beforehand if a file called index.html
exists in the current directory. Again, be explicit.

Using the shell

The Scrapy shell is just a regular Python console (or IPython [http://ipython.org/] console if you
have it available) which provides some additional shortcut functions for
convenience.

Available Shortcuts

	shelp() - print a help with the list of available objects and shortcuts

	fetch(request_or_url) - fetch a new response from the given request or
URL and update all related objects accordingly.

	view(response) - open the given response in your local web browser, for
inspection. This will add a <base> tag [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base] to the response body in order
for external links (such as images and style sheets) to display properly.
Note, however, that this will create a temporary file in your computer,
which won’t be removed automatically.

Available Scrapy objects

The Scrapy shell automatically creates some convenient objects from the
downloaded page, like the Response object and the
Selector objects (for both HTML and XML
content).

Those objects are:

	crawler - the current Crawler object.

	spider - the Spider which is known to handle the URL, or a
Spider object if there is no spider found for
the current URL

	request - a Request object of the last fetched
page. You can modify this request using replace()
or fetch a new request (without leaving the shell) using the fetch
shortcut.

	response - a Response object containing the last
fetched page

	settings - the current Scrapy settings

Example of shell session

Here’s an example of a typical shell session where we start by scraping the
http://scrapy.org page, and then proceed to scrape the https://reddit.com
page. Finally, we modify the (Reddit) request method to POST and re-fetch it
getting an error. We end the session by typing Ctrl-D (in Unix systems) or
Ctrl-Z in Windows.

Keep in mind that the data extracted here may not be the same when you try it,
as those pages are not static and could have changed by the time you test this.
The only purpose of this example is to get you familiarized with how the Scrapy
shell works.

First, we launch the shell:

scrapy shell 'http://scrapy.org' --nolog

Then, the shell fetches the URL (using the Scrapy downloader) and prints the
list of available objects and useful shortcuts (you’ll notice that these lines
all start with the [s] prefix):

[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x1e16b50>
[s] item {}
[s] request <GET http://scrapy.org>
[s] response <200 http://scrapy.org>
[s] settings <scrapy.settings.Settings object at 0x2bfd650>
[s] spider <Spider 'default' at 0x20c6f50>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser

>>>

After that, we can start playing with the objects:

>>> response.xpath('//title/text()').extract_first()
u'Scrapy | A Fast and Powerful Scraping and Web Crawling Framework'

>>> fetch("http://reddit.com")
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x7fb3ed9c9c90>
[s] item {}
[s] request <GET http://reddit.com>
[s] response <200 https://www.reddit.com/>
[s] settings <scrapy.settings.Settings object at 0x7fb3ed9c9c10>
[s] spider <DefaultSpider 'default' at 0x7fb3ecdd3390>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser

>>> response.xpath('//title/text()').extract()
[u'reddit: the front page of the internet']

>>> request = request.replace(method="POST")

>>> fetch(request)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x1e16b50>
...

>>>

Invoking the shell from spiders to inspect responses

Sometimes you want to inspect the responses that are being processed in a
certain point of your spider, if only to check that response you expect is
getting there.

This can be achieved by using the scrapy.shell.inspect_response function.

Here’s an example of how you would call it from your spider:

import scrapy

class MySpider(scrapy.Spider):
 name = "myspider"
 start_urls = [
 "http://example.com",
 "http://example.org",
 "http://example.net",
]

 def parse(self, response):
 # We want to inspect one specific response.
 if ".org" in response.url:
 from scrapy.shell import inspect_response
 inspect_response(response, self)

 # Rest of parsing code.

When you run the spider, you will get something similar to this:

2014-01-23 17:48:31-0400 [scrapy] DEBUG: Crawled (200) <GET http://example.com> (referer: None)
2014-01-23 17:48:31-0400 [scrapy] DEBUG: Crawled (200) <GET http://example.org> (referer: None)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x1e16b50>
...

>>> response.url
'http://example.org'

Then, you can check if the extraction code is working:

>>> response.xpath('//h1[@class="fn"]')
[]

Nope, it doesn’t. So you can open the response in your web browser and see if
it’s the response you were expecting:

>>> view(response)
True

Finally you hit Ctrl-D (or Ctrl-Z in Windows) to exit the shell and resume the
crawling:

>>> ^D
2014-01-23 17:50:03-0400 [scrapy] DEBUG: Crawled (200) <GET http://example.net> (referer: None)
...

Note that you can’t use the fetch shortcut here since the Scrapy engine is
blocked by the shell. However, after you leave the shell, the spider will
continue crawling where it stopped, as shown above.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Item Pipeline

After an item has been scraped by a spider, it is sent to the Item Pipeline
which processes it through several components that are executed sequentially.

Each item pipeline component (sometimes referred as just “Item Pipeline”) is a
Python class that implements a simple method. They receive an item and perform
an action over it, also deciding if the item should continue through the
pipeline or be dropped and no longer processed.

Typical uses of item pipelines are:

	cleansing HTML data

	validating scraped data (checking that the items contain certain fields)

	checking for duplicates (and dropping them)

	storing the scraped item in a database

Writing your own item pipeline

Each item pipeline component is a Python class that must implement the following method:

	
process_item(self, item, spider)

	This method is called for every item pipeline component and must either return
a dict with data, Item (or any descendant class) object
or raise a DropItem exception. Dropped items are no longer
processed by further pipeline components.

	Parameters:	
	item (Item object or a dict) – the item scraped

	spider (Spider object) – the spider which scraped the item

Additionally, they may also implement the following methods:

	
open_spider(self, spider)

	This method is called when the spider is opened.

	Parameters:	spider (Spider object) – the spider which was opened

	
close_spider(self, spider)

	This method is called when the spider is closed.

	Parameters:	spider (Spider object) – the spider which was closed

	
from_crawler(cls, crawler)

	If present, this classmethod is called to create a pipeline instance
from a Crawler. It must return a new instance
of the pipeline. Crawler object provides access to all Scrapy core
components like settings and signals; it is a way for pipeline to
access them and hook its functionality into Scrapy.

	Parameters:	crawler (Crawler object) – crawler that uses this pipeline

Item pipeline example

Price validation and dropping items with no prices

Let’s take a look at the following hypothetical pipeline that adjusts the
price attribute for those items that do not include VAT
(price_excludes_vat attribute), and drops those items which don’t
contain a price:

from scrapy.exceptions import DropItem

class PricePipeline(object):

 vat_factor = 1.15

 def process_item(self, item, spider):
 if item['price']:
 if item['price_excludes_vat']:
 item['price'] = item['price'] * self.vat_factor
 return item
 else:
 raise DropItem("Missing price in %s" % item)

Write items to a JSON file

The following pipeline stores all scraped items (from all spiders) into a
single items.jl file, containing one item per line serialized in JSON
format:

import json

class JsonWriterPipeline(object):

 def __init__(self):
 self.file = open('items.jl', 'wb')

 def process_item(self, item, spider):
 line = json.dumps(dict(item)) + "\n"
 self.file.write(line)
 return item

Note

The purpose of JsonWriterPipeline is just to introduce how to write
item pipelines. If you really want to store all scraped items into a JSON
file you should use the Feed exports.

Write items to MongoDB

In this example we’ll write items to MongoDB [https://www.mongodb.org/] using pymongo [https://api.mongodb.org/python/current/].
MongoDB address and database name are specified in Scrapy settings;
MongoDB collection is named after item class.

The main point of this example is to show how to use from_crawler()
method and how to clean up the resources properly.

Note

Previous example (JsonWriterPipeline) doesn’t clean up resources properly.
Fixing it is left as an exercise for the reader.

import pymongo

class MongoPipeline(object):

 collection_name = 'scrapy_items'

 def __init__(self, mongo_uri, mongo_db):
 self.mongo_uri = mongo_uri
 self.mongo_db = mongo_db

 @classmethod
 def from_crawler(cls, crawler):
 return cls(
 mongo_uri=crawler.settings.get('MONGO_URI'),
 mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')
)

 def open_spider(self, spider):
 self.client = pymongo.MongoClient(self.mongo_uri)
 self.db = self.client[self.mongo_db]

 def close_spider(self, spider):
 self.client.close()

 def process_item(self, item, spider):
 self.db[self.collection_name].insert(dict(item))
 return item

Duplicates filter

A filter that looks for duplicate items, and drops those items that were
already processed. Let’s say that our items have a unique id, but our spider
returns multiples items with the same id:

from scrapy.exceptions import DropItem

class DuplicatesPipeline(object):

 def __init__(self):
 self.ids_seen = set()

 def process_item(self, item, spider):
 if item['id'] in self.ids_seen:
 raise DropItem("Duplicate item found: %s" % item)
 else:
 self.ids_seen.add(item['id'])
 return item

Activating an Item Pipeline component

To activate an Item Pipeline component you must add its class to the
ITEM_PIPELINES setting, like in the following example:

ITEM_PIPELINES = {
 'myproject.pipelines.PricePipeline': 300,
 'myproject.pipelines.JsonWriterPipeline': 800,
}

The integer values you assign to classes in this setting determine the
order in which they run: items go through from lower valued to higher
valued classes. It’s customary to define these numbers in the 0-1000 range.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Feed exports

New in version 0.10.

One of the most frequently required features when implementing scrapers is
being able to store the scraped data properly and, quite often, that means
generating an “export file” with the scraped data (commonly called “export
feed”) to be consumed by other systems.

Scrapy provides this functionality out of the box with the Feed Exports, which
allows you to generate a feed with the scraped items, using multiple
serialization formats and storage backends.

Serialization formats

For serializing the scraped data, the feed exports use the Item exporters. These formats are supported out of the box:

	JSON

	JSON lines

	CSV

	XML

But you can also extend the supported format through the
FEED_EXPORTERS setting.

JSON

	FEED_FORMAT: json

	Exporter used: JsonItemExporter

	See this warning if you’re using JSON with
large feeds.

JSON lines

	FEED_FORMAT: jsonlines

	Exporter used: JsonLinesItemExporter

CSV

	FEED_FORMAT: csv

	Exporter used: CsvItemExporter

	To specify columns to export and their order use
FEED_EXPORT_FIELDS. Other feed exporters can also use this
option, but it is important for CSV because unlike many other export
formats CSV uses a fixed header.

XML

	FEED_FORMAT: xml

	Exporter used: XmlItemExporter

Pickle

	FEED_FORMAT: pickle

	Exporter used: PickleItemExporter

Marshal

	FEED_FORMAT: marshal

	Exporter used: MarshalItemExporter

Storages

When using the feed exports you define where to store the feed using a URI [https://en.wikipedia.org/wiki/Uniform_Resource_Identifier]
(through the FEED_URI setting). The feed exports supports multiple
storage backend types which are defined by the URI scheme.

The storages backends supported out of the box are:

	Local filesystem

	FTP

	S3 (requires botocore [https://github.com/boto/botocore] or boto [https://github.com/boto/boto])

	Standard output

Some storage backends may be unavailable if the required external libraries are
not available. For example, the S3 backend is only available if the botocore [https://github.com/boto/botocore]
or boto [https://github.com/boto/boto] library is installed (Scrapy supports boto [https://github.com/boto/boto] only on Python 2).

Storage URI parameters

The storage URI can also contain parameters that get replaced when the feed is
being created. These parameters are:

	%(time)s - gets replaced by a timestamp when the feed is being created

	%(name)s - gets replaced by the spider name

Any other named parameter gets replaced by the spider attribute of the same
name. For example, %(site_id)s would get replaced by the spider.site_id
attribute the moment the feed is being created.

Here are some examples to illustrate:

	Store in FTP using one directory per spider:
	ftp://user:password@ftp.example.com/scraping/feeds/%(name)s/%(time)s.json

	Store in S3 using one directory per spider:
	s3://mybucket/scraping/feeds/%(name)s/%(time)s.json

Storage backends

Local filesystem

The feeds are stored in the local filesystem.

	URI scheme: file

	Example URI: file:///tmp/export.csv

	Required external libraries: none

Note that for the local filesystem storage (only) you can omit the scheme if
you specify an absolute path like /tmp/export.csv. This only works on Unix
systems though.

FTP

The feeds are stored in a FTP server.

	URI scheme: ftp

	Example URI: ftp://user:pass@ftp.example.com/path/to/export.csv

	Required external libraries: none

S3

The feeds are stored on Amazon S3 [https://aws.amazon.com/s3/].

	URI scheme: s3

	Example URIs:
	s3://mybucket/path/to/export.csv

	s3://aws_key:aws_secret@mybucket/path/to/export.csv

	Required external libraries: botocore [https://github.com/boto/botocore] or boto [https://github.com/boto/boto]

The AWS credentials can be passed as user/password in the URI, or they can be
passed through the following settings:

	AWS_ACCESS_KEY_ID

	AWS_SECRET_ACCESS_KEY

Standard output

The feeds are written to the standard output of the Scrapy process.

	URI scheme: stdout

	Example URI: stdout:

	Required external libraries: none

Settings

These are the settings used for configuring the feed exports:

	FEED_URI (mandatory)

	FEED_FORMAT

	FEED_STORAGES

	FEED_EXPORTERS

	FEED_STORE_EMPTY

	FEED_EXPORT_FIELDS

FEED_URI

Default: None

The URI of the export feed. See Storage backends for
supported URI schemes.

This setting is required for enabling the feed exports.

FEED_FORMAT

The serialization format to be used for the feed. See
Serialization formats for possible values.

FEED_EXPORT_FIELDS

Default: None

A list of fields to export, optional.
Example: FEED_EXPORT_FIELDS = ["foo", "bar", "baz"].

Use FEED_EXPORT_FIELDS option to define fields to export and their order.

When FEED_EXPORT_FIELDS is empty or None (default), Scrapy uses fields
defined in dicts or Item subclasses a spider is yielding.

If an exporter requires a fixed set of fields (this is the case for
CSV export format) and FEED_EXPORT_FIELDS
is empty or None, then Scrapy tries to infer field names from the
exported data - currently it uses field names from the first item.

FEED_STORE_EMPTY

Default: False

Whether to export empty feeds (ie. feeds with no items).

FEED_STORAGES

Default:: {}

A dict containing additional feed storage backends supported by your project.
The keys are URI schemes and the values are paths to storage classes.

FEED_STORAGES_BASE

Default:

{
 '': 'scrapy.extensions.feedexport.FileFeedStorage',
 'file': 'scrapy.extensions.feedexport.FileFeedStorage',
 'stdout': 'scrapy.extensions.feedexport.StdoutFeedStorage',
 's3': 'scrapy.extensions.feedexport.S3FeedStorage',
 'ftp': 'scrapy.extensions.feedexport.FTPFeedStorage',
}

A dict containing the built-in feed storage backends supported by Scrapy. You
can disable any of these backends by assigning None to their URI scheme in
FEED_STORAGES. E.g., to disable the built-in FTP storage backend
(without replacement), place this in your settings.py:

FEED_STORAGES = {
 'ftp': None,
}

FEED_EXPORTERS

Default:: {}

A dict containing additional exporters supported by your project. The keys are
serialization formats and the values are paths to Item exporter classes.

FEED_EXPORTERS_BASE

Default:

{
 'json': 'scrapy.exporters.JsonItemExporter',
 'jsonlines': 'scrapy.exporters.JsonLinesItemExporter',
 'jl': 'scrapy.exporters.JsonLinesItemExporter',
 'csv': 'scrapy.exporters.CsvItemExporter',
 'xml': 'scrapy.exporters.XmlItemExporter',
 'marshal': 'scrapy.exporters.MarshalItemExporter',
 'pickle': 'scrapy.exporters.PickleItemExporter',
}

A dict containing the built-in feed exporters supported by Scrapy. You can
disable any of these exporters by assigning None to their serialization
format in FEED_EXPORTERS. E.g., to disable the built-in CSV exporter
(without replacement), place this in your settings.py:

FEED_EXPORTERS = {
 'csv': None,
}

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Requests and Responses

Scrapy uses Request and Response objects for crawling web
sites.

Typically, Request objects are generated in the spiders and pass
across the system until they reach the Downloader, which executes the request
and returns a Response object which travels back to the spider that
issued the request.

Both Request and Response classes have subclasses which add
functionality not required in the base classes. These are described
below in Request subclasses and
Response subclasses.

Request objects

	
class scrapy.http.Request(url[, callback, method='GET', headers, body, cookies, meta, encoding='utf-8', priority=0, dont_filter=False, errback])

	A Request object represents an HTTP request, which is usually
generated in the Spider and executed by the Downloader, and thus generating
a Response.

	Parameters:	
	url (string) – the URL of this request

	callback (callable) – the function that will be called with the response of this
request (once its downloaded) as its first parameter. For more information
see Passing additional data to callback functions below.
If a Request doesn’t specify a callback, the spider’s
parse() method will be used.
Note that if exceptions are raised during processing, errback is called instead.

	method (string) – the HTTP method of this request. Defaults to 'GET'.

	meta (dict) – the initial values for the Request.meta attribute. If
given, the dict passed in this parameter will be shallow copied.

	body (str or unicode) – the request body. If a unicode is passed, then it’s encoded to
str using the encoding passed (which defaults to utf-8). If
body is not given, an empty string is stored. Regardless of the
type of this argument, the final value stored will be a str (never
unicode or None).

	headers (dict) – the headers of this request. The dict values can be strings
(for single valued headers) or lists (for multi-valued headers). If
None is passed as value, the HTTP header will not be sent at all.

	cookies (dict or list) – the request cookies. These can be sent in two forms.

	Using a dict:request_with_cookies = Request(url="http://www.example.com",
 cookies={'currency': 'USD', 'country': 'UY'})

	Using a list of dicts:request_with_cookies = Request(url="http://www.example.com",
 cookies=[{'name': 'currency',
 'value': 'USD',
 'domain': 'example.com',
 'path': '/currency'}])

The latter form allows for customizing the domain and path
attributes of the cookie. This is only useful if the cookies are saved
for later requests.

When some site returns cookies (in a response) those are stored in the
cookies for that domain and will be sent again in future requests. That’s
the typical behaviour of any regular web browser. However, if, for some
reason, you want to avoid merging with existing cookies you can instruct
Scrapy to do so by setting the dont_merge_cookies key to True in the
Request.meta.

Example of request without merging cookies:

request_with_cookies = Request(url="http://www.example.com",
 cookies={'currency': 'USD', 'country': 'UY'},
 meta={'dont_merge_cookies': True})

For more info see CookiesMiddleware.

	encoding (string) – the encoding of this request (defaults to 'utf-8').
This encoding will be used to percent-encode the URL and to convert the
body to str (if given as unicode).

	priority (int) – the priority of this request (defaults to 0).
The priority is used by the scheduler to define the order used to process
requests. Requests with a higher priority value will execute earlier.
Negative values are allowed in order to indicate relatively low-priority.

	dont_filter (boolean) – indicates that this request should not be filtered by
the scheduler. This is used when you want to perform an identical
request multiple times, to ignore the duplicates filter. Use it with
care, or you will get into crawling loops. Default to False.

	errback (callable) – a function that will be called if any exception was
raised while processing the request. This includes pages that failed
with 404 HTTP errors and such. It receives a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance
as first parameter.
For more information,
see Using errbacks to catch exceptions in request processing below.

	
url

	A string containing the URL of this request. Keep in mind that this
attribute contains the escaped URL, so it can differ from the URL passed in
the constructor.

This attribute is read-only. To change the URL of a Request use
replace().

	
method

	A string representing the HTTP method in the request. This is guaranteed to
be uppercase. Example: "GET", "POST", "PUT", etc

	
headers

	A dictionary-like object which contains the request headers.

	
body

	A str that contains the request body.

This attribute is read-only. To change the body of a Request use
replace().

	
meta

	A dict that contains arbitrary metadata for this request. This dict is
empty for new Requests, and is usually populated by different Scrapy
components (extensions, middlewares, etc). So the data contained in this
dict depends on the extensions you have enabled.

See Request.meta special keys for a list of special meta keys
recognized by Scrapy.

This dict is shallow copied [https://docs.python.org/2/library/copy.html] when the request is cloned using the
copy() or replace() methods, and can also be accessed, in your
spider, from the response.meta attribute.

	
copy()

	Return a new Request which is a copy of this Request. See also:
Passing additional data to callback functions.

	
replace([url, method, headers, body, cookies, meta, encoding, dont_filter, callback, errback])

	Return a Request object with the same members, except for those members
given new values by whichever keyword arguments are specified. The
attribute Request.meta is copied by default (unless a new value
is given in the meta argument). See also
Passing additional data to callback functions.

Passing additional data to callback functions

The callback of a request is a function that will be called when the response
of that request is downloaded. The callback function will be called with the
downloaded Response object as its first argument.

Example:

def parse_page1(self, response):
 return scrapy.Request("http://www.example.com/some_page.html",
 callback=self.parse_page2)

def parse_page2(self, response):
 # this would log http://www.example.com/some_page.html
 self.logger.info("Visited %s", response.url)

In some cases you may be interested in passing arguments to those callback
functions so you can receive the arguments later, in the second callback. You
can use the Request.meta attribute for that.

Here’s an example of how to pass an item using this mechanism, to populate
different fields from different pages:

def parse_page1(self, response):
 item = MyItem()
 item['main_url'] = response.url
 request = scrapy.Request("http://www.example.com/some_page.html",
 callback=self.parse_page2)
 request.meta['item'] = item
 return request

def parse_page2(self, response):
 item = response.meta['item']
 item['other_url'] = response.url
 return item

Using errbacks to catch exceptions in request processing

The errback of a request is a function that will be called when an exception
is raise while processing it.

It receives a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance as first parameter and can be
used to track connection establishment timeouts, DNS errors etc.

Here’s an example spider logging all errors and catching some specific
errors if needed:

import scrapy

from scrapy.spidermiddlewares.httperror import HttpError
from twisted.internet.error import DNSLookupError
from twisted.internet.error import TimeoutError, TCPTimedOutError

class ErrbackSpider(scrapy.Spider):
 name = "errback_example"
 start_urls = [
 "http://www.httpbin.org/", # HTTP 200 expected
 "http://www.httpbin.org/status/404", # Not found error
 "http://www.httpbin.org/status/500", # server issue
 "http://www.httpbin.org:12345/", # non-responding host, timeout expected
 "http://www.httphttpbinbin.org/", # DNS error expected
]

 def start_requests(self):
 for u in self.start_urls:
 yield scrapy.Request(u, callback=self.parse_httpbin,
 errback=self.errback_httpbin,
 dont_filter=True)

 def parse_httpbin(self, response):
 self.logger.info('Got successful response from {}'.format(response.url))
 # do something useful here...

 def errback_httpbin(self, failure):
 # log all failures
 self.logger.error(repr(failure))

 # in case you want to do something special for some errors,
 # you may need the failure's type:

 if failure.check(HttpError):
 # these exceptions come from HttpError spider middleware
 # you can get the non-200 response
 response = failure.value.response
 self.logger.error('HttpError on %s', response.url)

 elif failure.check(DNSLookupError):
 # this is the original request
 request = failure.request
 self.logger.error('DNSLookupError on %s', request.url)

 elif failure.check(TimeoutError, TCPTimedOutError):
 request = failure.request
 self.logger.error('TimeoutError on %s', request.url)

Request.meta special keys

The Request.meta attribute can contain any arbitrary data, but there
are some special keys recognized by Scrapy and its built-in extensions.

Those are:

	dont_redirect

	dont_retry

	handle_httpstatus_list

	handle_httpstatus_all

	dont_merge_cookies (see cookies parameter of Request constructor)

	cookiejar

	dont_cache

	redirect_urls

	bindaddress

	dont_obey_robotstxt

	download_timeout

	download_maxsize

	proxy

bindaddress

The IP of the outgoing IP address to use for the performing the request.

download_timeout

The amount of time (in secs) that the downloader will wait before timing out.
See also: DOWNLOAD_TIMEOUT.

Request subclasses

Here is the list of built-in Request subclasses. You can also subclass
it to implement your own custom functionality.

FormRequest objects

The FormRequest class extends the base Request with functionality for
dealing with HTML forms. It uses lxml.html forms [http://lxml.de/lxmlhtml.html#forms] to pre-populate form
fields with form data from Response objects.

	
class scrapy.http.FormRequest(url[, formdata, ...])

	The FormRequest class adds a new argument to the constructor. The
remaining arguments are the same as for the Request class and are
not documented here.

	Parameters:	formdata (dict or iterable of tuples) – is a dictionary (or iterable of (key, value) tuples)
containing HTML Form data which will be url-encoded and assigned to the
body of the request.

The FormRequest objects support the following class method in
addition to the standard Request methods:

	
classmethod from_response(response[, formname=None, formnumber=0, formdata=None, formxpath=None, formcss=None, clickdata=None, dont_click=False, ...])

	Returns a new FormRequest object with its form field values
pre-populated with those found in the HTML <form> element contained
in the given response. For an example see
Using FormRequest.from_response() to simulate a user login.

The policy is to automatically simulate a click, by default, on any form
control that looks clickable, like a <input type="submit">. Even
though this is quite convenient, and often the desired behaviour,
sometimes it can cause problems which could be hard to debug. For
example, when working with forms that are filled and/or submitted using
javascript, the default from_response() behaviour may not be the
most appropriate. To disable this behaviour you can set the
dont_click argument to True. Also, if you want to change the
control clicked (instead of disabling it) you can also use the
clickdata argument.

	Parameters:	
	response (Response object) – the response containing a HTML form which will be used
to pre-populate the form fields

	formname (string) – if given, the form with name attribute set to this value will be used.

	formxpath (string) – if given, the first form that matches the xpath will be used.

	formcss (string) – if given, the first form that matches the css selector will be used.

	formnumber (integer) – the number of form to use, when the response contains
multiple forms. The first one (and also the default) is 0.

	formdata (dict) – fields to override in the form data. If a field was
already present in the response <form> element, its value is
overridden by the one passed in this parameter.

	clickdata (dict) – attributes to lookup the control clicked. If it’s not
given, the form data will be submitted simulating a click on the
first clickable element. In addition to html attributes, the control
can be identified by its zero-based index relative to other
submittable inputs inside the form, via the nr attribute.

	dont_click (boolean) – If True, the form data will be submitted without
clicking in any element.

The other parameters of this class method are passed directly to the
FormRequest constructor.

New in version 0.10.3: The formname parameter.

New in version 0.17: The formxpath parameter.

New in version 1.1.0: The formcss parameter.

Request usage examples

Using FormRequest to send data via HTTP POST

If you want to simulate a HTML Form POST in your spider and send a couple of
key-value fields, you can return a FormRequest object (from your
spider) like this:

return [FormRequest(url="http://www.example.com/post/action",
 formdata={'name': 'John Doe', 'age': '27'},
 callback=self.after_post)]

Using FormRequest.from_response() to simulate a user login

It is usual for web sites to provide pre-populated form fields through <input
type="hidden"> elements, such as session related data or authentication
tokens (for login pages). When scraping, you’ll want these fields to be
automatically pre-populated and only override a couple of them, such as the
user name and password. You can use the FormRequest.from_response()
method for this job. Here’s an example spider which uses it:

import scrapy

class LoginSpider(scrapy.Spider):
 name = 'example.com'
 start_urls = ['http://www.example.com/users/login.php']

 def parse(self, response):
 return scrapy.FormRequest.from_response(
 response,
 formdata={'username': 'john', 'password': 'secret'},
 callback=self.after_login
)

 def after_login(self, response):
 # check login succeed before going on
 if "authentication failed" in response.body:
 self.logger.error("Login failed")
 return

 # continue scraping with authenticated session...

Response objects

	
class scrapy.http.Response(url[, status=200, headers, body, flags])

	A Response object represents an HTTP response, which is usually
downloaded (by the Downloader) and fed to the Spiders for processing.

	Parameters:	
	url (string) – the URL of this response

	headers (dict) – the headers of this response. The dict values can be strings
(for single valued headers) or lists (for multi-valued headers).

	status (integer) – the HTTP status of the response. Defaults to 200.

	body (str) – the response body. It must be str, not unicode, unless you’re
using a encoding-aware Response subclass, such as
TextResponse.

	meta (dict) – the initial values for the Response.meta attribute. If
given, the dict will be shallow copied.

	flags (list) – is a list containing the initial values for the
Response.flags attribute. If given, the list will be shallow
copied.

	
url

	A string containing the URL of the response.

This attribute is read-only. To change the URL of a Response use
replace().

	
status

	An integer representing the HTTP status of the response. Example: 200,
404.

	
headers

	A dictionary-like object which contains the response headers.

	
body

	The body of this Response. Keep in mind that Response.body
is always a bytes object. If you want the unicode version use
TextResponse.text (only available in TextResponse
and subclasses).

This attribute is read-only. To change the body of a Response use
replace().

	
request

	The Request object that generated this response. This attribute is
assigned in the Scrapy engine, after the response and the request have passed
through all Downloader Middlewares.
In particular, this means that:

	HTTP redirections will cause the original request (to the URL before
redirection) to be assigned to the redirected response (with the final
URL after redirection).

	Response.request.url doesn’t always equal Response.url

	This attribute is only available in the spider code, and in the
Spider Middlewares, but not in
Downloader Middlewares (although you have the Request available there by
other means) and handlers of the response_downloaded signal.

	
meta

	A shortcut to the Request.meta attribute of the
Response.request object (ie. self.request.meta).

Unlike the Response.request attribute, the Response.meta
attribute is propagated along redirects and retries, so you will get
the original Request.meta sent from your spider.

See also

Request.meta attribute

	
flags

	A list that contains flags for this response. Flags are labels used for
tagging Responses. For example: ‘cached’, ‘redirected‘, etc. And
they’re shown on the string representation of the Response (__str__
method) which is used by the engine for logging.

	
copy()

	Returns a new Response which is a copy of this Response.

	
replace([url, status, headers, body, request, flags, cls])

	Returns a Response object with the same members, except for those members
given new values by whichever keyword arguments are specified. The
attribute Response.meta is copied by default.

	
urljoin(url)

	Constructs an absolute url by combining the Response’s url with
a possible relative url.

This is a wrapper over urlparse.urljoin [https://docs.python.org/2/library/urlparse.html#urlparse.urljoin], it’s merely an alias for
making this call:

urlparse.urljoin(response.url, url)

Response subclasses

Here is the list of available built-in Response subclasses. You can also
subclass the Response class to implement your own functionality.

TextResponse objects

	
class scrapy.http.TextResponse(url[, encoding[, ...]])

	TextResponse objects adds encoding capabilities to the base
Response class, which is meant to be used only for binary data,
such as images, sounds or any media file.

TextResponse objects support a new constructor argument, in
addition to the base Response objects. The remaining functionality
is the same as for the Response class and is not documented here.

	Parameters:	encoding (string) – is a string which contains the encoding to use for this
response. If you create a TextResponse object with a unicode
body, it will be encoded using this encoding (remember the body attribute
is always a string). If encoding is None (default value), the
encoding will be looked up in the response headers and body instead.

TextResponse objects support the following attributes in addition
to the standard Response ones:

	
text

	Response body, as unicode.

The same as response.body.decode(response.encoding), but the
result is cached after the first call, so you can access
response.text multiple times without extra overhead.

Note

unicode(response.body) is not a correct way to convert response
body to unicode: you would be using the system default encoding
(typically ascii) instead of the response encoding.

	
encoding

	A string with the encoding of this response. The encoding is resolved by
trying the following mechanisms, in order:

	the encoding passed in the constructor encoding argument

	the encoding declared in the Content-Type HTTP header. If this
encoding is not valid (ie. unknown), it is ignored and the next
resolution mechanism is tried.

	the encoding declared in the response body. The TextResponse class
doesn’t provide any special functionality for this. However, the
HtmlResponse and XmlResponse classes do.

	the encoding inferred by looking at the response body. This is the more
fragile method but also the last one tried.

	
selector

	A Selector instance using the response as
target. The selector is lazily instantiated on first access.

TextResponse objects support the following methods in addition to
the standard Response ones:

	
xpath(query)

	A shortcut to TextResponse.selector.xpath(query):

response.xpath('//p')

	
css(query)

	A shortcut to TextResponse.selector.css(query):

response.css('p')

	
body_as_unicode()

	The same as text, but available as a method. This method is
kept for backwards compatibility; please prefer response.text.

HtmlResponse objects

	
class scrapy.http.HtmlResponse(url[, ...])

	The HtmlResponse class is a subclass of TextResponse
which adds encoding auto-discovering support by looking into the HTML meta
http-equiv [http://www.w3schools.com/TAGS/att_meta_http_equiv.asp] attribute. See TextResponse.encoding.

XmlResponse objects

	
class scrapy.http.XmlResponse(url[, ...])

	The XmlResponse class is a subclass of TextResponse which
adds encoding auto-discovering support by looking into the XML declaration
line. See TextResponse.encoding.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Link Extractors

Link extractors are objects whose only purpose is to extract links from web
pages (scrapy.http.Response objects) which will be eventually
followed.

There is scrapy.linkextractors import LinkExtractor available
in Scrapy, but you can create your own custom Link Extractors to suit your
needs by implementing a simple interface.

The only public method that every link extractor has is extract_links,
which receives a Response object and returns a list
of scrapy.link.Link objects. Link extractors are meant to be
instantiated once and their extract_links method called several times
with different responses to extract links to follow.

Link extractors are used in the CrawlSpider
class (available in Scrapy), through a set of rules, but you can also use it in
your spiders, even if you don’t subclass from
CrawlSpider, as its purpose is very simple: to
extract links.

Built-in link extractors reference

Link extractors classes bundled with Scrapy are provided in the
scrapy.linkextractors module.

The default link extractor is LinkExtractor, which is the same as
LxmlLinkExtractor:

from scrapy.linkextractors import LinkExtractor

There used to be other link extractor classes in previous Scrapy versions,
but they are deprecated now.

LxmlLinkExtractor

	
class scrapy.linkextractors.lxmlhtml.LxmlLinkExtractor(allow=(), deny=(), allow_domains=(), deny_domains=(), deny_extensions=None, restrict_xpaths=(), restrict_css=(), tags=('a', 'area'), attrs=('href',), canonicalize=True, unique=True, process_value=None)

	LxmlLinkExtractor is the recommended link extractor with handy filtering
options. It is implemented using lxml’s robust HTMLParser.

	Parameters:	
	allow (a regular expression (or list of)) – a single regular expression (or list of regular expressions)
that the (absolute) urls must match in order to be extracted. If not
given (or empty), it will match all links.

	deny (a regular expression (or list of)) – a single regular expression (or list of regular expressions)
that the (absolute) urls must match in order to be excluded (ie. not
extracted). It has precedence over the allow parameter. If not
given (or empty) it won’t exclude any links.

	allow_domains (str or list) – a single value or a list of string containing
domains which will be considered for extracting the links

	deny_domains (str or list) – a single value or a list of strings containing
domains which won’t be considered for extracting the links

	deny_extensions (list) – a single value or list of strings containing
extensions that should be ignored when extracting links.
If not given, it will default to the
IGNORED_EXTENSIONS list defined in the
scrapy.linkextractors [https://github.com/scrapy/scrapy/blob/master/scrapy/linkextractors/__init__.py] package.

	restrict_xpaths (str or list) – is an XPath (or list of XPath’s) which defines
regions inside the response where links should be extracted from.
If given, only the text selected by those XPath will be scanned for
links. See examples below.

	restrict_css (str or list) – a CSS selector (or list of selectors) which defines
regions inside the response where links should be extracted from.
Has the same behaviour as restrict_xpaths.

	tags (str or list) – a tag or a list of tags to consider when extracting links.
Defaults to ('a', 'area').

	attrs (list) – an attribute or list of attributes which should be considered when looking
for links to extract (only for those tags specified in the tags
parameter). Defaults to ('href',)

	canonicalize (boolean) – canonicalize each extracted url (using
scrapy.utils.url.canonicalize_url). Defaults to True.

	unique (boolean) – whether duplicate filtering should be applied to extracted
links.

	process_value (callable) – a function which receives each value extracted from
the tag and attributes scanned and can modify the value and return a
new one, or return None to ignore the link altogether. If not
given, process_value defaults to lambda x: x.

For example, to extract links from this code:

Link text

You can use the following function in process_value:

def process_value(value):
 m = re.search("javascript:goToPage\('(.*?)'", value)
 if m:
 return m.group(1)

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Settings

The Scrapy settings allows you to customize the behaviour of all Scrapy
components, including the core, extensions, pipelines and spiders themselves.

The infrastructure of the settings provides a global namespace of key-value mappings
that the code can use to pull configuration values from. The settings can be
populated through different mechanisms, which are described below.

The settings are also the mechanism for selecting the currently active Scrapy
project (in case you have many).

For a list of available built-in settings see: Built-in settings reference.

Designating the settings

When you use Scrapy, you have to tell it which settings you’re using. You can
do this by using an environment variable, SCRAPY_SETTINGS_MODULE.

The value of SCRAPY_SETTINGS_MODULE should be in Python path syntax, e.g.
myproject.settings. Note that the settings module should be on the
Python import search path [https://docs.python.org/2/tutorial/modules.html#the-module-search-path].

Populating the settings

Settings can be populated using different mechanisms, each of which having a
different precedence. Here is the list of them in decreasing order of
precedence:

	Command line options (most precedence)

	Settings per-spider

	Project settings module

	Default settings per-command

	Default global settings (less precedence)

The population of these settings sources is taken care of internally, but a
manual handling is possible using API calls. See the
Settings API topic for reference.

These mechanisms are described in more detail below.

1. Command line options

Arguments provided by the command line are the ones that take most precedence,
overriding any other options. You can explicitly override one (or more)
settings using the -s (or --set) command line option.

Example:

scrapy crawl myspider -s LOG_FILE=scrapy.log

2. Settings per-spider

Spiders (See the Spiders chapter for reference) can define their
own settings that will take precedence and override the project ones. They can
do so by setting their custom_settings attribute:

class MySpider(scrapy.Spider):
 name = 'myspider'

 custom_settings = {
 'SOME_SETTING': 'some value',
 }

3. Project settings module

The project settings module is the standard configuration file for your Scrapy
project, it’s where most of your custom settings will be populated. For a
standard Scrapy project, this means you’ll be adding or changing the settings
in the settings.py file created for your project.

4. Default settings per-command

Each Scrapy tool command can have its own default
settings, which override the global default settings. Those custom command
settings are specified in the default_settings attribute of the command
class.

5. Default global settings

The global defaults are located in the scrapy.settings.default_settings
module and documented in the Built-in settings reference section.

How to access settings

In a spider, the settings are available through self.settings:

class MySpider(scrapy.Spider):
 name = 'myspider'
 start_urls = ['http://example.com']

 def parse(self, response):
 print("Existing settings: %s" % self.settings.attributes.keys())

Note

The settings attribute is set in the base Spider class after the spider
is initialized. If you want to use the settings before the initialization
(e.g., in your spider’s __init__() method), you’ll need to override the
from_crawler() method.

Settings can be accessed through the scrapy.crawler.Crawler.settings
attribute of the Crawler that is passed to from_crawler method in
extensions, middlewares and item pipelines:

class MyExtension(object):
 def __init__(self, log_is_enabled=False):
 if log_is_enabled:
 print("log is enabled!")

 @classmethod
 def from_crawler(cls, crawler):
 settings = crawler.settings
 return cls(settings.getbool('LOG_ENABLED'))

The settings object can be used like a dict (e.g.,
settings['LOG_ENABLED']), but it’s usually preferred to extract the setting
in the format you need it to avoid type errors, using one of the methods
provided by the Settings API.

Rationale for setting names

Setting names are usually prefixed with the component that they configure. For
example, proper setting names for a fictional robots.txt extension would be
ROBOTSTXT_ENABLED, ROBOTSTXT_OBEY, ROBOTSTXT_CACHEDIR, etc.

Built-in settings reference

Here’s a list of all available Scrapy settings, in alphabetical order, along
with their default values and the scope where they apply.

The scope, where available, shows where the setting is being used, if it’s tied
to any particular component. In that case the module of that component will be
shown, typically an extension, middleware or pipeline. It also means that the
component must be enabled in order for the setting to have any effect.

AWS_ACCESS_KEY_ID

Default: None

The AWS access key used by code that requires access to Amazon Web services [https://aws.amazon.com/],
such as the S3 feed storage backend.

AWS_SECRET_ACCESS_KEY

Default: None

The AWS secret key used by code that requires access to Amazon Web services [https://aws.amazon.com/],
such as the S3 feed storage backend.

BOT_NAME

Default: 'scrapybot'

The name of the bot implemented by this Scrapy project (also known as the
project name). This will be used to construct the User-Agent by default, and
also for logging.

It’s automatically populated with your project name when you create your
project with the startproject command.

CONCURRENT_ITEMS

Default: 100

Maximum number of concurrent items (per response) to process in parallel in the
Item Processor (also known as the Item Pipeline).

CONCURRENT_REQUESTS

Default: 16

The maximum number of concurrent (ie. simultaneous) requests that will be
performed by the Scrapy downloader.

CONCURRENT_REQUESTS_PER_DOMAIN

Default: 8

The maximum number of concurrent (ie. simultaneous) requests that will be
performed to any single domain.

See also: AutoThrottle extension and its
AUTOTHROTTLE_TARGET_CONCURRENCY option.

CONCURRENT_REQUESTS_PER_IP

Default: 0

The maximum number of concurrent (ie. simultaneous) requests that will be
performed to any single IP. If non-zero, the
CONCURRENT_REQUESTS_PER_DOMAIN setting is ignored, and this one is
used instead. In other words, concurrency limits will be applied per IP, not
per domain.

This setting also affects DOWNLOAD_DELAY and
AutoThrottle extension: if CONCURRENT_REQUESTS_PER_IP
is non-zero, download delay is enforced per IP, not per domain.

DEFAULT_ITEM_CLASS

Default: 'scrapy.item.Item'

The default class that will be used for instantiating items in the the
Scrapy shell.

DEFAULT_REQUEST_HEADERS

Default:

{
 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'Accept-Language': 'en',
}

The default headers used for Scrapy HTTP Requests. They’re populated in the
DefaultHeadersMiddleware.

DEPTH_LIMIT

Default: 0

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

The maximum depth that will be allowed to crawl for any site. If zero, no limit
will be imposed.

DEPTH_PRIORITY

Default: 0

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

An integer that is used to adjust the request priority based on its depth:

	if zero (default), no priority adjustment is made from depth

	a positive value will decrease the priority, i.e. higher depth
requests will be processed later ; this is commonly used when doing
breadth-first crawls (BFO)

	a negative value will increase priority, i.e., higher depth requests
will be processed sooner (DFO)

See also: Does Scrapy crawl in breadth-first or depth-first order? about tuning Scrapy for BFO or DFO.

Note

This setting adjusts priority in the opposite way compared to
other priority settings REDIRECT_PRIORITY_ADJUST
and RETRY_PRIORITY_ADJUST.

DEPTH_STATS

Default: True

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

Whether to collect maximum depth stats.

DEPTH_STATS_VERBOSE

Default: False

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

Whether to collect verbose depth stats. If this is enabled, the number of
requests for each depth is collected in the stats.

DNSCACHE_ENABLED

Default: True

Whether to enable DNS in-memory cache.

DNSCACHE_SIZE

Default: 10000

DNS in-memory cache size.

DNS_TIMEOUT

Default: 60

Timeout for processing of DNS queries in seconds. Float is supported.

DOWNLOADER

Default: 'scrapy.core.downloader.Downloader'

The downloader to use for crawling.

DOWNLOADER_HTTPCLIENTFACTORY

Default: 'scrapy.core.downloader.webclient.ScrapyHTTPClientFactory'

Defines a Twisted protocol.ClientFactory class to use for HTTP/1.0
connections (for HTTP10DownloadHandler).

Note

HTTP/1.0 is rarely used nowadays so you can safely ignore this setting,
unless you use Twisted<11.1, or if you really want to use HTTP/1.0
and override DOWNLOAD_HANDLERS_BASE for http(s) scheme
accordingly, i.e. to
'scrapy.core.downloader.handlers.http.HTTP10DownloadHandler'.

DOWNLOADER_CLIENTCONTEXTFACTORY

Default: 'scrapy.core.downloader.contextfactory.ScrapyClientContextFactory'

Represents the classpath to the ContextFactory to use.

Here, “ContextFactory” is a Twisted term for SSL/TLS contexts, defining
the TLS/SSL protocol version to use, whether to do certificate verification,
or even enable client-side authentication (and various other things).

Note

Scrapy default context factory does NOT perform remote server
certificate verification. This is usually fine for web scraping.

If you do need remote server certificate verification enabled,
Scrapy also has another context factory class that you can set,
'scrapy.core.downloader.contextfactory.BrowserLikeContextFactory',
which uses the platform’s certificates to validate remote endpoints.
This is only available if you use Twisted>=14.0.

If you do use a custom ContextFactory, make sure it accepts a method
parameter at init (this is the OpenSSL.SSL method mapping
DOWNLOADER_CLIENT_TLS_METHOD).

DOWNLOADER_CLIENT_TLS_METHOD

Default: 'TLS'

Use this setting to customize the TLS/SSL method used by the default
HTTP/1.1 downloader.

This setting must be one of these string values:

	'TLS': maps to OpenSSL’s TLS_method() (a.k.a SSLv23_method()),
which allows protocol negotiation, starting from the highest supported
by the platform; default, recommended

	'TLSv1.0': this value forces HTTPS connections to use TLS version 1.0 ;
set this if you want the behavior of Scrapy<1.1

	'TLSv1.1': forces TLS version 1.1

	'TLSv1.2': forces TLS version 1.2

	'SSLv3': forces SSL version 3 (not recommended)

Note

We recommend that you use PyOpenSSL>=0.13 and Twisted>=0.13
or above (Twisted>=14.0 if you can).

DOWNLOADER_MIDDLEWARES

Default:: {}

A dict containing the downloader middlewares enabled in your project, and their
orders. For more info see Activating a downloader middleware.

DOWNLOADER_MIDDLEWARES_BASE

Default:

{
 'scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware': 100,
 'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware': 300,
 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware': 350,
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': 400,
 'scrapy.downloadermiddlewares.retry.RetryMiddleware': 500,
 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware': 550,
 'scrapy.downloadermiddlewares.ajaxcrawl.AjaxCrawlMiddleware': 560,
 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware': 580,
 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 590,
 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware': 600,
 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware': 700,
 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 750,
 'scrapy.downloadermiddlewares.chunked.ChunkedTransferMiddleware': 830,
 'scrapy.downloadermiddlewares.stats.DownloaderStats': 850,
 'scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware': 900,
}

A dict containing the downloader middlewares enabled by default in Scrapy. Low
orders are closer to the engine, high orders are closer to the downloader. You
should never modify this setting in your project, modify
DOWNLOADER_MIDDLEWARES instead. For more info see
Activating a downloader middleware.

DOWNLOADER_STATS

Default: True

Whether to enable downloader stats collection.

DOWNLOAD_DELAY

Default: 0

The amount of time (in secs) that the downloader should wait before downloading
consecutive pages from the same website. This can be used to throttle the
crawling speed to avoid hitting servers too hard. Decimal numbers are
supported. Example:

DOWNLOAD_DELAY = 0.25 # 250 ms of delay

This setting is also affected by the RANDOMIZE_DOWNLOAD_DELAY
setting (which is enabled by default). By default, Scrapy doesn’t wait a fixed
amount of time between requests, but uses a random interval between 0.5 and 1.5
* DOWNLOAD_DELAY.

When CONCURRENT_REQUESTS_PER_IP is non-zero, delays are enforced
per ip address instead of per domain.

You can also change this setting per spider by setting download_delay
spider attribute.

DOWNLOAD_HANDLERS

Default: {}

A dict containing the request downloader handlers enabled in your project.
See DOWNLOAD_HANDLERS_BASE for example format.

DOWNLOAD_HANDLERS_BASE

Default:

{
 'file': 'scrapy.core.downloader.handlers.file.FileDownloadHandler',
 'http': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
 'https': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
 's3': 'scrapy.core.downloader.handlers.s3.S3DownloadHandler',
 'ftp': 'scrapy.core.downloader.handlers.ftp.FTPDownloadHandler',
}

A dict containing the request download handlers enabled by default in Scrapy.
You should never modify this setting in your project, modify
DOWNLOAD_HANDLERS instead.

You can disable any of these download handlers by assigning None to their
URI scheme in DOWNLOAD_HANDLERS. E.g., to disable the built-in FTP
handler (without replacement), place this in your settings.py:

DOWNLOAD_HANDLERS = {
 'ftp': None,
}

DOWNLOAD_TIMEOUT

Default: 180

The amount of time (in secs) that the downloader will wait before timing out.

Note

This timeout can be set per spider using download_timeout
spider attribute and per-request using download_timeout
Request.meta key.

DOWNLOAD_MAXSIZE

Default: 1073741824 (1024MB)

The maximum response size (in bytes) that downloader will download.

If you want to disable it set to 0.

Note

This size can be set per spider using download_maxsize
spider attribute and per-request using download_maxsize
Request.meta key.

This feature needs Twisted >= 11.1.

DOWNLOAD_WARNSIZE

Default: 33554432 (32MB)

The response size (in bytes) that downloader will start to warn.

If you want to disable it set to 0.

Note

This size can be set per spider using download_warnsize
spider attribute and per-request using download_warnsize
Request.meta key.

This feature needs Twisted >= 11.1.

DUPEFILTER_CLASS

Default: 'scrapy.dupefilters.RFPDupeFilter'

The class used to detect and filter duplicate requests.

The default (RFPDupeFilter) filters based on request fingerprint using
the scrapy.utils.request.request_fingerprint function. In order to change
the way duplicates are checked you could subclass RFPDupeFilter and
override its request_fingerprint method. This method should accept
scrapy Request object and return its fingerprint
(a string).

DUPEFILTER_DEBUG

Default: False

By default, RFPDupeFilter only logs the first duplicate request.
Setting DUPEFILTER_DEBUG to True will make it log all duplicate requests.

EDITOR

Default: depends on the environment

The editor to use for editing spiders with the edit command. It
defaults to the EDITOR environment variable, if set. Otherwise, it defaults
to vi (on Unix systems) or the IDLE editor (on Windows).

EXTENSIONS

Default:: {}

A dict containing the extensions enabled in your project, and their orders.

EXTENSIONS_BASE

Default:

{
 'scrapy.extensions.corestats.CoreStats': 0,
 'scrapy.extensions.telnet.TelnetConsole': 0,
 'scrapy.extensions.memusage.MemoryUsage': 0,
 'scrapy.extensions.memdebug.MemoryDebugger': 0,
 'scrapy.extensions.closespider.CloseSpider': 0,
 'scrapy.extensions.feedexport.FeedExporter': 0,
 'scrapy.extensions.logstats.LogStats': 0,
 'scrapy.extensions.spiderstate.SpiderState': 0,
 'scrapy.extensions.throttle.AutoThrottle': 0,
}

A dict containing the extensions available by default in Scrapy, and their
orders. This setting contains all stable built-in extensions. Keep in mind that
some of them need to be enabled through a setting.

For more information See the extensions user guide
and the list of available extensions.

FEED_TEMPDIR

The Feed Temp dir allows you to set a custom folder to save crawler
temporary files before uploading with FTP feed storage and
Amazon S3.

FILES_STORE_S3_ACL

Default: 'private'

S3-specific access control policy (ACL) for S3 files store.

ITEM_PIPELINES

Default: {}

A dict containing the item pipelines to use, and their orders. Order values are
arbitrary, but it is customary to define them in the 0-1000 range. Lower orders
process before higher orders.

Example:

ITEM_PIPELINES = {
 'mybot.pipelines.validate.ValidateMyItem': 300,
 'mybot.pipelines.validate.StoreMyItem': 800,
}

ITEM_PIPELINES_BASE

Default: {}

A dict containing the pipelines enabled by default in Scrapy. You should never
modify this setting in your project, modify ITEM_PIPELINES instead.

LOG_ENABLED

Default: True

Whether to enable logging.

LOG_ENCODING

Default: 'utf-8'

The encoding to use for logging.

LOG_FILE

Default: None

File name to use for logging output. If None, standard error will be used.

LOG_FORMAT

Default: '%(asctime)s [%(name)s] %(levelname)s: %(message)s'

String for formatting log messsages. Refer to the Python logging documentation [https://docs.python.org/2/library/logging.html#logrecord-attributes] for the whole list of available
placeholders.

LOG_DATEFORMAT

Default: '%Y-%m-%d %H:%M:%S'

String for formatting date/time, expansion of the %(asctime)s placeholder
in LOG_FORMAT. Refer to the Python datetime documentation [https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior] for the whole list of available
directives.

LOG_LEVEL

Default: 'DEBUG'

Minimum level to log. Available levels are: CRITICAL, ERROR, WARNING,
INFO, DEBUG. For more info see Logging.

LOG_STDOUT

Default: False

If True, all standard output (and error) of your process will be redirected
to the log. For example if you print 'hello' it will appear in the Scrapy
log.

MEMDEBUG_ENABLED

Default: False

Whether to enable memory debugging.

MEMDEBUG_NOTIFY

Default: []

When memory debugging is enabled a memory report will be sent to the specified
addresses if this setting is not empty, otherwise the report will be written to
the log.

Example:

MEMDEBUG_NOTIFY = ['user@example.com']

MEMUSAGE_ENABLED

Default: False

Scope: scrapy.extensions.memusage

Whether to enable the memory usage extension that will shutdown the Scrapy
process when it exceeds a memory limit, and also notify by email when that
happened.

See Memory usage extension.

MEMUSAGE_LIMIT_MB

Default: 0

Scope: scrapy.extensions.memusage

The maximum amount of memory to allow (in megabytes) before shutting down
Scrapy (if MEMUSAGE_ENABLED is True). If zero, no check will be performed.

See Memory usage extension.

MEMUSAGE_CHECK_INTERVAL_SECONDS

New in version 1.1.

Default: 60.0

Scope: scrapy.extensions.memusage

The Memory usage extension
checks the current memory usage, versus the limits set by
MEMUSAGE_LIMIT_MB and MEMUSAGE_WARNING_MB,
at fixed time intervals.

This sets the length of these intervals, in seconds.

See Memory usage extension.

MEMUSAGE_NOTIFY_MAIL

Default: False

Scope: scrapy.extensions.memusage

A list of emails to notify if the memory limit has been reached.

Example:

MEMUSAGE_NOTIFY_MAIL = ['user@example.com']

See Memory usage extension.

MEMUSAGE_REPORT

Default: False

Scope: scrapy.extensions.memusage

Whether to send a memory usage report after each spider has been closed.

See Memory usage extension.

MEMUSAGE_WARNING_MB

Default: 0

Scope: scrapy.extensions.memusage

The maximum amount of memory to allow (in megabytes) before sending a warning
email notifying about it. If zero, no warning will be produced.

NEWSPIDER_MODULE

Default: ''

Module where to create new spiders using the genspider command.

Example:

NEWSPIDER_MODULE = 'mybot.spiders_dev'

RANDOMIZE_DOWNLOAD_DELAY

Default: True

If enabled, Scrapy will wait a random amount of time (between 0.5 and 1.5
* DOWNLOAD_DELAY) while fetching requests from the same
website.

This randomization decreases the chance of the crawler being detected (and
subsequently blocked) by sites which analyze requests looking for statistically
significant similarities in the time between their requests.

The randomization policy is the same used by wget [http://www.gnu.org/software/wget/manual/wget.html] --random-wait option.

If DOWNLOAD_DELAY is zero (default) this option has no effect.

REACTOR_THREADPOOL_MAXSIZE

Default: 10

The maximum limit for Twisted Reactor thread pool size. This is common
multi-purpose thread pool used by various Scrapy components. Threaded
DNS Resolver, BlockingFeedStorage, S3FilesStore just to name a few. Increase
this value if you’re experiencing problems with insufficient blocking IO.

REDIRECT_MAX_TIMES

Default: 20

Defines the maximum times a request can be redirected. After this maximum the
request’s response is returned as is. We used Firefox default value for the
same task.

REDIRECT_PRIORITY_ADJUST

Default: +2

Scope: scrapy.downloadermiddlewares.redirect.RedirectMiddleware

Adjust redirect request priority relative to original request:

	a positive priority adjust (default) means higher priority.

	a negative priority adjust means lower priority.

RETRY_PRIORITY_ADJUST

Default: -1

Scope: scrapy.downloadermiddlewares.retry.RetryMiddleware

Adjust retry request priority relative to original request:

	a positive priority adjust means higher priority.

	a negative priority adjust (default) means lower priority.

ROBOTSTXT_OBEY

Default: False

Scope: scrapy.downloadermiddlewares.robotstxt

If enabled, Scrapy will respect robots.txt policies. For more information see
RobotsTxtMiddleware.

Note

While the default value is False for historical reasons,
this option is enabled by default in settings.py file generated
by scrapy startproject command.

SCHEDULER

Default: 'scrapy.core.scheduler.Scheduler'

The scheduler to use for crawling.

SPIDER_CONTRACTS

Default:: {}

A dict containing the spider contracts enabled in your project, used for
testing spiders. For more info see Spiders Contracts.

SPIDER_CONTRACTS_BASE

Default:

{
 'scrapy.contracts.default.UrlContract' : 1,
 'scrapy.contracts.default.ReturnsContract': 2,
 'scrapy.contracts.default.ScrapesContract': 3,
}

A dict containing the scrapy contracts enabled by default in Scrapy. You should
never modify this setting in your project, modify SPIDER_CONTRACTS
instead. For more info see Spiders Contracts.

You can disable any of these contracts by assigning None to their class
path in SPIDER_CONTRACTS. E.g., to disable the built-in
ScrapesContract, place this in your settings.py:

SPIDER_CONTRACTS = {
 'scrapy.contracts.default.ScrapesContract': None,
}

SPIDER_LOADER_CLASS

Default: 'scrapy.spiderloader.SpiderLoader'

The class that will be used for loading spiders, which must implement the
SpiderLoader API.

SPIDER_MIDDLEWARES

Default:: {}

A dict containing the spider middlewares enabled in your project, and their
orders. For more info see Activating a spider middleware.

SPIDER_MIDDLEWARES_BASE

Default:

{
 'scrapy.spidermiddlewares.httperror.HttpErrorMiddleware': 50,
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware': 500,
 'scrapy.spidermiddlewares.referer.RefererMiddleware': 700,
 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware': 800,
 'scrapy.spidermiddlewares.depth.DepthMiddleware': 900,
}

A dict containing the spider middlewares enabled by default in Scrapy, and
their orders. Low orders are closer to the engine, high orders are closer to
the spider. For more info see Activating a spider middleware.

SPIDER_MODULES

Default: []

A list of modules where Scrapy will look for spiders.

Example:

SPIDER_MODULES = ['mybot.spiders_prod', 'mybot.spiders_dev']

STATS_CLASS

Default: 'scrapy.statscollectors.MemoryStatsCollector'

The class to use for collecting stats, who must implement the
Stats Collector API.

STATS_DUMP

Default: True

Dump the Scrapy stats (to the Scrapy log) once the spider
finishes.

For more info see: Stats Collection.

STATSMAILER_RCPTS

Default: [] (empty list)

Send Scrapy stats after spiders finish scraping. See
StatsMailer for more info.

TELNETCONSOLE_ENABLED

Default: True

A boolean which specifies if the telnet console
will be enabled (provided its extension is also enabled).

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a
dynamically assigned port is used. For more info see
Telnet Console.

TEMPLATES_DIR

Default: templates dir inside scrapy module

The directory where to look for templates when creating new projects with
startproject command and new spiders with genspider
command.

The project name must not conflict with the name of custom files or directories
in the project subdirectory.

URLLENGTH_LIMIT

Default: 2083

Scope: spidermiddlewares.urllength

The maximum URL length to allow for crawled URLs. For more information about
the default value for this setting see: http://www.boutell.com/newfaq/misc/urllength.html

USER_AGENT

Default: "Scrapy/VERSION (+http://scrapy.org)"

The default User-Agent to use when crawling, unless overridden.

Settings documented elsewhere:

The following settings are documented elsewhere, please check each specific
case to see how to enable and use them.

	AJAXCRAWL_ENABLED

	AUTOTHROTTLE_DEBUG

	AUTOTHROTTLE_ENABLED

	AUTOTHROTTLE_MAX_DELAY

	AUTOTHROTTLE_START_DELAY

	AUTOTHROTTLE_TARGET_CONCURRENCY

	CLOSESPIDER_ERRORCOUNT

	CLOSESPIDER_ITEMCOUNT

	CLOSESPIDER_PAGECOUNT

	CLOSESPIDER_TIMEOUT

	COMMANDS_MODULE

	COMPRESSION_ENABLED

	COOKIES_DEBUG

	COOKIES_ENABLED

	FEED_EXPORTERS

	FEED_EXPORTERS_BASE

	FEED_EXPORT_FIELDS

	FEED_FORMAT

	FEED_STORAGES

	FEED_STORAGES_BASE

	FEED_STORE_EMPTY

	FEED_URI

	FILES_EXPIRES

	FILES_RESULT_FIELD

	FILES_STORE

	FILES_URLS_FIELD

	HTTPCACHE_ALWAYS_STORE

	HTTPCACHE_DBM_MODULE

	HTTPCACHE_DIR

	HTTPCACHE_ENABLED

	HTTPCACHE_EXPIRATION_SECS

	HTTPCACHE_GZIP

	HTTPCACHE_IGNORE_HTTP_CODES

	HTTPCACHE_IGNORE_MISSING

	HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS

	HTTPCACHE_IGNORE_SCHEMES

	HTTPCACHE_POLICY

	HTTPCACHE_STORAGE

	HTTPERROR_ALLOWED_CODES

	HTTPERROR_ALLOW_ALL

	HTTPPROXY_AUTH_ENCODING

	IMAGES_EXPIRES

	IMAGES_MIN_HEIGHT

	IMAGES_MIN_WIDTH

	IMAGES_RESULT_FIELD

	IMAGES_STORE

	IMAGES_THUMBS

	IMAGES_URLS_FIELD

	MAIL_FROM

	MAIL_HOST

	MAIL_PASS

	MAIL_PORT

	MAIL_SSL

	MAIL_TLS

	MAIL_USER

	METAREFRESH_ENABLED

	METAREFRESH_MAXDELAY

	REDIRECT_ENABLED

	REDIRECT_MAX_TIMES

	REFERER_ENABLED

	RETRY_ENABLED

	RETRY_HTTP_CODES

	RETRY_TIMES

	TELNETCONSOLE_HOST

	TELNETCONSOLE_PORT

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Exceptions

Built-in Exceptions reference

Here’s a list of all exceptions included in Scrapy and their usage.

DropItem

	
exception scrapy.exceptions.DropItem

	

The exception that must be raised by item pipeline stages to stop processing an
Item. For more information see Item Pipeline.

CloseSpider

	
exception scrapy.exceptions.CloseSpider(reason='cancelled')

	This exception can be raised from a spider callback to request the spider to be
closed/stopped. Supported arguments:

	Parameters:	reason (str) – the reason for closing

For example:

def parse_page(self, response):
 if 'Bandwidth exceeded' in response.body:
 raise CloseSpider('bandwidth_exceeded')

IgnoreRequest

	
exception scrapy.exceptions.IgnoreRequest

	

This exception can be raised by the Scheduler or any downloader middleware to
indicate that the request should be ignored.

NotConfigured

	
exception scrapy.exceptions.NotConfigured

	

This exception can be raised by some components to indicate that they will
remain disabled. Those components include:

	Extensions

	Item pipelines

	Downloader middlewares

	Spider middlewares

The exception must be raised in the component constructor.

NotSupported

	
exception scrapy.exceptions.NotSupported

	

This exception is raised to indicate an unsupported feature.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Logging

Note

scrapy.log has been deprecated alongside its functions in favor of
explicit calls to the Python standard logging. Keep reading to learn more
about the new logging system.

Scrapy uses Python’s builtin logging system [https://docs.python.org/2/library/logging.html] for event logging. We’ll
provide some simple examples to get you started, but for more advanced
use-cases it’s strongly suggested to read thoroughly its documentation.

Logging works out of the box, and can be configured to some extent with the
Scrapy settings listed in Logging settings.

Scrapy calls scrapy.utils.log.configure_logging() to set some reasonable
defaults and handle those settings in Logging settings when
running commands, so it’s recommended to manually call it if you’re running
Scrapy from scripts as described in Run Scrapy from a script.

Log levels

Python’s builtin logging defines 5 different levels to indicate severity on a
given log message. Here are the standard ones, listed in decreasing order:

	logging.CRITICAL - for critical errors (highest severity)

	logging.ERROR - for regular errors

	logging.WARNING - for warning messages

	logging.INFO - for informational messages

	logging.DEBUG - for debugging messages (lowest severity)

How to log messages

Here’s a quick example of how to log a message using the logging.WARNING
level:

import logging
logging.warning("This is a warning")

There are shortcuts for issuing log messages on any of the standard 5 levels,
and there’s also a general logging.log method which takes a given level as
argument. If you need so, last example could be rewrote as:

import logging
logging.log(logging.WARNING, "This is a warning")

On top of that, you can create different “loggers” to encapsulate messages (For
example, a common practice it’s to create different loggers for every module).
These loggers can be configured independently, and they allow hierarchical
constructions.

Last examples use the root logger behind the scenes, which is a top level
logger where all messages are propagated to (unless otherwise specified). Using
logging helpers is merely a shortcut for getting the root logger
explicitly, so this is also an equivalent of last snippets:

import logging
logger = logging.getLogger()
logger.warning("This is a warning")

You can use a different logger just by getting its name with the
logging.getLogger function:

import logging
logger = logging.getLogger('mycustomlogger')
logger.warning("This is a warning")

Finally, you can ensure having a custom logger for any module you’re working on
by using the __name__ variable, which is populated with current module’s
path:

import logging
logger = logging.getLogger(__name__)
logger.warning("This is a warning")

See also

	Module logging, HowTo [https://docs.python.org/2/howto/logging.html]

	Basic Logging Tutorial

	Module logging, Loggers [https://docs.python.org/2/library/logging.html#logger-objects]

	Further documentation on loggers

Logging from Spiders

Scrapy provides a logger within each Spider
instance, that can be accessed and used like this:

import scrapy

class MySpider(scrapy.Spider):

 name = 'myspider'
 start_urls = ['http://scrapinghub.com']

 def parse(self, response):
 self.logger.info('Parse function called on %s', response.url)

That logger is created using the Spider’s name, but you can use any custom
Python logger you want. For example:

import logging
import scrapy

logger = logging.getLogger('mycustomlogger')

class MySpider(scrapy.Spider):

 name = 'myspider'
 start_urls = ['http://scrapinghub.com']

 def parse(self, response):
 logger.info('Parse function called on %s', response.url)

Logging configuration

Loggers on their own don’t manage how messages sent through them are displayed.
For this task, different “handlers” can be attached to any logger instance and
they will redirect those messages to appropriate destinations, such as the
standard output, files, emails, etc.

By default, Scrapy sets and configures a handler for the root logger, based on
the settings below.

Logging settings

These settings can be used to configure the logging:

	LOG_FILE

	LOG_ENABLED

	LOG_ENCODING

	LOG_LEVEL

	LOG_FORMAT

	LOG_DATEFORMAT

	LOG_STDOUT

First couple of settings define a destination for log messages. If
LOG_FILE is set, messages sent through the root logger will be
redirected to a file named LOG_FILE with encoding
LOG_ENCODING. If unset and LOG_ENABLED is True, log
messages will be displayed on the standard error. Lastly, if
LOG_ENABLED is False, there won’t be any visible log output.

LOG_LEVEL determines the minimum level of severity to display, those
messages with lower severity will be filtered out. It ranges through the
possible levels listed in Log levels.

LOG_FORMAT and LOG_DATEFORMAT specify formatting strings
used as layouts for all messages. Those strings can contain any placeholders
listed in logging’s logrecord attributes docs [https://docs.python.org/2/library/logging.html#logrecord-attributes] and
datetime’s strftime and strptime directives [https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior]
respectively.

Command-line options

There are command-line arguments, available for all commands, that you can use
to override some of the Scrapy settings regarding logging.

	
	--logfile FILE

	Overrides LOG_FILE

	
	--loglevel/-L LEVEL

	Overrides LOG_LEVEL

	
	--nolog

	Sets LOG_ENABLED to False

See also

	Module logging.handlers [https://docs.python.org/2/library/logging.handlers.html]

	Further documentation on available handlers

scrapy.utils.log module

	
scrapy.utils.log.configure_logging(settings=None, install_root_handler=True)

	Initialize logging defaults for Scrapy.

	Parameters:	
	settings (dict, Settings object or None) – settings used to create and configure a handler for the
root logger (default: None).

	install_root_handler (bool) – whether to install root logging handler
(default: True)

This function does:

	Route warnings and twisted logging through Python standard logging

	Assign DEBUG and ERROR level to Scrapy and Twisted loggers respectively

	Route stdout to log if LOG_STDOUT setting is True

When install_root_handler is True (default), this function also
creates a handler for the root logger according to given settings
(see Logging settings). You can override default options
using settings argument. When settings is empty or None, defaults
are used.

configure_logging is automatically called when using Scrapy commands,
but needs to be called explicitly when running custom scripts. In that
case, its usage is not required but it’s recommended.

If you plan on configuring the handlers yourself is still recommended you
call this function, passing install_root_handler=False. Bear in mind
there won’t be any log output set by default in that case.

To get you started on manually configuring logging’s output, you can use
logging.basicConfig() [https://docs.python.org/2/library/logging.html#logging.basicConfig] to set a basic root handler. This is an example
on how to redirect INFO or higher messages to a file:

import logging
from scrapy.utils.log import configure_logging

configure_logging(install_root_handler=False)
logging.basicConfig(
 filename='log.txt',
 format='%(levelname)s: %(message)s',
 level=logging.INFO
)

Refer to Run Scrapy from a script for more details about using Scrapy this
way.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Stats Collection

Scrapy provides a convenient facility for collecting stats in the form of
key/values, where values are often counters. The facility is called the Stats
Collector, and can be accessed through the stats
attribute of the Crawler API, as illustrated by the examples in
the Common Stats Collector uses section below.

However, the Stats Collector is always available, so you can always import it
in your module and use its API (to increment or set new stat keys), regardless
of whether the stats collection is enabled or not. If it’s disabled, the API
will still work but it won’t collect anything. This is aimed at simplifying the
stats collector usage: you should spend no more than one line of code for
collecting stats in your spider, Scrapy extension, or whatever code you’re
using the Stats Collector from.

Another feature of the Stats Collector is that it’s very efficient (when
enabled) and extremely efficient (almost unnoticeable) when disabled.

The Stats Collector keeps a stats table per open spider which is automatically
opened when the spider is opened, and closed when the spider is closed.

Common Stats Collector uses

Access the stats collector through the stats
attribute. Here is an example of an extension that access stats:

class ExtensionThatAccessStats(object):

 def __init__(self, stats):
 self.stats = stats

 @classmethod
 def from_crawler(cls, crawler):
 return cls(crawler.stats)

Set stat value:

stats.set_value('hostname', socket.gethostname())

Increment stat value:

stats.inc_value('custom_count')

Set stat value only if greater than previous:

stats.max_value('max_items_scraped', value)

Set stat value only if lower than previous:

stats.min_value('min_free_memory_percent', value)

Get stat value:

>>> stats.get_value('custom_count')
1

Get all stats:

>>> stats.get_stats()
{'custom_count': 1, 'start_time': datetime.datetime(2009, 7, 14, 21, 47, 28, 977139)}

Available Stats Collectors

Besides the basic StatsCollector there are other Stats Collectors
available in Scrapy which extend the basic Stats Collector. You can select
which Stats Collector to use through the STATS_CLASS setting. The
default Stats Collector used is the MemoryStatsCollector.

MemoryStatsCollector

	
class scrapy.statscollectors.MemoryStatsCollector

	A simple stats collector that keeps the stats of the last scraping run (for
each spider) in memory, after they’re closed. The stats can be accessed
through the spider_stats attribute, which is a dict keyed by spider
domain name.

This is the default Stats Collector used in Scrapy.

	
spider_stats

	A dict of dicts (keyed by spider name) containing the stats of the last
scraping run for each spider.

DummyStatsCollector

	
class scrapy.statscollectors.DummyStatsCollector

	A Stats collector which does nothing but is very efficient (because it does
nothing). This stats collector can be set via the STATS_CLASS
setting, to disable stats collect in order to improve performance. However,
the performance penalty of stats collection is usually marginal compared to
other Scrapy workload like parsing pages.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Sending e-mail

Although Python makes sending e-mails relatively easy via the smtplib [https://docs.python.org/2/library/smtplib.html]
library, Scrapy provides its own facility for sending e-mails which is very
easy to use and it’s implemented using Twisted non-blocking IO [https://twistedmatrix.com/documents/current/core/howto/defer-intro.html], to avoid
interfering with the non-blocking IO of the crawler. It also provides a
simple API for sending attachments and it’s very easy to configure, with a few
settings.

Quick example

There are two ways to instantiate the mail sender. You can instantiate it using
the standard constructor:

from scrapy.mail import MailSender
mailer = MailSender()

Or you can instantiate it passing a Scrapy settings object, which will respect
the settings:

mailer = MailSender.from_settings(settings)

And here is how to use it to send an e-mail (without attachments):

mailer.send(to=["someone@example.com"], subject="Some subject", body="Some body", cc=["another@example.com"])

MailSender class reference

MailSender is the preferred class to use for sending emails from Scrapy, as it
uses Twisted non-blocking IO [https://twistedmatrix.com/documents/current/core/howto/defer-intro.html], like the rest of the framework.

	
class scrapy.mail.MailSender(smtphost=None, mailfrom=None, smtpuser=None, smtppass=None, smtpport=None)

	

	Parameters:	
	smtphost (str) – the SMTP host to use for sending the emails. If omitted, the
MAIL_HOST setting will be used.

	mailfrom (str) – the address used to send emails (in the From: header).
If omitted, the MAIL_FROM setting will be used.

	smtpuser – the SMTP user. If omitted, the MAIL_USER
setting will be used. If not given, no SMTP authentication will be
performed.

	smtppass (str) – the SMTP pass for authentication.

	smtpport (int) – the SMTP port to connect to

	smtptls (boolean) – enforce using SMTP STARTTLS

	smtpssl (boolean) – enforce using a secure SSL connection

	
classmethod from_settings(settings)

	Instantiate using a Scrapy settings object, which will respect
these Scrapy settings.

	Parameters:	settings (scrapy.settings.Settings object) – the e-mail recipients

	
send(to, subject, body, cc=None, attachs=(), mimetype='text/plain', charset=None)

	Send email to the given recipients.

	Parameters:	
	to (list) – the e-mail recipients

	subject (str) – the subject of the e-mail

	cc (list) – the e-mails to CC

	body (str) – the e-mail body

	attachs (iterable) – an iterable of tuples (attach_name, mimetype,
file_object) where attach_name is a string with the name that will
appear on the e-mail’s attachment, mimetype is the mimetype of the
attachment and file_object is a readable file object with the
contents of the attachment

	mimetype (str) – the MIME type of the e-mail

	charset (str) – the character encoding to use for the e-mail contents

Mail settings

These settings define the default constructor values of the MailSender
class, and can be used to configure e-mail notifications in your project without
writing any code (for those extensions and code that uses MailSender).

MAIL_FROM

Default: 'scrapy@localhost'

Sender email to use (From: header) for sending emails.

MAIL_HOST

Default: 'localhost'

SMTP host to use for sending emails.

MAIL_PORT

Default: 25

SMTP port to use for sending emails.

MAIL_USER

Default: None

User to use for SMTP authentication. If disabled no SMTP authentication will be
performed.

MAIL_PASS

Default: None

Password to use for SMTP authentication, along with MAIL_USER.

MAIL_TLS

Default: False

Enforce using STARTTLS. STARTTLS is a way to take an existing insecure connection, and upgrade it to a secure connection using SSL/TLS.

MAIL_SSL

Default: False

Enforce connecting using an SSL encrypted connection

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Telnet Console

Scrapy comes with a built-in telnet console for inspecting and controlling a
Scrapy running process. The telnet console is just a regular python shell
running inside the Scrapy process, so you can do literally anything from it.

The telnet console is a built-in Scrapy extension which comes enabled by default, but you can also
disable it if you want. For more information about the extension itself see
Telnet console extension.

How to access the telnet console

The telnet console listens in the TCP port defined in the
TELNETCONSOLE_PORT setting, which defaults to 6023. To access
the console you need to type:

telnet localhost 6023
>>>

You need the telnet program which comes installed by default in Windows, and
most Linux distros.

Available variables in the telnet console

The telnet console is like a regular Python shell running inside the Scrapy
process, so you can do anything from it including importing new modules, etc.

However, the telnet console comes with some default variables defined for
convenience:

	Shortcut
	Description

	crawler
	the Scrapy Crawler (scrapy.crawler.Crawler object)

	engine
	Crawler.engine attribute

	spider
	the active spider

	slot
	the engine slot

	extensions
	the Extension Manager (Crawler.extensions attribute)

	stats
	the Stats Collector (Crawler.stats attribute)

	settings
	the Scrapy settings object (Crawler.settings attribute)

	est
	print a report of the engine status

	prefs
	for memory debugging (see Debugging memory leaks)

	p
	a shortcut to the pprint.pprint [https://docs.python.org/library/pprint.html#pprint.pprint] function

	hpy
	for memory debugging (see Debugging memory leaks)

Telnet console usage examples

Here are some example tasks you can do with the telnet console:

View engine status

You can use the est() method of the Scrapy engine to quickly show its state
using the telnet console:

telnet localhost 6023
>>> est()
Execution engine status

time()-engine.start_time : 8.62972998619
engine.has_capacity() : False
len(engine.downloader.active) : 16
engine.scraper.is_idle() : False
engine.spider.name : followall
engine.spider_is_idle(engine.spider) : False
engine.slot.closing : False
len(engine.slot.inprogress) : 16
len(engine.slot.scheduler.dqs or []) : 0
len(engine.slot.scheduler.mqs) : 92
len(engine.scraper.slot.queue) : 0
len(engine.scraper.slot.active) : 0
engine.scraper.slot.active_size : 0
engine.scraper.slot.itemproc_size : 0
engine.scraper.slot.needs_backout() : False

Pause, resume and stop the Scrapy engine

To pause:

telnet localhost 6023
>>> engine.pause()
>>>

To resume:

telnet localhost 6023
>>> engine.unpause()
>>>

To stop:

telnet localhost 6023
>>> engine.stop()
Connection closed by foreign host.

Telnet Console signals

	
scrapy.extensions.telnet.update_telnet_vars(telnet_vars)

	Sent just before the telnet console is opened. You can hook up to this
signal to add, remove or update the variables that will be available in the
telnet local namespace. In order to do that, you need to update the
telnet_vars dict in your handler.

	Parameters:	telnet_vars (dict) – the dict of telnet variables

Telnet settings

These are the settings that control the telnet console’s behaviour:

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a
dynamically assigned port is used.

TELNETCONSOLE_HOST

Default: '127.0.0.1'

The interface the telnet console should listen on

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Web Service

webservice has been moved into a separate project.

It is hosted at:

https://github.com/scrapy-plugins/scrapy-jsonrpc

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Frequently Asked Questions

How does Scrapy compare to BeautifulSoup or lxml?

BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] and lxml [http://lxml.de/] are libraries for parsing HTML and XML. Scrapy is
an application framework for writing web spiders that crawl web sites and
extract data from them.

Scrapy provides a built-in mechanism for extracting data (called
selectors) but you can easily use BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/]
(or lxml [http://lxml.de/]) instead, if you feel more comfortable working with them. After
all, they’re just parsing libraries which can be imported and used from any
Python code.

In other words, comparing BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] (or lxml [http://lxml.de/]) to Scrapy is like
comparing jinja2 [http://jinja.pocoo.org/] to Django [https://www.djangoproject.com/].

What Python versions does Scrapy support?

Scrapy is supported under Python 2.7 and Python 3.3+.
Python 2.6 support was dropped starting at Scrapy 0.20.
Python 3 support was added in Scrapy 1.1.

Did Scrapy “steal” X from Django?

Probably, but we don’t like that word. We think Django [https://www.djangoproject.com/] is a great open source
project and an example to follow, so we’ve used it as an inspiration for
Scrapy.

We believe that, if something is already done well, there’s no need to reinvent
it. This concept, besides being one of the foundations for open source and free
software, not only applies to software but also to documentation, procedures,
policies, etc. So, instead of going through each problem ourselves, we choose
to copy ideas from those projects that have already solved them properly, and
focus on the real problems we need to solve.

We’d be proud if Scrapy serves as an inspiration for other projects. Feel free
to steal from us!

Does Scrapy work with HTTP proxies?

Yes. Support for HTTP proxies is provided (since Scrapy 0.8) through the HTTP
Proxy downloader middleware. See
HttpProxyMiddleware.

How can I scrape an item with attributes in different pages?

See Passing additional data to callback functions.

Scrapy crashes with: ImportError: No module named win32api

You need to install pywin32 [https://sourceforge.net/projects/pywin32/] because of this Twisted bug [https://twistedmatrix.com/trac/ticket/3707].

How can I simulate a user login in my spider?

See Using FormRequest.from_response() to simulate a user login.

Does Scrapy crawl in breadth-first or depth-first order?

By default, Scrapy uses a LIFO [https://en.wikipedia.org/wiki/LIFO] queue for storing pending requests, which
basically means that it crawls in DFO order [https://en.wikipedia.org/wiki/Depth-first_search]. This order is more convenient
in most cases. If you do want to crawl in true BFO order [https://en.wikipedia.org/wiki/Breadth-first_search], you can do it by
setting the following settings:

DEPTH_PRIORITY = 1
SCHEDULER_DISK_QUEUE = 'scrapy.squeues.PickleFifoDiskQueue'
SCHEDULER_MEMORY_QUEUE = 'scrapy.squeues.FifoMemoryQueue'

My Scrapy crawler has memory leaks. What can I do?

See Debugging memory leaks.

Also, Python has a builtin memory leak issue which is described in
Leaks without leaks.

How can I make Scrapy consume less memory?

See previous question.

Can I use Basic HTTP Authentication in my spiders?

Yes, see HttpAuthMiddleware.

Why does Scrapy download pages in English instead of my native language?

Try changing the default Accept-Language [https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4] request header by overriding the
DEFAULT_REQUEST_HEADERS setting.

Where can I find some example Scrapy projects?

See Examples.

Can I run a spider without creating a project?

Yes. You can use the runspider command. For example, if you have a
spider written in a my_spider.py file you can run it with:

scrapy runspider my_spider.py

See runspider command for more info.

I get “Filtered offsite request” messages. How can I fix them?

Those messages (logged with DEBUG level) don’t necessarily mean there is a
problem, so you may not need to fix them.

Those messages are thrown by the Offsite Spider Middleware, which is a spider
middleware (enabled by default) whose purpose is to filter out requests to
domains outside the ones covered by the spider.

For more info see:
OffsiteMiddleware.

What is the recommended way to deploy a Scrapy crawler in production?

See Deploying Spiders.

Can I use JSON for large exports?

It’ll depend on how large your output is. See this warning in JsonItemExporter
documentation.

Can I return (Twisted) deferreds from signal handlers?

Some signals support returning deferreds from their handlers, others don’t. See
the Built-in signals reference to know which ones.

What does the response status code 999 means?

999 is a custom response status code used by Yahoo sites to throttle requests.
Try slowing down the crawling speed by using a download delay of 2 (or
higher) in your spider:

class MySpider(CrawlSpider):

 name = 'myspider'

 download_delay = 2

 # [... rest of the spider code ...]

Or by setting a global download delay in your project with the
DOWNLOAD_DELAY setting.

Can I call pdb.set_trace() from my spiders to debug them?

Yes, but you can also use the Scrapy shell which allows you to quickly analyze
(and even modify) the response being processed by your spider, which is, quite
often, more useful than plain old pdb.set_trace().

For more info see Invoking the shell from spiders to inspect responses.

Simplest way to dump all my scraped items into a JSON/CSV/XML file?

To dump into a JSON file:

scrapy crawl myspider -o items.json

To dump into a CSV file:

scrapy crawl myspider -o items.csv

To dump into a XML file:

scrapy crawl myspider -o items.xml

For more information see Feed exports

What’s this huge cryptic __VIEWSTATE parameter used in some forms?

The __VIEWSTATE parameter is used in sites built with ASP.NET/VB.NET. For
more info on how it works see this page [http://search.cpan.org/~ecarroll/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm]. Also, here’s an example spider [https://github.com/AmbientLighter/rpn-fas/blob/master/fas/spiders/rnp.py]
which scrapes one of these sites.

What’s the best way to parse big XML/CSV data feeds?

Parsing big feeds with XPath selectors can be problematic since they need to
build the DOM of the entire feed in memory, and this can be quite slow and
consume a lot of memory.

In order to avoid parsing all the entire feed at once in memory, you can use
the functions xmliter and csviter from scrapy.utils.iterators
module. In fact, this is what the feed spiders (see Spiders) use
under the cover.

Does Scrapy manage cookies automatically?

Yes, Scrapy receives and keeps track of cookies sent by servers, and sends them
back on subsequent requests, like any regular web browser does.

For more info see Requests and Responses and CookiesMiddleware.

How can I see the cookies being sent and received from Scrapy?

Enable the COOKIES_DEBUG setting.

How can I instruct a spider to stop itself?

Raise the CloseSpider exception from a callback. For
more info see: CloseSpider.

How can I prevent my Scrapy bot from getting banned?

See Avoiding getting banned.

Should I use spider arguments or settings to configure my spider?

Both spider arguments and settings
can be used to configure your spider. There is no strict rule that mandates to
use one or the other, but settings are more suited for parameters that, once
set, don’t change much, while spider arguments are meant to change more often,
even on each spider run and sometimes are required for the spider to run at all
(for example, to set the start url of a spider).

To illustrate with an example, assuming you have a spider that needs to log
into a site to scrape data, and you only want to scrape data from a certain
section of the site (which varies each time). In that case, the credentials to
log in would be settings, while the url of the section to scrape would be a
spider argument.

I’m scraping a XML document and my XPath selector doesn’t return any items

You may need to remove namespaces. See Removing namespaces.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Debugging Spiders

This document explains the most common techniques for debugging spiders.
Consider the following scrapy spider below:

import scrapy
from myproject.items import MyItem

class MySpider(scrapy.Spider):
 name = 'myspider'
 start_urls = (
 'http://example.com/page1',
 'http://example.com/page2',
)

 def parse(self, response):
 # collect `item_urls`
 for item_url in item_urls:
 yield scrapy.Request(item_url, self.parse_item)

 def parse_item(self, response):
 item = MyItem()
 # populate `item` fields
 # and extract item_details_url
 yield scrapy.Request(item_details_url, self.parse_details, meta={'item': item})

 def parse_details(self, response):
 item = response.meta['item']
 # populate more `item` fields
 return item

Basically this is a simple spider which parses two pages of items (the
start_urls). Items also have a details page with additional information, so we
use the meta functionality of Request to pass a
partially populated item.

Parse Command

The most basic way of checking the output of your spider is to use the
parse command. It allows to check the behaviour of different parts
of the spider at the method level. It has the advantage of being flexible and
simple to use, but does not allow debugging code inside a method.

In order to see the item scraped from a specific url:

$ scrapy parse --spider=myspider -c parse_item -d 2 <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 2 <<<
Scraped Items --
[{'url': <item_url>}]

Requests ---
[]

Using the --verbose or -v option we can see the status at each depth level:

$ scrapy parse --spider=myspider -c parse_item -d 2 -v <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> DEPTH LEVEL: 1 <<<
Scraped Items --
[]

Requests ---
[<GET item_details_url>]

>>> DEPTH LEVEL: 2 <<<
Scraped Items --
[{'url': <item_url>}]

Requests ---
[]

Checking items scraped from a single start_url, can also be easily achieved
using:

$ scrapy parse --spider=myspider -d 3 'http://example.com/page1'

Scrapy Shell

While the parse command is very useful for checking behaviour of a
spider, it is of little help to check what happens inside a callback, besides
showing the response received and the output. How to debug the situation when
parse_details sometimes receives no item?

Fortunately, the shell is your bread and butter in this case (see
Invoking the shell from spiders to inspect responses):

from scrapy.shell import inspect_response

def parse_details(self, response):
 item = response.meta.get('item', None)
 if item:
 # populate more `item` fields
 return item
 else:
 inspect_response(response, self)

See also: Invoking the shell from spiders to inspect responses.

Open in browser

Sometimes you just want to see how a certain response looks in a browser, you
can use the open_in_browser function for that. Here is an example of how
you would use it:

from scrapy.utils.response import open_in_browser

def parse_details(self, response):
 if "item name" not in response.body:
 open_in_browser(response)

open_in_browser will open a browser with the response received by Scrapy at
that point, adjusting the base tag [http://www.w3schools.com/tags/tag_base.asp] so that images and styles are displayed
properly.

Logging

Logging is another useful option for getting information about your spider run.
Although not as convenient, it comes with the advantage that the logs will be
available in all future runs should they be necessary again:

def parse_details(self, response):
 item = response.meta.get('item', None)
 if item:
 # populate more `item` fields
 return item
 else:
 self.logger.warning('No item received for %s', response.url)

For more information, check the Logging section.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Spiders Contracts

New in version 0.15.

Note

This is a new feature (introduced in Scrapy 0.15) and may be subject
to minor functionality/API updates. Check the release notes to
be notified of updates.

Testing spiders can get particularly annoying and while nothing prevents you
from writing unit tests the task gets cumbersome quickly. Scrapy offers an
integrated way of testing your spiders by the means of contracts.

This allows you to test each callback of your spider by hardcoding a sample url
and check various constraints for how the callback processes the response. Each
contract is prefixed with an @ and included in the docstring. See the
following example:

def parse(self, response):
 """ This function parses a sample response. Some contracts are mingled
 with this docstring.

 @url http://www.amazon.com/s?field-keywords=selfish+gene
 @returns items 1 16
 @returns requests 0 0
 @scrapes Title Author Year Price
 """

This callback is tested using three built-in contracts:

	
class scrapy.contracts.default.UrlContract

	This contract (@url) sets the sample url used when checking other
contract conditions for this spider. This contract is mandatory. All
callbacks lacking this contract are ignored when running the checks:

@url url

	
class scrapy.contracts.default.ReturnsContract

	This contract (@returns) sets lower and upper bounds for the items and
requests returned by the spider. The upper bound is optional:

@returns item(s)|request(s) [min [max]]

	
class scrapy.contracts.default.ScrapesContract

	This contract (@scrapes) checks that all the items returned by the
callback have the specified fields:

@scrapes field_1 field_2 ...

Use the check command to run the contract checks.

Custom Contracts

If you find you need more power than the built-in scrapy contracts you can
create and load your own contracts in the project by using the
SPIDER_CONTRACTS setting:

SPIDER_CONTRACTS = {
 'myproject.contracts.ResponseCheck': 10,
 'myproject.contracts.ItemValidate': 10,
}

Each contract must inherit from scrapy.contracts.Contract and can
override three methods:

	
class scrapy.contracts.Contract(method, *args)

	

	Parameters:	
	method (function) – callback function to which the contract is associated

	args (list) – list of arguments passed into the docstring (whitespace
separated)

	
adjust_request_args(args)

	This receives a dict as an argument containing default arguments
for Request object. Must return the same or a
modified version of it.

	
pre_process(response)

	This allows hooking in various checks on the response received from the
sample request, before it’s being passed to the callback.

	
post_process(output)

	This allows processing the output of the callback. Iterators are
converted listified before being passed to this hook.

Here is a demo contract which checks the presence of a custom header in the
response received. Raise scrapy.exceptions.ContractFail in order to
get the failures pretty printed:

from scrapy.contracts import Contract
from scrapy.exceptions import ContractFail

class HasHeaderContract(Contract):
 """ Demo contract which checks the presence of a custom header
 @has_header X-CustomHeader
 """

 name = 'has_header'

 def pre_process(self, response):
 for header in self.args:
 if header not in response.headers:
 raise ContractFail('X-CustomHeader not present')

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Common Practices

This section documents common practices when using Scrapy. These are things
that cover many topics and don’t often fall into any other specific section.

Run Scrapy from a script

You can use the API to run Scrapy from a script, instead of
the typical way of running Scrapy via scrapy crawl.

Remember that Scrapy is built on top of the Twisted
asynchronous networking library, so you need to run it inside the Twisted reactor.

First utility you can use to run your spiders is
scrapy.crawler.CrawlerProcess. This class will start a Twisted reactor
for you, configuring the logging and setting shutdown handlers. This class is
the one used by all Scrapy commands.

Here’s an example showing how to run a single spider with it.

import scrapy
from scrapy.crawler import CrawlerProcess

class MySpider(scrapy.Spider):
 # Your spider definition
 ...

process = CrawlerProcess({
 'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'
})

process.crawl(MySpider)
process.start() # the script will block here until the crawling is finished

Make sure to check CrawlerProcess documentation to get
acquainted with its usage details.

If you are inside a Scrapy project there are some additional helpers you can
use to import those components within the project. You can automatically import
your spiders passing their name to CrawlerProcess, and
use get_project_settings to get a Settings
instance with your project settings.

What follows is a working example of how to do that, using the testspiders [https://github.com/scrapinghub/testspiders]
project as example.

from scrapy.crawler import CrawlerProcess
from scrapy.utils.project import get_project_settings

process = CrawlerProcess(get_project_settings())

'followall' is the name of one of the spiders of the project.
process.crawl('followall', domain='scrapinghub.com')
process.start() # the script will block here until the crawling is finished

There’s another Scrapy utility that provides more control over the crawling
process: scrapy.crawler.CrawlerRunner. This class is a thin wrapper
that encapsulates some simple helpers to run multiple crawlers, but it won’t
start or interfere with existing reactors in any way.

Using this class the reactor should be explicitly run after scheduling your
spiders. It’s recommended you use CrawlerRunner
instead of CrawlerProcess if your application is
already using Twisted and you want to run Scrapy in the same reactor.

Note that you will also have to shutdown the Twisted reactor yourself after the
spider is finished. This can be achieved by adding callbacks to the deferred
returned by the CrawlerRunner.crawl method.

Here’s an example of its usage, along with a callback to manually stop the
reactor after MySpider has finished running.

from twisted.internet import reactor
import scrapy
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider(scrapy.Spider):
 # Your spider definition
 ...

configure_logging({'LOG_FORMAT': '%(levelname)s: %(message)s'})
runner = CrawlerRunner()

d = runner.crawl(MySpider)
d.addBoth(lambda _: reactor.stop())
reactor.run() # the script will block here until the crawling is finished

See also

Twisted Reactor Overview [https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html].

Running multiple spiders in the same process

By default, Scrapy runs a single spider per process when you run scrapy
crawl. However, Scrapy supports running multiple spiders per process using
the internal API.

Here is an example that runs multiple spiders simultaneously:

import scrapy
from scrapy.crawler import CrawlerProcess

class MySpider1(scrapy.Spider):
 # Your first spider definition
 ...

class MySpider2(scrapy.Spider):
 # Your second spider definition
 ...

process = CrawlerProcess()
process.crawl(MySpider1)
process.crawl(MySpider2)
process.start() # the script will block here until all crawling jobs are finished

Same example using CrawlerRunner:

import scrapy
from twisted.internet import reactor
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider1(scrapy.Spider):
 # Your first spider definition
 ...

class MySpider2(scrapy.Spider):
 # Your second spider definition
 ...

configure_logging()
runner = CrawlerRunner()
runner.crawl(MySpider1)
runner.crawl(MySpider2)
d = runner.join()
d.addBoth(lambda _: reactor.stop())

reactor.run() # the script will block here until all crawling jobs are finished

Same example but running the spiders sequentially by chaining the deferreds:

from twisted.internet import reactor, defer
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider1(scrapy.Spider):
 # Your first spider definition
 ...

class MySpider2(scrapy.Spider):
 # Your second spider definition
 ...

configure_logging()
runner = CrawlerRunner()

@defer.inlineCallbacks
def crawl():
 yield runner.crawl(MySpider1)
 yield runner.crawl(MySpider2)
 reactor.stop()

crawl()
reactor.run() # the script will block here until the last crawl call is finished

See also

Run Scrapy from a script.

Distributed crawls

Scrapy doesn’t provide any built-in facility for running crawls in a distribute
(multi-server) manner. However, there are some ways to distribute crawls, which
vary depending on how you plan to distribute them.

If you have many spiders, the obvious way to distribute the load is to setup
many Scrapyd instances and distribute spider runs among those.

If you instead want to run a single (big) spider through many machines, what
you usually do is partition the urls to crawl and send them to each separate
spider. Here is a concrete example:

First, you prepare the list of urls to crawl and put them into separate
files/urls:

http://somedomain.com/urls-to-crawl/spider1/part1.list
http://somedomain.com/urls-to-crawl/spider1/part2.list
http://somedomain.com/urls-to-crawl/spider1/part3.list

Then you fire a spider run on 3 different Scrapyd servers. The spider would
receive a (spider) argument part with the number of the partition to
crawl:

curl http://scrapy1.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=1
curl http://scrapy2.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=2
curl http://scrapy3.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=3

Avoiding getting banned

Some websites implement certain measures to prevent bots from crawling them,
with varying degrees of sophistication. Getting around those measures can be
difficult and tricky, and may sometimes require special infrastructure. Please
consider contacting commercial support [http://scrapy.org/support/] if in doubt.

Here are some tips to keep in mind when dealing with these kinds of sites:

	rotate your user agent from a pool of well-known ones from browsers (google
around to get a list of them)

	disable cookies (see COOKIES_ENABLED) as some sites may use
cookies to spot bot behaviour

	use download delays (2 or higher). See DOWNLOAD_DELAY setting.

	if possible, use Google cache [http://www.googleguide.com/cached_pages.html] to fetch pages, instead of hitting the sites
directly

	use a pool of rotating IPs. For example, the free Tor project [https://www.torproject.org/] or paid
services like ProxyMesh [http://proxymesh.com/]

	use a highly distributed downloader that circumvents bans internally, so you
can just focus on parsing clean pages. One example of such downloaders is
Crawlera [http://scrapinghub.com/crawlera]

If you are still unable to prevent your bot getting banned, consider contacting
commercial support [http://scrapy.org/support/].

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Broad Crawls

Scrapy defaults are optimized for crawling specific sites. These sites are
often handled by a single Scrapy spider, although this is not necessary or
required (for example, there are generic spiders that handle any given site
thrown at them).

In addition to this “focused crawl”, there is another common type of crawling
which covers a large (potentially unlimited) number of domains, and is only
limited by time or other arbitrary constraint, rather than stopping when the
domain was crawled to completion or when there are no more requests to perform.
These are called “broad crawls” and is the typical crawlers employed by search
engines.

These are some common properties often found in broad crawls:

	they crawl many domains (often, unbounded) instead of a specific set of sites

	they don’t necessarily crawl domains to completion, because it would
impractical (or impossible) to do so, and instead limit the crawl by time or
number of pages crawled

	they are simpler in logic (as opposed to very complex spiders with many
extraction rules) because data is often post-processed in a separate stage

	they crawl many domains concurrently, which allows them to achieve faster
crawl speeds by not being limited by any particular site constraint (each site
is crawled slowly to respect politeness, but many sites are crawled in
parallel)

As said above, Scrapy default settings are optimized for focused crawls, not
broad crawls. However, due to its asynchronous architecture, Scrapy is very
well suited for performing fast broad crawls. This page summarizes some things
you need to keep in mind when using Scrapy for doing broad crawls, along with
concrete suggestions of Scrapy settings to tune in order to achieve an
efficient broad crawl.

Increase concurrency

Concurrency is the number of requests that are processed in parallel. There is
a global limit and a per-domain limit.

The default global concurrency limit in Scrapy is not suitable for crawling
many different domains in parallel, so you will want to increase it. How much
to increase it will depend on how much CPU you crawler will have available. A
good starting point is 100, but the best way to find out is by doing some
trials and identifying at what concurrency your Scrapy process gets CPU
bounded. For optimum performance, you should pick a concurrency where CPU usage
is at 80-90%.

To increase the global concurrency use:

CONCURRENT_REQUESTS = 100

Increase Twisted IO thread pool maximum size

Currently Scrapy does DNS resolution in a blocking way with usage of thread
pool. With higher concurrency levels the crawling could be slow or even fail
hitting DNS resolver timeouts. Possible solution to increase the number of
threads handling DNS queries. The DNS queue will be processed faster speeding
up establishing of connection and crawling overall.

To increase maximum thread pool size use:

REACTOR_THREADPOOL_MAXSIZE = 20

Setup your own DNS

If you have multiple crawling processes and single central DNS, it can act
like DoS attack on the DNS server resulting to slow down of entire network or
even blocking your machines. To avoid this setup your own DNS server with
local cache and upstream to some large DNS like OpenDNS or Verizon.

Reduce log level

When doing broad crawls you are often only interested in the crawl rates you
get and any errors found. These stats are reported by Scrapy when using the
INFO log level. In order to save CPU (and log storage requirements) you
should not use DEBUG log level when preforming large broad crawls in
production. Using DEBUG level when developing your (broad) crawler may fine
though.

To set the log level use:

LOG_LEVEL = 'INFO'

Disable cookies

Disable cookies unless you really need. Cookies are often not needed when
doing broad crawls (search engine crawlers ignore them), and they improve
performance by saving some CPU cycles and reducing the memory footprint of your
Scrapy crawler.

To disable cookies use:

COOKIES_ENABLED = False

Disable retries

Retrying failed HTTP requests can slow down the crawls substantially, specially
when sites causes are very slow (or fail) to respond, thus causing a timeout
error which gets retried many times, unnecessarily, preventing crawler capacity
to be reused for other domains.

To disable retries use:

RETRY_ENABLED = False

Reduce download timeout

Unless you are crawling from a very slow connection (which shouldn’t be the
case for broad crawls) reduce the download timeout so that stuck requests are
discarded quickly and free up capacity to process the next ones.

To reduce the download timeout use:

DOWNLOAD_TIMEOUT = 15

Disable redirects

Consider disabling redirects, unless you are interested in following them. When
doing broad crawls it’s common to save redirects and resolve them when
revisiting the site at a later crawl. This also help to keep the number of
request constant per crawl batch, otherwise redirect loops may cause the
crawler to dedicate too many resources on any specific domain.

To disable redirects use:

REDIRECT_ENABLED = False

Enable crawling of “Ajax Crawlable Pages”

Some pages (up to 1%, based on empirical data from year 2013) declare
themselves as ajax crawlable [https://developers.google.com/webmasters/ajax-crawling/docs/getting-started]. This means they provide plain HTML
version of content that is usually available only via AJAX.
Pages can indicate it in two ways:

	by using #! in URL - this is the default way;

	by using a special meta tag - this way is used on
“main”, “index” website pages.

Scrapy handles (1) automatically; to handle (2) enable
AjaxCrawlMiddleware:

AJAXCRAWL_ENABLED = True

When doing broad crawls it’s common to crawl a lot of “index” web pages;
AjaxCrawlMiddleware helps to crawl them correctly.
It is turned OFF by default because it has some performance overhead,
and enabling it for focused crawls doesn’t make much sense.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Using Firefox for scraping

Here is a list of tips and advice on using Firefox for scraping, along with a
list of useful Firefox add-ons to ease the scraping process.

Caveats with inspecting the live browser DOM

Since Firefox add-ons operate on a live browser DOM, what you’ll actually see
when inspecting the page source is not the original HTML, but a modified one
after applying some browser clean up and executing Javascript code. Firefox,
in particular, is known for adding <tbody> elements to tables. Scrapy, on
the other hand, does not modify the original page HTML, so you won’t be able to
extract any data if you use <tbody in your XPath expressions.

Therefore, you should keep in mind the following things when working with
Firefox and XPath:

	Disable Firefox Javascript while inspecting the DOM looking for XPaths to be
used in Scrapy

	Never use full XPath paths, use relative and clever ones based on attributes
(such as id, class, width, etc) or any identifying features like
contains(@href, 'image').

	Never include <tbody> elements in your XPath expressions unless you
really know what you’re doing

Useful Firefox add-ons for scraping

Firebug

Firebug [http://getfirebug.com] is a widely known tool among web developers and it’s also very
useful for scraping. In particular, its Inspect Element [https://www.youtube.com/watch?v=-pT_pDe54aA] feature comes very
handy when you need to construct the XPaths for extracting data because it
allows you to view the HTML code of each page element while moving your mouse
over it.

See Using Firebug for scraping for a detailed guide on how to use Firebug with
Scrapy.

XPather

XPather [https://addons.mozilla.org/en-US/firefox/addon/xpather/] allows you to test XPath expressions directly on the pages.

XPath Checker

XPath Checker [https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/] is another Firefox add-on for testing XPaths on your pages.

Tamper Data

Tamper Data [https://addons.mozilla.org/en-US/firefox/addon/tamper-data/] is a Firefox add-on which allows you to view and modify the HTTP
request headers sent by Firefox. Firebug also allows to view HTTP headers, but
not to modify them.

Firecookie

Firecookie [https://addons.mozilla.org/en-US/firefox/addon/firecookie/] makes it easier to view and manage cookies. You can use this
extension to create a new cookie, delete existing cookies, see a list of cookies
for the current site, manage cookies permissions and a lot more.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Using Firebug for scraping

Note

Google Directory, the example website used in this guide is no longer
available as it has been shut down by Google [https://searchenginewatch.com/sew/news/2096661/google-directory-shut]. The concepts in this guide
are still valid though. If you want to update this guide to use a new
(working) site, your contribution will be more than welcome!. See Contributing to Scrapy
for information on how to do so.

Introduction

This document explains how to use Firebug [http://getfirebug.com] (a Firefox add-on) to make the
scraping process easier and more fun. For other useful Firefox add-ons see
Useful Firefox add-ons for scraping. There are some caveats with using Firefox add-ons
to inspect pages, see Caveats with inspecting the live browser DOM.

In this example, we’ll show how to use Firebug [http://getfirebug.com] to scrape data from the
Google Directory [http://directory.google.com/], which contains the same data as the Open Directory
Project [http://www.dmoz.org] used in the tutorial but with a different
face.

Firebug comes with a very useful feature called Inspect Element [https://www.youtube.com/watch?v=-pT_pDe54aA] which allows
you to inspect the HTML code of the different page elements just by hovering
your mouse over them. Otherwise you would have to search for the tags manually
through the HTML body which can be a very tedious task.

In the following screenshot you can see the Inspect Element [https://www.youtube.com/watch?v=-pT_pDe54aA] tool in action.

[image: Inspecting elements with Firebug]
At first sight, we can see that the directory is divided in categories, which
are also divided in subcategories.

However, it seems that there are more subcategories than the ones being shown
in this page, so we’ll keep looking:

[image: Inspecting elements with Firebug]
As expected, the subcategories contain links to other subcategories, and also
links to actual websites, which is the purpose of the directory.

Getting links to follow

By looking at the category URLs we can see they share a pattern:

http://directory.google.com/Category/Subcategory/Another_Subcategory

Once we know that, we are able to construct a regular expression to follow
those links. For example, the following one:

directory\.google\.com/[A-Z][a-zA-Z_/]+$

So, based on that regular expression we can create the first crawling rule:

Rule(LinkExtractor(allow='directory.google.com/[A-Z][a-zA-Z_/]+$',),
 'parse_category',
 follow=True,
),

The Rule object instructs
CrawlSpider based spiders how to follow the
category links. parse_category will be a method of the spider which will
process and extract data from those pages.

This is how the spider would look so far:

from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule

class GoogleDirectorySpider(CrawlSpider):
 name = 'directory.google.com'
 allowed_domains = ['directory.google.com']
 start_urls = ['http://directory.google.com/']

 rules = (
 Rule(LinkExtractor(allow='directory\.google\.com/[A-Z][a-zA-Z_/]+$'),
 'parse_category', follow=True,
),
)

 def parse_category(self, response):
 # write the category page data extraction code here
 pass

Extracting the data

Now we’re going to write the code to extract data from those pages.

With the help of Firebug, we’ll take a look at some page containing links to
websites (say http://directory.google.com/Top/Arts/Awards/) and find out how we can
extract those links using Selectors. We’ll also
use the Scrapy shell to test those XPath’s and make sure
they work as we expect.

[image: Inspecting elements with Firebug]
As you can see, the page markup is not very descriptive: the elements don’t
contain id, class or any attribute that clearly identifies them, so
we’ll use the ranking bars as a reference point to select the data to extract
when we construct our XPaths.

After using FireBug, we can see that each link is inside a td tag, which is
itself inside a tr tag that also contains the link’s ranking bar (in
another td).

So we can select the ranking bar, then find its parent (the tr), and then
finally, the link’s td (which contains the data we want to scrape).

This results in the following XPath:

//td[descendant::a[contains(@href, "#pagerank")]]/following-sibling::td//a

It’s important to use the Scrapy shell to test these
complex XPath expressions and make sure they work as expected.

Basically, that expression will look for the ranking bar’s td element, and
then select any td element who has a descendant a element whose
href attribute contains the string #pagerank“

Of course, this is not the only XPath, and maybe not the simpler one to select
that data. Another approach could be, for example, to find any font tags
that have that grey colour of the links,

Finally, we can write our parse_category() method:

def parse_category(self, response):
 # The path to website links in directory page
 links = response.xpath('//td[descendant::a[contains(@href, "#pagerank")]]/following-sibling::td/font')

 for link in links:
 item = DirectoryItem()
 item['name'] = link.xpath('a/text()').extract()
 item['url'] = link.xpath('a/@href').extract()
 item['description'] = link.xpath('font[2]/text()').extract()
 yield item

Be aware that you may find some elements which appear in Firebug but
not in the original HTML, such as the typical case of <tbody>
elements.

or tags which Therefer in page HTML
sources may on Firebug inspects the live DOM

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Debugging memory leaks

In Scrapy, objects such as Requests, Responses and Items have a finite
lifetime: they are created, used for a while, and finally destroyed.

From all those objects, the Request is probably the one with the longest
lifetime, as it stays waiting in the Scheduler queue until it’s time to process
it. For more info see Architecture overview.

As these Scrapy objects have a (rather long) lifetime, there is always the risk
of accumulating them in memory without releasing them properly and thus causing
what is known as a “memory leak”.

To help debugging memory leaks, Scrapy provides a built-in mechanism for
tracking objects references called trackref,
and you can also use a third-party library called Guppy for more advanced memory debugging (see below for more
info). Both mechanisms must be used from the Telnet Console.

Common causes of memory leaks

It happens quite often (sometimes by accident, sometimes on purpose) that the
Scrapy developer passes objects referenced in Requests (for example, using the
meta attribute or the request callback function)
and that effectively bounds the lifetime of those referenced objects to the
lifetime of the Request. This is, by far, the most common cause of memory leaks
in Scrapy projects, and a quite difficult one to debug for newcomers.

In big projects, the spiders are typically written by different people and some
of those spiders could be “leaking” and thus affecting the rest of the other
(well-written) spiders when they get to run concurrently, which, in turn,
affects the whole crawling process.

The leak could also come from a custom middleware, pipeline or extension that
you have written, if you are not releasing the (previously allocated) resources
properly. For example, allocating resources on spider_opened
but not releasing them on spider_closed may cause problems if
you’re running multiple spiders per process.

Too Many Requests?

By default Scrapy keeps the request queue in memory; it includes
Request objects and all objects
referenced in Request attributes (e.g. in meta).
While not necessarily a leak, this can take a lot of memory. Enabling
persistent job queue could help keeping memory usage
in control.

Debugging memory leaks with trackref

trackref is a module provided by Scrapy to debug the most common cases of
memory leaks. It basically tracks the references to all live Requests,
Responses, Item and Selector objects.

You can enter the telnet console and inspect how many objects (of the classes
mentioned above) are currently alive using the prefs() function which is an
alias to the print_live_refs() function:

telnet localhost 6023

>>> prefs()
Live References

ExampleSpider 1 oldest: 15s ago
HtmlResponse 10 oldest: 1s ago
Selector 2 oldest: 0s ago
FormRequest 878 oldest: 7s ago

As you can see, that report also shows the “age” of the oldest object in each
class. If you’re running multiple spiders per process chances are you can
figure out which spider is leaking by looking at the oldest request or response.
You can get the oldest object of each class using the
get_oldest() function (from the telnet console).

Which objects are tracked?

The objects tracked by trackrefs are all from these classes (and all its
subclasses):

	scrapy.http.Request

	scrapy.http.Response

	scrapy.item.Item

	scrapy.selector.Selector

	scrapy.spiders.Spider

A real example

Let’s see a concrete example of a hypothetical case of memory leaks.
Suppose we have some spider with a line similar to this one:

return Request("http://www.somenastyspider.com/product.php?pid=%d" % product_id,
 callback=self.parse, meta={referer: response})

That line is passing a response reference inside a request which effectively
ties the response lifetime to the requests’ one, and that would definitely
cause memory leaks.

Let’s see how we can discover the cause (without knowing it
a-priori, of course) by using the trackref tool.

After the crawler is running for a few minutes and we notice its memory usage
has grown a lot, we can enter its telnet console and check the live
references:

>>> prefs()
Live References

SomenastySpider 1 oldest: 15s ago
HtmlResponse 3890 oldest: 265s ago
Selector 2 oldest: 0s ago
Request 3878 oldest: 250s ago

The fact that there are so many live responses (and that they’re so old) is
definitely suspicious, as responses should have a relatively short lifetime
compared to Requests. The number of responses is similar to the number
of requests, so it looks like they are tied in a some way. We can now go
and check the code of the spider to discover the nasty line that is
generating the leaks (passing response references inside requests).

Sometimes extra information about live objects can be helpful.
Let’s check the oldest response:

>>> from scrapy.utils.trackref import get_oldest
>>> r = get_oldest('HtmlResponse')
>>> r.url
'http://www.somenastyspider.com/product.php?pid=123'

If you want to iterate over all objects, instead of getting the oldest one, you
can use the scrapy.utils.trackref.iter_all() function:

>>> from scrapy.utils.trackref import iter_all
>>> [r.url for r in iter_all('HtmlResponse')]
['http://www.somenastyspider.com/product.php?pid=123',
 'http://www.somenastyspider.com/product.php?pid=584',
...

Too many spiders?

If your project has too many spiders executed in parallel,
the output of prefs() can be difficult to read.
For this reason, that function has a ignore argument which can be used to
ignore a particular class (and all its subclases). For
example, this won’t show any live references to spiders:

>>> from scrapy.spiders import Spider
>>> prefs(ignore=Spider)

scrapy.utils.trackref module

Here are the functions available in the trackref module.

	
class scrapy.utils.trackref.object_ref

	Inherit from this class (instead of object) if you want to track live
instances with the trackref module.

	
scrapy.utils.trackref.print_live_refs(class_name, ignore=NoneType)

	Print a report of live references, grouped by class name.

	Parameters:	ignore (class or classes tuple) – if given, all objects from the specified class (or tuple of
classes) will be ignored.

	
scrapy.utils.trackref.get_oldest(class_name)

	Return the oldest object alive with the given class name, or None if
none is found. Use print_live_refs() first to get a list of all
tracked live objects per class name.

	
scrapy.utils.trackref.iter_all(class_name)

	Return an iterator over all objects alive with the given class name, or
None if none is found. Use print_live_refs() first to get a list
of all tracked live objects per class name.

Debugging memory leaks with Guppy

trackref provides a very convenient mechanism for tracking down memory
leaks, but it only keeps track of the objects that are more likely to cause
memory leaks (Requests, Responses, Items, and Selectors). However, there are
other cases where the memory leaks could come from other (more or less obscure)
objects. If this is your case, and you can’t find your leaks using trackref,
you still have another resource: the Guppy library [https://pypi.python.org/pypi/guppy].

If you use pip, you can install Guppy with the following command:

pip install guppy

The telnet console also comes with a built-in shortcut (hpy) for accessing
Guppy heap objects. Here’s an example to view all Python objects available in
the heap using Guppy:

>>> x = hpy.heap()
>>> x.bytype
Partition of a set of 297033 objects. Total size = 52587824 bytes.
 Index Count % Size % Cumulative % Type
 0 22307 8 16423880 31 16423880 31 dict
 1 122285 41 12441544 24 28865424 55 str
 2 68346 23 5966696 11 34832120 66 tuple
 3 227 0 5836528 11 40668648 77 unicode
 4 2461 1 2222272 4 42890920 82 type
 5 16870 6 2024400 4 44915320 85 function
 6 13949 5 1673880 3 46589200 89 types.CodeType
 7 13422 5 1653104 3 48242304 92 list
 8 3735 1 1173680 2 49415984 94 _sre.SRE_Pattern
 9 1209 0 456936 1 49872920 95 scrapy.http.headers.Headers
<1676 more rows. Type e.g. '_.more' to view.>

You can see that most space is used by dicts. Then, if you want to see from
which attribute those dicts are referenced, you could do:

>>> x.bytype[0].byvia
Partition of a set of 22307 objects. Total size = 16423880 bytes.
 Index Count % Size % Cumulative % Referred Via:
 0 10982 49 9416336 57 9416336 57 '.__dict__'
 1 1820 8 2681504 16 12097840 74 '.__dict__', '.func_globals'
 2 3097 14 1122904 7 13220744 80
 3 990 4 277200 2 13497944 82 "['cookies']"
 4 987 4 276360 2 13774304 84 "['cache']"
 5 985 4 275800 2 14050104 86 "['meta']"
 6 897 4 251160 2 14301264 87 '[2]'
 7 1 0 196888 1 14498152 88 "['moduleDict']", "['modules']"
 8 672 3 188160 1 14686312 89 "['cb_kwargs']"
 9 27 0 155016 1 14841328 90 '[1]'
<333 more rows. Type e.g. '_.more' to view.>

As you can see, the Guppy module is very powerful but also requires some deep
knowledge about Python internals. For more info about Guppy, refer to the
Guppy documentation [http://guppy-pe.sourceforge.net/].

Leaks without leaks

Sometimes, you may notice that the memory usage of your Scrapy process will
only increase, but never decrease. Unfortunately, this could happen even
though neither Scrapy nor your project are leaking memory. This is due to a
(not so well) known problem of Python, which may not return released memory to
the operating system in some cases. For more information on this issue see:

	Python Memory Management [http://www.evanjones.ca/python-memory.html]

	Python Memory Management Part 2 [http://www.evanjones.ca/python-memory-part2.html]

	Python Memory Management Part 3 [http://www.evanjones.ca/python-memory-part3.html]

The improvements proposed by Evan Jones, which are detailed in this paper [http://www.evanjones.ca/memoryallocator/],
got merged in Python 2.5, but this only reduces the problem, it doesn’t fix it
completely. To quote the paper:

Unfortunately, this patch can only free an arena if there are no more
objects allocated in it anymore. This means that fragmentation is a large
issue. An application could have many megabytes of free memory, scattered
throughout all the arenas, but it will be unable to free any of it. This is
a problem experienced by all memory allocators. The only way to solve it is
to move to a compacting garbage collector, which is able to move objects in
memory. This would require significant changes to the Python interpreter.

To keep memory consumption reasonable you can split the job into several
smaller jobs or enable persistent job queue
and stop/start spider from time to time.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Downloading and processing files and images

Scrapy provides reusable item pipelines for
downloading files attached to a particular item (for example, when you scrape
products and also want to download their images locally). These pipelines share
a bit of functionality and structure (we refer to them as media pipelines), but
typically you’ll either use the Files Pipeline or the Images Pipeline.

Both pipelines implement these features:

	Avoid re-downloading media that was downloaded recently

	Specifying where to store the media (filesystem directory, Amazon S3 bucket)

The Images Pipeline has a few extra functions for processing images:

	Convert all downloaded images to a common format (JPG) and mode (RGB)

	Thumbnail generation

	Check images width/height to make sure they meet a minimum constraint

The pipelines also keep an internal queue of those media URLs which are currently
being scheduled for download, and connect those responses that arrive containing
the same media to that queue. This avoids downloading the same media more than
once when it’s shared by several items.

Using the Files Pipeline

The typical workflow, when using the FilesPipeline goes like
this:

	In a Spider, you scrape an item and put the URLs of the desired into a
file_urls field.

	The item is returned from the spider and goes to the item pipeline.

	When the item reaches the FilesPipeline, the URLs in the
file_urls field are scheduled for download using the standard
Scrapy scheduler and downloader (which means the scheduler and downloader
middlewares are reused), but with a higher priority, processing them before other
pages are scraped. The item remains “locked” at that particular pipeline stage
until the files have finish downloading (or fail for some reason).

	When the files are downloaded, another field (files) will be populated
with the results. This field will contain a list of dicts with information
about the downloaded files, such as the downloaded path, the original
scraped url (taken from the file_urls field) , and the file checksum.
The files in the list of the files field will retain the same order of
the original file_urls field. If some file failed downloading, an
error will be logged and the file won’t be present in the files field.

Using the Images Pipeline

Using the ImagesPipeline is a lot like using the FilesPipeline,
except the default field names used are different: you use image_urls for
the image URLs of an item and it will populate an images field for the information
about the downloaded images.

The advantage of using the ImagesPipeline for image files is that you
can configure some extra functions like generating thumbnails and filtering
the images based on their size.

The Images Pipeline uses Pillow [https://github.com/python-pillow/Pillow] for thumbnailing and normalizing images to
JPEG/RGB format, so you need to install this library in order to use it.
Python Imaging Library [http://www.pythonware.com/products/pil/] (PIL) should also work in most cases, but it is known
to cause troubles in some setups, so we recommend to use Pillow [https://github.com/python-pillow/Pillow] instead of
PIL.

Enabling your Media Pipeline

To enable your media pipeline you must first add it to your project
ITEM_PIPELINES setting.

For Images Pipeline, use:

ITEM_PIPELINES = {'scrapy.pipelines.images.ImagesPipeline': 1}

For Files Pipeline, use:

ITEM_PIPELINES = {'scrapy.pipelines.files.FilesPipeline': 1}

Note

You can also use both the Files and Images Pipeline at the same time.

Then, configure the target storage setting to a valid value that will be used
for storing the downloaded images. Otherwise the pipeline will remain disabled,
even if you include it in the ITEM_PIPELINES setting.

For the Files Pipeline, set the FILES_STORE setting:

FILES_STORE = '/path/to/valid/dir'

For the Images Pipeline, set the IMAGES_STORE setting:

IMAGES_STORE = '/path/to/valid/dir'

Supported Storage

File system is currently the only officially supported storage, but there is
also (undocumented) support for storing files in Amazon S3 [https://aws.amazon.com/s3/].

File system storage

The files are stored using a SHA1 hash [https://en.wikipedia.org/wiki/SHA_hash_functions] of their URLs for the file names.

For example, the following image URL:

http://www.example.com/image.jpg

Whose SHA1 hash is:

3afec3b4765f8f0a07b78f98c07b83f013567a0a

Will be downloaded and stored in the following file:

<IMAGES_STORE>/full/3afec3b4765f8f0a07b78f98c07b83f013567a0a.jpg

Where:

	<IMAGES_STORE> is the directory defined in IMAGES_STORE setting
for the Images Pipeline.

	full is a sub-directory to separate full images from thumbnails (if
used). For more info see Thumbnail generation for images.

Usage example

In order to use a media pipeline first, enable it.

Then, if a spider returns a dict with the URLs key (file_urls or
image_urls, for the Files or Images Pipeline respectively), the pipeline will
put the results under respective key (files or images).

If you prefer to use Item, then define a custom item with the
necessary fields, like in this example for Images Pipeline:

import scrapy

class MyItem(scrapy.Item):

 # ... other item fields ...
 image_urls = scrapy.Field()
 images = scrapy.Field()

If you want to use another field name for the URLs key or for the results key,
it is also possible to override it.

For the Files Pipeline, set FILES_URLS_FIELD and/or
FILES_RESULT_FIELD settings:

FILES_URLS_FIELD = 'field_name_for_your_files_urls'
FILES_RESULT_FIELD = 'field_name_for_your_processed_files'

For the Images Pipeline, set IMAGES_URLS_FIELD and/or
IMAGES_RESULT_FIELD settings:

IMAGES_URLS_FIELD = 'field_name_for_your_images_urls'
IMAGES_RESULT_FIELD = 'field_name_for_your_processed_images'

If you need something more complex and want to override the custom pipeline
behaviour, see Extending the Media Pipelines.

Additional features

File expiration

The Image Pipeline avoids downloading files that were downloaded recently. To
adjust this retention delay use the FILES_EXPIRES setting (or
IMAGES_EXPIRES, in case of Images Pipeline), which
specifies the delay in number of days:

120 days of delay for files expiration
FILES_EXPIRES = 120

30 days of delay for images expiration
IMAGES_EXPIRES = 30

The default value for both settings is 90 days.

Thumbnail generation for images

The Images Pipeline can automatically create thumbnails of the downloaded
images.

In order use this feature, you must set IMAGES_THUMBS to a dictionary
where the keys are the thumbnail names and the values are their dimensions.

For example:

IMAGES_THUMBS = {
 'small': (50, 50),
 'big': (270, 270),
}

When you use this feature, the Images Pipeline will create thumbnails of the
each specified size with this format:

<IMAGES_STORE>/thumbs/<size_name>/<image_id>.jpg

Where:

	<size_name> is the one specified in the IMAGES_THUMBS
dictionary keys (small, big, etc)

	<image_id> is the SHA1 hash [https://en.wikipedia.org/wiki/SHA_hash_functions] of the image url

Example of image files stored using small and big thumbnail names:

<IMAGES_STORE>/full/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/small/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/big/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg

The first one is the full image, as downloaded from the site.

Filtering out small images

When using the Images Pipeline, you can drop images which are too small, by
specifying the minimum allowed size in the IMAGES_MIN_HEIGHT and
IMAGES_MIN_WIDTH settings.

For example:

IMAGES_MIN_HEIGHT = 110
IMAGES_MIN_WIDTH = 110

Note

The size constraints don’t affect thumbnail generation at all.

It is possible to set just one size constraint or both. When setting both of
them, only images that satisfy both minimum sizes will be saved. For the
above example, images of sizes (105 x 105) or (105 x 200) or (200 x 105) will
all be dropped because at least one dimension is shorter than the constraint.

By default, there are no size constraints, so all images are processed.

Extending the Media Pipelines

See here the methods that you can override in your custom Files Pipeline:

	
class scrapy.pipelines.files.FilesPipeline

	
	
get_media_requests(item, info)

	As seen on the workflow, the pipeline will get the URLs of the images to
download from the item. In order to do this, you can override the
get_media_requests() method and return a Request for each
file URL:

def get_media_requests(self, item, info):
 for file_url in item['file_urls']:
 yield scrapy.Request(file_url)

Those requests will be processed by the pipeline and, when they have finished
downloading, the results will be sent to the
item_completed() method, as a list of 2-element tuples.
Each tuple will contain (success, file_info_or_error) where:

	success is a boolean which is True if the image was downloaded
successfully or False if it failed for some reason

	file_info_or_error is a dict containing the following keys (if success
is True) or a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] if there was a problem.
	url - the url where the file was downloaded from. This is the url of
the request returned from the get_media_requests()
method.

	path - the path (relative to FILES_STORE) where the file
was stored

	checksum - a MD5 hash [https://en.wikipedia.org/wiki/MD5] of the image contents

The list of tuples received by item_completed() is
guaranteed to retain the same order of the requests returned from the
get_media_requests() method.

Here’s a typical value of the results argument:

[(True,
 {'checksum': '2b00042f7481c7b056c4b410d28f33cf',
 'path': 'full/0a79c461a4062ac383dc4fade7bc09f1384a3910.jpg',
 'url': 'http://www.example.com/files/product1.pdf'}),
 (False,
 Failure(...))]

By default the get_media_requests() method returns None which
means there are no files to download for the item.

	
item_completed(results, items, info)

	The FilesPipeline.item_completed() method called when all file
requests for a single item have completed (either finished downloading, or
failed for some reason).

The item_completed() method must return the
output that will be sent to subsequent item pipeline stages, so you must
return (or drop) the item, as you would in any pipeline.

Here is an example of the item_completed() method where we
store the downloaded file paths (passed in results) in the file_paths
item field, and we drop the item if it doesn’t contain any files:

from scrapy.exceptions import DropItem

def item_completed(self, results, item, info):
 file_paths = [x['path'] for ok, x in results if ok]
 if not file_paths:
 raise DropItem("Item contains no files")
 item['file_paths'] = file_paths
 return item

By default, the item_completed() method returns the item.

See here the methods that you can override in your custom Images Pipeline:

	
class scrapy.pipelines.images.ImagesPipeline

	
The ImagesPipeline is an extension of the FilesPipeline,
customizing the field names and adding custom behavior for images.

	
get_media_requests(item, info)

	Works the same way as FilesPipeline.get_media_requests() method,
but using a different field name for image urls.

Must return a Request for each image URL.

	
item_completed(results, items, info)

	The ImagesPipeline.item_completed() method is called when all image
requests for a single item have completed (either finished downloading, or
failed for some reason).

Works the same way as FilesPipeline.item_completed() method,
but using a different field names for storing image downloading results.

By default, the item_completed() method returns the item.

Custom Images pipeline example

Here is a full example of the Images Pipeline whose methods are examplified
above:

import scrapy
from scrapy.pipelines.images import ImagesPipeline
from scrapy.exceptions import DropItem

class MyImagesPipeline(ImagesPipeline):

 def get_media_requests(self, item, info):
 for image_url in item['image_urls']:
 yield scrapy.Request(image_url)

 def item_completed(self, results, item, info):
 image_paths = [x['path'] for ok, x in results if ok]
 if not image_paths:
 raise DropItem("Item contains no images")
 item['image_paths'] = image_paths
 return item

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Ubuntu packages

New in version 0.10.

Scrapinghub [http://scrapinghub.com/] publishes apt-gettable packages which are generally fresher than
those in Ubuntu, and more stable too since they’re continuously built from
GitHub repo [https://github.com/scrapy/scrapy] (master & stable branches) and so they contain the latest bug
fixes.

To use the packages:

	Import the GPG key used to sign Scrapy packages into APT keyring:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 627220E7

	Create /etc/apt/sources.list.d/scrapy.list file using the following command:

echo 'deb http://archive.scrapy.org/ubuntu scrapy main' | sudo tee /etc/apt/sources.list.d/scrapy.list

	Update package lists and install the scrapy package:

sudo apt-get update && sudo apt-get install scrapy

Note

Repeat step 3 if you are trying to upgrade Scrapy.

Warning

python-scrapy is a different package provided by official debian
repositories, it’s very outdated and it isn’t supported by Scrapy team.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Deploying Spiders

This section describes the different options you have for deploying your Scrapy
spiders to run them on a regular basis. Running Scrapy spiders in your local
machine is very convenient for the (early) development stage, but not so much
when you need to execute long-running spiders or move spiders to run in
production continuously. This is where the solutions for deploying Scrapy
spiders come in.

Popular choices for deploying Scrapy spiders are:

	Scrapyd (open source)

	Scrapy Cloud (cloud-based)

Deploying to a Scrapyd Server

Scrapyd [https://github.com/scrapy/scrapyd] is an open source application to run Scrapy spiders. It provides
a server with HTTP API, capable of running and monitoring Scrapy spiders.

To deploy spiders to Scrapyd, you can use the scrapyd-deploy tool provided by
the scrapyd-client [https://github.com/scrapy/scrapyd-client] package. Please refer to the scrapyd-deploy
documentation [http://scrapyd.readthedocs.org/en/latest/deploy.html] for more information.

Scrapyd is maintained by some of the Scrapy developers.

Deploying to Scrapy Cloud

Scrapy Cloud [http://scrapinghub.com/scrapy-cloud/] is a hosted, cloud-based service by Scrapinghub [http://scrapinghub.com/],
the company behind Scrapy.

Scrapy Cloud removes the need to setup and monitor servers
and provides a nice UI to manage spiders and review scraped items,
logs and stats.

To deploy spiders to Scrapy Cloud you can use the shub [http://doc.scrapinghub.com/shub.html] command line tool.
Please refer to the Scrapy Cloud documentation [http://doc.scrapinghub.com/scrapy-cloud.html] for more information.

Scrapy Cloud is compatible with Scrapyd and one can switch between
them as needed - the configuration is read from the scrapy.cfg file
just like scrapyd-deploy.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

AutoThrottle extension

This is an extension for automatically throttling crawling speed based on load
of both the Scrapy server and the website you are crawling.

Design goals

	be nicer to sites instead of using default download delay of zero

	automatically adjust scrapy to the optimum crawling speed, so the user
doesn’t have to tune the download delays to find the optimum one.
The user only needs to specify the maximum concurrent requests
it allows, and the extension does the rest.

How it works

AutoThrottle extension adjusts download delays dynamically to make spider send
AUTOTHROTTLE_TARGET_CONCURRENCY concurrent requests on average
to each remote website.

It uses download latency to compute the delays. The main idea is the
following: if a server needs latency seconds to respond, a client
should send a request each latency/N seconds to have N requests
processed in parallel.

Instead of adjusting the delays one can just set a small fixed
download delay and impose hard limits on concurrency using
CONCURRENT_REQUESTS_PER_DOMAIN or
CONCURRENT_REQUESTS_PER_IP options. It will provide a similar
effect, but there are some important differences:

	because the download delay is small there will be occasional bursts
of requests;

	often non-200 (error) responses can be returned faster than regular
responses, so with a small download delay and a hard concurrency limit
crawler will be sending requests to server faster when server starts to
return errors. But this is an opposite of what crawler should do - in case
of errors it makes more sense to slow down: these errors may be caused by
the high request rate.

AutoThrottle doesn’t have these issues.

Throttling algorithm

AutoThrottle algorithm adjusts download delays based on the following rules:

	spiders always start with a download delay of
AUTOTHROTTLE_START_DELAY;

	when a response is received, the target download delay is calculated as
latency / N where latency is a latency of the response,
and N is AUTOTHROTTLE_TARGET_CONCURRENCY.

	download delay for next requests is set to the average of previous
download delay and the target download delay;

	latencies of non-200 responses are not allowed to decrease the delay;

	download delay can’t become less than DOWNLOAD_DELAY or greater
than AUTOTHROTTLE_MAX_DELAY

Note

The AutoThrottle extension honours the standard Scrapy settings for
concurrency and delay. This means that it will respect
CONCURRENT_REQUESTS_PER_DOMAIN and
CONCURRENT_REQUESTS_PER_IP options and
never set a download delay lower than DOWNLOAD_DELAY.

In Scrapy, the download latency is measured as the time elapsed between
establishing the TCP connection and receiving the HTTP headers.

Note that these latencies are very hard to measure accurately in a cooperative
multitasking environment because Scrapy may be busy processing a spider
callback, for example, and unable to attend downloads. However, these latencies
should still give a reasonable estimate of how busy Scrapy (and ultimately, the
server) is, and this extension builds on that premise.

Settings

The settings used to control the AutoThrottle extension are:

	AUTOTHROTTLE_ENABLED

	AUTOTHROTTLE_START_DELAY

	AUTOTHROTTLE_MAX_DELAY

	AUTOTHROTTLE_DEBUG

	CONCURRENT_REQUESTS_PER_DOMAIN

	CONCURRENT_REQUESTS_PER_IP

	DOWNLOAD_DELAY

For more information see How it works.

AUTOTHROTTLE_ENABLED

Default: False

Enables the AutoThrottle extension.

AUTOTHROTTLE_START_DELAY

Default: 5.0

The initial download delay (in seconds).

AUTOTHROTTLE_MAX_DELAY

Default: 60.0

The maximum download delay (in seconds) to be set in case of high latencies.

AUTOTHROTTLE_TARGET_CONCURRENCY

New in version 1.1.

Default: 1.0

Average number of requests Scrapy should be sending in parallel to remote
websites.

By default, AutoThrottle adjusts the delay to send a single
concurrent request to each of the remote websites. Set this option to
a higher value (e.g. 2.0) to increase the throughput and the load on remote
servers. A lower AUTOTHROTTLE_TARGET_CONCURRENCY value
(e.g. 0.5) makes the crawler more conservative and polite.

Note that CONCURRENT_REQUESTS_PER_DOMAIN
and CONCURRENT_REQUESTS_PER_IP options are still respected
when AutoThrottle extension is enabled. This means that if
AUTOTHROTTLE_TARGET_CONCURRENCY is set to a value higher than
CONCURRENT_REQUESTS_PER_DOMAIN or
CONCURRENT_REQUESTS_PER_IP, the crawler won’t reach this number
of concurrent requests.

At every given time point Scrapy can be sending more or less concurrent
requests than AUTOTHROTTLE_TARGET_CONCURRENCY; it is a suggested
value the crawler tries to approach, not a hard limit.

AUTOTHROTTLE_DEBUG

Default: False

Enable AutoThrottle debug mode which will display stats on every response
received, so you can see how the throttling parameters are being adjusted in
real time.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Benchmarking

New in version 0.17.

Scrapy comes with a simple benchmarking suite that spawns a local HTTP server
and crawls it at the maximum possible speed. The goal of this benchmarking is
to get an idea of how Scrapy performs in your hardware, in order to have a
common baseline for comparisons. It uses a simple spider that does nothing and
just follows links.

To run it use:

scrapy bench

You should see an output like this:

2013-05-16 13:08:46-0300 [scrapy] INFO: Scrapy 0.17.0 started (bot: scrapybot)
2013-05-16 13:08:47-0300 [scrapy] INFO: Spider opened
2013-05-16 13:08:47-0300 [scrapy] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:48-0300 [scrapy] INFO: Crawled 74 pages (at 4440 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:49-0300 [scrapy] INFO: Crawled 143 pages (at 4140 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:50-0300 [scrapy] INFO: Crawled 210 pages (at 4020 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:51-0300 [scrapy] INFO: Crawled 274 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:52-0300 [scrapy] INFO: Crawled 343 pages (at 4140 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:53-0300 [scrapy] INFO: Crawled 410 pages (at 4020 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:54-0300 [scrapy] INFO: Crawled 474 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:55-0300 [scrapy] INFO: Crawled 538 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:56-0300 [scrapy] INFO: Crawled 602 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:57-0300 [scrapy] INFO: Closing spider (closespider_timeout)
2013-05-16 13:08:57-0300 [scrapy] INFO: Crawled 666 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2013-05-16 13:08:57-0300 [scrapy] INFO: Dumping Scrapy stats:
 {'downloader/request_bytes': 231508,
 'downloader/request_count': 682,
 'downloader/request_method_count/GET': 682,
 'downloader/response_bytes': 1172802,
 'downloader/response_count': 682,
 'downloader/response_status_count/200': 682,
 'finish_reason': 'closespider_timeout',
 'finish_time': datetime.datetime(2013, 5, 16, 16, 8, 57, 985539),
 'log_count/INFO': 14,
 'request_depth_max': 34,
 'response_received_count': 682,
 'scheduler/dequeued': 682,
 'scheduler/dequeued/memory': 682,
 'scheduler/enqueued': 12767,
 'scheduler/enqueued/memory': 12767,
 'start_time': datetime.datetime(2013, 5, 16, 16, 8, 47, 676539)}
2013-05-16 13:08:57-0300 [scrapy] INFO: Spider closed (closespider_timeout)

That tells you that Scrapy is able to crawl about 3900 pages per minute in the
hardware where you run it. Note that this is a very simple spider intended to
follow links, any custom spider you write will probably do more stuff which
results in slower crawl rates. How slower depends on how much your spider does
and how well it’s written.

In the future, more cases will be added to the benchmarking suite to cover
other common scenarios.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Jobs: pausing and resuming crawls

Sometimes, for big sites, it’s desirable to pause crawls and be able to resume
them later.

Scrapy supports this functionality out of the box by providing the following
facilities:

	a scheduler that persists scheduled requests on disk

	a duplicates filter that persists visited requests on disk

	an extension that keeps some spider state (key/value pairs) persistent
between batches

Job directory

To enable persistence support you just need to define a job directory through
the JOBDIR setting. This directory will be for storing all required data to
keep the state of a single job (ie. a spider run). It’s important to note that
this directory must not be shared by different spiders, or even different
jobs/runs of the same spider, as it’s meant to be used for storing the state of
a single job.

How to use it

To start a spider with persistence supported enabled, run it like this:

scrapy crawl somespider -s JOBDIR=crawls/somespider-1

Then, you can stop the spider safely at any time (by pressing Ctrl-C or sending
a signal), and resume it later by issuing the same command:

scrapy crawl somespider -s JOBDIR=crawls/somespider-1

Keeping persistent state between batches

Sometimes you’ll want to keep some persistent spider state between pause/resume
batches. You can use the spider.state attribute for that, which should be a
dict. There’s a built-in extension that takes care of serializing, storing and
loading that attribute from the job directory, when the spider starts and
stops.

Here’s an example of a callback that uses the spider state (other spider code
is omitted for brevity):

def parse_item(self, response):
 # parse item here
 self.state['items_count'] = self.state.get('items_count', 0) + 1

Persistence gotchas

There are a few things to keep in mind if you want to be able to use the Scrapy
persistence support:

Cookies expiration

Cookies may expire. So, if you don’t resume your spider quickly the requests
scheduled may no longer work. This won’t be an issue if you spider doesn’t rely
on cookies.

Request serialization

Requests must be serializable by the pickle module, in order for persistence
to work, so you should make sure that your requests are serializable.

The most common issue here is to use lambda functions on request callbacks that
can’t be persisted.

So, for example, this won’t work:

def some_callback(self, response):
 somearg = 'test'
 return scrapy.Request('http://www.example.com', callback=lambda r: self.other_callback(r, somearg))

def other_callback(self, response, somearg):
 print "the argument passed is:", somearg

But this will:

def some_callback(self, response):
 somearg = 'test'
 return scrapy.Request('http://www.example.com', callback=self.other_callback, meta={'somearg': somearg})

def other_callback(self, response):
 somearg = response.meta['somearg']
 print "the argument passed is:", somearg

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Architecture overview

This document describes the architecture of Scrapy and how its components
interact.

Overview

The following diagram shows an overview of the Scrapy architecture with its
components and an outline of the data flow that takes place inside the system
(shown by the green arrows). A brief description of the components is included
below with links for more detailed information about them. The data flow is
also described below.

[image: Scrapy architecture]

Components

Scrapy Engine

The engine is responsible for controlling the data flow between all components
of the system, and triggering events when certain actions occur. See the Data
Flow section below for more details.

Scheduler

The Scheduler receives requests from the engine and enqueues them for feeding
them later (also to the engine) when the engine requests them.

Downloader

The Downloader is responsible for fetching web pages and feeding them to the
engine which, in turn, feeds them to the spiders.

Spiders

Spiders are custom classes written by Scrapy users to parse responses and
extract items (aka scraped items) from them or additional URLs (requests) to
follow. For more information see Spiders.

Item Pipeline

The Item Pipeline is responsible for processing the items once they have been
extracted (or scraped) by the spiders. Typical tasks include cleansing,
validation and persistence (like storing the item in a database). For more
information see Item Pipeline.

Downloader middlewares

Downloader middlewares are specific hooks that sit between the Engine and the
Downloader and process requests when they pass from the Engine to the
Downloader, and responses that pass from Downloader to the Engine.

Use a Downloader middleware if you need to do one of the following:

	process a request just before it is sent to the Downloader
(i.e. right before Scrapy sends the request to the website);

	change received response before passing it to a spider;

	send a new Request instead of passing received response to a spider;

	pass response to a spider without fetching a web page;

	silently drop some requests.

For more information see Downloader Middleware.

Spider middlewares

Spider middlewares are specific hooks that sit between the Engine and the
Spiders and are able to process spider input (responses) and output (items and
requests).

Use a Spider middleware if you need to

	post-process output of spider callbacks - change/add/remove requests or items;

	post-process start_requests;

	handle spider exceptions;

	call errback instead of callback for some of the requests based on response
content.

For more information see Spider Middleware.

Data flow

The data flow in Scrapy is controlled by the execution engine, and goes like
this:

	The Engine gets the first URLs to crawl from the Spider and schedules them
in the Scheduler, as Requests.

	The Engine asks the Scheduler for the next URLs to crawl.

	The Scheduler returns the next URLs to crawl to the Engine and the Engine
sends them to the Downloader, passing through the Downloader Middleware
(request direction).

	Once the page finishes downloading the Downloader generates a Response (with
that page) and sends it to the Engine, passing through the Downloader
Middleware (response direction).

	The Engine receives the Response from the Downloader and sends it to the
Spider for processing, passing through the Spider Middleware (input direction).

	The Spider processes the Response and returns scraped items and new Requests
(to follow) to the Engine.

	The Engine passes scraped items and new Requests returned by a spider
through Spider Middleware (output direction), and then sends processed
items to Item Pipelines and processed Requests to the Scheduler.

	The process repeats (from step 1) until there are no more requests from the
Scheduler.

Event-driven networking

Scrapy is written with Twisted [https://twistedmatrix.com/trac/], a popular event-driven networking framework
for Python. Thus, it’s implemented using a non-blocking (aka asynchronous) code
for concurrency.

For more information about asynchronous programming and Twisted see these
links:

	Introduction to Deferreds in Twisted [https://twistedmatrix.com/documents/current/core/howto/defer-intro.html]

	Twisted - hello, asynchronous programming [http://jessenoller.com/2009/02/11/twisted-hello-asynchronous-programming/]

	Twisted Introduction - Krondo [http://krondo.com/an-introduction-to-asynchronous-programming-and-twisted/]

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Downloader Middleware

The downloader middleware is a framework of hooks into Scrapy’s
request/response processing. It’s a light, low-level system for globally
altering Scrapy’s requests and responses.

Activating a downloader middleware

To activate a downloader middleware component, add it to the
DOWNLOADER_MIDDLEWARES setting, which is a dict whose keys are the
middleware class paths and their values are the middleware orders.

Here’s an example:

DOWNLOADER_MIDDLEWARES = {
 'myproject.middlewares.CustomDownloaderMiddleware': 543,
}

The DOWNLOADER_MIDDLEWARES setting is merged with the
DOWNLOADER_MIDDLEWARES_BASE setting defined in Scrapy (and not meant
to be overridden) and then sorted by order to get the final sorted list of
enabled middlewares: the first middleware is the one closer to the engine and
the last is the one closer to the downloader.

To decide which order to assign to your middleware see the
DOWNLOADER_MIDDLEWARES_BASE setting and pick a value according to
where you want to insert the middleware. The order does matter because each
middleware performs a different action and your middleware could depend on some
previous (or subsequent) middleware being applied.

If you want to disable a built-in middleware (the ones defined in
DOWNLOADER_MIDDLEWARES_BASE and enabled by default) you must define it
in your project’s DOWNLOADER_MIDDLEWARES setting and assign None
as its value. For example, if you want to disable the user-agent middleware:

DOWNLOADER_MIDDLEWARES = {
 'myproject.middlewares.CustomDownloaderMiddleware': 543,
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None,
}

Finally, keep in mind that some middlewares may need to be enabled through a
particular setting. See each middleware documentation for more info.

Writing your own downloader middleware

Each middleware component is a Python class that defines one or
more of the following methods:

	
class scrapy.downloadermiddlewares.DownloaderMiddleware

	
Note

Any of the downloader middleware methods may also return a deferred.

	
process_request(request, spider)

	This method is called for each request that goes through the download
middleware.

process_request() should either: return None, return a
Response object, return a Request
object, or raise IgnoreRequest.

If it returns None, Scrapy will continue processing this request, executing all
other middlewares until, finally, the appropriate downloader handler is called
the request performed (and its response downloaded).

If it returns a Response object, Scrapy won’t bother
calling any other process_request() or process_exception() methods,
or the appropriate download function; it’ll return that response. The process_response()
methods of installed middleware is always called on every response.

If it returns a Request object, Scrapy will stop calling
process_request methods and reschedule the returned request. Once the newly returned
request is performed, the appropriate middleware chain will be called on
the downloaded response.

If it raises an IgnoreRequest exception, the
process_exception() methods of installed downloader middleware will be called.
If none of them handle the exception, the errback function of the request
(Request.errback) is called. If no code handles the raised exception, it is
ignored and not logged (unlike other exceptions).

	Parameters:	
	request (Request object) – the request being processed

	spider (Spider object) – the spider for which this request is intended

	
process_response(request, response, spider)

	process_response() should either: return a Response
object, return a Request object or
raise a IgnoreRequest exception.

If it returns a Response (it could be the same given
response, or a brand-new one), that response will continue to be processed
with the process_response() of the next middleware in the chain.

If it returns a Request object, the middleware chain is
halted and the returned request is rescheduled to be downloaded in the future.
This is the same behavior as if a request is returned from process_request().

If it raises an IgnoreRequest exception, the errback
function of the request (Request.errback) is called. If no code handles the raised
exception, it is ignored and not logged (unlike other exceptions).

	Parameters:	
	request (is a Request object) – the request that originated the response

	response (Response object) – the response being processed

	spider (Spider object) – the spider for which this response is intended

	
process_exception(request, exception, spider)

	Scrapy calls process_exception() when a download handler
or a process_request() (from a downloader middleware) raises an
exception (including an IgnoreRequest exception)

process_exception() should return: either None,
a Response object, or a Request object.

If it returns None, Scrapy will continue processing this exception,
executing any other process_exception() methods of installed middleware,
until no middleware is left and the default exception handling kicks in.

If it returns a Response object, the process_response()
method chain of installed middleware is started, and Scrapy won’t bother calling
any other process_exception() methods of middleware.

If it returns a Request object, the returned request is
rescheduled to be downloaded in the future. This stops the execution of
process_exception() methods of the middleware the same as returning a
response would.

	Parameters:	
	request (is a Request object) – the request that generated the exception

	exception (an Exception object) – the raised exception

	spider (Spider object) – the spider for which this request is intended

Built-in downloader middleware reference

This page describes all downloader middleware components that come with
Scrapy. For information on how to use them and how to write your own downloader
middleware, see the downloader middleware usage guide.

For a list of the components enabled by default (and their orders) see the
DOWNLOADER_MIDDLEWARES_BASE setting.

CookiesMiddleware

	
class scrapy.downloadermiddlewares.cookies.CookiesMiddleware

	This middleware enables working with sites that require cookies, such as
those that use sessions. It keeps track of cookies sent by web servers, and
send them back on subsequent requests (from that spider), just like web
browsers do.

The following settings can be used to configure the cookie middleware:

	COOKIES_ENABLED

	COOKIES_DEBUG

Multiple cookie sessions per spider

New in version 0.15.

There is support for keeping multiple cookie sessions per spider by using the
cookiejar Request meta key. By default it uses a single cookie jar
(session), but you can pass an identifier to use different ones.

For example:

for i, url in enumerate(urls):
 yield scrapy.Request("http://www.example.com", meta={'cookiejar': i},
 callback=self.parse_page)

Keep in mind that the cookiejar meta key is not “sticky”. You need to keep
passing it along on subsequent requests. For example:

def parse_page(self, response):
 # do some processing
 return scrapy.Request("http://www.example.com/otherpage",
 meta={'cookiejar': response.meta['cookiejar']},
 callback=self.parse_other_page)

COOKIES_ENABLED

Default: True

Whether to enable the cookies middleware. If disabled, no cookies will be sent
to web servers.

COOKIES_DEBUG

Default: False

If enabled, Scrapy will log all cookies sent in requests (ie. Cookie
header) and all cookies received in responses (ie. Set-Cookie header).

Here’s an example of a log with COOKIES_DEBUG enabled:

2011-04-06 14:35:10-0300 [scrapy] INFO: Spider opened
2011-04-06 14:35:10-0300 [scrapy] DEBUG: Sending cookies to: <GET http://www.diningcity.com/netherlands/index.html>
 Cookie: clientlanguage_nl=en_EN
2011-04-06 14:35:14-0300 [scrapy] DEBUG: Received cookies from: <200 http://www.diningcity.com/netherlands/index.html>
 Set-Cookie: JSESSIONID=B~FA4DC0C496C8762AE4F1A620EAB34F38; Path=/
 Set-Cookie: ip_isocode=US
 Set-Cookie: clientlanguage_nl=en_EN; Expires=Thu, 07-Apr-2011 21:21:34 GMT; Path=/
2011-04-06 14:49:50-0300 [scrapy] DEBUG: Crawled (200) <GET http://www.diningcity.com/netherlands/index.html> (referer: None)
[...]

DefaultHeadersMiddleware

	
class scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware

	This middleware sets all default requests headers specified in the
DEFAULT_REQUEST_HEADERS setting.

DownloadTimeoutMiddleware

	
class scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware

	This middleware sets the download timeout for requests specified in the
DOWNLOAD_TIMEOUT setting or download_timeout
spider attribute.

Note

You can also set download timeout per-request using
download_timeout Request.meta key; this is supported
even when DownloadTimeoutMiddleware is disabled.

HttpAuthMiddleware

	
class scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware

	This middleware authenticates all requests generated from certain spiders
using Basic access authentication [https://en.wikipedia.org/wiki/Basic_access_authentication] (aka. HTTP auth).

To enable HTTP authentication from certain spiders, set the http_user
and http_pass attributes of those spiders.

Example:

from scrapy.spiders import CrawlSpider

class SomeIntranetSiteSpider(CrawlSpider):

 http_user = 'someuser'
 http_pass = 'somepass'
 name = 'intranet.example.com'

 # .. rest of the spider code omitted ...

HttpCacheMiddleware

	
class scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware

	This middleware provides low-level cache to all HTTP requests and responses.
It has to be combined with a cache storage backend as well as a cache policy.

Scrapy ships with two HTTP cache storage backends:

	Filesystem storage backend (default)

	DBM storage backend

You can change the HTTP cache storage backend with the HTTPCACHE_STORAGE
setting. Or you can also implement your own storage backend.

Scrapy ships with two HTTP cache policies:

	RFC2616 policy

	Dummy policy (default)

You can change the HTTP cache policy with the HTTPCACHE_POLICY
setting. Or you can also implement your own policy.

You can also avoid caching a response on every policy using dont_cache meta key equals True.

Dummy policy (default)

This policy has no awareness of any HTTP Cache-Control directives.
Every request and its corresponding response are cached. When the same
request is seen again, the response is returned without transferring
anything from the Internet.

The Dummy policy is useful for testing spiders faster (without having
to wait for downloads every time) and for trying your spider offline,
when an Internet connection is not available. The goal is to be able to
“replay” a spider run exactly as it ran before.

In order to use this policy, set:

	HTTPCACHE_POLICY to scrapy.extensions.httpcache.DummyPolicy

RFC2616 policy

This policy provides a RFC2616 compliant HTTP cache, i.e. with HTTP
Cache-Control awareness, aimed at production and used in continuous
runs to avoid downloading unmodified data (to save bandwidth and speed up crawls).

what is implemented:

	Do not attempt to store responses/requests with no-store cache-control directive set

	Do not serve responses from cache if no-cache cache-control directive is set even for fresh responses

	Compute freshness lifetime from max-age cache-control directive

	Compute freshness lifetime from Expires response header

	Compute freshness lifetime from Last-Modified response header (heuristic used by Firefox)

	Compute current age from Age response header

	Compute current age from Date header

	Revalidate stale responses based on Last-Modified response header

	Revalidate stale responses based on ETag response header

	Set Date header for any received response missing it

	Support max-stale cache-control directive in requests

This allows spiders to be configured with the full RFC2616 cache policy,
but avoid revalidation on a request-by-request basis, while remaining
conformant with the HTTP spec.

Example:

Add Cache-Control: max-stale=600 to Request headers to accept responses that
have exceeded their expiration time by no more than 600 seconds.

See also: RFC2616, 14.9.3

what is missing:

	Pragma: no-cache support https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.1

	Vary header support https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.6

	Invalidation after updates or deletes https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10

	... probably others ..

In order to use this policy, set:

	HTTPCACHE_POLICY to scrapy.extensions.httpcache.RFC2616Policy

Filesystem storage backend (default)

File system storage backend is available for the HTTP cache middleware.

In order to use this storage backend, set:

	HTTPCACHE_STORAGE to scrapy.extensions.httpcache.FilesystemCacheStorage

Each request/response pair is stored in a different directory containing
the following files:

	request_body - the plain request body

	request_headers - the request headers (in raw HTTP format)

	response_body - the plain response body

	response_headers - the request headers (in raw HTTP format)

	meta - some metadata of this cache resource in Python repr() format
(grep-friendly format)

	pickled_meta - the same metadata in meta but pickled for more
efficient deserialization

The directory name is made from the request fingerprint (see
scrapy.utils.request.fingerprint), and one level of subdirectories is
used to avoid creating too many files into the same directory (which is
inefficient in many file systems). An example directory could be:

/path/to/cache/dir/example.com/72/72811f648e718090f041317756c03adb0ada46c7

DBM storage backend

New in version 0.13.

A DBM [https://en.wikipedia.org/wiki/Dbm] storage backend is also available for the HTTP cache middleware.

By default, it uses the anydbm [https://docs.python.org/2/library/anydbm.html] module, but you can change it with the
HTTPCACHE_DBM_MODULE setting.

In order to use this storage backend, set:

	HTTPCACHE_STORAGE to scrapy.extensions.httpcache.DbmCacheStorage

LevelDB storage backend

New in version 0.23.

A LevelDB [https://github.com/google/leveldb] storage backend is also available for the HTTP cache middleware.

This backend is not recommended for development because only one process can
access LevelDB databases at the same time, so you can’t run a crawl and open
the scrapy shell in parallel for the same spider.

In order to use this storage backend:

	set HTTPCACHE_STORAGE to scrapy.extensions.httpcache.LeveldbCacheStorage

	install LevelDB python bindings [https://pypi.python.org/pypi/leveldb] like pip install leveldb

HTTPCache middleware settings

The HttpCacheMiddleware can be configured through the following
settings:

HTTPCACHE_ENABLED

New in version 0.11.

Default: False

Whether the HTTP cache will be enabled.

Changed in version 0.11: Before 0.11, HTTPCACHE_DIR was used to enable cache.

HTTPCACHE_EXPIRATION_SECS

Default: 0

Expiration time for cached requests, in seconds.

Cached requests older than this time will be re-downloaded. If zero, cached
requests will never expire.

Changed in version 0.11: Before 0.11, zero meant cached requests always expire.

HTTPCACHE_DIR

Default: 'httpcache'

The directory to use for storing the (low-level) HTTP cache. If empty, the HTTP
cache will be disabled. If a relative path is given, is taken relative to the
project data dir. For more info see: Default structure of Scrapy projects.

HTTPCACHE_IGNORE_HTTP_CODES

New in version 0.10.

Default: []

Don’t cache response with these HTTP codes.

HTTPCACHE_IGNORE_MISSING

Default: False

If enabled, requests not found in the cache will be ignored instead of downloaded.

HTTPCACHE_IGNORE_SCHEMES

New in version 0.10.

Default: ['file']

Don’t cache responses with these URI schemes.

HTTPCACHE_STORAGE

Default: 'scrapy.extensions.httpcache.FilesystemCacheStorage'

The class which implements the cache storage backend.

HTTPCACHE_DBM_MODULE

New in version 0.13.

Default: 'anydbm'

The database module to use in the DBM storage backend. This setting is specific to the DBM backend.

HTTPCACHE_POLICY

New in version 0.18.

Default: 'scrapy.extensions.httpcache.DummyPolicy'

The class which implements the cache policy.

HTTPCACHE_GZIP

New in version 1.0.

Default: False

If enabled, will compress all cached data with gzip.
This setting is specific to the Filesystem backend.

HTTPCACHE_ALWAYS_STORE

New in version 1.1.

Default: False

If enabled, will cache pages unconditionally.

A spider may wish to have all responses available in the cache, for
future use with Cache-Control: max-stale, for instance. The
DummyPolicy caches all responses but never revalidates them, and
sometimes a more nuanced policy is desirable.

This setting still respects Cache-Control: no-store directives in responses.
If you don’t want that, filter no-store out of the Cache-Control headers in
responses you feedto the cache middleware.

HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS

New in version 1.1.

Default: []

List of Cache-Control directives in responses to be ignored.

Sites often set “no-store”, “no-cache”, “must-revalidate”, etc., but get
upset at the traffic a spider can generate if it respects those
directives. This allows to selectively ignore Cache-Control directives
that are known to be unimportant for the sites being crawled.

We assume that the spider will not issue Cache-Control directives
in requests unless it actually needs them, so directives in requests are
not filtered.

HttpCompressionMiddleware

	
class scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware

	This middleware allows compressed (gzip, deflate) traffic to be
sent/received from web sites.

HttpCompressionMiddleware Settings

COMPRESSION_ENABLED

Default: True

Whether the Compression middleware will be enabled.

ChunkedTransferMiddleware

	
class scrapy.downloadermiddlewares.chunked.ChunkedTransferMiddleware

	This middleware adds support for chunked transfer encoding [https://en.wikipedia.org/wiki/Chunked_transfer_encoding]

HttpProxyMiddleware

New in version 0.8.

	
class scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware

	This middleware sets the HTTP proxy to use for requests, by setting the
proxy meta value for Request objects.

Like the Python standard library modules urllib [https://docs.python.org/2/library/urllib.html] and urllib2 [https://docs.python.org/2/library/urllib2.html], it obeys
the following environment variables:

	http_proxy

	https_proxy

	no_proxy

You can also set the meta key proxy per-request, to a value like
http://some_proxy_server:port.

RedirectMiddleware

	
class scrapy.downloadermiddlewares.redirect.RedirectMiddleware

	This middleware handles redirection of requests based on response status.

The urls which the request goes through (while being redirected) can be found
in the redirect_urls Request.meta key.

The RedirectMiddleware can be configured through the following
settings (see the settings documentation for more info):

	REDIRECT_ENABLED

	REDIRECT_MAX_TIMES

If Request.meta has dont_redirect
key set to True, the request will be ignored by this middleware.

If you want to handle some redirect status codes in your spider, you can
specify these in the handle_httpstatus_list spider attribute.

For example, if you want the redirect middleware to ignore 301 and 302
responses (and pass them through to your spider) you can do this:

class MySpider(CrawlSpider):
 handle_httpstatus_list = [301, 302]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis. You can also set the meta key
handle_httpstatus_all to True if you want to allow any response code
for a request.

RedirectMiddleware settings

REDIRECT_ENABLED

New in version 0.13.

Default: True

Whether the Redirect middleware will be enabled.

REDIRECT_MAX_TIMES

Default: 20

The maximum number of redirections that will be follow for a single request.

MetaRefreshMiddleware

	
class scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware

	This middleware handles redirection of requests based on meta-refresh html tag.

The MetaRefreshMiddleware can be configured through the following
settings (see the settings documentation for more info):

	METAREFRESH_ENABLED

	METAREFRESH_MAXDELAY

This middleware obey REDIRECT_MAX_TIMES setting, dont_redirect
and redirect_urls request meta keys as described for RedirectMiddleware

MetaRefreshMiddleware settings

METAREFRESH_ENABLED

New in version 0.17.

Default: True

Whether the Meta Refresh middleware will be enabled.

METAREFRESH_MAXDELAY

Default: 100

The maximum meta-refresh delay (in seconds) to follow the redirection.
Some sites use meta-refresh for redirecting to a session expired page, so we
restrict automatic redirection to the maximum delay.

RetryMiddleware

	
class scrapy.downloadermiddlewares.retry.RetryMiddleware

	A middleware to retry failed requests that are potentially caused by
temporary problems such as a connection timeout or HTTP 500 error.

Failed pages are collected on the scraping process and rescheduled at the
end, once the spider has finished crawling all regular (non failed) pages.
Once there are no more failed pages to retry, this middleware sends a signal
(retry_complete), so other extensions could connect to that signal.

The RetryMiddleware can be configured through the following
settings (see the settings documentation for more info):

	RETRY_ENABLED

	RETRY_TIMES

	RETRY_HTTP_CODES

If Request.meta has dont_retry key
set to True, the request will be ignored by this middleware.

RetryMiddleware Settings

RETRY_ENABLED

New in version 0.13.

Default: True

Whether the Retry middleware will be enabled.

RETRY_TIMES

Default: 2

Maximum number of times to retry, in addition to the first download.

RETRY_HTTP_CODES

Default: [500, 502, 503, 504, 408]

Which HTTP response codes to retry. Other errors (DNS lookup issues,
connections lost, etc) are always retried.

In some cases you may want to add 400 to RETRY_HTTP_CODES because
it is a common code used to indicate server overload. It is not included by
default because HTTP specs say so.

RobotsTxtMiddleware

	
class scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware

	This middleware filters out requests forbidden by the robots.txt exclusion
standard.

To make sure Scrapy respects robots.txt make sure the middleware is enabled
and the ROBOTSTXT_OBEY setting is enabled.

If Request.meta has
dont_obey_robotstxt key set to True
the request will be ignored by this middleware even if
ROBOTSTXT_OBEY is enabled.

DownloaderStats

	
class scrapy.downloadermiddlewares.stats.DownloaderStats

	Middleware that stores stats of all requests, responses and exceptions that
pass through it.

To use this middleware you must enable the DOWNLOADER_STATS
setting.

UserAgentMiddleware

	
class scrapy.downloadermiddlewares.useragent.UserAgentMiddleware

	Middleware that allows spiders to override the default user agent.

In order for a spider to override the default user agent, its user_agent
attribute must be set.

AjaxCrawlMiddleware

	
class scrapy.downloadermiddlewares.ajaxcrawl.AjaxCrawlMiddleware

	Middleware that finds ‘AJAX crawlable’ page variants based
on meta-fragment html tag. See
https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
for more info.

Note

Scrapy finds ‘AJAX crawlable’ pages for URLs like
'http://example.com/!#foo=bar' even without this middleware.
AjaxCrawlMiddleware is necessary when URL doesn’t contain '!#'.
This is often a case for ‘index’ or ‘main’ website pages.

AjaxCrawlMiddleware Settings

AJAXCRAWL_ENABLED

New in version 0.21.

Default: False

Whether the AjaxCrawlMiddleware will be enabled. You may want to
enable it for broad crawls.

HttpProxyMiddleware settings

HTTPPROXY_AUTH_ENCODING

Default: "latin-1"

The default encoding for proxy authentication on HttpProxyMiddleware.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Spider Middleware

The spider middleware is a framework of hooks into Scrapy’s spider processing
mechanism where you can plug custom functionality to process the responses that
are sent to Spiders for processing and to process the requests
and items that are generated from spiders.

Activating a spider middleware

To activate a spider middleware component, add it to the
SPIDER_MIDDLEWARES setting, which is a dict whose keys are the
middleware class path and their values are the middleware orders.

Here’s an example:

SPIDER_MIDDLEWARES = {
 'myproject.middlewares.CustomSpiderMiddleware': 543,
}

The SPIDER_MIDDLEWARES setting is merged with the
SPIDER_MIDDLEWARES_BASE setting defined in Scrapy (and not meant to
be overridden) and then sorted by order to get the final sorted list of enabled
middlewares: the first middleware is the one closer to the engine and the last
is the one closer to the spider.

To decide which order to assign to your middleware see the
SPIDER_MIDDLEWARES_BASE setting and pick a value according to where
you want to insert the middleware. The order does matter because each
middleware performs a different action and your middleware could depend on some
previous (or subsequent) middleware being applied.

If you want to disable a builtin middleware (the ones defined in
SPIDER_MIDDLEWARES_BASE, and enabled by default) you must define it
in your project SPIDER_MIDDLEWARES setting and assign None as its
value. For example, if you want to disable the off-site middleware:

SPIDER_MIDDLEWARES = {
 'myproject.middlewares.CustomSpiderMiddleware': 543,
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware': None,
}

Finally, keep in mind that some middlewares may need to be enabled through a
particular setting. See each middleware documentation for more info.

Writing your own spider middleware

Each middleware component is a Python class that defines one or more of the
following methods:

	
class scrapy.spidermiddlewares.SpiderMiddleware

	
	
process_spider_input(response, spider)

	This method is called for each response that goes through the spider
middleware and into the spider, for processing.

process_spider_input() should return None or raise an
exception.

If it returns None, Scrapy will continue processing this response,
executing all other middlewares until, finally, the response is handed
to the spider for processing.

If it raises an exception, Scrapy won’t bother calling any other spider
middleware process_spider_input() and will call the request
errback. The output of the errback is chained back in the other
direction for process_spider_output() to process it, or
process_spider_exception() if it raised an exception.

	Parameters:	
	response (Response object) – the response being processed

	spider (Spider object) – the spider for which this response is intended

	
process_spider_output(response, result, spider)

	This method is called with the results returned from the Spider, after
it has processed the response.

process_spider_output() must return an iterable of
Request, dict or Item
objects.

	Parameters:	
	response (Response object) – the response which generated this output from the
spider

	result (an iterable of Request, dict
or Item objects) – the result returned by the spider

	spider (Spider object) – the spider whose result is being processed

	
process_spider_exception(response, exception, spider)

	This method is called when when a spider or process_spider_input()
method (from other spider middleware) raises an exception.

process_spider_exception() should return either None or an
iterable of Response, dict or
Item objects.

If it returns None, Scrapy will continue processing this exception,
executing any other process_spider_exception() in the following
middleware components, until no middleware components are left and the
exception reaches the engine (where it’s logged and discarded).

If it returns an iterable the process_spider_output() pipeline
kicks in, and no other process_spider_exception() will be called.

	Parameters:	
	response (Response object) – the response being processed when the exception was
raised

	exception (Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception] object) – the exception raised

	spider (Spider object) – the spider which raised the exception

	
process_start_requests(start_requests, spider)

	
New in version 0.15.

This method is called with the start requests of the spider, and works
similarly to the process_spider_output() method, except that it
doesn’t have a response associated and must return only requests (not
items).

It receives an iterable (in the start_requests parameter) and must
return another iterable of Request objects.

Note

When implementing this method in your spider middleware, you
should always return an iterable (that follows the input one) and
not consume all start_requests iterator because it can be very
large (or even unbounded) and cause a memory overflow. The Scrapy
engine is designed to pull start requests while it has capacity to
process them, so the start requests iterator can be effectively
endless where there is some other condition for stopping the spider
(like a time limit or item/page count).

	Parameters:	
	start_requests (an iterable of Request) – the start requests

	spider (Spider object) – the spider to whom the start requests belong

Built-in spider middleware reference

This page describes all spider middleware components that come with Scrapy. For
information on how to use them and how to write your own spider middleware, see
the spider middleware usage guide.

For a list of the components enabled by default (and their orders) see the
SPIDER_MIDDLEWARES_BASE setting.

DepthMiddleware

	
class scrapy.spidermiddlewares.depth.DepthMiddleware

	DepthMiddleware is a scrape middleware used for tracking the depth of each
Request inside the site being scraped. It can be used to limit the maximum
depth to scrape or things like that.

The DepthMiddleware can be configured through the following
settings (see the settings documentation for more info):

	DEPTH_LIMIT - The maximum depth that will be allowed to
crawl for any site. If zero, no limit will be imposed.

	DEPTH_STATS - Whether to collect depth stats.

	DEPTH_PRIORITY - Whether to prioritize the requests based on
their depth.

HttpErrorMiddleware

	
class scrapy.spidermiddlewares.httperror.HttpErrorMiddleware

	Filter out unsuccessful (erroneous) HTTP responses so that spiders don’t
have to deal with them, which (most of the time) imposes an overhead,
consumes more resources, and makes the spider logic more complex.

According to the HTTP standard [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html], successful responses are those whose
status codes are in the 200-300 range.

If you still want to process response codes outside that range, you can
specify which response codes the spider is able to handle using the
handle_httpstatus_list spider attribute or
HTTPERROR_ALLOWED_CODES setting.

For example, if you want your spider to handle 404 responses you can do
this:

class MySpider(CrawlSpider):
 handle_httpstatus_list = [404]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis. You can also set the meta key handle_httpstatus_all
to True if you want to allow any response code for a request.

Keep in mind, however, that it’s usually a bad idea to handle non-200
responses, unless you really know what you’re doing.

For more information see: HTTP Status Code Definitions [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].

HttpErrorMiddleware settings

HTTPERROR_ALLOWED_CODES

Default: []

Pass all responses with non-200 status codes contained in this list.

HTTPERROR_ALLOW_ALL

Default: False

Pass all responses, regardless of its status code.

OffsiteMiddleware

	
class scrapy.spidermiddlewares.offsite.OffsiteMiddleware

	Filters out Requests for URLs outside the domains covered by the spider.

This middleware filters out every request whose host names aren’t in the
spider’s allowed_domains attribute.
All subdomains of any domain in the list are also allowed.
E.g. the rule www.example.org will also allow bob.www.example.org
but not www2.example.com nor example.com.

When your spider returns a request for a domain not belonging to those
covered by the spider, this middleware will log a debug message similar to
this one:

DEBUG: Filtered offsite request to 'www.othersite.com': <GET http://www.othersite.com/some/page.html>

To avoid filling the log with too much noise, it will only print one of
these messages for each new domain filtered. So, for example, if another
request for www.othersite.com is filtered, no log message will be
printed. But if a request for someothersite.com is filtered, a message
will be printed (but only for the first request filtered).

If the spider doesn’t define an
allowed_domains attribute, or the
attribute is empty, the offsite middleware will allow all requests.

If the request has the dont_filter attribute
set, the offsite middleware will allow the request even if its domain is not
listed in allowed domains.

RefererMiddleware

	
class scrapy.spidermiddlewares.referer.RefererMiddleware

	Populates Request Referer header, based on the URL of the Response which
generated it.

RefererMiddleware settings

REFERER_ENABLED

New in version 0.15.

Default: True

Whether to enable referer middleware.

UrlLengthMiddleware

	
class scrapy.spidermiddlewares.urllength.UrlLengthMiddleware

	Filters out requests with URLs longer than URLLENGTH_LIMIT

The UrlLengthMiddleware can be configured through the following
settings (see the settings documentation for more info):

	URLLENGTH_LIMIT - The maximum URL length to allow for crawled URLs.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Extensions

The extensions framework provides a mechanism for inserting your own
custom functionality into Scrapy.

Extensions are just regular classes that are instantiated at Scrapy startup,
when extensions are initialized.

Extension settings

Extensions use the Scrapy settings to manage their
settings, just like any other Scrapy code.

It is customary for extensions to prefix their settings with their own name, to
avoid collision with existing (and future) extensions. For example, a
hypothetic extension to handle Google Sitemaps [https://en.wikipedia.org/wiki/Sitemaps] would use settings like
GOOGLESITEMAP_ENABLED, GOOGLESITEMAP_DEPTH, and so on.

Loading & activating extensions

Extensions are loaded and activated at startup by instantiating a single
instance of the extension class. Therefore, all the extension initialization
code must be performed in the class constructor (__init__ method).

To make an extension available, add it to the EXTENSIONS setting in
your Scrapy settings. In EXTENSIONS, each extension is represented
by a string: the full Python path to the extension’s class name. For example:

EXTENSIONS = {
 'scrapy.extensions.corestats.CoreStats': 500,
 'scrapy.extensions.telnet.TelnetConsole': 500,
}

As you can see, the EXTENSIONS setting is a dict where the keys are
the extension paths, and their values are the orders, which define the
extension loading order. The EXTENSIONS setting is merged with the
EXTENSIONS_BASE setting defined in Scrapy (and not meant to be
overridden) and then sorted by order to get the final sorted list of enabled
extensions.

As extensions typically do not depend on each other, their loading order is
irrelevant in most cases. This is why the EXTENSIONS_BASE setting
defines all extensions with the same order (0). However, this feature can
be exploited if you need to add an extension which depends on other extensions
already loaded.

Available, enabled and disabled extensions

Not all available extensions will be enabled. Some of them usually depend on a
particular setting. For example, the HTTP Cache extension is available by default
but disabled unless the HTTPCACHE_ENABLED setting is set.

Disabling an extension

In order to disable an extension that comes enabled by default (ie. those
included in the EXTENSIONS_BASE setting) you must set its order to
None. For example:

EXTENSIONS = {
 'scrapy.extensions.corestats.CoreStats': None,
}

Writing your own extension

Each extension is a Python class. The main entry point for a Scrapy extension
(this also includes middlewares and pipelines) is the from_crawler
class method which receives a Crawler instance. Through the Crawler object
you can access settings, signals, stats, and also control the crawling behaviour.

Typically, extensions connect to signals and perform
tasks triggered by them.

Finally, if the from_crawler method raises the
NotConfigured exception, the extension will be
disabled. Otherwise, the extension will be enabled.

Sample extension

Here we will implement a simple extension to illustrate the concepts described
in the previous section. This extension will log a message every time:

	a spider is opened

	a spider is closed

	a specific number of items are scraped

The extension will be enabled through the MYEXT_ENABLED setting and the
number of items will be specified through the MYEXT_ITEMCOUNT setting.

Here is the code of such extension:

import logging
from scrapy import signals
from scrapy.exceptions import NotConfigured

logger = logging.getLogger(__name__)

class SpiderOpenCloseLogging(object):

 def __init__(self, item_count):
 self.item_count = item_count
 self.items_scraped = 0

 @classmethod
 def from_crawler(cls, crawler):
 # first check if the extension should be enabled and raise
 # NotConfigured otherwise
 if not crawler.settings.getbool('MYEXT_ENABLED'):
 raise NotConfigured

 # get the number of items from settings
 item_count = crawler.settings.getint('MYEXT_ITEMCOUNT', 1000)

 # instantiate the extension object
 ext = cls(item_count)

 # connect the extension object to signals
 crawler.signals.connect(ext.spider_opened, signal=signals.spider_opened)
 crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed)
 crawler.signals.connect(ext.item_scraped, signal=signals.item_scraped)

 # return the extension object
 return ext

 def spider_opened(self, spider):
 logger.info("opened spider %s", spider.name)

 def spider_closed(self, spider):
 logger.info("closed spider %s", spider.name)

 def item_scraped(self, item, spider):
 self.items_scraped += 1
 if self.items_scraped % self.item_count == 0:
 logger.info("scraped %d items", self.items_scraped)

Built-in extensions reference

General purpose extensions

Log Stats extension

	
class scrapy.extensions.logstats.LogStats

	

Log basic stats like crawled pages and scraped items.

Core Stats extension

	
class scrapy.extensions.corestats.CoreStats

	

Enable the collection of core statistics, provided the stats collection is
enabled (see Stats Collection).

Telnet console extension

	
class scrapy.extensions.telnet.TelnetConsole

	

Provides a telnet console for getting into a Python interpreter inside the
currently running Scrapy process, which can be very useful for debugging.

The telnet console must be enabled by the TELNETCONSOLE_ENABLED
setting, and the server will listen in the port specified in
TELNETCONSOLE_PORT.

Memory usage extension

	
class scrapy.extensions.memusage.MemoryUsage

	

Note

This extension does not work in Windows.

Monitors the memory used by the Scrapy process that runs the spider and:

	sends a notification e-mail when it exceeds a certain value

	closes the spider when it exceeds a certain value

The notification e-mails can be triggered when a certain warning value is
reached (MEMUSAGE_WARNING_MB) and when the maximum value is reached
(MEMUSAGE_LIMIT_MB) which will also cause the spider to be closed
and the Scrapy process to be terminated.

This extension is enabled by the MEMUSAGE_ENABLED setting and
can be configured with the following settings:

	MEMUSAGE_LIMIT_MB

	MEMUSAGE_WARNING_MB

	MEMUSAGE_NOTIFY_MAIL

	MEMUSAGE_REPORT

	MEMUSAGE_CHECK_INTERVAL_SECONDS

Memory debugger extension

	
class scrapy.extensions.memdebug.MemoryDebugger

	

An extension for debugging memory usage. It collects information about:

	objects uncollected by the Python garbage collector

	objects left alive that shouldn’t. For more info, see Debugging memory leaks with trackref

To enable this extension, turn on the MEMDEBUG_ENABLED setting. The
info will be stored in the stats.

Close spider extension

	
class scrapy.extensions.closespider.CloseSpider

	

Closes a spider automatically when some conditions are met, using a specific
closing reason for each condition.

The conditions for closing a spider can be configured through the following
settings:

	CLOSESPIDER_TIMEOUT

	CLOSESPIDER_ITEMCOUNT

	CLOSESPIDER_PAGECOUNT

	CLOSESPIDER_ERRORCOUNT

CLOSESPIDER_TIMEOUT

Default: 0

An integer which specifies a number of seconds. If the spider remains open for
more than that number of second, it will be automatically closed with the
reason closespider_timeout. If zero (or non set), spiders won’t be closed by
timeout.

CLOSESPIDER_ITEMCOUNT

Default: 0

An integer which specifies a number of items. If the spider scrapes more than
that amount if items and those items are passed by the item pipeline, the
spider will be closed with the reason closespider_itemcount. If zero (or
non set), spiders won’t be closed by number of passed items.

CLOSESPIDER_PAGECOUNT

New in version 0.11.

Default: 0

An integer which specifies the maximum number of responses to crawl. If the spider
crawls more than that, the spider will be closed with the reason
closespider_pagecount. If zero (or non set), spiders won’t be closed by
number of crawled responses.

CLOSESPIDER_ERRORCOUNT

New in version 0.11.

Default: 0

An integer which specifies the maximum number of errors to receive before
closing the spider. If the spider generates more than that number of errors,
it will be closed with the reason closespider_errorcount. If zero (or non
set), spiders won’t be closed by number of errors.

StatsMailer extension

	
class scrapy.extensions.statsmailer.StatsMailer

	

This simple extension can be used to send a notification e-mail every time a
domain has finished scraping, including the Scrapy stats collected. The email
will be sent to all recipients specified in the STATSMAILER_RCPTS
setting.

Debugging extensions

Stack trace dump extension

	
class scrapy.extensions.debug.StackTraceDump

	

Dumps information about the running process when a SIGQUIT [https://en.wikipedia.org/wiki/SIGQUIT] or SIGUSR2 [https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2]
signal is received. The information dumped is the following:

	engine status (using scrapy.utils.engine.get_engine_status())

	live references (see Debugging memory leaks with trackref)

	stack trace of all threads

After the stack trace and engine status is dumped, the Scrapy process continues
running normally.

This extension only works on POSIX-compliant platforms (ie. not Windows),
because the SIGQUIT [https://en.wikipedia.org/wiki/SIGQUIT] and SIGUSR2 [https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2] signals are not available on Windows.

There are at least two ways to send Scrapy the SIGQUIT [https://en.wikipedia.org/wiki/SIGQUIT] signal:

	By pressing Ctrl-while a Scrapy process is running (Linux only?)

	By running this command (assuming <pid> is the process id of the Scrapy
process):

kill -QUIT <pid>

Debugger extension

	
class scrapy.extensions.debug.Debugger

	

Invokes a Python debugger [https://docs.python.org/2/library/pdb.html] inside a running Scrapy process when a SIGUSR2 [https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2]
signal is received. After the debugger is exited, the Scrapy process continues
running normally.

For more info see Debugging in Python.

This extension only works on POSIX-compliant platforms (ie. not Windows).

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Core API

New in version 0.15.

This section documents the Scrapy core API, and it’s intended for developers of
extensions and middlewares.

Crawler API

The main entry point to Scrapy API is the Crawler
object, passed to extensions through the from_crawler class method. This
object provides access to all Scrapy core components, and it’s the only way for
extensions to access them and hook their functionality into Scrapy.

The Extension Manager is responsible for loading and keeping track of installed
extensions and it’s configured through the EXTENSIONS setting which
contains a dictionary of all available extensions and their order similar to
how you configure the downloader middlewares.

	
class scrapy.crawler.Crawler(spidercls, settings)

	The Crawler object must be instantiated with a
scrapy.spiders.Spider subclass and a
scrapy.settings.Settings object.

	
settings

	The settings manager of this crawler.

This is used by extensions & middlewares to access the Scrapy settings
of this crawler.

For an introduction on Scrapy settings see Settings.

For the API see Settings class.

	
signals

	The signals manager of this crawler.

This is used by extensions & middlewares to hook themselves into Scrapy
functionality.

For an introduction on signals see Signals.

For the API see SignalManager class.

	
stats

	The stats collector of this crawler.

This is used from extensions & middlewares to record stats of their
behaviour, or access stats collected by other extensions.

For an introduction on stats collection see Stats Collection.

For the API see StatsCollector class.

	
extensions

	The extension manager that keeps track of enabled extensions.

Most extensions won’t need to access this attribute.

For an introduction on extensions and a list of available extensions on
Scrapy see Extensions.

	
engine

	The execution engine, which coordinates the core crawling logic
between the scheduler, downloader and spiders.

Some extension may want to access the Scrapy engine, to inspect or
modify the downloader and scheduler behaviour, although this is an
advanced use and this API is not yet stable.

	
spider

	Spider currently being crawled. This is an instance of the spider class
provided while constructing the crawler, and it is created after the
arguments given in the crawl() method.

	
crawl(*args, **kwargs)

	Starts the crawler by instantiating its spider class with the given
args and kwargs arguments, while setting the execution engine in
motion.

Returns a deferred that is fired when the crawl is finished.

	
class scrapy.crawler.CrawlerRunner(settings=None)

	This is a convenient helper class that keeps track of, manages and runs
crawlers inside an already setup Twisted reactor [https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html].

The CrawlerRunner object must be instantiated with a
Settings object.

This class shouldn’t be needed (since Scrapy is responsible of using it
accordingly) unless writing scripts that manually handle the crawling
process. See Run Scrapy from a script for an example.

	
crawl(crawler_or_spidercls, *args, **kwargs)

	Run a crawler with the provided arguments.

It will call the given Crawler’s crawl() method, while
keeping track of it so it can be stopped later.

If crawler_or_spidercls isn’t a Crawler
instance, this method will try to create one using this parameter as
the spider class given to it.

Returns a deferred that is fired when the crawling is finished.

	Parameters:	
	crawler_or_spidercls (Crawler instance,
Spider subclass or string) – already created crawler, or a spider class
or spider’s name inside the project to create it

	args (list) – arguments to initialize the spider

	kwargs (dict) – keyword arguments to initialize the spider

	
crawlers

	Set of crawlers started by crawl() and managed by this class.

	
create_crawler(crawler_or_spidercls)

	Return a Crawler object.

	If crawler_or_spidercls is a Crawler, it is returned as-is.

	If crawler_or_spidercls is a Spider subclass, a new Crawler
is constructed for it.

	If crawler_or_spidercls is a string, this function finds
a spider with this name in a Scrapy project (using spider loader),
then creates a Crawler instance for it.

	
join()

	Returns a deferred that is fired when all managed crawlers have
completed their executions.

	
stop()

	Stops simultaneously all the crawling jobs taking place.

Returns a deferred that is fired when they all have ended.

	
class scrapy.crawler.CrawlerProcess(settings=None)

	Bases: scrapy.crawler.CrawlerRunner

A class to run multiple scrapy crawlers in a process simultaneously.

This class extends CrawlerRunner by adding support
for starting a Twisted reactor [https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html] and handling shutdown signals, like the
keyboard interrupt command Ctrl-C. It also configures top-level logging.

This utility should be a better fit than
CrawlerRunner if you aren’t running another
Twisted reactor [https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html] within your application.

The CrawlerProcess object must be instantiated with a
Settings object.

This class shouldn’t be needed (since Scrapy is responsible of using it
accordingly) unless writing scripts that manually handle the crawling
process. See Run Scrapy from a script for an example.

	
crawl(crawler_or_spidercls, *args, **kwargs)

	Run a crawler with the provided arguments.

It will call the given Crawler’s crawl() method, while
keeping track of it so it can be stopped later.

If crawler_or_spidercls isn’t a Crawler
instance, this method will try to create one using this parameter as
the spider class given to it.

Returns a deferred that is fired when the crawling is finished.

	Parameters:	
	crawler_or_spidercls (Crawler instance,
Spider subclass or string) – already created crawler, or a spider class
or spider’s name inside the project to create it

	args (list) – arguments to initialize the spider

	kwargs (dict) – keyword arguments to initialize the spider

	
crawlers

	Set of crawlers started by crawl() and managed by this class.

	
create_crawler(crawler_or_spidercls)

	Return a Crawler object.

	If crawler_or_spidercls is a Crawler, it is returned as-is.

	If crawler_or_spidercls is a Spider subclass, a new Crawler
is constructed for it.

	If crawler_or_spidercls is a string, this function finds
a spider with this name in a Scrapy project (using spider loader),
then creates a Crawler instance for it.

	
join()

	Returns a deferred that is fired when all managed crawlers have
completed their executions.

	
start(stop_after_crawl=True)

	This method starts a Twisted reactor [https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html], adjusts its pool size to
REACTOR_THREADPOOL_MAXSIZE, and installs a DNS cache based
on DNSCACHE_ENABLED and DNSCACHE_SIZE.

If stop_after_crawl is True, the reactor will be stopped after all
crawlers have finished, using join().

	Parameters:	stop_after_crawl (boolean) – stop or not the reactor when all
crawlers have finished

	
stop()

	Stops simultaneously all the crawling jobs taking place.

Returns a deferred that is fired when they all have ended.

Settings API

	
scrapy.settings.SETTINGS_PRIORITIES

	Dictionary that sets the key name and priority level of the default
settings priorities used in Scrapy.

Each item defines a settings entry point, giving it a code name for
identification and an integer priority. Greater priorities take more
precedence over lesser ones when setting and retrieving values in the
Settings class.

SETTINGS_PRIORITIES = {
 'default': 0,
 'command': 10,
 'project': 20,
 'spider': 30,
 'cmdline': 40,
}

For a detailed explanation on each settings sources, see:
Settings.

	
scrapy.settings.get_settings_priority(priority)

	Small helper function that looks up a given string priority in the
SETTINGS_PRIORITIES dictionary and returns its
numerical value, or directly returns a given numerical priority.

	
class scrapy.settings.Settings(values=None, priority='project')

	Bases: scrapy.settings.BaseSettings

This object stores Scrapy settings for the configuration of internal
components, and can be used for any further customization.

It is a direct subclass and supports all methods of
BaseSettings. Additionally, after instantiation
of this class, the new object will have the global default settings
described on Built-in settings reference already populated.

	
class scrapy.settings.BaseSettings(values=None, priority='project')

	Instances of this class behave like dictionaries, but store priorities
along with their (key, value) pairs, and can be frozen (i.e. marked
immutable).

Key-value entries can be passed on initialization with the values
argument, and they would take the priority level (unless values is
already an instance of BaseSettings, in which
case the existing priority levels will be kept). If the priority
argument is a string, the priority name will be looked up in
SETTINGS_PRIORITIES. Otherwise, a specific integer
should be provided.

Once the object is created, new settings can be loaded or updated with the
set() method, and can be accessed with
the square bracket notation of dictionaries, or with the
get() method of the instance and its
value conversion variants. When requesting a stored key, the value with the
highest priority will be retrieved.

	
copy()

	Make a deep copy of current settings.

This method returns a new instance of the Settings class,
populated with the same values and their priorities.

Modifications to the new object won’t be reflected on the original
settings.

	
copy_to_dict()

	Make a copy of current settings and convert to a dict.

This method returns a new dict populated with the same values
and their priorities as the current settings.

Modifications to the returned dict won’t be reflected on the original
settings.

This method can be useful for example for printing settings
in Scrapy shell.

	
freeze()

	Disable further changes to the current settings.

After calling this method, the present state of the settings will become
immutable. Trying to change values through the set() method and
its variants won’t be possible and will be alerted.

	
frozencopy()

	Return an immutable copy of the current settings.

Alias for a freeze() call in the object returned by copy().

	
get(name, default=None)

	Get a setting value without affecting its original type.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getbool(name, default=False)

	Get a setting value as a boolean.

1, '1', and True return True, while 0, '0',
False and None return False.

For example, settings populated through environment variables set to
'0' will return False when using this method.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getdict(name, default=None)

	Get a setting value as a dictionary. If the setting original type is a
dictionary, a copy of it will be returned. If it is a string it will be
evaluated as a JSON dictionary. In the case that it is a
BaseSettings instance itself, it will be
converted to a dictionary, containing all its current settings values
as they would be returned by get(),
and losing all information about priority and mutability.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getfloat(name, default=0.0)

	Get a setting value as a float.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getint(name, default=0)

	Get a setting value as an int.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getlist(name, default=None)

	Get a setting value as a list. If the setting original type is a list, a
copy of it will be returned. If it’s a string it will be split by ”,”.

For example, settings populated through environment variables set to
'one,two' will return a list [‘one’, ‘two’] when using this method.

	Parameters:	
	name (string) – the setting name

	default (any) – the value to return if no setting is found

	
getpriority(name)

	Return the current numerical priority value of a setting, or None if
the given name does not exist.

	Parameters:	name (string) – the setting name

	
getwithbase(name)

	Get a composition of a dictionary-like setting and its _BASE
counterpart.

	Parameters:	name (string) – name of the dictionary-like setting

	
maxpriority()

	Return the numerical value of the highest priority present throughout
all settings, or the numerical value for default from
SETTINGS_PRIORITIES if there are no settings
stored.

	
set(name, value, priority='project')

	Store a key/value attribute with a given priority.

Settings should be populated before configuring the Crawler object
(through the configure() method),
otherwise they won’t have any effect.

	Parameters:	
	name (string) – the setting name

	value (any) – the value to associate with the setting

	priority (string or int) – the priority of the setting. Should be a key of
SETTINGS_PRIORITIES or an integer

	
setmodule(module, priority='project')

	Store settings from a module with a given priority.

This is a helper function that calls
set() for every globally declared
uppercase variable of module with the provided priority.

	Parameters:	
	module (module object or string) – the module or the path of the module

	priority (string or int) – the priority of the settings. Should be a key of
SETTINGS_PRIORITIES or an integer

	
update(values, priority='project')

	Store key/value pairs with a given priority.

This is a helper function that calls
set() for every item of values
with the provided priority.

If values is a string, it is assumed to be JSON-encoded and parsed
into a dict with json.loads() first. If it is a
BaseSettings instance, the per-key priorities
will be used and the priority parameter ignored. This allows
inserting/updating settings with different priorities with a single
command.

	Parameters:	
	values (dict or string or BaseSettings) – the settings names and values

	priority (string or int) – the priority of the settings. Should be a key of
SETTINGS_PRIORITIES or an integer

SpiderLoader API

	
class scrapy.loader.SpiderLoader

	This class is in charge of retrieving and handling the spider classes
defined across the project.

Custom spider loaders can be employed by specifying their path in the
SPIDER_LOADER_CLASS project setting. They must fully implement
the scrapy.interfaces.ISpiderLoader interface to guarantee an
errorless execution.

	
from_settings(settings)

	This class method is used by Scrapy to create an instance of the class.
It’s called with the current project settings, and it loads the spiders
found in the modules of the SPIDER_MODULES setting.

	Parameters:	settings (Settings instance) – project settings

	
load(spider_name)

	Get the Spider class with the given name. It’ll look into the previously
loaded spiders for a spider class with name spider_name and will raise
a KeyError if not found.

	Parameters:	spider_name (str) – spider class name

	
list()

	Get the names of the available spiders in the project.

	
find_by_request(request)

	List the spiders’ names that can handle the given request. Will try to
match the request’s url against the domains of the spiders.

	Parameters:	request (Request instance) – queried request

Signals API

	
class scrapy.signalmanager.SignalManager(sender=_Anonymous)

	
	
connect(receiver, signal, **kwargs)

	Connect a receiver function to a signal.

The signal can be any object, although Scrapy comes with some
predefined signals that are documented in the Signals
section.

	Parameters:	
	receiver (callable) – the function to be connected

	signal (object) – the signal to connect to

	
disconnect(receiver, signal, **kwargs)

	Disconnect a receiver function from a signal. This has the
opposite effect of the connect() method, and the arguments
are the same.

	
disconnect_all(signal, **kwargs)

	Disconnect all receivers from the given signal.

	Parameters:	signal (object) – the signal to disconnect from

	
send_catch_log(signal, **kwargs)

	Send a signal, catch exceptions and log them.

The keyword arguments are passed to the signal handlers (connected
through the connect() method).

	
send_catch_log_deferred(signal, **kwargs)

	Like send_catch_log() but supports returning deferreds [http://twistedmatrix.com/documents/current/core/howto/defer.html] from
signal handlers.

Returns a Deferred that gets fired once all signal handlers
deferreds were fired. Send a signal, catch exceptions and log them.

The keyword arguments are passed to the signal handlers (connected
through the connect() method).

Stats Collector API

There are several Stats Collectors available under the
scrapy.statscollectors module and they all implement the Stats
Collector API defined by the StatsCollector
class (which they all inherit from).

	
class scrapy.statscollectors.StatsCollector

	
	
get_value(key, default=None)

	Return the value for the given stats key or default if it doesn’t exist.

	
get_stats()

	Get all stats from the currently running spider as a dict.

	
set_value(key, value)

	Set the given value for the given stats key.

	
set_stats(stats)

	Override the current stats with the dict passed in stats argument.

	
inc_value(key, count=1, start=0)

	Increment the value of the given stats key, by the given count,
assuming the start value given (when it’s not set).

	
max_value(key, value)

	Set the given value for the given key only if current value for the
same key is lower than value. If there is no current value for the
given key, the value is always set.

	
min_value(key, value)

	Set the given value for the given key only if current value for the
same key is greater than value. If there is no current value for the
given key, the value is always set.

	
clear_stats()

	Clear all stats.

The following methods are not part of the stats collection api but instead
used when implementing custom stats collectors:

	
open_spider(spider)

	Open the given spider for stats collection.

	
close_spider(spider)

	Close the given spider. After this is called, no more specific stats
can be accessed or collected.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Signals

Scrapy uses signals extensively to notify when certain events occur. You can
catch some of those signals in your Scrapy project (using an extension, for example) to perform additional tasks or extend Scrapy
to add functionality not provided out of the box.

Even though signals provide several arguments, the handlers that catch them
don’t need to accept all of them - the signal dispatching mechanism will only
deliver the arguments that the handler receives.

You can connect to signals (or send your own) through the
Signals API.

Deferred signal handlers

Some signals support returning Twisted deferreds [https://twistedmatrix.com/documents/current/core/howto/defer.html] from their handlers, see
the Built-in signals reference below to know which ones.

Built-in signals reference

Here’s the list of Scrapy built-in signals and their meaning.

engine_started

	
scrapy.signals.engine_started()

	Sent when the Scrapy engine has started crawling.

This signal supports returning deferreds from their handlers.

Note

This signal may be fired after the spider_opened signal,
depending on how the spider was started. So don’t rely on this signal
getting fired before spider_opened.

engine_stopped

	
scrapy.signals.engine_stopped()

	Sent when the Scrapy engine is stopped (for example, when a crawling
process has finished).

This signal supports returning deferreds from their handlers.

item_scraped

	
scrapy.signals.item_scraped(item, response, spider)

	Sent when an item has been scraped, after it has passed all the
Item Pipeline stages (without being dropped).

This signal supports returning deferreds from their handlers.

	Parameters:	
	item (dict or Item object) – the item scraped

	spider (Spider object) – the spider which scraped the item

	response (Response object) – the response from where the item was scraped

item_dropped

	
scrapy.signals.item_dropped(item, response, exception, spider)

	Sent after an item has been dropped from the Item Pipeline
when some stage raised a DropItem exception.

This signal supports returning deferreds from their handlers.

	Parameters:	
	item (dict or Item object) – the item dropped from the Item Pipeline

	spider (Spider object) – the spider which scraped the item

	response (Response object) – the response from where the item was dropped

	exception (DropItem exception) – the exception (which must be a
DropItem subclass) which caused the item
to be dropped

spider_closed

	
scrapy.signals.spider_closed(spider, reason)

	Sent after a spider has been closed. This can be used to release per-spider
resources reserved on spider_opened.

This signal supports returning deferreds from their handlers.

	Parameters:	
	spider (Spider object) – the spider which has been closed

	reason (str) – a string which describes the reason why the spider was closed. If
it was closed because the spider has completed scraping, the reason
is 'finished'. Otherwise, if the spider was manually closed by
calling the close_spider engine method, then the reason is the one
passed in the reason argument of that method (which defaults to
'cancelled'). If the engine was shutdown (for example, by hitting
Ctrl-C to stop it) the reason will be 'shutdown'.

spider_opened

	
scrapy.signals.spider_opened(spider)

	Sent after a spider has been opened for crawling. This is typically used to
reserve per-spider resources, but can be used for any task that needs to be
performed when a spider is opened.

This signal supports returning deferreds from their handlers.

	Parameters:	spider (Spider object) – the spider which has been opened

spider_idle

	
scrapy.signals.spider_idle(spider)

	Sent when a spider has gone idle, which means the spider has no further:

	requests waiting to be downloaded

	requests scheduled

	items being processed in the item pipeline

If the idle state persists after all handlers of this signal have finished,
the engine starts closing the spider. After the spider has finished
closing, the spider_closed signal is sent.

You can, for example, schedule some requests in your spider_idle
handler to prevent the spider from being closed.

This signal does not support returning deferreds from their handlers.

	Parameters:	spider (Spider object) – the spider which has gone idle

spider_error

	
scrapy.signals.spider_error(failure, response, spider)

	Sent when a spider callback generates an error (ie. raises an exception).

This signal does not support returning deferreds from their handlers.

	Parameters:	
	failure (Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] object) – the exception raised as a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] object

	response (Response object) – the response being processed when the exception was raised

	spider (Spider object) – the spider which raised the exception

request_scheduled

	
scrapy.signals.request_scheduled(request, spider)

	Sent when the engine schedules a Request, to be
downloaded later.

The signal does not support returning deferreds from their handlers.

	Parameters:	
	request (Request object) – the request that reached the scheduler

	spider (Spider object) – the spider that yielded the request

request_dropped

	
scrapy.signals.request_dropped(request, spider)

	Sent when a Request, scheduled by the engine to be
downloaded later, is rejected by the scheduler.

The signal does not support returning deferreds from their handlers.

	Parameters:	
	request (Request object) – the request that reached the scheduler

	spider (Spider object) – the spider that yielded the request

response_received

	
scrapy.signals.response_received(response, request, spider)

	Sent when the engine receives a new Response from the
downloader.

This signal does not support returning deferreds from their handlers.

	Parameters:	
	response (Response object) – the response received

	request (Request object) – the request that generated the response

	spider (Spider object) – the spider for which the response is intended

response_downloaded

	
scrapy.signals.response_downloaded(response, request, spider)

	Sent by the downloader right after a HTTPResponse is downloaded.

This signal does not support returning deferreds from their handlers.

	Parameters:	
	response (Response object) – the response downloaded

	request (Request object) – the request that generated the response

	spider (Spider object) – the spider for which the response is intended

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Item Exporters

Once you have scraped your items, you often want to persist or export those
items, to use the data in some other application. That is, after all, the whole
purpose of the scraping process.

For this purpose Scrapy provides a collection of Item Exporters for different
output formats, such as XML, CSV or JSON.

Using Item Exporters

If you are in a hurry, and just want to use an Item Exporter to output scraped
data see the Feed exports. Otherwise, if you want to know how
Item Exporters work or need more custom functionality (not covered by the
default exports), continue reading below.

In order to use an Item Exporter, you must instantiate it with its required
args. Each Item Exporter requires different arguments, so check each exporter
documentation to be sure, in Built-in Item Exporters reference. After you have
instantiated your exporter, you have to:

1. call the method start_exporting() in order to
signal the beginning of the exporting process

2. call the export_item() method for each item you want
to export

3. and finally call the finish_exporting() to signal
the end of the exporting process

Here you can see an Item Pipeline which uses an Item
Exporter to export scraped items to different files, one per spider:

from scrapy import signals
from scrapy.exporters import XmlItemExporter

class XmlExportPipeline(object):

 def __init__(self):
 self.files = {}

 @classmethod
 def from_crawler(cls, crawler):
 pipeline = cls()
 crawler.signals.connect(pipeline.spider_opened, signals.spider_opened)
 crawler.signals.connect(pipeline.spider_closed, signals.spider_closed)
 return pipeline

 def spider_opened(self, spider):
 file = open('%s_products.xml' % spider.name, 'w+b')
 self.files[spider] = file
 self.exporter = XmlItemExporter(file)
 self.exporter.start_exporting()

 def spider_closed(self, spider):
 self.exporter.finish_exporting()
 file = self.files.pop(spider)
 file.close()

 def process_item(self, item, spider):
 self.exporter.export_item(item)
 return item

Serialization of item fields

By default, the field values are passed unmodified to the underlying
serialization library, and the decision of how to serialize them is delegated
to each particular serialization library.

However, you can customize how each field value is serialized before it is
passed to the serialization library.

There are two ways to customize how a field will be serialized, which are
described next.

1. Declaring a serializer in the field

If you use Item you can declare a serializer in the
field metadata. The serializer must be
a callable which receives a value and returns its serialized form.

Example:

import scrapy

def serialize_price(value):
 return '$ %s' % str(value)

class Product(scrapy.Item):
 name = scrapy.Field()
 price = scrapy.Field(serializer=serialize_price)

2. Overriding the serialize_field() method

You can also override the serialize_field() method to
customize how your field value will be exported.

Make sure you call the base class serialize_field() method
after your custom code.

Example:

from scrapy.exporter import XmlItemExporter

class ProductXmlExporter(XmlItemExporter):

 def serialize_field(self, field, name, value):
 if field == 'price':
 return '$ %s' % str(value)
 return super(Product, self).serialize_field(field, name, value)

Built-in Item Exporters reference

Here is a list of the Item Exporters bundled with Scrapy. Some of them contain
output examples, which assume you’re exporting these two items:

Item(name='Color TV', price='1200')
Item(name='DVD player', price='200')

BaseItemExporter

	
class scrapy.exporters.BaseItemExporter(fields_to_export=None, export_empty_fields=False, encoding='utf-8')

	This is the (abstract) base class for all Item Exporters. It provides
support for common features used by all (concrete) Item Exporters, such as
defining what fields to export, whether to export empty fields, or which
encoding to use.

These features can be configured through the constructor arguments which
populate their respective instance attributes: fields_to_export,
export_empty_fields, encoding.

	
export_item(item)

	Exports the given item. This method must be implemented in subclasses.

	
serialize_field(field, name, value)

	Return the serialized value for the given field. You can override this
method (in your custom Item Exporters) if you want to control how a
particular field or value will be serialized/exported.

By default, this method looks for a serializer declared in the item
field and returns the result of applying
that serializer to the value. If no serializer is found, it returns the
value unchanged except for unicode values which are encoded to
str using the encoding declared in the encoding attribute.

	Parameters:	
	field (Field object or an empty dict) – the field being serialized. If a raw dict is being
exported (not Item) field value is an empty dict.

	name (str) – the name of the field being serialized

	value – the value being serialized

	
start_exporting()

	Signal the beginning of the exporting process. Some exporters may use
this to generate some required header (for example, the
XmlItemExporter). You must call this method before exporting any
items.

	
finish_exporting()

	Signal the end of the exporting process. Some exporters may use this to
generate some required footer (for example, the
XmlItemExporter). You must always call this method after you
have no more items to export.

	
fields_to_export

	A list with the name of the fields that will be exported, or None if you
want to export all fields. Defaults to None.

Some exporters (like CsvItemExporter) respect the order of the
fields defined in this attribute.

Some exporters may require fields_to_export list in order to export the
data properly when spiders return dicts (not Item instances).

	
export_empty_fields

	Whether to include empty/unpopulated item fields in the exported data.
Defaults to False. Some exporters (like CsvItemExporter)
ignore this attribute and always export all empty fields.

This option is ignored for dict items.

	
encoding

	The encoding that will be used to encode unicode values. This only
affects unicode values (which are always serialized to str using this
encoding). Other value types are passed unchanged to the specific
serialization library.

XmlItemExporter

	
class scrapy.exporters.XmlItemExporter(file, item_element='item', root_element='items', **kwargs)

	Exports Items in XML format to the specified file object.

	Parameters:	
	file – the file-like object to use for exporting the data.

	root_element (str) – The name of root element in the exported XML.

	item_element (str) – The name of each item element in the exported XML.

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

A typical output of this exporter would be:

<?xml version="1.0" encoding="utf-8"?>
<items>
 <item>
 <name>Color TV</name>
 <price>1200</price>
 </item>
 <item>
 <name>DVD player</name>
 <price>200</price>
 </item>
</items>

Unless overridden in the serialize_field() method, multi-valued fields are
exported by serializing each value inside a <value> element. This is for
convenience, as multi-valued fields are very common.

For example, the item:

Item(name=['John', 'Doe'], age='23')

Would be serialized as:

<?xml version="1.0" encoding="utf-8"?>
<items>
 <item>
 <name>
 <value>John</value>
 <value>Doe</value>
 </name>
 <age>23</age>
 </item>
</items>

CsvItemExporter

	
class scrapy.exporters.CsvItemExporter(file, include_headers_line=True, join_multivalued=', ', **kwargs)

	Exports Items in CSV format to the given file-like object. If the
fields_to_export attribute is set, it will be used to define the
CSV columns and their order. The export_empty_fields attribute has
no effect on this exporter.

	Parameters:	
	file – the file-like object to use for exporting the data.

	include_headers_line (str) – If enabled, makes the exporter output a header
line with the field names taken from
BaseItemExporter.fields_to_export or the first exported item fields.

	join_multivalued – The char (or chars) that will be used for joining
multi-valued fields, if found.

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor, and the leftover arguments to the
csv.writer [https://docs.python.org/2/library/csv.html#csv.writer] constructor, so you can use any csv.writer constructor
argument to customize this exporter.

A typical output of this exporter would be:

product,price
Color TV,1200
DVD player,200

PickleItemExporter

	
class scrapy.exporters.PickleItemExporter(file, protocol=0, **kwargs)

	Exports Items in pickle format to the given file-like object.

	Parameters:	
	file – the file-like object to use for exporting the data.

	protocol (int) – The pickle protocol to use.

For more information, refer to the pickle module documentation [https://docs.python.org/2/library/pickle.html].

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

Pickle isn’t a human readable format, so no output examples are provided.

PprintItemExporter

	
class scrapy.exporters.PprintItemExporter(file, **kwargs)

	Exports Items in pretty print format to the specified file object.

	Parameters:	file – the file-like object to use for exporting the data.

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

A typical output of this exporter would be:

{'name': 'Color TV', 'price': '1200'}
{'name': 'DVD player', 'price': '200'}

Longer lines (when present) are pretty-formatted.

JsonItemExporter

	
class scrapy.exporters.JsonItemExporter(file, **kwargs)

	Exports Items in JSON format to the specified file-like object, writing all
objects as a list of objects. The additional constructor arguments are
passed to the BaseItemExporter constructor, and the leftover
arguments to the JSONEncoder [https://docs.python.org/2/library/json.html#json.JSONEncoder] constructor, so you can use any
JSONEncoder [https://docs.python.org/2/library/json.html#json.JSONEncoder] constructor argument to customize this exporter.

	Parameters:	file – the file-like object to use for exporting the data.

A typical output of this exporter would be:

[{"name": "Color TV", "price": "1200"},
{"name": "DVD player", "price": "200"}]

Warning

JSON is very simple and flexible serialization format, but it
doesn’t scale well for large amounts of data since incremental (aka.
stream-mode) parsing is not well supported (if at all) among JSON parsers
(on any language), and most of them just parse the entire object in
memory. If you want the power and simplicity of JSON with a more
stream-friendly format, consider using JsonLinesItemExporter
instead, or splitting the output in multiple chunks.

JsonLinesItemExporter

	
class scrapy.exporters.JsonLinesItemExporter(file, **kwargs)

	Exports Items in JSON format to the specified file-like object, writing one
JSON-encoded item per line. The additional constructor arguments are passed
to the BaseItemExporter constructor, and the leftover arguments to
the JSONEncoder [https://docs.python.org/2/library/json.html#json.JSONEncoder] constructor, so you can use any JSONEncoder [https://docs.python.org/2/library/json.html#json.JSONEncoder]
constructor argument to customize this exporter.

	Parameters:	file – the file-like object to use for exporting the data.

A typical output of this exporter would be:

{"name": "Color TV", "price": "1200"}
{"name": "DVD player", "price": "200"}

Unlike the one produced by JsonItemExporter, the format produced by
this exporter is well suited for serializing large amounts of data.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Release notes

1.1.0 (2016-05-11)

This 1.1 release brings a lot of interesting features and bug fixes:

	Scrapy 1.1 has beta Python 3 support (requires Twisted >= 15.5). See
Beta Python 3 Support for more details and some limitations.

	Hot new features:
	Item loaders now support nested loaders (issue 1467 [https://github.com/scrapy/scrapy/issues/1467]).

	FormRequest.from_response improvements (issue 1382 [https://github.com/scrapy/scrapy/issues/1382], issue 1137 [https://github.com/scrapy/scrapy/issues/1137]).

	Added setting AUTOTHROTTLE_TARGET_CONCURRENCY and improved
AutoThrottle docs (issue 1324 [https://github.com/scrapy/scrapy/issues/1324]).

	Added response.text to get body as unicode (issue 1730 [https://github.com/scrapy/scrapy/issues/1730]).

	Anonymous S3 connections (issue 1358 [https://github.com/scrapy/scrapy/issues/1358]).

	Deferreds in downloader middlewares (issue 1473 [https://github.com/scrapy/scrapy/issues/1473]). This enables better
robots.txt handling (issue 1471 [https://github.com/scrapy/scrapy/issues/1471]).

	HTTP caching now follows RFC2616 more closely, added settings
HTTPCACHE_ALWAYS_STORE and
HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS (issue 1151 [https://github.com/scrapy/scrapy/issues/1151]).

	Selectors were extracted to the parsel [https://github.com/scrapy/parsel] library (issue 1409 [https://github.com/scrapy/scrapy/issues/1409]). This means
you can use Scrapy Selectors without Scrapy and also upgrade the
selectors engine without needing to upgrade Scrapy.

	HTTPS downloader now does TLS protocol negotiation by default,
instead of forcing TLS 1.0. You can also set the SSL/TLS method
using the new DOWNLOADER_CLIENT_TLS_METHOD.

	These bug fixes may require your attention:
	Don’t retry bad requests (HTTP 400) by default (issue 1289 [https://github.com/scrapy/scrapy/issues/1289]).
If you need the old behavior, add 400 to RETRY_HTTP_CODES.

	Fix shell files argument handling (issue 1710 [https://github.com/scrapy/scrapy/issues/1710], issue 1550 [https://github.com/scrapy/scrapy/issues/1550]).
If you try scrapy shell index.html it will try to load the URL http://index.html,
use scrapy shell ./index.html to load a local file.

	Robots.txt compliance is now enabled by default for newly-created projects
(issue 1724 [https://github.com/scrapy/scrapy/issues/1724]). Scrapy will also wait for robots.txt to be downloaded
before proceeding with the crawl (issue 1735 [https://github.com/scrapy/scrapy/issues/1735]). If you want to disable
this behavior, update ROBOTSTXT_OBEY in settings.py file
after creating a new project.

	Exporters now work on unicode, instead of bytes by default (issue 1080 [https://github.com/scrapy/scrapy/issues/1080]).
If you use PythonItemExporter, you may want to update your code to
disable binary mode which is now deprecated.

	Accept XML node names containing dots as valid (issue 1533 [https://github.com/scrapy/scrapy/issues/1533]).

	When uploading files or images to S3 (with FilesPipeline or
ImagesPipeline), the default ACL policy is now “private” instead
of “public” Warning: backwards incompatible!.
You can use FILES_STORE_S3_ACL to change it.

	We’ve reimplemented canonicalize_url() for more correct output,
especially for URLs with non-ASCII characters (issue 1947 [https://github.com/scrapy/scrapy/issues/1947]).
This could change link extractors output compared to previous scrapy versions.
This may also invalidate some cache entries you could still have from pre-1.1 runs.
Warning: backwards incompatible!.

Keep reading for more details on other improvements and bug fixes.

Beta Python 3 Support

We have been hard at work to make Scrapy run on Python 3 [https://github.com/scrapy/scrapy/wiki/Python-3-Porting]. As a result, now
you can run spiders on Python 3.3, 3.4 and 3.5 (Twisted >= 15.5 required). Some
features are still missing (and some may never be ported).

Almost all builtin extensions/middlewares are expected to work.
However, we are aware of some limitations in Python 3:

	Scrapy has not been tested on Windows with Python 3

	Sending emails is not supported

	FTP download handler is not supported

	Telnet console is not supported

Additional New Features and Enhancements

	Scrapy now has a Code of Conduct [https://github.com/scrapy/scrapy/blob/master/CODE_OF_CONDUCT.md] (issue 1681 [https://github.com/scrapy/scrapy/issues/1681]).

	Command line tool now has completion for zsh (issue 934 [https://github.com/scrapy/scrapy/issues/934]).

	Improvements to scrapy shell:
	Support for bpython and configure preferred Python shell via
SCRAPY_PYTHON_SHELL (issue 1100 [https://github.com/scrapy/scrapy/issues/1100], issue 1444 [https://github.com/scrapy/scrapy/issues/1444]).

	Support URLs without scheme (issue 1498 [https://github.com/scrapy/scrapy/issues/1498])
Warning: backwards incompatible!

	Bring back support for relative file path (issue 1710 [https://github.com/scrapy/scrapy/issues/1710], issue 1550 [https://github.com/scrapy/scrapy/issues/1550]).

	Added MEMUSAGE_CHECK_INTERVAL_SECONDS setting to change default check
interval (issue 1282 [https://github.com/scrapy/scrapy/issues/1282]).

	Download handlers are now lazy-loaded on first request using their
scheme (issue 1390 [https://github.com/scrapy/scrapy/issues/1390], issue 1421 [https://github.com/scrapy/scrapy/issues/1421]).

	HTTPS download handlers do not force TLS 1.0 anymore; instead,
OpenSSL’s SSLv23_method()/TLS_method() is used allowing to try
negotiating with the remote hosts the highest TLS protocol version
it can (issue 1794 [https://github.com/scrapy/scrapy/issues/1794], issue 1629 [https://github.com/scrapy/scrapy/issues/1629]).

	RedirectMiddleware now skips the status codes from
handle_httpstatus_list on spider attribute
or in Request‘s meta key (issue 1334 [https://github.com/scrapy/scrapy/issues/1334], issue 1364 [https://github.com/scrapy/scrapy/issues/1364],
issue 1447 [https://github.com/scrapy/scrapy/issues/1447]).

	Form submission:
	now works with <button> elements too (issue 1469 [https://github.com/scrapy/scrapy/issues/1469]).

	an empty string is now used for submit buttons without a value
(issue 1472 [https://github.com/scrapy/scrapy/issues/1472])

	Dict-like settings now have per-key priorities
(issue 1135 [https://github.com/scrapy/scrapy/issues/1135], issue 1149 [https://github.com/scrapy/scrapy/issues/1149] and issue 1586 [https://github.com/scrapy/scrapy/issues/1586]).

	Sending non-ASCII emails (issue 1662 [https://github.com/scrapy/scrapy/issues/1662])

	CloseSpider and SpiderState extensions now get disabled if no relevant
setting is set (issue 1723 [https://github.com/scrapy/scrapy/issues/1723], issue 1725 [https://github.com/scrapy/scrapy/issues/1725]).

	Added method ExecutionEngine.close (issue 1423 [https://github.com/scrapy/scrapy/issues/1423]).

	Added method CrawlerRunner.create_crawler (issue 1528 [https://github.com/scrapy/scrapy/issues/1528]).

	Scheduler priority queue can now be customized via
SCHEDULER_PRIORITY_QUEUE (issue 1822 [https://github.com/scrapy/scrapy/issues/1822]).

	.pps links are now ignored by default in link extractors (issue 1835 [https://github.com/scrapy/scrapy/issues/1835]).

	temporary data folder for FTP and S3 feed storages can be customized
using a new FEED_TEMPDIR setting (issue 1847 [https://github.com/scrapy/scrapy/issues/1847]).

	FilesPipeline and ImagesPipeline settings are now instance attributes
instead of class attributes, enabling spider-specific behaviors (issue 1891 [https://github.com/scrapy/scrapy/issues/1891]).

	JsonItemExporter now formats opening and closing square brackets
on their own line (first and last lines of output file) (issue 1950 [https://github.com/scrapy/scrapy/issues/1950]).

	If available, botocore is used for S3FeedStorage, S3DownloadHandler
and S3FilesStore (issue 1761 [https://github.com/scrapy/scrapy/issues/1761], issue 1883 [https://github.com/scrapy/scrapy/issues/1883]).

	Tons of documentation updates and related fixes (issue 1291 [https://github.com/scrapy/scrapy/issues/1291], issue 1302 [https://github.com/scrapy/scrapy/issues/1302],
issue 1335 [https://github.com/scrapy/scrapy/issues/1335], issue 1683 [https://github.com/scrapy/scrapy/issues/1683], issue 1660 [https://github.com/scrapy/scrapy/issues/1660], issue 1642 [https://github.com/scrapy/scrapy/issues/1642], issue 1721 [https://github.com/scrapy/scrapy/issues/1721],
issue 1727 [https://github.com/scrapy/scrapy/issues/1727], issue 1879 [https://github.com/scrapy/scrapy/issues/1879]).

	Other refactoring, optimizations and cleanup (issue 1476 [https://github.com/scrapy/scrapy/issues/1476], issue 1481 [https://github.com/scrapy/scrapy/issues/1481],
issue 1477 [https://github.com/scrapy/scrapy/issues/1477], issue 1315 [https://github.com/scrapy/scrapy/issues/1315], issue 1290 [https://github.com/scrapy/scrapy/issues/1290], issue 1750 [https://github.com/scrapy/scrapy/issues/1750], issue 1881 [https://github.com/scrapy/scrapy/issues/1881]).

Deprecations and Removals

	Added to_bytes and to_unicode, deprecated str_to_unicode and
unicode_to_str functions (issue 778 [https://github.com/scrapy/scrapy/issues/778]).

	binary_is_text is introduced, to replace use of isbinarytext
(but with inverse return value) (issue 1851 [https://github.com/scrapy/scrapy/issues/1851])

	The optional_features set has been removed (issue 1359 [https://github.com/scrapy/scrapy/issues/1359]).

	The --lsprof command line option has been removed (issue 1689 [https://github.com/scrapy/scrapy/issues/1689]).
Warning: backward incompatible, but doesn’t break user code.

	The following datatypes were deprecated (issue 1720 [https://github.com/scrapy/scrapy/issues/1720]):
	scrapy.utils.datatypes.MultiValueDictKeyError

	scrapy.utils.datatypes.MultiValueDict

	scrapy.utils.datatypes.SiteNode

	The previously bundled scrapy.xlib.pydispatch library was deprecated and
replaced by pydispatcher [https://pypi.python.org/pypi/PyDispatcher].

Relocations

	telnetconsole was relocated to extensions/ (issue 1524 [https://github.com/scrapy/scrapy/issues/1524]).
	Note: telnet is not enabled on Python 3
(https://github.com/scrapy/scrapy/pull/1524#issuecomment-146985595)

Bugfixes

	Scrapy does not retry requests that got a HTTP 400 Bad Request
response anymore (issue 1289 [https://github.com/scrapy/scrapy/issues/1289]). Warning: backwards incompatible!

	Support empty password for http_proxy config (issue 1274 [https://github.com/scrapy/scrapy/issues/1274]).

	Interpret application/x-json as TextResponse (issue 1333 [https://github.com/scrapy/scrapy/issues/1333]).

	Support link rel attribute with multiple values (issue 1201 [https://github.com/scrapy/scrapy/issues/1201]).

	Fixed scrapy.http.FormRequest.from_response when there is a <base>
tag (issue 1564 [https://github.com/scrapy/scrapy/issues/1564]).

	Fixed TEMPLATES_DIR handling (issue 1575 [https://github.com/scrapy/scrapy/issues/1575]).

	Various FormRequest fixes (issue 1595 [https://github.com/scrapy/scrapy/issues/1595], issue 1596 [https://github.com/scrapy/scrapy/issues/1596], issue 1597 [https://github.com/scrapy/scrapy/issues/1597]).

	Makes _monkeypatches more robust (issue 1634 [https://github.com/scrapy/scrapy/issues/1634]).

	Fixed bug on XMLItemExporter with non-string fields in
items (issue 1738 [https://github.com/scrapy/scrapy/issues/1738]).

	Fixed startproject command in OS X (issue 1635 [https://github.com/scrapy/scrapy/issues/1635]).

	Fixed PythonItemExporter and CSVExporter for non-string item
types (issue 1737 [https://github.com/scrapy/scrapy/issues/1737]).

	Various logging related fixes (issue 1294 [https://github.com/scrapy/scrapy/issues/1294], issue 1419 [https://github.com/scrapy/scrapy/issues/1419], issue 1263 [https://github.com/scrapy/scrapy/issues/1263],
issue 1624 [https://github.com/scrapy/scrapy/issues/1624], issue 1654 [https://github.com/scrapy/scrapy/issues/1654], issue 1722 [https://github.com/scrapy/scrapy/issues/1722], issue 1726 [https://github.com/scrapy/scrapy/issues/1726] and issue 1303 [https://github.com/scrapy/scrapy/issues/1303]).

	Fixed bug in utils.template.render_templatefile() (issue 1212 [https://github.com/scrapy/scrapy/issues/1212]).

	sitemaps extraction from robots.txt is now case-insensitive (issue 1902 [https://github.com/scrapy/scrapy/issues/1902]).

	HTTPS+CONNECT tunnels could get mixed up when using multiple proxies
to same remote host (issue 1912 [https://github.com/scrapy/scrapy/issues/1912]).

1.0.6 (2016-05-04)

	FIX: RetryMiddleware is now robust to non-standard HTTP status codes (issue 1857 [https://github.com/scrapy/scrapy/issues/1857])

	FIX: Filestorage HTTP cache was checking wrong modified time (issue 1875 [https://github.com/scrapy/scrapy/issues/1875])

	DOC: Support for Sphinx 1.4+ (issue 1893 [https://github.com/scrapy/scrapy/issues/1893])

	DOC: Consistency in selectors examples (issue 1869 [https://github.com/scrapy/scrapy/issues/1869])

1.0.5 (2016-02-04)

	FIX: [Backport] Ignore bogus links in LinkExtractors (fixes issue 907 [https://github.com/scrapy/scrapy/issues/907], commit 108195e [https://github.com/scrapy/scrapy/commit/108195e])

	TST: Changed buildbot makefile to use ‘pytest’ (commit 1f3d90a [https://github.com/scrapy/scrapy/commit/1f3d90a])

	DOC: Fixed typos in tutorial and media-pipeline (commit 808a9ea [https://github.com/scrapy/scrapy/commit/808a9ea] and commit 803bd87 [https://github.com/scrapy/scrapy/commit/803bd87])

	DOC: Add AjaxCrawlMiddleware to DOWNLOADER_MIDDLEWARES_BASE in settings docs (commit aa94121 [https://github.com/scrapy/scrapy/commit/aa94121])

1.0.4 (2015-12-30)

	Ignoring xlib/tx folder, depending on Twisted version. (commit 7dfa979 [https://github.com/scrapy/scrapy/commit/7dfa979])

	Run on new travis-ci infra (commit 6e42f0b [https://github.com/scrapy/scrapy/commit/6e42f0b])

	Spelling fixes (commit 823a1cc [https://github.com/scrapy/scrapy/commit/823a1cc])

	escape nodename in xmliter regex (commit da3c155 [https://github.com/scrapy/scrapy/commit/da3c155])

	test xml nodename with dots (commit 4418fc3 [https://github.com/scrapy/scrapy/commit/4418fc3])

	TST don’t use broken Pillow version in tests (commit a55078c [https://github.com/scrapy/scrapy/commit/a55078c])

	disable log on version command. closes #1426 (commit 86fc330 [https://github.com/scrapy/scrapy/commit/86fc330])

	disable log on startproject command (commit db4c9fe [https://github.com/scrapy/scrapy/commit/db4c9fe])

	Add PyPI download stats badge (commit df2b944 [https://github.com/scrapy/scrapy/commit/df2b944])

	don’t run tests twice on Travis if a PR is made from a scrapy/scrapy branch (commit a83ab41 [https://github.com/scrapy/scrapy/commit/a83ab41])

	Add Python 3 porting status badge to the README (commit 73ac80d [https://github.com/scrapy/scrapy/commit/73ac80d])

	fixed RFPDupeFilter persistence (commit 97d080e [https://github.com/scrapy/scrapy/commit/97d080e])

	TST a test to show that dupefilter persistence is not working (commit 97f2fb3 [https://github.com/scrapy/scrapy/commit/97f2fb3])

	explicit close file on file:// scheme handler (commit d9b4850 [https://github.com/scrapy/scrapy/commit/d9b4850])

	Disable dupefilter in shell (commit c0d0734 [https://github.com/scrapy/scrapy/commit/c0d0734])

	DOC: Add captions to toctrees which appear in sidebar (commit aa239ad [https://github.com/scrapy/scrapy/commit/aa239ad])

	DOC Removed pywin32 from install instructions as it’s already declared as dependency. (commit 10eb400 [https://github.com/scrapy/scrapy/commit/10eb400])

	Added installation notes about using Conda for Windows and other OSes. (commit 1c3600a [https://github.com/scrapy/scrapy/commit/1c3600a])

	Fixed minor grammar issues. (commit 7f4ddd5 [https://github.com/scrapy/scrapy/commit/7f4ddd5])

	fixed a typo in the documentation. (commit b71f677 [https://github.com/scrapy/scrapy/commit/b71f677])

	Version 1 now exists (commit 5456c0e [https://github.com/scrapy/scrapy/commit/5456c0e])

	fix another invalid xpath error (commit 0a1366e [https://github.com/scrapy/scrapy/commit/0a1366e])

	fix ValueError: Invalid XPath: //div/[id=”not-exists”]/text() on selectors.rst (commit ca8d60f [https://github.com/scrapy/scrapy/commit/ca8d60f])

	Typos corrections (commit 7067117 [https://github.com/scrapy/scrapy/commit/7067117])

	fix typos in downloader-middleware.rst and exceptions.rst, middlware -> middleware (commit 32f115c [https://github.com/scrapy/scrapy/commit/32f115c])

	Add note to ubuntu install section about debian compatibility (commit 23fda69 [https://github.com/scrapy/scrapy/commit/23fda69])

	Replace alternative OSX install workaround with virtualenv (commit 98b63ee [https://github.com/scrapy/scrapy/commit/98b63ee])

	Reference Homebrew’s homepage for installation instructions (commit 1925db1 [https://github.com/scrapy/scrapy/commit/1925db1])

	Add oldest supported tox version to contributing docs (commit 5d10d6d [https://github.com/scrapy/scrapy/commit/5d10d6d])

	Note in install docs about pip being already included in python>=2.7.9 (commit 85c980e [https://github.com/scrapy/scrapy/commit/85c980e])

	Add non-python dependencies to Ubuntu install section in the docs (commit fbd010d [https://github.com/scrapy/scrapy/commit/fbd010d])

	Add OS X installation section to docs (commit d8f4cba [https://github.com/scrapy/scrapy/commit/d8f4cba])

	DOC(ENH): specify path to rtd theme explicitly (commit de73b1a [https://github.com/scrapy/scrapy/commit/de73b1a])

	minor: scrapy.Spider docs grammar (commit 1ddcc7b [https://github.com/scrapy/scrapy/commit/1ddcc7b])

	Make common practices sample code match the comments (commit 1b85bcf [https://github.com/scrapy/scrapy/commit/1b85bcf])

	nextcall repetitive calls (heartbeats). (commit 55f7104 [https://github.com/scrapy/scrapy/commit/55f7104])

	Backport fix compatibility with Twisted 15.4.0 (commit b262411 [https://github.com/scrapy/scrapy/commit/b262411])

	pin pytest to 2.7.3 (commit a6535c2 [https://github.com/scrapy/scrapy/commit/a6535c2])

	Merge pull request #1512 from mgedmin/patch-1 (commit 8876111 [https://github.com/scrapy/scrapy/commit/8876111])

	Merge pull request #1513 from mgedmin/patch-2 (commit 5d4daf8 [https://github.com/scrapy/scrapy/commit/5d4daf8])

	Typo (commit f8d0682 [https://github.com/scrapy/scrapy/commit/f8d0682])

	Fix list formatting (commit 5f83a93 [https://github.com/scrapy/scrapy/commit/5f83a93])

	fix scrapy squeue tests after recent changes to queuelib (commit 3365c01 [https://github.com/scrapy/scrapy/commit/3365c01])

	Merge pull request #1475 from rweindl/patch-1 (commit 2d688cd [https://github.com/scrapy/scrapy/commit/2d688cd])

	Update tutorial.rst (commit fbc1f25 [https://github.com/scrapy/scrapy/commit/fbc1f25])

	Merge pull request #1449 from rhoekman/patch-1 (commit 7d6538c [https://github.com/scrapy/scrapy/commit/7d6538c])

	Small grammatical change (commit 8752294 [https://github.com/scrapy/scrapy/commit/8752294])

	Add openssl version to version command (commit 13c45ac [https://github.com/scrapy/scrapy/commit/13c45ac])

1.0.3 (2015-08-11)

	add service_identity to scrapy install_requires (commit cbc2501 [https://github.com/scrapy/scrapy/commit/cbc2501])

	Workaround for travis#296 (commit 66af9cd [https://github.com/scrapy/scrapy/commit/66af9cd])

1.0.2 (2015-08-06)

	Twisted 15.3.0 does not raises PicklingError serializing lambda functions (commit b04dd7d [https://github.com/scrapy/scrapy/commit/b04dd7d])

	Minor method name fix (commit 6f85c7f [https://github.com/scrapy/scrapy/commit/6f85c7f])

	minor: scrapy.Spider grammar and clarity (commit 9c9d2e0 [https://github.com/scrapy/scrapy/commit/9c9d2e0])

	Put a blurb about support channels in CONTRIBUTING (commit c63882b [https://github.com/scrapy/scrapy/commit/c63882b])

	Fixed typos (commit a9ae7b0 [https://github.com/scrapy/scrapy/commit/a9ae7b0])

	Fix doc reference. (commit 7c8a4fe [https://github.com/scrapy/scrapy/commit/7c8a4fe])

1.0.1 (2015-07-01)

	Unquote request path before passing to FTPClient, it already escape paths (commit cc00ad2 [https://github.com/scrapy/scrapy/commit/cc00ad2])

	include tests/ to source distribution in MANIFEST.in (commit eca227e [https://github.com/scrapy/scrapy/commit/eca227e])

	DOC Fix SelectJmes documentation (commit b8567bc [https://github.com/scrapy/scrapy/commit/b8567bc])

	DOC Bring Ubuntu and Archlinux outside of Windows subsection (commit 392233f [https://github.com/scrapy/scrapy/commit/392233f])

	DOC remove version suffix from ubuntu package (commit 5303c66 [https://github.com/scrapy/scrapy/commit/5303c66])

	DOC Update release date for 1.0 (commit c89fa29 [https://github.com/scrapy/scrapy/commit/c89fa29])

1.0.0 (2015-06-19)

You will find a lot of new features and bugfixes in this major release. Make
sure to check our updated overview to get a glance of
some of the changes, along with our brushed tutorial.

Support for returning dictionaries in spiders

Declaring and returning Scrapy Items is no longer necessary to collect the
scraped data from your spider, you can now return explicit dictionaries
instead.

Classic version

class MyItem(scrapy.Item):
 url = scrapy.Field()

class MySpider(scrapy.Spider):
 def parse(self, response):
 return MyItem(url=response.url)

New version

class MySpider(scrapy.Spider):
 def parse(self, response):
 return {'url': response.url}

Per-spider settings (GSoC 2014)

Last Google Summer of Code project accomplished an important redesign of the
mechanism used for populating settings, introducing explicit priorities to
override any given setting. As an extension of that goal, we included a new
level of priority for settings that act exclusively for a single spider,
allowing them to redefine project settings.

Start using it by defining a custom_settings
class variable in your spider:

class MySpider(scrapy.Spider):
 custom_settings = {
 "DOWNLOAD_DELAY": 5.0,
 "RETRY_ENABLED": False,
 }

Read more about settings population: Settings

Python Logging

Scrapy 1.0 has moved away from Twisted logging to support Python built in’s
as default logging system. We’re maintaining backward compatibility for most
of the old custom interface to call logging functions, but you’ll get
warnings to switch to the Python logging API entirely.

Old version

from scrapy import log
log.msg('MESSAGE', log.INFO)

New version

import logging
logging.info('MESSAGE')

Logging with spiders remains the same, but on top of the
log() method you’ll have access to a custom
logger created for the spider to issue log
events:

class MySpider(scrapy.Spider):
 def parse(self, response):
 self.logger.info('Response received')

Read more in the logging documentation: Logging

Crawler API refactoring (GSoC 2014)

Another milestone for last Google Summer of Code was a refactoring of the
internal API, seeking a simpler and easier usage. Check new core interface
in: Core API

A common situation where you will face these changes is while running Scrapy
from scripts. Here’s a quick example of how to run a Spider manually with the
new API:

from scrapy.crawler import CrawlerProcess

process = CrawlerProcess({
 'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'
})
process.crawl(MySpider)
process.start()

Bear in mind this feature is still under development and its API may change
until it reaches a stable status.

See more examples for scripts running Scrapy: Common Practices

Module Relocations

There’s been a large rearrangement of modules trying to improve the general
structure of Scrapy. Main changes were separating various subpackages into
new projects and dissolving both scrapy.contrib and scrapy.contrib_exp
into top level packages. Backward compatibility was kept among internal
relocations, while importing deprecated modules expect warnings indicating
their new place.

Full list of relocations

Outsourced packages

Note

These extensions went through some minor changes, e.g. some setting names
were changed. Please check the documentation in each new repository to
get familiar with the new usage.

	Old location
	New location

	scrapy.commands.deploy
	scrapyd-client [https://github.com/scrapy/scrapyd-client]
(See other alternatives here:
Deploying Spiders)

	scrapy.contrib.djangoitem
	scrapy-djangoitem [https://github.com/scrapy-plugins/scrapy-djangoitem]

	scrapy.webservice
	scrapy-jsonrpc [https://github.com/scrapy-plugins/scrapy-jsonrpc]

scrapy.contrib_exp and scrapy.contrib dissolutions

	Old location
	New location

	scrapy.contrib_exp.downloadermiddleware.decompression
	scrapy.downloadermiddlewares.decompression

	scrapy.contrib_exp.iterators
	scrapy.utils.iterators

	scrapy.contrib.downloadermiddleware
	scrapy.downloadermiddlewares

	scrapy.contrib.exporter
	scrapy.exporters

	scrapy.contrib.linkextractors
	scrapy.linkextractors

	scrapy.contrib.loader
	scrapy.loader

	scrapy.contrib.loader.processor
	scrapy.loader.processors

	scrapy.contrib.pipeline
	scrapy.pipelines

	scrapy.contrib.spidermiddleware
	scrapy.spidermiddlewares

	scrapy.contrib.spiders
	scrapy.spiders

	
	scrapy.contrib.closespider

	scrapy.contrib.corestats

	scrapy.contrib.debug

	scrapy.contrib.feedexport

	scrapy.contrib.httpcache

	scrapy.contrib.logstats

	scrapy.contrib.memdebug

	scrapy.contrib.memusage

	scrapy.contrib.spiderstate

	scrapy.contrib.statsmailer

	scrapy.contrib.throttle

	scrapy.extensions.*

Plural renames and Modules unification

	Old location
	New location

	scrapy.command
	scrapy.commands

	scrapy.dupefilter
	scrapy.dupefilters

	scrapy.linkextractor
	scrapy.linkextractors

	scrapy.spider
	scrapy.spiders

	scrapy.squeue
	scrapy.squeues

	scrapy.statscol
	scrapy.statscollectors

	scrapy.utils.decorator
	scrapy.utils.decorators

Class renames

	Old location
	New location

	scrapy.spidermanager.SpiderManager
	scrapy.spiderloader.SpiderLoader

Settings renames

	Old location
	New location

	SPIDER_MANAGER_CLASS
	SPIDER_LOADER_CLASS

Changelog

New Features and Enhancements

	Python logging (issue 1060 [https://github.com/scrapy/scrapy/issues/1060], issue 1235 [https://github.com/scrapy/scrapy/issues/1235], issue 1236 [https://github.com/scrapy/scrapy/issues/1236], issue 1240 [https://github.com/scrapy/scrapy/issues/1240],
issue 1259 [https://github.com/scrapy/scrapy/issues/1259], issue 1278 [https://github.com/scrapy/scrapy/issues/1278], issue 1286 [https://github.com/scrapy/scrapy/issues/1286])

	FEED_EXPORT_FIELDS option (issue 1159 [https://github.com/scrapy/scrapy/issues/1159], issue 1224 [https://github.com/scrapy/scrapy/issues/1224])

	Dns cache size and timeout options (issue 1132 [https://github.com/scrapy/scrapy/issues/1132])

	support namespace prefix in xmliter_lxml (issue 963 [https://github.com/scrapy/scrapy/issues/963])

	Reactor threadpool max size setting (issue 1123 [https://github.com/scrapy/scrapy/issues/1123])

	Allow spiders to return dicts. (issue 1081 [https://github.com/scrapy/scrapy/issues/1081])

	Add Response.urljoin() helper (issue 1086 [https://github.com/scrapy/scrapy/issues/1086])

	look in ~/.config/scrapy.cfg for user config (issue 1098 [https://github.com/scrapy/scrapy/issues/1098])

	handle TLS SNI (issue 1101 [https://github.com/scrapy/scrapy/issues/1101])

	Selectorlist extract first (issue 624 [https://github.com/scrapy/scrapy/issues/624], issue 1145 [https://github.com/scrapy/scrapy/issues/1145])

	Added JmesSelect (issue 1016 [https://github.com/scrapy/scrapy/issues/1016])

	add gzip compression to filesystem http cache backend (issue 1020 [https://github.com/scrapy/scrapy/issues/1020])

	CSS support in link extractors (issue 983 [https://github.com/scrapy/scrapy/issues/983])

	httpcache dont_cache meta #19 #689 (issue 821 [https://github.com/scrapy/scrapy/issues/821])

	add signal to be sent when request is dropped by the scheduler
(issue 961 [https://github.com/scrapy/scrapy/issues/961])

	avoid download large response (issue 946 [https://github.com/scrapy/scrapy/issues/946])

	Allow to specify the quotechar in CSVFeedSpider (issue 882 [https://github.com/scrapy/scrapy/issues/882])

	Add referer to “Spider error processing” log message (issue 795 [https://github.com/scrapy/scrapy/issues/795])

	process robots.txt once (issue 896 [https://github.com/scrapy/scrapy/issues/896])

	GSoC Per-spider settings (issue 854 [https://github.com/scrapy/scrapy/issues/854])

	Add project name validation (issue 817 [https://github.com/scrapy/scrapy/issues/817])

	GSoC API cleanup (issue 816 [https://github.com/scrapy/scrapy/issues/816], issue 1128 [https://github.com/scrapy/scrapy/issues/1128], issue 1147 [https://github.com/scrapy/scrapy/issues/1147],
issue 1148 [https://github.com/scrapy/scrapy/issues/1148], issue 1156 [https://github.com/scrapy/scrapy/issues/1156], issue 1185 [https://github.com/scrapy/scrapy/issues/1185], issue 1187 [https://github.com/scrapy/scrapy/issues/1187], issue 1258 [https://github.com/scrapy/scrapy/issues/1258],
issue 1268 [https://github.com/scrapy/scrapy/issues/1268], issue 1276 [https://github.com/scrapy/scrapy/issues/1276], issue 1285 [https://github.com/scrapy/scrapy/issues/1285], issue 1284 [https://github.com/scrapy/scrapy/issues/1284])

	Be more responsive with IO operations (issue 1074 [https://github.com/scrapy/scrapy/issues/1074] and issue 1075 [https://github.com/scrapy/scrapy/issues/1075])

	Do leveldb compaction for httpcache on closing (issue 1297 [https://github.com/scrapy/scrapy/issues/1297])

Deprecations and Removals

	Deprecate htmlparser link extractor (issue 1205 [https://github.com/scrapy/scrapy/issues/1205])

	remove deprecated code from FeedExporter (issue 1155 [https://github.com/scrapy/scrapy/issues/1155])

	a leftover for.15 compatibility (issue 925 [https://github.com/scrapy/scrapy/issues/925])

	drop support for CONCURRENT_REQUESTS_PER_SPIDER (issue 895 [https://github.com/scrapy/scrapy/issues/895])

	Drop old engine code (issue 911 [https://github.com/scrapy/scrapy/issues/911])

	Deprecate SgmlLinkExtractor (issue 777 [https://github.com/scrapy/scrapy/issues/777])

Relocations

	Move exporters/__init__.py to exporters.py (issue 1242 [https://github.com/scrapy/scrapy/issues/1242])

	Move base classes to their packages (issue 1218 [https://github.com/scrapy/scrapy/issues/1218], issue 1233 [https://github.com/scrapy/scrapy/issues/1233])

	Module relocation (issue 1181 [https://github.com/scrapy/scrapy/issues/1181], issue 1210 [https://github.com/scrapy/scrapy/issues/1210])

	rename SpiderManager to SpiderLoader (issue 1166 [https://github.com/scrapy/scrapy/issues/1166])

	Remove djangoitem (issue 1177 [https://github.com/scrapy/scrapy/issues/1177])

	remove scrapy deploy command (issue 1102 [https://github.com/scrapy/scrapy/issues/1102])

	dissolve contrib_exp (issue 1134 [https://github.com/scrapy/scrapy/issues/1134])

	Deleted bin folder from root, fixes #913 (issue 914 [https://github.com/scrapy/scrapy/issues/914])

	Remove jsonrpc based webservice (issue 859 [https://github.com/scrapy/scrapy/issues/859])

	Move Test cases under project root dir (issue 827 [https://github.com/scrapy/scrapy/issues/827], issue 841 [https://github.com/scrapy/scrapy/issues/841])

	Fix backward incompatibility for relocated paths in settings
(issue 1267 [https://github.com/scrapy/scrapy/issues/1267])

Documentation

	CrawlerProcess documentation (issue 1190 [https://github.com/scrapy/scrapy/issues/1190])

	Favoring web scraping over screen scraping in the descriptions
(issue 1188 [https://github.com/scrapy/scrapy/issues/1188])

	Some improvements for Scrapy tutorial (issue 1180 [https://github.com/scrapy/scrapy/issues/1180])

	Documenting Files Pipeline together with Images Pipeline (issue 1150 [https://github.com/scrapy/scrapy/issues/1150])

	deployment docs tweaks (issue 1164 [https://github.com/scrapy/scrapy/issues/1164])

	Added deployment section covering scrapyd-deploy and shub (issue 1124 [https://github.com/scrapy/scrapy/issues/1124])

	Adding more settings to project template (issue 1073 [https://github.com/scrapy/scrapy/issues/1073])

	some improvements to overview page (issue 1106 [https://github.com/scrapy/scrapy/issues/1106])

	Updated link in docs/topics/architecture.rst (issue 647 [https://github.com/scrapy/scrapy/issues/647])

	DOC reorder topics (issue 1022 [https://github.com/scrapy/scrapy/issues/1022])

	updating list of Request.meta special keys (issue 1071 [https://github.com/scrapy/scrapy/issues/1071])

	DOC document download_timeout (issue 898 [https://github.com/scrapy/scrapy/issues/898])

	DOC simplify extension docs (issue 893 [https://github.com/scrapy/scrapy/issues/893])

	Leaks docs (issue 894 [https://github.com/scrapy/scrapy/issues/894])

	DOC document from_crawler method for item pipelines (issue 904 [https://github.com/scrapy/scrapy/issues/904])

	Spider_error doesn’t support deferreds (issue 1292 [https://github.com/scrapy/scrapy/issues/1292])

	Corrections & Sphinx related fixes (issue 1220 [https://github.com/scrapy/scrapy/issues/1220], issue 1219 [https://github.com/scrapy/scrapy/issues/1219],
issue 1196 [https://github.com/scrapy/scrapy/issues/1196], issue 1172 [https://github.com/scrapy/scrapy/issues/1172], issue 1171 [https://github.com/scrapy/scrapy/issues/1171], issue 1169 [https://github.com/scrapy/scrapy/issues/1169], issue 1160 [https://github.com/scrapy/scrapy/issues/1160],
issue 1154 [https://github.com/scrapy/scrapy/issues/1154], issue 1127 [https://github.com/scrapy/scrapy/issues/1127], issue 1112 [https://github.com/scrapy/scrapy/issues/1112], issue 1105 [https://github.com/scrapy/scrapy/issues/1105], issue 1041 [https://github.com/scrapy/scrapy/issues/1041],
issue 1082 [https://github.com/scrapy/scrapy/issues/1082], issue 1033 [https://github.com/scrapy/scrapy/issues/1033], issue 944 [https://github.com/scrapy/scrapy/issues/944], issue 866 [https://github.com/scrapy/scrapy/issues/866], issue 864 [https://github.com/scrapy/scrapy/issues/864],
issue 796 [https://github.com/scrapy/scrapy/issues/796], issue 1260 [https://github.com/scrapy/scrapy/issues/1260], issue 1271 [https://github.com/scrapy/scrapy/issues/1271], issue 1293 [https://github.com/scrapy/scrapy/issues/1293], issue 1298 [https://github.com/scrapy/scrapy/issues/1298])

Bugfixes

	Item multi inheritance fix (issue 353 [https://github.com/scrapy/scrapy/issues/353], issue 1228 [https://github.com/scrapy/scrapy/issues/1228])

	ItemLoader.load_item: iterate over copy of fields (issue 722 [https://github.com/scrapy/scrapy/issues/722])

	Fix Unhandled error in Deferred (RobotsTxtMiddleware) (issue 1131 [https://github.com/scrapy/scrapy/issues/1131],
issue 1197 [https://github.com/scrapy/scrapy/issues/1197])

	Force to read DOWNLOAD_TIMEOUT as int (issue 954 [https://github.com/scrapy/scrapy/issues/954])

	scrapy.utils.misc.load_object should print full traceback (issue 902 [https://github.com/scrapy/scrapy/issues/902])

	Fix bug for ”.local” host name (issue 878 [https://github.com/scrapy/scrapy/issues/878])

	Fix for Enabled extensions, middlewares, pipelines info not printed
anymore (issue 879 [https://github.com/scrapy/scrapy/issues/879])

	fix dont_merge_cookies bad behaviour when set to false on meta
(issue 846 [https://github.com/scrapy/scrapy/issues/846])

Python 3 In Progress Support

	disable scrapy.telnet if twisted.conch is not available (issue 1161 [https://github.com/scrapy/scrapy/issues/1161])

	fix Python 3 syntax errors in ajaxcrawl.py (issue 1162 [https://github.com/scrapy/scrapy/issues/1162])

	more python3 compatibility changes for urllib (issue 1121 [https://github.com/scrapy/scrapy/issues/1121])

	assertItemsEqual was renamed to assertCountEqual in Python 3.
(issue 1070 [https://github.com/scrapy/scrapy/issues/1070])

	Import unittest.mock if available. (issue 1066 [https://github.com/scrapy/scrapy/issues/1066])

	updated deprecated cgi.parse_qsl to use six’s parse_qsl (issue 909 [https://github.com/scrapy/scrapy/issues/909])

	Prevent Python 3 port regressions (issue 830 [https://github.com/scrapy/scrapy/issues/830])

	PY3: use MutableMapping for python 3 (issue 810 [https://github.com/scrapy/scrapy/issues/810])

	PY3: use six.BytesIO and six.moves.cStringIO (issue 803 [https://github.com/scrapy/scrapy/issues/803])

	PY3: fix xmlrpclib and email imports (issue 801 [https://github.com/scrapy/scrapy/issues/801])

	PY3: use six for robotparser and urlparse (issue 800 [https://github.com/scrapy/scrapy/issues/800])

	PY3: use six.iterkeys, six.iteritems, and tempfile (issue 799 [https://github.com/scrapy/scrapy/issues/799])

	PY3: fix has_key and use six.moves.configparser (issue 798 [https://github.com/scrapy/scrapy/issues/798])

	PY3: use six.moves.cPickle (issue 797 [https://github.com/scrapy/scrapy/issues/797])

	PY3 make it possible to run some tests in Python3 (issue 776 [https://github.com/scrapy/scrapy/issues/776])

Tests

	remove unnecessary lines from py3-ignores (issue 1243 [https://github.com/scrapy/scrapy/issues/1243])

	Fix remaining warnings from pytest while collecting tests (issue 1206 [https://github.com/scrapy/scrapy/issues/1206])

	Add docs build to travis (issue 1234 [https://github.com/scrapy/scrapy/issues/1234])

	TST don’t collect tests from deprecated modules. (issue 1165 [https://github.com/scrapy/scrapy/issues/1165])

	install service_identity package in tests to prevent warnings
(issue 1168 [https://github.com/scrapy/scrapy/issues/1168])

	Fix deprecated settings API in tests (issue 1152 [https://github.com/scrapy/scrapy/issues/1152])

	Add test for webclient with POST method and no body given (issue 1089 [https://github.com/scrapy/scrapy/issues/1089])

	py3-ignores.txt supports comments (issue 1044 [https://github.com/scrapy/scrapy/issues/1044])

	modernize some of the asserts (issue 835 [https://github.com/scrapy/scrapy/issues/835])

	selector.__repr__ test (issue 779 [https://github.com/scrapy/scrapy/issues/779])

Code refactoring

	CSVFeedSpider cleanup: use iterate_spider_output (issue 1079 [https://github.com/scrapy/scrapy/issues/1079])

	remove unnecessary check from scrapy.utils.spider.iter_spider_output
(issue 1078 [https://github.com/scrapy/scrapy/issues/1078])

	Pydispatch pep8 (issue 992 [https://github.com/scrapy/scrapy/issues/992])

	Removed unused ‘load=False’ parameter from walk_modules() (issue 871 [https://github.com/scrapy/scrapy/issues/871])

	For consistency, use job_dir helper in SpiderState extension.
(issue 805 [https://github.com/scrapy/scrapy/issues/805])

	rename “sflo” local variables to less cryptic “log_observer” (issue 775 [https://github.com/scrapy/scrapy/issues/775])

0.24.6 (2015-04-20)

	encode invalid xpath with unicode_escape under PY2 (commit 07cb3e5 [https://github.com/scrapy/scrapy/commit/07cb3e5])

	fix IPython shell scope issue and load IPython user config (commit 2c8e573 [https://github.com/scrapy/scrapy/commit/2c8e573])

	Fix small typo in the docs (commit d694019 [https://github.com/scrapy/scrapy/commit/d694019])

	Fix small typo (commit f92fa83 [https://github.com/scrapy/scrapy/commit/f92fa83])

	Converted sel.xpath() calls to response.xpath() in Extracting the data (commit c2c6d15 [https://github.com/scrapy/scrapy/commit/c2c6d15])

0.24.5 (2015-02-25)

	Support new _getEndpoint Agent signatures on Twisted 15.0.0 (commit 540b9bc [https://github.com/scrapy/scrapy/commit/540b9bc])

	DOC a couple more references are fixed (commit b4c454b [https://github.com/scrapy/scrapy/commit/b4c454b])

	DOC fix a reference (commit e3c1260 [https://github.com/scrapy/scrapy/commit/e3c1260])

	t.i.b.ThreadedResolver is now a new-style class (commit 9e13f42 [https://github.com/scrapy/scrapy/commit/9e13f42])

	S3DownloadHandler: fix auth for requests with quoted paths/query params (commit cdb9a0b [https://github.com/scrapy/scrapy/commit/cdb9a0b])

	fixed the variable types in mailsender documentation (commit bb3a848 [https://github.com/scrapy/scrapy/commit/bb3a848])

	Reset items_scraped instead of item_count (commit edb07a4 [https://github.com/scrapy/scrapy/commit/edb07a4])

	Tentative attention message about what document to read for contributions (commit 7ee6f7a [https://github.com/scrapy/scrapy/commit/7ee6f7a])

	mitmproxy 0.10.1 needs netlib 0.10.1 too (commit 874fcdd [https://github.com/scrapy/scrapy/commit/874fcdd])

	pin mitmproxy 0.10.1 as >0.11 does not work with tests (commit c6b21f0 [https://github.com/scrapy/scrapy/commit/c6b21f0])

	Test the parse command locally instead of against an external url (commit c3a6628 [https://github.com/scrapy/scrapy/commit/c3a6628])

	Patches Twisted issue while closing the connection pool on HTTPDownloadHandler (commit d0bf957 [https://github.com/scrapy/scrapy/commit/d0bf957])

	Updates documentation on dynamic item classes. (commit eeb589a [https://github.com/scrapy/scrapy/commit/eeb589a])

	Merge pull request #943 from Lazar-T/patch-3 (commit 5fdab02 [https://github.com/scrapy/scrapy/commit/5fdab02])

	typo (commit b0ae199 [https://github.com/scrapy/scrapy/commit/b0ae199])

	pywin32 is required by Twisted. closes #937 (commit 5cb0cfb [https://github.com/scrapy/scrapy/commit/5cb0cfb])

	Update install.rst (commit 781286b [https://github.com/scrapy/scrapy/commit/781286b])

	Merge pull request #928 from Lazar-T/patch-1 (commit b415d04 [https://github.com/scrapy/scrapy/commit/b415d04])

	comma instead of fullstop (commit 627b9ba [https://github.com/scrapy/scrapy/commit/627b9ba])

	Merge pull request #885 from jsma/patch-1 (commit de909ad [https://github.com/scrapy/scrapy/commit/de909ad])

	Update request-response.rst (commit 3f3263d [https://github.com/scrapy/scrapy/commit/3f3263d])

	SgmlLinkExtractor - fix for parsing <area> tag with Unicode present (commit 49b40f0 [https://github.com/scrapy/scrapy/commit/49b40f0])

0.24.4 (2014-08-09)

	pem file is used by mockserver and required by scrapy bench (commit 5eddc68 [https://github.com/scrapy/scrapy/commit/5eddc68])

	scrapy bench needs scrapy.tests* (commit d6cb999 [https://github.com/scrapy/scrapy/commit/d6cb999])

0.24.3 (2014-08-09)

	no need to waste travis-ci time on py3 for 0.24 (commit 8e080c1 [https://github.com/scrapy/scrapy/commit/8e080c1])

	Update installation docs (commit 1d0c096 [https://github.com/scrapy/scrapy/commit/1d0c096])

	There is a trove classifier for Scrapy framework! (commit 4c701d7 [https://github.com/scrapy/scrapy/commit/4c701d7])

	update other places where w3lib version is mentioned (commit d109c13 [https://github.com/scrapy/scrapy/commit/d109c13])

	Update w3lib requirement to 1.8.0 (commit 39d2ce5 [https://github.com/scrapy/scrapy/commit/39d2ce5])

	Use w3lib.html.replace_entities() (remove_entities() is deprecated) (commit 180d3ad [https://github.com/scrapy/scrapy/commit/180d3ad])

	set zip_safe=False (commit a51ee8b [https://github.com/scrapy/scrapy/commit/a51ee8b])

	do not ship tests package (commit ee3b371 [https://github.com/scrapy/scrapy/commit/ee3b371])

	scrapy.bat is not needed anymore (commit c3861cf [https://github.com/scrapy/scrapy/commit/c3861cf])

	Modernize setup.py (commit 362e322 [https://github.com/scrapy/scrapy/commit/362e322])

	headers can not handle non-string values (commit 94a5c65 [https://github.com/scrapy/scrapy/commit/94a5c65])

	fix ftp test cases (commit a274a7f [https://github.com/scrapy/scrapy/commit/a274a7f])

	The sum up of travis-ci builds are taking like 50min to complete (commit ae1e2cc [https://github.com/scrapy/scrapy/commit/ae1e2cc])

	Update shell.rst typo (commit e49c96a [https://github.com/scrapy/scrapy/commit/e49c96a])

	removes weird indentation in the shell results (commit 1ca489d [https://github.com/scrapy/scrapy/commit/1ca489d])

	improved explanations, clarified blog post as source, added link for XPath string functions in the spec (commit 65c8f05 [https://github.com/scrapy/scrapy/commit/65c8f05])

	renamed UserTimeoutError and ServerTimeouterror #583 (commit 037f6ab [https://github.com/scrapy/scrapy/commit/037f6ab])

	adding some xpath tips to selectors docs (commit 2d103e0 [https://github.com/scrapy/scrapy/commit/2d103e0])

	fix tests to account for https://github.com/scrapy/w3lib/pull/23 (commit f8d366a [https://github.com/scrapy/scrapy/commit/f8d366a])

	get_func_args maximum recursion fix #728 (commit 81344ea [https://github.com/scrapy/scrapy/commit/81344ea])

	Updated input/ouput processor example according to #560. (commit f7c4ea8 [https://github.com/scrapy/scrapy/commit/f7c4ea8])

	Fixed Python syntax in tutorial. (commit db59ed9 [https://github.com/scrapy/scrapy/commit/db59ed9])

	Add test case for tunneling proxy (commit f090260 [https://github.com/scrapy/scrapy/commit/f090260])

	Bugfix for leaking Proxy-Authorization header to remote host when using tunneling (commit d8793af [https://github.com/scrapy/scrapy/commit/d8793af])

	Extract links from XHTML documents with MIME-Type “application/xml” (commit ed1f376 [https://github.com/scrapy/scrapy/commit/ed1f376])

	Merge pull request #793 from roysc/patch-1 (commit 91a1106 [https://github.com/scrapy/scrapy/commit/91a1106])

	Fix typo in commands.rst (commit 743e1e2 [https://github.com/scrapy/scrapy/commit/743e1e2])

	better testcase for settings.overrides.setdefault (commit e22daaf [https://github.com/scrapy/scrapy/commit/e22daaf])

	Using CRLF as line marker according to http 1.1 definition (commit 5ec430b [https://github.com/scrapy/scrapy/commit/5ec430b])

0.24.2 (2014-07-08)

	Use a mutable mapping to proxy deprecated settings.overrides and settings.defaults attribute (commit e5e8133 [https://github.com/scrapy/scrapy/commit/e5e8133])

	there is not support for python3 yet (commit 3cd6146 [https://github.com/scrapy/scrapy/commit/3cd6146])

	Update python compatible version set to debian packages (commit fa5d76b [https://github.com/scrapy/scrapy/commit/fa5d76b])

	DOC fix formatting in release notes (commit c6a9e20 [https://github.com/scrapy/scrapy/commit/c6a9e20])

0.24.1 (2014-06-27)

	Fix deprecated CrawlerSettings and increase backwards compatibility with
.defaults attribute (commit 8e3f20a [https://github.com/scrapy/scrapy/commit/8e3f20a])

0.24.0 (2014-06-26)

Enhancements

	Improve Scrapy top-level namespace (issue 494 [https://github.com/scrapy/scrapy/issues/494], issue 684 [https://github.com/scrapy/scrapy/issues/684])

	Add selector shortcuts to responses (issue 554 [https://github.com/scrapy/scrapy/issues/554], issue 690 [https://github.com/scrapy/scrapy/issues/690])

	Add new lxml based LinkExtractor to replace unmantained SgmlLinkExtractor
(issue 559 [https://github.com/scrapy/scrapy/issues/559], issue 761 [https://github.com/scrapy/scrapy/issues/761], issue 763 [https://github.com/scrapy/scrapy/issues/763])

	Cleanup settings API - part of per-spider settings GSoC project (issue 737 [https://github.com/scrapy/scrapy/issues/737])

	Add UTF8 encoding header to templates (issue 688 [https://github.com/scrapy/scrapy/issues/688], issue 762 [https://github.com/scrapy/scrapy/issues/762])

	Telnet console now binds to 127.0.0.1 by default (issue 699 [https://github.com/scrapy/scrapy/issues/699])

	Update debian/ubuntu install instructions (issue 509 [https://github.com/scrapy/scrapy/issues/509], issue 549 [https://github.com/scrapy/scrapy/issues/549])

	Disable smart strings in lxml XPath evaluations (issue 535 [https://github.com/scrapy/scrapy/issues/535])

	Restore filesystem based cache as default for http
cache middleware (issue 541 [https://github.com/scrapy/scrapy/issues/541], issue 500 [https://github.com/scrapy/scrapy/issues/500], issue 571 [https://github.com/scrapy/scrapy/issues/571])

	Expose current crawler in Scrapy shell (issue 557 [https://github.com/scrapy/scrapy/issues/557])

	Improve testsuite comparing CSV and XML exporters (issue 570 [https://github.com/scrapy/scrapy/issues/570])

	New offsite/filtered and offsite/domains stats (issue 566 [https://github.com/scrapy/scrapy/issues/566])

	Support process_links as generator in CrawlSpider (issue 555 [https://github.com/scrapy/scrapy/issues/555])

	Verbose logging and new stats counters for DupeFilter (issue 553 [https://github.com/scrapy/scrapy/issues/553])

	Add a mimetype parameter to MailSender.send() (issue 602 [https://github.com/scrapy/scrapy/issues/602])

	Generalize file pipeline log messages (issue 622 [https://github.com/scrapy/scrapy/issues/622])

	Replace unencodeable codepoints with html entities in SGMLLinkExtractor (issue 565 [https://github.com/scrapy/scrapy/issues/565])

	Converted SEP documents to rst format (issue 629 [https://github.com/scrapy/scrapy/issues/629], issue 630 [https://github.com/scrapy/scrapy/issues/630],
issue 638 [https://github.com/scrapy/scrapy/issues/638], issue 632 [https://github.com/scrapy/scrapy/issues/632], issue 636 [https://github.com/scrapy/scrapy/issues/636], issue 640 [https://github.com/scrapy/scrapy/issues/640], issue 635 [https://github.com/scrapy/scrapy/issues/635],
issue 634 [https://github.com/scrapy/scrapy/issues/634], issue 639 [https://github.com/scrapy/scrapy/issues/639], issue 637 [https://github.com/scrapy/scrapy/issues/637], issue 631 [https://github.com/scrapy/scrapy/issues/631], issue 633 [https://github.com/scrapy/scrapy/issues/633],
issue 641 [https://github.com/scrapy/scrapy/issues/641], issue 642 [https://github.com/scrapy/scrapy/issues/642])

	Tests and docs for clickdata’s nr index in FormRequest (issue 646 [https://github.com/scrapy/scrapy/issues/646], issue 645 [https://github.com/scrapy/scrapy/issues/645])

	Allow to disable a downloader handler just like any other component (issue 650 [https://github.com/scrapy/scrapy/issues/650])

	Log when a request is discarded after too many redirections (issue 654 [https://github.com/scrapy/scrapy/issues/654])

	Log error responses if they are not handled by spider callbacks
(issue 612 [https://github.com/scrapy/scrapy/issues/612], issue 656 [https://github.com/scrapy/scrapy/issues/656])

	Add content-type check to http compression mw (issue 193 [https://github.com/scrapy/scrapy/issues/193], issue 660 [https://github.com/scrapy/scrapy/issues/660])

	Run pypy tests using latest pypi from ppa (issue 674 [https://github.com/scrapy/scrapy/issues/674])

	Run test suite using pytest instead of trial (issue 679 [https://github.com/scrapy/scrapy/issues/679])

	Build docs and check for dead links in tox environment (issue 687 [https://github.com/scrapy/scrapy/issues/687])

	Make scrapy.version_info a tuple of integers (issue 681 [https://github.com/scrapy/scrapy/issues/681], issue 692 [https://github.com/scrapy/scrapy/issues/692])

	Infer exporter’s output format from filename extensions
(issue 546 [https://github.com/scrapy/scrapy/issues/546], issue 659 [https://github.com/scrapy/scrapy/issues/659], issue 760 [https://github.com/scrapy/scrapy/issues/760])

	Support case-insensitive domains in url_is_from_any_domain() (issue 693 [https://github.com/scrapy/scrapy/issues/693])

	Remove pep8 warnings in project and spider templates (issue 698 [https://github.com/scrapy/scrapy/issues/698])

	Tests and docs for request_fingerprint function (issue 597 [https://github.com/scrapy/scrapy/issues/597])

	Update SEP-19 for GSoC project per-spider settings (issue 705 [https://github.com/scrapy/scrapy/issues/705])

	Set exit code to non-zero when contracts fails (issue 727 [https://github.com/scrapy/scrapy/issues/727])

	Add a setting to control what class is instanciated as Downloader component
(issue 738 [https://github.com/scrapy/scrapy/issues/738])

	Pass response in item_dropped signal (issue 724 [https://github.com/scrapy/scrapy/issues/724])

	Improve scrapy check contracts command (issue 733 [https://github.com/scrapy/scrapy/issues/733], issue 752 [https://github.com/scrapy/scrapy/issues/752])

	Document spider.closed() shortcut (issue 719 [https://github.com/scrapy/scrapy/issues/719])

	Document request_scheduled signal (issue 746 [https://github.com/scrapy/scrapy/issues/746])

	Add a note about reporting security issues (issue 697 [https://github.com/scrapy/scrapy/issues/697])

	Add LevelDB http cache storage backend (issue 626 [https://github.com/scrapy/scrapy/issues/626], issue 500 [https://github.com/scrapy/scrapy/issues/500])

	Sort spider list output of scrapy list command (issue 742 [https://github.com/scrapy/scrapy/issues/742])

	Multiple documentation enhancemens and fixes
(issue 575 [https://github.com/scrapy/scrapy/issues/575], issue 587 [https://github.com/scrapy/scrapy/issues/587], issue 590 [https://github.com/scrapy/scrapy/issues/590], issue 596 [https://github.com/scrapy/scrapy/issues/596], issue 610 [https://github.com/scrapy/scrapy/issues/610],
issue 617 [https://github.com/scrapy/scrapy/issues/617], issue 618 [https://github.com/scrapy/scrapy/issues/618], issue 627 [https://github.com/scrapy/scrapy/issues/627], issue 613 [https://github.com/scrapy/scrapy/issues/613], issue 643 [https://github.com/scrapy/scrapy/issues/643],
issue 654 [https://github.com/scrapy/scrapy/issues/654], issue 675 [https://github.com/scrapy/scrapy/issues/675], issue 663 [https://github.com/scrapy/scrapy/issues/663], issue 711 [https://github.com/scrapy/scrapy/issues/711], issue 714 [https://github.com/scrapy/scrapy/issues/714])

Bugfixes

	Encode unicode URL value when creating Links in RegexLinkExtractor (issue 561 [https://github.com/scrapy/scrapy/issues/561])

	Ignore None values in ItemLoader processors (issue 556 [https://github.com/scrapy/scrapy/issues/556])

	Fix link text when there is an inner tag in SGMLLinkExtractor and
HtmlParserLinkExtractor (issue 485 [https://github.com/scrapy/scrapy/issues/485], issue 574 [https://github.com/scrapy/scrapy/issues/574])

	Fix wrong checks on subclassing of deprecated classes
(issue 581 [https://github.com/scrapy/scrapy/issues/581], issue 584 [https://github.com/scrapy/scrapy/issues/584])

	Handle errors caused by inspect.stack() failures (issue 582 [https://github.com/scrapy/scrapy/issues/582])

	Fix a reference to unexistent engine attribute (issue 593 [https://github.com/scrapy/scrapy/issues/593], issue 594 [https://github.com/scrapy/scrapy/issues/594])

	Fix dynamic itemclass example usage of type() (issue 603 [https://github.com/scrapy/scrapy/issues/603])

	Use lucasdemarchi/codespell to fix typos (issue 628 [https://github.com/scrapy/scrapy/issues/628])

	Fix default value of attrs argument in SgmlLinkExtractor to be tuple (issue 661 [https://github.com/scrapy/scrapy/issues/661])

	Fix XXE flaw in sitemap reader (issue 676 [https://github.com/scrapy/scrapy/issues/676])

	Fix engine to support filtered start requests (issue 707 [https://github.com/scrapy/scrapy/issues/707])

	Fix offsite middleware case on urls with no hostnames (issue 745 [https://github.com/scrapy/scrapy/issues/745])

	Testsuite doesn’t require PIL anymore (issue 585 [https://github.com/scrapy/scrapy/issues/585])

0.22.2 (released 2014-02-14)

	fix a reference to unexistent engine.slots. closes #593 (commit 13c099a [https://github.com/scrapy/scrapy/commit/13c099a])

	downloaderMW doc typo (spiderMW doc copy remnant) (commit 8ae11bf [https://github.com/scrapy/scrapy/commit/8ae11bf])

	Correct typos (commit 1346037 [https://github.com/scrapy/scrapy/commit/1346037])

0.22.1 (released 2014-02-08)

	localhost666 can resolve under certain circumstances (commit 2ec2279 [https://github.com/scrapy/scrapy/commit/2ec2279])

	test inspect.stack failure (commit cc3eda3 [https://github.com/scrapy/scrapy/commit/cc3eda3])

	Handle cases when inspect.stack() fails (commit 8cb44f9 [https://github.com/scrapy/scrapy/commit/8cb44f9])

	Fix wrong checks on subclassing of deprecated classes. closes #581 (commit 46d98d6 [https://github.com/scrapy/scrapy/commit/46d98d6])

	Docs: 4-space indent for final spider example (commit 13846de [https://github.com/scrapy/scrapy/commit/13846de])

	Fix HtmlParserLinkExtractor and tests after #485 merge (commit 368a946 [https://github.com/scrapy/scrapy/commit/368a946])

	BaseSgmlLinkExtractor: Fixed the missing space when the link has an inner tag (commit b566388 [https://github.com/scrapy/scrapy/commit/b566388])

	BaseSgmlLinkExtractor: Added unit test of a link with an inner tag (commit c1cb418 [https://github.com/scrapy/scrapy/commit/c1cb418])

	BaseSgmlLinkExtractor: Fixed unknown_endtag() so that it only set current_link=None when the end tag match the opening tag (commit 7e4d627 [https://github.com/scrapy/scrapy/commit/7e4d627])

	Fix tests for Travis-CI build (commit 76c7e20 [https://github.com/scrapy/scrapy/commit/76c7e20])

	replace unencodeable codepoints with html entities. fixes #562 and #285 (commit 5f87b17 [https://github.com/scrapy/scrapy/commit/5f87b17])

	RegexLinkExtractor: encode URL unicode value when creating Links (commit d0ee545 [https://github.com/scrapy/scrapy/commit/d0ee545])

	Updated the tutorial crawl output with latest output. (commit 8da65de [https://github.com/scrapy/scrapy/commit/8da65de])

	Updated shell docs with the crawler reference and fixed the actual shell output. (commit 875b9ab [https://github.com/scrapy/scrapy/commit/875b9ab])

	PEP8 minor edits. (commit f89efaf [https://github.com/scrapy/scrapy/commit/f89efaf])

	Expose current crawler in the scrapy shell. (commit 5349cec [https://github.com/scrapy/scrapy/commit/5349cec])

	Unused re import and PEP8 minor edits. (commit 387f414 [https://github.com/scrapy/scrapy/commit/387f414])

	Ignore None’s values when using the ItemLoader. (commit 0632546 [https://github.com/scrapy/scrapy/commit/0632546])

	DOC Fixed HTTPCACHE_STORAGE typo in the default value which is now Filesystem instead Dbm. (commit cde9a8c [https://github.com/scrapy/scrapy/commit/cde9a8c])

	show ubuntu setup instructions as literal code (commit fb5c9c5 [https://github.com/scrapy/scrapy/commit/fb5c9c5])

	Update Ubuntu installation instructions (commit 70fb105 [https://github.com/scrapy/scrapy/commit/70fb105])

	Merge pull request #550 from stray-leone/patch-1 (commit 6f70b6a [https://github.com/scrapy/scrapy/commit/6f70b6a])

	modify the version of scrapy ubuntu package (commit 725900d [https://github.com/scrapy/scrapy/commit/725900d])

	fix 0.22.0 release date (commit af0219a [https://github.com/scrapy/scrapy/commit/af0219a])

	fix typos in news.rst and remove (not released yet) header (commit b7f58f4 [https://github.com/scrapy/scrapy/commit/b7f58f4])

0.22.0 (released 2014-01-17)

Enhancements

	[Backwards incompatible] Switched HTTPCacheMiddleware backend to filesystem (issue 541 [https://github.com/scrapy/scrapy/issues/541])
To restore old backend set HTTPCACHE_STORAGE to scrapy.contrib.httpcache.DbmCacheStorage

	Proxy https:// urls using CONNECT method (issue 392 [https://github.com/scrapy/scrapy/issues/392], issue 397 [https://github.com/scrapy/scrapy/issues/397])

	Add a middleware to crawl ajax crawleable pages as defined by google (issue 343 [https://github.com/scrapy/scrapy/issues/343])

	Rename scrapy.spider.BaseSpider to scrapy.spider.Spider (issue 510 [https://github.com/scrapy/scrapy/issues/510], issue 519 [https://github.com/scrapy/scrapy/issues/519])

	Selectors register EXSLT namespaces by default (issue 472 [https://github.com/scrapy/scrapy/issues/472])

	Unify item loaders similar to selectors renaming (issue 461 [https://github.com/scrapy/scrapy/issues/461])

	Make RFPDupeFilter class easily subclassable (issue 533 [https://github.com/scrapy/scrapy/issues/533])

	Improve test coverage and forthcoming Python 3 support (issue 525 [https://github.com/scrapy/scrapy/issues/525])

	Promote startup info on settings and middleware to INFO level (issue 520 [https://github.com/scrapy/scrapy/issues/520])

	Support partials in get_func_args util (issue 506 [https://github.com/scrapy/scrapy/issues/506], issue:504)

	Allow running indiviual tests via tox (issue 503 [https://github.com/scrapy/scrapy/issues/503])

	Update extensions ignored by link extractors (issue 498 [https://github.com/scrapy/scrapy/issues/498])

	Add middleware methods to get files/images/thumbs paths (issue 490 [https://github.com/scrapy/scrapy/issues/490])

	Improve offsite middleware tests (issue 478 [https://github.com/scrapy/scrapy/issues/478])

	Add a way to skip default Referer header set by RefererMiddleware (issue 475 [https://github.com/scrapy/scrapy/issues/475])

	Do not send x-gzip in default Accept-Encoding header (issue 469 [https://github.com/scrapy/scrapy/issues/469])

	Support defining http error handling using settings (issue 466 [https://github.com/scrapy/scrapy/issues/466])

	Use modern python idioms wherever you find legacies (issue 497 [https://github.com/scrapy/scrapy/issues/497])

	Improve and correct documentation
(issue 527 [https://github.com/scrapy/scrapy/issues/527], issue 524 [https://github.com/scrapy/scrapy/issues/524], issue 521 [https://github.com/scrapy/scrapy/issues/521], issue 517 [https://github.com/scrapy/scrapy/issues/517], issue 512 [https://github.com/scrapy/scrapy/issues/512], issue 505 [https://github.com/scrapy/scrapy/issues/505],
issue 502 [https://github.com/scrapy/scrapy/issues/502], issue 489 [https://github.com/scrapy/scrapy/issues/489], issue 465 [https://github.com/scrapy/scrapy/issues/465], issue 460 [https://github.com/scrapy/scrapy/issues/460], issue 425 [https://github.com/scrapy/scrapy/issues/425], issue 536 [https://github.com/scrapy/scrapy/issues/536])

Fixes

	Update Selector class imports in CrawlSpider template (issue 484 [https://github.com/scrapy/scrapy/issues/484])

	Fix unexistent reference to engine.slots (issue 464 [https://github.com/scrapy/scrapy/issues/464])

	Do not try to call body_as_unicode() on a non-TextResponse instance (issue 462 [https://github.com/scrapy/scrapy/issues/462])

	Warn when subclassing XPathItemLoader, previously it only warned on
instantiation. (issue 523 [https://github.com/scrapy/scrapy/issues/523])

	Warn when subclassing XPathSelector, previously it only warned on
instantiation. (issue 537 [https://github.com/scrapy/scrapy/issues/537])

	Multiple fixes to memory stats (issue 531 [https://github.com/scrapy/scrapy/issues/531], issue 530 [https://github.com/scrapy/scrapy/issues/530], issue 529 [https://github.com/scrapy/scrapy/issues/529])

	Fix overriding url in FormRequest.from_response() (issue 507 [https://github.com/scrapy/scrapy/issues/507])

	Fix tests runner under pip 1.5 (issue 513 [https://github.com/scrapy/scrapy/issues/513])

	Fix logging error when spider name is unicode (issue 479 [https://github.com/scrapy/scrapy/issues/479])

0.20.2 (released 2013-12-09)

	Update CrawlSpider Template with Selector changes (commit 6d1457d [https://github.com/scrapy/scrapy/commit/6d1457d])

	fix method name in tutorial. closes GH-480 (commit b4fc359 [https://github.com/scrapy/scrapy/commit/b4fc359]

0.20.1 (released 2013-11-28)

	include_package_data is required to build wheels from published sources (commit 5ba1ad5 [https://github.com/scrapy/scrapy/commit/5ba1ad5])

	process_parallel was leaking the failures on its internal deferreds. closes #458 (commit 419a780 [https://github.com/scrapy/scrapy/commit/419a780])

0.20.0 (released 2013-11-08)

Enhancements

	New Selector’s API including CSS selectors (issue 395 [https://github.com/scrapy/scrapy/issues/395] and issue 426 [https://github.com/scrapy/scrapy/issues/426]),

	Request/Response url/body attributes are now immutable
(modifying them had been deprecated for a long time)

	ITEM_PIPELINES is now defined as a dict (instead of a list)

	Sitemap spider can fetch alternate URLs (issue 360 [https://github.com/scrapy/scrapy/issues/360])

	Selector.remove_namespaces() now remove namespaces from element’s attributes. (issue 416 [https://github.com/scrapy/scrapy/issues/416])

	Paved the road for Python 3.3+ (issue 435 [https://github.com/scrapy/scrapy/issues/435], issue 436 [https://github.com/scrapy/scrapy/issues/436], issue 431 [https://github.com/scrapy/scrapy/issues/431], issue 452 [https://github.com/scrapy/scrapy/issues/452])

	New item exporter using native python types with nesting support (issue 366 [https://github.com/scrapy/scrapy/issues/366])

	Tune HTTP1.1 pool size so it matches concurrency defined by settings (commit b43b5f575 [https://github.com/scrapy/scrapy/commit/b43b5f575])

	scrapy.mail.MailSender now can connect over TLS or upgrade using STARTTLS (issue 327 [https://github.com/scrapy/scrapy/issues/327])

	New FilesPipeline with functionality factored out from ImagesPipeline (issue 370 [https://github.com/scrapy/scrapy/issues/370], issue 409 [https://github.com/scrapy/scrapy/issues/409])

	Recommend Pillow instead of PIL for image handling (issue 317 [https://github.com/scrapy/scrapy/issues/317])

	Added debian packages for Ubuntu quantal and raring (commit 86230c0 [https://github.com/scrapy/scrapy/commit/86230c0])

	Mock server (used for tests) can listen for HTTPS requests (issue 410 [https://github.com/scrapy/scrapy/issues/410])

	Remove multi spider support from multiple core components
(issue 422 [https://github.com/scrapy/scrapy/issues/422], issue 421 [https://github.com/scrapy/scrapy/issues/421], issue 420 [https://github.com/scrapy/scrapy/issues/420], issue 419 [https://github.com/scrapy/scrapy/issues/419], issue 423 [https://github.com/scrapy/scrapy/issues/423], issue 418 [https://github.com/scrapy/scrapy/issues/418])

	Travis-CI now tests Scrapy changes against development versions of w3lib and queuelib python packages.

	Add pypy 2.1 to continuous integration tests (commit ecfa7431 [https://github.com/scrapy/scrapy/commit/ecfa7431])

	Pylinted, pep8 and removed old-style exceptions from source (issue 430 [https://github.com/scrapy/scrapy/issues/430], issue 432 [https://github.com/scrapy/scrapy/issues/432])

	Use importlib for parametric imports (issue 445 [https://github.com/scrapy/scrapy/issues/445])

	Handle a regression introduced in Python 2.7.5 that affects XmlItemExporter (issue 372 [https://github.com/scrapy/scrapy/issues/372])

	Bugfix crawling shutdown on SIGINT (issue 450 [https://github.com/scrapy/scrapy/issues/450])

	Do not submit reset type inputs in FormRequest.from_response (commit b326b87 [https://github.com/scrapy/scrapy/commit/b326b87])

	Do not silence download errors when request errback raises an exception (commit 684cfc0 [https://github.com/scrapy/scrapy/commit/684cfc0])

Bugfixes

	Fix tests under Django 1.6 (commit b6bed44c [https://github.com/scrapy/scrapy/commit/b6bed44c])

	Lot of bugfixes to retry middleware under disconnections using HTTP 1.1 download handler

	Fix inconsistencies among Twisted releases (issue 406 [https://github.com/scrapy/scrapy/issues/406])

	Fix scrapy shell bugs (issue 418 [https://github.com/scrapy/scrapy/issues/418], issue 407 [https://github.com/scrapy/scrapy/issues/407])

	Fix invalid variable name in setup.py (issue 429 [https://github.com/scrapy/scrapy/issues/429])

	Fix tutorial references (issue 387 [https://github.com/scrapy/scrapy/issues/387])

	Improve request-response docs (issue 391 [https://github.com/scrapy/scrapy/issues/391])

	Improve best practices docs (issue 399 [https://github.com/scrapy/scrapy/issues/399], issue 400 [https://github.com/scrapy/scrapy/issues/400], issue 401 [https://github.com/scrapy/scrapy/issues/401], issue 402 [https://github.com/scrapy/scrapy/issues/402])

	Improve django integration docs (issue 404 [https://github.com/scrapy/scrapy/issues/404])

	Document bindaddress request meta (commit 37c24e01d7 [https://github.com/scrapy/scrapy/commit/37c24e01d7])

	Improve Request class documentation (issue 226 [https://github.com/scrapy/scrapy/issues/226])

Other

	Dropped Python 2.6 support (issue 448 [https://github.com/scrapy/scrapy/issues/448])

	Add cssselect [https://github.com/SimonSapin/cssselect] python package as install dependency

	Drop libxml2 and multi selector’s backend support, lxml [http://lxml.de/] is required from now on.

	Minimum Twisted version increased to 10.0.0, dropped Twisted 8.0 support.

	Running test suite now requires mock python library (issue 390 [https://github.com/scrapy/scrapy/issues/390])

Thanks

Thanks to everyone who contribute to this release!

List of contributors sorted by number of commits:

69 Daniel Graña <dangra@...>
37 Pablo Hoffman <pablo@...>
13 Mikhail Korobov <kmike84@...>
 9 Alex Cepoi <alex.cepoi@...>
 9 alexanderlukanin13 <alexander.lukanin.13@...>
 8 Rolando Espinoza La fuente <darkrho@...>
 8 Lukasz Biedrycki <lukasz.biedrycki@...>
 6 Nicolas Ramirez <nramirez.uy@...>
 3 Paul Tremberth <paul.tremberth@...>
 2 Martin Olveyra <molveyra@...>
 2 Stefan <misc@...>
 2 Rolando Espinoza <darkrho@...>
 2 Loren Davie <loren@...>
 2 irgmedeiros <irgmedeiros@...>
 1 Stefan Koch <taikano@...>
 1 Stefan <cct@...>
 1 scraperdragon <dragon@...>
 1 Kumara Tharmalingam <ktharmal@...>
 1 Francesco Piccinno <stack.box@...>
 1 Marcos Campal <duendex@...>
 1 Dragon Dave <dragon@...>
 1 Capi Etheriel <barraponto@...>
 1 cacovsky <amarquesferraz@...>
 1 Berend Iwema <berend@...>

0.18.4 (released 2013-10-10)

	IPython refuses to update the namespace. fix #396 (commit 3d32c4f [https://github.com/scrapy/scrapy/commit/3d32c4f])

	Fix AlreadyCalledError replacing a request in shell command. closes #407 (commit b1d8919 [https://github.com/scrapy/scrapy/commit/b1d8919])

	Fix start_requests laziness and early hangs (commit 89faf52 [https://github.com/scrapy/scrapy/commit/89faf52])

0.18.3 (released 2013-10-03)

	fix regression on lazy evaluation of start requests (commit 12693a5 [https://github.com/scrapy/scrapy/commit/12693a5])

	forms: do not submit reset inputs (commit e429f63 [https://github.com/scrapy/scrapy/commit/e429f63])

	increase unittest timeouts to decrease travis false positive failures (commit 912202e [https://github.com/scrapy/scrapy/commit/912202e])

	backport master fixes to json exporter (commit cfc2d46 [https://github.com/scrapy/scrapy/commit/cfc2d46])

	Fix permission and set umask before generating sdist tarball (commit 06149e0 [https://github.com/scrapy/scrapy/commit/06149e0])

0.18.2 (released 2013-09-03)

	Backport scrapy check command fixes and backward compatible multi
crawler process(issue 339 [https://github.com/scrapy/scrapy/issues/339])

0.18.1 (released 2013-08-27)

	remove extra import added by cherry picked changes (commit d20304e [https://github.com/scrapy/scrapy/commit/d20304e])

	fix crawling tests under twisted pre 11.0.0 (commit 1994f38 [https://github.com/scrapy/scrapy/commit/1994f38])

	py26 can not format zero length fields {} (commit abf756f [https://github.com/scrapy/scrapy/commit/abf756f])

	test PotentiaDataLoss errors on unbound responses (commit b15470d [https://github.com/scrapy/scrapy/commit/b15470d])

	Treat responses without content-length or Transfer-Encoding as good responses (commit c4bf324 [https://github.com/scrapy/scrapy/commit/c4bf324])

	do no include ResponseFailed if http11 handler is not enabled (commit 6cbe684 [https://github.com/scrapy/scrapy/commit/6cbe684])

	New HTTP client wraps connection losts in ResponseFailed exception. fix #373 (commit 1a20bba [https://github.com/scrapy/scrapy/commit/1a20bba])

	limit travis-ci build matrix (commit 3b01bb8 [https://github.com/scrapy/scrapy/commit/3b01bb8])

	Merge pull request #375 from peterarenot/patch-1 (commit fa766d7 [https://github.com/scrapy/scrapy/commit/fa766d7])

	Fixed so it refers to the correct folder (commit 3283809 [https://github.com/scrapy/scrapy/commit/3283809])

	added quantal & raring to support ubuntu releases (commit 1411923 [https://github.com/scrapy/scrapy/commit/1411923])

	fix retry middleware which didn’t retry certain connection errors after the upgrade to http1 client, closes GH-373 (commit bb35ed0 [https://github.com/scrapy/scrapy/commit/bb35ed0])

	fix XmlItemExporter in Python 2.7.4 and 2.7.5 (commit de3e451 [https://github.com/scrapy/scrapy/commit/de3e451])

	minor updates to 0.18 release notes (commit c45e5f1 [https://github.com/scrapy/scrapy/commit/c45e5f1])

	fix contributters list format (commit 0b60031 [https://github.com/scrapy/scrapy/commit/0b60031])

0.18.0 (released 2013-08-09)

	Lot of improvements to testsuite run using Tox, including a way to test on pypi

	Handle GET parameters for AJAX crawleable urls (commit 3fe2a32 [https://github.com/scrapy/scrapy/commit/3fe2a32])

	Use lxml recover option to parse sitemaps (issue 347 [https://github.com/scrapy/scrapy/issues/347])

	Bugfix cookie merging by hostname and not by netloc (issue 352 [https://github.com/scrapy/scrapy/issues/352])

	Support disabling HttpCompressionMiddleware using a flag setting (issue 359 [https://github.com/scrapy/scrapy/issues/359])

	Support xml namespaces using iternodes parser in XMLFeedSpider (issue 12 [https://github.com/scrapy/scrapy/issues/12])

	Support dont_cache request meta flag (issue 19 [https://github.com/scrapy/scrapy/issues/19])

	Bugfix scrapy.utils.gz.gunzip broken by changes in python 2.7.4 (commit 4dc76e [https://github.com/scrapy/scrapy/commit/4dc76e])

	Bugfix url encoding on SgmlLinkExtractor (issue 24 [https://github.com/scrapy/scrapy/issues/24])

	Bugfix TakeFirst processor shouldn’t discard zero (0) value (issue 59 [https://github.com/scrapy/scrapy/issues/59])

	Support nested items in xml exporter (issue 66 [https://github.com/scrapy/scrapy/issues/66])

	Improve cookies handling performance (issue 77 [https://github.com/scrapy/scrapy/issues/77])

	Log dupe filtered requests once (issue 105 [https://github.com/scrapy/scrapy/issues/105])

	Split redirection middleware into status and meta based middlewares (issue 78 [https://github.com/scrapy/scrapy/issues/78])

	Use HTTP1.1 as default downloader handler (issue 109 [https://github.com/scrapy/scrapy/issues/109] and issue 318 [https://github.com/scrapy/scrapy/issues/318])

	Support xpath form selection on FormRequest.from_response (issue 185 [https://github.com/scrapy/scrapy/issues/185])

	Bugfix unicode decoding error on SgmlLinkExtractor (issue 199 [https://github.com/scrapy/scrapy/issues/199])

	Bugfix signal dispatching on pypi interpreter (issue 205 [https://github.com/scrapy/scrapy/issues/205])

	Improve request delay and concurrency handling (issue 206 [https://github.com/scrapy/scrapy/issues/206])

	Add RFC2616 cache policy to HttpCacheMiddleware (issue 212 [https://github.com/scrapy/scrapy/issues/212])

	Allow customization of messages logged by engine (issue 214 [https://github.com/scrapy/scrapy/issues/214])

	Multiples improvements to DjangoItem (issue 217 [https://github.com/scrapy/scrapy/issues/217], issue 218 [https://github.com/scrapy/scrapy/issues/218], issue 221 [https://github.com/scrapy/scrapy/issues/221])

	Extend Scrapy commands using setuptools entry points (issue 260 [https://github.com/scrapy/scrapy/issues/260])

	Allow spider allowed_domains value to be set/tuple (issue 261 [https://github.com/scrapy/scrapy/issues/261])

	Support settings.getdict (issue 269 [https://github.com/scrapy/scrapy/issues/269])

	Simplify internal scrapy.core.scraper slot handling (issue 271 [https://github.com/scrapy/scrapy/issues/271])

	Added Item.copy (issue 290 [https://github.com/scrapy/scrapy/issues/290])

	Collect idle downloader slots (issue 297 [https://github.com/scrapy/scrapy/issues/297])

	Add ftp:// scheme downloader handler (issue 329 [https://github.com/scrapy/scrapy/issues/329])

	Added downloader benchmark webserver and spider tools Benchmarking

	Moved persistent (on disk) queues to a separate project (queuelib [https://github.com/scrapy/queuelib]) which scrapy now depends on

	Add scrapy commands using external libraries (issue 260 [https://github.com/scrapy/scrapy/issues/260])

	Added --pdb option to scrapy command line tool

	Added XPathSelector.remove_namespaces() which allows to remove all namespaces from XML documents for convenience (to work with namespace-less XPaths). Documented in Selectors.

	Several improvements to spider contracts

	New default middleware named MetaRefreshMiddldeware that handles meta-refresh html tag redirections,

	MetaRefreshMiddldeware and RedirectMiddleware have different priorities to address #62

	added from_crawler method to spiders

	added system tests with mock server

	more improvements to Mac OS compatibility (thanks Alex Cepoi)

	several more cleanups to singletons and multi-spider support (thanks Nicolas Ramirez)

	support custom download slots

	added –spider option to “shell” command.

	log overridden settings when scrapy starts

Thanks to everyone who contribute to this release. Here is a list of
contributors sorted by number of commits:

130 Pablo Hoffman <pablo@...>
 97 Daniel Graña <dangra@...>
 20 Nicolás Ramírez <nramirez.uy@...>
 13 Mikhail Korobov <kmike84@...>
 12 Pedro Faustino <pedrobandim@...>
 11 Steven Almeroth <sroth77@...>
 5 Rolando Espinoza La fuente <darkrho@...>
 4 Michal Danilak <mimino.coder@...>
 4 Alex Cepoi <alex.cepoi@...>
 4 Alexandr N Zamaraev (aka tonal) <tonal@...>
 3 paul <paul.tremberth@...>
 3 Martin Olveyra <molveyra@...>
 3 Jordi Llonch <llonchj@...>
 3 arijitchakraborty <myself.arijit@...>
 2 Shane Evans <shane.evans@...>
 2 joehillen <joehillen@...>
 2 Hart <HartSimha@...>
 2 Dan <ellisd23@...>
 1 Zuhao Wan <wanzuhao@...>
 1 whodatninja <blake@...>
 1 vkrest <v.krestiannykov@...>
 1 tpeng <pengtaoo@...>
 1 Tom Mortimer-Jones <tom@...>
 1 Rocio Aramberri <roschegel@...>
 1 Pedro <pedro@...>
 1 notsobad <wangxiaohugg@...>
 1 Natan L <kuyanatan.nlao@...>
 1 Mark Grey <mark.grey@...>
 1 Luan <luanpab@...>
 1 Libor Nenadál <libor.nenadal@...>
 1 Juan M Uys <opyate@...>
 1 Jonas Brunsgaard <jonas.brunsgaard@...>
 1 Ilya Baryshev <baryshev@...>
 1 Hasnain Lakhani <m.hasnain.lakhani@...>
 1 Emanuel Schorsch <emschorsch@...>
 1 Chris Tilden <chris.tilden@...>
 1 Capi Etheriel <barraponto@...>
 1 cacovsky <amarquesferraz@...>
 1 Berend Iwema <berend@...>

0.16.5 (released 2013-05-30)

	obey request method when scrapy deploy is redirected to a new endpoint (commit 8c4fcee [https://github.com/scrapy/scrapy/commit/8c4fcee])

	fix inaccurate downloader middleware documentation. refs #280 (commit 40667cb [https://github.com/scrapy/scrapy/commit/40667cb])

	doc: remove links to diveintopython.org, which is no longer available. closes #246 (commit bd58bfa [https://github.com/scrapy/scrapy/commit/bd58bfa])

	Find form nodes in invalid html5 documents (commit e3d6945 [https://github.com/scrapy/scrapy/commit/e3d6945])

	Fix typo labeling attrs type bool instead of list (commit a274276 [https://github.com/scrapy/scrapy/commit/a274276])

0.16.4 (released 2013-01-23)

	fixes spelling errors in documentation (commit 6d2b3aa [https://github.com/scrapy/scrapy/commit/6d2b3aa])

	add doc about disabling an extension. refs #132 (commit c90de33 [https://github.com/scrapy/scrapy/commit/c90de33])

	Fixed error message formatting. log.err() doesn’t support cool formatting and when error occurred, the message was: “ERROR: Error processing %(item)s” (commit c16150c [https://github.com/scrapy/scrapy/commit/c16150c])

	lint and improve images pipeline error logging (commit 56b45fc [https://github.com/scrapy/scrapy/commit/56b45fc])

	fixed doc typos (commit 243be84 [https://github.com/scrapy/scrapy/commit/243be84])

	add documentation topics: Broad Crawls & Common Practies (commit 1fbb715 [https://github.com/scrapy/scrapy/commit/1fbb715])

	fix bug in scrapy parse command when spider is not specified explicitly. closes #209 (commit c72e682 [https://github.com/scrapy/scrapy/commit/c72e682])

	Update docs/topics/commands.rst (commit 28eac7a [https://github.com/scrapy/scrapy/commit/28eac7a])

0.16.3 (released 2012-12-07)

	Remove concurrency limitation when using download delays and still ensure inter-request delays are enforced (commit 487b9b5 [https://github.com/scrapy/scrapy/commit/487b9b5])

	add error details when image pipeline fails (commit 8232569 [https://github.com/scrapy/scrapy/commit/8232569])

	improve mac os compatibility (commit 8dcf8aa [https://github.com/scrapy/scrapy/commit/8dcf8aa])

	setup.py: use README.rst to populate long_description (commit 7b5310d [https://github.com/scrapy/scrapy/commit/7b5310d])

	doc: removed obsolete references to ClientForm (commit 80f9bb6 [https://github.com/scrapy/scrapy/commit/80f9bb6])

	correct docs for default storage backend (commit 2aa491b [https://github.com/scrapy/scrapy/commit/2aa491b])

	doc: removed broken proxyhub link from FAQ (commit bdf61c4 [https://github.com/scrapy/scrapy/commit/bdf61c4])

	Fixed docs typo in SpiderOpenCloseLogging example (commit 7184094 [https://github.com/scrapy/scrapy/commit/7184094])

0.16.2 (released 2012-11-09)

	scrapy contracts: python2.6 compat (commit a4a9199 [https://github.com/scrapy/scrapy/commit/a4a9199])

	scrapy contracts verbose option (commit ec41673 [https://github.com/scrapy/scrapy/commit/ec41673])

	proper unittest-like output for scrapy contracts (commit 86635e4 [https://github.com/scrapy/scrapy/commit/86635e4])

	added open_in_browser to debugging doc (commit c9b690d [https://github.com/scrapy/scrapy/commit/c9b690d])

	removed reference to global scrapy stats from settings doc (commit dd55067 [https://github.com/scrapy/scrapy/commit/dd55067])

	Fix SpiderState bug in Windows platforms (commit 58998f4 [https://github.com/scrapy/scrapy/commit/58998f4])

0.16.1 (released 2012-10-26)

	fixed LogStats extension, which got broken after a wrong merge before the 0.16 release (commit 8c780fd [https://github.com/scrapy/scrapy/commit/8c780fd])

	better backwards compatibility for scrapy.conf.settings (commit 3403089 [https://github.com/scrapy/scrapy/commit/3403089])

	extended documentation on how to access crawler stats from extensions (commit c4da0b5 [https://github.com/scrapy/scrapy/commit/c4da0b5])

	removed .hgtags (no longer needed now that scrapy uses git) (commit d52c188 [https://github.com/scrapy/scrapy/commit/d52c188])

	fix dashes under rst headers (commit fa4f7f9 [https://github.com/scrapy/scrapy/commit/fa4f7f9])

	set release date for 0.16.0 in news (commit e292246 [https://github.com/scrapy/scrapy/commit/e292246])

0.16.0 (released 2012-10-18)

Scrapy changes:

	added Spiders Contracts, a mechanism for testing spiders in a formal/reproducible way

	added options -o and -t to the runspider command

	documented AutoThrottle extension and added to extensions installed by default. You still need to enable it with AUTOTHROTTLE_ENABLED

	major Stats Collection refactoring: removed separation of global/per-spider stats, removed stats-related signals (stats_spider_opened, etc). Stats are much simpler now, backwards compatibility is kept on the Stats Collector API and signals.

	added process_start_requests() method to spider middlewares

	dropped Signals singleton. Signals should now be accesed through the Crawler.signals attribute. See the signals documentation for more info.

	dropped Signals singleton. Signals should now be accesed through the Crawler.signals attribute. See the signals documentation for more info.

	dropped Stats Collector singleton. Stats can now be accessed through the Crawler.stats attribute. See the stats collection documentation for more info.

	documented Core API

	lxml is now the default selectors backend instead of libxml2

	ported FormRequest.from_response() to use lxml [http://lxml.de/] instead of ClientForm [http://wwwsearch.sourceforge.net/old/ClientForm/]

	removed modules: scrapy.xlib.BeautifulSoup and scrapy.xlib.ClientForm

	SitemapSpider: added support for sitemap urls ending in .xml and .xml.gz, even if they advertise a wrong content type (commit 10ed28b [https://github.com/scrapy/scrapy/commit/10ed28b])

	StackTraceDump extension: also dump trackref live references (commit fe2ce93 [https://github.com/scrapy/scrapy/commit/fe2ce93])

	nested items now fully supported in JSON and JSONLines exporters

	added cookiejar Request meta key to support multiple cookie sessions per spider

	decoupled encoding detection code to w3lib.encoding [https://github.com/scrapy/w3lib/blob/master/w3lib/encoding.py], and ported Scrapy code to use that module

	dropped support for Python 2.5. See https://blog.scrapinghub.com/2012/02/27/scrapy-0-15-dropping-support-for-python-2-5/

	dropped support for Twisted 2.5

	added REFERER_ENABLED setting, to control referer middleware

	changed default user agent to: Scrapy/VERSION (+http://scrapy.org)

	removed (undocumented) HTMLImageLinkExtractor class from scrapy.contrib.linkextractors.image

	removed per-spider settings (to be replaced by instantiating multiple crawler objects)

	USER_AGENT spider attribute will no longer work, use user_agent attribute instead

	DOWNLOAD_TIMEOUT spider attribute will no longer work, use download_timeout attribute instead

	removed ENCODING_ALIASES setting, as encoding auto-detection has been moved to the w3lib [https://github.com/scrapy/w3lib] library

	promoted DjangoItem to main contrib

	LogFormatter method now return dicts(instead of strings) to support lazy formatting (issue 164 [https://github.com/scrapy/scrapy/issues/164], commit dcef7b0 [https://github.com/scrapy/scrapy/commit/dcef7b0])

	downloader handlers (DOWNLOAD_HANDLERS setting) now receive settings as the first argument of the constructor

	replaced memory usage acounting with (more portable) resource [https://docs.python.org/2/library/resource.html] module, removed scrapy.utils.memory module

	removed signal: scrapy.mail.mail_sent

	removed TRACK_REFS setting, now trackrefs is always enabled

	DBM is now the default storage backend for HTTP cache middleware

	number of log messages (per level) are now tracked through Scrapy stats (stat name: log_count/LEVEL)

	number received responses are now tracked through Scrapy stats (stat name: response_received_count)

	removed scrapy.log.started attribute

0.14.4

	added precise to supported ubuntu distros (commit b7e46df [https://github.com/scrapy/scrapy/commit/b7e46df])

	fixed bug in json-rpc webservice reported in https://groups.google.com/forum/#!topic/scrapy-users/qgVBmFybNAQ/discussion. also removed no longer supported ‘run’ command from extras/scrapy-ws.py (commit 340fbdb [https://github.com/scrapy/scrapy/commit/340fbdb])

	meta tag attributes for content-type http equiv can be in any order. #123 (commit 0cb68af [https://github.com/scrapy/scrapy/commit/0cb68af])

	replace “import Image” by more standard “from PIL import Image”. closes #88 (commit 4d17048 [https://github.com/scrapy/scrapy/commit/4d17048])

	return trial status as bin/runtests.sh exit value. #118 (commit b7b2e7f [https://github.com/scrapy/scrapy/commit/b7b2e7f])

0.14.3

	forgot to include pydispatch license. #118 (commit fd85f9c [https://github.com/scrapy/scrapy/commit/fd85f9c])

	include egg files used by testsuite in source distribution. #118 (commit c897793 [https://github.com/scrapy/scrapy/commit/c897793])

	update docstring in project template to avoid confusion with genspider command, which may be considered as an advanced feature. refs #107 (commit 2548dcc [https://github.com/scrapy/scrapy/commit/2548dcc])

	added note to docs/topics/firebug.rst about google directory being shut down (commit 668e352 [https://github.com/scrapy/scrapy/commit/668e352])

	dont discard slot when empty, just save in another dict in order to recycle if needed again. (commit 8e9f607 [https://github.com/scrapy/scrapy/commit/8e9f607])

	do not fail handling unicode xpaths in libxml2 backed selectors (commit b830e95 [https://github.com/scrapy/scrapy/commit/b830e95])

	fixed minor mistake in Request objects documentation (commit bf3c9ee [https://github.com/scrapy/scrapy/commit/bf3c9ee])

	fixed minor defect in link extractors documentation (commit ba14f38 [https://github.com/scrapy/scrapy/commit/ba14f38])

	removed some obsolete remaining code related to sqlite support in scrapy (commit 0665175 [https://github.com/scrapy/scrapy/commit/0665175])

0.14.2

	move buffer pointing to start of file before computing checksum. refs #92 (commit 6a5bef2 [https://github.com/scrapy/scrapy/commit/6a5bef2])

	Compute image checksum before persisting images. closes #92 (commit 9817df1 [https://github.com/scrapy/scrapy/commit/9817df1])

	remove leaking references in cached failures (commit 673a120 [https://github.com/scrapy/scrapy/commit/673a120])

	fixed bug in MemoryUsage extension: get_engine_status() takes exactly 1 argument (0 given) (commit 11133e9 [https://github.com/scrapy/scrapy/commit/11133e9])

	fixed struct.error on http compression middleware. closes #87 (commit 1423140 [https://github.com/scrapy/scrapy/commit/1423140])

	ajax crawling wasn’t expanding for unicode urls (commit 0de3fb4 [https://github.com/scrapy/scrapy/commit/0de3fb4])

	Catch start_requests iterator errors. refs #83 (commit 454a21d [https://github.com/scrapy/scrapy/commit/454a21d])

	Speed-up libxml2 XPathSelector (commit 2fbd662 [https://github.com/scrapy/scrapy/commit/2fbd662])

	updated versioning doc according to recent changes (commit 0a070f5 [https://github.com/scrapy/scrapy/commit/0a070f5])

	scrapyd: fixed documentation link (commit 2b4e4c3 [https://github.com/scrapy/scrapy/commit/2b4e4c3])

	extras/makedeb.py: no longer obtaining version from git (commit caffe0e [https://github.com/scrapy/scrapy/commit/caffe0e])

0.14.1

	extras/makedeb.py: no longer obtaining version from git (commit caffe0e [https://github.com/scrapy/scrapy/commit/caffe0e])

	bumped version to 0.14.1 (commit 6cb9e1c [https://github.com/scrapy/scrapy/commit/6cb9e1c])

	fixed reference to tutorial directory (commit 4b86bd6 [https://github.com/scrapy/scrapy/commit/4b86bd6])

	doc: removed duplicated callback argument from Request.replace() (commit 1aeccdd [https://github.com/scrapy/scrapy/commit/1aeccdd])

	fixed formatting of scrapyd doc (commit 8bf19e6 [https://github.com/scrapy/scrapy/commit/8bf19e6])

	Dump stacks for all running threads and fix engine status dumped by StackTraceDump extension (commit 14a8e6e [https://github.com/scrapy/scrapy/commit/14a8e6e])

	added comment about why we disable ssl on boto images upload (commit 5223575 [https://github.com/scrapy/scrapy/commit/5223575])

	SSL handshaking hangs when doing too many parallel connections to S3 (commit 63d583d [https://github.com/scrapy/scrapy/commit/63d583d])

	change tutorial to follow changes on dmoz site (commit bcb3198 [https://github.com/scrapy/scrapy/commit/bcb3198])

	Avoid _disconnectedDeferred AttributeError exception in Twisted>=11.1.0 (commit 98f3f87 [https://github.com/scrapy/scrapy/commit/98f3f87])

	allow spider to set autothrottle max concurrency (commit 175a4b5 [https://github.com/scrapy/scrapy/commit/175a4b5])

0.14

New features and settings

	Support for AJAX crawleable urls [https://developers.google.com/webmasters/ajax-crawling/docs/getting-started?csw=1]

	New persistent scheduler that stores requests on disk, allowing to suspend and resume crawls (r2737 [http://hg.scrapy.org/scrapy/changeset/2737])

	added -o option to scrapy crawl, a shortcut for dumping scraped items into a file (or standard output using -)

	Added support for passing custom settings to Scrapyd schedule.json api (r2779 [http://hg.scrapy.org/scrapy/changeset/2779], r2783 [http://hg.scrapy.org/scrapy/changeset/2783])

	New ChunkedTransferMiddleware (enabled by default) to support chunked transfer encoding [https://en.wikipedia.org/wiki/Chunked_transfer_encoding] (r2769 [http://hg.scrapy.org/scrapy/changeset/2769])

	Add boto 2.0 support for S3 downloader handler (r2763 [http://hg.scrapy.org/scrapy/changeset/2763])

	Added marshal [https://docs.python.org/2/library/marshal.html] to formats supported by feed exports (r2744 [http://hg.scrapy.org/scrapy/changeset/2744])

	In request errbacks, offending requests are now received in failure.request attribute (r2738 [http://hg.scrapy.org/scrapy/changeset/2738])

	
	Big downloader refactoring to support per domain/ip concurrency limits (r2732 [http://hg.scrapy.org/scrapy/changeset/2732])

	
	
	CONCURRENT_REQUESTS_PER_SPIDER setting has been deprecated and replaced by:

	
	CONCURRENT_REQUESTS, CONCURRENT_REQUESTS_PER_DOMAIN, CONCURRENT_REQUESTS_PER_IP

	check the documentation for more details

	Added builtin caching DNS resolver (r2728 [http://hg.scrapy.org/scrapy/changeset/2728])

	Moved Amazon AWS-related components/extensions (SQS spider queue, SimpleDB stats collector) to a separate project: [scaws](https://github.com/scrapinghub/scaws) (r2706 [http://hg.scrapy.org/scrapy/changeset/2706], r2714 [http://hg.scrapy.org/scrapy/changeset/2714])

	Moved spider queues to scrapyd: scrapy.spiderqueue -> scrapyd.spiderqueue (r2708 [http://hg.scrapy.org/scrapy/changeset/2708])

	Moved sqlite utils to scrapyd: scrapy.utils.sqlite -> scrapyd.sqlite (r2781 [http://hg.scrapy.org/scrapy/changeset/2781])

	Real support for returning iterators on start_requests() method. The iterator is now consumed during the crawl when the spider is getting idle (r2704 [http://hg.scrapy.org/scrapy/changeset/2704])

	Added REDIRECT_ENABLED setting to quickly enable/disable the redirect middleware (r2697 [http://hg.scrapy.org/scrapy/changeset/2697])

	Added RETRY_ENABLED setting to quickly enable/disable the retry middleware (r2694 [http://hg.scrapy.org/scrapy/changeset/2694])

	Added CloseSpider exception to manually close spiders (r2691 [http://hg.scrapy.org/scrapy/changeset/2691])

	Improved encoding detection by adding support for HTML5 meta charset declaration (r2690 [http://hg.scrapy.org/scrapy/changeset/2690])

	Refactored close spider behavior to wait for all downloads to finish and be processed by spiders, before closing the spider (r2688 [http://hg.scrapy.org/scrapy/changeset/2688])

	Added SitemapSpider (see documentation in Spiders page) (r2658 [http://hg.scrapy.org/scrapy/changeset/2658])

	Added LogStats extension for periodically logging basic stats (like crawled pages and scraped items) (r2657 [http://hg.scrapy.org/scrapy/changeset/2657])

	Make handling of gzipped responses more robust (#319, r2643 [http://hg.scrapy.org/scrapy/changeset/2643]). Now Scrapy will try and decompress as much as possible from a gzipped response, instead of failing with an IOError.

	Simplified !MemoryDebugger extension to use stats for dumping memory debugging info (r2639 [http://hg.scrapy.org/scrapy/changeset/2639])

	Added new command to edit spiders: scrapy edit (r2636 [http://hg.scrapy.org/scrapy/changeset/2636]) and -e flag to genspider command that uses it (r2653 [http://hg.scrapy.org/scrapy/changeset/2653])

	Changed default representation of items to pretty-printed dicts. (r2631 [http://hg.scrapy.org/scrapy/changeset/2631]). This improves default logging by making log more readable in the default case, for both Scraped and Dropped lines.

	Added spider_error signal (r2628 [http://hg.scrapy.org/scrapy/changeset/2628])

	Added COOKIES_ENABLED setting (r2625 [http://hg.scrapy.org/scrapy/changeset/2625])

	Stats are now dumped to Scrapy log (default value of STATS_DUMP setting has been changed to True). This is to make Scrapy users more aware of Scrapy stats and the data that is collected there.

	Added support for dynamically adjusting download delay and maximum concurrent requests (r2599 [http://hg.scrapy.org/scrapy/changeset/2599])

	Added new DBM HTTP cache storage backend (r2576 [http://hg.scrapy.org/scrapy/changeset/2576])

	Added listjobs.json API to Scrapyd (r2571 [http://hg.scrapy.org/scrapy/changeset/2571])

	CsvItemExporter: added join_multivalued parameter (r2578 [http://hg.scrapy.org/scrapy/changeset/2578])

	Added namespace support to xmliter_lxml (r2552 [http://hg.scrapy.org/scrapy/changeset/2552])

	Improved cookies middleware by making COOKIES_DEBUG nicer and documenting it (r2579 [http://hg.scrapy.org/scrapy/changeset/2579])

	Several improvements to Scrapyd and Link extractors

Code rearranged and removed

	
	Merged item passed and item scraped concepts, as they have often proved confusing in the past. This means: (r2630 [http://hg.scrapy.org/scrapy/changeset/2630])

	
	original item_scraped signal was removed

	original item_passed signal was renamed to item_scraped

	old log lines Scraped Item... were removed

	old log lines Passed Item... were renamed to Scraped Item... lines and downgraded to DEBUG level

	
	Reduced Scrapy codebase by striping part of Scrapy code into two new libraries:

	
	w3lib [https://github.com/scrapy/w3lib] (several functions from scrapy.utils.{http,markup,multipart,response,url}, done in r2584 [http://hg.scrapy.org/scrapy/changeset/2584])

	scrapely [https://github.com/scrapy/scrapely] (was scrapy.contrib.ibl, done in r2586 [http://hg.scrapy.org/scrapy/changeset/2586])

	Removed unused function: scrapy.utils.request.request_info() (r2577 [http://hg.scrapy.org/scrapy/changeset/2577])

	Removed googledir project from examples/googledir. There’s now a new example project called dirbot available on github: https://github.com/scrapy/dirbot

	Removed support for default field values in Scrapy items (r2616 [http://hg.scrapy.org/scrapy/changeset/2616])

	Removed experimental crawlspider v2 (r2632 [http://hg.scrapy.org/scrapy/changeset/2632])

	Removed scheduler middleware to simplify architecture. Duplicates filter is now done in the scheduler itself, using the same dupe fltering class as before (DUPEFILTER_CLASS setting) (r2640 [http://hg.scrapy.org/scrapy/changeset/2640])

	Removed support for passing urls to scrapy crawl command (use scrapy parse instead) (r2704 [http://hg.scrapy.org/scrapy/changeset/2704])

	Removed deprecated Execution Queue (r2704 [http://hg.scrapy.org/scrapy/changeset/2704])

	Removed (undocumented) spider context extension (from scrapy.contrib.spidercontext) (r2780 [http://hg.scrapy.org/scrapy/changeset/2780])

	removed CONCURRENT_SPIDERS setting (use scrapyd maxproc instead) (r2789 [http://hg.scrapy.org/scrapy/changeset/2789])

	Renamed attributes of core components: downloader.sites -> downloader.slots, scraper.sites -> scraper.slots (r2717 [http://hg.scrapy.org/scrapy/changeset/2717], r2718 [http://hg.scrapy.org/scrapy/changeset/2718])

	Renamed setting CLOSESPIDER_ITEMPASSED to CLOSESPIDER_ITEMCOUNT (r2655 [http://hg.scrapy.org/scrapy/changeset/2655]). Backwards compatibility kept.

0.12

The numbers like #NNN reference tickets in the old issue tracker (Trac) which is no longer available.

New features and improvements

	Passed item is now sent in the item argument of the item_passed (#273)

	Added verbose option to scrapy version command, useful for bug reports (#298)

	HTTP cache now stored by default in the project data dir (#279)

	Added project data storage directory (#276, #277)

	Documented file structure of Scrapy projects (see command-line tool doc)

	New lxml backend for XPath selectors (#147)

	Per-spider settings (#245)

	Support exit codes to signal errors in Scrapy commands (#248)

	Added -c argument to scrapy shell command

	Made libxml2 optional (#260)

	New deploy command (#261)

	Added CLOSESPIDER_PAGECOUNT setting (#253)

	Added CLOSESPIDER_ERRORCOUNT setting (#254)

Scrapyd changes

	Scrapyd now uses one process per spider

	It stores one log file per spider run, and rotate them keeping the lastest 5 logs per spider (by default)

	A minimal web ui was added, available at http://localhost:6800 by default

	There is now a scrapy server command to start a Scrapyd server of the current project

Changes to settings

	added HTTPCACHE_ENABLED setting (False by default) to enable HTTP cache middleware

	changed HTTPCACHE_EXPIRATION_SECS semantics: now zero means “never expire”.

Deprecated/obsoleted functionality

	Deprecated runserver command in favor of server command which starts a Scrapyd server. See also: Scrapyd changes

	Deprecated queue command in favor of using Scrapyd schedule.json API. See also: Scrapyd changes

	Removed the !LxmlItemLoader (experimental contrib which never graduated to main contrib)

0.10

The numbers like #NNN reference tickets in the old issue tracker (Trac) which is no longer available.

New features and improvements

	New Scrapy service called scrapyd for deploying Scrapy crawlers in production (#218) (documentation available)

	Simplified Images pipeline usage which doesn’t require subclassing your own images pipeline now (#217)

	Scrapy shell now shows the Scrapy log by default (#206)

	Refactored execution queue in a common base code and pluggable backends called “spider queues” (#220)

	New persistent spider queue (based on SQLite) (#198), available by default, which allows to start Scrapy in server mode and then schedule spiders to run.

	Added documentation for Scrapy command-line tool and all its available sub-commands. (documentation available)

	Feed exporters with pluggable backends (#197) (documentation available)

	Deferred signals (#193)

	Added two new methods to item pipeline open_spider(), close_spider() with deferred support (#195)

	Support for overriding default request headers per spider (#181)

	Replaced default Spider Manager with one with similar functionality but not depending on Twisted Plugins (#186)

	Splitted Debian package into two packages - the library and the service (#187)

	Scrapy log refactoring (#188)

	New extension for keeping persistent spider contexts among different runs (#203)

	Added dont_redirect request.meta key for avoiding redirects (#233)

	Added dont_retry request.meta key for avoiding retries (#234)

Command-line tool changes

	New scrapy command which replaces the old scrapy-ctl.py (#199)
- there is only one global scrapy command now, instead of one scrapy-ctl.py per project
- Added scrapy.bat script for running more conveniently from Windows

	Added bash completion to command-line tool (#210)

	Renamed command start to runserver (#209)

API changes

	url and body attributes of Request objects are now read-only (#230)

	Request.copy() and Request.replace() now also copies their callback and errback attributes (#231)

	Removed UrlFilterMiddleware from scrapy.contrib (already disabled by default)

	Offsite middelware doesn’t filter out any request coming from a spider that doesn’t have a allowed_domains attribute (#225)

	Removed Spider Manager load() method. Now spiders are loaded in the constructor itself.

	
	Changes to Scrapy Manager (now called “Crawler”):

	
	scrapy.core.manager.ScrapyManager class renamed to scrapy.crawler.Crawler

	scrapy.core.manager.scrapymanager singleton moved to scrapy.project.crawler

	Moved module: scrapy.contrib.spidermanager to scrapy.spidermanager

	Spider Manager singleton moved from scrapy.spider.spiders to the spiders` attribute of ``scrapy.project.crawler singleton.

	
	moved Stats Collector classes: (#204)

	
	scrapy.stats.collector.StatsCollector to scrapy.statscol.StatsCollector

	scrapy.stats.collector.SimpledbStatsCollector to scrapy.contrib.statscol.SimpledbStatsCollector

	default per-command settings are now specified in the default_settings attribute of command object class (#201)

	
	changed arguments of Item pipeline process_item() method from (spider, item) to (item, spider)

	
	backwards compatibility kept (with deprecation warning)

	
	moved scrapy.core.signals module to scrapy.signals

	
	backwards compatibility kept (with deprecation warning)

	
	moved scrapy.core.exceptions module to scrapy.exceptions

	
	backwards compatibility kept (with deprecation warning)

	added handles_request() class method to BaseSpider

	dropped scrapy.log.exc() function (use scrapy.log.err() instead)

	dropped component argument of scrapy.log.msg() function

	dropped scrapy.log.log_level attribute

	Added from_settings() class methods to Spider Manager, and Item Pipeline Manager

Changes to settings

	Added HTTPCACHE_IGNORE_SCHEMES setting to ignore certain schemes on !HttpCacheMiddleware (#225)

	Added SPIDER_QUEUE_CLASS setting which defines the spider queue to use (#220)

	Added KEEP_ALIVE setting (#220)

	Removed SERVICE_QUEUE setting (#220)

	Removed COMMANDS_SETTINGS_MODULE setting (#201)

	Renamed REQUEST_HANDLERS to DOWNLOAD_HANDLERS and make download handlers classes (instead of functions)

0.9

The numbers like #NNN reference tickets in the old issue tracker (Trac) which is no longer available.

New features and improvements

	Added SMTP-AUTH support to scrapy.mail

	New settings added: MAIL_USER, MAIL_PASS (r2065 [http://hg.scrapy.org/scrapy/changeset/2065] | #149)

	Added new scrapy-ctl view command - To view URL in the browser, as seen by Scrapy (r2039 [http://hg.scrapy.org/scrapy/changeset/2039])

	Added web service for controlling Scrapy process (this also deprecates the web console. (r2053 [http://hg.scrapy.org/scrapy/changeset/2053] | #167)

	Support for running Scrapy as a service, for production systems (r1988 [http://hg.scrapy.org/scrapy/changeset/1988], r2054 [http://hg.scrapy.org/scrapy/changeset/2054], r2055 [http://hg.scrapy.org/scrapy/changeset/2055], r2056 [http://hg.scrapy.org/scrapy/changeset/2056], r2057 [http://hg.scrapy.org/scrapy/changeset/2057] | #168)

	Added wrapper induction library (documentation only available in source code for now). (r2011 [http://hg.scrapy.org/scrapy/changeset/2011])

	Simplified and improved response encoding support (r1961 [http://hg.scrapy.org/scrapy/changeset/1961], r1969 [http://hg.scrapy.org/scrapy/changeset/1969])

	Added LOG_ENCODING setting (r1956 [http://hg.scrapy.org/scrapy/changeset/1956], documentation available)

	Added RANDOMIZE_DOWNLOAD_DELAY setting (enabled by default) (r1923 [http://hg.scrapy.org/scrapy/changeset/1923], doc available)

	MailSender is no longer IO-blocking (r1955 [http://hg.scrapy.org/scrapy/changeset/1955] | #146)

	Linkextractors and new Crawlspider now handle relative base tag urls (r1960 [http://hg.scrapy.org/scrapy/changeset/1960] | #148)

	Several improvements to Item Loaders and processors (r2022 [http://hg.scrapy.org/scrapy/changeset/2022], r2023 [http://hg.scrapy.org/scrapy/changeset/2023], r2024 [http://hg.scrapy.org/scrapy/changeset/2024], r2025 [http://hg.scrapy.org/scrapy/changeset/2025], r2026 [http://hg.scrapy.org/scrapy/changeset/2026], r2027 [http://hg.scrapy.org/scrapy/changeset/2027], r2028 [http://hg.scrapy.org/scrapy/changeset/2028], r2029 [http://hg.scrapy.org/scrapy/changeset/2029], r2030 [http://hg.scrapy.org/scrapy/changeset/2030])

	Added support for adding variables to telnet console (r2047 [http://hg.scrapy.org/scrapy/changeset/2047] | #165)

	Support for requests without callbacks (r2050 [http://hg.scrapy.org/scrapy/changeset/2050] | #166)

API changes

	Change Spider.domain_name to Spider.name (SEP-012, r1975 [http://hg.scrapy.org/scrapy/changeset/1975])

	Response.encoding is now the detected encoding (r1961 [http://hg.scrapy.org/scrapy/changeset/1961])

	HttpErrorMiddleware now returns None or raises an exception (r2006 [http://hg.scrapy.org/scrapy/changeset/2006] | #157)

	scrapy.command modules relocation (r2035 [http://hg.scrapy.org/scrapy/changeset/2035], r2036 [http://hg.scrapy.org/scrapy/changeset/2036], r2037 [http://hg.scrapy.org/scrapy/changeset/2037])

	Added ExecutionQueue for feeding spiders to scrape (r2034 [http://hg.scrapy.org/scrapy/changeset/2034])

	Removed ExecutionEngine singleton (r2039 [http://hg.scrapy.org/scrapy/changeset/2039])

	Ported S3ImagesStore (images pipeline) to use boto and threads (r2033 [http://hg.scrapy.org/scrapy/changeset/2033])

	Moved module: scrapy.management.telnet to scrapy.telnet (r2047 [http://hg.scrapy.org/scrapy/changeset/2047])

Changes to default settings

	Changed default SCHEDULER_ORDER to DFO (r1939 [http://hg.scrapy.org/scrapy/changeset/1939])

0.8

The numbers like #NNN reference tickets in the old issue tracker (Trac) which is no longer available.

New features

	Added DEFAULT_RESPONSE_ENCODING setting (r1809 [http://hg.scrapy.org/scrapy/changeset/1809])

	Added dont_click argument to FormRequest.from_response() method (r1813 [http://hg.scrapy.org/scrapy/changeset/1813], r1816 [http://hg.scrapy.org/scrapy/changeset/1816])

	Added clickdata argument to FormRequest.from_response() method (r1802 [http://hg.scrapy.org/scrapy/changeset/1802], r1803 [http://hg.scrapy.org/scrapy/changeset/1803])

	Added support for HTTP proxies (HttpProxyMiddleware) (r1781 [http://hg.scrapy.org/scrapy/changeset/1781], r1785 [http://hg.scrapy.org/scrapy/changeset/1785])

	Offsite spider middleware now logs messages when filtering out requests (r1841 [http://hg.scrapy.org/scrapy/changeset/1841])

Backwards-incompatible changes

	Changed scrapy.utils.response.get_meta_refresh() signature (r1804 [http://hg.scrapy.org/scrapy/changeset/1804])

	Removed deprecated scrapy.item.ScrapedItem class - use scrapy.item.Item instead (r1838 [http://hg.scrapy.org/scrapy/changeset/1838])

	Removed deprecated scrapy.xpath module - use scrapy.selector instead. (r1836 [http://hg.scrapy.org/scrapy/changeset/1836])

	Removed deprecated core.signals.domain_open signal - use core.signals.domain_opened instead (r1822 [http://hg.scrapy.org/scrapy/changeset/1822])

	
	log.msg() now receives a spider argument (r1822 [http://hg.scrapy.org/scrapy/changeset/1822])

	
	Old domain argument has been deprecated and will be removed in 0.9. For spiders, you should always use the spider argument and pass spider references. If you really want to pass a string, use the component argument instead.

	Changed core signals domain_opened, domain_closed, domain_idle

	
	Changed Item pipeline to use spiders instead of domains

	
	The domain argument of process_item() item pipeline method was changed to spider, the new signature is: process_item(spider, item) (r1827 [http://hg.scrapy.org/scrapy/changeset/1827] | #105)

	To quickly port your code (to work with Scrapy 0.8) just use spider.domain_name where you previously used domain.

	
	Changed Stats API to use spiders instead of domains (r1849 [http://hg.scrapy.org/scrapy/changeset/1849] | #113)

	
	StatsCollector was changed to receive spider references (instead of domains) in its methods (set_value, inc_value, etc).

	added StatsCollector.iter_spider_stats() method

	removed StatsCollector.list_domains() method

	Also, Stats signals were renamed and now pass around spider references (instead of domains). Here’s a summary of the changes:

	To quickly port your code (to work with Scrapy 0.8) just use spider.domain_name where you previously used domain. spider_stats contains exactly the same data as domain_stats.

	
	CloseDomain extension moved to scrapy.contrib.closespider.CloseSpider (r1833 [http://hg.scrapy.org/scrapy/changeset/1833])

	
	
	Its settings were also renamed:

	
	CLOSEDOMAIN_TIMEOUT to CLOSESPIDER_TIMEOUT

	CLOSEDOMAIN_ITEMCOUNT to CLOSESPIDER_ITEMCOUNT

	Removed deprecated SCRAPYSETTINGS_MODULE environment variable - use SCRAPY_SETTINGS_MODULE instead (r1840 [http://hg.scrapy.org/scrapy/changeset/1840])

	Renamed setting: REQUESTS_PER_DOMAIN to CONCURRENT_REQUESTS_PER_SPIDER (r1830 [http://hg.scrapy.org/scrapy/changeset/1830], r1844 [http://hg.scrapy.org/scrapy/changeset/1844])

	Renamed setting: CONCURRENT_DOMAINS to CONCURRENT_SPIDERS (r1830 [http://hg.scrapy.org/scrapy/changeset/1830])

	Refactored HTTP Cache middleware

	HTTP Cache middleware has been heavilty refactored, retaining the same functionality except for the domain sectorization which was removed. (r1843 [http://hg.scrapy.org/scrapy/changeset/1843])

	Renamed exception: DontCloseDomain to DontCloseSpider (r1859 [http://hg.scrapy.org/scrapy/changeset/1859] | #120)

	Renamed extension: DelayedCloseDomain to SpiderCloseDelay (r1861 [http://hg.scrapy.org/scrapy/changeset/1861] | #121)

	Removed obsolete scrapy.utils.markup.remove_escape_chars function - use scrapy.utils.markup.replace_escape_chars instead (r1865 [http://hg.scrapy.org/scrapy/changeset/1865])

0.7

First release of Scrapy.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Contributing to Scrapy

Important

Double check you are reading the most recent version of this document at
http://doc.scrapy.org/en/master/contributing.html

There are many ways to contribute to Scrapy. Here are some of them:

	Blog about Scrapy. Tell the world how you’re using Scrapy. This will help
newcomers with more examples and the Scrapy project to increase its
visibility.

	Report bugs and request features in the issue tracker [https://github.com/scrapy/scrapy/issues], trying to follow
the guidelines detailed in Reporting bugs below.

	Submit patches for new functionality and/or bug fixes. Please read
Writing patches and Submitting patches below for details on how to
write and submit a patch.

	Join the scrapy-users [https://groups.google.com/forum/#!forum/scrapy-users] mailing list and share your ideas on how to
improve Scrapy. We’re always open to suggestions.

Reporting bugs

Note

Please report security issues only to
scrapy-security@googlegroups.com. This is a private list only open to
trusted Scrapy developers, and its archives are not public.

Well-written bug reports are very helpful, so keep in mind the following
guidelines when reporting a new bug.

	check the FAQ first to see if your issue is addressed in a
well-known question

	check the open issues [https://github.com/scrapy/scrapy/issues] to see if it has already been reported. If it has,
don’t dismiss the report but check the ticket history and comments, you may
find additional useful information to contribute.

	search the scrapy-users [https://groups.google.com/forum/#!forum/scrapy-users] list to see if it has been discussed there, or
if you’re not sure if what you’re seeing is a bug. You can also ask in the
#scrapy IRC channel.

	write complete, reproducible, specific bug reports. The smaller the test
case, the better. Remember that other developers won’t have your project to
reproduce the bug, so please include all relevant files required to reproduce
it. See for example StackOverflow’s guide on creating a
Minimal, Complete, and Verifiable example [https://stackoverflow.com/help/mcve] exhibiting the issue.

	include the output of scrapy version -v so developers working on your bug
know exactly which version and platform it occurred on, which is often very
helpful for reproducing it, or knowing if it was already fixed.

Writing patches

The better written a patch is, the higher chance that it’ll get accepted and
the sooner that will be merged.

Well-written patches should:

	contain the minimum amount of code required for the specific change. Small
patches are easier to review and merge. So, if you’re doing more than one
change (or bug fix), please consider submitting one patch per change. Do not
collapse multiple changes into a single patch. For big changes consider using
a patch queue.

	pass all unit-tests. See Running tests below.

	include one (or more) test cases that check the bug fixed or the new
functionality added. See Writing tests below.

	if you’re adding or changing a public (documented) API, please include
the documentation changes in the same patch. See Documentation policies
below.

Submitting patches

The best way to submit a patch is to issue a pull request [https://help.github.com/send-pull-requests/] on GitHub,
optionally creating a new issue first.

Remember to explain what was fixed or the new functionality (what it is, why
it’s needed, etc). The more info you include, the easier will be for core
developers to understand and accept your patch.

You can also discuss the new functionality (or bug fix) before creating the
patch, but it’s always good to have a patch ready to illustrate your arguments
and show that you have put some additional thought into the subject. A good
starting point is to send a pull request on GitHub. It can be simple enough to
illustrate your idea, and leave documentation/tests for later, after the idea
has been validated and proven useful. Alternatively, you can send an email to
scrapy-users [https://groups.google.com/forum/#!forum/scrapy-users] to discuss your idea first.

Finally, try to keep aesthetic changes (PEP 8 [https://www.python.org/dev/peps/pep-0008] compliance, unused imports
removal, etc) in separate commits than functional changes. This will make pull
requests easier to review and more likely to get merged.

Coding style

Please follow these coding conventions when writing code for inclusion in
Scrapy:

	Unless otherwise specified, follow PEP 8 [https://www.python.org/dev/peps/pep-0008].

	It’s OK to use lines longer than 80 chars if it improves the code
readability.

	Don’t put your name in the code you contribute. Our policy is to keep
the contributor’s name in the AUTHORS [https://github.com/scrapy/scrapy/blob/master/AUTHORS] file distributed with Scrapy.

Scrapy Contrib

Scrapy contrib shares a similar rationale as Django contrib, which is explained
in this post [https://jacobian.org/writing/what-is-django-contrib/]. If you
are working on a new functionality, please follow that rationale to decide
whether it should be a Scrapy contrib. If unsure, you can ask in
scrapy-users [https://groups.google.com/forum/#!forum/scrapy-users].

Documentation policies

	Don’t use docstrings for documenting classes, or methods which are
already documented in the official (sphinx) documentation. For example, the
ItemLoader.add_value() method should be documented in the sphinx
documentation, not its docstring.

	Do use docstrings for documenting functions not present in the official
(sphinx) documentation, such as functions from scrapy.utils package and
its sub-modules.

Tests

Tests are implemented using the Twisted unit-testing framework [https://twistedmatrix.com/documents/current/core/development/policy/test-standard.html], running
tests requires tox [https://pypi.python.org/pypi/tox].

Running tests

Make sure you have a recent enough tox [https://pypi.python.org/pypi/tox] installation:

tox --version

If your version is older than 1.7.0, please update it first:

pip install -U tox

To run all tests go to the root directory of Scrapy source code and run:

tox

To run a specific test (say tests/test_loader.py) use:

tox -- tests/test_loader.py

To see coverage report install coverage [https://pypi.python.org/pypi/coverage] (pip install coverage) and run:

coverage report

see output of coverage --help for more options like html or xml report.

Writing tests

All functionality (including new features and bug fixes) must include a test
case to check that it works as expected, so please include tests for your
patches if you want them to get accepted sooner.

Scrapy uses unit-tests, which are located in the tests/ [https://github.com/scrapy/scrapy/tree/master/tests] directory.
Their module name typically resembles the full path of the module they’re
testing. For example, the item loaders code is in:

scrapy.loader

And their unit-tests are in:

tests/test_loader.py

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Scrapy 1.2.0dev2 documentation

Versioning and API Stability

Versioning

Scrapy uses the odd-numbered versions for development releases [https://en.wikipedia.org/wiki/Software_versioning#Odd-numbered_versions_for_development_releases].

There are 3 numbers in a Scrapy version: A.B.C

	A is the major version. This will rarely change and will signify very
large changes.

	B is the release number. This will include many changes including features
and things that possibly break backwards compatibility. Even Bs will be
stable branches, and odd Bs will be development.

	C is the bugfix release number.

For example:

	0.14.1 is the first bugfix release of the 0.14 series (safe to use in
production)

API Stability

API stability was one of the major goals for the 1.0 release.

Methods or functions that start with a single dash (_) are private and
should never be relied as stable.

Also, keep in mind that stable doesn’t mean complete: stable APIs could grow
new methods or functionality but the existing methods should keep working the
same way.

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Scrapy 1.2.0dev2 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 scrapy	

 	
 	
 scrapy.contracts	

 	
 	
 scrapy.contracts.default	

 	
 	
 scrapy.crawler	
 The Scrapy crawler

 	
 	
 scrapy.downloadermiddlewares	

 	
 	
 scrapy.downloadermiddlewares.ajaxcrawl	

 	
 	
 scrapy.downloadermiddlewares.chunked	
 Chunked Transfer Middleware

 	
 	
 scrapy.downloadermiddlewares.cookies	
 Cookies Downloader Middleware

 	
 	
 scrapy.downloadermiddlewares.defaultheaders	
 Default Headers Downloader Middleware

 	
 	
 scrapy.downloadermiddlewares.downloadtimeout	
 Download timeout middleware

 	
 	
 scrapy.downloadermiddlewares.httpauth	
 HTTP Auth downloader middleware

 	
 	
 scrapy.downloadermiddlewares.httpcache	
 HTTP Cache downloader middleware

 	
 	
 scrapy.downloadermiddlewares.httpcompression	
 Http Compression Middleware

 	
 	
 scrapy.downloadermiddlewares.httpproxy	
 Http Proxy Middleware

 	
 	
 scrapy.downloadermiddlewares.redirect	
 Redirection Middleware

 	
 	
 scrapy.downloadermiddlewares.retry	
 Retry Middleware

 	
 	
 scrapy.downloadermiddlewares.robotstxt	
 robots.txt middleware

 	
 	
 scrapy.downloadermiddlewares.stats	
 Downloader Stats Middleware

 	
 	
 scrapy.downloadermiddlewares.useragent	
 User Agent Middleware

 	
 	
 scrapy.exceptions	
 Scrapy exceptions

 	
 	
 scrapy.exporters	
 Item Exporters

 	
 	
 scrapy.extensions.closespider	
 Close spider extension

 	
 	
 scrapy.extensions.corestats	
 Core stats collection

 	
 	
 scrapy.extensions.debug	
 Extensions for debugging Scrapy

 	
 	
 scrapy.extensions.logstats	
 Basic stats logging

 	
 	
 scrapy.extensions.memdebug	
 Memory debugger extension

 	
 	
 scrapy.extensions.memusage	
 Memory usage extension

 	
 	
 scrapy.extensions.statsmailer	
 StatsMailer extension

 	
 	
 scrapy.extensions.telnet	
 The Telnet Console

 	
 	
 scrapy.http	
 Request and Response classes

 	
 	
 scrapy.item	
 Item and Field classes

 	
 	
 scrapy.linkextractors	
 Link extractors classes

 	
 	
 scrapy.linkextractors.lxmlhtml	
 lxml's HTMLParser-based link extractors

 	
 	
 scrapy.loader	
 Item Loader class

 	
 	
 scrapy.loader.processors	
 A collection of processors to use with Item Loaders

 	
 	
 scrapy.mail	
 Email sending facility

 	
 	
 scrapy.pipelines.files	
 Files Pipeline

 	
 	
 scrapy.pipelines.images	
 Images Pipeline

 	
 	
 scrapy.selector	
 Selector class

 	
 	
 scrapy.settings	
 Settings manager

 	
 	
 scrapy.signalmanager	
 The signal manager

 	
 	
 scrapy.signals	
 Signals definitions

 	
 	
 scrapy.spidermiddlewares	

 	
 	
 scrapy.spidermiddlewares.depth	
 Depth Spider Middleware

 	
 	
 scrapy.spidermiddlewares.httperror	
 HTTP Error Spider Middleware

 	
 	
 scrapy.spidermiddlewares.offsite	
 Offsite Spider Middleware

 	
 	
 scrapy.spidermiddlewares.referer	
 Referer Spider Middleware

 	
 	
 scrapy.spidermiddlewares.urllength	
 URL Length Spider Middleware

 	
 	
 scrapy.spiders	
 Spiders base class, spider manager and spider middleware

 	
 	
 scrapy.statscollectors	
 Stats Collectors

 	
 	
 scrapy.utils.log	
 Logging utils

 	
 	
 scrapy.utils.trackref	
 Track references of live objects

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Scrapy 1.2.0dev2 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | X

_

 	

 	__nonzero__() (scrapy.selector.Selector method)

 	

 	(scrapy.selector.SelectorList method)

A

 	

 	adapt_response() (scrapy.spiders.XMLFeedSpider method)

 	add_css() (scrapy.loader.ItemLoader method)

 	add_value() (scrapy.loader.ItemLoader method)

 	add_xpath() (scrapy.loader.ItemLoader method)

 	adjust_request_args() (scrapy.contracts.Contract method)

 	
 AJAXCRAWL_ENABLED

 	

 	setting

 	AjaxCrawlMiddleware (class in scrapy.downloadermiddlewares.ajaxcrawl)

 	allowed_domains (scrapy.spiders.Spider attribute)

 	

 	
 AUTOTHROTTLE_DEBUG

 	

 	setting

 	
 AUTOTHROTTLE_ENABLED

 	

 	setting

 	
 AUTOTHROTTLE_MAX_DELAY

 	

 	setting

 	
 AUTOTHROTTLE_START_DELAY

 	

 	setting

 	
 AUTOTHROTTLE_TARGET_CONCURRENCY

 	

 	setting

 	
 AWS_ACCESS_KEY_ID

 	

 	setting

 	
 AWS_SECRET_ACCESS_KEY

 	

 	setting

B

 	

 	BaseItemExporter (class in scrapy.exporters)

 	BaseSettings (class in scrapy.settings)

 	
 bench

 	

 	command

 	
 bindaddress

 	

 	reqmeta

 	

 	body (scrapy.http.Request attribute)

 	

 	(scrapy.http.Response attribute)

 	body_as_unicode() (scrapy.http.TextResponse method)

 	
 BOT_NAME

 	

 	setting

C

 	

 	
 check

 	

 	command

 	ChunkedTransferMiddleware (class in scrapy.downloadermiddlewares.chunked)

 	clear_stats() (scrapy.statscollectors.StatsCollector method)

 	close_spider()

 	

 	(scrapy.statscollectors.StatsCollector method)

 	closed() (scrapy.spiders.Spider method)

 	CloseSpider

 	
 CLOSESPIDER_ERRORCOUNT

 	

 	setting

 	
 CLOSESPIDER_ITEMCOUNT

 	

 	setting

 	
 CLOSESPIDER_PAGECOUNT

 	

 	setting

 	
 CLOSESPIDER_TIMEOUT

 	

 	setting

 	
 command

 	

 	bench

 	check

 	crawl

 	edit

 	fetch

 	genspider

 	list

 	parse

 	runspider

 	settings

 	shell

 	startproject

 	version

 	view

 	
 COMMANDS_MODULE

 	

 	setting

 	Compose (class in scrapy.loader.processors)

 	
 COMPRESSION_ENABLED

 	

 	setting

 	
 CONCURRENT_ITEMS

 	

 	setting

 	
 CONCURRENT_REQUESTS

 	

 	setting

 	
 CONCURRENT_REQUESTS_PER_DOMAIN

 	

 	setting

 	
 CONCURRENT_REQUESTS_PER_IP

 	

 	setting

 	configure_logging() (in module scrapy.utils.log)

 	connect() (scrapy.signalmanager.SignalManager method)

 	context (scrapy.loader.ItemLoader attribute)

 	

 	Contract (class in scrapy.contracts)

 	
 cookiejar

 	

 	reqmeta

 	
 COOKIES_DEBUG

 	

 	setting

 	
 COOKIES_ENABLED

 	

 	setting

 	CookiesMiddleware (class in scrapy.downloadermiddlewares.cookies)

 	copy() (scrapy.http.Request method)

 	

 	(scrapy.http.Response method)

 	(scrapy.settings.BaseSettings method)

 	copy_to_dict() (scrapy.settings.BaseSettings method)

 	CoreStats (class in scrapy.extensions.corestats)

 	
 crawl

 	

 	command

 	crawl() (scrapy.crawler.Crawler method)

 	

 	(scrapy.crawler.CrawlerProcess method)

 	(scrapy.crawler.CrawlerRunner method)

 	Crawler (class in scrapy.crawler)

 	crawler (scrapy.spiders.Spider attribute)

 	CrawlerProcess (class in scrapy.crawler)

 	CrawlerRunner (class in scrapy.crawler)

 	crawlers (scrapy.crawler.CrawlerProcess attribute)

 	

 	(scrapy.crawler.CrawlerRunner attribute)

 	CrawlSpider (class in scrapy.spiders)

 	create_crawler() (scrapy.crawler.CrawlerProcess method)

 	

 	(scrapy.crawler.CrawlerRunner method)

 	css() (scrapy.http.TextResponse method)

 	

 	(scrapy.selector.Selector method)

 	(scrapy.selector.SelectorList method)

 	CSVFeedSpider (class in scrapy.spiders)

 	CsvItemExporter (class in scrapy.exporters)

 	custom_settings (scrapy.spiders.Spider attribute)

D

 	

 	default_input_processor (scrapy.loader.ItemLoader attribute)

 	
 DEFAULT_ITEM_CLASS

 	

 	setting

 	default_item_class (scrapy.loader.ItemLoader attribute)

 	default_output_processor (scrapy.loader.ItemLoader attribute)

 	
 DEFAULT_REQUEST_HEADERS

 	

 	setting

 	default_selector_class (scrapy.loader.ItemLoader attribute)

 	DefaultHeadersMiddleware (class in scrapy.downloadermiddlewares.defaultheaders)

 	delimiter (scrapy.spiders.CSVFeedSpider attribute)

 	
 DEPTH_LIMIT

 	

 	setting

 	
 DEPTH_PRIORITY

 	

 	setting

 	
 DEPTH_STATS

 	

 	setting

 	
 DEPTH_STATS_VERBOSE

 	

 	setting

 	DepthMiddleware (class in scrapy.spidermiddlewares.depth)

 	disconnect() (scrapy.signalmanager.SignalManager method)

 	disconnect_all() (scrapy.signalmanager.SignalManager method)

 	
 DNS_TIMEOUT

 	

 	setting

 	
 DNSCACHE_ENABLED

 	

 	setting

 	
 DNSCACHE_SIZE

 	

 	setting

 	
 dont_cache

 	

 	reqmeta

 	
 dont_obey_robotstxt

 	

 	reqmeta

 	
 dont_redirect

 	

 	reqmeta

 	
 dont_retry

 	

 	reqmeta

 	

 	
 DOWNLOAD_DELAY

 	

 	setting

 	
 DOWNLOAD_HANDLERS

 	

 	setting

 	
 DOWNLOAD_HANDLERS_BASE

 	

 	setting

 	
 DOWNLOAD_MAXSIZE

 	

 	setting

 	
 download_maxsize

 	

 	reqmeta

 	
 DOWNLOAD_TIMEOUT

 	

 	setting

 	
 download_timeout

 	

 	reqmeta

 	
 DOWNLOAD_WARNSIZE

 	

 	setting

 	
 DOWNLOADER

 	

 	setting

 	
 DOWNLOADER_CLIENT_TLS_METHOD

 	

 	setting

 	
 DOWNLOADER_CLIENTCONTEXTFACTORY

 	

 	setting

 	
 DOWNLOADER_HTTPCLIENTFACTORY

 	

 	setting

 	
 DOWNLOADER_MIDDLEWARES

 	

 	setting

 	
 DOWNLOADER_MIDDLEWARES_BASE

 	

 	setting

 	
 DOWNLOADER_STATS

 	

 	setting

 	DownloaderMiddleware (class in scrapy.downloadermiddlewares)

 	DownloaderStats (class in scrapy.downloadermiddlewares.stats)

 	DownloadTimeoutMiddleware (class in scrapy.downloadermiddlewares.downloadtimeout)

 	DropItem

 	DummyStatsCollector (class in scrapy.statscollectors)

 	
 DUPEFILTER_CLASS

 	

 	setting

 	
 DUPEFILTER_DEBUG

 	

 	setting

E

 	

 	
 edit

 	

 	command

 	
 EDITOR

 	

 	setting

 	encoding (scrapy.exporters.BaseItemExporter attribute)

 	

 	(scrapy.http.TextResponse attribute)

 	engine (scrapy.crawler.Crawler attribute)

 	
 engine_started

 	

 	signal

 	engine_started() (in module scrapy.signals)

 	
 engine_stopped

 	

 	signal

 	

 	engine_stopped() (in module scrapy.signals)

 	export_empty_fields (scrapy.exporters.BaseItemExporter attribute)

 	export_item() (scrapy.exporters.BaseItemExporter method)

 	
 EXTENSIONS

 	

 	setting

 	extensions (scrapy.crawler.Crawler attribute)

 	
 EXTENSIONS_BASE

 	

 	setting

 	extract() (scrapy.selector.Selector method)

 	

 	(scrapy.selector.SelectorList method)

F

 	

 	
 FEED_EXPORT_FIELDS

 	

 	setting

 	
 FEED_EXPORTERS

 	

 	setting

 	
 FEED_EXPORTERS_BASE

 	

 	setting

 	
 FEED_FORMAT

 	

 	setting

 	
 FEED_STORAGES

 	

 	setting

 	
 FEED_STORAGES_BASE

 	

 	setting

 	
 FEED_STORE_EMPTY

 	

 	setting

 	
 FEED_TEMPDIR

 	

 	setting

 	
 FEED_URI

 	

 	setting

 	
 fetch

 	

 	command

 	Field (class in scrapy.item)

 	fields (scrapy.item.Item attribute)

 	fields_to_export (scrapy.exporters.BaseItemExporter attribute)

 	
 FILES_EXPIRES

 	

 	setting

 	

 	
 FILES_RESULT_FIELD

 	

 	setting

 	
 FILES_STORE

 	

 	setting

 	
 FILES_STORE_S3_ACL

 	

 	setting

 	
 FILES_URLS_FIELD

 	

 	setting

 	FilesPipeline (class in scrapy.pipelines.files)

 	find_by_request() (scrapy.loader.SpiderLoader method)

 	finish_exporting() (scrapy.exporters.BaseItemExporter method)

 	flags (scrapy.http.Response attribute)

 	FormRequest (class in scrapy.http)

 	freeze() (scrapy.settings.BaseSettings method)

 	from_crawler()

 	

 	(scrapy.spiders.Spider method)

 	from_response() (scrapy.http.FormRequest class method)

 	from_settings() (scrapy.loader.SpiderLoader method)

 	

 	(scrapy.mail.MailSender class method)

 	frozencopy() (scrapy.settings.BaseSettings method)

G

 	

 	
 genspider

 	

 	command

 	get() (scrapy.settings.BaseSettings method)

 	get_collected_values() (scrapy.loader.ItemLoader method)

 	get_css() (scrapy.loader.ItemLoader method)

 	get_input_processor() (scrapy.loader.ItemLoader method)

 	get_media_requests() (scrapy.pipelines.files.FilesPipeline method)

 	

 	(scrapy.pipelines.images.ImagesPipeline method)

 	get_oldest() (in module scrapy.utils.trackref)

 	get_output_processor() (scrapy.loader.ItemLoader method)

 	get_output_value() (scrapy.loader.ItemLoader method)

 	get_settings_priority() (in module scrapy.settings)

 	

 	get_stats() (scrapy.statscollectors.StatsCollector method)

 	get_value() (scrapy.loader.ItemLoader method)

 	

 	(scrapy.statscollectors.StatsCollector method)

 	get_xpath() (scrapy.loader.ItemLoader method)

 	getbool() (scrapy.settings.BaseSettings method)

 	getdict() (scrapy.settings.BaseSettings method)

 	getfloat() (scrapy.settings.BaseSettings method)

 	getint() (scrapy.settings.BaseSettings method)

 	getlist() (scrapy.settings.BaseSettings method)

 	getpriority() (scrapy.settings.BaseSettings method)

 	getwithbase() (scrapy.settings.BaseSettings method)

H

 	

 	
 handle_httpstatus_all

 	

 	reqmeta

 	
 handle_httpstatus_list

 	

 	reqmeta

 	headers (scrapy.http.Request attribute)

 	

 	(scrapy.http.Response attribute)

 	(scrapy.spiders.CSVFeedSpider attribute)

 	HtmlResponse (class in scrapy.http)

 	HttpAuthMiddleware (class in scrapy.downloadermiddlewares.httpauth)

 	
 HTTPCACHE_ALWAYS_STORE

 	

 	setting

 	
 HTTPCACHE_DBM_MODULE

 	

 	setting

 	
 HTTPCACHE_DIR

 	

 	setting

 	
 HTTPCACHE_ENABLED

 	

 	setting

 	
 HTTPCACHE_EXPIRATION_SECS

 	

 	setting

 	
 HTTPCACHE_GZIP

 	

 	setting

 	
 HTTPCACHE_IGNORE_HTTP_CODES

 	

 	setting

 	

 	
 HTTPCACHE_IGNORE_MISSING

 	

 	setting

 	
 HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS

 	

 	setting

 	
 HTTPCACHE_IGNORE_SCHEMES

 	

 	setting

 	
 HTTPCACHE_POLICY

 	

 	setting

 	
 HTTPCACHE_STORAGE

 	

 	setting

 	HttpCacheMiddleware (class in scrapy.downloadermiddlewares.httpcache)

 	HttpCompressionMiddleware (class in scrapy.downloadermiddlewares.httpcompression)

 	
 HTTPERROR_ALLOW_ALL

 	

 	setting

 	
 HTTPERROR_ALLOWED_CODES

 	

 	setting

 	HttpErrorMiddleware (class in scrapy.spidermiddlewares.httperror)

 	
 HTTPPROXY_AUTH_ENCODING

 	

 	setting

 	HttpProxyMiddleware (class in scrapy.downloadermiddlewares.httpproxy)

I

 	

 	Identity (class in scrapy.loader.processors)

 	IgnoreRequest

 	
 IMAGES_EXPIRES

 	

 	setting

 	
 IMAGES_MIN_HEIGHT

 	

 	setting

 	
 IMAGES_MIN_WIDTH

 	

 	setting

 	
 IMAGES_RESULT_FIELD

 	

 	setting

 	
 IMAGES_STORE

 	

 	setting

 	
 IMAGES_THUMBS

 	

 	setting

 	
 IMAGES_URLS_FIELD

 	

 	setting

 	ImagesPipeline (class in scrapy.pipelines.images)

 	inc_value() (scrapy.statscollectors.StatsCollector method)

 	Item (class in scrapy.item)

 	

 	item (scrapy.loader.ItemLoader attribute)

 	item_completed() (scrapy.pipelines.files.FilesPipeline method)

 	

 	(scrapy.pipelines.images.ImagesPipeline method)

 	
 item_dropped

 	

 	signal

 	item_dropped() (in module scrapy.signals)

 	
 ITEM_PIPELINES

 	

 	setting

 	
 ITEM_PIPELINES_BASE

 	

 	setting

 	
 item_scraped

 	

 	signal

 	item_scraped() (in module scrapy.signals)

 	ItemLoader (class in scrapy.loader)

 	iter_all() (in module scrapy.utils.trackref)

 	iterator (scrapy.spiders.XMLFeedSpider attribute)

 	itertag (scrapy.spiders.XMLFeedSpider attribute)

J

 	

 	Join (class in scrapy.loader.processors)

 	join() (scrapy.crawler.CrawlerProcess method)

 	

 	(scrapy.crawler.CrawlerRunner method)

 	

 	JsonItemExporter (class in scrapy.exporters)

 	JsonLinesItemExporter (class in scrapy.exporters)

L

 	

 	
 list

 	

 	command

 	list() (scrapy.loader.SpiderLoader method)

 	load() (scrapy.loader.SpiderLoader method)

 	load_item() (scrapy.loader.ItemLoader method)

 	log() (scrapy.spiders.Spider method)

 	
 LOG_DATEFORMAT

 	

 	setting

 	
 LOG_ENABLED

 	

 	setting

 	
 LOG_ENCODING

 	

 	setting

 	

 	
 LOG_FILE

 	

 	setting

 	
 LOG_FORMAT

 	

 	setting

 	
 LOG_LEVEL

 	

 	setting

 	
 LOG_STDOUT

 	

 	setting

 	logger (scrapy.spiders.Spider attribute)

 	LogStats (class in scrapy.extensions.logstats)

 	LxmlLinkExtractor (class in scrapy.linkextractors.lxmlhtml)

M

 	

 	
 MAIL_FROM

 	

 	setting

 	
 MAIL_HOST

 	

 	setting

 	
 MAIL_PASS

 	

 	setting

 	
 MAIL_PORT

 	

 	setting

 	
 MAIL_SSL

 	

 	setting

 	
 MAIL_TLS

 	

 	setting

 	
 MAIL_USER

 	

 	setting

 	MailSender (class in scrapy.mail)

 	make_requests_from_url() (scrapy.spiders.Spider method)

 	MapCompose (class in scrapy.loader.processors)

 	max_value() (scrapy.statscollectors.StatsCollector method)

 	maxpriority() (scrapy.settings.BaseSettings method)

 	
 MEMDEBUG_ENABLED

 	

 	setting

 	
 MEMDEBUG_NOTIFY

 	

 	setting

 	

 	MemoryStatsCollector (class in scrapy.statscollectors)

 	
 MEMUSAGE_CHECK_INTERVAL_SECONDS

 	

 	setting

 	
 MEMUSAGE_ENABLED

 	

 	setting

 	
 MEMUSAGE_LIMIT_MB

 	

 	setting

 	
 MEMUSAGE_NOTIFY_MAIL

 	

 	setting

 	
 MEMUSAGE_REPORT

 	

 	setting

 	
 MEMUSAGE_WARNING_MB

 	

 	setting

 	meta (scrapy.http.Request attribute)

 	

 	(scrapy.http.Response attribute)

 	
 METAREFRESH_ENABLED

 	

 	setting

 	
 METAREFRESH_MAXDELAY

 	

 	setting

 	MetaRefreshMiddleware (class in scrapy.downloadermiddlewares.redirect)

 	method (scrapy.http.Request attribute)

 	min_value() (scrapy.statscollectors.StatsCollector method)

N

 	

 	name (scrapy.spiders.Spider attribute)

 	namespaces (scrapy.spiders.XMLFeedSpider attribute)

 	nested_css() (scrapy.loader.ItemLoader method)

 	nested_xpath() (scrapy.loader.ItemLoader method)

 	

 	
 NEWSPIDER_MODULE

 	

 	setting

 	NotConfigured

 	NotSupported

O

 	

 	object_ref (class in scrapy.utils.trackref)

 	OffsiteMiddleware (class in scrapy.spidermiddlewares.offsite)

 	

 	open_spider()

 	

 	(scrapy.statscollectors.StatsCollector method)

P

 	

 	
 parse

 	

 	command

 	parse() (scrapy.spiders.Spider method)

 	parse_node() (scrapy.spiders.XMLFeedSpider method)

 	parse_row() (scrapy.spiders.CSVFeedSpider method)

 	parse_start_url() (scrapy.spiders.CrawlSpider method)

 	PickleItemExporter (class in scrapy.exporters)

 	post_process() (scrapy.contracts.Contract method)

 	PprintItemExporter (class in scrapy.exporters)

 	pre_process() (scrapy.contracts.Contract method)

 	print_live_refs() (in module scrapy.utils.trackref)

 	process_exception() (scrapy.downloadermiddlewares.DownloaderMiddleware method)

 	

 	process_item()

 	process_request() (scrapy.downloadermiddlewares.DownloaderMiddleware method)

 	process_response() (scrapy.downloadermiddlewares.DownloaderMiddleware method)

 	process_results() (scrapy.spiders.XMLFeedSpider method)

 	process_spider_exception() (scrapy.spidermiddlewares.SpiderMiddleware method)

 	process_spider_input() (scrapy.spidermiddlewares.SpiderMiddleware method)

 	process_spider_output() (scrapy.spidermiddlewares.SpiderMiddleware method)

 	process_start_requests() (scrapy.spidermiddlewares.SpiderMiddleware method)

 	
 proxy

 	

 	reqmeta

 	
 Python Enhancement Proposals

 	

 	PEP 8, [1]

Q

 	

 	quotechar (scrapy.spiders.CSVFeedSpider attribute)

R

 	

 	
 RANDOMIZE_DOWNLOAD_DELAY

 	

 	setting

 	re() (scrapy.selector.Selector method)

 	

 	(scrapy.selector.SelectorList method)

 	
 REACTOR_THREADPOOL_MAXSIZE

 	

 	setting

 	
 REDIRECT_ENABLED

 	

 	setting

 	
 REDIRECT_MAX_TIMES

 	

 	setting, [1]

 	
 REDIRECT_PRIORITY_ADJUST

 	

 	setting

 	
 redirect_urls

 	

 	reqmeta

 	RedirectMiddleware (class in scrapy.downloadermiddlewares.redirect)

 	
 REFERER_ENABLED

 	

 	setting

 	RefererMiddleware (class in scrapy.spidermiddlewares.referer)

 	register_namespace() (scrapy.selector.Selector method)

 	remove_namespaces() (scrapy.selector.Selector method)

 	replace() (scrapy.http.Request method)

 	

 	(scrapy.http.Response method)

 	replace_css() (scrapy.loader.ItemLoader method)

 	replace_value() (scrapy.loader.ItemLoader method)

 	replace_xpath() (scrapy.loader.ItemLoader method)

 	
 reqmeta

 	

 	bindaddress

 	cookiejar

 	dont_cache

 	dont_obey_robotstxt

 	dont_redirect

 	dont_retry

 	download_maxsize

 	download_timeout

 	handle_httpstatus_all

 	handle_httpstatus_list

 	proxy

 	redirect_urls

 	Request (class in scrapy.http)

 	request (scrapy.http.Response attribute)

 	
 request_dropped

 	

 	signal

 	

 	request_dropped() (in module scrapy.signals)

 	
 request_scheduled

 	

 	signal

 	request_scheduled() (in module scrapy.signals)

 	Response (class in scrapy.http)

 	
 response_downloaded

 	

 	signal

 	response_downloaded() (in module scrapy.signals)

 	
 response_received

 	

 	signal

 	response_received() (in module scrapy.signals)

 	
 RETRY_ENABLED

 	

 	setting

 	
 RETRY_HTTP_CODES

 	

 	setting

 	
 RETRY_PRIORITY_ADJUST

 	

 	setting

 	
 RETRY_TIMES

 	

 	setting

 	RetryMiddleware (class in scrapy.downloadermiddlewares.retry)

 	ReturnsContract (class in scrapy.contracts.default)

 	
 ROBOTSTXT_OBEY

 	

 	setting

 	RobotsTxtMiddleware (class in scrapy.downloadermiddlewares.robotstxt)

 	Rule (class in scrapy.spiders)

 	rules (scrapy.spiders.CrawlSpider attribute)

 	
 runspider

 	

 	command

S

 	

 	
 SCHEDULER

 	

 	setting

 	ScrapesContract (class in scrapy.contracts.default)

 	scrapy.contracts (module)

 	scrapy.contracts.default (module)

 	scrapy.crawler (module)

 	scrapy.downloadermiddlewares (module)

 	scrapy.downloadermiddlewares.ajaxcrawl (module)

 	scrapy.downloadermiddlewares.chunked (module)

 	scrapy.downloadermiddlewares.cookies (module)

 	scrapy.downloadermiddlewares.defaultheaders (module)

 	scrapy.downloadermiddlewares.downloadtimeout (module)

 	scrapy.downloadermiddlewares.httpauth (module)

 	scrapy.downloadermiddlewares.httpcache (module)

 	scrapy.downloadermiddlewares.httpcompression (module)

 	scrapy.downloadermiddlewares.httpproxy (module)

 	scrapy.downloadermiddlewares.redirect (module)

 	scrapy.downloadermiddlewares.retry (module)

 	scrapy.downloadermiddlewares.robotstxt (module)

 	scrapy.downloadermiddlewares.stats (module)

 	scrapy.downloadermiddlewares.useragent (module)

 	scrapy.exceptions (module)

 	scrapy.exporters (module)

 	scrapy.extensions.closespider (module)

 	scrapy.extensions.closespider.CloseSpider (class in scrapy.extensions.closespider)

 	scrapy.extensions.corestats (module)

 	scrapy.extensions.debug (module)

 	scrapy.extensions.debug.Debugger (class in scrapy.extensions.debug)

 	scrapy.extensions.debug.StackTraceDump (class in scrapy.extensions.debug)

 	scrapy.extensions.logstats (module)

 	scrapy.extensions.memdebug (module)

 	scrapy.extensions.memdebug.MemoryDebugger (class in scrapy.extensions.memdebug)

 	scrapy.extensions.memusage (module)

 	scrapy.extensions.memusage.MemoryUsage (class in scrapy.extensions.memusage)

 	scrapy.extensions.statsmailer (module)

 	scrapy.extensions.statsmailer.StatsMailer (class in scrapy.extensions.statsmailer)

 	scrapy.extensions.telnet (module), [1]

 	scrapy.extensions.telnet.TelnetConsole (class in scrapy.extensions.telnet)

 	scrapy.http (module)

 	scrapy.item (module)

 	scrapy.linkextractors (module)

 	scrapy.linkextractors.lxmlhtml (module)

 	scrapy.loader (module), [1]

 	scrapy.loader.processors (module)

 	scrapy.mail (module)

 	scrapy.pipelines.files (module)

 	scrapy.pipelines.images (module)

 	scrapy.selector (module)

 	scrapy.settings (module)

 	scrapy.signalmanager (module)

 	scrapy.signals (module)

 	scrapy.spidermiddlewares (module)

 	scrapy.spidermiddlewares.depth (module)

 	scrapy.spidermiddlewares.httperror (module)

 	scrapy.spidermiddlewares.offsite (module)

 	scrapy.spidermiddlewares.referer (module)

 	scrapy.spidermiddlewares.urllength (module)

 	scrapy.spiders (module)

 	scrapy.statscollectors (module), [1]

 	scrapy.utils.log (module)

 	

 	scrapy.utils.trackref (module)

 	SelectJmes (class in scrapy.loader.processors)

 	Selector (class in scrapy.selector)

 	selector (scrapy.http.TextResponse attribute)

 	

 	(scrapy.loader.ItemLoader attribute)

 	SelectorList (class in scrapy.selector)

 	send() (scrapy.mail.MailSender method)

 	send_catch_log() (scrapy.signalmanager.SignalManager method)

 	send_catch_log_deferred() (scrapy.signalmanager.SignalManager method)

 	serialize_field() (scrapy.exporters.BaseItemExporter method)

 	set() (scrapy.settings.BaseSettings method)

 	set_stats() (scrapy.statscollectors.StatsCollector method)

 	set_value() (scrapy.statscollectors.StatsCollector method)

 	setmodule() (scrapy.settings.BaseSettings method)

 	
 setting

 	

 	AJAXCRAWL_ENABLED

 	AUTOTHROTTLE_DEBUG

 	AUTOTHROTTLE_ENABLED

 	AUTOTHROTTLE_MAX_DELAY

 	AUTOTHROTTLE_START_DELAY

 	AUTOTHROTTLE_TARGET_CONCURRENCY

 	AWS_ACCESS_KEY_ID

 	AWS_SECRET_ACCESS_KEY

 	BOT_NAME

 	CLOSESPIDER_ERRORCOUNT

 	CLOSESPIDER_ITEMCOUNT

 	CLOSESPIDER_PAGECOUNT

 	CLOSESPIDER_TIMEOUT

 	COMMANDS_MODULE

 	COMPRESSION_ENABLED

 	CONCURRENT_ITEMS

 	CONCURRENT_REQUESTS

 	CONCURRENT_REQUESTS_PER_DOMAIN

 	CONCURRENT_REQUESTS_PER_IP

 	COOKIES_DEBUG

 	COOKIES_ENABLED

 	DEFAULT_ITEM_CLASS

 	DEFAULT_REQUEST_HEADERS

 	DEPTH_LIMIT

 	DEPTH_PRIORITY

 	DEPTH_STATS

 	DEPTH_STATS_VERBOSE

 	DNSCACHE_ENABLED

 	DNSCACHE_SIZE

 	DNS_TIMEOUT

 	DOWNLOADER

 	DOWNLOADER_CLIENTCONTEXTFACTORY

 	DOWNLOADER_CLIENT_TLS_METHOD

 	DOWNLOADER_HTTPCLIENTFACTORY

 	DOWNLOADER_MIDDLEWARES

 	DOWNLOADER_MIDDLEWARES_BASE

 	DOWNLOADER_STATS

 	DOWNLOAD_DELAY

 	DOWNLOAD_HANDLERS

 	DOWNLOAD_HANDLERS_BASE

 	DOWNLOAD_MAXSIZE

 	DOWNLOAD_TIMEOUT

 	DOWNLOAD_WARNSIZE

 	DUPEFILTER_CLASS

 	DUPEFILTER_DEBUG

 	EDITOR

 	EXTENSIONS

 	EXTENSIONS_BASE

 	FEED_EXPORTERS

 	FEED_EXPORTERS_BASE

 	FEED_EXPORT_FIELDS

 	FEED_FORMAT

 	FEED_STORAGES

 	FEED_STORAGES_BASE

 	FEED_STORE_EMPTY

 	FEED_TEMPDIR

 	FEED_URI

 	FILES_EXPIRES

 	FILES_RESULT_FIELD

 	FILES_STORE

 	FILES_STORE_S3_ACL

 	FILES_URLS_FIELD

 	HTTPCACHE_ALWAYS_STORE

 	HTTPCACHE_DBM_MODULE

 	HTTPCACHE_DIR

 	HTTPCACHE_ENABLED

 	HTTPCACHE_EXPIRATION_SECS

 	HTTPCACHE_GZIP

 	HTTPCACHE_IGNORE_HTTP_CODES

 	HTTPCACHE_IGNORE_MISSING

 	HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS

 	HTTPCACHE_IGNORE_SCHEMES

 	HTTPCACHE_POLICY

 	HTTPCACHE_STORAGE

 	HTTPERROR_ALLOWED_CODES

 	HTTPERROR_ALLOW_ALL

 	HTTPPROXY_AUTH_ENCODING

 	IMAGES_EXPIRES

 	IMAGES_MIN_HEIGHT

 	IMAGES_MIN_WIDTH

 	IMAGES_RESULT_FIELD

 	IMAGES_STORE

 	IMAGES_THUMBS

 	IMAGES_URLS_FIELD

 	ITEM_PIPELINES

 	ITEM_PIPELINES_BASE

 	LOG_DATEFORMAT

 	LOG_ENABLED

 	LOG_ENCODING

 	LOG_FILE

 	LOG_FORMAT

 	LOG_LEVEL

 	LOG_STDOUT

 	MAIL_FROM

 	MAIL_HOST

 	MAIL_PASS

 	MAIL_PORT

 	MAIL_SSL

 	MAIL_TLS

 	MAIL_USER

 	MEMDEBUG_ENABLED

 	MEMDEBUG_NOTIFY

 	MEMUSAGE_CHECK_INTERVAL_SECONDS

 	MEMUSAGE_ENABLED

 	MEMUSAGE_LIMIT_MB

 	MEMUSAGE_NOTIFY_MAIL

 	MEMUSAGE_REPORT

 	MEMUSAGE_WARNING_MB

 	METAREFRESH_ENABLED

 	METAREFRESH_MAXDELAY

 	NEWSPIDER_MODULE

 	RANDOMIZE_DOWNLOAD_DELAY

 	REACTOR_THREADPOOL_MAXSIZE

 	REDIRECT_ENABLED

 	REDIRECT_MAX_TIMES, [1]

 	REDIRECT_PRIORITY_ADJUST

 	REFERER_ENABLED

 	RETRY_ENABLED

 	RETRY_HTTP_CODES

 	RETRY_PRIORITY_ADJUST

 	RETRY_TIMES

 	ROBOTSTXT_OBEY

 	SCHEDULER

 	SPIDER_CONTRACTS

 	SPIDER_CONTRACTS_BASE

 	SPIDER_LOADER_CLASS

 	SPIDER_MIDDLEWARES

 	SPIDER_MIDDLEWARES_BASE

 	SPIDER_MODULES

 	STATSMAILER_RCPTS

 	STATS_CLASS

 	STATS_DUMP

 	TELNETCONSOLE_ENABLED

 	TELNETCONSOLE_HOST

 	TELNETCONSOLE_PORT, [1]

 	TEMPLATES_DIR

 	URLLENGTH_LIMIT

 	USER_AGENT

 	
 settings

 	

 	command

 	Settings (class in scrapy.settings)

 	settings (scrapy.crawler.Crawler attribute)

 	

 	(scrapy.spiders.Spider attribute)

 	SETTINGS_PRIORITIES (in module scrapy.settings)

 	
 shell

 	

 	command

 	
 signal

 	

 	engine_started

 	engine_stopped

 	item_dropped

 	item_scraped

 	request_dropped

 	request_scheduled

 	response_downloaded

 	response_received

 	spider_closed

 	spider_error

 	spider_idle

 	spider_opened

 	update_telnet_vars

 	SignalManager (class in scrapy.signalmanager)

 	signals (scrapy.crawler.Crawler attribute)

 	sitemap_alternate_links (scrapy.spiders.SitemapSpider attribute)

 	sitemap_follow (scrapy.spiders.SitemapSpider attribute)

 	sitemap_rules (scrapy.spiders.SitemapSpider attribute)

 	sitemap_urls (scrapy.spiders.SitemapSpider attribute)

 	SitemapSpider (class in scrapy.spiders)

 	Spider (class in scrapy.spiders)

 	spider (scrapy.crawler.Crawler attribute)

 	
 spider_closed

 	

 	signal

 	spider_closed() (in module scrapy.signals)

 	
 SPIDER_CONTRACTS

 	

 	setting

 	
 SPIDER_CONTRACTS_BASE

 	

 	setting

 	
 spider_error

 	

 	signal

 	spider_error() (in module scrapy.signals)

 	
 spider_idle

 	

 	signal

 	spider_idle() (in module scrapy.signals)

 	
 SPIDER_LOADER_CLASS

 	

 	setting

 	
 SPIDER_MIDDLEWARES

 	

 	setting

 	
 SPIDER_MIDDLEWARES_BASE

 	

 	setting

 	
 SPIDER_MODULES

 	

 	setting

 	
 spider_opened

 	

 	signal

 	spider_opened() (in module scrapy.signals)

 	spider_stats (scrapy.statscollectors.MemoryStatsCollector attribute)

 	SpiderLoader (class in scrapy.loader)

 	SpiderMiddleware (class in scrapy.spidermiddlewares)

 	start() (scrapy.crawler.CrawlerProcess method)

 	start_exporting() (scrapy.exporters.BaseItemExporter method)

 	start_requests() (scrapy.spiders.Spider method)

 	start_urls (scrapy.spiders.Spider attribute)

 	
 startproject

 	

 	command

 	stats (scrapy.crawler.Crawler attribute)

 	
 STATS_CLASS

 	

 	setting

 	
 STATS_DUMP

 	

 	setting

 	StatsCollector (class in scrapy.statscollectors)

 	
 STATSMAILER_RCPTS

 	

 	setting

 	status (scrapy.http.Response attribute)

 	stop() (scrapy.crawler.CrawlerProcess method)

 	

 	(scrapy.crawler.CrawlerRunner method)

T

 	

 	TakeFirst (class in scrapy.loader.processors)

 	
 TELNETCONSOLE_ENABLED

 	

 	setting

 	
 TELNETCONSOLE_HOST

 	

 	setting

 	
 TELNETCONSOLE_PORT

 	

 	setting, [1]

 	

 	
 TEMPLATES_DIR

 	

 	setting

 	text (scrapy.http.TextResponse attribute)

 	TextResponse (class in scrapy.http)

U

 	

 	update() (scrapy.settings.BaseSettings method)

 	
 update_telnet_vars

 	

 	signal

 	update_telnet_vars() (in module scrapy.extensions.telnet)

 	url (scrapy.http.Request attribute)

 	

 	(scrapy.http.Response attribute)

 	UrlContract (class in scrapy.contracts.default)

 	

 	urljoin() (scrapy.http.Response method)

 	
 URLLENGTH_LIMIT

 	

 	setting

 	UrlLengthMiddleware (class in scrapy.spidermiddlewares.urllength)

 	
 USER_AGENT

 	

 	setting

 	UserAgentMiddleware (class in scrapy.downloadermiddlewares.useragent)

V

 	

 	
 version

 	

 	command

 	

 	
 view

 	

 	command

X

 	

 	XMLFeedSpider (class in scrapy.spiders)

 	XmlItemExporter (class in scrapy.exporters)

 	

 	XmlResponse (class in scrapy.http)

 	xpath() (scrapy.http.TextResponse method)

 	

 	(scrapy.selector.Selector method)

 	(scrapy.selector.SelectorList method)

 Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Scrapy 1.2.0dev2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

_static/selectors-sample1.html

 Name: My image 1
[image:]
 Name: My image 2
[image:]
 Name: My image 3
[image:]
 Name: My image 4
[image:]
 Name: My image 5
[image:]

_images/firebug3.png
web Pages n Google PageRank order View in alph

J— - hit hon.chy

Guides ay peraons and non-mecical usere and medial practiioners to useful and refiable orline medical and health inforation. Provid
J— - hitg bbe.co.ukfhealthy

Features current news plus archives, guides by subject, "Ask a Doctor® inquiry feature, a searchable conditions database, message boar
—_ - hit aolhealth.com

Find advice, information about diseases and drugs, fitness tips, and news items.

#" Inspect Edit ' td < tr < thody < table < form < body < html

HTML] CSS Script DOM Net Options -
® oo o o o
= 100+ o 1 o
o top!
http:/ /s, google. con/intl/en/dirhelp. htwl #pagerank

Done

[<Htnl¥Pathselec td[descendant ahref, “spagerank”)]]/following-sibling
<HtnLxPathselec ath=//td[descendant ahref, “#pagerank”)]]/following-sibling
<HinLxPathselec ath=//td[descendant ahref, “#pagerank”)]]/following-sibling
td[descendant ahref, “#pagerank”)]]/following-sibling
td[descendant ahref, “#pagerank”)]]/following-sibling
‘tdldescendant :alcontains (ahref, "#pagerank”)]1/following-sibling

ntains (ehref, "#pagerank”)1]/following-sibling: :td//a") . extra

webnd. con/">NebMD</a
hon.ch/">Health On the Net Foundations
0. uk/health Health'
Thealth, con Health<
intelihealth. con/">InteliHealth</a
. judgehealth.org.uk/">Judge: Web Sites for Healths

_images/firebug1.png
%" Inspect Edit 1 a<b<p < td<tr< thody < table < p < center < body < html

Console | HTML | CSS Script DOM _ Net

The web organized by topic into categories.

Arts Home Region
Movies, Music, Television, Consurmers, Homeowners, Family, Asia, Eurc
Business Kids and Teens Science
Industries, Finance, Jobs, Computers, Entertainment, School, Biology. P
Computers News Shoppi
Hardware, Internet, Software, ... Media, Newspapers, Current Events, ... Autos, Cle
Games Recreation Society
Board, Roleplaying, Video, Food, Outdoors, Travel, Issues, Pe
Health Reference Sports
Alternative, Fitness, Medicin Education, Libraries, Maps, Basketbal

<>
ps
ps
[P,
B <>

<font size

</p>

<

hitp://www.google.com/Top/Health/

_static/comment-bright.png

_images/scrapy_architecture.png
Scheduler

Requests Middlewares

Spider

Items Middlewares Responses

_images/firebug2.png
tnvironmental Health (359) Products and shopping (61) Weignt Loss (357)
Eitness (s61) Professions (1692) Women's Heailth (764)

Healthcare Industry (6380)

Related Categories:
Business > Business Services > Consulting > Medical and Life Sciences (321)
Kids and Teens > Health (1150)

Recreation > Humor > Medical (26)
Science > Social Sciences > Communication > Health Communication (3)

Shopping > Health (7391)
Society > Issues > Health (2592)

— Health On the Net Foundation - http:/www.hon.ch/
Guides lay persons and non-medical users and medical practitioners to useful and reliable online medical and health informat
f— BBC Health - http:/www.bbe.co.ukihealth/

Features current news plus archives, guides by subject, "Ask a Doctor® inquiry feature, a searchable conditions database, me
AOQI Health - httn i

Anlhealth com!

Inspect Edit + a < font < td < tr < thody < table < form < body < htm

Console | HTML | Cs5 _ Script _DOM et

Ererante wigTh="TI TrspacIng= Cepaman poraer=
& <tbody>
B <tr valign="top">
B <td width="g%">
& <td>

5 <font_face="

 A health resources for consumers, physicians, nurses, and educators. Includes
foruns, health quizzes and consumer product updates.
font

Done

topics/djangoitem.html

 Navigation

 		
 index

 		
 modules |

 		Scrapy 1.2.0dev2 documentation »

DjangoItem

DjangoItem has been moved into a separate project.

It is hosted at:

https://github.com/scrapy-plugins/scrapy-djangoitem

 © Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

topics/scrapyd.html

 Navigation

 		
 index

 		
 modules |

 		Scrapy 1.2.0dev2 documentation »

Scrapyd

Scrapyd has been moved into a separate project.

Its documentation is now hosted at:

http://scrapyd.readthedocs.org/en/latest/

 © Copyright 2008-2016, Scrapy developers.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

