

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	scrapy-mosquitera 0.1.0 documentation

scrapy-mosquitera - tools for filtered scraping

[image: https://travis-ci.org/scrapinghub/scrapy-mosquitera.svg?branch=master]
 [https://travis-ci.org/scrapinghub/scrapy-mosquitera][image: https://img.shields.io/pypi/v/scrapy-mosquitera.svg?maxAge=2592000]
 [https://pypi.python.org/pypi/scrapy-mosquitera][image: https://img.shields.io/pypi/pyversions/scrapy-mosquitera.svg?maxAge=2592000]
[image: https://img.shields.io/pypi/l/scrapy-mosquitera.svg?maxAge=2592000]

How can I scrape items off a site from the last five days?

Scrapy User

That question started the development of scrapy-mosquitera, a tool to help
you restrict crawling and scraping scope using matchers.

Matchers are simple Python functions that return the validity of an element
under certain restrictions.

The first goal in the project was date matching, but you can create your own
matcher for your own crawling and scraping needs.

How it works

In the case where the dates are available in the URLs, you will just use
the matcher function directly in your code:

from scrapy_mosquitera.matchers import date_matches

 date = scrape_date_from_url(url)

 if date_matches(data=date, after='5 days ago'):
 yield Request(url=url, callback=self.parse_item)

To handle the case when the date is only available at the time when you scrape
the items, scrapy-mosquitera provides a PaginationMixin to control the
crawl according to the dates scraped.

Head on to the remaining of the documentation [http://scrapy-mosquitera.readthedocs.io] for more details.

Installation

The quick way:

pip install scrapy-mosquitera

Documentation contents

	Matchers
	Creating your own matcher

	Date Matchers

	PaginationMixin

	Examples
	Dates present

	Dates absent

 Copyright 2016, Scrapinghub.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	scrapy-mosquitera 0.1.0 documentation

Matchers

Creating your own matcher

A matcher is a simple function taking the data to be evaluated as argument(s)
and returning a boolean value according to its validity.

Current matchers

Date Matchers

The date matchers use a lot of words to delimit their date range.
They are separated to set the maximum and minimum date.
In order of precedence they are for minimum date:

	min_date

	on

	after

	since

And for maximum date:

	max_date

	on

	before

Their values could be dates parseables by dateparser [https://github.com/scrapinghub/dateparser], date or datetime objects.
They also support None value, so that limit isn’t verified.

	
scrapy_mosquitera.matchers.date_matches(data, **kwargs)

	Return True if data is a date in the valid date range.
Otherwise False.

	Parameters:	
	data (string, date or datetime) – the date to validate

	kwargs (dict) – special delimitation parameters

	Return type:	bool

	
scrapy_mosquitera.matchers.date_in_period_matches(data, period='day', check_maximum=True, **kwargs)

	Return True if data is a date in the valid date range defined by period.
Otherwise False.

This matcher is ideal for cases like the following one.

A forum post is created at 04-10-2016. Then on 04-28-2016,
I try to scrape the forum covering the last few days.
However, the forum doesn’t display the post date but some sentences like X weeks ago.
So, in the forum nomenclature, the posts fall in the next table:

	Start date
	End date
	Name

	04-15-2016
	04-21-2016
	One week ago

	04-08-2016
	04-14-2016
	Two weeks ago

	04-01-2016
	04-07-2016
	Three weeks ago

On 04-28-2016, if I calculate two weeks ago it will return 04-14-2016.
Comparing it to the forum meaning, we’re working with fixed dates and
the forum with date ranges.
Then, if I scrape until 04-10-2016, the crawl will miss the posts
from 04-10-2016 to 04-13-2016 since the last valid date would be two weeks ago
(three weeks ago is out of scope (04-07-2016 < 04-10-2016)).

This matcher comes to solve this, so you can provide the period (in this case week)
and you won’t miss items by coverage issues.
However, it’s inclusive because to satisfy the date 04-10-2016 it will include the full week
[04-08-2016, 04-14-2016], so a post-filtering should be made to only allow valid items.

	Parameters:	
	data (string, date or datetime) – the date to validate

	period (string) – the period to evaluate (‘day’, ‘month’, ‘year’)

	check_maximum (bool) – check maximum date

	kwargs (dict) – special delimitation parameters

	Return type:	bool

 Copyright 2016, Scrapinghub.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	scrapy-mosquitera 0.1.0 documentation

PaginationMixin

PaginationMixin is a mixin with a group of decorators
to control the logic of requesting the next page.
It has an interesting flow, which could be summarized as:

	At the listing parsing method, every item page request is yielded.
Each request is marked to be associated with the current response
and any pagination requests is enqueued.

	At the item parsing method, the matching logic is applied and
each valid item and its related request is registered.

	After comparing the yielded requests at step 1 and the requests
which yielded valid items at step 2, the mixin decides
to dequeue the next page request only if every request yielded a valid item.

To understand better its working, please review the examples.

	
class scrapy_mosquitera.mixin.PaginationMixin(*args, **kwargs)

	
	
static deregister_response(fn)

	Deregister response from the registry.

It’s a decorator.

	
static enqueue_next_page_requests(fn)

	Enqueue next page requests to be only requested if they meet the conditions.

It’s a decorator.

	
static register_requests(fn)

	Register requests yielded from fn in the registry
using as key its parent response id.

It’s a decorator.

 Copyright 2016, Scrapinghub.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	scrapy-mosquitera 0.1.0 documentation

Examples

scrapy-mosquitera aims scenarios where there are listings involved.
However, scrapy-mosquitera takes a different approach whether the data to match
is present in the listing or not.
As it started for date validation,
let’s review what to do when dates are present or absent.

Dates present

In example, we’ll consider a blog archive page.

<div>
 <h3>Title for Post 1</h3>
 Link
 Posted on 2016-04-01
</div>
<div>
 <h3>Title for Post 2</h3>
 Link
 Posted on 2016-04-02
</div>
<div>
 <h3>Title for Post 3</h3>
 Link
 Posted on 2016-04-03
</div>

It’s the simpler case since we can do the matching
at the method parsing the listing.
We will use date_matches to do the match
and it let us control the pagination in an easy way.

from scrapy_mosquitera.matchers import date_matches

def parse(self, response):
 continue_to_next_page = True

 for news in response.xpath("//div"):
 date = news.xpath("./span/text()").re_first('Posted on (.*)')
 path_url = news.xpath("./a/@href").extract_first()
 url = response.urljoin(path_url)

 if date_matches(data=date, after='5 days ago'):
 yield Request(url=url, callback=self.parse_item)
 else:
 continue_to_next_page = False

 if continue_to_next_page:
 yield self.call_next_page(response)

Dates absent

For this case, we’ll consider the following blog archive page layout.

<div>
 <h3>Title for Post 1</h3>
 Link
</div>
<div>
 <h3>Title for Post 2</h3>
 Link
</div>
<div>
 <h3>Title for Post 3</h3>
 Link
</div>

Dates aren’t present on the listing, but they are in each post page.

<h1>Title for Post</h1>
<div>Posted on 2016-04-02</div>
[...]

Here comes PaginationMixin which is a mixin specialize for these cases.
To see it in action in a comparable way with the first example,
let’s start using their decorators.
@PaginationMixin.register_requests
has to be applied to the listing parsing method.

from scrapy_mosquitera.matchers import PaginationMixin

@PaginationMixin.register_requests
def parse(self, response):
 for news in response.xpath("//div"):
 path_url = news.xpath("./a/@href").extract_first()
 url = response.urljoin(path_url)

 yield Request(url=url, callback=self.parse_item)

 yield self.call_next_page(response)

Unfortunately, each time that the listing parsing method is called
every item request will be made since we don’t know yet
if its content is valid or not.
The method in charge of returning the next page request,
in this case call_next_page,
has to be decorated with
@PaginationMixin.enqueue_next_page_requests.

@PaginationMixin.enqueue_next_page_requests
def call_next_page(self, response):
 return Request([...])

This decorator saves the request to be called only if it’s necessary.
Then, the last decorator has to be applied on the method parsing the item
since it has to register if a valid item was returned.
This decorator is
@PaginationMixin.deregister_response.

@PaginationMixin.deregister_response
def parse_item(self, response):
 date = response.xpath("//div/text").re_first('Posted on (.*)')
 item = {'created_at': date}

 if date_matches(data=item['created_at'], after='5 days ago'):
 return item

After that, we’re ready to run our spider.
First, it will make three requests, one for each post page and the pagination request will be saved.
Then, if the three post are valid, they will be scraped and the next page request will be made.
Otherwise, it only scrape the valid posts and the spider run will finish.

 Copyright 2016, Scrapinghub.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	scrapy-mosquitera 0.1.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 scrapy_mosquitera	

 	
 	
 scrapy_mosquitera.matchers	

 Copyright 2016, Scrapinghub.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	scrapy-mosquitera 0.1.0 documentation

Index

 D
 | E
 | P
 | R
 | S

D

 	

 	date_in_period_matches() (in module scrapy_mosquitera.matchers)

 	date_matches() (in module scrapy_mosquitera.matchers)

 	

 	deregister_response() (scrapy_mosquitera.mixin.PaginationMixin static method)

E

 	

 	enqueue_next_page_requests() (scrapy_mosquitera.mixin.PaginationMixin static method)

P

 	

 	PaginationMixin (class in scrapy_mosquitera.mixin)

R

 	

 	register_requests() (scrapy_mosquitera.mixin.PaginationMixin static method)

S

 	

 	scrapy_mosquitera.matchers (module)

 Copyright 2016, Scrapinghub.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		scrapy-mosquitera 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Scrapinghub.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

