
ScoringEngine Documentation
Release latest

pwnbus

May 02, 2023

Contents

1 Overview 1
1.1 Why? . 1
1.2 How does it work? . 1
1.3 Screenshots . 3

2 Installation 7
2.1 Docker . 7
2.2 Manual . 8

3 Configuration 15
3.1 Location to config file . 15
3.2 Configuration Keys . 15

4 Implemented Checks 17
4.1 DNS . 17
4.2 Elasticsearch . 17
4.3 FTP . 17
4.4 HTTP(S) . 18
4.5 ICMP . 18
4.6 IMAP(S) . 18
4.7 LDAP . 18
4.8 MSSQL . 18
4.9 MySQL . 19
4.10 NFS . 19
4.11 POP3(S) . 19
4.12 PostgreSQL . 19
4.13 RDP . 19
4.14 SMB . 20
4.15 SMTP(S) . 20
4.16 SSH . 20
4.17 VNC . 20
4.18 WinRM . 21

5 Development 23
5.1 Initial Setup . 23
5.2 Run Services . 24
5.3 Run Tests . 24

i

5.4 Modifying Documentation . 25

6 Create New Service Check 27
6.1 Create Check Source File . 27
6.2 Create Service Definition . 29
6.3 Contribute Check to Repository . 29

ii

CHAPTER 1

Overview

1.1 Why?

The goal of the ScoringEngine is to keep track of service up time in a blue teams/red team competition.

1.2 How does it work?

The general idea of the ScoringEngine is broken up into 3 separate processes, Engine, Worker, and Web.

1.2.1 Engine

The engine is responsible for tasking Checks that are used to verify network services each round, and determin-
ing/saving their results to the database. This process runs for the entire competition, and will sleep for a certain
amount of time before starting on to the next round.

1.2.2 Worker

The worker connects to Redis and waits for Checks to get tasked in order to run them against . Once it receives a
Check, it executes the command and sends the output back to the Engine.

1.2.3 Web

The web application provides a graphical view of the Competition. This includes things like a bar graph of all team’s
scores as well as a table of the current round’s results. This can also be used to configure the properties of each service
per team.

1

ScoringEngine Documentation, Release latest

1.2.4 External Resources

We currently use MySQL as the database, and Redis as the data store for tasks while they are getting scheduled.

1.2.5 Putting it all together

• The Engine starts

• The first Round starts

• The Engine tasks Checks out to the Workers

• The Workers execute the Checks and return the output to the Engine

• The Engine waits for all Checks to finish

• The Engine determines the results of each Check, and saves the results to the DB

• The Engine ends the Round

• The Engine sleeps for some time

• The second Round starts

• . . .

2 Chapter 1. Overview

https://www.mysql.com/products/community/
https://redis.io/

ScoringEngine Documentation, Release latest

1.3 Screenshots

1.3.1 Scoreboard

1.3. Screenshots 3

ScoringEngine Documentation, Release latest

1.3.2 Overview

1.3.3 Team Services

4 Chapter 1. Overview

ScoringEngine Documentation, Release latest

1.3.4 Specific Service

1.3.5 Round Status

1.3. Screenshots 5

ScoringEngine Documentation, Release latest

1.3.6 Admin Team View

6 Chapter 1. Overview

CHAPTER 2

Installation

2.1 Docker

Note: It takes a minute or 2 for all of the containers to start up and get going!

2.1.1 TestBed Environment

make rebuild-testbed-new

This command will build, stop any pre-existing scoring engine containers, and start a new environment. As part of the
environment, multiple containers will be used as part of the testbed environment.

2.1.2 Environment Variables

We use certain environment variables to control the functionality of certain docker containers.

SCORINGENGINE_OVERWRITE_DB If set to true, the database will be deleted and then recreated
during startup.

SCORINGENGINE_EXAMPLE If set to true, the database is populated with sample db, and the engine
container will be paused. This is useful for doing development on the web app.

You can set each environment variable before each command executed, for example:

SCORINGENGINE_EXAMPLE=true make rebuild-new

7

ScoringEngine Documentation, Release latest

2.1.3 Production Environment

Modify the bin/competition.yaml file to configure the engine according to your competition environment. Then, run
the following make command to build, and run the scoring engine.

Warning: This will delete the previous database, exclude the ‘new’ part from the command to not rebuild the db.

make rebuild-new

Then, to ‘pause’ the scoring engine (Ex: At the end of the day):

docker-compose -f docker-compose.yml stop engine

To ‘unpause’ the engine:

docker-compose -f docker-compose.yml start engine

2.2 Manual

2.2.1 Base Setup

Note: Currently, the only OS we have documentation on is Ubuntu 16.04.

Install dependencies via apt-get

apt-get update
apt-get install -y python3.5 wget git python3.5-dev build-essential libmysqlclient-dev

Create engine user

useradd -m engine

Download and Install pip

wget -O /root/get-pip.py https://bootstrap.pypa.io/get-pip.py
python3.5 /root/get-pip.py
rm /root/get-pip.py

Setup virtualenvironment

8 Chapter 2. Installation

ScoringEngine Documentation, Release latest

pip install virtualenv
su engine
cd ~/
mkdir /home/engine/scoring_engine
virtualenv -p /usr/bin/python3.5 /home/engine/scoring_engine/env

Setup src directory

git clone https://github.com/scoringengine/scoringengine /home/engine/scoring_engine/
→˓src

Install scoring_engine src python dependencies

source /home/engine/scoring_engine/env/bin/activate
pip install -e /home/engine/scoring_engine/src/

Copy/Modify configuration

cp /home/engine/scoring_engine/src/engine.conf.inc /home/engine/scoring_engine/src/
→˓engine.conf
vi /home/engine/scoring_engine/src/engine.conf

Create log file locations (run as root)

mkdir /var/log/scoring_engine
chown -R syslog:adm /var/log/scoring_engine

Copy rsyslog configuration

cp /home/engine/scoring_engine/src/configs/rsyslog.conf /etc/rsyslog.d/10-scoring_
→˓engine.conf

Restart rsyslog

systemctl restart rsyslog

2.2.2 Web

Install MySQL Server

apt-get install -y mariadb-server
sed -i -e 's/127.0.0.1/0.0.0.0/g' /etc/mysql/mysql.conf.d/mysqld.cnf
systemctl restart mysql

2.2. Manual 9

ScoringEngine Documentation, Release latest

Setup MySQL

mysql -u root -p<insert password set during installation>
CREATE DATABASE scoring_engine;
CREATE USER 'engineuser'@'%' IDENTIFIED BY 'enginepass';
GRANT ALL on scoring_engine.* to 'engineuser'@'%' IDENTIFIED by 'enginepass';

Install Nginx

apt-get install -y nginx

Setup SSL in Nginx

mkdir /etc/nginx/ssl
cd /etc/nginx/ssl
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout server.key -out server.crt

Copy nginx config

cp /home/engine/scoring_engine/src/configs/nginx.conf /etc/nginx/sites-available/
→˓scoring_engine.conf
ln -s /etc/nginx/sites-available/scoring_engine.conf /etc/nginx/sites-enabled/
rm /etc/nginx/sites-enabled/default
systemctl restart nginx

Setup web service

cp /home/engine/scoring_engine/src/configs/web.service /etc/systemd/system/scoring_
→˓engine-web.service

Modify configuration

vi /home/engine/scoring_engine/src/engine.conf

Install uwsgi

pip install uwsgi

Start web

systemctl enable scoring_engine-web
systemctl start scoring_engine-web

10 Chapter 2. Installation

ScoringEngine Documentation, Release latest

Monitoring

journalctl -f _SYSTEMD_UNIT=scoring_engine-web.service
tail -f /var/log/scoring_engine/web.log
tail -f /var/log/scoring_engine/web-nginx.access.log
tail -f /var/log/scoring_engine/web-nginx.error.log

2.2.3 Engine

Install Redis

apt-get install -y redis-server

Setup Redis to listen on external interface

sed -i -e 's/bind 127.0.0.1/bind 0.0.0.0/g' /etc/redis/redis.conf
systemctl restart redis

Setup Engine service (run as root)

cp /home/engine/scoring_engine/src/configs/engine.service /etc/systemd/system/scoring_
→˓engine-engine.service

Modify configuration

su engine
vi /home/engine/scoring_engine/src/engine.conf

Setup scoring engine teams and services

su engine
vi /home/engine/scoring_engine/src/bin/competition.yaml
source /home/engine/scoring_engine/env/bin/activate
/home/engine/scoring_engine/src/bin/setup

Start engine service (must run as root)

systemctl start scoring_engine-engine

Monitor engine

journalctl -f _SYSTEMD_UNIT=scoring_engine-engine.service
tail -f /var/log/scoring_engine/engine.log

2.2. Manual 11

ScoringEngine Documentation, Release latest

2.2.4 Worker

Modify hostname

hostname <INSERT CUSTOM HOSTNAME HERE>

Setup worker service (run as root)

cp /home/engine/scoring_engine/src/configs/worker.service /etc/systemd/system/scoring_
→˓engine-worker.service

Modify configuration

Change REDIS host/port/password fields to main engine host::

vi /home/engine/scoring_engine/src/engine.conf

Modify worker to customize number of processes. Append ‘–concurrency <num of processes>’ to the celery command
line. If not specified, it defaults to # of CPUs.

vi /home/engine/scoring_engine/src/bin/worker

Start worker service (must run as root)

systemctl enable scoring_engine-worker
systemctl start scoring_engine-worker

Monitor worker

journalctl -f _SYSTEMD_UNIT=scoring_engine-worker.service
tail -f /var/log/scoring_engine/worker.log

Install dependencies for DNS check

apt-get install -y dnsutils

Install dependencies for HTTP/HTTPS check

apt-get install -y curl

Install dependencies for most of the checks

apt-get install -y medusa

12 Chapter 2. Installation

ScoringEngine Documentation, Release latest

Install dependencies for SSH check

source /home/engine/scoring_engine/env/bin/activate && pip install -I "cryptography>
→˓=2.4,<2.5" && pip install "paramiko>=2.4,<2.5"

Install dependencies for LDAP check

apt-get install -y ldap-utils

Install dependencies for Postgresql check

apt-get install -y postgresql-client

Install dependencies for Elasticsearch check

source /home/engine/scoring_engine/env/bin/activate && pip install -I "requests>=2.21,
→˓<2.22"

Install dependencies for SMB check

source /home/engine/scoring_engine/env/bin/activate && pip install -I "pysmb>=1.1,<1.2
→˓"

Install dependencies for RDP check

apt-get install -y freerdp-x11

Install dependencies for MSSQL check

apt-get install -y apt-transport-https
curl -s https://packages.microsoft.com/keys/microsoft.asc | apt-key add -
curl -s https://packages.microsoft.com/config/ubuntu/16.04/prod.list | tee /etc/apt/
→˓sources.list.d/msprod.list
apt-get update
ACCEPT_EULA=Y apt-get install -y locales mssql-tools unixodbc-dev
echo "en_US.UTF-8 UTF-8" >> /etc/locale.gen
locale-gen

Install dependencies for SMTP/SMTPS check

cp /home/engine/scoring_engine/src/scoring_engine/checks/bin/smtp_check /usr/bin/smtp_
→˓check
cp /home/engine/scoring_engine/src/scoring_engine/checks/bin/smtps_check /usr/bin/
→˓smtps_check

(continues on next page)

2.2. Manual 13

ScoringEngine Documentation, Release latest

(continued from previous page)

chmod a+x /usr/bin/smtp_check
chmod a+x /usr/bin/smtps_check

Install dependencies for NFS check

apt-get install -y libnfs-dev
source /home/engine/scoring_engine/env/bin/activate && pip install -I "libnfs==1.0.
→˓post4"

Install dependencies for OpenVPN check

apt-get install -y openvpn iproute2 sudo
cp /home/engine/scoring_engine/src/docker/worker/sudoers /etc/sudoers

Install dependencies for Telnet check

source /home/engine/scoring_engine/env/bin/activate && pip install -I "telnetlib3==1.
→˓0.1"

14 Chapter 2. Installation

CHAPTER 3

Configuration

3.1 Location to config file

3.1.1 Docker

Note: This file needs to be edited before running the make commands.

<path to source root>/docker/engine.conf.inc

3.1.2 Manual

Note: Need to restart each scoring engine service once the config is modified.

/home/engine/scoring_engine/src/engine.conf

3.2 Configuration Keys

Note: Each of these config keys can be expressed via environment variables (and take precendence over the values
defined in the file). IE: To define target_round_time, I’d set SCORINGENGINE_TARGET_ROUND_TIME=3.

15

ScoringEngine Documentation, Release latest

Key Name Description
checks_location Local path to directory of checks
target_round_time Length of time (seconds) the engine should target per round
worker_refresh_time Amount of time (seconds) the engine will sleep for in-between polls of

worker status
worker_num_concurrent_tasks The number of concurrent tasks the worker will run. Set to -1 to default to

number of processors.
worker_queue The queue name for a worker to pull tasks from. This can be used to control

which workers get which service checks. Default is ‘main’
timezone Local timezone of the competition
debug Determines wether or not the engine should be run in debug mode (useful

for development). The worker will also display output from all checks.
db_uri Database connection URI
cache_type The type of storage for the cache. Set to null to disable caching
redis_host The hostname/ip of the redis server
redis_port The port of the redis server
redis_password The password used to connect to redis (if no password, leave empty)

16 Chapter 3. Configuration

CHAPTER 4

Implemented Checks

4.1 DNS

Queries a DNS server for a specific record

Custom Properties:

qtype type of record (A, AAAA, CNAME, etc)
domain domain/host to query for

4.2 Elasticsearch

Uses python requests to insert message and then query for same message

Custom Properties:

index index to use to insert the message
doc_type type of the document

4.3 FTP

Uses python ftplib to login to an FTP server, upload a file, login again to FTP and download file

Uses Accounts

Custom Properties:

remotefilepath absolute path of file on remote server to upload/download
filecontents contents of the file that we upload/download

17

ScoringEngine Documentation, Release latest

4.4 HTTP(S)

Sends a GET request to an HTTP(S) server

Custom Properties:

useragent specific useragent to use in the request
vhost vhost used in the request
uri uri of the request

4.5 ICMP

Sends an ICMP Echo Request to server

Custom Properties: none

4.6 IMAP(S)

Uses medusa to login to an imap server

Uses Accounts

Custom Properties:

domain domain of the username

4.7 LDAP

Uses ldapsearch to login to ldap server. Once authenticated, it performs a lookup of all users in the same domain

Uses Accounts

Custom Properties:

domain domain of the username
base_dn base dn value of the domain (Ex: dc=example,dc=com)

4.8 MSSQL

Logs into a MSSQL server, uses a database, and executes a specific SQL command

Uses Accounts

Custom Properties:

database database to use before running command
command SQL command that will execute

18 Chapter 4. Implemented Checks

ScoringEngine Documentation, Release latest

4.9 MySQL

Logs into a MySQL server, uses a database, and executes a specific SQL command

Uses Accounts

Custom Properties:

database database to use before running command
command SQL command that will execute

4.10 NFS

Uses python libnfs to login to an NFS server, write a file, login again to NFS and read a file

Custom Properties:

remotefilepath absolute path of file on remote server to upload/download
filecontents contents of the file that we upload/download

4.11 POP3(S)

Uses medusa to login to an pop3 server

Uses Accounts

Custom Properties:

domain domain of the username

4.12 PostgreSQL

Logs into a postgresql server, selects a database, and executes a SQL command

Uses Accounts

Custom Properties:

database database to use before running command
command SQL command that will execute

4.13 RDP

Logs into a system using RDP with an account/password

Uses Accounts

Custom Properties: none

4.9. MySQL 19

ScoringEngine Documentation, Release latest

4.14 SMB

Logs into a system using SMB with an account/password, and hashes the contents of a specific file on a specific share

Uses Accounts

Custom Properties:

share name of the share to connect to
file local path of the file to access
hash SHA256 hash of the contents of the file

4.15 SMTP(S)

Logs into an SMTP server and sends an email

Uses Accounts

Custom Properties:

touser address that the email will be sent to
subject subject of the email
body body of the email

4.16 SSH

Logs into a system using SSH with an account/password, and executes command(s)

Note: Each command will be executed independently of each other in a separate ssh connection.

Uses Accounts

Custom Properties:

commands ‘;’ delimited list of commands to run (Ex: id;ps)

4.17 VNC

Connects and if specified, will login to a VNC server

Uses Accounts (optional)

Custom Properties: none

20 Chapter 4. Implemented Checks

ScoringEngine Documentation, Release latest

4.18 WinRM

Logs into a system using WinRM with an account/password, and executes command(s)

Uses Accounts

Custom Properties:

commands ‘;’ delimited list of commands to run (Ex: ipconfig /all;whoami)

4.18. WinRM 21

ScoringEngine Documentation, Release latest

22 Chapter 4. Implemented Checks

CHAPTER 5

Development

Note: Currently we support 2 ways of working on the Scoring Engine. You can either use the existing Docker
environment, or you can run each service locally using python 3. If you choose to do your development locally, we
recommend using virtual environments.

5.1 Initial Setup

These steps are for if you want to do your development locally and run each service locally as well.

5.1.1 Create Config File

cp engine.conf.inc engine.conf
sed -i '' 's/debug = False/debug = True/g' engine.conf

Hint: If debug is set to True, the web ui will automatically reload on changes to local file modifications, which can
help speed up development. This config setting will also tell the worker to output all check output to stdout.

5.1.2 Install Required Dependencies

pip install -e .

23

installation/docker.html
installation/docker.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/#lower-level-virtualenv

ScoringEngine Documentation, Release latest

5.1.3 Populate Sample DB

python bin/setup --example --overwrite-db

5.2 Run Services

5.2.1 Web UI

python bin/web

Then, access localhost:5000

Table 1: Credentials
Username Password
whiteteamuser testpass
redteamuser testpass
team1user1 testpass
team2user1 testpass
team2user2 testpass

Note: The engine and worker do NOT need to be running in order to run the web UI.

5.2.2 Engine

Both the engine and worker services require a redis server to be running. Redis can be easily setup by using the
existing docker environment.

python bin/engine

5.2.3 Worker

python bin/worker

5.3 Run Tests

We use the pytest testing framework.

Note: The tests use a separate db (sqlite in memory), so don’t worry about corrupting a production db when running
the tests.

First, we need to install the dependencies required for testing.

24 Chapter 5. Development

http:localhost:5000
https://docs.pytest.org/en/latest/

ScoringEngine Documentation, Release latest

pip install -r tests/requirements.txt

Next, we run our tests

pytest tests

Hint: Instead of specifying the tests directory, you can specify specific file(s) to run: pytest
tests/scoring_engine/test_config.py

5.4 Modifying Documentation

We use sphinx to build the documentation.

First, we need to install the dependencies required for documentation.

pip install -r docs/requirements.txt

Next, we build our documentation in html format.

cd docs
make html
open build/html/index.html

5.4. Modifying Documentation 25

http://www.sphinx-doc.org/en/master/

ScoringEngine Documentation, Release latest

26 Chapter 5. Development

CHAPTER 6

Create New Service Check

Each service check (DNS, SSH, ICMP etc) are essentially simple commands that the worker will execute and gather
the output of. This output is then handled by the engine to determine if a service check is successful or not for that
round.

For the sake of explaination, we’ll be walking through our documentation by taking a look at the SSH check.

6.1 Create Check Source File

Each check is stored in the scoring_engine/checks directory.

Let’s take a look at what the SSH check file looks like (scoring_engine/checks/ssh_check.py):

1 class SSHCheck(BasicCheck):
2 required_properties = ['commands']
3 CMD = CHECKS_BIN_PATH + '/ssh_check {0} {1} {2} {3} {4}'
4

5 def command_format(self, properties):
6 account = self.get_random_account()
7 return (
8 self.host,
9 self.port,

10 account.username,
11 account.password,
12 properties['commands']
13)

Note: The main point of each check source code, is to generate a command string. The format of this string is defined
in the CMD variable. The plugin executes the command_format function, which outputs a list of the parameters to fill
in the formatted CMD variable.

27

https://github.com/scoringengine/scoringengine/blob/master/scoring_engine/checks

ScoringEngine Documentation, Release latest

• Line 1 - This is the Class name of the check, and will need to be something you reference in
bin/competition.yaml

• Line 2 - We specificy what properties this check requires. This can be any value, as long as it’s defined in
bin/competition.yaml.

• Line 3 - This is the format of the command. The SSH Check requires an additional file to be created in
addition to this file, which will be stored in CHECKS_BIN_PATH (this is scoring_engine/checks/bin). We’re
also specifying placeholders as parameters, as we will generate dynamically. If the binary that the command
will be running is already on disk, (like ftp or nmap), then we don’t need to use the CHECKS_BIN_PATH value,
we can reference the absolute path specifically.

• Line 5 - This is where we specify the custom parameters that will be passed to the CMD variable. We return a
list of parameters that gets filled into the CMD.

• Line 6 - This function provides the ability to randomly select an account to use for credentials. This allows the
engine to randomize which credentials are used each round.

Now that we’ve created the source code file, let’s look at what custom shell script we’re referring to in the check source
code.

#!/usr/bin/env python

A scoring engine check that logs into SSH and runs a command
The check will login each time and run ONE command
The idea of running separate sessions is to verify
the state of the machine was changed via SSH
IE: Login, create a file, logout, login, verify file is still there, logout
#
To install: pip install -I "cryptography>=2.4,<2.5" && pip install "paramiko>=2.4,
→˓<2.5"

import sys
import paramiko

if len(sys.argv) != 6:
print("Usage: " + sys.argv[0] + " host port username password commands")
print("commands parameter supports multiple commands, use ';' as the delimeter")
sys.exit(1)

host = sys.argv[1]
port = sys.argv[2]
username = sys.argv[3]
password = sys.argv[4]
commands = sys.argv[5].split(';')

RUN SOME CODE
last_command_output = "OUTPUT FROM LAST COMMAND"

print("SUCCESS")
print(last_command_output)

For the sake of copy/paste, I’ve removed what code is actually run for SSH, but that can be seen here.

As we can see, this is just a simple script (and can in fact be any language as long as it’s present on the worker), that
takes in a few parameters, and prints something to the screen. The engine takes the output from each command, and de-
termines if a check is successful by matching that against the matching_content value defined in bin/competition.yaml.
Any output from this command will also get presented in the Web UI, so it can be used for troubleshooting purposes
for white/blue teams.

28 Chapter 6. Create New Service Check

https://github.com/scoringengine/scoringengine/blob/master/scoring_engine/checks/bin/ssh_check

ScoringEngine Documentation, Release latest

In this example, our matching_content value will be “SUCCESS”.

6.2 Create Service Definition

Now that we’ve created our check source code, we now need to add it to the competition so that it will run!

1 - name: SSH
2 check_name: SSHCheck
3 host: testbed_ssh
4 port: 22
5 points: 150
6 accounts:
7 - username: ttesterson
8 password: testpass
9 - username: rpeterson

10 password: otherpass
11 environments:
12 - matching_content: "^SUCCESS"
13 properties:
14 - name: commands
15 value: id;ls -l /home
16 - matching_content: PID
17 properties:
18 - name: commands
19 value: ps

• Line 1 - The name of the service. This value must be unique per team and needs to be defined for each team.

• Line 2 - This is the classname of the check source code. This is how we tell the engine which check plugin we
should execute.

• Line 3 - The host/ip of the service to check.

• Line 4 - The port of the service to check.

• Line 5 - The amount of points given per successful check per round.

• Line 6-10 - A list of credentials for this service. Each round, the engine will randomly select a set of credentials
to use.

• Line 11-19 - A list of environments for this service. Each round, the engine will randomly select an environment
to use. This allows for the flexibility of running one SSH command this round, but another command another
round, and so on.

• Line 12 - We match this value against the output from the check command, and compare it to identify if the
check is Successful or not. We define it per environment, as this might change depending on the properties for
each round.

• Line 13-15 - The properties defined in the check source code. Notice how we said the ‘commands’ property
was required in the check source? This is where we define all of those properties. The value is whatever value
this property should be.

6.3 Contribute Check to Repository

Depending on the check and what it does, we might be interested in including your check into our github repository!

6.2. Create Service Definition 29

ScoringEngine Documentation, Release latest

6.3.1 Create Unit Test File

Each check source code has a corresponding unit test, which simply generates a test CMD, and compares that against
the expected command string.

An example unit test for SSH looks like this (tests/scoring_engine/checks/test_ssh.py):

1 from scoring_engine.engine.basic_check import CHECKS_BIN_PATH
2

3 from tests.scoring_engine.checks.check_test import CheckTest
4

5

6 class TestSSHCheck(CheckTest):
7 check_name = 'SSHCheck'
8 properties = {
9 'commands': 'ls -l;id'

10 }
11 accounts = {
12 'pwnbus': 'pwnbuspass'
13 }
14 cmd = CHECKS_BIN_PATH + "/ssh_check '127.0.0.1' 1234 'pwnbus' 'pwnbuspass' 'ls -l;

→˓id'"

• Line 1 - Since we’re adding additional files, we want to use the dynamically created CHECKS_BIN_PATH
variable.

• Line 3 - Import the CheckTest parent class which all check tests inherit from.

• Line 6 - Create the unit test class. The classname must start with ‘Test’.

• Line 7 - This points to the classname of the check source code.

• Line 8-10 - Define an example set of properties the test will use.

• Line 11-13 - Define an example set of credentials the test will use.

• Line 14 - Define an expected command string to verify the check source code works as expected.

6.3.2 Verify Unit Test

py.test tests/scoring_engine/checks/test_ssh.py

If all is well, then commit these files and Create a PR

30 Chapter 6. Create New Service Check

https://github.com/scoringengine/scoringengine/pulls

	Overview
	Why?
	How does it work?
	Screenshots

	Installation
	Docker
	Manual

	Configuration
	Location to config file
	Configuration Keys

	Implemented Checks
	DNS
	Elasticsearch
	FTP
	HTTP(S)
	ICMP
	IMAP(S)
	LDAP
	MSSQL
	MySQL
	NFS
	POP3(S)
	PostgreSQL
	RDP
	SMB
	SMTP(S)
	SSH
	VNC
	WinRM

	Development
	Initial Setup
	Run Services
	Run Tests
	Modifying Documentation

	Create New Service Check
	Create Check Source File
	Create Service Definition
	Contribute Check to Repository

