

A Python package for the Scola algorithm

[image: _images/scola.svg]The Scola is an algorithm that takes a correlation matrix or a precision matrix as input and outputs a network.
In the generated network, edges between nodes indicate correlations that are not accounted for by some expected properties (e.g., noise independent for different variables or a global trend).

Please cite the paper if you use this package:

Sadamori Kojaku and Naoki Masuda. Proceedings of the Royal Society A, 475, 2231 (2019) [https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2019.0578?af=R&]. [Preprint [https://arxiv.org/abs/1903.10805]]

[image: _images/header.png]

Licence

GNU GENERAL PUBLIC LICENSE, Version 3, 29 June 2007

Installing the Scola

scola supports both Python 2.x and 3.x and can be installed on Ubuntu, CentOS, macOS and Windows.
We recommend using pip for installation.

Install with pip

pip install scola

Install from source

Download the source file [https://github.com/skojaku/scola] from GitHub.
Then, under /scola directory, type

python setup.py install

Dependencies

scola has dependencies on the following packages:

	NumPy

	SciPy

	tqdm

Getting Started

We demonstrate how to generate a network with scola.

An example data, sample.txt [https://raw.githubusercontent.com/skojaku/scola/master/data/sample.txt], is available on GitHub [https://github.com/skojaku/scola], which is composed of L=300 rows and N=25 columns (space separated), where L is the number of samples and N is the number of variables (i.e., nodes).
The following code loads the data.

import numpy as np
import pandas as pd

X = pd.read_csv("https://raw.githubusercontent.com/skojaku/scola/master/data/sample.txt", header=None, sep=" ").values
L = X.shape[0] # Number of samples
N = X.shape[1] # Number of nodes

Then, compute the sample correlation matrix by

C_samp = np.corrcoef(X.T) # NxN correlation matrix

C_samp looks like

[image: _images/C_samp.png]

Finally, provide C_samp and L to estimate the network and associated null model:

import scola
W, C_null, selected_null_model, EBIC, construct_from, all_networks = scola.corr2net.transform(C_samp, L)

W is the weighted adjacency matrix of the generated network, where
W[i,j] indicates the weight of the edge between nodes i and j.

The W looks like

[image: _images/W.png]

See the scola package for other return values.

Scola can construct a network from precision matrices, which is often different from that constructed from correlation matrices.
To do this, give an extra parameter construct_from='pres':

import scola
W, C_null, selected_null_model, EBIC, construct_from, all_networks = scola.corr2net.transform(C_samp, L, construct_from="pres")

which produces a different network:

[image: _images/Wpres.png]

If one sets construct_from='auto', the Scola constructs networks from correlation matrices and precision matrices.
Then, it chooses the one that best represents the given data in terms of the extended BIC.
The selected type of the matrix is indicated by construct_from in the return variables.

Examples

	Getting Started

	Constructing networks with different null models [https://nbviewer.jupyter.org/github/skojaku/scola/blob/master/notebook/construct_networks_with_different_null_models.ipynb?flush_cache=true]

	Null models [https://nbviewer.jupyter.org/github/skojaku/scola/blob/master/notebook/Null_models.ipynb?flush_cache=true]

scola package

Scola package consists of two modules: corr2net module and null_models module.

The corr2net module contains functions to generate networks from correlation matrices.
The null_model module contains functions to generate null correlation matrices.

Submodules

scola.corr2net module

	
transform(C_samp, L, null_model='all', disp=True, construct_from='corr', beta=0.5)

	Generate a network from a correlation matrix
using the Scola algorithm.

	Parameters

	
	C_samp (2D numpy.ndarray, shape (N, N)) – Sample correlation matrix. N is the number of nodes.

	L (int) – Number of samples.

	null_model (str or list of str or list of functions, default 'all') – Null model to be used for constructing the network.
The following three null models are available:

	White noise model (null_model=’white-noise’),

	the Hirschberger-Qi-Steuer model (null_model=’hqs’)

	the configuration model (null_model=’config’).

One can set multiple null models by a list, e.g., null_model = [“white-noise”, “hqs”, “config”] or equivalently null_model = “all”.
If multiple null models are given, the best one among the three null models in
terms of the extended Bayesian information criterion (BIC) is selected.

To use other null models, one can set null_model = func or null_model = [func1, func2,…], where func is
a function taking the sample correlation matrix as the input and outputs
the null correlation matrix (2D numpy.ndarray, shape(N,N)),
the number of parameters for the null model (int), and
the name of the null model (str).

	disp (bool, default True) – Set disp=True to display the progress of computation.
Otherwise, set disp=False.

	construct_from (str, default 'corr') – Type of matrix to construct a network. Setting “corr” constructs based on the correlation matrix.
Setting “pres” constructs based on the precision matrix. If construct_from=’auto’, the Scola constructs networks from the correlation matrix and precision matrix. Then, it chooses the best one in terms of the extended BIC.

	beta (float, default 0.5) – Hyperparameter for the extended BIC. When beta = 0, the EBIC is equivalent to the BIC. The higher value yields a sparser network. Range [0,1].

	Returns

	
	W (2D numpy.ndarray, shape (N, N)) – Weighted adjacency matrix of the generated network.

	C_null (2D numpy.ndarray, shape (N, N)) – Estimated null correlation matrix used for constructing the network.

	selected_null_model (str) – The null model selected by the Scola.

	EBIC (float) – The extended BIC value for the generated network.

	construct_from (str) – construct_from=’corr’ or construct_from=’pres’ indicates that the network is constructed from
the correlation matrix or the precision matrix, respectively.

	all_networks (list of dict) – Results of all generated networks. Each dict object in the list consists of ‘W’, ‘C_null’, ‘null_model’, ‘EBIC_min’, ‘construct_from’ and ‘W_list’. ‘W_list’ is a list of dict objects, in which each dict consists of a network (i.e., ‘W’) and its EBIC value (i.e., ‘EBIC’) found by the golden section search algorithm.

	Example::

	import scola
W, C_null, selected_null_model, EBIC, construct_from, all_networks = scola.corr2net.transform(C_samp, L)

scola.null_models module

	
white_noise_model(C_samp)

	Compute the white noise model for correlation matrices.

	Parameters

	C_samp (2D numpy.ndarray, shape (N, N)) – Sample correlation matrix.

	Returns

	
	C_null (2D numpy.ndarray, shape (N, N)) – The correlation matrix under the white-noise model.

	K_null (int) – Number of parameters to generate the null correlation matrix

	name (str) – Name of the null model (“white-noise”)

	
hqs_model(C_samp)

	Compute the HQS model for correlation matrices.

	Parameters

	C_samp (2D numpy.ndarray, shape (N, N)) – Sample correlation matrix.

	Returns

	
	C_null (2D numpy.ndarray, shape (N, N)) – The correlation matrix under the HQS model.

	K_null (int) – Number of parameters to generate the null correlation matrix

	name (str) – Name of the null model (“hqs”)

	
configuration_model(C_samp, tolerance=0.005)

	Compute the configuration model for correlation matrices
using the gradient descent algorithm.

	Parameters

	
	C_samp (2D numpy.ndarray, shape (N, N)) – Sample correlation matrix.

	tolerance (float) – Tolerance in relative error.

	Returns

	
	C_null (2D numpy.ndarray, shape (N, N)) – The correlation matrix under the config model.

	K_null (int) – Number of parameters to generate the null correlation matrix

	name (str) – Name of the null model (“config”)

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 scola	

 	
 	
 scola.corr2net	

 	
 	
 scola.null_models	

Index

 C
 | H
 | S
 | T
 | W

C

 	
 	configuration_model() (in module scola.null_models)

H

 	
 	hqs_model() (in module scola.null_models)

S

 	
 	scola.corr2net (module)

 	
 	scola.null_models (module)

T

 	
 	transform() (in module scola.corr2net)

W

 	
 	white_noise_model() (in module scola.null_models)

 _static/ajax-loader.gif

_images/header.png
Sample correlation matrix Networks

| I
-0.25 0.00 0.25 0.50 0.75 1.00

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/C_samp.png

_images/W.png

_images/Wpres.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 A Python package for the Scola algorithm

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

