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CHAPTER 1

Forward

Forward

This book is loosely based on “Mathematical Optimization: Solving Problems using Python and Gurobi” by M. Kubo,
J.P. Pedroso, M. Muramatsu, and A. Rais, in Japanese, published in 2012 by Kindaikagakusha in Tokyo. Readers fluent
in Japanese and aiming at using Gurobi as a solver are kindly directed to that book. Our interests in preparing this
version in English are twofold: we wish to widen the readership, and we would like to give the possibility of using a
cutting edge solver to potential users who prefer the licensing policy of SCIP.

This book is an open project: we expect that new editions will incorporate contributions by our readers and SCIP
users, and to extend it to exploit SCIP’s potential in some specific areas, in particular nonlinear optimization.

Formulations and programs proposed in the book have been extensively tested computationally; the results are avail-
able in XXXXXX. % !!!!

Forward to the Japanese edition

Mathematical optimization (previously known as mathematical programming), is a branch of applied mathematics
with more than half a century history. Being an area where the theory and abundant and elegant applications, it has
been called the queen of applied mathematics.

In this book, rather than presenting an old-fashioned, theoretical introduction the mathematical optimization, our in-
tention is to provide the basis for mastering the technique of solving the problem at hand by means of an “optimization
solver”, unveiling tricks and tips to model and solve real-world problems.

Solving mathematical optimization problems involves extensive numerical calculations. It required acquaintance with
computers and proficiency in specialized programming languages, besides familiarity with mathematical modeling and
optimization algorithms. The hurdle was very high, and it was extremely rare for companies to have human resources
making full use of the power of mathematical optimization for solving their real problems.

Recently, however, mathematical optimization problems became easily solvable by means of general-purpose, high
performance solvers. Besides, currently available very high-level programming languages significantly reduced the
barrier for actually using these solvers. Therefore, it became possible to quickly tackle even very complex real-world
problems.
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In order to respond to such changes in paradigm, it was the authors intention to write a new type of introduction to
mathematical optimization. As much as possible, the theoretical descriptions have been limited to subjects that are
useful in practice. There is no hindrance to the usage of a mathematical optimization solver as black box, because
there is no need to know all of its details for successfully using it. Nevertheless, as most of the practical problems
involving combinatorial optimization belong to the class of to the so-called NP-hard problems, it can not be avoided
that their solution can be very time consuming. Therefore, for successfully tackling these problems it is necessary a
basic understanding of the theory, along with some modeling tricks. In this book, as well as commented examples of
using the basic theory, we provide the readers with indications on how correctly and quickly solve practical problems.
We hope this book will be a primer for the usage of mathematical optimization in a new era.

The information contained in this document is as follows. Chapter 1 is an introduction to the basics of mathematical
optimization. First of all, it presents the terminology and the most fundamental class of mathematical optimization
problems, the linear optimization problem. Then, it explains with examples how to formulate simple models and how
to use a mathematical optimization solver to find a solution.

In the section presenting the transportation problem it will be explained the concept of duality. Besides its practical
applications, duality allows a better understanding the theory underlying linear optimization. In the section of the
multi-constraint knapsack problem we explain the basic solving technique for problems involving integer variables,
the branch and bound method. In the section concerning the nutrition problem we discuss the case where there is no
optimal solution (infeasible or unbounded instances), and propose workarounds.

In Chapter 2, we describe some precautions that should be taken when formulating integer optimization problems.
Illustrations include the capacity constrained facility location problem, the $k-$median problem, and a commented
example of the $k-$center problem.

In the third chapter we introduce a formulation for the bin packing problem. We present a formulation for the variant
called the cutting stock problem, and introduce a solution technique that utilizes duality, in the so-called column
generation approach.

In the fourth chapter, we introduce combinatorial optimization problems related to graphs: the graph partitioning
problem, the maximum stable set problem, and the graph coloring problem. In the section on the graph coloring
problem, we describe an ingenuous formulation to deal with symmetry.

Chapter 5 describes routing problems. After dealing with the basic traveling salesman problem, we propose a formula-
tion for this problem with time windows, and some formulations for the capacity constrained vehicle routing problem.
In addition, sections of the traveling salesman problem introduce the cutting plane method.

Chapter 6 focuses on scheduling problems. Several types of formulation are proposed; the one to select depends on
particular case at issue.

In Chapter 7 the dynamic lot sizing problem is analyzed with formulations for the multiple item case, and for the
multi-stage lot sizing problem.

Chapter 8 describes techniques to approximate a nonlinear function with a piecewise linear function, explaining the
concept of special ordered set.

Chapter 9 deals with multi-objective optimization, describing the basic theory and the usage of SCIP/Python for
solving this class of problems

Nothing in the world takes place without optimization, and there is no doubt that all aspects of the world
that have a rational basis can be explained by optimization methods. Leonhard Euler, 1744 (translation
found in “Optimization Stories”, edited by Martin Grötschel).
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CHAPTER 2

Introduction

This introductory chapter is a run-up to Chapter 2 onwards. It is an overview of mathematical optimization through
some simple examples, presenting also the main characteristics of the solver used in this book: SCIP (http://scip.zib.
de).

The rest of this chapter is organized as follows. Section Mathematical Optimization introduces the basics of mathemat-
ical optimization and illustrates main ideas via a simple example. Section Linear Optimization presents a real-world
production problem to discuss concepts and definitions of linear-optimization model, showing details of SCIP/Python
code for solving a production problem. Section Integer Optimization introduces an integer optimization model by
adding integer conditions to variables, taking as an example a simple puzzle sometimes used in junior high school
examinations. A simple transportation problem, which is a special form of the linear optimization problem, along with
its solution is discussed in Section Transportation Problem. Here we show how to model an optimization problem as
a function, using SCIP/Python. Section Duality explains duality, an important theoretical background of linear opti-
mization, by taking a transportation problem as an example. Section Multi-product Transportation Problem presents a
multi-commodity transportation problem, which is an generalization of the transportation, and describes how to handle
sparse data with SCIP/Python. Section Blending problem introduces mixture problems as an application example of
linear optimization. Section Fraction optimization problem presents the fraction optimization problem, showing two
ways to reduce it to a linear problem. Section Multi-Constrained Knapsack Problem illustrates a knapsack problem
with details of its solution procedure, including an explanation on how to debug a formulation. Section The Modern
Diet Problem considers how to cope with nutritional problems, showing an example of an optimization problem with
no solution.

2.1 Mathematical Optimization

Let us start by describing what mathematical optimization is: it is the science of finding the “best” solution based
on a given objective function, i.e., finding a solution which is at least as good and any other possible solution. In
order to do this, we must start by describing the actual problem in terms of mathematical formulas; then, we will
need a methodology to obtain an optimal solution from these formulas. Usually, these formulas consist of constraints,
describing conditions that must be satisfied, and by an objective function.

In other words, a mathematical optimization problem is usually expressed as:

• objective function (which we want to maximize of minimize);
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• conditions of the problem: constraint 1, constraint 2, . . .

For the solution obtained to be meaningful, this model must capture the objective of optimization accurately, along with all essential problem requirements and details. The steps for building an algebraic model of a mathematical optimization consists of defining:

1. a set of variables: the unknowns that need to be found as a solution to the problem;

2. a set of constraints: equations or inequalities that represent requirements in the problem as relationships
between the variables

3. an objective function: an expression, in terms of the defined variables, which determines e.g. the total cost,
or the profit of the targeted problem.

The problem is a minimization when smaller values of the objective are preferrable, as with costs; it is a maximization
when larger values are better, as with profits. The essence of the problem is the same, whether it is a minimization or
a maximization (one can be converted into the other simply by putting a minus sign in the objective function).

In this text, the problem is described by the following format.

• Maximize or minimize

– Objective function

• Subject to:

– Constraint 1

– Constraint 2

– . . .

The optimization problem seeks a solution to either minimize or maximize the objective function, while satisfying all
the constraints. Such a desirable solution is called optimum or optimal solution — the best possible from all candidate
solutions measured by the value of the objective function. The variables in the model are typically defined to be
non-negative real numbers.

There are many kinds of mathematical optimization problems; the most basic and simple is linear optimization1. In
a linear optimization problem, the objective function and the constraints are all linear expressions (which are straight
lines, when represented graphically). If our variables are 𝑥1, 𝑥2, . . . , 𝑥𝑛, a linear expression has the form 𝑎1𝑥1 +
𝑎2𝑥2 + . . . + 𝑎𝑥𝑛, where 𝑎1, . . . , 𝑎𝑛 are constants.

For example,

minimize
3𝑥 + 4𝑦

subject to:
5𝑥 + 6𝑦 ≥ 10

7𝑥 + 5𝑦 ≥ 5

𝑥, 𝑦 ≥ 0

is a linear optimization problem.

One of the important features of linear optimization problems is that they are easy to solve. Common texts on mathe-
matical optimization describe in lengthy detail how a linear optimization problem can be solved. Taking the extreme
case, for most practitioners, how to solve a linear optimization problem is not important. For details on how methods
for solving these problems have emerged, see Margin seminar 1. Most of the software packages for mathematical

1 As said before, until recently these were called linear programming problems, which had been abbreviated as LP; complying to the new
nomenclature, the abbreviation we will use is LO, for linear optimization problems.
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optimization support linear optimization. Given a description of the problem, an optimum solution (i.e., a solution that
is guaranteed to be the best answer) to most of the practical problems can be obtained in an extremely short time.

Unfortunately, not all the problems that we find in the real world can be described as a linear optimization problem.
Simple linear expressions are not enough to accurately represent many complex conditions that occur in practice. In
general, optimization problems that do not fit in the linear optimization paradigm are called nonlinear optimization
problems.

In practice, nonlinear optimization problems are often difficult to solve in a reliable manner. Using the mathematical
optimization solver covered in this document, SCIP, it is possible to efficiently handle some nonlinear functions; in
particular, quadratic optimization (involving functions which are a polynomial of up to two, such as 𝑥2 + 𝑥𝑦) is well
supported, especially if they are convex.

A different complication arises when some of the variables must take on integer values; in this situation, even if the
expressions in the model are linear, the general case belongs to a class of difficult problems (technically, the NP-hard
class2). Such problems are called integer optimization problems; with ingenuity, it is possible to model a variety of
practical situations under this paradigm. The case where some of the variables are restricted to integer values, and other
are continuous, is called a mixed-integer optimization problem. Even for solvers that do not support nonlinear opti-
mization, some techniques allow us to use mixed-integer optimization to approximate arbitrary nonlinear functions;
these techniques (piecewise linear approximation) are described in detail in Chapter Piecewise linear approximation
of nonlinear functions.

2 A class of problems which, even though no one proved it, are believed to be difficult to solve; i.e., solving these problems requires resources
that grow exponentially with the size of the input.

2.1. Mathematical Optimization 7
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2.2 Linear Optimization

We begin with a simple linear optimization problem; the goal is to explain the terminology commonly used optimiza-
tion.

maximize
15𝑥1 +

18𝑥2 +

30𝑥3

subject to:
2𝑥1 +

𝑥2 +

𝑥3 ≤
60

𝑥1 +

2𝑥2 +

𝑥3 ≤
60

𝑥3 ≤
30

𝑥1,

𝑥2,

𝑥3 ≥
0

Let us start by explaining the meaning of 𝑥1, 𝑥2, 𝑥3: these are values that we do not know, and which can change
continuously; hence, they are called variables.

The first expression defines the function to be maximized, which is called the objective function.

The second and subsequent expressions restrict the value of the variables 𝑥1, 𝑥2, 𝑥3, and are commonly referred to as
constraints. Expressions ensuring that the variables are non-negative (𝑥1, 𝑥2, 𝑥3 ≥ 0) have the specific name of sign
restrictions or non-negativity constraints. As these variables can take any non-negative real number, they are called
real variables, or continuous variables.

In this problem, both the objective function and the constraint expressions consist of adding and subtracting the vari-
ables 𝑥1, 𝑥2, 𝑥3 multiplied by a constant. These are called linear expressions. The problem of maximizing (or mini-
mizing) a linear objective function subject to linear constraints is called a linear optimization problem.

The set of values for variables 𝑥1, 𝑥2, 𝑥3 is called a solution, and if it satisfies all constraints it is called a feasible
solution. Among feasible solutions, those that maximize (or minimize) the objective function are called optimal
solutions. The maximum (or minimum) value of the objective function is called the optimum. In general, there are
multiple solutions with an optimum objective value, but usually the aim is to find just one of them.

Finding such point can be explored in some methodical way; this is what a linear optimization solver does for find-
ing the optimum. Without delay, we are going to see how to solve this example using the SCIP solver. SCIP has
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been developed at the Zuse Institute Berlin (ZIB), an interdisciplinary research institute for applied mathematics and
computing. SCIP solver can be called from several programming languages; for this book we have chosen the very
high-level language Python. For more information about SCIP and Python, see appendices SCIPintro and PYTHON-
intro, respectively.

The first thing to do is to read definitions contained in the SCIP module (a module is a different file containing programs
written in Python). The SCIP module is called pyscipopt, and functionality defined there can be accessed with:

from pyscipopt import Model

The instruction for using a module is import. In this statement we are importing the definitions of Model. We could
also have used from pyscipopt import *, where the asterisk means to import all the definitions available in
pyscipopt. .. ; we have imported just some of them, and we could have used other idioms, as we will see later. One
of the features of Python is that, if the appropriate module is loaded, a program can do virtually anything3.

The next operation is to create an optimization model; this can be done with the Model class, which we have imported
from the pyscipopt module.

model = Model("Simple linear optimization")

With this instruction, we create an object named model, belonging the class Model (more precisely, model is a
reference to that object). The model description is the (optional) string "Simple linear optimization",
passed as an argument.

There is a number of actions that can be done with objects of type Model, allowing us to add variables and constraints
to the model before solving it. We start defining variables 𝑥1, 𝑥2, 𝑥3 (in the program, x1, x2, x3). We can generate
a variable using the method addVar of the model object created above (a method is a function associated with objects
of a class). For example, to generate a variable x1 we use the following statement:

x1 = model.addVar(vtype="C", name="x1")

With this statement, the method addVar of class Model is called, creating a variable x1 (to be precise, x1 holds a
reference to the variable object). In Python, arguments are values passed to a function or method when calling it (each
argument corresponds to a parameter that has been specified in the function definition). Arguments to this method are
specified within parenthesis after addVar. There are several ways to specify arguments in Python, but the clearest
way is to write argument name = argument value as a keyword argument.

Here, vtype = "C" indicates that this is a continuous variable, and name = "x1" indicates that its name (used,
e.g., for printing) is the string "x1". The complete signature (i.e., the set of parameters) for the addVar method is
the following:

addVar(name="", vtype="C", lb=0.0, ub=None, obj=0.0, pricedVar = False)

Arguments are, in order, the name, the type of variable, the lower bound, the upper bound, the coefficients in the
objective function. The last parameter, pricedVar is used for column generation, a method that will be explained
in Chapter Bin packing and cutting stock problems. In Python, when calling a method omitting keyword arguments
(which are optional) default values (given after =) are applied. In the case of addVar, all the parameters are optional.
This means that if we add a variable with model.addVar(), SCIP will create a continuous, non-negative and
unbounded variable, whose name is an empty string, with coefficient 0 in the objective (obj=0). The default value for
the lower bound is specified with lb=0.0, and the upper bound ub is implicitly assigned the value infinity (in Python,
the constant None usually means the absence of a value). When calling a function or method, keyword arguments
without a default value cannot be omitted.

Functions and methods may also be called by writing the arguments without their name, in a predetermined order, as
in:

3 Of course “anything” is an exaggeration. In a Python lecture found at the Massachusetts Institute of Technology home page there is a reference
to an antigravity module. Please try it with import antigravity.

2.2. Linear Optimization 9
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x1 = model.addVar("x1", "C", 0, None, 15)

Other variables may be generated similarly. Note that the third constraint 𝑥3 ≤ 30 is the upper bound constraint of
variable 𝑥3, so we may write ub = 30 when declaring the variable.

Next, we will see how to enter a constraint. For specifying a constraint, we will need to create a linear expression,
i.e., an expression in the form of 𝑐1𝑥1 + 𝑐2𝑥2 + . . . + 𝑐𝑛𝑥𝑛, where each 𝑐𝑖 is a constant and each 𝑥𝑖 is a variable.
We can specify a linear constraint through a relation between two linear expressions. In SCIP’s Python interface, the
constraint 2𝑥1 + 𝑥2 + 𝑥3 ≤ 60 is entered by using method addConstr as follows:

model.addConstr(2*x1 + x2 + x3 <= 60)

The signature for addConstr (ignoring some parameters which are not of interest now) is:

addConstr(relation, name="", ...)

SCIP supports more general cases, but for the time being let us concentrate on linear constraints. In this case, param-
eter relation is a linear constraint, including a left-hand side (lhs), a right-hand side (rhs), and the sense of the
constraint. Both lhs and rhs may be constants, variables, or linear expressions; sense maybe "<=" for less than or
equal to, ">=" for greater than or equal to, or "==" for equality. The name of the constraint is optional, the default
being an empty string. Linear constraints may be specified in several ways; for example, the previous constraint could
be written equivalently as:

model.addConstr(60 >= 2*x1 + x2 + x3)

Before solving the model, we must specify the objective using the setObjective method, as in:

model.setObjective(15*x1 + 18*x2 + 30*x3, "maximize")

The signature for setObjective is:

setObjective(expression, sense="minimize", clear="true"):

The first argument of setObjective is a linear (or more general) expression, and the second argument specifies the
direction of the objective function with strings "minimize" (the default) or "maximize". (The third parameter,
clear, if "true" indicates that coefficients for all other variables should be set to zero.) We may also set the
direction of optimization using model.setMinimize() or model.setMaximize().

At this point, we can solve the problem using the method optimize of the model object:

model.optimize()

After executing this statement — if the problem is feasible and bounded, thus allowing completion of the solution
process —, we can output the optimal value of each variable. This can be done through method getVal of Model
objects; e.g.:

print(model.getVal(x1))

The complete program for solving our model can be stated as follows:

1 from pyscipopt import Model
2

3 model = Model("Simple linear optimization")
4

5 x1 = model.addVar(vtype="C", name="x1")
6 x2 = model.addVar(vtype="C", name="x2")

(continues on next page)
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(continued from previous page)

7 x3 = model.addVar(vtype="C", name="x3")
8

9 model.addCons(2*x1 + x2 + x3 <= 60)
10 model.addCons(x1 + 2*x2 + x3 <= 60)
11 model.addCons(x3 <= 30)
12

13 model.setObjective(15*x1 + 18*x2 + 30*x3, "maximize")
14

15 model.optimize()
16

17 if model.getStatus() == "optimal":
18 print("Optimal value:", model.getObjVal())
19 print("Solution:")
20 print(" x1 = ", model.getVal(x1))
21 print(" x2 = ", model.getVal(x2))
22 print(" x3 = ", model.getVal(x3))
23 else:
24 print("Problem could not be solved to optimality")

If we execute this Python program, the output will be:

1 [solver progress output omitted]
2 Optimal value: 1230.0
3 Solution:
4 x1 = 10.0
5 x2 = 10.0
6 x3 = 30.0

The first lines, not shown, report progress of the SCIP solver (this can be suppressed) while lines 2 to 6 correspond to
the output instructions of lines 14 to 16 of the previous program.

Note: Margin seminar 1

Linear programming

Linear programming was proposed by George Dantzig in 1947, based on the work of three Nobel laureate economists:
Wassily Leontief, Leonid Kantrovich, Tjalling Koopmans. At that time, the term used was “optimization in linear
structure”, but it was renamed as “linear programming” in 1948, and this is the name commonly used afterwards. The
simplex method developed by Dantzig has long been the almost unique algorithm for linear optimization problems,
but it was pointed out that there are (mostly theoretical) cases where the method requires a very long time.

The question as to whether linear optimization problems can be solved efficiently in the theoretical sense (in other
words, whether there is an algorithm which solves linear optimization problems in polynomial time) has been answered
when the ellipsoid method was proposed by Leonid Khachiyan (Khachian), of the former Soviet Union, in 1979.
Nevertheless, the algorithm of Khachiyan was only theoretical, and in practice the supremacy of the simplex method
was unshaken. However, the interior point method proposed by Narendra Karmarkar in 19844 has been proved to
be theoretically efficient, and in practice it was found that its performance can be similar or higher than the simplex
method’s. Currently available optimization solvers are usually equipped with both the simplex method (and its dual
version, the dual simplex method) and with interior point methods, and are designed so that users can choose the most
appropriate of them.

4 Sometimes it is called a barrier method.

2.2. Linear Optimization 11
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2.3 Integer Optimization

For many real-world optimization problems, sometimes it is necessary to obtain solutions composed of integers instead
of real numbers. For instance, there are many puzzles like this: “In a farm having chicken and rabbits, there are 5
heads and 16 feet. How many chicken and rabbits are there?” Answer to this puzzle is meaningful if the solution has
integer values only.

Let us consider a concrete puzzle.

Adding the number of heads of cranes, turtles and octopuses totals 32, and the number of legs sums to 80. What is the
minimum number of turtles and octopuses?

Let us formalize this as an optimization problem with mathematical formulas. This process of describing a situation
algebraically is called the formulation of a problem in mathematical optimization.

Then, the number of heads can be expressed as 𝑥 + 𝑦 + 𝑧. Cranes have two legs each, turtles have four legs each, and
each octopus has eight legs. Therefore, the number of legs can be expressed as 2𝑥+ 4𝑦+ 8𝑧. So the set of 𝑥, 𝑦, 𝑧 must
satisfy the following “constraints”:

subject to:
𝑥 +

𝑦 +

𝑧 =

32

2𝑥 +

4𝑦 +

8𝑧 =

80

Since there are three variables and only two equations, there may be more than one solution. Therefore, we add a
condition to minimize the sum 𝑦 + 𝑧 of the number of turtles and octopuses. This is the “objective function”. We

12 Chapter 2. Introduction
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obtain the complete model after adding the non-negativity constraints.

minimize

𝑦 +

𝑧

subject to:
𝑥 +

𝑦 +

𝑧 =

32

2𝑥 +

4𝑦 +

8𝑧 =

80

𝑥,

𝑦,

𝑧 ≥
0

When we use a linear optimization solver, we obtain the solution 𝑥 = 29.3333, 𝑦 = 0, 𝑧 = 2.66667. This is obviously
a strange answer. Cranes, tortoises and octopuses can be divided when they are lined up as food on the shelves, but not
when they are alive. To solve this model, we need to add conditions to force the variables to have integer values. These
are called integrality constraints: 𝑥, 𝑦, 𝑧 must be non-negative integers. Linear optimization problems with conditions
requiring variables to be integers are called integer optimization problems. For the puzzle we are solving, thus, the

2.3. Integer Optimization 13
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correct model is:

minimize

𝑦 +

𝑧

subject to:
𝑥 +

𝑦 +

𝑧 =

32

2𝑥 +

4𝑦 +

8𝑧 =

80

𝑥,

𝑦,

𝑧 ≥
0, integer

Below is a simple Python/SCIP program for solving it. The main difference with respect to the programs that we have
seen before concerns the declaration of variables; in this case, there is an argument to addVar for specifying that
variables are integer: vtype="I". Continuous variables (the default) can be explicitly declared with vtype="C",
and binary variables — a special case of integers, restricted to the values 0 or 1 — are declared with vtype="B".

1 from pyscipopt import Model
2

3 model = Model("Simple linear optimization")
4

5 x = model.addVar(vtype="I", name="x")
6 y = model.addVar(vtype="I", name="y")
7 z = model.addVar(vtype="I", name="x")
8

9 model.addCons(x + y + z == 32,"Heads")
10 model.addCons(2*x + 4*y + 8*z == 80,"Legs")
11 model.setObjective(y + z, "minimize")
12

13 model.optimize()
14

15 if model.getStatus() == "optimal":
16 print("Optimal value:", model.getObjVal())
17 print("Solution:")
18 print(" x = ", model.getVal(x))
19 print(" y = ", model.getVal(y))
20 print(" z = ", model.getVal(z))
21 else:
22 print("Problem could not be solved to optimality")

For small integer optimization problems like this, the answer can be quickly found: 𝑥 = 28, 𝑦 = 2, and 𝑧 = 2,
meaning that there are 28 cranes, 2 turtles and 2 octopuses. Notice that this solution is completely different of the
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continuous version’s; in general, we cannot guess the value of an integer solution from the continuous model. In
general, integer-optimization problems are much harder to solve when compared to linear-optimization problems.

[source code]

2.4 Transportation Problem

The next example is a classical linear optimization problem called the transportation problem. Consider the following
scenario.

You are the owner of a sports equipment sales chain. Your products are manufactured at three factories, and you have
to deliver them to five customers (demand points) (Figure Transportation problem). After elaborating a survey, you
found that the production capacity at each factory, the transportation cost to customers, and the demand amount at
each customer are as shown in Table Data for the transportation problem. So, which of the transport routes would you
choose to minimize the total cost?

Fig. 1: Transportation problem
Graph representation of a transportation problem and its optimal transport volume.

2.4. Transportation Problem 15
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Table 1: Data for the transportation problem
Customers 𝑖

Transportation cost 𝑐𝑖𝑗 1 2 3 4 5 capacity 𝑀𝑗

plant 𝑗 1 4 5 6 8 10 500
2 6 4 3 5 8 500
3 9 7 4 2 4 500

demand 𝑑𝑖 80 270 250 160 180

Table Data for the transportation problem shows customer demand volumes, shipping costs from each factory to each
customer, and production capacity at each factory. More precisely, 𝑑𝑖 is the demand of customer 𝑖, where 𝑖 = 1 to 5.
Each plant 𝑗 can supply its customers with goods but their production capacities are limited by 𝑀𝑗 , where 𝑗 = 1 to 3.
Transportation cost for shipping goods from plant 𝑖 to customer 𝑗 is given in the table by 𝑐𝑖𝑗 .

Let us formulate the above problem as a linear optimization model. Suppose that the number of customers is 𝑛 and
the number of factories is 𝑚. Each customer is represented by 𝑖 = 1, 2, . . . , 𝑛, and each factory by 𝑗 = 1, 2, . . . ,𝑚.
Also, let the set of customers be 𝐼 = 1, 2, . . . , 𝑛 and the set of factories 𝐽 = 1, 2, . . . ,𝑚. Suppose that the demand
amount of customer 𝑖 is 𝑑𝑖, the transportation cost for shipping one unit of demand from plant 𝑖 to customer 𝑗 is 𝑐𝑖𝑗 ,
and that each plant 𝑗 can supply its customers with goods, but their production capacities are limited by 𝑀𝑗

We use continuous variables as defined below.

𝑥𝑖𝑗 = amount of goods to be transported from factory 𝑗 to customer 𝑖

Using the above symbols and variables, the transport problem can be formulated as the following linear optimization
problem.

minimize∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝑐𝑖𝑗𝑥𝑖𝑗

subject to∑︁
𝑗∈𝐽

𝑥𝑖𝑗 = 𝑑𝑖 ∀𝑖 ∈ 𝐼

∑︁
𝑖∈𝐼

𝑥𝑖𝑗 ≤ 𝑀𝑗 ∀𝑗 ∈ 𝐽

𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

The objective function is the minimization of the sum of transportation costs. The first constraint requires that the
demand is satisfied, and the second constraint ensures that factory capacities are not exceeded.

Let us solve this with Python/SCIP. First, we prepare the data needed for describing an instance5. In the transportation
problem, it is necessary to prepare data defining demand amount 𝑑𝑖, transportation costs 𝑐𝑖𝑗 , capacities 𝑀𝑗 . In the fol-
lowing program, we will use the same symbol used in the formulation for holding a Python’s dictionary. A dictionary
is composed of a key and a value as its mapping, and is generated by arranging pais of keys and values in brack-
ets, separated by commas: {key1:value1, key2:value2, ...}. (For details on dictionaries see appendix
A.2.5).

The demand amount 𝑑𝑖 is stored in a dictionary d with the customer’s number as the key and the demand amount as
the value, and the capacity 𝑀𝑗 is stored in the dictionary M with the factory number as the key and the capacity as the
value.

5 A problem with all the parameters substituted by numerical values is called an instance; this meaning is different of “objects generated from a
class”, used in object-oriented programming, which are also called “instances” of the class.
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d = {1:80 , 2:270 , 3:250 , 4:160 , 5:180}
M = {1:500 , 2:500 , 3:500}

In addition, a list I of customers’ numbers and a list J of factory numbers can be prepared as follows.

I = [1,2,3,4,5]
J = [1,2,3]

Actually, the dictionaries and lists above can be created at once by using the multidict function available in
Python/SCIP, as follows.

I, d = multidict({1:80, 2:270, 3:250, 4:160, 5:180})
J, M = multidict({1:500, 2:500, 3:500})

When the dictionary is entered as an argument, the multidict function returns a pair of values; the first is the list of
keys, and the second value is the dictionary sent as argument. Later, we will see that this function is very useful when
we want to associate more than one value to each key. (For a more detailed usage of multidict, see appendix B.4.)

Shipping cost 𝑐𝑖𝑗 has two subscripts. This is represented in Python by a dictionary c with a tuple of subscripts
(customer and factory) as keys, and the corresponding costs as values. A tuple is a sequence, like a list; however,
unlike a list, its contents can not be changed: a tuple is immutable. Tuples are created using parentheses and, due to
the fact that they are immutable, can be used as keys of a dictionary (see appendix A.2.4 for details on tuples).

c = {(1,1):4, (1,2):6, (1,3):9,
(2,1):5, (2,2):4, (2,3):7,
(3,1):6, (3,2):3, (3,3):3,
(4,1):8, (4,2):5, (4,3):3,
(5,1):10, (5,2):8, (5,3):4,
}

With this dictionary c, the transportation cost from factory 𝑗 to customer 𝑖 can be accessed with c[(i,j)] or
c[i,j] (in a tuple, we can omit parenthesis).

Attention: As a programming habit, it is preferable not to use a one-letter variables such as d, M, c above. We
have done it so that the same symbols are used in the formulation and in the program. However, in larger programs
it is recommended to use meaningful variables names, such as demand, capacity, cost.

Let us write a program to solve the instance specified above.

1 model = Model("transportation")
2 x = {}
3 for i in I:
4 for j in J:
5 x[i,j] = model.addVar(vtype="C", name="x(%s,%s)" % (i,j))

First, we define a Python variable x, which initially contains an empty dictionary (line 2). We then use dictionary x to
store variable’s objects, each of them corresponding to an 𝑥𝑖𝑗 of our model (lines 3 to 5).As I is a list of customers’
indices, the for cycle of line 3 iterates over all customers 𝑖. Likewise, since J is a list of factory indices, the for cycle
of line 4 iterates over the quantity transported from factory 𝑗 to customer 𝑖 (see appendix A.4.2 for more information
about iteration). In the rightmost part of line 5 the variable is named x(i,j); this uses Python’s string format
operation %, where %s represents substitution into a character string.

Next we add constraints. First, we add the constraint∑︁
𝑗∈𝐽

𝑥𝑖𝑗 = 𝑑𝑖 ∀𝑖 ∈ 𝐼
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which imposes that the demand is satisfied. Since this is a constraint for all customers 𝑖, a constraint
∑︀𝑚

𝑗=1 𝑥𝑖𝑗 = 𝑑𝑖
is added by the addCons method (line 2) at each iteration of the for cycle of line 1.

1 for i in I:
2 model.addCons(quicksum(x[i,j] for j in J if (i,j) in x) == d[i], name="Demand(%s)

→˓" % i)

Notice that here we also give a name, Demand(i), to constraints. Although, as for variables, the name of a constraint
may be omitted, it is desirable to add an appropriate name for later reference (an example of this will be seen in
Duality). The quicksum function on the second line is an enhanced version of the sum function available in Python,
used in Python/SCIP to do the computation of linear expressions more efficiently. It is possible to provide quicksum
explicitly with a list, or with a list generated by iteration with a for statement, as we did here; these generator work
in the same way as in list comprehensions in Python (see appendix A.4.2). In the above example, we calculate a linear
expression by summing variables 𝑥𝑖𝑗 for element 𝑗 ∈ 𝐽 by means of quicksum(x[i,j] for j in J). (For a
more detailed explanation of quicksum, see appendix B.4.)

Similarly, we add the factory capacity constraint ∑︁
𝑖∈𝐼

𝑥𝑖𝑗 ≤ 𝑀𝑗

∀𝑗 ∈ 𝐽

to the model as follows:

1 for j in J:
2 model.addCons(quicksum(x[i,j] for i in I if (i,j) in x) <= M[j], name="Capacity(

→˓%s)" % j)

Again, we give a name Capacity(j) to each constraint. In the following, to simplify the description, names of
constraints are often omitted; but in fact it is safer to give an appropriate name.

The objective function

minimize
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝑐𝑖𝑗𝑥𝑖𝑗

is set using the setObjective method, as follows.

1 model.setObjective(quicksum(c[i,j]*x[i,j] for (i,j) in x), "minimize")

Finally, we can optimize the model and display the result.

1 model.optimize()
2 print("Optimal value:", model.getObjVal())
3 EPS = 1.e-6
4 for (i,j) in x:
5 if model.getVal(x[i,j]) > EPS:
6 print("sending quantity %10s from factory %3s to customer %3s" % (model.

→˓getVal(x[i,j]),j,i))

In this code, for (i,j) in x in line 4 is an iteration over dictionary x, holding our model’s variable. This iteration
goes through all the tuples (𝑖, 𝑗) of customers and factories which are keys of the dictionary. Line 5 is a conditional
statement for outputting only non-zero variables. Line 6 uses Python’s string formatting operator %, where %10s is
converted into a 10-digit character string and %3s is converted into a 3-digit character string.

When the above program is executed, the following result is obtained. The results are shown in Table Optimal solution
for the transportation problem and Figure Transportation problem.
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1 [solver progress output omitted]
2 SCIP Status : problem is solved [optimal solution found]
3 Solving Time (sec) : 0.00
4 Solving Nodes : 1
5 Primal Bound : +3.35000000000000e+03 (1 solutions)
6 Dual Bound : +3.35000000000000e+03
7 Gap : 0.00 %
8 Optimal value: 3350.0
9 sending quantity 230.0 from factory 2 to customer 3

10 sending quantity 20.0 from factory 3 to customer 3
11 sending quantity 160.0 from factory 3 to customer 4
12 sending quantity 270.0 from factory 2 to customer 2
13 sending quantity 80.0 from factory 1 to customer 1
14 sending quantity 180.0 from factory 3 to customer 5

Table 2: Optimal solution for the transportation problem
Customer 𝑖 1 2 3 4 5
Amount demanded 80 270 250 160 180
Plant 𝑗 Optimum volume transported total capacity
1 80 80 500
2 270 230 500 500
3 20 160 180 360 500

[source code]

2.5 Duality

Consider the following scenario.

You are the owner of the sports equipment sales chain that appeared on Section Transportation Problem. You feel
that factory’s capacity has become tight, so you are considering an expansion. What kind of expenses can be expected
to be reduced by expanding each of the factories? Also, what is the additional gain that you can you get if you have
additional orders from each customer?

In order to solve this problem smartly, the concept of dual problem is useful. Here, the dual problem is a linear
optimization problem associated to the original problem (which in this context is called the primal problem). The
derivation method and meaning of the dual problem are given in Margin seminar 2; here, we will explain how to use
information from the dual of the transportation problem with Python/SCIP.

In order to investigate whether or not a factory can be expanded, let us first focus on the capacity constraint∑︁
𝑖∈𝐼

𝑥𝑖𝑗 ≤ 𝑀𝑗

∀𝑗 ∈ 𝐽.

For such an inequality constraint, a variable representing the difference between the right and the left hand sides,
𝑀𝑗 −

∑︀
𝑖∈𝐼 𝑥𝑖𝑗 , is called a slack variable. Of course, one can easily calculate slack variables from the optimal

solution, but in Python/SCIP we can look at the getSlack attribute for constraint objects. Also, the optimal dual
variable for a constraint can be obtained with the getDualsolLinear attribute. This represents the amount of
reduction on costs when increasing the capacity constraint by one unit (see Margin seminar 2).

In order to estimate the cost of additional orders from customers, we focus on the demand satisfaction constraint∑︁
𝑗∈𝐽

𝑥𝑖𝑗 = 𝑑𝑖 ∀𝑖 ∈ 𝐼
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Since this is an equality constraint, all slack variables are 0. The optimal value of the dual variable associated with this
constraint represents the increase in costs as demand increases by one unit.

Note: Margin seminar 2

Duality

Duality in linear programming provides a unifying theory that develops the relationships between a given linear pro-
gram and another related linear program, stated in terms of variables with this shadow-price interpretation. The
importance of duality is twofold. First, fully understanding the shadow-price interpretation of the optimal simplex
multipliers can prove very useful in understanding the implications of a particular linear-programming model. Sec-
ond, it is often possible to solve the related linear program with the shadow prices as the variables in place of, or
in conjunction with, the original linear program, thereby taking advantage of some computational efficiencies. The
importance of duality for computational procedures will become more apparent in later chapters on network-flow
problems and large-scale systems.

Let us re-visit the wine production problem considered earlier to discuss some important concepts in linear-
optimization models that play vital role in sensitivity analysis. Sensitivity analysis is important for finding out how
optimal solution and optimal value may change when there is any change to the data used in the model. Since data
may not always be considered as totally accurate, such analysis can be very helpful to the decision makers.

Let us assume that an entrepreneur is interested in the wine making company and would like to buy its resources. The
entrepreneur then needs to find out how much to pay for each unit of each of the resources, the pure-grape wines of
2010 A, B and C. This can be done by solving the dual version of the model that we will discuss next.

Let 𝑦1, 𝑦2 and 𝑦3 be the price paid, per barrel of Alfrocheiro, Baga, and Castelão, respectively. Then, the total price
that should be paid is the quantities of each of the wines in inventory times their prices, i.e., 60𝑦1 + 60𝑦2 + 30𝑦3.
Since the entrepreneur would like the purchasing cost to be minimum, this is the objective function for minimization.
Now, for each of the resources, constraints in the model must ensure that prices are high enough for the company to
sell to the entrepreneur. For instance, with two barrels of A and one barrel of B, the company can prepare blend 𝐷
worth 15; hence, it must be offered 2𝑦1 + 𝑦2 ≥ 15. Similarly we obtain 𝑦1 + 2𝑦2 ≥ 18 and 𝑦1 + 𝑦2 + 𝑦3 ≥ 30 for
the blends M and S, respectively. Thus we can formulate a dual model, stated as follows (for a more sound derivation,
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using Lagrange multipliers, see lagrange).

minimize
60𝑦1 +

60𝑦2 +

30𝑦3

subject to:
2𝑦1 +

𝑦2

≥
15

𝑦1 +

2𝑦2

≥
18

𝑦1 +

𝑦2 +

𝑦3 ≥
30

𝑦1,

𝑦2,

𝑦3 ≥
0

The variables used in the linear-optimization model of the production problem are called primal variables and their
solution values directly solve the optimization problem. The linear-optimization model in this setting is called the
primal model.

As seen above, associated with every primal model, there is a dual model. The relationships between primal and dual
problems can provide significant information regarding the quality of solutions found and sensitivity of the coefficients
used. Moreover, they also provide vital economic interpretations. For example, 𝑦1, the price paid for one unit of
Alfrocheiro pure-grape wine is called the shadow price of that resource, because it is the amount by which the optimal
value of the primal model will change for a unit increase in its availability — or, equivalently, the price the company
would be willing to pay for an additional unit of that resource.

Gurobi allows us to access the shadow prices (i.e., the optimal values of the dual variables associated with each
constraint) by means of the .Pi attribute of the constraint class; e.g., in the model for the wine production company
of program wblending we are printing these values in line 31.

Another concept important in duality is the reduced cost, which is associated with each decision variable. It is defined
as the change in objective function value if one unit of some product that is normally not produced is forced into
production; it can also be seen as the amount that the coefficient in the objective has to improve, for a variable that is
zero in the optimal solution to become non-zero. Therefore, reduced cost is also appropriately called opportunity cost.
Shadow prices and reduced costs allow sensitivity analysis in linear-optimization and help determine how sensitive
the solutions are to small changes in the data. Such analysis can tell us how the solution will change if the objective
function coefficients change or if the resource availability changes. It can also tell us how the solution may change if
a new constraint is brought into the model. Gurobi allows us accessing the reduced costs through the .RC attribute of
the variable class; e.g., x.RC is the reduced cost of variable x in the optimal solution.
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As we will see later, primal and dual models can be effectively used not only to gain insights into the solution but
also to find a bound for the linear-optimization relaxation of an integer-optimization model; linear-optimization re-
laxation is obtained by having the integrality constraints relaxed to non-integer solution values. Typically, an integer-
optimization model is much harder to solve than its linear-optimization relaxation. Specialized algorithms have been
designed around the relaxation versions of primal as well as dual optimization models for finding optimal solution
more efficiently. Optimal solution of a relaxation model gives a bound for the optimal solution value of the under-
lying integer-optimization model, and that can be exploited in a branch-and-bound scheme for solving the integer
optimization model.

[source code]

2.6 Multi-product Transportation Problem

In the previous transportation problem, we considered only one kind of goods produced at the production plants. In
the real-world, however, that is a very restrictive scenario: A producer typically produces many different kinds of
products and the customers typically demand different sets of the products available from the producers. Moreover,
some producers may be specialized into producing only certain kinds of products while some others may only supply
to certain customers. Therefore, a general instance of the transportation problem needs to be less restrictive and
account for many such possibilities.

A more general version of the transportation problem is typically studied as a multi-commodity transportation model.
A linear-optimization model can be built using decision variables 𝑥𝑖𝑗𝑘 where 𝑖 denotes the customer, 𝑗 denotes the
production plant and 𝑘 denotes the product type. Customer demand is indexed by 𝑖 and 𝑘 to denote the customer and
product type. Then the model can be stated as follows.

minimize
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘

subject to
𝑚∑︁
𝑗=1

𝑥𝑖𝑗𝑘 = 𝑑𝑖𝑘 for 𝑖 = 1, · · · , 𝑛, 𝑘 = 1, · · · ,𝐾

𝑛∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑥𝑖𝑗𝑘 ≤ 𝑀𝑗 for 𝑗 = 1, · · · ,𝑚

𝑥𝑖𝑗𝑘 ≥ 0 for 𝑖 = 1, · · · , 𝑛, 𝑗 = 1, · · · ,𝑚, 𝑘 = 1, · · · ,𝐾

Note that the objective function addresses the minimum total cost for all possible cost combinations involving cus-
tomers, production plants and product types. The first set of constraints ensure that all demands of the product types
from the customers are met exactly while the second set of constraints ensure that capacity at each production plant is
not exceeded by taking into account all product types and all customers.

A model for this in Python/Gurobi can be written as follows:

1 def mctransp(I, J, K, c, d, M):
2 model = Model("multi-commodity transportation")
3 x = {}
4 for i,j,k in c:
5 x[i,j,k] = model.addVar(vtype="C", name="x[%s,%s,%s]" % (i, j, k))
6 model.update()

(continues on next page)
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Fig. 2: Multicommodity transportation
Graph representation for a multicommodity transportation problem. Suppliers are represented as squares and clients as circles;

thick lines represent arcs actually used for transportation in a possible solution, and colors in arcs mean different products.
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(continued from previous page)

7 for i in I:
8 for k in K:
9 model.addConstr(quicksum(x[i,j,k] for j in J if (i,j,k) in x) == d[i,k],

→˓"Demand[%s,%s]" % (i,k))
10 for j in J:
11 model.addConstr(quicksum(x[i,j,k] for (i,j2,k) in x if j2 == j) <= M[j],

→˓"Capacity[%s]" % j)
12 model.setObjective(quicksum(c[i,j,k]*x[i,j,k] for i,j,k in x), GRB.MINIMIZE)
13 model.update()
14 model.__data = x
15 return model

Variables are created in line 5. In lines 9 and 10 we create a list the variables that appear in each demand-satisfaction
constraint, and the corresponding coefficients; these are then used for creating a linear expression, which is used as
the left-hand side of a constraint in line 11. Capacity constraints are created in a similar way, in lines 13 to 15. For an
example, consider now the same three production plants and five customers as before. Plant 1 produces two products,
football and volleyball; it can supply football only to Customer 1 and volleyball to all five customers. Plant 2 produces
football and basketball; it can supply football to Customers 2 and 3, basketball to Customers 1, 2 and 3. Plant 3
produces football, basketball and rugby ball; it can supply football and basketball to Customers 4 and 5, rugby ball to
all five customers.

Let us specify the data for this problem in a Python program. First of all, we must state what products each of the
plants can manufacture; on dictionary produce the key is the plant, to which we are associating a list of compatible
products. We also create a dictionary M with the capacity of each plant (3000 units, in this instance).

J,M = multidict({1:3000, 2:3000, 3:3000})
produce = {1:[2,4], 2:[1,2,3], 3:[2,3,4]}

The demand for each of the customers can be written as a double dictionary: for each customer, we associate a
dictionary of products and quantities demanded.

d = {(1,1):80, (1,2):85, (1,3):300, (1,4):6,
(2,1):270, (2,2):160, (2,3):400, (2,4):7,
(3,1):250, (3,2):130, (3,3):350, (3,4):4,
(4,1):160, (4,2):60, (4,3):200, (4,4):3,
(5,1):180, (5,2):40, (5,3):150, (5,4):5
}

I = set([i for (i,k) in d])
K = set([k for (i,k) in d])

For determining the transportation cost, we may specify the unit weight for each product and the transportation cost
per unit of weight; then, we calculate 𝑐𝑖𝑗𝑘 as their product:

weight = {1:5, 2:2, 3:3, 4:4}
cost = {(1,1):4, (1,2):6, (1,3):9,

(2,1):5, (2,2):4, (2,3):7,
(3,1):6, (3,2):3, (3,3):4,
(4,1):8, (4,2):5, (4,3):3,
(5,1):10, (5,2):8, (5,3):4
}

c = {}
for i in I:

for j in J:
for k in produce[j]:

c[i, j, k] = cost[i,j] * weight[k]

We are now ready to construct a model using this data, and solving it:
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model = mctransp(c,d,M)
model.optimize()
print "Optimal value:", model.ObjVal
EPS = 1.e-6
x = model.__data
for i,j,k in x:

if x[i,j,k].X > EPS:
print "sending %10g units of %3d from plant %3d to customer %3d" % (x[i,j,k].

→˓X, k, j, i)

If we execute this Python program, the output is the following:

1 Optimize a model with 18 rows, 40 columns and 70 nonzeros
2 Presolve removed 18 rows and 40 columns
3 Presolve time: 0.00s
4 Presolve: All rows and columns removed
5 Iteration Objective Primal Inf. Dual Inf. Time
6 0 1.7400000e+04 0.000000e+00 0.000000e+00 0s
7

8 Solved in 0 iterations and 0.00 seconds
9 Optimal objective 1.740000000e+04

10 Optimal value: 17400.0
11 sending 100.0 units of 2 from plant 3 to customer 4
12 sending 210.0 units of 3 from plant 3 to customer 3
13 sending 40.0 units of 3 from plant 2 to customer 3
14 sending 40.0 units of 1 from plant 2 to customer 1
15 sending 10.0 units of 3 from plant 2 to customer 1
16 sending 100.0 units of 2 from plant 1 to customer 2
17 sending 100.0 units of 3 from plant 2 to customer 2
18 sending 70.0 units of 1 from plant 2 to customer 2
19 sending 60.0 units of 1 from plant 2 to customer 4
20 sending 30.0 units of 2 from plant 1 to customer 1
21 sending 180.0 units of 1 from plant 2 to customer 5

Readers may have noticed by now that for these two transportation problems, even though we have used linear-
optimization models to solve them, the optimal solutions are integer-valued — as if we have solved integer-
optimization models instead. This is because of the special structures of the constraints in the transportation problems
that allow this property, commonly referred to as unimodularity. This property has enormous significance because,
for many integer-optimization problems that can be modeled as transportation problems, we only need to solve their
linear-optimization relaxations.

[source code]

2.7 Blending problem

2.8 Fraction optimization problem

2.9 Multi-Constrained Knapsack Problem

Knapsack problems are specially structured optimization problems. The general notion of the knapsack problem is to
fill up a knapsack of certain capacity with items from a given set such that the collection has maximum value with
respect to some special attribute of the items. For instance, given a knapsack of certain volume and several items of
different weights, the problem can be that of taking the heaviest collection of the items in the knapsack. Based on
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weights, the knapsack can then be appropriately filled by a collection that is optimal in the context of weight as the
special attribute.

Suppose we have a knapsack of volume 10,000 cubic-cm that can carry up to 7 Kg weight. We have four items having
weights 2, 3, 4 and 5, respectively, and volume 3000, 3500, 5100 and 7200, respectively. Associated with each of the
items is its value of 16, 19, 23 and 28, respectively. We would like to fill the knapsack with items such that the total
value is maximum.

FIGS/knapsack.png

Fig. 3: Knapsack instance

An integer-optimization model of this problem can be found by defining the decision variables 𝑥𝑗 = 1 if item 𝑗 is
taken, and 𝑥𝑗 = 0 otherwise, where 𝑗 = 1 to 4. For constraints, we need to make sure that total weight does not
exceed 7 kg and total volume does not exceed 10,000 cubic-cm. Thus, we have an integer-optimization model:

maximize
16𝑥1 +

19𝑥2 +

23𝑥3 +

28𝑥4

subject to:
2𝑥1 +

3𝑥2 +

4𝑥3 +

5𝑥4 ≤
7

30𝑥1 +

35𝑥2 +

51𝑥3 +

72𝑥4 ≤
100

𝑥1,

𝑥2,

𝑥3,

𝑥4 ∈
{0, 1}

The standard version of the knapsack problem concerns the maximization of the profit subject to a constraint limiting
the weight allowed in the knapsack to a constant 𝑊 ; the objective is to maximize

∑︀
𝑗 𝑣𝑗𝑥𝑗 subject to

∑︀
𝑗 𝑤𝑗𝑥𝑗 ≤ 𝑊 ,

with 𝑥𝑗 ∈ {0, 1}, where 𝑣𝑗 is the value of item 𝑗 and 𝑤𝑗 is its weight. A more general problem includes constraints in
more than one dimension, say, 𝑚 dimensions (as in the example above); this is called the multi-constrained knapsack
problem, or 𝑚-dimensional knapsack problem. If we denote the “weight” of an object 𝑗 in dimension 𝑖 by 𝑎𝑖𝑗 and
the capacity of the knapsack in this dimension by 𝑏𝑖, an integer-optimization model of this problem has the following
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structure:

maximize
𝑛∑︁

𝑗=1

𝑣𝑗𝑥𝑗

subject to
𝑛∑︁

𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 for 𝑖 = 1, · · · ,𝑚

𝑥𝑗 ∈ {0, 1} for 𝑗 = 1, · · · , 𝑛

A Python/Gurobi model for the multi-constrained knapsack problem is:

1 def mkp(I, J, v, a, b):
2 model = Model("mkp")
3 x = {}
4 for j in J:
5 x[j] = model.addVar(vtype="B", name="x[%d]"%j)
6 model.update()
7 for i in I:
8 model.addConstr(quicksum(a[i,j]*x[j] for j in J) <= b[i], "Dimension[%d]"%i)
9 model.setObjective(quicksum(v[j]*x[j] for j in J), GRB.MAXIMIZE)

10 model.update()
11 return model

This model can be used to solve the example above in the following way:

1 J,v = multidict({1:16, 2:19, 3:23, 4:28})
2 a = {(1,1):2, (1,2):3, (1,3):4, (1,4):5,
3 (2,1):3000, (2,2):3500, (2,3):5100, (2,4):7200,
4 }
5 I,b = multidict({1:7, 2:10000})
6

7 model = mkp(I, J, v, a, b)
8 model.ModelSense = -1
9 model.optimize()

10 print "Optimal value=", model.ObjVal
11 EPS = 1.e-6
12 for v in model.getVars():
13 if v.X > EPS:
14 print v.VarName,v.X

The solution of this example is found by Gurobi: 𝑥2 = 𝑥3 = 1, 𝑥1 = 𝑥4 = 0. We will next briefly sketch how this
solution is found.

[source code]

2.9.1 Branch-and-bound

Many optimization problems, such as knapsack problems, require the solutions to have integer values. In particular,
variables in the knapsack problem require values of either 1 or 0 for making decision on whether to include an item
in the knapsack or not. Simplex method cannot be used directly to solve for such solution values because it cannot
be used to capture the integer requirements on the variables. We can write the constraints 0 ≤ 𝑥𝑗 ≤ 1 for all 𝑗
for the binary requirements on the variables, but the simplex method may give fractional values for the solution.
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Therefore, in general, solving integer-optimization models is much harder. However, we can use a systematic approach
called branch-and-bound for solving an integer-optimization model, using the simplex method for solving linear-
optimization relaxation model obtained by “relaxing” any integer requirement on the variables to non-negatives only.
The process begins with the linear-optimization relaxation of the integer-optimization model and solves several related
linear-optimization models by simplex method for ultimately finding an optimal solution of the integer-optimization
model.

Let us use the previous knapsack example to illustrate this procedure. We can transform this integer-optimization
model of the knapsack problem to its linear-optimization relaxation by replacing the binary requirements by the con-
straints 0 ≤ 𝑥𝑗 ≤ 1 for all 𝑗. All feasible solutions of the integer-optimization model are also feasible for this
linear-optimization relaxation; i.e., the polyhedron of the integer-optimization model is now contained within the
polyhedron of its linear-optimization relaxation.

This linear-optimization relaxation can be solved easily by the simplex method. If the optimal solution found is
feasible to the integer-optimization model also — i.e., it satisfies the binary constraints also, then we have found the
optimal solution to the integer-optimization model. Otherwise, for this maximization problem, we can use the value
of the optimal solution of the linear-optimization relaxation as the upper bound on the maximum value any solution of
the integer-optimization model can possibly attain. Thus, optimal solution value of the linear-optimization relaxation
provides an upper bound for the optimal solution value of the underlying integer-optimization model; this information
can be suitably used for solving integer-optimization model via solving several related linear-optimization models.

The general notion of branch-and-bound scheme is to use bound on the optimal solution value in a tree search, as
shown in Figure Branch-and-bound. Each leaf of the tree represents some linear-optimization relaxation of the original
integer-optimization model. We start at the root of the search tree with the linear-optimization relaxation of the original
integer-optimization model. Simplex method, gives the optimal solution 𝑥 = (1, 1, 0.5, 0) and objective function
value 46.5. Since 𝑥3 = 0.5 is not integer and for the original integer-optimization model we need the variables to be
either 0 or 1, we create two different subproblem children of the root by forcing 𝑥3 = 1 and 𝑥3 = 0, say 𝑃1 and
𝑃2, respectively. Their optimal solutions are 𝑥 = (1, 1, 0, 0.4) with objective value 46.2 and 𝑥 = (1, 0.333, 1, 0)
with objective value 45.333, respectively. Now these two subproblems can be expanded again by branching on their
fractional values just as before. The process will yield a binary search tree because 𝑥𝑗 can only take values of 0 and 1.

FIGS/bbmkp.png

Fig. 4: Branch-and-bound
Branch-and-bound tree for the knapsack example.

Consider the two children of 𝑃1, 𝑃3 and 𝑃4. As found, the optimal solutions for 𝑃3 and 𝑃4 are 𝑥 = (0, 1, 1, 0) with
objective function value 42 and 𝑥 = (1, 0, 1, 0.2) with objective function value 44.6, respectively. Since 𝑃3 gives us a
feasible solution for the integer-optimization model, we have an incumbent solution 𝑥 = (0, 1, 1, 0) with value 42. If
no other feasible solution to the integer-optimization model from the tree search produces objective value larger than
42, then the incumbent is the optimal solution.

As can be seen from this small example, exploring the whole solution space can lead to a very large number of
computations, as the number of nodes may potentially duplicate from one level to the other. Gurobi uses branch-and-
bound in connection to other advanced techniques, such as the cutting plane approach, in order to achieve a very good
performance on this process. As we will see later (e.g., in Chapter Graph problems), there are some limitations to the
size of the problems that can be tackled by Gurobi; however, a very large number of interesting, real-world problems
can be solved successfully. In other situations, even if Gurobi cannot find the optimal solution, it will find a solution
close to the optimum within reasonable time; in many applications, this is enough for practical implementation.
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2.10 The Modern Diet Problem

In this section we consider a mathematical model for maximizing diversity of diet intakes, subject to nutritional
requirements and calorie restrictions. Let ℱ be a set of distinct foods and 𝒩 be a set of nutrients. Let 𝑑𝑖𝑗 be the amount
of nutrient 𝑖 in food 𝑗. The minimum and maximum intake of each nutrient 𝑖 is given by 𝑎𝑖 and 𝑏𝑖, respectively. An
upper bound for the quantity of each food is given by 𝑀 . Let 𝑥𝑗 be the number of dishes to be used for each food 𝑗,
and let 𝑦𝑗 = 1 indicate if food 𝑗 is chosen, 𝑦𝑗 = 0 if not. Let the cost of the diet be 𝑣 and the amount of intake of each
nutrient be given by 𝑧𝑖. The problem is to minimize the number of distinct foods.

minimize∑︁
𝑖∈ℱ

𝑦𝑗

subject to:∑︁
𝑗∈ℱ

𝑑𝑖𝑗𝑥𝑗 = 𝑧𝑖∀𝑖 ∈ 𝒩

𝑦𝑗 ≤ 𝑥𝑗∀𝑗 ∈ ℱ

𝑣 =
∑︁
𝑗∈ℱ

𝑐𝑗𝑥𝑗

𝑥𝑗 ≥ 0∀𝑗 ∈ ℱ

𝑦𝑗 ∈ {0, 1}∀𝑗 ∈ ℱ

𝑎𝑖 ≤ 𝑧𝑖 ≤ 𝑏𝑖∀𝑖 ∈ 𝒩

The first set of constraints (Nutr in the program below) calculate the amount of each nutrient by summing over the
selection of foods. Together with the last set of constraints (which is entered as bounds on 𝑧, line 8 in the program
below), they ensure that nutrient levels 𝑧𝑖 are maintained within the maximum and minimum amounts, 𝑎𝑖 and 𝑏𝑖, as
required. The second set of constraints (Eat in the program below) impose that a dish variety 𝑦𝑗 will be allowed into
the objective (i.e., be non-zero) only if at least one unit of that dish 𝑥𝑗 is selected. The third constraint (Cost, line 16
in the program) calculates cost 𝑣 of selecting a diet, while the other two constraints impose non-negativity and binary
requirements on the variables 𝑥𝑗 and 𝑦𝑗 defined earlier.

In Python/Gurobi, this model can be specified as follows.

1 def diet(F, N, a, b, c, d):
2 model = Model("modern diet")
3 x, y, z = {}, {}, {}
4 for j in F:
5 x[j] = model.addVar(lb=0, vtype="I", name="x[%s]" % j)
6 y[j] = model.addVar(vtype="B", name="y[%s]" % j)
7 for i in N:
8 z[i] = model.addVar(lb=a[i], ub=b[i], name="z[%s]" % j)
9 v = model.addVar(name="v")

10 model.update()
11 for i in N:
12 model.addConstr(quicksum(d[j][i]*x[j] for j in F) == z[i], "Nutr[%s]" % i)
13 model.addConstr(quicksum(c[j]*x[j] for j in F) == v, "Cost")
14 for j in F:

(continues on next page)

2.10. The Modern Diet Problem 29



Mathematical Optimization Documentation, Release 1

(continued from previous page)

15 model.addConstr(y[j] <= x[j], "Eat[%s]" % j)
16 model.setObjective(quicksum(y[j] for j in F), GRB.MAXIMIZE)
17 model.__data = x, y, z, v
18 return model

We may use the data provided in http://www.ampl.com/EXAMPLES/MCDONALDS/diet2.dat for applying this model
to a concrete instance:

1 inf = GRB.INFINITY
2 N, a, b = multidict({
3 "Cal" : [ 2000, inf ],
4 "Carbo" : [ 350, 375 ],
5 "Protein" : [ 55, inf ],
6 "VitA" : [ 100, inf ],
7 "VitC" : [ 100, inf ],
8 "Calc" : [ 100, inf ],
9 "Iron" : [ 100, inf ],

10 })
11 F, c, d = multidict({
12 "QPounder":[1.84, {"Cal":510, "Carbo":34, "Protein":28, "VitA":15, "VitC": 6, "Calc

→˓":30, "Iron":20}],
13 "McLean" :[2.19, {"Cal":370, "Carbo":35, "Protein":24, "VitA":15, "VitC": 10, "Calc

→˓":20, "Iron":20}],
14 "Big Mac" :[1.84, {"Cal":500, "Carbo":42, "Protein":25, "VitA": 6, "VitC": 2, "Calc

→˓":25, "Iron":20}],
15 "FFilet" :[1.44, {"Cal":370, "Carbo":38, "Protein":14, "VitA": 2, "VitC": 0, "Calc

→˓":15, "Iron":10}],
16 "Chicken" :[2.29, {"Cal":400, "Carbo":42, "Protein":31, "VitA": 8, "VitC": 15, "Calc

→˓":15, "Iron": 8}],
17 "Fries" :[ .77, {"Cal":220, "Carbo":26, "Protein": 3, "VitA": 0, "VitC": 15, "Calc

→˓": 0, "Iron": 2}],
18 "McMuffin":[1.29, {"Cal":345, "Carbo":27, "Protein":15, "VitA": 4, "VitC": 0, "Calc

→˓":20, "Iron":15}],
19 "1%LFMilk":[ .60, {"Cal":110, "Carbo":12, "Protein": 9, "VitA":10, "VitC": 4, "Calc

→˓":30, "Iron": 0}],
20 "OrgJuice":[ .72, {"Cal": 80, "Carbo":20, "Protein": 1, "VitA": 2, "VitC":120, "Calc

→˓": 2, "Iron": 2}],
21 })

In this specification of data we have used a new feature of the multidict function: for the same key (e.g., nutrients),
we may specify more than one value, and assign it to several Python variables; for example, in line 3 we are specifying
both the minimum and the maximum intake amount concerning calories; respectively, a and b. We are now ready
to solve the diet optimization model; let us do it for several possibilities concerning the maximum calorie intake
b["Cal"]:

for b["Cal"] in [inf, 3500, 3000, 2500]:
print "\n\nDiet for a maximum of %g calories" % b["Cal"]
model = diet(F, N, a, b, c, d)
model.Params.OutputFlag = 0
model.optimize()
print "Optimal value:", model.ObjVal
x, y, z, v = model.__data
for j in x:

if x[j].X > 0:
print "%30s: %5g dishes --> %g added to objective" % (j, x[j].X, y[j].X)

print "amount spent:", v.X

(continues on next page)

30 Chapter 2. Introduction

http://www.ampl.com/EXAMPLES/MCDONALDS/diet2.dat


Mathematical Optimization Documentation, Release 1
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print "amount of nutrients:"
for i in z:

print "%30s: %5g" % (i, z[i].X)

The data is specified in lines 1 through 43. In lines 45 to 58, we solve this problem for different values of the
maximum calorie intake, from infinity (i.e., no upper bound on calories) down to 2500. We encourage the reader
to use Python/Gurobi to solve this problem, and check that the variety of dishes allowed decreases when the calorie
intake is reduced. Interestingly, the amount spent does not vary monotonously: among those values of the calorie
intake, the minimum price is for a maximum of calories of 3500 (see also Appendix dietinput).

[source code]
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CHAPTER 3

Facility location problems

Todo: Adapt figures, check maths Computational experiment comparing formulations Adapt kmedian — seems to
be still gurobi version

To import SCIP in python, do:

from pyscipopt import Model, quicksum, multidict

We will deal here with facility location, which is a classical optimization problem for determining the sites for factories
and warehouses. A typical facility location problem consists of choosing the best among potential sites, subject to
constraints requiring that demands at several points must be serviced by the established facilities. The objective of
the problem is to select facility sites in order to minimize costs; these typically include a part which is proportional to
the sum of the distances from the demand points to the servicing facilities, in addition to costs of opening them at the
chosen sites. The facilities may or may not have limited capacities for servicing, which classifies the problems into
capacited and uncapacited variants. We will analyze several formulations; it is not straightforward to determine which
are good and which are bad, but we will provide some tips for helping on this.

The structure of this chapter is the following. In Section Capacitated facility location problem, we consider the capac-
ity constrained facility location problem, which will be used to explain the main points of a program in SCIP/Python
for solving it. In Section Weak and strong formulations, we discuss the quality of different formulations. In Section
The k-Median Problem, we will present a type of facility location problem that minimizes the sum of the distance
to the nearest facility, where the number of facilities is fixed to 𝑘: the 𝑘-median problem In Section The k-Center
Problem, we consider a type of facility location problems where the maximum value of the distance from a customer
to one of the 𝑘 open facilities is to be minimized. Thus, in this problem we want to find the minimum of maximum
value. This is often a tough problem, hard to tackle with a mathematical optimization solver; we will describe some
workarounds.

3.1 Capacitated facility location problem

The capacitated facility location problem is the basis for many practical optimization problems, where the total de-
mand that each facility may satisfy is limited. Hence, modeling such problem must take into account both demand
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satisfaction and capacity constraints.

Let us start with a concrete example. Consider a company with three potential sites for installing its facili-
ties/warehouses and five demand points, as in Section Transportation Problem. Each site 𝑗 has a yearly activation
cost 𝑓𝑗 , i.e., an annual leasing expense that is incurred for using it, independently of the volume it services. This
volume is limited to a given maximum amount that may be handled yearly, 𝑀𝑗 . Additionally, there is a transportation
cost 𝑐𝑖𝑗 per unit serviced from facility 𝑗 to the demand point 𝑖. These data are shown in Table Data for the facility
location problem: demand, transportation costs, fixed costs, and capacities..

Table 1: Data for the facility location problem: demand, transportation
costs, fixed costs, and capacities.
Customer 𝑖 1 2 3 4 5
Annual demand 𝑑𝑖 80 270 250 160 180
Facility 𝑗 𝑐𝑖𝑗 𝑓𝑗 𝑀𝑗

1 4 5 6 8 10 1000 500
2 6 4 3 5 8 1000 500
3 9 7 4 3 4 1000 500

This situation and its solution are represented in Figure Facility location.

Fig. 1: Facility location
Left: graph representation of an instance of the facility location problem. Suppliers are represented as squares and clients as

circles. Right: possible solution, with thick lines representing selected facilities and arcs actually used for transportation.

Let us formulate the above problem as a mathematical optimization model. Consider 𝑛 customers 𝑖 = 1, 2, . . . , 𝑛
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and 𝑚 sites for facilities 𝑗 = 1, 2, . . . ,𝑚. Define continuous variables 𝑥𝑖𝑗 ≥ 0 as the amount serviced from facility
𝑗 to demand point 𝑖, and binary variables 𝑦𝑗 = 1 if a facility is established at location 𝑗, 𝑦𝑗 = 0 otherwise. An
integer-optimization model for the capacitated facility location problem can now be specified as follows:

minimize
𝑚∑︁
𝑗=1

𝑓𝑗𝑦𝑗 +

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

subject to:
𝑚∑︁
𝑗=1

𝑥𝑖𝑗 = 𝑑𝑖 for 𝑖 = 1, · · · , 𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑗 ≤ 𝑀𝑗𝑦𝑗 for 𝑗 = 1, · · · ,𝑚

𝑥𝑖𝑗 ≤ 𝑑𝑖𝑦𝑗 for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · ,𝑚

𝑥𝑖𝑗 ≥ 0 for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · ,𝑚

𝑦𝑗 ∈ {0, 1} for 𝑗 = 1, · · · ,𝑚

The objective of the problem is to minimize the sum of facility activation costs and transportation costs. The first
constraints require that each customer’s demand must be satisfied. The capacity of each facility 𝑗 is limited by the
second constraints: if facility 𝑗 is activated, its capacity restriction is observed; if it is not activated, the demand
satisfied by 𝑗 is zero. Third constraints provide variable upper bounds; even though they are redundant, they yield a
much tighter linear programming relaxation than the equivalent, weaker formulation without them, as will be discussed
in the next section.

The translation of this model to SCIP/Python is straightforward; it is done in the program that follows.

1 def flp(I,J,d,M,f,c):
2 model = Model("flp")
3 x,y = {},{}
4 for j in J:
5 y[j] = model.addVar(vtype="B", name="y(%s)"%j)
6 for i in I:
7 x[i,j] = model.addVar(vtype="C", name="x(%s,%s)"%(i,j))
8 for i in I:
9 model.addCons(quicksum(x[i,j] for j in J) == d[i], "Demand(%s)"%i)

10 for j in M:
11 model.addCons(quicksum(x[i,j] for i in I) <= M[j]*y[j], "Capacity(%s)"%i)
12 for (i,j) in x:
13 model.addCons(x[i,j] <= d[i]*y[j], "Strong(%s,%s)"%(i,j))
14 model.setObjective(
15 quicksum(f[j]*y[j] for j in J) +
16 quicksum(c[i,j]*x[i,j] for i in I for j in J),
17 "minimize")
18 model.data = x,y
19 return model

Data for this problem may be specified in Python as follows:
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1 I, d = multidict({1:80, 2:270, 3:250, 4:160, 5:180})
2 J, M, f = multidict({1:[500,1000], 2:[500,1000], 3:[500,1000]})
3 c = {(1,1):4, (1,2):6, (1,3):9,
4 (2,1):5, (2,2):4, (2,3):7,
5 (3,1):6, (3,2):3, (3,3):4,
6 (4,1):8, (4,2):5, (4,3):3,
7 (5,1):10, (5,2):8, (5,3):4,
8 }

We can now solve the problem:

1 model = flp(I, J, d, M, f, c)
2 model.optimize()
3 EPS = 1.e-6
4 x,y = model.__data
5 edges = [(i,j) for (i,j) in x if model.GetVal(x[i,j]) > EPS]
6 facilities = [j for j in y if model.GetVal(y[j]) > EPS]
7 print "Optimal value=", model.GetObjVal()
8 print "Facilities at nodes:", facilities
9 print "Edges:", edges

The optimal solution obtained suggests establishing the facilities at Sites 2 and 3 only, as shown in Table Optimum
solution for the facility location problem example.. This solution incurs minimum total cost of 5610 for servicing all
the demands.

Table 2: Optimum solution for the facility location problem example.
Customer 1 2 3 4 5
Facility Volume transported Status
1 0 0 0 0 0 closed
2 80 270 150 0 0 open
3 0 0 100 160 180 open

1 Optimal value= 5610.0
2 Facilities at nodes: [2, 3]
3 Edges: [(1, 2), (3, 2), (3, 3), (4, 3), (2, 2), (5, 3)]

[source code]

3.2 Weak and strong formulations

Let us consider the facility location problem of the previous section, in a situation where the capacity constraint is not
important (any quantity may can be produced at each site). This is referred to as the uncapacitated facility location
problem. One way of modeling this situation is to set the value of 𝑀 in the constraint

𝑛∑︁
𝑖=1

𝑥𝑖𝑗 ≤ 𝑀𝑗𝑦𝑗 for 𝑗 = 1, · · · ,𝑚

as a very large number. Notice that the formulation is correct even if we omit constraints 𝑥𝑖𝑗 ≤ 𝑑𝑗𝑦𝑗 , for 𝑖 =
1, · · · , 𝑛; 𝑗 = 1, · · · ,𝑚. Removing that constraint, the problem may suddenly become very difficult to solve, espe-
cially as its size increases; the reason is the big :math:‘M‘ pitfall.

Parameter 𝑀 represents a large enough number, usually called Big M; it is associated with one of the biggest pitfalls
for beginners in mathematical optimization. The idea behind the constraint is to model the fact that “if we do not
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activate a warehouse, we cannot transport from there”. However, large values for 𝑀 do disturb the model in practice.
Constraints with a “Big M” may be a burden to the mathematical optimization solver, making the model extremely
difficult to solve.

Tip: Modeling tip 2

A large number 𝑀 must be set to a value as small as possible

Whenever possible, it is better not to use a large number. If its use is necessary, choose a number that is as small as
possible, as long as the formulation is correct. Using large numbers, as 𝑀 = 9999999, is unthinkable, except for very
small instances.

In the uncapacitated facility location problem, a correct formulation is to set the capacity 𝑀 equal to the total amount
demanded. However, it is possible to improve the formulation by adding the contraints 𝑥𝑖𝑗 ≤ 𝑑𝑖𝑦𝑗 . The natural
question here is “what formulation should we use”? Of course, the answer depends on the particular case; but in
general stronger formulations are recommended. Here, the strength of a formulation is not ambiguous: it can be
defined in terms of the linear optimization relaxation as follows.

Definition: Strong and Weak Formulations

Suppose that there are two formulations 𝐴 and 𝐵 for the same problem. By excluding the integrality
constraints (which force variables to take an integer value), we obtain the linear optimization relaxation.
Let the feasible region of formulations be 𝑃𝐴 and 𝑃𝐵 . When the region 𝑃𝐵 contains 𝑃𝐴, i.e., 𝑃𝐴 ⊂ 𝑃𝐵 ,
formulation 𝐴 is stronger than formulation 𝐵 (analogously, 𝐵 is weaker than 𝐴).

Intuitively, as 𝑃𝐴 is tighter than 𝑃𝐵 , the upper bound obtained by the relaxation in a maximization problem (or the
lower bound in minimization) is closer to the optimum of the integer problem.

𝑥𝑖𝑗 ≤ 𝑑𝑖𝑦𝑗

is stronger than using only constraints

𝑚∑︁
𝑗=1

𝑥𝑖𝑗 ≤

(︃
𝑛∑︁

𝑖=1

𝑑𝑖

)︃
𝑦𝑗 .

To verify it, let 𝑃𝐴 be the feasible region using the former constraints and 𝑃𝐵 the feasible region when using the latter;
observe that the latter constraints are obtained by adding the former, hence 𝑃𝐴 ⊆ 𝑃𝐵

A truly stronger formulation is either indicated by having 𝑃𝐴 ⊂ 𝑃𝐵 , or by verifying that solution of the linear
optimization relaxation of 𝐵 is not included in 𝑃𝐴.

As for the question “is it always preferable to use a stronger formulation?”, there is not a theoretical answer; distin-
guishing each case is part of the mathematical modeling art.

Let us try to give some guidance on this. Often, stronger formulations require many more constraints or variables than
weaker formulations. In the previous example, the strong formulation requires 𝑛𝑚 constraints, while the weak requires
only 𝑛. The time for solving the linear relaxation, which depends on the number of constraints and variables, is likely
to be longer in the case of the stronger formulation. Hence, there is a trade-off between shorter times for solving linear
optimization relaxations in weaker formulations, and longer computational times for branch-and-bound; indeed, the
enumerating tree is likely smaller for stronger formulations. As a guideline, as the size of the enumeration tree grows
very rapidly when the scale of the problem increases, stronger formulations are considered more desirable (even if the
number of constraints and variables becomes larger).

3.3 The 𝑘-Median Problem

There are many variants of the facility location problem; here we will consider the following classic problem.
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Median problem

Select a given number of facilities from possible points in a graph, in such a way that the sum of the
distances from each customer to the closest facility is minimized.

Often, the number of facilities to be selected is predetermined in advance; this number is commonly denoted 𝑘 (or 𝑝),
and the corresponding problem is given this symbol as a suffix.

The 𝑘-median problem is hence a variant of the uncapacitated facility location problem and specifically seeks to
establish 𝑘 facilities, without considering fixed costs.

The distance from the customer 𝑖 to facility 𝑗 is denoted 𝑐𝑖𝑗 , the set of customers by {1, 𝑛}, and the set of potential
places for facilities by {1,𝑚}. In the most common situation, it is assumed that facilities and customers share the
same set of points. Let us define the following variables:

𝑥𝑖𝑗 =

{︂
1 when the demand of customer 𝑖 is met by facility 𝑗
0 otherwise

𝑦𝑗 =

{︂
1 when facility 𝑗 is open
0 otherwise

Using the symbols and variables defined above, the 𝑘-median problem can be formulated as an integer-optimization
model.

minimize
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

subject to:
𝑚∑︁
𝑗=1

𝑥𝑖𝑗 = 1 for 𝑖 = 1, · · · , 𝑛

𝑚∑︁
𝑗=1

𝑦𝑗 = 𝑘

𝑥𝑖𝑗 ≤ 𝑦𝑗 for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · ,𝑚

𝑥𝑖𝑗 ∈ {0, 1} for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · ,𝑚

𝑦𝑗 ∈ {0, 1} for 𝑗 = 1, · · · ,𝑚

𝑛∑︁
𝑖=1

𝑥𝑖𝑗 ≤ 𝑦𝑗 , for 𝑗 = 1, · · · ,𝑚.

However, as explained in the previous section, this constraints will lead to much worse values in the linear relaxation,
and should be avoided.

The objective function minimizes the total cost of servicing all demand points.

As an illustration of this problem, consider the solution obtained for a graph with 200 vertices placed randomly in
the two-dimensional unit box, represented in Figure k-median. Costs are given by the Euclidean distance between the
points, and each of the vertices is a potential location for a facility.

The following Python program shows how to create a model for this problem, implemented as a function that takes
the problem’s data as parameters, and returns variable objects x and y as attribute data of the model object.
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FIGS/median.pdf

Fig. 2: 𝑘-median
Solution of the 𝑘-median model to a instance with 200 random vertices on the plane, and 𝑘 = 20.

3.4 The 𝑘-Center Problem

The 𝑘-median problem, considered above, has an interesting variant called the 𝑘-center problem.

Center problem

Select a given number of facilities from possible points in a graph, in such a way that the maximum value
of a distance from a customer to the closest facility is minimized.

FIGS/center.pdf

Fig. 3: 𝑘-center
Solution of 𝑘-center to a random instance with 100 nodes and 𝑘 = 10.

Essentially, the problem seeks an assignment of facilities to a subset of vertices in the graph so that each customer’s
vertex is “close” to some facility. As in the 𝑘-median problem, the number of facilities to be selected is predetermined
in advance, and fixed to a value 𝑘. Input data for the 𝑘-center problem is also the distance 𝑐𝑖𝑗 from the customer 𝑖
to facility 𝑗, the set of customers by {1, 𝑛}, and the set of potential places for facilities by {1,𝑚}; often, again, it is
assumed that facilities and customers share the same set of points. Variables have the same meaning:

𝑥𝑖𝑗 =

{︂
1 when the demand of customer 𝑖 is met by facility 𝑗
0 otherwise

𝑦𝑗 =

{︂
1 when facility 𝑗 is open
0 otherwise

In addition, we introduce a continuous variable 𝑧 to represent the distance/cost for the customer which is most dis-
tant from an established facility. Using these symbols and variables, the 𝑘-center problem can be formulated as the
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following mixed-integer optimization problem.

minimize
𝑧

subject to:
𝑚∑︁
𝑗=1

𝑥𝑖𝑗 = 1 for 𝑖 = 1, · · · , 𝑛

𝑚∑︁
𝑗=1

𝑦𝑗 = 𝑘

𝑥𝑖𝑗 ≤ 𝑦𝑗 for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · ,𝑚

𝑚∑︁
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝑧 for 𝑖 = 1, · · · , 𝑛

𝑥𝑖𝑗 ∈ {0, 1} for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · ,𝑚

𝑦𝑗 ∈ {0, 1} for 𝑗 = 1, · · · ,𝑚

The first constraints require that each customer 𝑖 is assigned to exactly one facility. The second constraints ensure that
exactly 𝑘 facilities are opened. The third constraints force facility 𝑗 to be activated some customer 𝑖 is assigned to 𝑗.
The fourth constraints determine 𝑧 to take on at least the value weight 𝑐𝑖𝑗 , for all facilities 𝑗 and customers 𝑖 assigned
to 𝑗. A version of these constraints which may be more natural, but which is much weaker, is to specify instead
𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝑧, for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · ,𝑚. Intuitively, we can reason that in the strong formulation, as we are
adding more terms in the left-hand side, the corresponding feasible region is tighter. The objective function represents
the distance that the customer which is served by the most distant facility, as calculated by the third constraints, must
travel.

The objective of the 𝑘-center problem is a classic case of minimizing a maximum value, also called a min-max objec-
tive; this is a type of problems for which mathematical optimization solvers are typically weak.

The following Python program shows how to create a model for the 𝑘-center problem; it is very similar to the program
used to solve the 𝑘-median problem.

Note: Margin seminar 4

Techniques in linear optimization

As illustrated in the text, the problem of “minimization of the maximum value” can be reduced to a standard linear
optimization, by adding a new variable and a few modifications to the model. Here, we will describe with more detail
these techniques in linear optimization. Let us give a simple example. Assume that we want to minimize the maximum
of two linear expressions, 3𝑥1 + 4𝑥2 and 2𝑥1 + 7𝑥2. For this, we introduce a new variable 𝑧 and the constraints:

3𝑥1 + 4𝑥2 ≤ 𝑧

2𝑥1 + 7𝑥2 ≤ 𝑧

With the addition of these linear constraints, minimizing 𝑧 will correctly model the minimization of the maximum of
those two expressions.

A related topic that often arises in practice is the minimization of the absolute value |𝑥| of a real variable 𝑥 , which is
a nonlinear expression. We can linearize it by means of two non-negative variables 𝑦 and 𝑧. Firstly, we compute the
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value of 𝑥 in terms of 𝑦 and 𝑧, though the constraint 𝑥 = 𝑦 − 𝑧. Now, since 𝑦 ≥ 0 and 𝑧 ≥ 0, we can represent a
positive 𝑥 with 𝑧 = 0 and 𝑦 > 0, and a negative 𝑥 with 𝑦 = 0 and 𝑧 > 0. Then, |𝑥| can be written as 𝑥 + 𝑦. In other
words, all occurrences of 𝑥 in the formulation are replaced by 𝑦 − 𝑧, and |𝑥| in the objective function is replaced by
𝑦 + 𝑧.

It is also possible to handle an absolute value by simply adding one variable 𝑧 and then imposing 𝑧 ≥ 𝑥 and 𝑧 ≥ −𝑥.
When minimizing 𝑧, if 𝑥 is non-negative, then the contraint 𝑧 ≥ 𝑥 is active; otherwise, 𝑧 ≥ −𝑥 is binding. Variable 𝑧
replaces |𝑥| in the objective function.

Tip: Modeling tip 3

An objective function that minimizes a maximum value should be avoided, if possible.

When an integer optimization problem is being solved by the branch-and-bound method, if the objective function
minimizes the maximum value of a set of variables (or maximizes their minimum value), there is a tendency to have
large values for the difference between the lower bound and the upper bound (the so-called duality gap). In this
situation, either the time for solving the problem becomes very large, or, if branch-and-bound is interrupted, the
solution obtained (the incumbent solution) is rather poor. Therefore, when modeling real problems, it is preferable to
avoid such formulations, if possible.

3.4.1 The 𝑘-Cover Problem

The 𝑘-center problem, considered above, has an interesting variant which allows us to avoid the min-max objective,
based on the so-called the 𝑘-cover problem. In the following, we utilize the structure of 𝑘-center in a process for
solving it making use of binary search.

Consider the graph 𝐺𝜃 = (𝑉,𝐸𝜃) consisting of the set of edges whose distances from a customer to a facility which
do not exceed a threshold value 𝜃, i.e., edges 𝐸𝜃 = {{𝑖, 𝑗} ∈ 𝐸 : 𝑐𝑖𝑗 ≤ 𝜃}. Given a subset 𝑆 ⊆ 𝑉 of the vertex set,
𝑆 is called a cover if every vertex 𝑖 ∈ 𝑉 is adjacent to at least one of the vertices in 𝑆. We will use the fact that the
optimum value of the 𝑘-center problem is less than or equal to 𝜃 if there exists a cover with cardinality |𝑆| = 𝑘 on
graph 𝐺𝜃.

Define 𝑦𝑗 = 1 if a facility is opened at 𝑗 (meaning that the vertex 𝑗 is in the subset 𝑆), and 𝑦𝑗 = 0 otherwise.
Furthermore, we introduce another variable:

𝑧𝑖 =

{︂
1 vertex 𝑖 is adjacent to no vertex in 𝑆 (it is not covered),
0 otherwise.

Let us denote by [𝑎𝑖𝑗 ] the incidence matrix of 𝐺𝜃, whose element 𝑎𝑖𝑗 is equal to 1 if vertices 𝑖 and 𝑗 are adjacent, and
is equal to 0 otherwise. Now we need to determine whether the graph 𝐺𝜃 has a cover |𝑆| = 𝑘; we can do that by
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solving the following integer-optimization model, called the 𝑘-cover problem on 𝐺𝜃:

minimize
𝑛∑︁

𝑖=1

𝑧𝑖

subject to
𝑚∑︁
𝑗=1

𝑎𝑖𝑗𝑦𝑗 + 𝑧𝑖 ≥ 1

for 𝑖 = 1, · · · , 𝑛
𝑚∑︁
𝑗=1

𝑦𝑗 = 𝑘

𝑧𝑖 ∈ {0, 1}
for 𝑖 = 1, · · · , 𝑛

𝑦𝑗 ∈ {0, 1}
for 𝑗 = 1, · · · ,𝑚.

Notice that the adjacency matrix is built upon a given value of distance 𝜃, based on which is computed the set of
facilities that may service each of the customers within that distance. For a given value of 𝜃 there are two possibilities:
either the optimal objective value of the previous optimization problem is zero (meaning that 𝑘 facilities were indeed
enough for covering all the customers withing distance 𝜃), of it may be greater that zero (meaning that there is at least
one 𝑧𝑖 > 0, and thus a customer could not be serviced from any of the 𝑘 open facilities). In the former case, we attempt
to reduce 𝜃, and check if all customers remain covered; in the latter, 𝜃 is increased. This process is repeated until the
bounds for 𝜃 are close enough, in a process called binary search.

Fig. 4: Binary search method for solving the 𝑘-center problem.

An illustration is provided in Figure Search for optimum \theta with binary search..

Using these ideas, we can get the optimal value of the 𝑘-center problem by the following binary search method.

In Table Solution and runtimes for a random instance. we provide some numbers, for having just an idea of the order
of magnitude of the computational times involved in these problems. They concern an instance with 200 vertices
randomly distributed in the plane and 𝑘 = 5.
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Fig. 5: Search for optimum 𝜃 with binary search.
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Table 3: Solution and runtimes for a random instance.
max distance CPU time (s)

𝑘-median 0.3854 3.5
𝑘-center 0.3062 645.5
𝑘-cover + binary search 0.3062 2.5

As we can see, 𝑘-cover within binary search method allows the computation of the 𝑘-center solution in a time compa-
rable to that required for the 𝑘-median solution.

From a practical point of view, the 𝑘-center solution is usually preferable to that of 𝑘-median. Indeed, the longest time
required for servicing a customer is frequently an important criterion to be considered by a company, and this may be
prohibitively large on the 𝑘-median solution.
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CHAPTER 4

Bin packing and cutting stock problems

Todo: Adapt column generation to work with SCIP

This chapter deals with two classic problem: the bin packing problem and the cutting stock problem. Let us start with
some definitions and examples.

You are the person in charge of packing in a large company. Your job is to skillfully pack items of various weights
in a box with a predetermined capacity; your aim is to use as few boxes as possible. Each of the items has a known
weights, and the upper limit of the contents that can be packed in a box is 9 kg. The weight list of items to pack is given
in Table Weights of items to be packed in bins of size 9.. In addition, the items you are dealing with your company are
heavy; there is no concern with the volume they occupy. So, how should these items be packed?

Table 1: Weights of items to be packed in bins of size 9.
Weights of items to be packed
6, 6, 5, 5, 5, 4, 4, 4, 4, 2, 2, 2, 2, 3, 3, 7, 7, 5, 5, 8, 8, 4, 4, 5

This is an example of a problem called the bin packing problem. It can be described mathematically as follows.

Bin packing problem

There are 𝑛 items to be packed and an infinite number of available bins of size 𝐵. The sizes 0 ≤ 𝑠𝑖 ≤ 𝐵
of individual items are assumed to be known. The problem is to determine how to pack these 𝑛 items in
bins of size 𝐵 so that the number of required bins is minimum.

A related problem is the cutting stock problem, which is defined as follows.

You are the person in charge of cutting in a large company producing rolls of paper. Your job is to skillfully cut
the large rolls produced in a standard size into smaller rolls, with sizes demanded by the customers. It is not always
possible to fully use every roll; sometimes, it is necessary to create leftovers, called trim loss. In this case, your aim
is to use as few rolls as possible; in other words, to minimize the trim loss created. The width of the large rolls is 9
meters, and there are customers’ orders for seven different sizes, as detailed in Table Orders for different roll lengths..
So, how should the large rolls be cut?
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Fig. 1: Bin packing instance
Item weights and bin capacity for an instance of the bin packing problem.

Table 2: Orders for different roll lengths.
Length Number of rolls
2 m 4
3 m 2
4 m 6
5 m 6
6 m 2
7 m 2
8 m 2

Fig. 2: Cutting stock instance
Item lengths and roll size for an instance of the cutting stock problem.

The cutting stock problem can be described mathematically as follows.

Cutting stock problem

There are orders for 𝑖 = 1, . . . ,𝑚 different widths, with quantity 𝑞𝑖 ordered for width 0 ≤ 𝑤𝑖 ≤ 𝐵, to
be cut from standard rolls with width 𝐵. The problem is to find a way to fulfill the orders while using the

46 Chapter 4. Bin packing and cutting stock problems



Mathematical Optimization Documentation, Release 1

minimum number of rolls.

The bin packing and the cutting stock problems may at first glance appear to be different, but in fact it is the same
problem. This can be seen with the examples above, which actually refer to the same situation. If find a the solution
using a formulation for one of the problems, it will also be a solution for the other case. As the problems are equivalent,
deciding which to solve depends on the situation.

This chapter is structured as follows. Section The Bin Packing Problem presents a straightforward formulation for
the bin packing problem. Section Column generation method for the cutting stock problem describes the column
generation method for the cutting stock problem. For both cases, we show how to obtain a solution with SCIP/Python.

4.1 The Bin Packing Problem

In the bin packing problem, it is assumed that an upper bound 𝑈 of the number of bins is given. In a simple formulation,
a variable 𝑋 indicates whether an item is packed in a given bin, and a variable 𝑌 specifies if a bin is used in the solution
or not.

𝑋𝑖𝑗 =

{︂
1 if item 𝑖 is packed in bin 𝑗
0 otherwise

𝑌𝑗 =

{︂
1 if bin 𝑗 is used
0 otherwise

Using these variables, the bin packing problem can be described as an integer optimization problem.

minimize
𝑈∑︁

𝑗=1

𝑌𝑗

subject to:
𝑈∑︁

𝑗=1

𝑋𝑖𝑗 = 1 for 𝑖 = 1, · · · , 𝑛

𝑛∑︁
𝑖=1

𝑠𝑖𝑋𝑖𝑗 ≤ 𝐵𝑌𝑗 for 𝑗 = 1, · · · , 𝑈

𝑋𝑖𝑗 ≤ 𝑌𝑗 for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · , 𝑈

𝑋𝑖𝑗 ∈ {0, 1} for 𝑖 = 1, · · · , 𝑛; 𝑗 = 1, · · · , 𝑈

𝑌𝑗 ∈ {0, 1} for 𝑗 = 1, · · · , 𝑈

The objective function is the minimization of the number of bins used. The first constraints force the placement of
each item in one bin. The second constraints represent the upper limit on the bins contents, as well as the fact that
items cannot be packed in a bin that is not in use. The third constraints provide an enhanced formulation, indicating
that if a bottle is not used (𝑌𝑗 = 0), items cannot be placed there (𝑋𝑖𝑗 = 0). Without these inequalities it is possible to
find an optimum solution; however, as mentioned in Section Weak and strong formulations, a speedup can be expected
by the addition of these stronger constraints.

Let us see how this formulation can be written in SCIP/Python. First of all, we will prepare a function to generate the
example’s data.
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def BinPackingExample():
B = 9
w = [2,3,4,5,6,7,8]
q = [4,2,6,6,2,2,2]
s=[]
for j in range(len(w)):

for i in range(q[j]):
s.append(w[j])

return s,B

Here, the data is prepared as for a cutting stock problem (width of rolls 𝐵, number of orders 𝑞 and width orders 𝑤)
and is converted to the bin packing data (list 𝑠 of sizes of items, bin size 𝐵).

Next, we need to calculate the upper limit 𝑈 of the number of bins. The bin packing problem has been for a long time
a field for the development of heuristics. Heuristics are procedures for obtaining a solution based on rules that do not
guarantee that the optimum will be reached. A well-known heuristics for this problem is first-fit decreasing (FFD),
which consists of arranging the items in non-increasing order of their size, and then for each item try inserting it in
the first open bin where it fits; if no such bin exists, then open a new bin and insert the item there. Here is a simple
implementation in Python.

def FFD(s, B):
remain = [B]
sol = [[]]
for item in sorted(s, reverse=True):

for j,free in enumerate(remain):
if free >= item:

remain[j] -= item
sol[j].append(item)
break

else:
sol.append([item])
remain.append(B-item)

return sol

In line 2, remain is a list to store the space remaining in bins currently in use, which is initialized to have only
one bin of size 𝐵. The solution is stored in a list of lists, initialized in line 3 as a list containing an empty list; this
represents a solution consisting of an empty bin. Line 4 starts a for loop, where items are taken out in descending
order of their size. Here, sorted is a Python function for generating the contents of a list in order; with the optional
parameter reverse=True, the order is reversed. Line 5 starts an iteration over the bins currenlty in use, where
free is assigned to the space available in j th bin; if there is space available the current item is packed in j. If the
current items doesn’t fit in any bin, a new bin is created and the item is packed there. Here, enumerate is a Python
function returning tuples (index,value) with the index for each element (value) in a sequence. The return value
is list sol representing the solution found, and hence its length is an upper bound 𝑈 of the number of bins.

We now have the tools for implementing a function for solving the bin packing problem.

def bpp(s,B):
n = len(s)
U = len(FFD(s,B))
model = Model("bpp")
x,y = {},{}
for i in range(n):

for j in range(U):
x[i,j] = model.addVar(vtype="B", name="x(%s,%s)"%(i,j))

for j in range(U):
y[j] = model.addVar(vtype="B", name="y(%s)"%j)

for i in range(n):
(continues on next page)
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(continued from previous page)

model.addCons(quicksum(x[i,j] for j in range(U)) == 1, "Assign(%s)"%i)
for j in range(U):

model.addCons(quicksum(s[i]*x[i,j] for i in range(n)) <= B*y[j], "Capac(%s)"
→˓%j)

for j in range(U):
for i in range(n):

model.addCons(x[i,j] <= y[j], "Strong(%s,%s)"%(i,j))
model.setObjective(quicksum(y[j] for j in range(U)), "minimize")
model.data = x,y
return model

This model can be used to compute a list with the items that should be placed in each bin, as follows:

def solveBinPacking(s,B):
n = len(s)
U = len(FFD(s,B))
model = bpp(s,B)
x,y = model.data
model.optimize()
bins = [[] for i in range(U)]
for (i,j) in x:

if model.getVal(x[i,j]) > .5:
bins[j].append(s[i])

for i in range(bins.count([])):
bins.remove([])

for b in bins:
b.sort()

bins.sort()
return bins

Using the program above it is possible to obtain a solution with objective value (the number of bins) 13. This solution
is shown in Figure Solution.

Fig. 3: Solution
Solution obtained for the bin packing example.

4.2 Column generation method for the cutting stock problem

Here, we will introduce the column generation method for the cutting stock problem proposed by Gilmore-Gomory
[GG61] [GG63].

When representing a linear optimization problem by means of a matrix, the left-hand side of the constraints’ coeffi-
cients, there is a correspondence of each row of the matrix to a constraint, and a correspondence between each column

4.2. Column generation method for the cutting stock problem 49



Mathematical Optimization Documentation, Release 1

of the matrix and a variable. Hence, constraints are often referred to as rows, and variables are also called columns.

In the column generation method only a (usually small) subset of the variables is used initially. The method sequen-
tially addes columns (i.e., variables), using information given by the dual variables for finding the approriate variable
to add.

Let us try to explain how it works by means of the example provided in Orders for different roll lengths.. There are
many was of cutting the base roll into width requested in the order; let us consider a valid cutting pattern a set of
widths whose sum does not exceed the roll’s length (𝐵 = 9 meters). First, we will generate simple patterns, each
composed only of one ordered width repeated as many times as it fits in roll length. For order 𝑗 of width 𝑤𝑗 , the
number of times it can be cut from the base roll is 𝐵 divided by 𝑤𝑗 rounded down. Let us represent a pattern as a
vector (in the programs, as a list) with the number of times each width is cut. For example, the width 𝑤1 = 2 of order
1 was 2 meters, and will be cut ⌊𝐵/𝑤1⌋ = ⌊9/2⌋ = 4 times in case of cutting only the width of order 1; this cutting
pattern can be represented as (4, 0, 0, 0, 0, 0, 0). Repeating this for the other orders allows us to generate an initial set
of cutting patterns. A Python program for generating a list t of all the initial cutting patterns can be written as follows.

t = []
m = len(w)
for i in range(m):

pat = [0]*m
pat[i] = int(B/w[i])
t.append(pat)

The initial set of cutting patterns is the following (also represented on the left side of Figure Solution).

[4,0,0,0,0,0,0]
[0,3,0,0,0,0,0]
[0,0,2,0,0,0,0]
[0,0,0,1,0,0,0]
[0,0,0,0,1,0,0]
[0,0,0,0,0,1,0]
[0,0,0,0,0,0,1]

Fig. 4: Solution
Solution obtained for the cutting stock example.

If we define integer variable 𝑥𝑖 for representing the number of times to use cutting pattern 𝑖, considering only the
initial cutting patterns, an integer optimization problem problem for finding the minimum number of rolls to meet all
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the orders is the following.

minimize
𝑥1+𝑥2+

𝑥3+𝑥4+

𝑥5+𝑥6+

𝑥7

4𝑥1

≥ 4

3𝑥2

≥ 2

2𝑥3

≥ 6

𝑥4

≥ 6

𝑥5

≥ 2

𝑥6

≥ 2

𝑥7 ≥ 2

𝑥1,𝑥2,

𝑥3,𝑥4,

𝑥5,𝑥6,

𝑥7 ≥
0, integer
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If we now solve this linear optimization problem by relaxing the integer constraints, the optimum is 16 2
3 and an optimal

solution is 𝑥 = (1, 2/3, 3, 6, 2, 2, 2). We can also obtain, for each constraint, the corresponding optimal dual variable:
𝜆 = (1/4, 1/3, 1/2, 1, 1, 1, 1). These quantities can be interpreted as the value of each order in terms of the base roll;
for example, 𝜆1 = 1/4 can be interpreted as “order 1 is worthy 1/4 of a roll”. (See margin seminar Duality for an
interpretation of the optimal values of dual variables.)

We can observe that in the first cutting pattern a lot of waste has been generated. In order to obtain a more efficient
cutting strategy, the base roll must be cut with different, high-value orders such that its width is not exceeded.

Using integer variables 𝑦𝑗 to represent how many pieces of order 𝑗 should be cut, finding the cutting pattern with the
largest value can be formulated as the following integer optimization problem.

minimize
1

4
𝑦1+

1

3
𝑦2+

1

2
𝑦3+𝑦4+

𝑦5+𝑦6+

𝑦7

2𝑦1+3𝑦2+

4𝑦3+5𝑦4+

6𝑦5+7𝑦6+

8𝑦7 ≤ 9

𝑦1,𝑦2,

𝑦3,𝑦4,

𝑦5,𝑦6,

𝑦7 ≥
0, integer

This is called the integer knapsack problem, a variant of the problem presented in Section knapsack where the variables
are non-negative integers. Even though the integer knapsack problem is known to be NP-hard, optimal solutions can
be obtained relatively easily with SCIP. For the instance above, the optimum is 1.5, and the corresponding solution
is 𝑦 = (2, 0, 0, 1, 0, 0, 0). This indicates that a pattern with the value of 1.5 units of the base roll can be obtained by
cutting a roll in two pieces of order 1 and one piece of order 4.

The reduced cost of this new column is 1(2𝜆1 + 𝜆4) = 0.5; this indicates that by adding a column with this cutting
pattern it is possible to obtain a benefit of 0.5 base rolls. (See Margin Seminar reducedcosts for the definition of
reduced costs.)

We will now add this column and solve the linear relaxation problem again. Let the variable 𝑥8 indicate the number
of times to use the new cutting pattern; the linear relaxation of the problem of finding a minimum number of rolls so
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as to satisfy the orders is as follows.

minimize
𝑥1 + 𝑥2

+𝑥3 + 𝑥4

+𝑥5 + 𝑥6

+𝑥7 + 𝑥8

4𝑥1

+ 2𝑥8

≥ 4

3𝑥2

≥ 2

2𝑥3

≥ 6

𝑥4

+ 𝑥8

≥ 6

𝑥5

≥ 2

𝑥6

≥ 2

𝑥7

≥ 2

𝑥1,𝑥2,

𝑥3,𝑥4,

𝑥5,𝑥6,

𝑥7,𝑥8

≥ 0
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In this example, after adding five new patterns the reduced cost of the new column found by solving the knapsack
problem is not negative, and the column generation procedure stops. As at the end we want an integer solution, we add
the integrality constraints to the last linear optimization problem created in the procedure. Solving this problem, we
determine a solution using 13 rolls; the final set of patterns, as well as the count of each of them in the final solution,
are shown in Figure Solution. Notice that, in general, there is no guarantee that all the relevant patterns had been
added, and hence this solution may not be optimal for the original problem (though in this particular example we can
show that the solution is optimal, as the minimum number of bins required is ⌈

∑︀𝑚
𝑖=1 𝑞𝑖𝑤1/𝐵⌉ = ⌈12 2

9⌉ = 13).

When the number of variable in a model is huge, the method of column generation is effective. It is summarized below.

Tip: Modeling tip 4

Use the column generation method when the number of variables is extremely large.

For many practical problems (as the cutting stock problem above), a solution approach is to generate possible patterns
and let an optimization model select the relevant patterns.

The number of possible patterns may be enormous. Rather than enumerating all the possibilities, it is effective to solve
an appropriate subproblem (a knapsack problem, in the case of the cutting stock problem) to generate only relevant
patterns.

After defining the subproblem, the complicated part is the exchange of information between these two problems, in
particular dual information. However (as shown below), this is relatively simple to program with SCIP/Python.

Before describing the program used for solving the cutting stock problem, let us introduce a formulation and the
column generation method in a general form. Let the 𝑘-th cutting pattern of base roll width 𝐵 into some of the 𝑚
width ordered be denoted as a vector (𝑡𝑘1 , 𝑡

𝑘
2 , . . . , 𝑡

𝑘
𝑚). Here, 𝑡𝑘𝑖 represents the number of times the width of order 𝑖 is

cut out in the 𝑘-th cutting pattern. For a pattern (𝑡𝑘1 , 𝑡
𝑘
2 , . . . , 𝑡

𝑘
𝑚) (which is a packing in the bin packing problem) to be

feasible, it must satisfy:

𝑚∑︁
𝑘=1

𝑡𝑘𝑖 ≤ 𝐵

Let us denote by 𝐾 the current number of cutting patterns. The cutting stock problem is to decide how to cut a total
number of ordered width 𝑗 at least 𝑞𝑗 times, from all the available cutting patterns, so that the total number of base
rolls used is minimized.

minimize
𝐾∑︁

𝑘=1

𝑥𝑘

subject to:
𝐾∑︁

𝑘=1

𝑡𝑘𝑖 𝑥𝑘 ≥ 𝑞𝑖 for 𝑖 = 1, . . . ,𝑚

𝑥𝑘 ≥ 0, integer for 𝑘 = 1, . . . ,𝐾.

This is called the master problem. Consider the linear optimization relaxation of the master problem, and the optimal
dual variable vector 𝜆. Using 𝜆 as the value assigned to each width 𝑖, the next problem is to find a feasible pattern
(𝑦1, 𝑦2, . . . , 𝑦𝑚) that maximizes the value of the selected widths. This is an integer knapsack problem; its solution
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will be used as an additional pattern in the master problem.

maximize
𝑚∑︁
𝑖=1

𝜆𝑖𝑦𝑖

subject to:
𝑚∑︁
𝑖=1

𝑤𝑖𝑦𝑖 ≤ 𝐵

𝑦𝑖 ≥ 0, integer for 𝑖 = 1, . . . ,𝑚.

Based on the notation introduced above, we will describe how to implement column generation for the cutting stock
problem using SCIP/Python. At first, we will create the model for the master problem, i.e., an integer optimization
model for finding the minimum number of base rolls, with the currently available patterns, such that all the orders are
satisfied. Generated patterns are stored in the list t, where t[k][[i] holds the number of times width i is used in
pattern k; that number multiplied by the number of times pattern k is used x[k] must satisfy the ordered number of
width i, q[i]. The objective is to minimize the number of base rolls needed, which is given by the sum of x[k] for
all patterns k.

K = len(t)
master = Model("master LP")
x = {}
for k in range(K):

x[k] = master.addVar(vtype="I", name="x(%s)"%k)
orders = {}
for i in range(m):

orders[i] = master.addCons(
quicksum(t[k][i]*x[k] for k in range(K)) >= q[i])

master.setObjective(quicksum(x[k] for k in range(K)), "minimize")

After generating an initial set of K patterns, the master problem is defined and an variable for each pattern is added
to the model. The main loop of the column generation method starts by solving the relaxation of the master problem,
and assigning its dual variables to list lambda_. Then, the knapsack subproblem is defined. The coefficients at
the objective are the values of the dual variables, and the knapsack constraint is the width w[i] of ordered width i
multiplied by the number of times that width is used in the pattern, y[i]. If the optimum for the subproblem less
than 1, then the reduced costs have become all non-negative, and no more patterns are generated. Otherwise, the new
pattern is added to list t, and a new column for this pattern is added to the master problem.

while True:
relax = master.relax()
relax.optimize()
pi = [c.Pi for c in relax.getConstrs()]
knapsack = Model("KP")
knapsack.ModelSense=-1
y = {}
for i in range(m):

y[i] = knapsack.addVar(ub=q[i], vtype="I", name="y[%d]"%i)
knapsack.update()
knapsack.addConstr(quicksum(w[i]*y[i] for i in range(m)) <= B, "width")
knapsack.setObjective(quicksum(pi[i]*y[i] for i in range(m)), GRB.MAXIMIZE)
knapsack.optimize()
if knapsack.ObjVal < 1+EPS:

break
pat = [int(y[i].X+0.5) for i in y]

(continues on next page)
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(continued from previous page)

t.append(pat)
col = Column()
for i in range(m):

if t[K][i] > 0:
col.addTerms(t[K][i], orders[i])

x[K] = master.addVar(obj=1, vtype="I", name="x[%d]"%K, column=col)
master.update()
K += 1

master.optimize()
rolls = []
for k in x:

for j in range(int(x[k].X + .5)):
rolls.append(sorted([w[i] for i in range(m) if t[k][i]>0 for j in

→˓range(t[k][i])]))
rolls.sort()
return rolls

After finishing the column generation cycle, the (integer) model with all added patterns is solved.

56 Chapter 4. Bin packing and cutting stock problems



CHAPTER 5

Graph problems

Todo: Adapt everything: figures, maths, . . .

In this chapter we will present models for three optimization problems with a combinatorial structure (graph partition-
ing problem, maximum stable set problem, graph coloring problem) and try to solve them with SCIP/Python. All the
models dealt with here are based on the definition of a graph. A graph is an abstract concept, a construction derived
from vertices and edges linking two vertices, but many of the practical optimization problem can be defined naturally
by means of graphs.

The roadmap for this chapter is the following. Section gpp deals with the basic notions of graph theory and with
the graph partitioning problem, describing a method for dealing with a quadratic objective function by linearizing it.
Section ssp presents the maximum stable set problem. Section gcp describes the graph coloring problem, proposing
an improved model for avoiding symmetry in the solution space.

5.1 Graph partitioning problem

Consider the following scenario.

Six friends are deciding how to split for forming two teams of mini-soccer (Figure Graph partitioning problem). Of
course, in order to be fair, each team must have the same number of persons — three, in this case. However, having
good friends in separate teams should be avoided as much as possible. So, how should the group of persons be divided
into two teams?

The case above is an example of a combinatorial optimization problem called the graph partitioning problem. Actually,
rather than creating football teams, this NP-hard problem has a number of serious applications, including VLSI (very-
large-scale integration) design.

This real problem is easy to understand using the concept of “graph”. A graph is an abstract object composed of
vertices and edges; an edge is a link between two vertices. Graphs are very useful tools to unambiguously represent
many real problems. As an example, let us represent a friendship relationship with a graph.

You have six friends. First of all, represent each of these friends by a circle; in graph theory, these circles are called
vertices (also called nodes or points). As always in life, some of these fellows have a good relationship between them,
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Fig. 1: Graph partitioning problem
(a) Graph where an edge between two persons indicates that they are good friends.

(b) Solution where the number of good friends in (equally divided) different teams is minimum. Pairs of good friends belonging
to different teams are represented by a thick line — there are two, in this case. Hence, the objective value for equal division
is 2.

whereas others have a bad relationship. In order to organize these complicated relashionships, you connect with a
line each pair of your friends which are in good terms with each other. In graph theory, such a line is called an edge
(also called arc or line). When represented in this way, the friendship scenario becomes very easy to grasp. This
representation is a graph.

More precisely, the graphs dealt with in this chapter are called undirected graphs, because the lines connecting two
vertices have no implied direction.

The set of vertices, here representing the set of friends, is usually referred to as 𝑉 . The set of edges, here representing
friendship connections, is usually referred to as 𝐸. Since a graph is composed of a set of vertices and a set of edges,
it is commonly denoted as 𝐺 = (𝑉,𝐸). Vertices which are endpoints of an edge are said to be adjacent to each other.
Besides, an edge is said to be incident to the vertices at both ends. The number of edges connected to a vertex defines
its degree.

The graph partitioning problem can be neatly described using this terminology.

Graph partitioning problem

Given an undirected graph 𝐺 = (𝑉,𝐸) with an even number of vertices 𝑛 = |𝑉 |1, divide 𝑉 into two
subsets 𝐿 and 𝑅 with the same number of vertices (uniform partition or equipartition) satisfying 𝐿∩𝑅 =
∅, 𝐿 ∪𝑅 = 𝑉 , |𝐿| = |𝑅| = 𝑛/2, so as to minimize the number of edges across 𝐿 and 𝑅 (more precisely,
the number of edges {𝑖, 𝑗} such that either 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅, or 𝑖 ∈ 𝑅 and 𝑗 ∈ 𝐿).

In order to define the graph partitioning problem more precisely, we will formulate it as an integer optimization
problem. Given an undirected graph 𝐺 = (𝑉,𝐸), the pair (𝐿,𝑅) is a partition the set of vertices into two subsets 𝐿
and 𝑅 (i.e., a bipartition) if it satisfies 𝐿 ∩ 𝑅 = ∅ (no intersection) and 𝐿 ∪ 𝑅 = 𝑉 (the union is the whole set of
vertices). Even though 𝐿 stands for left and 𝑅 for right, nothing changes if their roles are swapped; hence, (𝐿,𝑅) is
a non-ordered pair. Introducing binary variables 𝑥𝑖 which will take the value 1 when vertex 𝑖 is included in subset 𝐿,
and the value 0 otherwise (i.e., 𝑖 is included in subset 𝑅), for having vertices equally divided the sum of 𝑥𝑖 must be
equal to 𝑛/2. When an edge {𝑖, 𝑗} is across 𝐿 and 𝑅, either 𝑥𝑖(1 − 𝑥𝑗) or (1 − 𝑥𝑖)𝑥𝑗 become 1, allowing us to write

1 The number of elements included in a set 𝑉 is called the cardinality of the set, and is represented by |𝑉 |.
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the following formulation.

minimize∑︁
{𝑖,𝑗}∈𝐸

(𝑥𝑖(1 − 𝑥𝑗) + (1 − 𝑥𝑖)𝑥𝑗)

subject to∑︁
𝑖∈𝑉

𝑥𝑖 = 𝑛/2

𝑥𝑖 ∈ {0, 1}∀𝑖 ∈ 𝑉

Many of the available mathematical optimization solvers do not support minimization problem whose objective func-
tion is not convex (for the definition of convex function refer to Chapter piecewiselinear). The above quadratic terms
are not convex. Even though SCIP does provide support for these cases, it is much more efficient for solving linear
problems. Therefore, in cases where we can find an equivalent linear formulation is it advisable to use it. We will see
that for the graph partition problem this is possible.

Let binary variables 𝑦𝑖𝑗 model the case where edges are incident to different subsets, i.e., 𝑦𝑖𝑗 = 1 if the endpoints of
edge {𝑖, 𝑗} are across 𝐿 and 𝑅, 𝑦𝑖𝑗 = 0 otherwise. Variables 𝑥𝑖, 𝑖 ∈ 𝑉 have the same meaning as above. With these
variables, the graph partitioning problem can be modeled with linear integer optimization as follows.

minimize
∑︁

{𝑖,𝑗}∈𝐸

𝑦𝑖𝑗

subject to
∑︁
𝑖∈𝑉

𝑥𝑖 = 𝑛/2

𝑥𝑖 − 𝑥𝑗 ≤ 𝑦𝑖𝑗

∀{𝑖, 𝑗} ∈ 𝐸

𝑥𝑗 − 𝑥𝑖 ≤ 𝑦𝑖𝑗

∀{𝑖, 𝑗} ∈ 𝐸

𝑥𝑖 ∈ {0, 1}
∀𝑖 ∈ 𝑉

𝑦𝑖𝑗 ∈ {0, 1}
∀{𝑖, 𝑗} ∈ 𝐸

As the objective is to minimize the sum of variables 𝑦𝑖𝑗 , their value will be as much as possible zero, but constraints
force some of them to be one. The first constraint defines an equal division of the set of vertices. The second constraint
implies that if 𝑖 ∈ 𝐿 and 𝑗 ̸∈ 𝐿 (i.e., edge {𝑖, 𝑗} is across subsets 𝐿 and 𝑅), then 𝑦𝑖𝑗 = 1 The third constraint implies
that if 𝑗 ∈ 𝐿 and 𝑖 ̸∈ 𝐿, then 𝑦𝑖𝑗 = 1.

A model for this in Python/SCIP can be written as follows:

The function gpp requires as parameters a set of vertices V and a set of edges E. An example of a function for
generating such data randomly given below.

With these functions, the main program can be written as follows.

if __name__ == “__main__”: V,E = make_data(4,.5) model = gpp(V,E) model.optimize()
print(“Optimal value:”, model.getObjVal())

Note: Margin seminar 5
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Mathematical optimization and constraint programming

Although the central paradigm used in this document for solving optimization problems is mathematical optimiza-
tion (previously known as mathematical programming), another framework for solving similar problems is constraint
programming. These two technologies, more than competing, complement each other as powerful optimization tools.
Depending on the problem it may be advisable to use tools from mathematical optimization, from constraint program-
ming, or to combine the two technologies.

In mathematical optimization, variables must be defined as real or integer numbers. In constraint programming,
variables typically take one value from a given discrete set, called the domain. Constraint programming is good
at solving problems with a combinatorial structure; it is weak for handling continuous (real) variables, for which
mathematical optimization is very powerful. On the other hand, problems containing non-convex expressions, such as
the graph partitioning problem, can often be easily solved in constraint programming. In addition, it is also good for
problems for which it is difficult to find a feasible solution, such as puzzles or the staff scheduling problem described
in Section 9.3.

SCIP is specialized in constraint integer optimization, combining techniques for constraint programming, mixed-
integer optimization, and satisfiability problems.

5.2 Maximum stable set problem

You are choosing, from a group of six friends, with whom to go for a picnic. However, persons linked with an edge in
Figure Maximum stable set problem are on very unfriendly terms with each other, so if both of them go to the picnic,
it will be spoiled. To have as many friends as possible in the picnic, who should be invited?

Fig. 2: Maximum stable set problem
(a) Graph where an edge between two persons indicates that they are on unfriendly terms.

(b) Maximum number of persons that can go to a picnic such that all the invitees are in good terms. The four persons encircled
can all be at the picnic without spoiling it; this is the optimal solution.
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This is an example of the so-called maximum stable set problem, a fundamental problem in graph theory. The maxi-
mum stable sets problem can be defined as follows.

Maximum stable set problem

Given an undirected graph 𝐺 = (𝑉,𝐸), a subset 𝑆 ⊆ 𝑉 is called a stable set when there isn’t any edge
among vertices of 𝑆. The problem is to find a stable set 𝑆 such that its cardinality (i.e., |𝑆|, the number
of vertices it contains) is maximum.

Considering the complementary graph this problem—the complementary graph inverts the edges, i.e., contains edges
only between pairs of vertices for which there is no edge in the original graph—the maximum clique problem is defined
below. These two problems are equivalent, in the sense that they can be converted through a simple transformation,
and the solution is the same (see Figure Maximum stable set and maximum clique).

Fig. 3: Maximum stable set and maximum clique
(a) Maximum stable set.

(b) Maximum clique on the complementary graph.

Maximum clique problem

Given an undirected graph 𝐺 = (𝑉,𝐸), a subset 𝐶 ⊆ 𝑉 is called a clique when the subgraph induced by
𝐶 is complete (in a complete graph there is edge connecting all pairs of vertices; the subgraph induced
by a subset of vertices contains all the edges of the original graph with both ends in that subset). The
problem is to find a clique 𝐶 which maximizes cardinality |𝐶|.

These problems have applications in coding theory, reliability, genetics, archeology and VLSI design, among others.
Using a variable for each vertex 𝑖, which take on the value 1 when vertex 𝑖 is included in the stable set, this problem
can be formulated as follows.

maximize
∑︁
𝑖∈𝑉

𝑥𝑖

subject to 𝑥𝑖 + 𝑥𝑗 ≤ 1

∀{𝑖, 𝑗} ∈ 𝐸

𝑥𝑖 ∈ {0, 1}
∀𝑖 ∈ 𝑉

This formulation can be written as a Python/SCIP program in the following manner.

This function can be used similarly to the one described above for the graph partitioning problem.
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5.3 Graph coloring problem

You are concerned about how to assign a class to each of your friends. Those which are on unfriendly terms with each
other are linked with an edge in Figure Graph coloring problem. If put on the same class, persons on unfriendly terms
will start a fight. To divide your friends into as few classes as possible, how should you proceed?

Fig. 4: Graph coloring problem
(a) Graph where an edge between two persons indicates that they are on unfriendly terms.

(b) Dividing into three classes keeps persons on unfriendly terms in different classes. The value of the objective function (the
number of classes) being 3, this is an optimal solution.

This is an example of the classical optimization problem called graph coloring problem, which can be defined as
follows.

Graph coloring problem

Given an undirected graph 𝐺 = (𝑉,𝐸), a 𝐾−partition is a division of the vertices 𝑉 into 𝐾 subsets
𝑉1, 𝑉2, . . . , 𝑉𝐾 such that 𝑉𝑖 ∩ 𝑉𝑗 = ∅,∀𝑖 ̸= 𝑗 (there is no overlap), and

⋃︀𝐾
𝑗=1 𝑉𝑗 = 𝑉 (the union of

subsets is the full set of vertices). Each 𝑉𝑖(𝑖 = 1, 2, . . .𝐾) is called a color class. In a 𝐾−partition, if all
the vertices in a color class 𝑉𝑖 form a stable set (i.e., there is no edge among two vertices in that class), it
is called 𝐾−coloring.

For a given undirected graph, the graph coloring problem consists of finding the minimum 𝐾 for which there is a
𝐾−coloring; this is called the graph’s chromatic number.

The graph coloring problem has a variety of applications, such as timetabling and frequency allocation.

For writing a mathematical formulation for the graph coloring problem, an upper bound 𝐾max of the number of colors
is required. In other words, the optimal number of colors 𝐾 determined as an integer 1 ≤ 𝐾 ≤ 𝐾max.

Let us define binary variables 𝑥𝑖𝑘 such that when a vertex 𝑖 is assigned a color 𝑘, 𝑥𝑖𝑘 takes the value 1; otherwise, 𝑥𝑖𝑘

takes the value 0. Besides, binary variable 𝑦𝑘 = 1 indicates that color 𝑘 has been used, i.e., set 𝑉𝑖 contains at least one
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vertex; otherwise, 𝑉𝑖 is empty and 𝑦𝑘 = 0, indicating that color 𝑘 was not required.

minimize
𝐾max∑︁
𝑘=1

𝑦𝑘

subject to
𝐾max∑︁
𝑘=1

𝑥𝑖𝑘 = 1

∀𝑖 ∈ 𝑉

𝑥𝑖𝑘 + 𝑥𝑗𝑘 ≤ 𝑦𝑘

∀{𝑖, 𝑗} ∈ 𝐸; 𝑘 = 1, . . . ,𝐾max

𝑥𝑖𝑘 ∈ {0, 1}
∀𝑖 ∈ 𝑉 ; 𝑘 = 1, . . . ,𝐾max

𝑦𝑘 ∈ {0, 1}
𝑘 = 1, . . . ,𝐾max

The first constraint in this formulation indicates that exactly one color is assigned to each vertex. The second constraint
connects variables 𝑥 and 𝑦, allowing coloring with color 𝑘 only if 𝑦𝑘 = 1, and forbids the endpoits of any edge {𝑖, 𝑗} ,
vertices 𝑖 and 𝑗, from having the same color simultaneously.

Many of the mathematical optimization solvers, including SCIP, use the branch-and-bound method (see Margin Sem-
inar branch-and-bound). Since all color classes in the formulation above are treated indifferently, the solution space
has a great deal of symmetry. Symmetry causes troubles to branch-and-bound, increasing enormously the size of the
tree that needs to be explored. For example, the solutions 𝑉1 = 1, 2, 3, 𝑉 2 = 4, 5 and 𝑉1 = 4, 5, 𝑉 2 = 1, 2, 3 are
equivalent, but are represented by different vectors 𝑥 and 𝑦. In this case, there occurs a phenomenon where branching
on any of the variables 𝑥, 𝑦 leads to no improvements in the lower bound. When solving the graph coloring problem
with a mathematical optimization solver, to avoid some symmetry in the solution space, it is recommended to add the
following constraints.

𝑦𝑘 ≥ 𝑦𝑘+1 𝑘 = 1, . . . ,𝐾max − 1

Adding the above constraint forces to use preferentially color classes with low subscripts. Simply adding this constraint
may considerably improve the solving time.

Tip: Modeling tip 5

When there is symmetry in a formulation, add constraints for removing it.

When formulations for integer optimization problems have a large amount of symmetry, the branch-and-bound method
is weak. In such a case, by adding constraints for explicitly breaking symmetry in the formulation, the solving time
may be dramatically improved. However, deciding what constraints should be added is still a matter of craftsmanship,
there are no uniform guidelines. In the authors’ experience, adding simple constraints using the 0-1 variables such as
those added in the graph coloring problem often works well. However, in some cases adding elaborate constraints will
break the structure of the problem, and in these cases the solver is likely to become slower; hence, one often needs
careful experimentation for deciding if such constraints are useful.

A program in Python/SCIP implementing a formulation for the graph coloring problem, including the a constraint for
removing symmetry, is as follows.

In some cases, by adding SOS (special ordered set) constraints this formulation can be improved.

Tip: Modeling tip 6

5.3. Graph coloring problem 63



Mathematical Optimization Documentation, Release 1

When in a group of binary variables only one (or two consecutive) takes a positive value, use special ordered sets.

A special ordered set (SOS) is a constraint applied to a set of variables. There are SOS constraints of types 1 and 2.
For special ordered set constraints of type 1, at most one variable in the set may take non-zero values. For special
ordered sets of type 2, at most two consecutive variables (in the specified order) may be non-zero.

In the graph coloring problem, since each vertex may colored in any color, we may declare a special ordered set of
type 1 for each vertex, meaning that it takes a value, but at most one may be non-zero.

Especially when the solutions contain symmetry, providing information concerning these special ordered sets often
improves efficiency during the search for a solution. (Even though the improvements are not guaranteed, it is worth
trying.) In addition, special ordered sets of type 2 play an effective role in the approximation of nonlinear functions
by piecewise linear functions. This is described in Section 8.2.1

In the approach shown above, it was intended to minimize the number of colors used, and thus determine the chromatic
number 𝐾. Let us now turn to a different approach which will allow us to solve larger instances, where the number of
colors used is fixed.

If number of colors to be used is fixed and limited, there is no guarantee that we can assign a different color to each
endpoint of all edges in the graph. Let a new variable 𝑧𝑖𝑗 be 1 if the endpoints of edge {𝑖, 𝑗} have been assigned the
same color (i.e., {𝑖, 𝑗} is a bad edge), 0 otherwise. The objective is now to minimize the number of bad edges; if
the optimum is 0, it means that the colors assigned are feasible, and hence that the number of colors used is an upper
bound to the chromatic number 𝐾. On the other hand, if there are bad edges in the optimum, then the value that had
been fixed for the number of colors is less than the chromatic number.

minimize
∑︁

{𝑖,𝑗}∈𝐸

𝑧𝑖𝑗

subject to
𝐾∑︁

𝑘=1

𝑥𝑖𝑘 = 1

∀𝑖 ∈ 𝑉

𝑥𝑖𝑘 + 𝑥𝑗𝑘 ≤ 1 + 𝑧𝑖𝑗

∀{𝑖, 𝑗} ∈ 𝐸; 𝑘 = 1, . . . ,𝐾

𝑥𝑖𝑘 ∈ {0, 1}
∀𝑖 ∈ 𝑉 ; 𝑘 = 1, . . . ,𝐾

𝑧𝑖𝑗 ∈ {0, 1}
∀{𝑖, 𝑗} ∈ 𝐸

Here, the objective is to minimize the number of bad edges. The first constraint indicates that the exactly one color is
assigned to each vertex. The second constraint determines that edges {𝑖, 𝑗} whose endpoints 𝑖 and 𝑗 are assigned the
same color class are bad edges (i.e., 𝑧𝑖𝑗 = 1).

Follows a program in Python/SCIP implementing this formulation for the graph coloring problem.

The optimum 𝐾 (i.e., the smallest value such that the optimum of the above problem is 0) may be determined through
binary search. Given an upper and a lower bound to the chromatic number (e.g., the number of vertices 𝑛 and 1,
respectively), the binary search algorithm can be written as follows.

LATEX/binsearchGCP.png

Fig. 5: Binary search method for solving the graph coloring problem.
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Next we present code in Python for the same purpose.

The approach for solving the graph coloring problem using binary search and a formulation with fixed 𝐾 can solve
larger problems that the initial, standalone formulation.
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CHAPTER 6

Routing problems

Todo: Adapt everything: figures, maths, . . .

In this chapter we will consider several problems related to routing, discussing and characterizing different mathemat-
ical optimization formulations. The roadmap is the following. Section Traveling Salesman Problem presents several
mathematical formulations for the traveling salesman problem (TSP), one of the most extensively studied optimiza-
tion problems in operations research. In section Traveling Salesman Problem with Time Windows we extend one of
the formulations for the TSP for dealing with the case where there is a time interval within which each vertex must be
visited. Section Capacitated Vehicle Routing Problem describes the capacity-constrained delivery planning problem,
showing a solution based on the cutting plane method.

6.1 Traveling Salesman Problem

Here we consider the traveling salesman problem, which is a typical example of a combinatorial optimization problem
in routing. Let us start with an example of the traveling salesman problem.

You are thinking about taking a vacation and taking a tour of Europe. You are currently in Zurich, Switzerland, and
your aim is to watch a bullfight in Madrid, Spain, to see the Big Ben in London, U.K., to visit the Colosseum in Rome,
Italy, and to drink authentic beers in Berlin, Germany. You decide to borrow a rental helicopter, but you have to pay a
high rental fee proportional to the distance traveled. Therefore, after leaving, you wish to return to Zurich again, after
visiting the other four cities (Madrid, London, Rome, Berlin) by traveling a distance as short as possible. Checking
the travel distance between cities, you found that it is as shown in Figure Traveling salesman problem. Now, in what
order should you travel so that distance is minimized?

Let us define the problem without ambiguity. This definition is based on the concept of graph, introduced in Section
Graph problems.

Traveling salesman problem (TSP)

Given an undirected graph 𝐺 = (𝑉,𝐸) consisting of 𝑛 vertices (cities), a function 𝑐 : 𝐸 → R associating
a distance (weight, cost, travel time) to each edge, find a tour which passes exactly once in each city and
minimizes the total distance (i.e., the length of the tour).
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Fig. 1: Traveling salesman problem
Graph representation of cities in Europe (numerical value on edirs is the distance in miles) and optimum solution (thick line).

When the problem is defined on a non-oriented graph (called an undirected graph), as in the above example, we call
it a symmetric traveling salesman problem. Symmetric means that the distance from a given point 𝑎 to another point
𝑏 is the same as the distance from 𝑏 to 𝑎. Also, the problem defined on a graph with orientation (called a directed
graph or digraph)) is called an asymmetric traveling salesman problem; in this case, the distance for going from a
point to another may be different of the returning distance. Of course, since the symmetric traveling salesman problem
is a special form of the asymmetric case, a formulation for the latter can be applied as it is to symmetric problems
(independently from whether it can be solved efficiently or not).

In this section we will see several formulations for the traveling salesman problem (symmetric and asymmetric) and
compare them experimentally. Section Subtour elimination formulation presents the subtour elimination formulation
for the symmetric problem proposed by Dantzig-Fulkerson-Johnson [DFJ54]. Section Miller-Tucker-Zemlin (poten-
tial) formulation presents an enhanced formulation based on the notion of potential for the asymmetric traveling
salesman problem proposed by Miller-Tucker-Zemlin [MTZ69]. Sections Single-commodity flow formulation and
Multi-commodity flow formulation propose formulations using the concept of flow in a graph. In Single-commodity
flow formulation we present a single-commodity flow formulation, and in Multi-commodity flow formulation we de-
velop a multi-product flow formulation.

6.1.1 Subtour elimination formulation

There are several ways to formulate the traveling salesman problem. We will start with a formulation for the symmetric
case. Let variables 𝑥𝑒 represent the edges selected for the tour, i.e., let 𝑥𝑒 be 1 when edge 𝑒 ∈ 𝐸 is in the tour, 0
otherwise.

For a subset 𝑆 of vertices, we denote 𝐸(𝑆) as the set of edges whose endpoints are both included in 𝑆, and 𝛿(𝑆) as
the set of edges such that one of the endpoints is included in 𝑆 and the other is not. In order to have a traveling route,
the number of selected edges connected to each vertex must be two. Besides, the salesman must pass through all the
cities; this means that any tour which does not visit all the vertices in set 𝑉 must be prohibited. One possibility for
ensuring this is to require that for any proper subset 𝑆 ⊂ 𝑉 with cardinality |𝑆| ≥ 2, the number of selected edges
whose endpoints are both in 𝑆 is, at most, equal to the number of vertices |𝑆| minus one.
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From the above discussion, we can derive the following formulation.

minimize∑︁
𝑒∈𝐸

𝑐𝑒𝑥𝑒

subject to∑︁
𝑒∈𝛿({𝑖})

𝑥𝑒 = 2 ∀𝑖 ∈ 𝑉,

∑︁
𝑒∈𝐸(𝑆)

𝑥𝑒 ≤ |𝑆| − 1 ∀𝑆 ⊂ 𝑉, 2 ≤ |𝑆| ≤ |𝑉 | − 2,

𝑋𝑒 ∈ {0, 1}∀𝑒 ∈ 𝐸.

Since the number of edges connected to a vertex is called its degree, the first constraint is called degree constraint.
The second constraint is called the subtour elimination inequality because it excludes partial tours (i.e., cycles which
pass through a proper subset of vertices; valid cycles must pass through all the vertices).

For a given subset 𝑆 of vertices, if we double both sides of the subtour elimination inequality and then subtract the
degree constraint ∑︁

𝑒∈𝛿({𝑖})

𝑥𝑒 = 2

for each vertex 𝑖 ∈ 𝑆, we obtain the following inequality:∑︁
𝑒∈𝛿(𝑆)

𝑥𝑒 ≥ 2, ∀𝑆 ⊂ 𝑉, |𝑆| ≥ 2.

This constraint is called a cutset inequality, and in the case of the traveling salesman problem it has the same strength
as the subtour elimination inequality. In the remainder of this chapter, we consider only the cutset inequality.

The number of subsets of a set increases exponentially with the size of the set. Similarly, the number of subtour
elimination constraints (cutset constraints) for any moderate size instance is extremely large. Therefore, we cannot
afford solving the complete model; we have to resort to the so-called cutting plane method, where constraints are
added as necessary.

Assuming that the solution of the linear relaxation of the problem using only a subset of constraints is �̄�, the problem
of finding a constraint that is not satisfied for this solution is usually called the separation problem (notice that com-
ponents of �̄� can be fractional values, not necessarily 0 or 1). In order to design a cutting plane method, it is necessary
to have an efficient algorithm for the separation problem. In the case of the symmetric traveling salesman problem,
we can obtain a violated cutset constraint (a subtour elimination inequality) by solving a maximum flow problem for
a network having �̄�𝑒 as the capacity, where �̄�𝑒 is the solution of the linear relaxation with a (possibly empty) subset
of subtour elimination constraints. Notice that if this solution has, e.g., two subtours, the maximum flow from any
vertex in the first subtour to any vertex in the second is zero. By solving finding the maximum flow problem, we also
obtain the solution of the minimum cut problem, i.e., a partition of the set of vertices 𝑉 into two subsets (𝑆, 𝑉 ∖ 𝑆)
such that the capacity of the edges between 𝑆 and 𝑉 ∖ 𝑆 is minimum [FF56]. A minimum cut is obtained by solving
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the following max-flow problem, for sink vertex 𝑘 = 2, 3, . . . , 𝑛:

maximize
∑︁
𝑗:𝑗>1

𝑓1𝑗

subject to
∑︁
𝑗:𝑖<𝑗

𝑓𝑖𝑗 −
∑︁
𝑗:𝑖>𝑗

𝑓𝑗𝑖 = 0

∀𝑖 : 𝑖 ̸= 1, 𝑖 ̸= 𝑘

− �̄�𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ �̄�𝑖𝑗

∀𝑖 < 𝑗

The objective represents the total flow out of node 1. The first constraint concerns flow preservation at each vertex
other than the source vertex 1 and the target vertex 𝑘, and the second constraint limits flow capacity on each arc. In
this model, in order to solve a problem defined on an undirected graph into a directed graph, a negative flow represents
a flow in the opposite direction.

As we have seen, if the optimum value of this problem is less than 2, then a cutset constraint (eliminating a subtour)
which is not satisfied by the solution of the previous relaxation has been found. We can determine the corresponding
cut (𝑆, 𝑉 ∖ 𝑆) by setting 𝑆 = {𝑖 ∈ 𝑉 : 𝜋𝑖 ̸= 0}, where 𝜋 is the optimal dual variable for the flow conservation
constraint.

Here, instead of solving the maximum flow problem, we will use a convenient method to find connected components
for the graph consisting of the edges for which 𝑥𝑒 is positive in the previous formulation, when relaxing part of the
subtour elimitation constraints. A graph is said to be connected if there is a path between any pair of its vertices.
A connected component is a maximal connected subgraph, i.e., a connected subgraph such that no other connected
subgraph strictly contains it. To decompose the graph into connected components, we use a Python module called
networkX1.

The following function addcut takes as argument a set of edges, and can be used to add a subtour elimination constraint
corresponding to a connected component 𝑆( ̸= 𝑉 ).

1 def addcut(cut_edges):
2 G = networkx.Graph()
3 G.add_edges_from(cut_edges)
4 Components = list(networkx.connected_components(G))
5 if len(Components) == 1:
6 return False
7 model.freeTransform()
8 for S in Components:
9 model.addCons(quicksum(x[i,j] for i in S for j in S if j>i) <= len(S)-1)

10 return True

In the second line of the above program, we create an empty undirected graph object 𝐺 by using the networkx module
and construct the graph, by adding vertices and edges in the current solution cut_edges, in line 3. Next, in line 4,
connected components are found by using function connected_components. If there is one connected component
(meaning that there are no subtours), False is returned. Otherwise, the subtour elimination constraint is added to the
model (lines 7 to 10).

Using the addcut function created above, an algorithm implementing the cutting plane method for the symmetric
travelling salesman problem is described as follows.

1 def solve_tsp(V,c):
2 model = Model("tsp")
3 model.hideOutput()

(continues on next page)

1 networkX is a Python module containing various algorithms for graphs, and can be downloaded from https://networkx.github.io
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(continued from previous page)

4 x = {}
5 for i in V:
6 for j in V:
7 if j > i:
8 x[i,j] = model.addVar(ub=1, name="x(%s,%s)"%(i,j))
9 for i in V:

10 model.addCons(quicksum(x[j,i] for j in V if j < i) + \
11 quicksum(x[i,j] for j in V if j > i) == 2, "Degree(%s)"%i)
12 model.setObjective(quicksum(c[i,j]*x[i,j] for i in V for j in V if j > i),

→˓"minimize")
13 EPS = 1.e-6
14 isMIP = False
15 while True:
16 model.optimize()
17 edges = []
18 for (i,j) in x:
19 if model.getVal(x[i,j]) > EPS:
20 edges.append( (i,j) )
21 if addcut(edges) == False:
22 if isMIP: # integer variables, components connected: solution found
23 break
24 model.freeTransform()
25 for (i,j) in x: # all components connected, switch to integer model
26 model.chgVarType(x[i,j], "B")
27 isMIP = True
28 return model.getObjVal(),edges

Firstly, the linear optimization relaxation of problem (without subtour elimination constraints) is constructed from
lines 4 to 12. Next, in the while iteration starting at line 15, the current model is solved and cut constraints are added
until the number of connected components of the graph becomes one. When there is only one connected component,
variables are restricted to be binary (lines 25 and 26) and the subtour elimination iteration proceeds. When there is only
one connected component in the problem with integer variables, it means that the optimal solution has been obtained;
therefore the iteration is terminated and the optimal solution is returned.

In the method described above, we used a method to re-solve the mixed integer optimization problem every time a
subtour elimination constraint is added. However, it is also possible to add these constraints during the execution of
the branch-and-bound process.

!!!!! How, in SCIP ????? ..

but applying the branch and bound method by using the cbLazy function added in Gurobi 5.0

Note: Margin seminar 6

Cutting plane and branch-and-cut methods

The cutting plane method was originally applied to the traveling salesman problem by George Dantzig,
one of the founders of linear optimization, and his colleagues Ray Fulkerson and Selmer Johnson, in 1954.
Here, let us explain it by taking as an example the maximum stable set problem, introduced in Section
mssp.

Let’s consider a simple illustration consisting of three points (Figure Polyhedra for the maximum stable
set problem, top). Binary variables 𝑥1, 𝑥2, 𝑥3, represented as a point in the three-dimensional space
(𝑥1, 𝑥2, 𝑥3), indicate whether the corresponding vertices are in the maximum stable set or not. Using
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these variables, the stable set problem can be formulated as an integer optimization problem as follows.

maximize
𝑥1 + 𝑥2 + 𝑥3

subject to
𝑥1 + 𝑥2 ≤ 1

𝑥1 + 𝑥3 ≤ 1

𝑥2 + 𝑥3 ≤ 1

𝑥1, 𝑥2, 𝑥3 ∈ {0, 1}

The constraints in the above formulation state that both endpoints of an edge can not be placed in a stable
set at the same time. This instance has four feasible solutions: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). The
smallest space that “wraps around” those points is called a polytope; in this case, it is a tetrahedron,
defined by these 4 points, and shown in the bottom-left image of Figure Polyhedra for the maximum
stable set problem. An optimal solution of the linear relaxation can be obtained by finding a vertex of the
polyhedron that maximizes the objective function 𝑥1 + 𝑥2 + 𝑥3. This example is obvious, and any of the
points (1, 0, 0), (0, 1, 0), (0, 0, 1), is an optimal solution, with optimum value 1.

Fig. 2: Polyhedra for the maximum stable set problem
Maximum stable set instance (upper figure). Representation of the feasible region as a polyhedron, based on its extreme points

(lower-left figure). The inequality system corresponding to its linear relaxation is is
𝑥1 + 𝑥2 ≤ 1;𝑥1 + 𝑥3 ≤ 1;𝑥2 + 𝑥31;𝑥1, 𝑥2, 𝑥30; this space, and an optimum solution, are represented in the lower-right figure.

In general, finding a linear inequality system to represent a polyhedron — the so-called convex envelope
of the feasible region — is more difficult than solving the original problem, because all the vertices of that
region have to be enumerated; this is usually intractable. As a realistic approach, we will consider below
a method of gradually approaching the convex envelope, starting from a region, containing it, defined by
a linear inequality system.
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First, let us consider the linear optimization relaxation of the stable set problem, obtained from the for-
mulation of the stable set problem by replacing the integrality constraint of each variable (𝑥𝑖 ∈ {0, 1}) by
the constraints:

0 ≤ 𝑥1 ≤ 1,

0 ≤ 𝑥2 ≤ 1,

0 ≤ 𝑥3 ≤ 1.

Solving this relaxed linear optimization problem (the linear relaxation) yields an optimum of 1.5, with
optimal solution (0.5, 0.5, 0.5) (Figure Polyhedra for the maximum stable set problem, bottom-right fig-
ure). In general, only solving the linear relaxation does not lead to an optimal solution of the maximum
stable set problem.

It is possible to exclude the fractional solution (0.5, 0.5, 0.5) by adding the condition that 𝑥 must be
integer, but instead let us try to add an linear constraint that excludes it. In order not to exclude the
optimal solution, it is necessary to generate an expression which does not intersect the polyhedron of the
stable set problem. An inequality which does not exclude an optimal solution is called a valid inequality.
For example, 𝑥1 + 𝑥2 ≤ 1 or 𝑥1 + 𝑥2 + 𝑥3 ≤ 10 are valid inequalities. Among the valid inequalities,
those excluding the solution of the linear relaxation problem are called cutting planes. For example,
𝑥1+𝑥2+𝑥3 ≤ 1 is a cutting plane. In this example, the expression 𝑥1+𝑥2+𝑥3 ≤ 1 is in contact with the
two-dimensional surface (a facet) of the polyhedron of the stable set problem. Such an expression is called
a facet-defining inequality. Facets of the polyhedron of a problem are the strongest valid inequalities.

The cutting plane method is a process to iteratively solve the linear optimization problem by sequentially adding
separating, valid inequalities (facet-defining inequalities are preferable) (Fig. 5.3).

The cutting plane method was extended to the general integer optimization problem by Ralph Gomory, at Princeton
University, in 1958. Although this method has been shown to converge to the optimum on a finite number of itera-
tions, in practice it failed to solve even medium-size instances (at that time). New theoretical developments have since
that time been added to cutting plane method, which has been successfully incorporated into the branch-and-bound
method, as a general solution technique for integer optimization problems. The method of adding these inequalities
at a node of the branch-and-bound method is called the branch-and-cut, and forms the core of a modern mathemat-
ical optimization solver. SCIP also includes this technique, which is essential in solving large and difficult integer
optimization problems.

Tip: Modeling tip 7

When the number of constraints is very large, use the cutting plane method or the branch-and-cut method.

In formulations in which the number of constraints becomes enormous, the subtour elimination constraint in the
traveling salesman problem, it is necessary to use the cutting plane method for finding only the necessary constraints.

6.1.2 Miller-Tucker-Zemlin (potential) formulation

Let us now consider a formulation with a number of constraints of polynomial order.

Consider an asymmetric traveling salesman problem. The input is a directed graph 𝐺 = (𝑉,𝐴), where 𝑉 is the set
of vertices and 𝐴 is a set of (directed) arcs, and a distance function on the arcs 𝑐 : 𝐴 → R, and the aim is to find the
shortest distance cycle through all the vertices.

We introduce 0-1 variables 𝑥𝑖𝑗 which is 1 when visiting vertex 𝑗 next to vertex 𝑖, 0 otherwise, and real variable 𝑢𝑖

which represent the visiting order of vertex 𝑖. Interpret variable 𝑢1 as the potential at starting vertex 𝑢1 (we could
define any other vertex as the starting point).
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When visiting vertex 𝑗 next to vertex 𝑖, a constraint will force the potential of 𝑗 to be 𝑢𝑗 = 𝑢𝑖 + 1, for any vertex
except 1; hence, possible values for 𝑢𝑖 are 1, 2, ..., 𝑛− 1.

Using these variables, the asymmetric traveling salesman problem can be formulated as follows.

∑︁
𝑖 ̸=𝑗

𝑐𝑖𝑗𝑥𝑖𝑗

∑︁
𝑗:𝑗 ̸=𝑖

𝑥𝑖𝑗 = 1𝑖 = 1, · · · , 𝑛

∑︁
𝑗:𝑗 ̸=𝑖

𝑥𝑗𝑖 = 1𝑖 = 1, · · · , 𝑛

𝑢𝑖 + 1 − (𝑛− 1)(1 − 𝑥𝑖𝑗) ≤ 𝑢𝑗𝑖 = 1, · · · , 𝑛,

𝑗 = 2, · · · , 𝑛 : 𝑖 ̸= 𝑗

1 ≤ 𝑢𝑖 ≤ 𝑛− 1𝑖 = 2, · · · , 𝑛

𝑥𝑖𝑗 ∈ {0, 1}∀𝑖 ̸= 𝑗

The first and second constraints are assignment constraints, and ensure that each vertex is incident to one outgoing arc
and one incoming arc.

The third constraint is sometimes called Miller-Tucker-Zemlin constraint, proposed in [10], and define the order in
which each vertex i is visited on a tour. Here, since 𝑢𝑖 can be interpreted as the potential at vertex 𝑖, we will call it the
potential constraint.

The extended formulation using the potential constraint is much weaker than the previous formulation using subtour
elimination constraints. This is because the constraint for forcing 𝑢𝑗 = 𝑢𝑖 +1 only when 𝑥𝑖𝑗 = 1, the coefficient 𝑛−1
of the term (1 − 𝑥𝑖𝑗) is a “Big M” (See section 2.2).

The fourth constraint indicates the upper and lower bounds of the potential.

In the following, we will strengthen the formulation using potential constraints by performing and operation called
lifting.

First, consider applying the lifting operation based on the potential constraint. Add the term of $x_{ji}$ to the left
side and let its coefficient be $alpha$.

𝑢𝑖 + 1 − (𝑛− 1)(1 − 𝑥𝑖𝑗) + 𝛼𝑗𝑖𝑥𝑗𝑖 ≤ 𝑢𝑗

Consider making the coefficient $alpha$ as large as possible, as long as not to exclude feasible solutions.

When $x_{ji} = 0, $alpha$ has no impact; we obtain the original potential constraint itself, which is a valid inequality.

In the case of $x_{ji} = 1$, since $x_{ij} = 0$ and $u_j + 1 = u_i$ are always valid solutions, at this time the range of
$alpha$ is:

𝛼 ≤ 𝑢𝑗 − 𝑢𝑖 − 1 + (𝑛− 1) = 𝑛− 3

In order to have a constraint which is as strong as possible, while keeping feasibility, the inequality must be: .. math:
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u_i + 1 - (n - 1)(1 - x_{ij}) + (n-3) x_{ji} \leq u_j

Next, let us apply the lifting operation based on the lower limit inequality $1 leq u_i$. Consider adding the term $(1 -
x_{1i})$ to the left side, and let $beta$ be its coefficient.

1 + 𝛽(1 − 𝑥1𝑖) ≤ 𝑢𝑖

When $x_{1i} = 1$, this expression is reduced to the original form, and hence is a valid inequality. When $x_{1i}
= 0$, since point $i$ is visited from the second place onward, there must be $u_i geq 2$. Therefore, we can see that
$beta = 1$, obtaining:

1 + (1 − 𝑥1𝑖) ≤ 𝑢𝑖

Consider now adding a term of $x_{i1}$ to the left side, with coefficient $gamma$.

1 + (1 − 𝑥1𝑖) + 𝛾𝑥𝑖1 ≤ 𝑢𝑖

When $x_{i1} = 0$ the expression is feasible, because it is reduced to the original form.

When $x_{i1} = 0$, in the executable solution, since point $i$ is visited last, $x_{1i} = 0$ and $u_i = n - 1$.

Therefore, it can be found that $gamma = n - 3$ is satisfied, obtaining:

1 + (1 − 𝑥1𝑖) + (𝑛− 3)𝑥1𝑖 ≤ 𝑢𝑖

Similarly, lifting the upper bound constraint $u_i leq n - 1$, we obtain

𝑢𝑖 ≤ (𝑛− 1) − (1 − 𝑥𝑖1) − (𝑛− 3)𝑥1𝑖

Tip: Modeling tip 8

Strengthening expressions with lifting

Often it is necessary to use a formulation that includes large numbers (“Big M”) (like the potential con-
straints of the MTZ formulation for the asymmetric traveling salesman problem).

When solving the problem, if the solver takes a long time and the difference between the lower bound and
the upper bound (dual gap) is large, consider strengthening the expression by lifting.

Theoretically, it is desirable to derive the strongest feasible inequality (a facet), but even simple lifting
may have a great impact.

6.1.3 Single-commodity flow formulation

!!!!!!!!! unchecked

In this section and the next section, we introduce the formulation using the concept of “flow” (flow) of “things”.

This is referred to as a single type flow formulation (single accommodation flow formulation).

Let’s consider that “things” in n-1 units are placed at a specific point (1), and they are brought by a salesman for all
other points.

(Of course, we assume that the salesman leaves point 1.)

From point 1, “n” th unit of “n-1” goes out, and one point is consumed at each point.
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Also, it is assumed that “sales person” can only be flown on branches where salesman did not move.

In network theory, flowing “things” are called commodity, and in this formulation, we think here of carrying one kind
of things, so it is called a single-product flow formulation.

In the formulation up to the previous section, we used the 0-1 variable xij that indicates that the salesman passes the
branch (i, j).

Furthermore, we introduce fij as a continuous variable representing the quantity of “things” (varieties) passing through
branches (i, j).

Using these symbols, the single variety flow formulation can be written as follows.

Here, the first two constraints are degree constraints, which stipulate that there are exactly one branch and one branch
that will enter each point.

The third constraint represents that “things” are shipped from the first point 1 to n-1 units, and the fourth constraint
represents that “things” are consumed one at each point.

The fifth and sixth constraints are capacity constraints, which means that “things” do not flow on branches where
salesmen do not move.

However, for the branch (1, j) connected to point 1, “thing” with the maximum of n-1 flows, and for the other branches
“max” of “n” I have stipulated.

(All may be specified as n - 1 or less, but it is somewhat enhanced expression.)

6.1.4 Multi-commodity flow formulation

As in the previous section, consider formulation based on the flow (thing) of “things”.

The formulation shown here is called multi-commodity flow formulation because it thinks to flow multiple “things”
(varieties).

In the multi-product flow formulation, “things” conveyed on a point by point basis are distinguished (this is the
difference from the single-product flow formulation in the previous section).

From point 1, one unit type k going to another point k goes out, and at point k, one type of product k is consumed.

We introduce fkij as a continuous variable representing the quantity of the product k passing through the branch (i, j).

Using this, the multi-product flow formulation can be written as follows.

Here, the first two constraints are degree constraints, which prescribe that there are exactly one branch and one outgo-
ing branch at each point.

The third constraint is that one unit of each product type k is shipped from the first point 1 and it is consumed at the
point k.

The fourth constraint is the capacity constraint, which means that “things” do not flow on the branch where the
salesman does not move.

The multi-product flow formulation is described by Gurobi / Python as follows.

6.2 Traveling Salesman Problem with Time Windows

Here we consider the traveling salesman problem (travelingsalesmanproblemwithtimewindows) with a time frame that
added a time frame to the traveling salesman problem.
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This problem is based on the assumption that the asymmetric traveling salesman problem assuming that a specific
point 1 starts at time 0 is regarded as the traveling distance between points and the departure time for point i is the
latest time ei and the latest time li It is a problem imposing the constraint that it must be between.

However, if we arrive at point i earlier than time ei, we can wait until point ei on point i.

6.2.1 One-index Potential Formulation

First of all, consider the extension of the potential (Miller-Tucker-Zemlin) constraint for the traveling salesman prob-
lem considered in Section 5.1.2.

We introduce a variable ti that represents the time to depart from point i.

ti must satisfy the following constraints.

eitili i=1,2,. . . ,n

However, suppose $_1 = 0$, $ell_1 = infty$

When visiting point j next to point i (xij = 1), the time tj to depart from point j is greater than or equal to the sum of
travel time cij at the time of departing point i, obtain.

t_i + c_{ij} - M (1-x_{ij}) leq t_j qquad forall i,j : j neq 1, i neq j

Here, M is a constant representing a large number.

It is assumed that the movement time cij is a positive number.

When cij is 0, there is a possibility that ti = tj, and a partial tour circuit is formed.

In order to avoid this, it is necessary to add constraints similar to the traveling salesman problem, but under the
assumption of cij> 0, it is possible to remove the partial tour circuit by the above constraint..

Since formulation including such a large number “BigM” is not very practical, consider strengthening by using the
time frame.

The smaller the value of M, the stronger the restriction.

When xij = 0, the above constraint can be rewritten as M.

For all feasible solutions it is necessary to set M so that the above equation holds.

Since tili and tj ej, the value of M can be set equal to or more than li + cij-ej.

Of course, since it does not make sense as an expression unless M> 0, we obtain the following expression.

Here, [·] + is a symbol representing max {·, 0}.

By combining the order constraint on the traveling salesman problem and the above constraint, we obtain a potential
formulation for a traveling salesman problem with time frame.

minimize

Like the traveling salesman problem, the potential constraint and the upper and lower limit constraints can be further
enhanced by the lifting operation as follows.

6.3 Capacitated Vehicle Routing Problem

Here, consider the capacity constrained delivery planning problem (capacitatedvehiclerouting problem) as a practical
extension of the traveling salesman problem.

The capacity constrained delivery planning problem has the following assumptions:
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• A vehicle that departed from a specific point called a depot returns to the depot again via multiple customers.

In this case, the order of customers passing by the truck is called a route (see Fig. 5.4).

In this case, the truck is used as a generic term that refers to various means of transport such as trucks, trailers, and
ships.

• The maximum load weight (referred to as capacity) of a transport vehicle waiting in a depot is known.

• The customer’s location is known and the amount of demand for each customer is given in advance.

It is assumed that the customer’s demand amount does not exceed the maximum carrying weight of the truck, and each
customer is to be visited exactly once.

• The cost of moving between points is known.

• The total amount of customers’ demand in one route does not exceed the maximum carrying weight of the truck
(this is called capacity constraint).

• The number of types of trucks is one, and the number of trucks is predetermined.

Applications of the delivery planning problem include delivery planning to the retail store, decision of the school bus
traveling circuit, delivery of mail and newspaper, garbage collection, delivery of fuel.

Of course, when applying to these applications, it is necessary to add various conditions to the above basic condition,
but here we deal with only the capacity constraint as the basic form.

Let m be the number of trucks and n be the number of points (representing customers and depots).

It is assumed that customers i = 2, 3, . . . , n have demand qi and their demand is carried (or collected) by a certain
transporter.

The transport vehicles k = 1, 2, . . . , m have a finite load capacity upper limit Q, and the sum of the demand amounts
carried by the trucks shall not exceed that value.

Normally, it is assumed that the maximum value max {qi} of the demand amount of the customer does not exceed the
capacity Q of the transporter.

If customers with demand exceeding the maximum value of load capacity exist, they can be transformed to satisfy the
above assumption by appropriately dividing the demand (so as to be within the upper limit of the load capacity).

Write expenses required when the truck moves from point i to point j as cij.

Here, the movement cost is symmetrical (cij = cji).

The aim of the shipping plan problem is to find the optimum route of m trucks that satisfies all customers’ demand (a
simple closed circuit that departs from the depot and returns to the depot again).

We introduce a variable xij that represents the number of times the truck moves between points i and j.

Because we assume a symmetric problem, the variable xij is defined only between points i and j that satisfy i <j.

For a branch where xij does not connect to the depot, it represents 1 when the haul passes and 0 when it is not, but in
the case of so-called piston transport where it moves to the point j from the depot and returns immediately to the depot
, X 1 j is 2.

The formulation of capacity constrained delivery planning problem is as follows.

minimiz

Here, the first constraint specifies that there are m sets of carriers from the depot (point 1).

That is, it indicates that the number of branches representing a transport vehicle entering and leaving point 1 is 2 m.

The second constraint represents that a single truck visits each customer.
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The third constraint is a constraint that simultaneously defines the capacity constraints of the truck and prohibits partial
cruises.

N (S) used in this constraint is a function calculated when a customer’s subset S is given, and is defined as follows.

$N(S) =$ number of vehicles required to carry customer demand within $S$

In order to calculate N (S), it is necessary to solve the packing problem described in Chapter 3, but in general the
following lower bounds are substituted

As applied to the traveling salesman problem in Section 5.1.1, Consider a branch cut by solving a connected component
on a graph where x e is a positive branch when x e (e E) is the solution of the linear relaxation problem.
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