## Contents

1  Readme  

2  scikit-dsp-comm  
   2.1  Background  
   2.2  Package High Level Overview  
   2.3  Documentation  
   2.4  Getting Set-up on Your System  
   2.5  Feature: Added Software Defined Radio Streaming to rtlsdr_helper with Interface to pyaudio_helper  
   2.6  Examples  

Indices and tables  

Python Module Index  

Index
CHAPTER 1

Readme

scikit-dsp-comm
A feature story at the end of this readme. Readthedocs also contains a nice collection of Jupyter notebook examples, including RTL-SDR streaming, among the module documentation. The actual notebook files (.ipynb) are in the docs folder at . This folder is in the master branch once you have cloned the repo. Click the docs badge above to be taken to the documentation.

2.1 Background

The origin of this package comes from the writing the book Signals and Systems for Dummies, published by Wiley in 2013. The original module for this book is named ssd.py. In scikit-dsp-comm this module is renamed to sigsys.py to better reflect the fact that signal processing and communications theory is founded in signals and systems, a traditional subject in electrical engineering curricula.

2.2 Package High Level Overview

This package is a collection of functions and classes to support signal processing and communications theory teaching and research. The foundation for this package is scipy.signal. The code in particular currently requires Python >=3.5x.

The real-time audio DSP capabilities of pyaudio_helper allow for two channel algorithm development with real-time user control enabled by the ipywidgets when running in the Jupyter notebook.

Finally, we now can utilize the real-time DSP capabilities of pyaudio_helper to work in combination with streaming of I/Q samples using new functions rtlsdr_helper. This allows in particular demodulation of radio signals and downsampling to baseband analog signals for streaming playback of say an FM broadcast station. This new capability is featured as a short article at the end of this readme file.

There are presently ten modules that make up scikit-dsp-comm:
1. **sigsy.py** for basic signals and systems functions both continuous-time and discrete-time, including graphical display tools such as pole-zero plots, up-sampling and down-sampling.

2. **digitalcomm.py** for digital modulation theory components, including asynchronous resampling and variable time delay functions, both useful in advanced modem testing.

3. **synchronization.py** which contains phase-locked loop simulation functions and functions for carrier and phase synchronization of digital communications waveforms.

4. **fec_conv.py** for the generation rate one-half and one-third convolutional codes and soft decision Viterbi algorithm decoding, including soft and hard decisions, trellis and trellis-traceback display functions, and puncturing.

5. **fir_design_helper.py** which for easy design of lowpass, highpass, bandpass, and bandstop filters using the Kaiser window and equal-ripple designs, also includes a list plotting function for easily comparing magnitude, phase, and group delay frequency responses.

6. **iir_design_helper.py** which for easy design of lowpass, highpass, bandpass, and bandstop filters using scipy.signal Butterworth, Chebyshev I and II, and elliptical designs, including the use of the cascade of second-order sections (SOS) topology from scipy.signal, also includes a list plotting function for easily comparing of magnitude, phase, and group delay frequency responses.

7. **multirate.py** that encapsulate digital filters into objects for filtering, interpolation by an integer factor, and decimation by an integer factor.

8. **coeff2header.py** write C/C++ header files for FIR and IIR filters implemented in C/C++, using the cascade of second-order section representation for the IIR case. This last module find use in real-time signal processing on embedded systems, but can be used for simulation models in C/C++.

Presently the collection of modules contains about 125 functions and classes. The authors/maintainers are working to get more detailed documentation in place.

### 2.2.1 Extras

This package contains the helper modules **rtlsdr_helper** and **pyaudio_helper** which require the packages **pyrtlsdr** and PyAudio. To use the full functionality of these helpers, install the package from the scikit-dsp-comm folder as follows:

```
pip install -e .[helpers]
```

Installation is described in greater detail below.

1. **pyaudio_helper.py** wraps a class around the code required in PyAudio (wraps the C++ library PortAudio) to set up a non-blocking audio input/output stream. The user only has to write the callback function to implement real-time DSP processing using any of the input/output devices available on the platform. This resulting object also contains a capture buffer for use in post processing and a timing markers for assessing the processing time utilized by the callback function. When developing apps in the Jupyter Notebook there is support for the IPywidgets along with threading.

2. **rtlsdr_helper.py** interfaces with pyrtlsdr to provide a simple captures means for complex baseband software defined radio (SDR) samples from the low-cost (~$20) RTL-SDR USB hardware dongle. The remaining functions in this module support the implementation of demodulators for FM modulation and examples of complete receivers for FM mono, FM stereo, and tools for FSK demodulation, including bit synchronization. Real-time streaming is a new capability included.
2.3 Documentation

Documentation is now housed on readthedocs which you can get to by clicking the docs badge near the top of this README. Example notebooks can be viewed on GitHub pages. In time more notebook postings will be extracted from Dr. Wickert’s Info Center.

2.4 Getting Set-up on Your System

The best way to use this package is to clone this repository and then install it.

```
git clone https://github.com/mwickert/scikit-dsp-comm.git
```

There are package dependencies for some modules that you may want to avoid. Specifically these are whenever hardware interfacing is involved. Specific hardware and software configuration details are discussed in wiki pages.

For Windows users pip install takes care of almost everything. I assume below you have Python on your path, so for example with Anaconda, I suggest letting the installer set these paths up for you.

2.4.1 Dependencies for pyaudio

Across the three popular platforms, Windows, macOS, and Linux, pyaudio, is the underlying framework that pyaudio_helper relies upon. Getting PyAudio configured is different for all three OS’s. Conda and CondaForge have support for installing pyaudio on both Linux and Windows. Under Python 3.6 and below PyAudio will install when pip installing the scikit-dsp-comm package, as described below. For Python 3.7+ PyAudio first needs to be installed using conda install pyaudio to obtain binary (whl) files.

All the capability of the package is available less PyAudio and the RTL-SDR radio, without doing any special installations. See the wiki pages for more information. Just keep in mind that now a Python 3.7+ install on windows must include the installation PyAudio as described above.

2.4.2 Editable Install with Dependencies

With the terminal in the root directory of the cloned repo perform an editable pip install using

```
pip install -e .[helpers]
```

2.4.3 Editable Install without Dependencies

To install without the PyAudio and RTL-SDR dependency, and hence not be able to use those modules,

```
pip install -e .
```

2.4.4 Why an Editable Install?

The advantage of the editable pip install is that it is very easy to keep scikit-dsp-comm up to date. If you know that updates have been pushed to the master branch, you simply go to your local repo folder and

```
git pull origin master
```
This will update your local repo and automatically update the Python install without the need to run pip again. **Note:** If you have any Python kernels running, such as a Jupyter Notebook, you will need to restart the kernel to ensure any module changes get reloaded.

### 2.5 Feature: Added Software Defined Radio Streaming to `rtlsdr_helper` with Interface to `pyaudio_helper`

A recent push to the master branch now allows real-time SDR streaming from the RTL-SDR to `pyaudio_helper`. In this first release of the API, the system block diagram takes the form shown in the figure below:

![rtlsdr_helper_streaming_block.png](rtlsdr_helper_streaming_block.png)

This capability is made possible via the new `async` and `await` capabilities of Python 3.7. For the details as to how this works you have to dig into the details found in the module `rtlsdr_helper.py` and the examples found in the notebook `rtlsdr_helper_streaming_sample.ipynb`. A screenshot from the sample Jupyter notebook, that implements a broadcast FM receiver, is shown below:

![rtlsdr_helper_streaming_FM_receiver.png](rtlsdr_helper_streaming_FM_receiver.png)

This is just the beginning of making a complete SDR receiver possible in a Jupyter notebook. Not only is the receiver a reality, the algorithms that implement the receiver, in Python, can easily be coded by the user.

To help develop demodulator algorithms a streaming code block interface standard, of sorts, is being developed this summer. The idea is to provide examples of how to write a simple Python class that will manage states in the DSP code that is inside the *Callback Process* block of the block diagram. More details by the end of the summer is expected, along with another sample notebook.

### 2.6 Examples

- SciPy 2017 Tutorial

#### 2.6.1 Jupyter Notebook Examples

```python
%pylab inline
import sk_dsp_comm.sigsys as ss
import scipy.signal as signal
from IPython.display import Image, SVG
```

Populating the interactive namespace from numpy and matplotlib
Introduction to Python and the Jupyter Notebook

Rectangle and Triangle Pulses Defined

Before showing more examples, consider some familiar signal primitives in your signals and systems background. To see these defined in the text see in particular Appendix F.5 (p.727) in the table of Fourier transform pairs.

**Rectangle**

\[
\Pi \left( \frac{t}{\tau} \right) = \begin{cases} 
1, & |t| \leq \tau/2 \\
0, & \text{otherwise}
\end{cases} 
\] (2.1)

**Triangle**

\[
\Lambda \left( \frac{t}{\tau} \right) = \begin{cases} 
1 - |t/\tau|, & |t| \leq \tau \\
0, & \text{otherwise}
\end{cases} 
\] (2.2)

To more readily play with these function represent them numerically in Python. The module `ss.py` has some waveform primitives to help.

```python
[4]: t = arange(-5,5,.01)
x_rect = ss.rect(t-3,2)
x_tri = ss.tri(t+2,1.5)
subplot(211)
plot(t,x_rect)
grid()
ylabel(r'$\Pi((t-3)/2)$');
subplot(212)
plot(t,x_tri)
grid()
xlabel(r'Time (s)');
ylabel(r'$\Lambda((t+2)/1.5)$');
tight_layout()
```

• Consider an interactive version of the above:

```python
[5]: # Make an interactive version of the above
   from ipywidgets import interact, interactive

   def pulses_plot(D1,D2,W1,W2):
       t = arange(-5,5,.01)
x_rect = ss.rect(t-D1,W1)
x_tri = ss.tri(t-D2,W2)
(continues on next page)```
More Signal Plotting

The basic pulse shapes (primitives) defined in the module `ssd.py` are very useful for working Text 2.13a &d, but there are also times when you need a custom piecewise function.

Simple Cases:

Consider plotting

1. \( x_1(t) = \sin(2\pi \cdot 5t)\Pi((t-2)/2) \) for \( 0 \leq t \leq 10 \)
2. \( x_2(t) = \sum_{n=\infty}^{\infty} \Pi((t - 5n)/1) \) for \( -10 \leq t \leq 10 \)

```python
[6]:
t1 = arange(0,10+.01,.01)  # arange stops one step size less than the upper limit
x1 = sin(2*pi*5*t1)* ss.rect(t1-2,2)
subplot(211)
plot(t1,x1)
xlabel(r'Time (s)')
ylabel(r'$x_1(t)$')
grid()
t2 = arange(-10,10,.01)
# Tweak mod() to take on negative values
x2 = ss.rect(mod(t2+2.5,5)-2.5,1)
subplot(212)
plot(t2,x2)
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$')
grid()
tight_layout()
```
Custom Piecewise:

A custom piecewise function is a direct and to the point way of getting a more complex function plotted. Consider plotting:

\[
x_3(t) = \begin{cases} 
1 + t^2, & 0 \leq t \leq 3 \\
\cos(2\pi \cdot 5 \cdot t), & 3 < t \leq 5 \\
0, & \text{otherwise}
\end{cases}
\]  

for \(-2 \leq t \leq 6\).

```python
[7]: def x3_func(t):
    """
    Create a piecewise function for plotting x3
    """
    x3 = zeros_like(t)
    for k,tk in enumerate(t):
        if tk >= 0 and tk <= 3:
            x3[k] = 1 + tk**2
        elif tk > 3 and tk <= 5:
            x3[k] = cos(2*pi*5*tk)
    return x3
```

```python
[8]: t3 = arange(-2,6+.01,.01)
x3 = x3_func(t3)
plot(t3,x3)
xlabel(r'Time (s)')
ylabel(r'$x_3(t)$')
xlim([-2,6])
grid()
```

[9]: 26/2
[9]: 13.0

Energy and Power Signals

The general definitions are:

\[
E \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt
\]  

\[
P \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt
\]  

For the case of a periodic signal, you can take the definition of \(P\) above and reduce the calculation down to

\[
P = \frac{1}{T} \int_{t_0}^{t_0+T} |x(t)|^2 dt
\]  

where \(t_0\) can be any convenient value.

Consider the waveform of Text problem 2.14b

\[
x_2(t) = \sum_{n=-\infty}^{\infty} \Lambda\left(\frac{t - 3n}{2}\right)
\]  

You can create an approximation to the waveform over a finite number of periods by doing a little programming:
def periodic_tri(t, tau, T, N):
    
    Approximate $x_2(t)$ by running the sum index from $-N$ to $+N$.
    The period is set by $T$ and $tau$ is the tri pulse width
    parameter (base width is $2*tau$).

    Mark Wickert January 2015
    
    $x = \text{zeros\_like}(t)$
    $for\ n\ in\ \text{arange}(-N,N+1):$
    $\quad x += \text{ss.tri}(t-T*n,tau)$
    $return\ x$

$[11]: t = \text{arange}(-10,10,.001)$
x = periodic_tri(t,2,6,10)
plot(t,x)
plot(t,abs(x)**2)
grid()
#xlim([-5,5])
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$ and $x_2^2(t)$');

For the power calculation create a time array that runs over exactly
one period. Below is the case for the original problem statement.

$[12]: T0 = 6$
$tp = \text{arange}(-T0/2,T0/2+.001,.001)$
$xp = periodic\_tri(tp,2,T0,5)$
plot(tp,xp)
plot(tp,abs(xp)**2)
legend((r'$x(t)$', r'$|x(t)|^2$'),loc='best',shadow=True)
grid();
xlim([-T0/2,T0/2])
xlabel(r'Time (s)')
ylabel(r'$x_2(t)$ and $x_2^2(t)$');

A simple numerical approximation to the integral

$$
P = \frac{1}{T} \int_0^T |x_b(t)|^2 \, dt \quad (2.8)
$$

is shown below:

$[13]: \#\text{Power calculation}$
$Px2 = (1/T0)*\text{sum}(xp**2)*.001 \#\text{rectangular partitions for integral}$
print('Power estimate via numerical integration: $%2.4f\ W$' % Px2)

Power estimate via numerical integration: 0.2222 W

Power in the Sum of Two Sinusoids

The problem is what is the power in the signal

$$x(t) = A_1 \cos(\omega_1 t + \phi_1) + A_2 \cos(\omega_2 t + \phi_2), \ -\infty < t < \infty \quad (2.9)$$
Since we are not certain that \( x(t) \) is periodic, the power calculation requires that we form

\[
P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 \, dt = \langle |x(t)|^2 \rangle
\]  

(2.10)

- Rather than jumping in and making a mess, consider first the expansion of \( |x(t)|^2 = x^2(t) \):

\[
x^2(t) = \frac{A_1^2}{2} \left[ 1 + \cos(2\omega_1 t + \phi_1) \right] + \frac{A_2^2}{2} \left[ 1 + \cos(2\omega_2 t + \phi_2) \right] + 2\frac{A_1 A_2}{2} \left\{ \cos[(\omega_1 + \omega_2) t + (\phi_1 + \phi_2)] + \cos[(\omega_1 - \omega_2) t + (\phi_1 - \phi_2)] \right\}
\]  

(2.11)

(2.12)

- The time average operator is linear, so we consider \( \langle \ \rangle \) operating on each term of the above independently
- For \( \omega_1 \neq \omega_2 \), the first two terms yield \( A_1^2/2 \) and \( A_2^2/2 \) respectively
- The last term requires some thinking, but as long as \( \omega_1 \neq \omega_2 \) the times average of \( \cos[(\omega_1 + \omega_2) t + (\phi_1 + \phi_2)] \) and \( \cos[(\omega_1 - \omega_2) t + (\phi_1 - \phi_2)] \), the two terms respectively are each zero!
- Finally,

\[
P_x = \frac{A_1^2}{2} + \frac{A_2^2}{2}
\]  

(2.13)

- When the frequencies are equal, then you can combine the terms using trig identities (recall the phasor addition formula from ECE 2610)

\[
x(t) = A \cos(\omega t + \phi)
\]  

(2.14)

where \( \omega = \omega_1 = \omega_2 \) and

\[
A e^{j\phi} = A_1 e^{j\phi_1} + A_2 e^{j\phi_2}
\]  

(2.15)
Fourier Series and Line Spectra Plotting

Being able to easily plot the line spectra of periodic signals will hopefully enhance your understanding. The module `ss.py` contains the function `ss.line_spectra()` for this purpose. The function assumes that the Fourier coefficients, $X_n$, are available for a real signal $x(t)$. The function plots line spectra as:

* The two-sided magnitude spectra
* The two-sided magnitude spectra in dB with an adjustable floor level in dB
* The two-sided phase spectra in radians
* The one-sided line spectra corresponding to the three cases listed immediately above

Examples are given below for the case of a simple pulse train and then for a trapezoidal pulse train. IN the case of the trapezoidal pulse train the underlying Fourier coefficients are obtained numerically using the FFT as described in the course notes.

A fundamental requirement in using `ss.line_spectra()` is to be able to supply the coefficients starting with the DC term coefficient $X_0$ and moving up to the $N$th harmonic. Before plotting the pulse train line spectra I first describe a helper function for visualizing the pulse train waveform.

Pulse Train

```python
[17]: def pulse_train(Np, fs, tau, t0):
    """
    Generate a discrete-time approximation to a continuous-time
    pulse train signal. Amplitude values are [0, 1]. Scale and offset
    later if needed.

    Inputs
    ------
    Np = number of periods to generate
    fs = samples per period
    tau = duty cycle
    t0 = pulse delay time relative to first rising edge at t = 0

    Return
    ------
    t = time axis array
    x = waveform

    Mark Wickert, January 2015
    """
    t = arange(0, Np*fs+1, 1)/fs  # time is normalized to make period T0 = 1.0
    x = zeros_like(t)
    # Using a brute force approach, just fill x with the sample values
    for k, tk in enumerate(t):
        if mod(tk-t0, 1) <= tau and mod(tk-t0, 1) >= 0:
            x[k] = 1
    return t, x

[18]: tau = 1/8; fs = 8*16; t0 = 0  # note t0 = tau/2
    subplot(211)
    t,x = pulse_train(4, fs, tau, t0)
    plot(t, x)  # just a plot of xa(t)
    ylim([-1, 1])
    ylabel(r'$x_a(t)$')
    grid()
    title(r'Pulse Train Signal: (top) $x_a(t)$, (bot) $x_b(t) = 1-x_a(t)$');
    subplot(212)
    t,x = pulse_train(4, fs, tau, t0)
    plot(t, 1-x)  # Note here y(t) = 1 - x(t), a special case of
```

(continues on next page)
Example: Pulse Train Line Spectra

For the case of pulse train having the initial pulse starting at $t = 0$, i.e.,

$$x(t) = \sum_{k=-\infty}^{\infty} A \cdot \Pi \left(\frac{t - \tau/2 - kT_0}{\tau}\right),$$

(2.16)

the Fourier coefficient are given by

$$X_n = A \cdot \frac{\tau}{T_0} \cdot \text{sinc}(nf_0\tau) \cdot \exp(-j2\pi nf_0t_0)$$

(2.17)

where $f_0 = 1/T_0$ is the fundamental frequency and here $t_0 = \tau/2$.

Line spectra plotting is shown below for this case. If the pulse train should be shifted in time to some other orientation, then the phase plot will change, as the included $\exp(j2\pi nf_0t_0)$ term will be different.

Note: The pulse train function define above is slightly different from the pulse train defined in the book and shown in mathematical form as $x(t)$ just above in this cell. The function `pulse_train()` has the first pulse starting exactly at $t = 0$. To move the pulse train right or left on the time axis, you can use the function parameter t0.

```python
n = arange(0,25+1) # Get 0 through 25 harmonics
tau = 0.125; f0 = 1; A = 1;
Xn = A*tau*f0*sinc(n*f0*tau)*exp(-1j*2*pi*n*f0*tau/2)
# Xn = -Xn # Convert the coefficients from xa(t) t0 xb(t)
# Xn[0] += 1
figure(figsize=(6,2))
f = n # Assume a fundamental frequency of 1 Hz so f = n
ss.line_spectra(f,Xn,mode='mag',sides=2,fsize=(6,2))
xlim([-25,25]);
ylim([-50,10])
figure(figsize=(6,2))
ss.line_spectra(f,Xn,mode='phase',fsize=(6,2))
xlim([-25,25]);
```

Example: Trapezoidal Pulse

Consider the line spectra of a finite rise and fall time pulse train is of practical interest. The function `trap_pulse()` allows you first visualize one period of the trapezoidal pulse train, and then use this waveform in obtaining numerically the Fourier coefficients of this signal. Plotting the corresponding line spectra follows.

A point to be main is that by slowing down the edges (rise time/fall time) of the pulse train the amplitude of the harmonics falls off more rapidly. When considering the clock speed in todays PCs this can be a good thing as harmonic emission is an issue.
Let $\tau = 1/8$ and $t_r = 1/20$:

```python
[21]: # \tau = 1/8, \ t_r = 1/20
    N = 1024
    xp, t = trap_pulse(N, 1/8, 1/20)
    Xp = fft.fft(xp)
    figure(figsize=(6,2))
    plot(t, xp)
    grid()
    title(r'Spectra of Finite Risetime Pulse Train: $\\tau = 1/8$ $\ t_r = 1/20$')
    ylabel(r'$x(t)$')
    xlabel('Time (s)')
    f = arange(0, N/2)
    ss.line_spectra(f[0:25], Xp[0:25]/N, 'magdB', floor_dB=-80, fsize=(6,2))
    ylabel(r'$|X_n| = |X(f_n)|$ (dB)');
    #\tau = 1/8, tr = 1/10
    xp, t = trap_pulse(N, 1/8, 1/10)
    Xp = fft.fft(xp)
    figure(figsize=(6,2))
    plot(t, xp)
    grid()
    title(r'Spectra of Finite Risetime Pulse Train: $\\tau = 1/8$ $\ t_r = 1/10$')
    ylabel(r'$x(t)$')
    xlabel('Time (s)')
    ss.line_spectra(f[0:25], Xp[0:25]/N, 'magdB', floor_dB=-80, fsize=(6,2))
    ylabel(r'$|X_n| = |X(f_n)|$ (dB)');
```

With the edge speed slowed down it is clear that the harmonics drop off faster.
Fourier Transforms

The Fourier transform definition is:

\[ X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt \]  
\[ x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df \]

A numerical approximation to the Fourier transform is possible using the FFT, or more conveniently using the function `freqz()` from the package `scipy.signal`. A helper function to abstract some of the digital signal processing details is `f, X = FT_approx(x, dt, Nfft)`. The function is now part of `sigsys.py` with name change to `ft_approx()`:

```python
[22]: def FT_approx(x, t, Nfft):
    ...
    Approximate the Fourier transform of a finite duration signal using scipy.signal.freqz()

    Inputs
    ------
    x = input signal array
    t = time array used to create x(t)
    Nfft = the number of frequency domain points used to approximate X(f) on the interval [fs/2, fs/2], where fs = 1/Dt. Dt being the time spacing in array t

    Return
    ------
    f = frequency axis array in Hz
    X = the Fourier transform approximation (complex)

    Mark Wickert, January 2015
    ..
    fs = 1/(t[1] - t[0])
    t0 = (t[-1]+t[0])/2 # time delay at center
    NO = len(t)/2 # FFT center in samples
    f = arange(-1/2,1/2,1/Nfft)
    w, X = signal.freqz(x,1,2*pi*f)
    X /= fs # account for dt = 1/fs in integral
    X *= exp(-1j*2*pi*f*t0) # time interval correction
    X *= exp(1j*2*pi*f*NO) # FFT time interval is [0,Nfft-1]
    F = f*fs
    return F, X
```

Example: Rectangular Pulse

As a simple starting point example, consider \( x(t) = \Pi(t\tau) \). The well known result for the Fourier transform (FT) is:

\[ X(f) = \mathcal{F}\left\{ \Pi\left(\frac{t}{\tau}\right) \right\} = \tau \text{sinc}(f\tau) \]

We now use the above defined `FT_approx()` to obtain a numerical approximation to the FT of the rectangular pulse.

**Tips:** * Make sure the signal is well contained on the time interval used to generate \( x(t) \)* * Make sure the sampling rate, one over the sample spacing, is adequate to represent the signal spectrum * From sampling theory, the range of frequencies represented by the spectrum estimate will be \( f_s/2 \leq f < f_s/2 \)
Example: Text Problem 2.31a Drill Down

In this problem you are given

\[ x_1(t) = \Pi \left( \frac{t + 1/2}{1} \right) - \Pi \left( \frac{t - 1/2}{1} \right) \]  

The Fourier transform of this signal can be found using linearity and the time delay theorems.

\[ X_1(f) = \mathcal{F} \left\{ \Pi \left( \frac{t + 1/2}{1} \right) - \Pi \left( \frac{t - 1/2}{1} \right) \right\} \]  

\[ = \text{sinc}(f) \cdot \left[ e^{j2\pi f \cdot 1/2} - e^{-j2\pi f \cdot 1/2} \right] \times \frac{2j}{2j} \]  

\[ = 2j \text{sinc}(f) \cdot \sin(\pi f) \]
Notice the numerical approximation and exact spectral plots overlay one another

**Example: Modulation Theorem**

Consider the modulation theorem, which is extremely important to communications theory:

\[
y(t) = x(t) \cdot \cos(2\pi f_0 t)
\]

\[
Y(f) = \frac{1}{2} \left[ X(f - f_0) + X(f + f_0) \right]
\]

Here we will use a triangle pulse for \(x(t)\):

```python
fs = 100  # sampling rate in Hz
tau = 1
x3 = ss.tri(t,tau)
y = x3*cos(2*pi*10*t)
```

(continues on next page)
Example: Representing a Bandlimited Signal

We know that in theory a bandlimited signal can only be generated from a signal having infinite duration. Specifically, a signal with rectangular spectrum has Fourier transform pair:

\[ x(t) = 2W \text{sinc}(2Wt) \Leftrightarrow \Pi \left( \frac{f}{2W} \right) = X(f) \]  

(2.27)

In a simulation we expect to have troubles modeling the finite duration aspects of the signal.

**Note:** The dB version (last plot) reveals that the first sidelobes of the spectrum are only down ~21dB. Increasing the length of the time window will not help. The spectral side lobes will become more tightly packed, but the first sidelobe will still be down only 21dB. With other pulse shapes in the time domain, i.e., note simply a truncated sinc() function reduced sidelobes can be obtained.
Convolution

• The convolution of two signals \( x_1(t) \) and \( x_2(t) \) is defined as

\[
x(t) = x_1(t) * x_2(t) = \int_{-\infty}^{\infty} x_1(\lambda)x_2(t - \lambda) \, d\lambda
\]

(2.28)

\[
x(t) = x_2(t) * x_1(t) = \int_{-\infty}^{\infty} x_2(\lambda)x_1(t - \lambda) \, d\lambda
\]

(2.29)

• A special convolution case is \( \delta(t - t_0) \)

\[
\delta(t - t_0) * x(t) = \int_{-\infty}^{\infty} \delta(\lambda - t_0)x(t - \lambda) \, d\lambda
\]

(2.30)

\[
= x(t - \lambda)|_{\lambda=t_0} = x(t - t_0)
\]

(2.31)

You can experiment with the convolution integral numerically using `ssd.conv_integral()` found in the module ssd.py.

[27]: t = arange(-2,2.001,.001)
p1 = ss.rect(t,1)
p2 = ss.rect(t,3)
y,ty = ss.conv_integral(p1,t,p2,t)
plot(ty,y)
ylim([-0.01,1.01])
grid()
xlabel(r'Time (s)')
ylabel(r'$y(t)$');

Output support: (-4.00, +4.00)

For convolutions involving semi-infinite signals, such as \( u(t) \), you can tell `ssd.conv_integral()` about this via the optional extent argument. See the function help using

`ss.conv_integral?`

[28]: # Consider a pulse convolved with an exponential ('r' type extent)
tx = arange(-1,8,.01)
x = ss.rect(tx-2,4) # pulse starts at t = 0
h = 4*exp(-4*tx)*ss.step(tx)
y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set
plot(ty,y) # expect a pulse charge and discharge waveform
grid()
title(r'$\Pi((t-2)/4)\ast 4 e^{-4t} u(t)$')
xlabel(r'Time (s)')
ylabel(r'$y(t)$');

Output support: (-2.00, +6.99)

Spectrum of PN Sequence (exact)

The cell below is a copy of the earlier pulse train line spectra example. Use this as a template to create the solution to the PN code problem of HW 3.
The code below approximates the PSD of the PN code using a numerical approximation to the Fourier coefficients, $X_n$. This development may be useful for the lab, as you can easily change the waveform level without having to rework the theory.

The approach taken here to create one period of the PN waveform at 10 samples per bit. The line containing the function `ss.upsample()` converts the bit sequence into a waveform by upsampling and filtering with a rectangular pulse shape (`ones(10)`). The function `ss.fs_coeff()` numerically calculates the $X_n$’s. To plot the PSD from the Fourier coefficients we use

$$S_x(f) = \sum_{n=-\infty}^{\infty} |X_n|^2 \delta(f - nf_0)$$


```python
[30]: x_PN4 = ss.m_seq(4)
x = signal.lfilter(ones(10),1,ss.upsample(x_PN4,10))
t = arange(0,len(x))/10
figure(fignsize=(6,2))
plot(t,x);
title(r'Time Domain and PSD of $M=15$ PN Code with $T = 1$')
xlabel(r'Time (s)')
ylabel(r'$x(t)$')
axis([0,15,-0.1,1.1]);
grid()
# 10 samples/bit so 150 samples/period
# harmonics spaced by 1/(15*T) = 1/15
Xk,fk = ss.fs_coeff(x,45,1/15)
ss.line_spectra(fk,Xk,'magdB',lwidth=2.0,floor_dB=-50,fsize=(6,2))
xlim([-3,3])
ylabel(r'$|X_n| = |X(f_n)|$ (dB)');
```
In Lab 2 of ECE 4670 a C/C++ version of a PN generator is implemented to run the ARM mbed LPC 1768 microcontroller (https://www.sparkfun.com/products/9564). At the heart of this code is:

```c
//Globals defined as unsigned int
tap1 = 1;
tap2 = 1;
mask1 = 0x1 << (tap1);
mask2 = 0x1 << (tap2);
bit = 0x0;
sync = 0x0;

void gen_PN() {
    my_pin5 = bit;
    my_pin6 = sync_bit;
    led2 = bit;
    led3 = sync_bit;
    if (clk_state == 0x1)
        // Advance m-sequence generator by one bit
        // XOR tap1 and tap2 SR values and feedback to input
    }
```
```python
fb = ((sr & mask1) >> tap1) ^ ((sr & mask2) >> tap2);
sr = (sr << 1) + fb;
bit = sr & 0x1;
// Use random number generator in place of m-sequence bits
if (DIP_sw4)
    bit = rand_int() & 0x1;
clk_state = 0x0;
// See if all 1's condition exists in SR
if ((sr & synch) == synch) {
    synch_bit = 0x1;
} else {
    synch_bit = 0x0;
}
else {
    if (DIP_sw1) bit = !bit;
    clk_state = 0x1;
}
```

The data type is `unsigned int`, which on the mbed is `uint16_t`, an unsigned 16-bit integer. A single unsigned integer is used as a 16-bit shift register with the LSB, furthest bit to the right, used to represent the first register stage. The shift register is advanced using a left shift `<<` bitwise operation. We can code this Python almost directly, as shown below.

```python
class bitwise_PN(object):
    ""
    Implement a PN generator using bitwise manipulation for the shift register. The LSB holds b0 and bits are shifted left.
    +----+----+----+----+----+----+----+
    sr = |bM-1| .. |bM-k| .. | b2 | b1 | b0 |
    +----+----+----+----+----+----+----+
    Feedback: (tap1-1) (tap2-1) Shift left using <<
    ""
    def __init__(self,tap1,tap2,Nstage,sr_initialize):
        ""
        Initialize the PN generator object
        ""
        self.tap1 = tap1 - 1
        self.tap2 = tap2 - 1
        self.mask1 = 0x1 << (tap1 - 1) # to select bit of interest
        self.mask2 = 0x1 << (tap2 - 1) # to select bit of interest
        self.Nstage = Nstage
        self.period = 2**Nstage - 1
        self.sr = sr_initialize
        self.bit = 0
        self.sync_bit = 0
```

(continues on next page)
def clock_PN(self):
    '''
    Method to advance m-sequence generator by one bit
    XOR tap1 and tap2 SR values and feedback to input
    '''
    fb = ((self.sr & self.mask1)>> self.tap1) ^
         ((self.sr & self.mask2) >> self.tap2)
    self.sr = (self.sr << 1) + fb
    self.sr = self.sr & self.period  # set MSBs > Nstage to 0
    self.bit = self.sr & 0x1  # output LSB from SR
    # See if all 1's condition exits in SR, if so output a synch pulse
    if ((self.sr & self.period) == self.period):
        self.sync_bit = 0x1
    else:
        self.sync_bit = 0x0
    print('output = %d, sr contents = %s, sync bit = %d'
          % (self.bit, binary(self.sr, self.Nstage), self.sync_bit))

    # A simple binary format display function which shows
    # leading zeros to a fixed bit width
    def binary(num, length=8):
        return format(num, '#0{}b'.format(length + 2))

    PN1 = bitwise_PN(10,7,10,0x1)
    PN1.clock_PN()
    output = 0, sr contents = 0b0000000010, sync bit = 0

    # sr initial condition
    sr = 0b1

    Nout = 20
    x_out = zeros(Nout)
    s_out = zeros(Nout)
    PN1 = bitwise_PN(3,2,3,0x1)
    for k in range(Nout):
        PN1.clock_PN()
        x_out[k] = PN1.bit
        s_out[k] = PN1.sync_bit
        output = 0, sr contents = 0b010, sync bit = 0
        output = 1, sr contents = 0b101, sync bit = 0
        output = 1, sr contents = 0b011, sync bit = 0
        output = 1, sr contents = 0b111, sync bit = 1
        output = 0, sr contents = 0b110, sync bit = 0
        output = 0, sr contents = 0b100, sync bit = 0
        output = 1, sr contents = 0b001, sync bit = 0
        output = 0, sr contents = 0b010, sync bit = 0
        output = 1, sr contents = 0b101, sync bit = 0
        output = 1, sr contents = 0b011, sync bit = 0
        output = 1, sr contents = 0b111, sync bit = 1
        output = 0, sr contents = 0b110, sync bit = 0
        output = 0, sr contents = 0b100, sync bit = 0
        output = 1, sr contents = 0b001, sync bit = 0
        output = 0, sr contents = 0b010, sync bit = 0

    (continues on next page)
Cross Correlation and Signal Delay

The idea of the autocorrelation function can be extended to the cross correlation, that is the correlation or likeness between two signals, say $x(t)$ and $y(t)$. Define

$$R_{xy}(\tau) = \langle x(t)y(t+\tau) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)y(t+\tau) \, dt$$ \hspace{1cm} (2.32)

Consider a simulation example using `dc.xcorr(x,t,lags)`:

```python
[42]:
import sk_dsp_comm.digitalcom as dc
x_PN4_bits = ss.PN_gen(10000,6)
# Convert to waveform level shifted to +/-1 amplitude
x_s = 2*signal.lfilter(ones(10),1,ss.upsample(x_PN4_bits,10))-1
# Form a delayed version of x_S
T_D = 35 # 35 sample delay
y_s = signal.lfilter(concatenate((zeros(T_D),array([1])))\ ylim([-1.1,1.1]))
figure(figsize=(6,2))
plot(x_s[:200])
plot(y_s[:200])
ylim([-1.1,1.1])
title(r'Delayed and Undelayed Signals for $T_D = 35$ Samples')
xlabel(r'$x_s(t)$ and $y_s(t)$')
grid();
# Find the time averaged autocorrelation function normalized
# to have a peak amplitude of 1
Ryx,tau = dc.xcorr(y_s,x_s,200) # note order change
# We know Ryx is real
Ryx = Ryx.real
tau_s = tau/10
figure(figsize=(6,2))
plot(tau_s,Ryx)
title(r'Cross Correlation for $M=4$ with $T = 1$ and Delay 35 Samples')
xlabel(r'Auto correlation Lag $\tau$ (s)')
ylabel(r'R_{yx}(\tau)$')
grid();
```
Spectral Containment Bandwidth (text problem 2.55)

In text problem 2.55 you are asked to find the 90% energy contain bandwidth of a signal \( x(t) \). Specifically you are to find the lowpass or one-sided bandwidth of a baseband signal such that 90% of the total signal energy is contained in the bandwidth, \( B_{90} \). You obtain \( B_{90} \) by solving the following equation

\[
0.9 = \frac{0.9E_{\text{total}}}{E_{\text{total}}} = \frac{\int_{-B_{90}}^{B_{90}} G(f)df}{\int_{-\infty}^{\infty} G(f)df} = \frac{2}{2} \int_{0}^{B_{90}} G(f)df = \frac{2}{\int_{0}^{\infty} G(f)df},
\]

(2.33)

where \( G(f) = |X_i(f)|^2 \) is the energy spectral density of \( x_i(t) \).

For parts (c) and (d) the problem states you need to perform numerical integration.

**Example:**

In an earlier example found in this notebook I found the Fourier transform of

\[
x(t) = \Pi \left( \frac{t - \tau/2}{\tau} \right) - \Pi \left( \frac{t + \tau/2}{\tau} \right)
\]

(2.34)
to be

\[
X(f) = 2j \text{sinc}(f\tau) \cdot \sin(\pi f\tau)
\]

(2.35)

Note I have modified the problem to now have pulse width \( \tau \) to better match the homework problem where \( \tau \) is a variable.

The energy spectral density is

\[
G(f) = 4 \text{sinc}^2(f\tau) \cdot \sin^2(\pi f\tau)
\]

(2.36)

I convenient way to numerically integrate \( G(f) \) is using simple reactangular partitions, but making sure that \( \Delta f \) is small relative to the changes in \( G(f) \). Since you do not know what the value of \( \tau \) you consider a normalized frequency variable \( f_n = fr \) in the analysis. The rest of the steps are:

1. Sweep \( G(f_n) \) using an array \( f_n \) running from zero to \( f_n \) large enough to insure that \( G(f_n) \) is very small relative to it largest value. In Python this is just filling an array, \( G_n \) with the functional values.

2. Form a new array which contains the cumulative sum of the values in \( G_n \), say \( G_n_{\text{cumsum}} = \text{cumsum}(G_n) \). Aso form the sum of the array values, i.e., \( G_n_{\text{tot}} = \text{sum}(G_n) \)

3. Plot the ratio of \( G_n_{\text{cumsum}}/G_n_{\text{sum}} \) versus \( f_n \). The curve should start at zero and climb to one as \( f_n \) becomes large. The value of \( f_n \) where the curve crosses through 0.9 is the 90% containment bandwidth.

**Note:** You might notice that \( \Delta f \), which is needed in the rectangular integration formula was never used. Why? In the calculation of the cumulative sum and the calculation of the total, both should include \( \Delta f \), hence in the ration the values cancel out. Nice!

```python
[43]: fn = arange(0,10,.001)
Gn = 4*sinc(fn)**2 * sin(pi*fn)**2
Gn_cumsum = cumsum(Gn)
Gn_tot = sum(Gn)
plot(fn,Gn_cumsum/Gn_tot)
gold()
xlabel('Normalized Frequency $f\tau$')
ylabel('Fractional Power Containment');

2.6. Examples 25
The normalized 90 percent containment bandwidth is 1.45 Hz-s.

Filter Analysis

To facilitate the performance analysis of both discrete-time and continuous-time filters, the functions `freqz_resp()` and `freqs_resp()` are available (definitions below, respectively). With these functions you can quickly move from $z$-domain or $s$-domain rational system function coefficients to visualization of the filter frequency response *

Magnitude * Magnitude in dB * Phase in radians * Group delay in samples or seconds (digital filter) * Group delay in seconds (analog filter)

```python
def freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)):
    """
    A method for displaying digital filter frequency response magnitude,
    phase, and group delay. A plot is produced using matplotlib
    freqz_resp(self,mode = 'dB',Npts = 1024)
    A method for displaying the filter frequency response magnitude,
    phase, and group delay. A plot is produced using matplotlib
    freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4))

    b = ndarray of numerator coefficients
    a = ndarray of denominator coefficients
    Dmin = start frequency as 10**Dmin
    Dmax = stop frequency as 10**Dmax
    mode = display mode: 'dB' magnitude, 'phase' in radians, or
           'groupdelay_s' in samples and 'groupdelay_t' in sec,
           all versus frequency in Hz
    Npts = number of points to plot; default is 1024
    fsize = figure size; default is (6,4) inches
    """
    f = np.arange(0,Npts)/(2.0*Npts)
    w,H = signal.freqz(b,a,2*np.pi*f)
    plt.figure(figsise=fsize)
    if mode.lower() == 'db':
        plt.plot(f*fs,20*np.log10(np.abs(H)))
        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Gain (dB)')
        plt.title('Frequency Response - Magnitude')
    elif mode.lower() == 'phase':
        plt.plot(f*fs,np.angle(H))
        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Phase (rad)')
```

(continues on next page)
elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'):
    ""
    Notes
    -----
    Since this calculation involves finding the derivative of the
    phase response, care must be taken at phase wrapping points
    and when the phase jumps by +/-pi, which occurs when the
    amplitude response changes sign. Since the amplitude response
    is zero when the sign changes, the jumps do not alter the group
    delay results.
    ""
    theta = np.unwrap(np.angle(H))
    # Since theta for an FIR filter is likely to have many pi phase
    # jumps too, we unwrap a second time 2*theta and divide by 2
    theta2 = np.unwrap(2*theta)/2.
    theta_dif = np.diff(theta2)
    f_diff = np.diff(f)
    Tg = -np.diff(theta2)/np.diff(w)
    max_Tg = np.max(Tg)
    #print(max_Tg)
    if mode.lower() == 'groupdelay_t':
        max_Tg /= fs
        plt.plot(f[:-1]*fs,Tg/fs)
        plt.ylim([0,1.2*max_Tg])
    else:
        plt.plot(f[:-1]*fs,Tg)
        plt.ylim([0,1.2*max_Tg])
    plt.xlabel('Frequency (Hz)')
    if mode.lower() == 'groupdelay_t':
        plt.ylabel('Group Delay (s)')
    else:
        plt.ylabel('Group Delay (samples)')
    plt.title('Frequency Response - Group Delay')
else:
    s1 = 'Error, mode must be "dB", "phase, '
    s2 = '"groupdelay_s", or "groupdelay_t"'
    print(s1 + s2)

[47]: def freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4)):
    ""
    A method for displaying analog filter frequency response magnitude,
    phase, and group delay. A plot is produced using matplotlib
    
    freqs_resp(b,a=[1],Dmin=1,Dmax=5,mode = 'dB',Npts = 1024,fsize=(6,4))

    b = ndarray of numerator coefficients
    a = ndarray of denominator coefficients
    Dmin = start frequency as 10**Dmin
    Dmax = stop frequency as 10**Dmax
    mode = display mode: "dB" magnitude, "phase" in radians, or
    "groupdelay", all versus log frequency in Hz
    Npts = number of points to plot; default is 1024
    fsize = figure size; default is (6,4) inches
    ""
```python
f = np.logspace(Dmin,Dmax,Npts)
w, H = signal.freqs(b, a, 2*np.pi*f)
plt.figure(figsize=fsize)
if mode.lower() == 'db':
    plt.semilogx(f, 20*np.log10(np.abs(H)))
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Gain (dB)')
    plt.title('Frequency Response - Magnitude')

elif mode.lower() == 'phase':
    plt.semilogx(f, np.angle(H))
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Phase (rad)')
    plt.title('Frequency Response - Phase')

elif mode.lower() == 'groupdelay':
    theta = np.unwrap(np.angle(H))
    # Since theta for an FIR filter is likely to have many pi phase
    # jumps too, we unwrap a second time 2*theta and divide by 2
    theta2 = np.unwrap(2*theta)/2.
    theta_dif = np.diff(theta2)
    f_diff = np.diff(f)
    Tg = -np.diff(theta2)/np.diff(w)
    max_Tg = np.max(Tg)
    plt.semilogx(f[:-1], Tg)
    plt.ylim([0,1.2*max_Tg])
    plt.xlabel('Frequency (Hz)')
    plt.ylabel('Group Delay (s)')
    plt.title('Frequency Response - Group Delay')

else:
    print('Error, mode must be "dB" or "phase or "groupdelay"')
```

**Example: Discrete-Time Chebyshev Type I Bandpass Filter**

```python
[48]: import sk_dsp_comm.iir_design_helper as iird
    import sk_dsp_comm.fir_design_helper as fird

[49]: b1, a1, sos1 = iird.IIR_bpf(200, 250, 300, 350, 0.1, 60.0, 1000, 'butter')
b2, a2, sos2 = iird.IIR_bpf(200, 250, 300, 350, 0.1, 60.0, 1000, 'cheby1')

IIR butter order = 16.
IIR cheby1 order = 12.
```
Example: Continuous-Time Bessel Bandpass Filter

```python
[53]: bc,ac = signal.bessel(7,2*pi*array([10.0,50.0])*1e6,btype='bandpass',analog=True)

[54]: freqz_resp(bc,ac,6,9,mode='dB',fsize=(6,2))
grid()
ylim([-80,5])
```
Second-Order Butterworth Lowpass Response

Consider a 3rd-order analog Butterworth is the \( s \)-domain having transfer function \( H(s) \). Using the \texttt{scipy.signal} function \texttt{butter()} we find the coefficients to the rational transfer function of the form:

\[
H(s) = \frac{\sum_{n=0}^{M} b_n s^n}{\sum_{n=0}^{N} a_n s^n}
\]  

(2.37)

```python
b3,a3 = signal.butter(3,2*pi*1,analog=True)
freqs_resp(b3,a3,-1,2,mode='dB',fsize=(6,2))
grid()
ylim([-80,5]);
freqs_resp(b3,a3,-1,2,mode='groupdelay',fsize=(6,2))
grid()
```

Obtaining the Step Response via Simulation

Time domain simulation of continuous time system can be performed using the \texttt{signal.lsim()} function. You have to make sure the time step is sufficiently small relative to the filter bandwidth.

```python
t = arange(0,2,.0001)
xs = ss.step(t)
tout,ys,x_state = signal.lsim((b3,a3),xs,t)
plot(t,ys)
title(r'Third-Order Butterworth Step Response for $f_3 = 1$ Hz')
ylabel(r'Ste Response')
xlabel(r'Time (s)')
grid();
```

Filter Design Using the Helper Modules

The Scipy package \texttt{signal} assists with the design of many digital filter types. As an alternative, here we explore the use of the filter design modules found in \texttt{scikit-dsp-comm} (https://github.com/mwickert/scikit-dsp-comm).

In this note we briefly explore the use of \texttt{sk_dsp_comm.fir_design_helper} and \texttt{sk_dsp_comm.iir_design_helper}. In the examples that follow we assume the import of these modules is made as follows:

```python
%pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import sk_dsp_comm.multirate_helper as mrh
import scipy.signal as signal
from IPython.display import Audio, display
from IPython.display import Image, SVG
```

Populating the interactive namespace from numpy and matplotlib

```python
%config InlineBackend.figure_formats=['svg'] # SVG inline viewing
```
The functions in these modules provide an easier and more consistent interface for both finite impulse response (FIR) (linear phase) and infinite impulse response (IIR) classical designs. Functions inside these modules wrap scipy.signal functions and also incorporate new functionality.

**Design From Amplitude Response Requirements**

With both `fir_design_helper` and `iir_design_helper` a design starts with amplitude requirements, that is the filter passband critical frequencies, stopband critical frequencies, passband ripple, and stopband attenuation. The number of taps/coefficients (FIR case) or the filter order (IIR case) needed to meet these requirements is then determined and the filter coefficients are returned as an ndarray `b` for FIR, and for IIR both `b` and `a` arrays, and a second-order sections `sos` 2D array, with the rows containing the corresponding cascade of second-order sections topology for IIR filters.

For the FIR case we have in the $z$-domain

$$H_{\text{FIR}}(z) = \sum_{k=0}^{N} b_k z^{-k}$$

with ndarray $b = [b_0, b_1, \ldots, b_N]$. For the IIR case we have in the $z$-domain

$$H_{\text{IIR}}(z) = \sum_{k=0}^{M} b_k z^{-k} + \sum_{k=1}^{N} a_k z^{-k} = \prod_{k=0}^{N_s-1} b_{k0} + b_{k1} z^{-1} + b_{k2} z^{-2} = \prod_{k=0}^{N_s-1} \frac{1}{a_{k1} z^{-1} + a_{k2} z^{-2}}$$

where $N_s = \lfloor (N + 1)/2 \rfloor$. For the $b/a$ form the coefficients are arranged as

$b = [b_0, b_1, \ldots, b_{M-1}]$, the numerator filter coefficients
$a = [a_0, a_1, \ldots, a_{N-1}]$, the denominator filter coefficients

For the `sos` form each row of the 2D `sos` array corresponds to the coefficients of $H_k(z)$, as follows:

```
SOS_mat = [[b00, b01, b02, 1, a01, a02], #biquad 0
           [b10, b11, b12, 1, a11, a12], #biquad 1
           ...
           [bNs-10, bNs-11, bNs-12, 1, aNs-11, aNs-12]] #biquad Ns-1
```

**Linear Phase FIR Filter Design**

The primary focus of this module is adding the ability to design linear phase FIR filters from user friendly amplitude response requirements.

Most digital filter design is motivated by the desire to approach an ideal filter. Recall an ideal filter will pass signals of a certain of frequencies and block others. For both analog and digital filters the designer can choose from a variety of approximation techniques. For digital filters the approximation techniques fall into the categories of IIR or FIR. In the design of FIR filters two popular techniques are truncating the ideal filter impulse response and applying a window, and optimum equiripple approximations Oppenheim2010. Frequency sampling based approaches are also popular, but will not be considered here, even though scipy.signal supports all three. Filter design generally begins with a
specification of the desired frequency response. The filter frequency response may be stated in several ways, but amplitude response is the most common, e.g., state how $H_c(j\Omega)$ or $H(e^{j\omega}) = H(e^{j2\pi f_s/f_0})$ should behave. A completed design consists of the number of coefficients (taps) required and the coefficients themselves (double precision float or float64 in Numpy, and float64_t in C). Figure 1, below, shows amplitude response requirements in terms of filter gain and critical frequencies for lowpass, highpass, bandpass, and bandstop filters. The critical frequencies are given here in terms of analog requirements in Hz. The sampling frequency is assumed to be in Hz. The passband ripple and stopband attenuation values are in dB. Note in dB terms attenuation is the negative of gain, e.g., -60 of stopband gain is equivalent to 60 dB of stopband attenuation.
There are 10 filter design functions and one plotting function available in `fir_design_helper.py`. Four functions for designing Kaiser window based FIR filters and four functions for designing equiripple based FIR filters. Of the eight just described, they all take in amplitude response requirements and return a coefficients array. Two of the 10

**Figure: 1** General amplitude response requirements for the lowpass, highpass, bandpass, and bandstop filter types.
filter functions are simply wrappers around the `scipy.signal` function `signal.firwin()` for designing filters of a specific order when one (lowpass) or two (bandpass) critical frequencies are given. The wrapper functions fix the window type to the `firwin` default of hann (hanning). The remaining eight are described below in Table 1. The plotting function provides an easy means to compare the resulting frequency response of one or more designs on a single plot. Display modes allow gain in dB, phase in radians, group delay in samples, and group delay in seconds for a given sampling rate. This function, `freq_resp_list()`, works for both FIR and IIR designs. Table 1 provides the interface details to the eight design functions where `d_stop` and `d_pass` are positive dB values and the critical frequencies have the same unit as the sampling frequency $f_s$. These functions do not create perfect results so some tuning of the design parameters may be needed, in addition to bumping the filter order up or down via `N_bump`.

![Image(300ppi/FIR_Kaiser_Equiripple_Table@300ppi.png',width='80%')]

### Table 1: FIR filter design functions in `fir_design_helper.py`

<table>
<thead>
<tr>
<th>Type</th>
<th>FIR Filter Design Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kaiser Window</strong></td>
<td></td>
</tr>
<tr>
<td>Lowpass</td>
<td><code>h FIR = firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs = 1.0, N_bump=0)</code></td>
</tr>
<tr>
<td>Highpass</td>
<td><code>h FIR = firwin_kaiser_hpff(f_stop, f_pass, d_stop, fs = 1.0, N_bump=0)</code></td>
</tr>
<tr>
<td>Bandpass</td>
<td><code>h FIR = firwin_kaiser_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs = 1.0, N_bump=0)</code></td>
</tr>
<tr>
<td>Bandstop</td>
<td><code>h FIR = firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs = 1.0, N_bump=0)</code></td>
</tr>
<tr>
<td><strong>Equiripple Approximation</strong></td>
<td></td>
</tr>
<tr>
<td>Lowpass</td>
<td><code>h FIR = fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs = 1.0, N_bump=5)</code></td>
</tr>
<tr>
<td>Highpass</td>
<td><code>h FIR = fir_remez_hpff(f_stop, f_pass, d_pass, d_stop, fs = 1.0, N_bump=5)</code></td>
</tr>
<tr>
<td>Bandpass</td>
<td><code>h FIR = fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop, fs = 1.0, N_bump=5)</code></td>
</tr>
<tr>
<td>Bandstop</td>
<td><code>h FIR = fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fs = 1.0, N_bump=5)</code></td>
</tr>
<tr>
<td><strong>Support Function: Compare Designs</strong></td>
<td></td>
</tr>
<tr>
<td>Plot a List of Designs</td>
<td><code>freq_resp_list([b],a=[1],mode = 'dB',fs=1.0,npts = 1024,fsize=(6.4))</code></td>
</tr>
<tr>
<td>where <code>[b]</code> is a list coefficient arrays and mode can be: <code>'db'</code>, <code>'phase'</code> in radians, <code>'groupdelay_s'</code> in samples or <code>'groupdelay_t'</code> in seconds</td>
<td></td>
</tr>
</tbody>
</table>

The optional `N_bump` argument allows the filter order to be bumped up or down by an integer value in order to fine tune the design. Making changes to the stopband gain may also be helpful in fine tuning. Note also that the Kaiser bandstop filter order is constrained to be even (an odd number of taps).

### Design Examples

**Example 1: Lowpass with $f_s = 1$ Hz**

For this 31 tap filter we choose the cutoff frequency to be $F_c = F_s/8$, or in normalized form $f_c = 1/8$.

```
[5]: b_k = fir_d.firwin_kaiser_lpf(1/8,1/6,50,1.0)
b_r = fir_d.fir_remez_lpf(1/8,1/6,0.2,50,1.0)
```
A Design Example Useful for Interpolation or Decimation

Here we consider a lowpass design that needs to pass frequencies from [0, 4000] Hz with a sampling rate of 96000 Hz. This scenario arises when building an interpolator using the classes of the scikit-dps-comm module multirate_helper.py to increase the sampling rate from 8000 Hz to 96000 Hz, or an interpolation factor of $L = 12$. Note at the top of this notebook we have also have the import

```python
import sk_dsp_comm.multirate_helper as mrh
```

so that some of the functionality can be accessed. For more details on the use of multirate_helper see.

Start with an equalripple design having transition band centered on 4000 Hz with passband ripple of 0.5 dB and stopband attenuation of 60 dB.
```python
[11]: b_up = fir_d.fir_remez_lpf(3300, 4300, 0.5, 60, 96000)
Remez filter taps = 196.

[12]:
    mr_up = mrh.multirate_FIR(b_up)
FIR filter taps = 196

• Consider the pole-zero configuration for this high-order filter

[13]:
    # Take a look at the pole-zero configuration of this very
    # high-order (many taps) linear phase FIR
    mr_up.zplane()

• Check out the passband and stopband gains

[14]:
    # Verify the passband and stopband gains are as expected
    mr_up.freq_resp('db', 96000)

• See that the group delay is the expected value of \((N_{\text{taps}} - 1)/2 = 98\) samples

[15]:
    (len(b_up-1))/2
[15]:
    98.0

[16]:
    # Verify that the FIR design has constant group delay \((N_{\text{taps}} - 1)/2\) samples
    mr_up.freq_resp('groupdelay_s', 96000, [0, 100])

The object `mr_up` can now be used for interpolation or decimation with a rate change factor of 12.

**Traditional IIR Filter Design using the Bilinear Transform**

The scipy.signal package fully supports the design of IIR digital filters from analog prototypes. IIR filters like FIR filters, are typically designed with amplitude response requirements in mind. A collection of design functions are available directly from scipy.signal for this purpose, in particular the function scipy.signal.iirdesign(). To make the design of lowpass, highpass, bandpass, and bandstop filters consistent with the module fir_design_helper.py the module iir_design_helper.py was written. Figure 2, below, details how the amplitude response parameters are defined graphically.

[17]:
    Image('300ppi/IIR_Lowpass_Highpass_Bandpass_Bandstop@300ppi.png', width='90%')
Within `iir_design_helper.py` there are four filter design functions and a collection of supporting functions available. The four filter design functions are used for designing lowpass, highpass, bandpass, and bandstop IIR filter types, utilizing Butterworth, Chebyshev type 1, Chebyshev type 2, and elliptical filter prototypes. See Oppenheim2010 and

Figure 2: General amplitude response requirements for the lowpass, highpass, bandpass, and bandstop IIR filter types.
The filter functions return the filter coefficients in two formats:

1. Traditional transfer function form as numerator coefficients \( b \) and denominator \( a \) coefficients arrays, and
2. Cascade of biquadratic sections form using the previously introduced sos 2D array or matrix.

Both are provided to allow further analysis with either a direct form topology or the sos form. The underlying `signal.iirdesign()` function also provides a third option: a list of poles and zeros. The sos form desirable for high precision filters, as it is more robust to coefficient quantization, in spite using double precision coefficients in the \( b \) and \( a \) arrays.

Of the remaining support functions four are also described in Table 2, above. The most significant functions are `freqz_respond_cas_list`, available for graphically comparing the frequency response over several designs, and `sos_zplane` a function for plotting the pole-zero pattern. Both operate using the sos matrix. A transfer function form \((b/a)\) for frequency response plotting, `freqz_respond_list`, is also present in the module. This function was first introduced in the FIR design section. The frequency response function plotting offers modes for gain in dB, phase in radians, group delay in samples, and group delay in seconds, all for a given sampling rate in Hz. The pole-zero plotting function locates pole and zeros more accurately than `sk DSP_commsys.zplane`, as the numpy function `roots()` is only solving quadratic polynomials. Also, repeated roots can be displayed as theoretically

---

### Table 2: IIR filter design functions in `iir_design_helper.py` and key support functions.

<table>
<thead>
<tr>
<th>Type</th>
<th>IIR Filter Design Functions*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transfer Function ((b, a)) and SOS</strong></td>
<td></td>
</tr>
<tr>
<td>Lowpass (bilinear)</td>
<td>(b, a, sos = \text{IIR_lp}(f_pass, f_stop, \text{Ripple_pass}, \text{Atten_stop},) (fs = 1.00, ftype = 'butter',) (ftype = \text{butter}', \text{butter}'c\text{heby1}', \text{cheby2}', \text{or elliptic}')</td>
</tr>
<tr>
<td>Highpass (bilinear)</td>
<td>(b, a, sos = \text{IIR_hp}(f_stop, f_pass, \text{Ripple_pass}, \text{Atten_stop},) (fs = 1.00, ftype = 'butter',) (ftype = \text{butter}', \text{butter}'c\text{heby1}', \text{cheby2}', \text{or elliptic}')</td>
</tr>
<tr>
<td>Bandpass (bilinear)</td>
<td>(b, a, sos = \text{IIR_bs}(f_stop1, f_pass1, f_pass2, f_stop2, \text{Ripple_pass}, \text{Atten_stop},) (fs = 1.00, ftype = 'butter',) (ftype = \text{butter}', \text{butter}'c\text{heby1}', \text{cheby2}', \text{or elliptic}')</td>
</tr>
<tr>
<td>Bandstop (bilinear)</td>
<td>(b, a, sos = \text{IIR_bs}(f_pass1, f_stop1, f_stop2, f_pass2, \text{Ripple_pass}, \text{Atten_stop},) (fs = 1.00, ftype = 'butter',) (ftype = \text{butter}', \text{butter}'c\text{heby1}', \text{cheby2}', \text{or elliptic}')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Support Functions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SOS plot</td>
<td><code>freqz_respond_cas_list([sos], mode = 'db', fs=1.0, npts = 1024, fsize=(6,4))</code></td>
</tr>
<tr>
<td>where: ([sos]) is a list coefficient arrays and mode can be: 'db', 'phase' in radians, 'groupdelay_s' in samples or 'groupdelay_t' in seconds</td>
<td></td>
</tr>
<tr>
<td>SOS plot</td>
<td><code>w, Hcas = freqz_cas(sos,w)</code></td>
</tr>
<tr>
<td>freqz for a single sos section</td>
<td></td>
</tr>
<tr>
<td>SOS plot</td>
<td><code>sos_zplane(sos,auto_scale=True,size=2,tol = 0.001)</code></td>
</tr>
<tr>
<td>More accurate root factoring results in a more accurate pole-zero plot.</td>
<td></td>
</tr>
</tbody>
</table>

*These functions wrap scipy.signal.iirdesign() to provide an interface more consistent with the FIR design functions found in the module `fir_design_helper.py`. The function `unique_cpx_roots()` is used to mark repeated poles and zeros in `sos_zplane`. Note: All critical frequencies given in increasing order.
expected, and also so noted in the graphical display by superscripts next to the pole and zero markers.

**IIR Design Based on the Bilinear Transformation**

There are multiple ways of designing IIR filters based on amplitude response requirements. When the desire is to have the filter approximation follow an analog prototype such as Butterworth, Chebychev, etc., is using the bilinear transformation. The function `signal.iirdesign()` described above does exactly this.

In the example below we consider lowpass amplitude response requirements and see how the filter order changes when we choose different analog prototypes.

**Example: Lowpass Design Comparison**

The lowpass amplitude response requirements given $f_s = 48$ kHz are: 1. $f_{pass} = 5$ kHz 2. $f_{stop} = 8$ kHz 3. Passband ripple of 0.5 dB 4. Stopband attenuation of 60 dB

Design four filters to meet the same requirements: butter, cheby1, cheby2, and ellip:

```python
[b19]: fs = 48000
f_pass = 5000
f_stop = 8000
b_butter,a_butter,sos_butter = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter')
b_cheb1,a_cheb1,sos_cheb1 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1')
b_cheb2,a_cheb2,sos_cheb2 = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2')
b_elli,a_elli,sos_elli = iir_d.IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip')
```

- IIR butter order = 15.
- IIR cheby1 order = 8.
- IIR cheby2 order = 8.
- IIR ellip order = 6.

**Frequency Response Comparison**

Here we compare the magnitude response in dB using the sos form of each filter as the input. The elliptic is the most efficient, and actually over achieves by reaching the stopband requirement at less than 8 kHz.

```python
[b20]: iir_d.freqz_resp_cas_list([sos_butter,sos_cheb1,sos_cheb2,sos_elli],'dB',fs=48)
ylim([-80,5])
title(r'IIR Lowpass Compare')
ylabel(r'Filter Gain (dB)')
xlabel(r'Frequency in kHz')
legend((r'Butter order: %d' % (len(a_butter)-1),
r'Cheby1 order: %d' % (len(a_cheb1)-1),
r'Cheby2 order: %d' % (len(a_cheb2)-1),
r'Elliptic order: %d' % (len(a_elli)-1)),loc='best')
grid();
```

Next plot the pole-zero configuration of just the butterworth design. Here we use the a special version of `ss.zplane` that works with the sos 2D array.

```python
[b21]: iir_d.sos_zplane(sos_butter)
```

```python
[b21]: (15, 15)
```
Note the two plots above can also be obtained using the transfer function form via `iir_d.freqzRespList([b],[a],'db',fs=48)` and `ss.zplane(b,a)`, respectively. The sos form will yield more accurate results, as it is less sensitive to coefficient quantization. This is particularly true for the pole-zero plot, as rooting a 15th degree polynomial is far more subject to errors than rooting a simple quadratic.

For the 15th-order Butterworth the bilinear transformation maps the expected 15 s-domain zeros at infinity to $z = -1$. If you use `sk_dsp commute.sigsys.zplane()` you will find that the 15 zeros are in a tight circle around $z = -1$, indicating polynomial rooting errors. Likewise the frequency response will be more accurate.

Signal filtering of ndarray $x$ is done using the filter designs done using functions from `scipy.signal`:

1. For transfer function form $y = \text{signal.lfilter}(b,a,x)$
2. For sos form $y = \text{signal.sosfilt}(sos,x)$

### A Half-Band Filter Design to Pass up to $W/2$ when $f_s = 8$ kHz

Here we consider a lowpass design that needs to pass frequencies up to $f_s/4$. Specifically when $f_s = 8000$ Hz, the filter passband becomes $[0, 2000]$ Hz. Once the coefficients are found a `mrh.multirate` object is created to allow further study of the filter, and ultimately implement filtering of a white noise signal. Start with an elliptical design having transition band centered on 2000 Hz with passband ripple of 0.5 dB and stopband attenuation of 80 dB. The transition bandwidth is set to 100 Hz, with 50 Hz on either side of 2000 Hz.

```
# Elliptic IIR Lowpass
b_lp,a_lp,sos_lp = iir_d.IIR_lpf(1950,2050,0.5,80,8000.,'ellip')
mr_lp = mrh.multirate_IIR(sos_lp)
IIR ellip order = 11.
IIR filter order = 11
```

Pass Gaussian white noise of variance $\sigma_x^2 = 1$ through the filter. Use a lot of samples so the spectral estimate can accurately form $S_y(f) = \sigma_x^2 \cdot |H(e^{j2\pi f/f_s})|^2 = |H(e^{j2\pi f/f_s})|^2$.

```
x = randn(1000000)
y = mr_lp.filter(x)
psd(x,2**10,8000);
psd(y,2**10,8000);
title('Filtering White Noise Having $\sigma_x^2 = 1$')
legend(('Input PSD','Output PSD'),loc='best')
ylim([-130,-30])
```

```
(-130, -30)
```

```
fs = 8000
print('Expected PSD of $%6.3f$ dB/Hz' % (0-10*log10(fs),))
```

Expected PSD of -39.031 dB/Hz
Amplitude Response Bandpass Design

Here we consider FIR and IIR bandpass designs for use in an SSB demodulator to remove potential adjacent channel signals sitting either side of a frequency band running from 23 kHz to 24 kHz.

```
[26]: b_rec_bpf1 = fir_d.fir_remez_bpf(23000, 24000, 28000, 29000, 0.5, 70, 96000, 8)
    fir_d.freqzResp_list([b_rec_bpf1], [1], mode='dB', fs=96000)
    ylim([-80, 5])
    grid();
    Remez filter taps = 241.
```

The group delay is flat (constant) by virtue of the design having linear phase.

```
[27]: b_rec_bpf1 = fir_d.fir_remez_bpf(23000, 24000, 28000, 29000, 0.5, 70, 96000, 8)
    fir_d.freqzResp_list([b_rec_bpf1], [1], mode='groupdelay_s', fs=96000)
    grid();
    Remez filter taps = 241.
```

Compare the FIR design with an elliptical design:

```
[28]: b_rec_bpf2, a_rec_bpf2, sos_rec_bpf2 = iir_d.IIR_bpf(23000, 24000, 28000, 29000,
          0.5, 70, 96000, 'ellip')
    with np.errstate(divide='ignore', invalid='ignore'):
        iir_d.freqzResp_cas_list([sos_rec_bpf2], mode='dB', fs=96000)
        ylim([-80, 5])
        grid();
    IIR ellip order = 14.
```

This high order elliptic has a nice tight amplitude response for minimal coefficients, but the group delay is terrible:

```
[29]: with np.errstate(divide='ignore', invalid='ignore'):
    # manage singularity warnings
    iir_d.freqzResp_cas_list([sos_rec_bpf2], mode='groupdelay_s', fs=96000)
    # ylim([-80, 5])
    grid();
```

Multirate Signal Processing Using multirate_helper

In this section the classes multirate_FIR and multirate_IIR, found in the module sk_dsp_comm.multirate_helper, are discussed with the aim of seeing how they can be used to filter, interpolate (upsample
and filter), and decimate (filter and downsample) discrete time signals. Fundamentally the processing consists of two elements: (1) an upsampler or downsampler and (2) a lowpass filter.

Fundamentally this module provides classes to change the sampling rate by an integer factor, either up, interpolation or down, decimation, with integrated filtering to suppress spectral images or aliases, respectively. The top level block diagram of the interpolator and decimator are given in the following two figures. The frequencies given in the figures assume that the interpolator is rate changing from 8 ksps to 96 ksps ($L = 12$) and the decimator is rate changing from 96 ksps to 8 ksps ($M = 12$). This is for example purposes only. The FIR/IIR filter cutoff frequency will in general be $f_c = f_{\text{in}}/(2L)$ for the decimator and $f_c = f_{\text{out}}/(2M)$. The primitives to implement the classes are available in sk_dsp_comm.sigs and scipy.signal.

The upsample block, shown above with arrow pointing up and integer $L = 12$ next to the arrow, takes the input sequence and produces the output sequence by inserting $L - 1$ (as shown here 11) zero samples between each input sample. The downsample block, shown above with arrow pointing down and integer $M = 12$ next to the arrow, takes the input sequence and retains at the output sequence every $M$th (as shown here 12th) sample.

The impact of these blocks in the frequency domain is a little harder to explain. In words, the spectrum at the output of the upsample is compressed by the factor $L$, such that it will contain $L$ spectral images, including the fundamental image centered at $f = 0$, evenly spaced up to the sampling $f_s$. Overall the spectrum of $x[n]$ is of course periodic with respect to the sampling rate. The lowpass filter interpolates signal sample values from the non-zero samples where the zero samples reside. It is this interpolation that effectively removed or suppresses the spectral images outside the interval $|f| > f_s/(2L)$.

For the downsample the input spectrum is stretched along the frequency axis by the factor $M$, with aliasing from frequency bands outside $|f| < f_s/(2M)$. To avoid aliasing the lowpass filter blocks input signals for $f > f_s/(2M)$. 

---

**Chapter 2. scikit-dsp-comm**
To get started using the module you will need an import similar to:

```python
import sk_dsp_comm.multirate_helper as mrh
```

### The rate_change Class

We start with the description of a third class, `mrh.rate_change`, which is simplistic, offering little user interaction, but automatically designs the required lowpass filter you see in the above block diagrams. Below is a table which describes this class:

<table>
<thead>
<tr>
<th>Type</th>
<th>Class/Method/Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>module class</td>
<td><code>multirate_helper.rate_change</code></td>
</tr>
<tr>
<td>constructor</td>
<td><code>rc_obj = rate_change(M_change = 12, f_cutoff=0.9, N_filt_order=8, ftype='butter')</code></td>
</tr>
<tr>
<td></td>
<td><code>f_cutoff</code> is normalized to the sampling rate, e.g., <code>fs_out/M_change</code> for interpolation and <code>fs_in/M_change</code> for decimation. <code>ftype</code> may also be <code>cheby1</code> where the ripple is fixed at 0.05 dB.</td>
</tr>
<tr>
<td>interpolate</td>
<td><code>y = rc_obj.up(x)</code></td>
</tr>
<tr>
<td>decimate</td>
<td><code>y = rc_obj.dn(x)</code></td>
</tr>
</tbody>
</table>

This class is used in the analog modulation demos for the ECE 4625/5625 Chapter 3 Jupyter notebook. Using this class you can quickly create a interpolation or decimation block with the necessary lowpass filter automatically designed and implemented. Fine tuning of the filter is limited to choosing the filter order and the cutoff frequency as a fraction of the signal bandwidth given the rate change integer, $L$ or $M$. The filter type is also limited to Butterworth or Chebyshev type 1 having passband ripple of 0.05 dB.

### A Simple Example

Pass a sinusoidal signal through an $L = 4$ interpolator. Verify that spectral images occur with the use of the interpolation lowpass filter.

```python
fs_in = 8000
M = 4
fs_out = M*fs_in
```
rc1 = mrh.rate_change(M)  # Rate change by 4
n = arange(0,1000)
x = cos(2*pi*1000/fs_in*n)
x_up = ss.upsample(x,4)
y = rc1.up(x)

Time Domain

[7]: subplot(211)
    stem(n[500:550],x_up[500:550]);
ylabel(r'x\_{up}[n]')
title(r'Upsample by $L=4$ Output')
    ylim(-100,-10)
    subplot(212)
    stem(n[500:550],y[500:550]);
ylabel(r'y[n]')
xlabel(r'')
title(r'Interpolate by $L=4$ Output')
    ylim(-100,-10)
tight_layout()

- Clearly the lowpass interpolation filter has done a good job of filling in values for the zero samples

Frequency Domain

[8]: subplot(211)
    psd(x_up,2**10,fs_out);
ylabel(r'PSD (dB)')
title(r'Upsample by $L=4$ Output')
    ylim(-100,-10)
    subplot(212)
    psd(y,2**10,fs_out);
ylabel(r'PSD (dB)')
title(r'Interpolate by $L=4$ Output')
    ylim(-100,-10)
tight_layout()

- The filtering action of the LPF does its best to suppress the images at 7000, 9000, and 15000 Hz.

The multirate_FIR Class

With this class you implement an object that can filter, interpolate, or decimate a signal. Additionally support methods drill into the characteristics of the lowpass filter at the heart of the processing block. To use this class the user must supply FIR filter coefficients that implement a lowpass filter with cutoff frequency appropriate for the desired interpolation of decimation factor. The module sk_dsp_com.FIR_design_helper is capable of delivering the need filter coefficients array. See FIR design helper notes for multirate filter design examples.

With FIR coefficients in hand it is an easy matter to create an multirate FIR object capable of filtering, interpolation, or decimation. The details of the class interface are given in Table 2 below.
Notice that the class also provides a means to obtain frequency response plots and pole-zero plots directly from the instantiated multirate objects.

### FIR Interpolator Design Example

Here we take the earlier lowpass filter designed to interpolate a signal being upsampled from $f_{s1} = 8000$ kHz to $f_{s2} = 96$ kHz. The upsampling factor is $L = f_{s2}/f_{s1} = 12$. The ideal interpolation filter should cutoff at $f_{s1}/2 =$...
Recall the upsampler \( y = \text{ss.upsampler}(x, L) \) inserts \( L - 1 \) samples between each input sample. In the frequency domain the zero insertion replicates the input spectrum on \([0, f_{s1}/2] \) \( L \) times over the interval \([0, f_{s2}] \) (equivalently \( L/2 \) times on the interval \([0, f_{s2}/2] \)). The lowpass interpolation filter serves to removes the images above \( f_{s2}/(2L) \) in the frequency domain and in so doing filling in the zeros samples with waveform interpolants in the time domain.

As an input consider a sinusoid at 1 kHz and observe the interpolator output spectrum compared with the input spectrum.

The multirate \texttt{IIR} Class

With this class, as with \texttt{multirate\_FIR} you implement an object that can filter, interpolate, or decimate a signal. The filter in this case is a user supplied IIR filter in second-order sections (\texttt{sos}) form. Additionally support methods drill into the characteristics of the lowpass filter at the heart of the processing block. The module \texttt{sk\_dsp\_com.IIR\_design\_helper} is capable of delivering the need filter coefficients array. See \texttt{IIR design helper notes} for multirate filter design examples.

With IIR coefficients in hand it is an easy matter to create an multirate IIR object capable of filtering, interpolation, or decimation. The details of the class interface are given in Table 3 below.

[10]: # Design the filter core for an interpolator used in changing the sampling rate from 8000 Hz to 96000 Hz
# Create the multirate object
b_up = fir_d.fir_remez_lpf(3300,4300,0.5,60,96000)
mrh_up = mrh.multirate\_FIR(b_up)

Remez filter taps = 196.
FIR filter taps = 196

In the above spectrum plots notice that images of the input 1 kHz sinusoid are down \( \approx 60 \) dB, which is precisely the stop band attenuation provided by the interpolation filter. The variation is due to the stopband ripple.

[11]: # Sinusoidal test signal
n = arange(10000)
x = cos(2*pi*1000/8000*n)
# Interpolate by 12 (upsample by 12 followed by lowpass filter)
y = mrh_up.up(x,12)

[12]: # Plot the results
subplot(211)
psd(x,2**12,8000);
title(r'1 KHz Sinusoid Input to $L=12$ Interpolator')
ylabel(r'PSD (dB)')
ylim([-100,0])
subplot(212)
psd(y,2**12,12*8000)
title(r'1 KHz Sinusoid Output from $L=12$ Interpolator')
ylabel(r'PSD (dB)')
ylim([-100,0])
tight_layout()
IIR Decimator Design Example

When a signal is decimated the signal is first lowpass filtered then downsampled. The lowpass filter serves to prevent aliasing as the sampling rate is reduced. Downsampling by \( M \) (\( y = \text{ss}.\text{downsample}(x, M) \)) removes \( M - 1 \) sampling for every \( M \) sampling input or equivalently retains one sample out of \( M \). The lowpass prefilter has cutoff frequency equal to the folding frequency of the output sampling rate, i.e., \( f_c = f_s/2 \). Note avoid confusion with the project requirements, where the decimator is needed to take a rate \( f_{s2} \) signal back to \( f_{s1} \), let the input sampling rate be \( f_{s2} = 96000 \text{ Hz} \) and the output sampling rate be \( f_{s1} = 8000 \text{ Hz} \). The input sampling rate is \( M \) times the output rate.

<table>
<thead>
<tr>
<th>Type</th>
<th>Class/Method/Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module class:</td>
<td>\textit{multirate_helper} \textunderscore \textit{IIR}</td>
</tr>
<tr>
<td>Constructor</td>
<td>\texttt{mr\textunderscore obj = multirate\textunderscore IIR(sos)} \texttt{b : user supplied IIR filter that meets the desired filtering, interpolation, or decimation needs; nominally design filter for } \texttt{fc = (fs/2)/M_change}</td>
</tr>
<tr>
<td>Filter</td>
<td>\texttt{y = mr\textunderscore obj\textunderscore filter(x)}</td>
</tr>
<tr>
<td>Interpolate</td>
<td>\texttt{y = up(x, l_change = 12)}</td>
</tr>
<tr>
<td>Decimate</td>
<td>\texttt{y = dn(x, M_change = 12)}</td>
</tr>
<tr>
<td>Plot ( H )</td>
<td>\texttt{mr\textunderscore obj\textunderscore freq\textunderscore resp(mode = 'db', fs = 8000, ylim = [-100,2])} \texttt{mode : 'db' magnitude, 'phase' in radians, or} \texttt{groupdelay\textunderscore s' in samples and 'groupdelay\textunderscore t' in sec, all versus frequency in Hz}</td>
</tr>
<tr>
<td>Plot ( PZ )</td>
<td>\texttt{mr\textunderscore obj\textunderscore zplane(auto_scale=True, size=2, detect_mult=True, tol=0.001)}</td>
</tr>
<tr>
<td>Module function:</td>
<td></td>
</tr>
<tr>
<td>Plot ( H ) from ( b, a )</td>
<td>\texttt{freq\textunderscore resp(b,a=[1],mode = 'db',fs=1.0,Npts = 1024,fsize=(6,4))} \texttt{mode : 'db' magnitude, 'phase' in radians, or} \texttt{groupdelay\textunderscore s' in samples and 'groupdelay\textunderscore t' in sec, all versus frequency in Hz}</td>
</tr>
</tbody>
</table>

Notes:
rate, i.e., \( f_{s2} = M f_{s1} \), so you design the lowpass filter to have cutoff \( f_c = f_{s2}/(2 \cdot L) \).

**ECE 5625 Important Observation:** In the coherent SSB demodulator of Project 1, the decimator can be conveniently integrated with the lowpass filter that serves to remove the double frequency term.

In the example that follows a Chebyshev type 1 lowpass filter is designed to have cutoff around 4000 Hz. A sinusoid is used as a test input signal at sampling rate 96000 Hz.

```python
# Design the filter core for a decimator used in changing the
# sampling rate from 96000 Hz to 8000 Hz
b_dn, a_dn, sos_dn = iir_d.IIR_lpf(3300, 4300, 0.5, 60, 96000, 'cheby1')
# Create the multirate object
mrh_dn = mrh.multirate_IIR(sos_dn)
mrh_dn.freq_resp('dB', 96000)
title(r'Decimation Filter Frequency Response - Magnitude');
IIR cheby1 order = 12.
IIR filter order = 12
```

- Note the Chebyshev lowpass filter design above is very efficient compared with the 196-tap FIR lowpass designed for use in the interpolator. It is perhaps a better overall choice. The FIR has linear phase and the IIR filter does not, but for the project this is not really an issue.

As an input consider a sinusoid at 1 kHz and observe the interpolator output spectrum compared with the input spectrum.

```python
# Sinusoidal test signal
n = arange(100000)
x = cos(2*pi*1000/96000*n)
# Decimate by 12 (lowpass filter followed by downsample by 12)
y = mrh_dn.dn(x, 12)
```

```python
# Plot the results
subplot(211)
psd(x, 2**12, 96000);
title(r'1 KHz Sinusoid Input to $M=12$ Decimator')
ylabel(r'PSD (dB)')
ylim([-100, 0])
subplot(212)
psd(y, 2**12, 8000)
title(r'1 KHz Sinusoid Output from $M=12$ Decimator')
ylabel(r'PSD (dB)')
ylim([-100, 0])
tight_layout()
```

```python
%pylab inline
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.pyaudio_helper as pah
import sk_dsp_comm.fir_design_helper as fir_d
import scipy.signal as signal
import scipy.io as io
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets
from IPython.display import Audio, display
from IPython.display import Image, SVG
```

Populating the interactive namespace from numpy and matplotlib
Introduction

A simplified block diagram of PyAudio *streaming-based* (nonblocking) signal processing when using pyaudio_helper and ipython widgets.

Available Audio I/O Devices

If you add or delete devices by plugging or unplugging USB audio interface, this list becomes invalid. Restart the kernel and run again to get the correct device index list. For two channel apps both the input and output devices must support two channels. For the Sabrent USB audio devices, which has one input and two outputs, Windows for example may improperly list the devices as having two inputs.

```python
pah.available_devices()
```

Index 0 device name = Built-in Microph, inputs = 2, outputs = 0
Index 1 device name = Built-in Output, inputs = 0, outputs = 2

Real-Time Loop Through

Here we set up a simple *callback* function that passes the input samples directly to the output. The module `pyaudio_support` provides a class for managing a `pyaudio` stream object, capturing the samples processed by the callback function, and collection of performance metrics. Once the callback function is written/declared a `DSP_io_stream` object can be created and then the `stream(Tsec)` method can be executed to start the input/output processing, e.g.,

```python
import pyaudio_helper as pah

DSP_IO = pah.DSP_io_stream(callback, in_idx, out_idx)
DSP_IO.interactive_stream(Tsec = 2, numChan = 1)
```

where `in_idx` is the index of the chosen input device found using `available_devices()` and similarly `out_idx` is the index of the chosen output device.
The callback function must be written first as the function name used by the object to call the callback.

No globals required here as there is no instrumentation configured, externally defined algorithm coefficients, and no widgets being used.

```python
# define a pass through, y = x, callback
def callback(in_data, frame_count, time_info, status):
    # convert byte data to ndarry
    in_data_nda = np.frombuffer(in_data, dtype=np.int16)
    #***********************************************
    # DSP operations here
    # Here we simply pass the input to the output, i.e.
    # y[n] = x[n]
    x = in_data_nda.astype(float32)
    y = x
    # Typically more DSP code here
    y = y.astype(int16)
    # Convert from float back to int16
    y = y.astype(int16)
    # Convert ndarry back to bytes
    return y.tobytes(), pah.pyaudio.paContinue
```

This callback makes use of the instrumentation capabilities of the DSP_io_stream and also has a simple lowpass filter waiting in-the-wings if a line of code in commented out and a following line is uncomments, e.g.,

```python
# y = x
# Typically more DSP code here
y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR
```

Notice that globals are now used for the DSP_IO object, the filter coefficients in arrays, a and b, and also the filter states held in the array zi. In its present form the filtering is commented out, but can be uncommented to allow a simple 1st-order IIR lowpass filter to operate on one channel of audio streaming through the system.

```python
# Add a simple IIR LPF
fs = 48000 # Assumed sampling rate
f3 = 1000 # Hz
a = [1, -exp(-2*pi*f3/fs)]
b = [1 - exp(-2*pi*f3/fs)]
zi = signal.lfiltic(b,a,[0])
```

```python
# define a pass through, y = x, callback
def callback(in_data, frame_length, time_info, status):
    global DSP_IO, b, a, zi
    DSP_IO.DSP_callback_tic()
    # convert byte data to ndarry
    in_data_nda = np.frombuffer(in_data, dtype=np.int16)
    #***********************************************
    # DSP operations here
    # Here we apply a linear filter to the input
    x = in_data_nda.astype(float32)
    y = x
    # Typically more DSP code here
    #y, zi = signal.lfilter(b,a,x,zi=zi) # for FIR or simple IIR
    #***********************************************
    # Save data for later analysis
    # accumulate a new frame of samples
    DSP_IO.DSP_capture_add_samples(y)
```

(continues on next page)
# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
# Convert ndarray back to bytes
#return (in_data_nda.tobytes(), pyaudio.paContinue)
return y.tobytes(), pah.pyaudio.paContinue

DSP_IO = pah.DSP_io_stream(callback,in_idx=0,out_idx=1,fs=48000,Tcapture=0)

Index 0 device name = Built-in Microph, inputs = 2, outputs = 0
Index 1 device name = Built-in Output, inputs = 0, outputs = 2

DSP_IO.interactive_stream(Tsec=0,numChan=1)

With the iMic plugged in the input/output device indices can be reconfigured to use the iMic index for both
the input output streams. The Analog Discovery (AD2) is then used to drive a white noise test signal into the
ADC and capture the output from the DAC. This allows us to measure the ADC-DAC frequency response using
a long-term time average spectral estimate capabilities of the AD2. A second test capture is to use DSP_IO.
DSP_capture_add_samples(y) to capture the response of the ADC alone, and perform spectral analysis here
in the Jupyter notebook. For this capture we set Tcapture=20s two cells above and Tsec=20 one cell above. A
comparison of the ADC-alone and ADC-DAC spectrum normalized to look like the frequency response is done in the
cell below.

f_AD,Mag_AD = loadtxt('audio_files/Loop_through_noise_SA_iMic.csv',
delimiter=',',skiprows=6,unpack=True)
plot(f_AD,Mag_AD-Mag_AD[100])
ylim([-10,5])
xlim([0,20e3])
ylabel(r'ADC Gain Flatness (dB)')
xlabel(r'Frequency (Hz)')
legend((r'ADC-DAC from AD2 SA dB Avg',))
title(r'Loop Through Gain Flatness using iMic at $f_s = 48$ kHz')
grid();

The callback stats when capturing data using DSP_IO.DSP_capture_add_samples(y) and a plot of the time
domain samples.

Nstop = 1000
plot(arange(0,len(DSP_IO.data_capture[:Nstop]))/48000,DSP_IO.data_capture[:Nstop])
DSP_IO.stream_stats()

Note for a attributes used in the above examples the frame_length is always 1024 samples and the sampling rate
$f_s = 48$ ksp. The ideal callback period is this

$$T_{cb} = \frac{1024}{480100} = 21.33 \text{ ms}$$
Next consider what the captures `tic` and `toc` data revels about the processing. Calling the method `cb_active_plot()` produces a plot similar to what an electrical engineer would see what using a logic analyzer to show the time spent in an interrupt service routine of an embedded system. The latency is also evident. You expect to see a minimum latency of two frame lengths (input buffer fill and output buffer fill), e.g.,

$$T_{\text{latency}} \geq 2 \times \frac{1024}{48000} \times 1000 = 42.6 \text{ (ms)}$$

The host processor is multitasking, so the latency can be even greater. A true real-time DSP system would give the signal processing high priority and hence much lower is expected, particularly if the `frame_length` can be made small.

**Real-Time Filtering**

Here we set up a callback function that filters the input samples and then sends them to the output.

```python
import pyaudio_helper as pah

DSP_IO = pah.DSP_io_stream(callback, in_idx, out_idx)
DSP_IO.interactive_stream(2,1)
```

where `in_idx` is the index of the chosen input device found using `available_devices()` and similarly `out_idx` is the index of the chosen output device.

- The callback function must be written first as the function name is used by the object to call the callback
- To demonstrate this we first design some filters that can be used in testing

```python
[9]: b = fir_d.fir_remez_bpf(2700,3200,4800,5300,.5,50,48000,18)
a = [1]
fir_d.freqz_resp_list([b],[1],'dB',48000)
ylim([-60,5])
grid();
zi = signal.lfiltic(b,a,[0])

Remez filter taps = 192.
```

```python
[10]: f_AD,Mag_AD = loadtxt('audio_files/FIR_BPF_2700_3200_4800_5300_p5dB_50dB_48k.csv',
delimiter=',',skiprows=6,unpack=True)
plot(f_AD,Mag_AD-max(Mag_AD)+1)
f = arange(0,20000,10)
w,H_BPF = signal.freqz(b,1,2*pi*f/48000)
plot(f,20*log10(abs(H_BPF)))
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
legend((r'AD2 Noise Measured',r'Design Theory'))
title(r'4 kHz 182-Tap FIR Bandpass Design at $f_s = 48$ kHz')
ylim([-60,5])
xlim([2000,8000])
grid();
```

```python
[11]: # Design an IIR Notch
b, a = ss.fir_iir_notch(2000,48000,r= 0.9)
fir_d.freqz_resp_list([b],[a],'dB',48000,4096)
ylim([-60,5])
grid();
zi = signal.lfiltic(b,a,[0])
```
Create some global variables for the filter coefficients and the filter state array (recall that a filter has memory).

```python
# define callback (#2)
def callback2(in_data, frame_count, time_info, status):
    global DSP_IO, b, a, zi
    DSP_IO.DSP_callback_tic()
    # convert byte data to ndarray
    in_data_nda = np.frombuffer(in_data, dtype=np.int16)
    # DSP operations here
    x = 5*in_data_nda.astype(float32)
    y = x
    # The filter state/(memory), zi, must be maintained from frame-to-frame
    y, zi = signal.lfilter(b,a,x,zi=zi)
    # for IIR use second-order sections
    y, zi = signal.sosfilt(sos,x,zi=zi)
    # Save data for later analysis
    # accumulate a new frame of samples
    DSP_IO.DSP_capture_add_samples(y)
    # Convert from float back to int16
    y = y.astype(int16)
    DSP_IO.DSP_callback_toc()
    return y.tobytes(), pah.pyaudio.paContinue
```

```
DSP_IO = pah.DSP_io_stream(callback2,2,2,fs=48000,Tcapture=0)
```

```
DSP_IO.interactive_stream(Tsec=0,numChan=1)
```

```
[13]: Image("audio_files/start_stop_stream.png", width='55%")
```

### Playback Only Using an Audio Loop

A playback audio loop is created using the `pah.loop_audio` class filled with samples input from a `wav` file. In the example below we take a two-channel (stereo) `wav` file and convert to one channel.

```python
# define callback (3)
def callback3(in_data, frame_count, time_info, status):
    global DSP_IO, x
    DSP_IO.DSP_callback_tic()
    # Ignore in_data when generating output only
    #*****************************************************************************
    global x
```

(continues on next page)
# Note wav is scaled to [-1,1] so need to rescale to int16
y = 32767*x.get_samples(frame_count)
# Perform real-time DSP here if desired
#
#*******************************
# Save data for later analysis
# accumulate a new frame of samples
DSP_IO.DSP_capture_add_samples(y)
#*******************************
# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()
return y.tobytes(), pah.pyaudio.paContinue

fs, x_wav2 = ss.from_wav('Music_Test.wav')
x_wav = (x_wav2[:,0] + x_wav2[:,1])/2
x = pah.loop_audio(x_wav)
DSP_IO = pah.DSP_io_stream(callback3,0,1,fs=44100,Tcapture=2)
DSP_IO.interactive_stream(20) # play for 20s but capture only the last 2s

Npts = 96000
Nstart = 0
plot(arange(len(DSP_IO.data_capture[Nstart:Nstart+Npts]))*1000/44100,
DSP_IO.data_capture[Nstart:Nstart+Npts]/2**(16-1))
title(r'A Portion of the capture buffer')
ylabel(r'Normalized Amplitude')
xlabel(r'Time (ms)')
grid();

Image("audio_files/music_buffer_plot.png", width="75%")
Finally, the spectrum of the output signal. To apply custom scaling we use a variation of \texttt{psd()} found in the \texttt{sigsys} module. If we are plotting the spectrum of \textit{white} noise sent through a filter, the output PSD will be of the form \( \sigma_w^2 |H(e^{j2\pi f/f_s})|^2 \), where \( \sigma_w^2 \) is the variance of the noise driving the filter. You may choose to overlay a plot of


**Widgets Examples**

**Stereo Gain Sliders**

```python
[16]:

```

Finally, the spectrum of the output signal. To apply custom scaling we use a variation of \texttt{psd()} found in the \texttt{sigsys} module. If we are plotting the spectrum of \textit{white} noise sent through a filter, the output PSD will be of the form \( \sigma_w^2 |H(e^{j2\pi f/f_s})|^2 \), where \( \sigma_w^2 \) is the variance of the noise driving the filter. You may choose to overlay a plot of

**Widgets Examples**

**Stereo Gain Sliders**

```python
[17]:

```

Finally, the spectrum of the output signal. To apply custom scaling we use a variation of \texttt{psd()} found in the \texttt{sigsys} module. If we are plotting the spectrum of \textit{white} noise sent through a filter, the output PSD will be of the form \( \sigma_w^2 |H(e^{j2\pi f/f_s})|^2 \), where \( \sigma_w^2 \) is the variance of the noise driving the filter. You may choose to overlay a plot of

**Widgets Examples**

**Stereo Gain Sliders**

```python
[18]:

```
x_left, x_right = DSP_IO.get_LR(in_data_nda.astype(float32))

# DSP operations here
y_left = x_left*L_gain.value
y_right = x_right*R_gain.value

# Pack left and right data together
y = DSP_IO.pack_LR(y_left,y_right)

# Save data for later analysis
DSP_IO.DSP_capture_add_samples_stereo(y_left,y_right)

# Convert from float back to int16
y = y.astype(int16)
DSP_IO.DSP_callback_toc()

# Convert ndarray back to bytes
return (in_data_nda.tobytes(), pah.pyaudio.paContinue)

DSP_IO = pah.DSP_io_stream(callback, 0, 1, fs=48000, Tcapture=0)
DSP_IO.interactive_stream(0, 2)
widgets.HBox([L_gain, R_gain])

[p1]: Image("audio_files/left_right_gain.png", width="65%")

[p2]:

Cross Panning

[20]:

panning = widgets.FloatSlider(description = 'Panning (%)',
continuous_update = True, # Continuous updates
value = 50.0,
min = 0.0,
max = 100.0,
step = 0.1,
orientation = 'horizontal')

#display(panning)
```python
# Panning

def callback(in_data, frame_count, time_info, status):
    global DSP_IO, panning
    DSP_IO.DSP_callback_tic()
    # convert byte data to ndarray
    in_data_nda = np.frombuffer(in_data, dtype=np.int16)
    # separate left and right data
    x_left, x_right = DSP_IO.get_LR(in_data_nda.astype(float32))
    # DSP operations here
    y_left = (100 - panning.value) / 100 * x_left + panning.value / 100 * x_right
    y_right = panning.value / 100 * x_left + (100 - panning.value) / 100 * x_right
    # Pack left and right data together
    y = DSP_IO.pack_LR(y_left, y_right)
    # Typically more DSP code here
    # Save data for later analysis
    # accumulate a new frame of samples
    DSP_IO.DSP_capture_add_samples_stereo(y_left, y_right)
    # Convert from float back to int16
    y = y.astype(int16)
    DSP_IO.DSP_callback_toc()
    # Convert ndarray back to bytes
    #return (in_data_nda.tobytes(), pyaudio.paContinue)
    return y.tobytes(), pah.pyaudio.paContinue
```

FRAMES = 512
# Create streaming object
DSP_IO = pah.DSP_io_stream(callback, 0, 1,
    fs=48000,
    frame_length = FRAMES,
    Tcapture=0)

# interactive_stream runs in a thread
#so widget can be used
DSP_IO.interactive_stream(0, 2)

# display panning widget
display(panning)

Image("audio_files/cross_panning.png", width='55%')

2.6. Examples
Three Band Equalizer

Here we consider a three-band equalizer operating on a music loop. Each peaking filter has system function in the $z$-domain defined by

$$H_{pk}(z) = C_{pk} \frac{1 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

where the filter coefficients are given by

$$C_{pk} = \frac{1 + k_q \mu}{1 + \mu}$$

$$k_q = \frac{4}{1 + \mu} \tan \left( \frac{2 \pi f_c / f_s}{2Q} \right)$$

$$b_1 = \frac{-2 \cos(2 \pi f_c / f_s)}{1 + k_q \mu}$$

$$b_2 = \frac{1 - k_q}{1 + k_q \mu}$$

$$a_1 = \frac{-2 \cos(2 \pi f_c / f_s)}{1 + k_q}$$

$$a_2 = \frac{1 - k_q}{1 + k_q}$$

where

$$\mu = 10^{G_{db}/20}, \quad Q \in [2, 10]$$

and $f_c$ is the center frequency in Hz relative to sampling rate $f_s$ in Hz, and $G_{db}$ is the peaking filter gain in dB. Conveniently, the function `peaking` is available in the module `sk_dsp_comm.sigsys`.

```python
[23]: band1 = widgets.FloatSlider(description = '100 Hz',
                              continuous_update = True, # Continuous updates
                              value = 20.0,
                              min = -20.0,
                              max = 20.0,
                              step = 1,
                              orientation = 'vertical')
band2 = widgets.FloatSlider(description = '1000 Hz',
                              continuous_update = True, # Continuous updates
                              value = 10.0,
                              min = -20.0,
                              max = 20.0,
                              step = 1,
                              orientation = 'vertical')
band3 = widgets.FloatSlider(description = '8000 Hz',
                              continuous_update = True, # Continuous updates
                              value = -10.0,
                              min = -20.0,
                              max = 20.0,
                              step = 1,
                              orientation = 'vertical')
Gain = widgets.FloatSlider(description = 'Gain',
                            continuous_update = True,
                            value = 0.2,
                            )
```

(continues on next page)
min = 0.0,
max = 2.0,
step = 0.01,
orientation = 'vertical')

widgets.HBox([Gain, band1, band2, band3])

[24]: b_b1, a_b1 = ss.peaking(band1.value, 100, Q=3.5, fs=48000)
z_i_b1 = signal.lfiltic(b_b1, a_b1, [0])
b_b2, a_b2 = ss.peaking(band2.value, 1000, Q=3.5, fs=48000)
z_i_b2 = signal.lfiltic(b_b2, a_b2, [0])
b_b3, a_b3 = ss.peaking(band3.value, 8000, Q=3.5, fs=48000)
z_i_b3 = signal.lfiltic(b_b3, a_b3, [0])
b_l2, a_l2 = ss.cascade_filters(b_b1, a_b1, b_b2, a_b2)
b_l23, a_l23 = ss.cascade_filters(b_l2, a_l2, b_b3, a_b3)
f = logspace(log10(50), log10(10000), 100)
w, H_123 = signal.freqz(b_123, a_123, 2*pi*f/48000)
semilogx(f, 20*log10(abs(H_123)))
ylim([-20, 20])
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
grid();

[25]: # define a pass through, y = x, callback
def callback(in_data, frame_count, time_info, status):
    global DSP_IO, zi_b1, zi_b2, zi_b3, x
    global Gain, band1, band2, band3
    DSP_IO.DSP_callback_tic()
    # convert byte data to ndarray
    in_data_nda = np.frombuffer(in_data, dtype=np.int16)
    # DSP operations here
    # Here we apply a linear filter to the input
    #x = in_data_nda.astype(float32)
    x = Gain.value*20000*x_loop.get_samples(frame_count)
    # DSP code here
    b_b1, a_b1 = ss.peaking(band1.value, 100, Q=3.5, fs=48000)
z1, zi_b1 = signal.lfilter(b_b1, a_b1, x, zi=zi_b1)
b_b2, a_b2 = ss.peaking(band2.value, 1000, Q=3.5, fs=48000)
z2, zi_b2 = signal.lfilter(b_b2, a_b2, z1, zi=zi_b2)
b_b3, a_b3 = ss.peaking(band3.value, 8000, Q=3.5, fs=48000)
y, zi_b3 = signal.lfilter(b_b3, a_b3, z2, zi=zi_b3)
    # Save data for later analysis
    # accumulate a new frame of samples
    DSP_IO.DSP_capture_add_samples(y)
    # Convert from float back to int16
    y = y.astype(int16)
    DSP_IO.DSP_callback_toc()
    # Convert ndarray back to bytes
    #return (in_data_nda.tobytes(), pah.pyaudio.paContinue)
    return y.tobytes(), pah.pyaudio.paContinue

2.6. Examples
```python
fs, x_wav2 = ss.from_wav('audio_files/Music_Test.wav')
x_wav = (x_wav2[:,0] + x_wav2[:,1])/2
x_loop = pah.loop_audio(x_wav)
DSP_IO = pah.DSP_io_stream(callback,0,1,fs=44100,Tcapture=0)
DSP_IO.interactive_stream(0,1)
widgets.HBox([Gain,band1,band2,band3])

[26]: Image("audio_files/three_band_widgets.png", width="55%")

[26]:

[27]: f_AD, Mag_AD = loadtxt('audio_files/ThreeBand_Peak_100_p20_1k_p10_8k_m10_fs_48k.csv',
                           delimiter='\,',skiprows=6,unpack=True)
semilogx(f_AD, Mag_AD+55)
semilogx(f,20*log10(abs(H_123)))
ylabel(r'Gain (dB)')
xlabel(r'Frequency (Hz)')
legend((r'AD2 Noise Measured',r'Design Theory'))
title(r'Three Band Equalizer: $f_\{center\} = [100,1000,800]$, $Q = 3.5$')
ylim([-20,20])
xlim([50,10000])
grid();

[ ]:

[1]: # fill namespace with numpy and matplotlib + static notebook plots
%pylab inline
# fill namespace with numpy and matplotlib + and interactive plots
%pylab notebook
%pylab widget
%matplotlib qt
import sk_dsp_comm.sigsys as ss
import sk_dsp_comm.digitalcom as dc
import sk_dsp_comm.rtlsdr_helper as sdrh
import sk_dsp_comm.fir_design_helper as fir_d
import sk_dsp_comm.iir_design_helper as iir_d
import ipywidgets as widgets
import imp # for module reloading
import scipy.signal as signal
from IPython.display import Audio, display
from IPython.display import Image, SVG
```

---

**Chapter 2. scikit-dsp-comm**
Populating the interactive namespace from numpy and matplotlib

```python
pylab.rcParams['savefig.dpi'] = 100  # default 72
#pylab.rcParams['figure.figsize'] = (6.0, 4.0)  # default (6,4)
#%config InlineBackend.figure_format=['png']  # default for inline viewing
%config InlineBackend.figure_format=['svg']  # SVG inline viewing
%config InlineBackend.figure_format=['pdf']  # render pdf figs for LaTeX
#Image('fname.png',width='80%')
```

**RTLSDR Stream Class**

Now included in the `rtlsdr_helper` is the `RTLSDR_stream` class. This class contains async methods for reading IQ data from the `rtl_sdr`, decimating, and playing back audio.

In this notebook only few examples are shown in order to resolve `readthedocs` rendering issues. The omitted live content is placed in markdown cells as code fences. In some cases screen shots of plots and GUI controls are provided. To experiment with live code the user can simply move the code in fences back into code cells.

The Python 3.7x asyncio capability is utilized in the software architecture. Being able to function inside the Jupyter event loop is the first hurdle:

```python
Image("300ppi/Jupyter_concurrent_tasks@300ppi.png", width="90%")
```

The top level block diagram of the receiver is shown below:

```python
Image("300ppi/RTLSDR_Streaming_Block@300ppi.png", width="90%")
```
Mono FM Receiver Example

You can use pyaudio_helper to find available audio devices

```python
[3]: sdrh.pah.available_devices()

0: {'name': 'Built-in Microphone', 'inputs': 2, 'outputs': 0},
1: {'name': 'Built-in Output', 'inputs': 0, 'outputs': 2})
```

```python
[10]: sdr_stream = sdrh.RTLSDR_stream(0,rtl_buffer_size=2**15,audio_out=1)
```

```python
[11]: sdr_stream.interactive_FM_Rx(88.7e6,40,1,2048,48000)

Sample Rate: 2400000.0
Center Frequency: 88700000
Gain: 40.2

Output(outputs=({'output_type': 'stream', 'name': 'stdout', 'text': 'Interactive FM Receiver'},))

interactive(children=(ToggleButtons(description=' ', index=1, options=('Start Streaming', 'Stop Streaming'), s...

interactive(children=(FloatSlider(value=0.0, description='Gain (dB)', layout=Layout(width='90%'), max=6.0, min...

interactive(children=(FloatSlider(value=88.7, continuous_update=False, description='$f_c$', layout=Layout(w...

[12]: sdr_stream.show_logs()

Output(outputs=({'output_type': 'stream', 'name': 'stdout', 'text': 'LOGS: Changing Center Frequency ...'}))

[7]: sdr_stream.clear_logs()
```
User-Defined Callbacks

This callback will be called after the initial decimation

```python
[9]: def callback(samples, fs, user_var):
    # Discriminator
    x = samples
    X = np.real(x)  # X is the real part of the received signal
    Y = np.imag(x)  # Y is the imaginary part of the received signal
    b = np.array([1, -1])  # filter coefficients for discrete derivative
    a = np.array([1, 0])  # filter coefficients for discrete derivative
    derY = signal.lfilter(b, a, Y)  # derivative of Y,
    derX = signal.lfilter(b, a, X)  # " X,
    z_bb = (X * derY - Y * derX) / (X**2 + Y**2)
    return z_bb, user_var
```

```python
[10]: sdr_stream.run_user_stream(callback, 10, 5)
```

Using default stage 1 decimation filter
Using default stage 2 decimation filter
Using default stage 1 initial conditions
Using default stage 2 initial conditions
Starting SDR and Audio Event Loop

```python
[12]: sdr_stream.set_audio_gain_db(-20)
```

```python
[16]: sdr_stream.set_fc(88.7e6)
```
Probing in Time and Frequency

Time and frequency domain probing is possible as depicted in the figure below:

Pulling frames from a stream

sdr_stream.run_user_stream(callback, 10, 5)

rf_frame = await sdr_stream.get_rf_frame()

Nfft = 2**10
print(len(rf_frame))
Px, f = psd(rf_frame, Nfft, sdr_stream.get_sample_rate() / 1e6, sdr_stream.get_center_freq() / 1e6);

stage1_frame = await sdr_stream.get_stage1_frame()

print(len(stage1_frame))
psd(stage1_frame, Nfft, 2.4e6, 99.9e6 / 10);

processed_stage1_frame = await sdr_stream.get_processed_stage1_frame()

Nfft = 2**10
print(len(processed_stage1_frame))

(continues on next page)
psd(processed_stage1_frame,Nfft,2.4e6/10,0);

stage2_frame = await sdr_stream.get_stage2_frame()

Nfft = 2**10
print(len(stage2_frame))
psd(stage2_frame,Nfft,2.4e6/50,0);

sdr_stream.stop()

### Spectrum Plots

These plots are updated using the matplotlib interactive graphics widget: [https://github.com/matplotlib/jupyter-matplotlib](https://github.com/matplotlib/jupyter-matplotlib).

%pylab widget
sdr_stream.set_audio_out(3)
sdr_stream.run_user_stream(callback,10,5)
sdr_stream.run_plot_rf_stream(1024,2,w=15,h=6)
sdr_stream.set_fc(99.9e6)
sdr_stream.set_NFFT(2048)
sdr_stream.set_refresh_rate(4)
sdr_stream.toggle_invert()
sdr_stream.stop_rf_plot()
sdr_stream.run_plot_stage1_stream(1024,1,w=15,h=6)
sdr_stream.stop_stage1_plot()
sdr_stream.run_plot_processed_stage1_stream(1024,1,w=15,h=6)
sdr_stream.stop_processed_stage1_plot()
sdr_stream.run_plot_stage2_stream(1024,1,w=15,h=6)
sdr_stream.set_fc(99.9e6)
sdr_stream.set_refresh_rate(4)
sdr_stream.stop_stage2_plot()
sdr_stream.stop_all()
Using Widgets

```python
import ipywidgets as widgets

freq_slider = widgets.FloatSlider(
    value=103.9,
    min=87.5,
    max=108,
    step=0.2,
    description=r'$f_c\;\text{(MHz)}$',
    continuous_update=True,
    orientation='horizontal',
    readout_format='0.1f',
    layout=widgets.Layout(width='90%',
)
)
freq_slider.style.handle_color = 'lightblue'
def set_freq_MHz(fc):
    sdr_stream.set_fc(fc*1e6)
sdr_stream.run_user_stream(callback,10,5)
center_freq_widget = widgets.interactive(set_freq_MHz, fc=freq_slider)
display(center_freq_widget)
sdr_stream.run_plot_rf_stream(w=15,h=6)
sdr_stream.stop_all()

audio_gain_slider = widgets.FloatSlider(
    value=-3,
    min=-60,
    max=6,
    step=0.1,
    description=r'Gain (dB)',
    continuous_update=True,
    orientation='horizontal',
    readout_format='0.1f',
    layout=widgets.Layout(width='90%',
)
)
audio_gain_slider.style.handle_color = 'lightgreen'
```

Audio Gain Slider
```python
def set_audio_gain_db(db_gain):
    gain = 10**(db_gain/20)
    sdr_stream.set_audio_gain(gain)

audio_gain_widget = widgets.interactive(set_audio_gain_db, db_gain=audio_gain_slider)
display(audio_gain_widget)
display(center_freq_widget)
sdr_stream.run_user_stream(callback,10,5)
sdr_stream.stop()
```

### On/Off Toggle Buttons

```python
def radio_on_off(selection):
    if (selection == 'On'):
        def my_callback(samples, fs, user_val):
            # Discriminator
            x = samples
            X=np.real(x)  # X is the real part of the received signal
            Y=np.imag(x)  # Y is the imaginary part of the received signal
            b=np.array([1, -1])  # filter coefficients for discrete derivative
            a=np.array([1, 0])  # filter coefficients for discrete derivative
            derY=signal.lfilter(b,a,Y)  # derivative of Y,
            derX=signal.lfilter(b,a,X)  # "X,
            z_bb=(X*derY-Y*derX)/(X**2+Y**2)
            return z_bb, user_val
        if (not sdr_stream.keep_streaming):
            sdr_stream.run_user_stream(my_callback,10,5)
        else:
            sdr_stream.stop()
    on_off = widgets.ToggleButtons(
        options=['On', 'Off'],
        description=' ',
        value='Off'
    )
on_off.style.button_width = "400px"
on_off.style.description_width = "1px"

on_off_widget = widgets.interactive(radio_on_off, selection=on_off)
display(on_off_widget)
display(audio_gain_widget)
display(center_freq_widget)
```

### Adjustable Stage 1 Filter

```python
stage1_fc = widgets.FloatSlider(
    value=100,
    )
```

(continues on next page)
Adjustable Stage 2 Filter

stage2_fc = widgets.FloatSlider(
    value=12,
    min=2,
    max=20,
    step=0.1,
    description=r'\textbf{f}_{cS2} \; (\text{KHz})',
    continuous_update=False,
    orientation='horizontal',
    readout_format='0.1f',
    layout=widgets.Layout(
        width='90%',
    )
)
stage2_fc.style.handle_color = 'purple'

def stage2_fc_change(fc):
    bb = fir_d.firwin_lpf(64, fc*1e3, 2.4e6/10)
    stage2_ic = signal.lfilter_zi(bb, 1)
    sdr_stream.set_stage2_coeffs(bb, zi=stage2_ic)

stage2_fc_widget = widgets.interactive(stage2_fc_change, fc=stage2_fc)
display(on_off_widget)
display(audio_gain_widget)
display(stage2_fc_widget)
display(center_freq_widget)
sdr_stream.run_plot_stage1_stream(1024, 2, w=15, h=6)
sdr_stream.stop_stage1_plot()
```python
display(audio_gain_widget)
display(stage1_fc_widget)
display(stage2_fc_widget)
display(center_freq_widget)

sdr_stream.run_plot_stage2_stream(1024, 2, w=15, h=6)

sdr_stream.stop_stage2_plot()

Bypassing Audio

```python
import asyncio

sdr_stream.set_rtl_buffer_size(16)

def no_audio_callback(samples, fs, user_var):
    frame_count = user_var
    user_var = user_var + 1
    return array([frame_count]), user_var

global keep_collecting

@asyncio.coroutine
def handle_data_out():
    global keep_collecting
    keep_collecting = True
    while keep_collecting:
        data_out = yield from sdr_stream.get_data_out_async()
        print(data_out)
        sdr_stream.reset_data_out_queue()
        print('Done')

sdr_stream.run_user_stream(no_audio_callback, 1, 1, audio_sink=False, user_var=1)
task = asyncio.create_task(handle_data_out())

keep_collecting = False

sdr_stream.stop()
```
Convolutional Coding

Rate 1/2

A convolutional encoder object can be created with the `fec.fec_conv` method. The rate of the object will be determined by the number of generator polynomials used. Right now, only rate 1/2 and rate 1/3 are supported, so 2 or three generator polynomials can be used. The following table shows ideal rate 1/2 generator polynomials. These are also included in the docstring.

**Table 1**: Weight spectra \( c_k \) for bounding the coded rate 1/2 BEP.
In addition to the generator polynomials, you can specify a decision depth for the object. This will determine how many state transitions will be used for the traceback. The following shows how to create a rate 1/2 \texttt{fec\_conv} object with constraint length 3 and decision depth 10.

```
[4]: cc1 = fec.fec\_conv(('111','101'),10)
```

The \texttt{trellis\_plot()} method can be used to see the state transitions of the \texttt{fec\_conv} object.

```
[5]: cc1.trellis\_plot()
```

## Rate 1/2 Hard Decision Decoding

Now, we would like to know the theoretical bit error probability bounds of our convolutional encoding/decoding setup. We can do this using the \texttt{fec.conv\_Pb\_bound} method. The method takes the rate, degrees of freedom, \(c_k\) values, SNR, hard or soft decisions, and order M for an MPSK modulation scheme as arguments. It returns the BEP. The following shows theoretical bounds for rate 1/2 encoding/decoding BPSK system. Compare with Ziemer pg 667.

### Weight Structure Bounds BEP

```
[6]: SNRdB = arange(0,12,.1)
Pb\_uc = fec.conv\_Pb\_bound(1/2,7,[4, 12, 20, 72, 225],SNRdB,2)
Pb\_s\_half\_3\_hard = fec.conv\_Pb\_bound(1/2,5,[1, 4, 12, 32, 80, 192, 448, 1024],SNRdB,0)
Pb\_s\_half\_5\_hard = fec.conv\_Pb\_bound(1/2,7,[4, 12, 20, 72, 225, 500, 1324, 3680],
                      \text{-}SNRdB,0)
Pb\_s\_half\_7\_hard = fec.conv\_Pb\_bound(1/2,10,[36, 0, 211, 0, 1404, 0, 11633, 0],SNRdB,
                      \text{-}0)
Pb\_s\_half\_9\_hard = fec.conv\_Pb\_bound(1/2,12,[33, 0, 281, 0, 2179, 0, 15035, 0],SNRdB,
                      \text{-}0)
figure(figsize=(5,5))
semilogy(SNRdB,Pb\_uc)
semilogy(SNRdB,Pb\_s\_half\_3\_hard,'--')
semilogy(SNRdB,Pb\_s\_half\_5\_hard,'--')
semilogy(SNRdB,Pb\_s\_half\_7\_hard,'--')
semilogy(SNRdB,Pb\_s\_half\_9\_hard,'--')
axis([0,12,1e\(-7\),1e\(0\)])
title(r'Hard Decision Rate 1/2 Coding Theory Bounds')
xlabel(r'$E_b/N_0$ (dB)')
ylabel(r'Symbol Error Probability')
legend([(r'Uncoded BPSK', $R=1/2$, $K=3$, Hard',
       $R=1/2$, $K=5$, Hard', $R=1/2$, $K=7$, Hard',
       $R=1/2$, $K=9$, Hard'),loc='upper right')
grid();
```
BEP Simulation

Now that we can determine our BEP bounds, we can test the actual encoder/decoder using dummy binary data. The following code creates a rate 1/2 fec_conv object. It then generates dummy binary data and encodes the data using the conv_encoder method. This method takes an array of binary values, and an initial state as the input and returns the encoded bits and states. We then add noise to the encoded data according to the set $E_b/N_0$ to simulate a noisy channel. The data is then decoded using the viterbi_decoder method. This method takes the array of noisy data and a decision metric. If the hard decision metric is selected, then we expect binary input values from around 0 to around 1. The method then returns the decoded binary values. Then the bit errors are counted. Once at least 100 bit errors are counted, the bit error probability is calculated.

```python
[7]:
N_bits_per_frame = 10000
EbN0 = 4
total_bit_errors = 0
total_bit_count = 0
cc1 = fec.fec_conv(('11101','10011'),25)
# Encode with shift register starting state of '0000'
state = '0000'
while total_bit_errors < 100:
    # Create 100000 random 0/1 bits
    x = randint(0,2,N_bits_per_frame)
    y,state = cc1.conv_encoder(x,state)
    # Add channel noise to bits, include antipodal level shift to [-1,1]
    yn_soft = dc.cpx_AWGN(2*y-1,EbN0-3,1) # Channel SNR is 3 dB less for rate 1/2
    yn_hard = ((sign(yn_soft.real)+1)/2).astype(int)
    z = cc1.viterbi_decoder(yn_hard,'hard')
    # Count bit errors
    bit_count, bit_errors = dc.bit_errors(x,z)
    total_bit_errors += bit_errors
    total_bit_count += bit_count
print('Bits Received =', total_bit_count, ', Bit errors =', total_bit_errors, ', BEP =', total_bit_errors/total_bit_count, '')
print('*****************************************************
Bits Received =', total_bit_count, ', Bit errors =', total_bit_errors, ', BEP =', total_bit_errors/total_bit_count, '')
```

The simulated BEP can then be compared to the theoretical bounds that were shown earlier. Some values were simulated for the constraint length 3 and constraint length 5 cases.
[9]:

```python
SNRdB = arange(0,12,.1)
Pb_uc = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225],SNRdB,2)
Pb_s_half_3_hard = fec.conv_Pb_bound(1/2,5,[1, 4, 12, 32, 80, 192, 448, 1024],SNRdB,0)
Pb_s_half_5_hard = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225, 500, 1324, 3680],
   SNRdB,0)
Pb_s_half_7_hard = fec.conv_Pb_bound(1/2,10,[36, 0, 211, 0, 11633, 0],SNRdB,
   0)
Pb_s_half_9_hard = fec.conv_Pb_bound(1/2,12,[33, 0, 281, 0, 2179, 0, 15035, 0],SNRdB,
   0)
Pb_s_half_5_hard_sim = array([3.36e-2,1.04e-2,1.39e-3,1.56e-04,1.24e-05])
Pb_s_half_3_hard_sim = array([2.59e-02,1.35e-02,2.71e-03,6.39e-04,9.73e-05,7.71e-06])
figure(figsize=(5,5))
semilogy(SNRdB,Pb_uc)
semilogy(SNRdB,Pb_s_half_3_hard,'y--')
semilogy(SNRdB,Pb_s_half_5_hard,'g--')
semilogy(SNRdB,Pb_s_half_7_hard,'--')
semilogy(SNRdB,Pb_s_half_9_hard,'--')
semilogy([3,4,5,6,7,8],Pb_s_half_3_hard_sim,'ys')
semilogy([3,4,5,6,7],Pb_s_half_5_hard_sim,'gs')
axis([0,12,1e-7,1e0])
title(r'Hard Decision Rate 1/2 Coding Measurements')
xlabel(r'$E_b/N_0$ (dB)')
ylabel(r'Symbol Error Probability')
legend(('Uncoded BPSK', 'R=1/2, K=3, Hard', 'R=1/2, K=5, Hard', 'R=1/2, K=7, Hard',
   'R=1/2, K=9, Hard', 'R=1/2, K=3, Simulation',
   'R=1/2, K=5, Simulation'),loc='lower left')
grid();
```

We can look at the surviving paths using the traceback_plot method.

[10]:

ccl.traceback_plot()```

---

**Soft Decision Decoding BEP Simulation**

Soft decision decoding can also be done. In order to simulate the soft decision decoder, we can use the same setup as before, but now we specify ‘soft’ in the viterbi_decoder method. We also have to pick a quantization level when we do this. If we want 3-bit quantization we would specify that the quant_level=3. When we use soft decisions we have to scale our noisy received values to values on $[0, 2^n - 1]$. So for a three-bit quantization, we would scale to values on $[0, 7]$. This helps the system to get better distance metrics for all possible paths in the decoder, thus improving the BEP. The following shows how to simulate soft decisions.

[11]:

```python
N_bits_per_frame = 10000
EbN0 = 2
total_bit_errors = 0
total_bit_count = 0
ccl = fec.fec_conv(('11101','10011'),25)
# Encode with shift register starting state of '0000'
state = '0000'
while total_bit_errors < 100:
    # Create 100000 random 0/1 bits
    x = randint(0,2,N_bits_per_frame)
    y, state = ccl.conv_encoder(x, state)
    # Add channel noise to bits, include antipodal level shift to [-1,1]
```
yn = dc.cpx_awgn(2*y-1,EbN0-3,1) # Channel SNR is 3dB less for rate 1/2
# Scale & level shift to three-bit quantization levels [0,7]
y = (yn.real+1)/2*L
z = cc1.viterbi_decoder(yn.real,'soft',quant_level=3)
# Count bit errors
bit_count, bit_errors = dc.bit_errors(x,z)
total_bit_errors += bit_errors
total_bit_count += bit_count
print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %
      (total_bit_count, total_bit_errors,
       total_bit_errors/total_bit_count))
print('*****************************************************
print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %
      (total_bit_count, total_bit_errors,
       total_bit_errors/total_bit_count))

Rate 1/2 Object
kmax = 0, taumax = 0
Bits Received = 9976, Bit errors = 139, BEP = 1.39e-02
*****************************************************
Bits Received = 9976, Bit errors = 139, BEP = 1.39e-02

**SNRdB = arange(0,12,.1)**
Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2)
Pb_s_third_3 = fec.conv_Pb_bound(1/3,8,[3, 0, 15],SNRdB,1)
Pb_s_third_4 = fec.conv_Pb_bound(1/3,10,[6, 0, 6, 0],SNRdB,1)
Pb_s_third_5 = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56],SNRdB,1)
Pb_s_third_6 = fec.conv_Pb_bound(1/3,13,[1, 8, 26, 20, 19, 62],SNRdB,1)
Pb_s_third_7 = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184],SNRdB,1)
Pb_s_third_8 = fec.conv_Pb_bound(1/3,16,[1, 0, 24, 0, 113, 0, 287, 0],SNRdB,1)
Pb_s_half = fec.conv_Pb_bound(1/2,7,[4, 12, 20, 72, 225],SNRdB,1)
figure(figsize=(5,5))
semilogy(SNRdB,Pb_uc)
semilogy(SNRdB,Pb_s_third_3,'--')
semilogy(SNRdB,Pb_s_third_4,'--')
semilogy(SNRdB,Pb_s_third_5,'g')
semilogy(SNRdB,Pb_s_third_6,'--')
semilogy(SNRdB,Pb_s_third_7,'--')
semilogy(SNRdB,Pb_s_third_8,'--')
#semilogy(SNRdB,Pb_s_half,'--')
semilogy([0,1,2,3,4,5],[9.08e-02,2.73e-02,6.52e-03,\ 8.94e-04,8.54e-05,5e-6],'gs')
axis([0,12,1e-7,1e0])
title(r'Soft Decision Rate 1/2 Coding Measurements')
xlabel(r'$E_b/N_0$ (dB)')
ylabel(r'Symbol Error Probability')
legend([r'Uncoded BPSK',r'R=1/3, K=3, Soft',
   'R=1/3, K=4, Soft','R=1/3, K=5, Soft',
   'R=1/3, K=6, Soft','R=1/3, K=7, Soft',
   'R=1/3, K=8, Soft','R=1/3, K=5, Sim',
   'Simulation'],loc='upper right')
grid();

The decoder can also do unquantized soft decisions. This is done by specifying 'unquant' for the metric type. The system will then expect floating point numbers on [0,1] at the decoder input.
Rate 1/3

Rate 1/3 convolution encoding/decoding can be done very similarly to the rate 1/2 code. The difference when instantiating, is that the rate 1/3 uses 3 generator polynomials instead of 2. The following table shows ideal generator polynomials at different constraint lengths for rate 1/3 convolutional codes.

**Table 2: Weight spectra \( c_k \) for bounding the coded rate 1/3 BEP.**

<table>
<thead>
<tr>
<th>CL</th>
<th>Polynomials</th>
<th>( d_f )</th>
<th>( d_f + 1 )</th>
<th>( d_f + 2 )</th>
<th>( d_f + 3 )</th>
<th>( d_f + 4 )</th>
<th>( d_f + 5 )</th>
<th>( d_f + 6 )</th>
<th>( d_f + 7 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(7,7,5) = ('111','111','101')</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>201</td>
</tr>
<tr>
<td>4</td>
<td>(15,13,11) = ('11111','11011','10111')</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>(31,27,21) = ('111111','110111','101011')</td>
<td>= 12</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>320</td>
</tr>
<tr>
<td>6</td>
<td>(61,43,39) = ('1111001','1100101','1011011')</td>
<td>= 13</td>
<td>1</td>
<td>8</td>
<td>26</td>
<td>20</td>
<td>19</td>
<td>62</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>(121,101,91) = ('11110001','11001001','10110101')</td>
<td>= 14</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>53</td>
<td>0</td>
<td>184</td>
</tr>
<tr>
<td>8</td>
<td>(247,217,149) = ('11110111','11011001','10010101')</td>
<td>= 16</td>
<td>1</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>113</td>
<td>0</td>
<td>287</td>
</tr>
</tbody>
</table>

[13]: cc2 = fec.fec_conv(('111','111','101'),10)
c2.trellis_plot()

Rate 1/3 Object

**Rate 1/3 Hard Decision Decoding**

**Weight Structure Bounds BEP**

Compare with Ziemer pg 668.

[14]:

```python
SNRdB = arange(0,12,.1)
Pb_uc = fec.fec_conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2)
Pb_s_third_3_hard = fec.fec_conv_Pb_bound(1/3,8,[3, 0, 15, 0, 58, 0, 201],SNRdB,0)
Pb_s_third_4_hard = fec.fec_conv_Pb_bound(1/3,10,[6, 0, 6, 0, 58, 0, 118],SNRdB,0)
Pb_s_third_5_hard = fec.fec_conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56, 0, 320],SNRdB,0)
Pb_s_third_6_hard = fec.fec_conv_Pb_bound(1/3,13,[1, 8, 26, 20, 19, 62, 86],SNRdB,0)
Pb_s_third_7_hard = fec.fec_conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184],SNRdB,0)
Pb_s_third_8_hard = fec.fec_conv_Pb_bound(1/3,16,[1, 0, 24, 0, 113, 0, 287],SNRdB,0)
figure(figsize=(5,5))
semilogy(SNRdB,Pb_uc)
semilogy(SNRdB,Pb_s_third_3_hard,'--')
#semilogy(SNRdB,Pb_s_third_4_hard,'--')
semilogy(SNRdB,Pb_s_third_5_hard,'--')
#semilogy(SNRdB,Pb_s_third_6_hard,'--')
semilogy(SNRdB,Pb_s_third_7_hard,'--')
#semilogy(SNRdB,Pb_s_third_8_hard,'--')
axis([0,12,1e-7,1e0])
title(r'Hard Decision Rate 1/3 Coding Theory Bounds')
xlabel(r'$E_b/N_0$ (dB)')
ylabel(r'Symbol Error Probability')
legend(('Uncoded BPSK','R=1/3, K=3, Hard',

(continues on next page)
BEP Simulation

[15]:

```python
N_bits_per_frame = 10000
EbN0 = 3
total_bit_errors = 0
total_bit_count = 0
cc1 = fec.fec_conv(('11111','11011','10101'),25)
# Encode with shift register starting state of '0000'
state = '0000'
while total_bit_errors < 100:
    # Create 100000 random 0/1 bits
    x = randint(0,2,N_bits_per_frame)
    y,state = cc1.conv_encoder(x,state)
    # Add channel noise to bits, include antipodal level shift to [-1,1]
    yn_soft = dc.cpx_AWGN(2*y-1,EbN0-10*log10(3),1)  # Channel SNR is 10*log10(3) dB
    yn_hard = ((sign(yn_soft.real)+1)/2).astype(int)
    # Count bit errors
    bit_count, bit_errors = dc.bit_errors(x,z)
    total_bit_errors += bit_errors
    total_bit_count += bit_count
    print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %
          (total_bit_count, total_bit_errors,
           total_bit_errors/total_bit_count))
```

Rate 1/3 Object

kmax = 0, taumax = 0
Bits Received = 9976, Bit errors = 203, BEP = 2.03e-02

[16]:

```python
SNRdB = arange(0,12,.1)
Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2)
Pb_s_third_3_hard = fec.conv_Pb_bound(1/3,8,[3, 0, 15, 0, 58, 0, 201, 0],SNRdB,0)
Pb_s_third_5_hard = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56, 0, 320, 0],SNRdB,0)
Pb_s_third_7_hard = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184],SNRdB,0)
Pb_s_third_5_hard_sim = array([8.94e-04,1.11e-04,8.73e-06])
figure(figsize=(5,5))
semilogy(SNRdB,Pb_uc)
semilogy(SNRdB,Pb_s_third_3_hard,'r--')
semilogy(SNRdB,Pb_s_third_5_hard,'g--')
semilogy(SNRdB,Pb_s_third_7_hard,'k--')
```

(continues on next page)
semilogy(array([5, 6, 7]), Pb_s_third_5_hard_sim, 'sg')
axis([0, 12, 1e-7, 1e0])
title(r'Hard Decision Rate 1/3 Coding Measurements')
xlabel(r'$E_b/N_0$ (dB)')
ylabel(r'Symbol Error Probability')
legend(('Uncoded BPSK', 'R=1/3, K=3, Hard', 'R=1/3, K=5, Hard', 'R=1/3, K=7, Hard',), loc='upper right')
grid();

[17]: ccl.traceback_plot()

**Soft Decision Decoding BEP Simulation**

Here we use 3-bit quantization soft decoding.

[18]:

    N_bits_per_frame = 10000
    EbN0 = 2
    total_bit_errors = 0
    total_bit_count = 0
    ccl = fec.fec_conv(('11111', '11011', '10101'), 25)  # Encode with shift register starting state of '0000'
    state = '0000'
    while total_bit_errors < 100:
        # Create 100000 random 0/1 bits
        x = randint(0, 2, N_bits_per_frame)
        y, state = ccl.conv_encoder(x, state)
        # Add channel noise to bits, include antipodal level shift to [-1, 1]
        yn = dc.cpx_AWGN(2*y-1, EbN0-10*log10(3), 1)  # Channel SNR is 10*log10(3) dB less
        # Translate to [0, 7]
        yn = (yn.real+1)/2*7
        z = ccl.viterbi_decoder(yn, 'soft', quant_level=3)
        # Count bit errors
        bit_count, bit_errors = dc.bit_errors(x, z)
        total_bit_errors += bit_errors
        total_bit_count += bit_count
        print('Bits Received = %d, Bit errors = %d, BEP = %.2e' %
              (total_bit_count, total_bit_errors,
               total_bit_errors/total_bit_count))
    print('*****************************************************')
    print('Bits Received = %d, Bit errors = %d, BEP = %.2e' %
          (total_bit_count, total_bit_errors,
           total_bit_errors/total_bit_count))

Rate 1/3 Object

    kmax = 0, taumax = 0
    Bits Received = 9976, Bit errors = 48, BEP = 4.81e-03
    kmax = 0, taumax = 0
    Bits Received = 19952, Bit errors = 92, BEP = 4.61e-03
    kmax = 0, taumax = 0
    Bits Received = 29928, Bit errors = 152, BEP = 5.08e-03
    ****************************************************
    Bits Received = 29928, Bit errors = 152, BEP = 5.08e-03
```python
SNRdB = arange(0,12,.1)
Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2)
Pb_s_third_3 = fec.conv_Pb_bound(1/3,8,[3, 0, 15, 0, 58, 0, 201, 0],SNRdB,1)
#Pb_s_third_4 = fec.conv_Pb_bound(1/3,10,[6, 0, 6, 0, 58, 0, 118, 0],SNRdB,1)
Pb_s_third_5 = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56, 0, 320, 0],SNRdB,1)
#Pb_s_third_6 = fec.conv_Pb_bound(1/3,13,[1, 8, 26, 20, 19, 62, 86, 204],SNRdB,1)
Pb_s_third_7 = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184, 0],SNRdB,1)
#Pb_s_third_8 = fec.conv_Pb_bound(1/3,16,[1, 0, 24, 0, 113, 0, 287, 0],SNRdB,1)
figure(figsize=(5,5))
semilogy(SNRdB,Pb_uc)
semilogy(SNRdB,Pb_s_third_3,'--')
#semilogy(SNRdB,Pb_s_third_4,'--')
semilogy(SNRdB,Pb_s_third_5,'g')
#semilogy(SNRdB,Pb_s_third_6,'--')
semilogy(SNRdB,Pb_s_third_7,'r--')
#semilogy(SNRdB,Pb_s_third_8,'--')
#semilogy(SNRdB,Pb_s_half,'--')
semilogy([0,1,2,3,4,5],[9.08e-02,2.73e-02,6.52e-03, \
8.94e-04,8.54e-05,5e-6],'gs')
axis([0,12,1e-7,1e0])
title(r'Soft Decision Rate 1/3 Coding Measurements')
xlabel(r'$E_b/N_0$ (dB)')
ylabel(r'Symbol Error Probability')
legend(['Uncoded BPSK', 'R=1/3, K=3, Soft', \
'R=1/3, K=4, Soft', 'R=1/3, K=5, Soft', \
'R=1/3, K=5, Soft', 'R=1/3, K=7, Soft', \
'R=1/3, K=8, Soft', 'R=1/2, K=5, Soft', \
'R-1/3, K=5, Simulation!'),loc='upper right')
grid();```
# Block Codes

Block codes take serial source symbols and group them into k-symbol blocks. They then take n-k check symbols to make code words of length n > k. The code is denoted (n,k). The following shows a general block diagram of block encoder.
The block encoder takes \( k \) source bits and encodes it into a length \( n \) codeword. A block decoder then works in reverse. The length \( n \) channel symbol codewords are decoded into the original length \( k \) source bits.

**Single Error Correction Block Codes**

Several block codes are able to correct only one error per block. Two common single error correction codes are cyclic codes and hamming codes. In *scikit-dsp-comm* there is a module called *fec_block.py*. This module contains
two classes so far: `fec_cyclic` for cyclic codes and `fec_hamming` for hamming codes. Each class has methods for encoding, decoding, and plotting theoretical bit error probability bounds.

**Cyclic Codes**

A \((n,k)\) cyclic code can easily be generated with an \(n-k\) stage shift register with appropriate feedback according to Ziemer and Tranter pgs 646 and 647. The following shows a block diagram for a cyclic encoder.
This block diagram can be expanded to larger codes as well. A generator polynomial can be used to determine the position of the binary adders. The previous example uses a generator polynomial of ‘1011’. This means that there is a binary adder after the input, after second shift register, and after the third shift register.

The source symbol length and the channel symbol length can be determined from the number of shift registers \( j \). The length of the generator polynomial is always \( 1 + j \). In this case we have 3 shift registers, so \( j = 3 \). We have \( k = 4 \) source bits and \( n = 7 \) channel bits. For other shift register lengths, we can use the following equations. \( n = j^2 - 1 \) and \( k = n - j \). The following table (from Ziemer and Peterson pg 429) shows the source symbol length, channel symbol length, and the code rate for various shift register lengths for single error correction codes.

<table>
<thead>
<tr>
<th>( j )</th>
<th>( k )</th>
<th>( n )</th>
<th>( R = k/n )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>0.57</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>15</td>
<td>0.73</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>31</td>
<td>0.84</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>63</td>
<td>0.90</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>127</td>
<td>0.94</td>
</tr>
<tr>
<td>8</td>
<td>247</td>
<td>255</td>
<td>0.97</td>
</tr>
<tr>
<td>9</td>
<td>502</td>
<td>511</td>
<td>0.98</td>
</tr>
<tr>
<td>10</td>
<td>1013</td>
<td>1023</td>
<td>0.99</td>
</tr>
</tbody>
</table>

The following block diagram shows a block decoder (from Ziemer and Tranter page 647). The block decoder takes in a codeword of channel symbol length \( n \) and decodes it to the original source bits of length \( k \).
The `fec_cyclic` class can be used to generate a cyclic code object. The cyclic code object can be initialized by a generator polynomial. The length of the generator determines the source symbol length, the channel symbol length, and the rate. The following shows the generator polynomial ‘1011’ considered in the two example block diagrams.

```python
[4]: cc1 = block.fec_cyclic('1011')
```

After the cyclic code object `cc1` is created, the `cc1.cyclic_encoder` method can be used to encode source data.
bits. In the following example, we generate 16 distinct source symbols to get 16 distinct channel symbol codewords using the cyclic_encoder method. The cyclic_encoder method takes an array of source bits as a parameter. The array of source bits must be a length of a multiple of $k$. Otherwise, the method will throw an error.

[5]: # Generate 16 distinct codewords
codewords = zeros((16,7),dtype=int)
x = zeros((16,4))
for i in range(0,16):
    xbin = block.binary(i,4)
    xbin = array(list(xbin)).astype(int)
    x[i,:] = xbin
x = reshape(x,size(x)).astype(int)
codewords = cc1.cyclic_encoder(x)
print(reshape(codewords,(16,7)))

[]

[0 0 0 0 0 0 0]
[0 0 0 1 0 1 1]
[0 0 1 0 1 1 0]
[0 0 1 1 1 0 1]
[0 1 0 0 1 1 1]
[0 1 0 1 1 0 0]
[0 1 1 0 0 0 1]
[0 1 1 1 0 1 0]
[1 0 0 0 1 0 1]
[1 0 0 1 1 1 0]
[1 0 1 0 0 1 1]
[1 0 1 1 0 0 0]
[1 1 0 0 0 1 0]
[1 1 0 1 0 0 1]
[1 1 1 0 1 0 0]
[1 1 1 1 1 1 1]

Now, a bit error is introduced into each of the codewords. Then, the codewords with the error are decoded using the cyclic_decoder method. The cyclic_decoder method takes an array of codewords of length $n$ as a parameter and returns an array of source bits. Even with 1 error introduced into each codeword, All of the original source bits are still decoded properly.

[6]: # introduce 1 bit error into each code word and decode
codewords = reshape(codewords,(16,7))
for i in range(16):
    error_pos = i % 6
    codewords[i,error_pos] = (codewords[i,error_pos] +1) % 2
codewords = reshape(codewords,size(codewords))
decoded_blocks = cc1.cyclic_decoder(codewords)
print(reshape(decoded_blocks,(16,4)))

[]

[0 0 0 0]
[0 0 0 1]
[0 0 1 0]
[0 0 1 1]
[0 1 0 0]
[0 1 0 1]
[0 1 1 0]
[0 1 1 1]
[1 0 0 0]
[1 0 0 1]
[1 0 1 0]
[1 0 1 1]
[1 1 0 1] (continues on next page)
The following example generates many random source symbols. It then encodes the symbols using the cyclic encoder. It then simulates a channel by adding noise. It then implements hard decisions on each of the incoming bits and puts the received noisy bits into the cyclic decoder. Source bits are then returned and errors are counted until 100 bit errors are received. Once 100 bit errors are received, the bit error probability is calculated. This code can be run at a variety of SNRs and with various code rates.

```python
[7]: cc1 = block.fec_cyclic('101001')
N_blocks_per_frame = 2000
N_bits_per_frame = N_blocks_per_frame*cc1.k
EbN0 = 6
total_bit_errors = 0
total_bit_count = 0
while total_bit_errors < 100:
    # Create random 0/1 bits
    x = randint(0,2,N_bits_per_frame)
    y = cc1.cyclic_encoder(x)
    # Add channel noise to bits and scale to +/- 1
    yn = dc.cpx_AWGN(2*y-1,EbN0-10*log10(cc1.n/cc1.k),1) # Channel SNR is dB less
    # Scale back to 0 and 1
    yn = ((sign(yn.real)+1)/2).astype(int)
    z = cc1.cyclic_decoder(yn)
    # Count bit errors
    bit_count, bit_errors = dc.bit_errors(x,z)
    total_bit_errors += bit_errors
    total_bit_count += bit_count
print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %
        (total_bit_count, total_bit_errors,
         total_bit_errors/total_bit_count))
```

There is a function in the `fec_block` module called `block_single_error_Pb_bound` that can be used to generate the theoretical bit error probability bounds for single error correction block codes. Measured bit error probabilities from the previous example were recorded to compare to the bounds.

```python
[8]: SNRdB = arange(0,12,.1)
    #SNRdB = arange(9.4,9.6,0.1)
    Pb_uc = block.block_single_error_Pb_bound(3,SNRdB,False)
    Pb_c_3 = block.block_single_error_Pb_bound(3,SNRdB)
    Pb_c_4 = block.block_single_error_Pb_bound(4,SNRdB)
    Pb_c_5 = block.block_single_error_Pb_bound(5,SNRdB)
    figure(figsize=(5,5))
```

(continues on next page)
These plots show that the simulated bit error probability is very close to the theoretical bit error probabilities.

**Hamming Code**

Hamming codes are another form of single error correction block codes. Hamming codes use parity-checks in order to generate and decode block codes. The code rates of Hamming codes are generated the same way as cyclic codes. In this case a parity-check length of length $j$ is chosen, and $n$ and $k$ are calculated by $n = 2^j - 1$ and $k = n - j$. Hamming codes are generated first by defining a parity-check matrix $H$. The parity-check matrix is a $j \times n$ matrix containing binary numbers from 1 to $n$ as the columns. For a $j = 3$ ($k = 4, n = 7$) Hamming code. The parity-check matrix starts out as the following:

$$H = \begin{bmatrix}
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
1
\end{bmatrix} \quad (2.46)$$

The parity-check matrix can be reordered to provide a systematic code by interchanging the columns to create an identity matrix on the right side of the matrix. In this case, this is done by interchanging columns 1 and 7, columns 2 and 6, and columns 4 and 5. The resulting parity-check matrix is the following:

$$H = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1 \\
0 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
1
\end{bmatrix} \quad (2.47)$$

Next, a generator matrix $G$ is created by restructuring the parity-check matrix. The $G$ matrix is gathered from the $H$ matrix through the following relationship.

$$G = \begin{bmatrix}
I_k & \cdots & H_p
\end{bmatrix} \quad (2.48)$$
where \( H_p \) is defined as the transpose of the first \( k \) columns of \( H \). For this example we arrive at the following \( G \) matrix. 

\[
G = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & & \\
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & & \\
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & & \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & & 
\end{bmatrix}
\] 

(2.49)

Codewords can be generated by multiplying a source symbol matrix by the generator matrix.

\[
codeword = xG
\] 

(2.50)

Where the codeword is a column vector of length \( n \) and \( x \) is a row vector of length \( n \). This is the basic operation of the encoder. The decoder is slightly more complicated. The decoder starts by taking the parity-check matrix \( H \) and multiplying it by the codeword column vector. This gives the “syndrome” of the block. The syndrome tells us whether or not there is an error in the codeword. If no errors are present, the syndrome will be 0. If there is an error in the codeword, the syndrome will tell us which bit has the error.

\[
S = H \cdot \text{codeword}
\] 

(2.51)

If the syndrome is nonzero, then it can be used to correct the error bit in the codeword. After that, the original source blocks can be decoded from the codewords by the following equation.

\[
\text{source} = R \cdot \text{codeword}
\] 

(2.52)

Where \( R \) is a \( k \) x \( n \) matrix where \( R \) is made up of a \( k \) x \( k \) identity matrix and a \( k \) x \( n-k \) matrix of zeros. Again, the Hamming code is only capable of correcting one error per block, so if more than one error is present in the block, then the syndrome cannot be used to correct the error.

The hamming code class can be found in the fec_block module as fec_hamming. Hamming codes are sometimes generated using generator polynomials just like with cyclic codes. This is not completely necessary, however, if the previously described process is used. This process simply relies on choosing a number of parity bits and then systematic single-error correction hamming codes are automatically generated. The following will go through an example of a \( j = 3 \) (\( k = 4 \), \( n = 7 \)) hamming code.

Hamming Block Code Class Definition:

```
[9]: hh1 = block.fec_hamming(3)
(7,4) hamming code object

k and n are calculated form the number of parity checks \( j \) and can be accessed by \( hh1.k \) and \( hh1.n \). The \( j \) x \( n \) parity-check matrix \( H \) and the \( k \) x \( n \) generator matrix \( G \) can be accessed by \( hh1.H \) and \( hh1.G \). These are exactly as described previously.

[10]: print('k = ' + str(hh1.k))
print('n = ' + str(hh1.n))
print('H = 
' + str(hh1.H))
print('G = 
' + str(hh1.G))
```
\( k = 4 \)

\( n = 7 \)

\[
H = 
\begin{bmatrix}
 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
G = 
\begin{bmatrix}
 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\end{bmatrix}
\]

The `fec_hamming` class has an encoder method called `hamm_encoder`. This method works the same way as the cyclic encoder. It takes an array of source bits with a length that is a multiple of \( k \) and returns an array of codewords. This class has another method called `hamm_decoder` which can decode an array of codewords. The array of codewords must have a length that is a multiple of \( n \). The following example generates random source bits, encodes them using a hamming encoder, simulates transmitting them over a channel, uses hard decisions after the receiver to get a received array of codewords, and decodes the codewords using the hamming decoder. It runs until it counts 100 bit errors and then calculates the bit error probability. This can be used to simulate hamming codes with different rates (different numbers of parity checks) at different SNRs.

```python
[11]: hh1 = block.fec_hamming(5)
N_blocks_per_frame = 20000
N_bits_per_frame = N_blocks_per_frame*hh1.k
EbN0 = 8
total_bit_errors = 0
total_bit_count = 0

while total_bit_errors < 100:
    # Create random 0/1 bits
    x = randint(0,2,N_bits_per_frame)
    y = hh1.hamm_encoder(x)
    # Add channel noise to bits and scale to +/- 1
    yn = dc.cpx_AWGN(2*y-1,EbN0-10*log10(hh1.n/hh1.k),1) # Channel SNR is dB less
    # Scale back to 0 and 1
    yn = ((sign(yn.real)+1)/2).astype(int)
    z = hh1.hamm_decoder(yn)
    # Count bit errors
    bit_count, bit_errors = dc.bit_errors(x,z)
    total_bit_errors += bit_errors
    total_bit_count += bit_count
    print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %
          (total_bit_count, total_bit_errors,
           total_bit_errors/total_bit_count))
    print('*****************************************************')
```

(continues on next page)
The `fec_block.block_single_error_Pb_bound` function can also be used to generate the bit error probability bounds for hamming codes. The following example generates theoretical bit error probability bounds for hamming codes and compares it with simulated bit error probabilities from the previous examples.

```python
SNRdB = arange(0,12,.1)
Pb_uc = block.block_single_error_Pb_bound(3,SNRdB,False)
Pb_c_3 = block.block_single_error_Pb_bound(3,SNRdB)
Pb_c_4 = block.block_single_error_Pb_bound(4,SNRdB)
Pb_c_5 = block.block_single_error_Pb_bound(5,SNRdB)
figure(figsize=(5,5))
semilogy(SNRdB,Pb_uc,'k-')
semilogy(SNRdB,Pb_c_3,'c--')
semilogy(SNRdB,Pb_c_4,'m--')
semilogy(SNRdB,Pb_c_5,'g--')
axis([0,12,1e-10,1e0])
title('Hamming code BEP')
xlabel(r'$E_b/N_0$ (dB)')
ylabel(r'Bit Error Probability')
legend(['Uncoded BPSK','(7,4), hard',
        '(15,11), hard', '(31,26), hard',
        '(7,4) sim', '(15,11) sim',
        '(31,26) sim'],loc='lower left')
grid();
```
Multiple Error Correction Block Codes

Other block codes are capable of correcting multiple errors in blocks. Golay Codes, Bose-Chaudhuri-Hocquenghem (BCH) Codes, and Reed-Solomon Codes are all capable of correcting multiple errors. These codes have not been developed yet, but they will be the next codes to be added to the fec_block module.

Golay Code

Golay codes are capable of correcting three errors in a block of 23 symbols. Golay codes are one of the few known “perfect” codes where all error patterns with hamming weight \( t \) or less and no error patterns with weight greater than \( t \) are correctable using a minimum-distance maximum-likelihood decoder. Golay codes are discussed in detail in Ziemer and Peterson pgs 448-450.

Bose-Chaudhuri-Hocquenghem (BCH) Codes

BCH codes are very important because they exist for a wide range of rates, can achieve significant coding gain, and decoders can be implemented even at high speeds. BCH codes are described in detail in Ziemer and Peterson pgs 436-444.

Reed-Solomon Codes

RS codes are nonbinary BCH codes that use input and output alphabets having \( 2^m \) symbols, \( \{0, 1, 2, ..., 2^m - 1\} \). Block length is \( n = 2^m - 1 \) and can be extended to \( n = 2^m \) or \( n = 2^m + 1 \). Reed-Solomon codes are useful in burst communications Reed-Solomon Codes are discussed in detail in Ziemer and Peterson pgs 444-447.
**scikit-dsp-comm Documentation, Release 1.1.0**

```
sk_dsp_comm.coeff2header.CA_code_header(fname_out, Nca)
Write 1023 bit CA (Gold) Code Header Files
Mark Wickert February 2015

sk_dsp_comm.coeff2header.FIR_fix_header(fname_out, h)
Write FIR Fixed-Point Filter Header Files
Mark Wickert February 2015

sk_dsp_comm.coeff2header.FIR_header(fname_out, h)
Write FIR Filter Header Files
Mark Wickert February 2015

sk_dsp_comm.coeff2header.IIR_sos_header(fname_out, SOS_mat)
Write IIR SOS Header Files File format is compatible with CMSIS-DSP IIR Directform II Filter Functions
Mark Wickert March 2015-October 2016

sk_dsp_comm.coeff2header.freqz_resp_list(b, a=array([1]), mode='dB', fs=1.0, Npts=1024,
                          fsize=(6,4))
A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

freqz_resp(self,mode = 'dB',Npts = 1024)
A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

freqzResp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4))

Parameters

b [ndarray of numerator coefficients]
a [ndarray of denominator coefficients]
mode [display mode: ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec, all versus frequency in Hz
Npts [number of points to plot; default is 1024]
fsize [figure size; default is (6,4) inches]

Mark Wickert, January 2015
```

digitalcom

Digital Communications Function Module

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
sk_dsp_comm.digitalcom.AWGN_chan \((x\_bits, \text{EBN0\_dB})\)

**Parameters**

- **x\_bits** [serial bit stream of 0/1 values.]
- **EBN0\_dB** [Energy per bit to noise power density ratio in dB of the serial bit stream sent through the AWGN channel. Frequently we equate EBN0 to SNR in link budget calculations.]

**Returns**

- **y\_bits** [Received serial bit stream following hard decisions. This bit will have bit errors. To check the estimated bit error probability use \texttt{BPSK\_BEP()} or simply:]

```python
>>> Pe\_est = \text{sum}(\text{xor}(x\_bits, y\_bits))/\text{length}(x\_bits);
```

Mark Wickert, March 2015

sk_dsp_comm.digitalcom.BPSK_BEP \((tx\_data, rx\_data, Ncorr=1024, N\_transient=0)\)

Count bit errors between a transmitted and received BPSK signal. Time delay between streams is detected as well as ambiguity resolution due to carrier phase lock offsets of \(k \times \pi\), \(k=0,1\). The ndarray \(tx\_data\) is \(Tx +/-1\) symbols as real numbers \(I\). The ndarray \(rx\_data\) is \(Rx +/-1\) symbols as real numbers \(I\). Note: \(Ncorr\) needs to be even.

sk_dsp_comm.digitalcom.BPSK_tx \(N\_bits, Ns, ach\_fc=2.0, ach\_lvl\_dB=-100, pulse='rect', alpha=0.25, M=6\)

Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference.

Generates three BPSK signals with rectangular or square root raised cosine (SRC) pulse shaping of duration \(N\_bits\) and \(Ns\) samples per bit. The desired signal is centered on \(f=0\), which the adjacent channel signals to the left and right are also generated at dB level relative to the desired signal. Used in the digital communications Case Study supplement.

**Parameters**

- **N\_bits** [the number of bits to simulate]
- **Ns** [the number of samples per bit]
- **ach\_fc** [the frequency offset of the adjacent channel signals (default 2.0)]
- **ach\_lvl\_dB** [the level of the adjacent channel signals in dB (default -100)]
- **pulse** [the pulse shape ‘rect’ or ‘src’]
- **alpha** [square root raised cosine pulse shape factor (default = 0.25)]
- **M** [square root raised cosine pulse truncation factor (default = 6)]

**Returns**
x [ndarray of the composite signal x0 + ach_lvl*(x1p + x1m)]
b [the transmit pulse shape]
data0 [the data bits used to form the desired signal; used for error checking]

Examples

```python
>>> x, b, data0 = BPSK_tx(1000, 10, 'src')
```

sk_dsp_comm.digitalcom.GMSK_bb (N_bits, Ns, MSK=0, BT=0.35)
MSK/GMSK Complex Baseband Modulation x, data = gmsk(N_bits, Ns, BT = 0.35, MSK = 0)

Parameters

- **N_bits** [number of symbols processed]
- **Ns** [the number of samples per bit]
- **MSK** [0 for no shaping which is standard MSK, MSK <> 0 -> GMSK is generated.]
- **BT** [premodulation Bb*T product which sets the bandwidth of the Gaussian lowpass filter]

Mark Wickert Python version November 2014

sk_dsp_comm.digitalcom.MPSK_BEP_thy (SNR_dB, M, EbN0_Mode=True)
Approximate the bit error probability of MPSK assuming Gray encoding

Mark Wickert November 2018

sk_dsp_comm.digitalcom.MPSK_bb (N_symb, Ns, M, pulse='rect', alpha=0.25, MM=6)
Generate a complex baseband MPSK signal with pulse shaping.

Parameters

- **N_symb** [number of MPSK symbols to produce]
- **Ns** [the number of samples per bit.]
- **M** [MPSK modulation order, e.g., 4, 8, 16, . . . ]
- **pulse_type** ['rect', 'rc', 'src' (default 'rect')]
- **alpha** [excess bandwidth factor(default 0.25)]
- **MM** [single sided pulse duration (default = 6)]

Returns

- **x** [ndarray of the MPSK signal values]
- **b** [ndarray of the pulse shape]
- **data** [ndarray of the underlying data bits]

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine), ‘src’ (root raised cosine). The actual pulse length is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article.
Examples

```python
>>> from sk_dsp_comm import digitalcom as dc
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> x, b, data = dc.MPSK_bb(500, 10, 8, 'src', 0.35)

>>> # Matched filter received signal x
>>> y = signal.lfilter(b, 1, x)

>>> plt.plot(y.real[12*10:], y.imag[12*10:])
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')

>>> # Sample once per symbol
>>> plt.plot(y.real[12*10::10], y.imag[12*10::10], 'r. ')
>>> plt.show()
```

```python
sk_dsp_comm.digitalcom.MPSK_gray_decode(x_hat, M=4)
Decodes MPSK IQ symbols to a serial bit stream using gray2bin decoding

x_hat = symbol spaced samples of the MPSK waveform taken at the maximum eye opening. Normally
this is following the matched filter

Mark Wickert November 2018
```

```python
sk_dsp_comm.digitalcom.MPSK_gray_encode_bb(N_symb, Ns, M=4, pulse='rect', alpha=0.35, ext_data=None)
MPSK_gray_bb: A gray code mapped MPSK complex baseband transmitter x, b, tx_data =
MPSK_gray_bb(K, Ns, M)

// INPUTS ///////////////////////////////////////////////////////////////////
N_symb = the number of samples to process
Ns = number of samples per symbol M = modulation order: 2, 4, 8, 16 MPSK

alpha = squareroot raised cosine excess bandwidth factor. Can range over 0 < alpha < 1.
pulse = ‘rect’, ‘src’, or ‘rc’

// OUTPUTS ///////////////////////////////////////////////////////////////////

x = complex baseband digital modulation b = transmitter shaping filter, rectangle or SRC

tx_data = xI+1j*xQ = inphase symbol sequence + 1j*quadrature symbol sequence

Mark Wickert November 2018
```

```python
sk_dsp_comm.digitalcom.OFDM_rx(x, Nf, N, Np=0, cp=False, Ncp=0, alpha=0.95, ht=None)
```

Parameters

- **x** [Received complex baseband OFDM signal]
- **Nf** [Number of filled carriers, must be even and Nf < N]
- **N** [Total number of carriers; generally a power 2, e.g., 64, 1024, etc]
- **Np** [Period of pilot code blocks; 0 <= no pilots; -1 => use the ht impulse response input to
equalize the OFDM symbols; note equalization still requires Ncp > 0 to work on a delay
spread channel.]
- **cp** [False/True <==> if False assume no CP is present]
Ncp  [The length of the cyclic prefix]

alpha [The filter forgetting factor in the channel estimator. Typically alpha is 0.9 to 0.99.]

nt  [Input the known theoretical channel impulse response]

Returns

z_out  [Recovered complex baseband QAM symbols as a serial stream; as appropriate channel estimation has been applied.]

H  [channel estimate (in the frequency domain at each subcarrier)]

See also:

OFDM_tx

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> from scipy import signal
>>> from numpy import array

>>> hc = array([1.0, 0.1, -0.05, 0.15, 0.2, 0.05])  # impulse response spanning five symbols
>>> # Quick example using the above channel with no cyclic prefix
>>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam')
>>> x_out = dc.OFDM_tx(IQ_data1,32,64,0,True,0)
>>> c_out = signal.lfilter(hc,1,x_out)  # Apply channel distortion
>>> r_out = dc.cpx_AWGN(c_out,100,64/32)  # Es/N0 = 100 dB
>>> z_out,H = dc.OFDM_rx(r_out,32,64,-1,True,0,alpha=0.95,ht=hc)
>>> plt.plot(z_out[200:].real,z_out[200:].imag,'.')
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()
```
Another example with noise using a 10 symbol cyclic prefix and channel estimation:

```python
>>> x_out = dc.OFDM_tx(IQ_data1, 32, 64, 100, True, 10)
>>> c_out = signal.lfilter(hc, 1, x_out)  # Apply channel distortion
>>> r_out = dc.cpx_AWGN(c_out, 25, 64/32)  # Es/N0 = 25 dB
>>> z_out, H = dc.OFDM_rx(r_out, 32, 64, 100, True, 10, alpha=0.95, ht=hc);
>>> plt.figure()  # if channel estimation is turned on need this
>>> plt.plot(z_out[-2000:].real, z_out[-2000:].imag, '.')  # allow settling time
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()
```

**Parameters**

`sk_dsp_comm.digitalcom.OFDM_tx(IQ_data, Nf, N, Np=0, cp=False, Ncp=0)`
IQ_data  [+/1, +/-3, etc complex QAM symbol sample inputs]
Nf  [number of filled carriers, must be even and Nf < N]
N  [total number of carriers; generally a power 2, e.g., 64, 1024, etc]
Np  [Period of pilot code blocks; 0 <=> no pilots]
cp  [False/True <=> bypass cp insertion entirely if False]
Ncp  [the length of the cyclic prefix]

Returns

x_out  [complex baseband OFDM waveform output after P/S and CP insertion]

See also:

OFDM_rx

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x1,b1,IQ_data1 = dc.QAM_bb(50000,1,'16qam')
>>> x_out = dc.OFDM_tx(IQ_data1,32,64)
>>> plt.psd(x_out,2**10,1);
>>> plt.xlabel(r'Normalized Frequency ($\omega/(2\pi)=f/f_s$)')
>>> plt.xlim([-40,0])
>>> plt.ylim([-40,0])
>>> plt.show()
```

sk_dsp_comm.digitalcom.PCM_decode(x_bits, N_bits)

Parameters

x_bits  [serial bit stream of 0/1 values. The length of] x_bits must be a multiple of N_bits
N_bits  [bit precision of PCM samples]

Returns

xhat  [decoded PCM signal samples]

Mark Wickert, March 2015

sk_dsp_comm.digitalcom.PCM_encode(x, N_bits)

Parameters

x  [signal samples to be PCM encoded]
N_bits ; bit precision of PCM samples

Returns

x_bits = encoded serial bit stream of 0/1 values. MSB first.

Mark Wickert, Mark 2015

sk_dsp_comm.digitalcom.QAM_BEP_thy(SNR_dB, M, EbN0_Mode=True)

Approximate the bit error probability of QAM assuming Gray encoding

Mark Wickert November 2018
sk_dsp_comm.digitalcom.QAM_SEP (tx_data, rx_data, mod_type, Ncorr = 1024, Ntransient = 0)
Count symbol errors between a transmitted and received QAM signal. The received symbols are assumed to be soft values on a unit square. Time delay between streams is detected. The ndarray tx_data is Tx complex symbols. The ndarray rx_data is Rx complex symbols. Note: Ncorr needs to be even

sk_dsp_comm.digitalcom.QAM_bb (N_symb, Ns, mod_type='16qam', pulse='rect', alpha=0.35)
QAM_BB_TX: A complex baseband transmitter x,b,tx_data = QAM_bb(K,Ns,M)

/////////// Inputs //////////////////////////////////////////////////////////////
N_symb = the number of symbols to process  Ns = number of samples per symbol
mod_type = modulation type: qpsk, 16qam, 64qam, or 256qam
   alpha = squareroot raised codine pulse shape bandwidth factor.
       For DOCSIS alpha = 0.12 to 0.18. In general alpha can range over 0 < alpha < 1.
SRC = pulse shape: 0-> rect, 1-> SRC

/////////// Outputs ///////////////////////////////////////////////////////////////
x = complex baseband digital modulation b = transmitter shaping filter, rectangle or SRC

 tx_data = xI+1j*xQ = inphase symbol sequence + 1j*quadrature symbol sequence

Mark Wickert November 2014

sk_dsp_comm.digitalcom.QAM_gray_decode (x_hat, M=4)
Decode MQAM IQ symbols to a serial bit stream using gray2bin decoding

  x_hat = symbol spaced samples of the QAM waveform taken at the maximum eye opening. Normally this is following the matched filter

Mark Wickert April 2018

sk_dsp_comm.digitalcom.QAM_gray_encode_bb (N_symb, Ns, M=4, pulse='rect', alpha=0.35, ext_data=None)
QAM_gray_bb: A gray code mapped QAM complex baseband transmitter x,b,tx_data = QAM_gray_bb(K,Ns,M)

Parameters

   N_symb [The number of symbols to process]
   Ns [Number of samples per symbol]
   M [Modulation order: 2, 4, 16, 64, 256 QAM. Note 2 <=> BPSK, 4 <=> QPSK]
   alpha [Square root raised cosine excess bandwidth factor.] For DOCSIS alpha = 0.12 to 0.18.
       In general alpha can range over 0 < alpha < 1.
   pulse ['rect', 'src', or 'rc']

Returns

   x [Complex baseband digital modulation]
   b [Transmitter shaping filter, rectangle or SRC]
   tx_data [xI+1j*xQ = inphase symbol sequence + 1j*quadrature symbol sequence]

See also:

QAM_gray_decode
sk_dsp_comm.digitalcom.QPSK_BEP(tx_data, rx_data, Ncorr=1024, Ntransient=0)

Count bit errors between a transmitted and received QPSK signal. Time delay between streams is detected as well as ambiguity resolution due to carrier phase lock offsets of $k \frac{\pi}{4}$, $k=0,1,2,3$. The ndarray sdata is Tx +/-1 symbols as complex numbers $I + jQ$. The ndarray data is Rx +/-1 symbols as complex numbers $I + jQ$. Note: Ncorr needs to be even.

sk_dsp_comm.digitalcom.QPSK_bb(N_sym, Ns, lfsr_len=5, pulse='src', alpha=0.25, M=6)

This function generates

sk_dsp_comm.digitalcom.QPSK_rx(fc, N_sym, Rs, EsN0=100, fs=125, lfsr_len=10, phase=0, pulse='src')

Generate return-to-zero (RZ) data bits with pulse shaping.

A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping.

Parameters

- N_bits [number of RZ {0,1} data bits to produce]
- Ns [the number of samples per bit,]
- pulse_type ['rect', 'rc', 'src' (default 'rect')]
- alpha [excess bandwidth factor (default 0.25)]
- M [single sided pulse duration (default = 6)]

Returns

- x [ndarray of the RZ signal values]
- b [ndarray of the pulse shape]
- data [ndarray of the underlying data bits]

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine), ‘src’ (root raised cosine). The actual pulse length is $2*M+1$ samples. This function is used by BPSK_tx in the Case Study article.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.digitalcom import RZ_bits
>>> x, b, data = RZ_bits(100, 10)
>>> t = arange(len(x))
>>> plt.plot(t, x)
>>> plt.ylim([-0.01, 1.01])
>>> plt.show()
```

sk_dsp_comm.digitalcom.bin2gray(d_word, b_width)

Convert integer bit words to gray encoded binary words via Gray coding starting from the MSB to the LSB.

Mark Wickert November 2018
sk_dsp_comm.digitalcom.bit_errors(tx_data, rx_data, Ncorr=1024, Ntransient=0)
Count bit errors between a transmitted and received BPSK signal. Time delay between streams is detected as well as ambiguity resolution due to carrier phase lock offsets of $k \cdot \pi$, $k=0,1$. The ndarray tx_data is Tx 0/1 bits as real numbers I. The ndarray rx_data is Rx 0/1 bits as real numbers I. Note: Ncorr needs to be even

sk_dsp_comm.digitalcom.chan_est_equalize(z, Np, alpha, Ht=None)
This is a helper function for OFDM_rx() to unpack pilot blocks from from the entire set of received OFDM symbols (the Nf of N filled carriers only); then estimate the channel array H recursively, and finally apply $H_{hat}$ to $Y$, i.e., $X_{hat} = Y/H_{hat}$ carrier-by-carrier. Note if Np = -1, then $H_{hat} = H$, the true channel.

Parameters

- **z**: [Input N_OFDM x Nf 2D array containing pilot blocks and OFDM data symbols.]
- **Np**: [The pilot block period; if -1 use the known channel impulse response input to ht.] 
- **alpha**: [The forgetting factor used to recursively estimate $H_{hat}$]
- **Ht**: [The theoretical channel frequency response to allow ideal equalization provided Ncp is adequate.]

Returns

- **zz_out**: [The input z with the pilot blocks removed and one-tap equalization applied to each of the Nf carriers.]
- **H**: [The channel estimate in the frequency domain; an array of length Nf; will return Ht if provided as an input.]

Examples

```python
>>> from sk_dsp_comm.digitalcom import chan_est_equalize
>>> zz_out, H = chan_est_eq(z, Nf, Np, alpha, Ht=None)
```

sk_dsp_comm.digitalcom.eye_plot(x, L, S=0)
Eye pattern plot of a baseband digital communications waveform.

The signal must be real, but can be multivalued in terms of the underlying modulation scheme. Used for BPSK eye plots in the Case Study article.

Parameters

- **x**: [ndarray of the real input data vector/array]
- **L**: [display length in samples (usually two symbols)]
- **S**: [start index]

Returns

- **None**: [A plot window opens containing the eye plot]

Notes

Increase S to eliminate filter transients.

Examples

1000 bits at 10 samples per bit with ‘rc’ shaping.
```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> x, b, data = dc.NRZ_bits(1000, 10, 'rc')
>>> dc.eye_plot(x, 20, 60)
>>> plt.show()
```

```python
sk_dsp_comm.digitalcom.farrow_resample(x, fs_old, fs_new)
```

**Parameters**

- `x` [Input list representing a signal vector needing resampling.]
- `fs_old` [Starting/old sampling frequency.]
- `fs_new` [New sampling frequency.]

**Returns**

- `y` [List representing the signal vector resampled at the new frequency.]

**Notes**

A cubic interpolator using a Farrow structure is used resample the input data at a new sampling rate that may be an irrational multiple of the input sampling rate.

Time alignment can be found for a integer value $M$, found with the following:

$$f_{s, out} = f_{s, in} (M - 1) / M$$


Mark Wickert April 2003, recoded to Python November 2013

**Examples**

The following example uses a QPSK signal with rc pulse shaping, and time alignment at $M = 15$.

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm import digitalcom as dc
>>> Ns = 8
>>> Rs = 1.
>>> fsin = Ns*Rs
>>> Tsin = 1 / fsin
>>> N = 200
>>> ts = 1
>>> x, b, data = dc.MPSK_bb(N+12, Ns, 4, 'rc')
>>> x = x[12+Ns:]
>>> xxI = x.real
>>> M = 15
>>> fsout = fsin * (M-1) / M
```
>>> Tsout = 1. / fsout
>>> xI = dc.farrow_resample(xxI, fsin, fsin)
>>> tx = arange(0, len(xI)) / fsin
>>> yI = dc.farrow_resample(xxI, fsin, fsout)
>>> ty = arange(0, len(yI)) / fsout
>>> plt.plot(tx - Tsin, xI)
>>> plt.plot(tx[ts::Ns] - Tsin, xI[ts::Ns], 'r.' )
>>> plt.plot(ty[ts::Ns] - Tsout, yI[ts::Ns], 'g.' )
>>> plt.title(r'Impact of Asynchronous Sampling')
>>> plt.ylabel(r'Real Signal Amplitude')
>>> plt.xlabel(r'Symbol Rate Normalized Time')
>>> plt.xlim([0, 20])
>>> plt.grid()
>>> plt.show()

sk_dsp_comm.digitalcom.from_bin(bin_array)
Convert binary array back a nonnegative integer. The array length is the bit width. The first input index holds
the MSB and the last holds the LSB.

sk_dsp_comm.digitalcom.gray2bin(d_word, b_width)
Convert gray encoded binary words to integer bit words via Gray decoding starting from the MSB to the LSB
Mark Wickert November 2018

sk_dsp_comm.digitalcom.mux_pilot_blocks(IQ_data, Np)

Parameters

IQ_data [a 2D array of input QAM symbols with the columns] representing the NF carrier
frequencies and each row the QAM symbols used to form an OFDM symbol

Np [the period of the pilot blocks; e.g., a pilot block is] inserted every Np OFDM symbols
(Np-1 OFDM data symbols of width Nf are inserted in between the pilot blocks.

Returns

IQ_datap [IQ_data with pilot blocks inserted]

See also:

OFDM_tx

Notes

A helper function called by OFDM_tx() that inserts pilot block for use in channel estimation when a delay
spread channel is present.

sk_dsp_comm.digitalcom.my_psd(x, NFFT=1024, Fs=1)
A local version of NumPy’s PSD function that returns the plot arrays.
A mlab.psd wrapper function that returns two ndarrays; makes no attempt to auto plot anything.

Parameters

x [ndarray input signal]

NFFT [a power of two, e.g., 2**10 = 1024]

Fs [the sampling rate in Hz]

Returns
Px [ndarray of the power spectrum estimate]

f [ndarray of frequency values]

Notes

This function makes it easier to overlay spectrum plots because you have better control over the axis scaling than when using psd() in the autoscale mode.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import digitalcom as dc
>>> from numpy import log10
>>> x, b, data = dc.NRZ_bits(10000, 10)
>>> Px, f = dc.my_psd(x, 2**10, 10)
>>> plt.plot(f, 10*log10(Px))
>>> plt.show()
```

sk_dsp_comm.digitalcom.rc_imp(Ns, alpha, M=6)

A truncated raised cosine pulse used in digital communications.

The pulse shaping factor $0 < \alpha < 1$ is required as well as the truncation factor $M$ which sets the pulse duration to be $2 \times M \times T_{symbol}$.

Parameters

- Ns [number of samples per symbol]
- alpha [excess bandwidth factor on (0, 1), e.g., 0.35]
- M [equals RC one-sided symbol truncation factor]

Returns

- b [ndarray containing the pulse shape]

See also:

sqrt_rc_imp

Notes

The pulse shape $b$ is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform.

Examples

Ten samples per symbol and $\alpha = 0.35$.

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.digitalcom import rc_imp
>>> from numpy import arange
>>> b = rc_imp(10, 0.35)
>>> n = arange(-10*6, 10*6+1)
```
sk_dsp_comm.digitalcom.scatter(x, Ns, start)
Sample a baseband digital communications waveform at the symbol spacing.

Parameters

- x [ndarray of the input digital comm signal]
- Ns [number of samples per symbol (bit)]
- start [the array index to start the sampling]

Returns

- xI [ndarray of the real part of x following sampling]
- xQ [ndarray of the imaginary part of x following sampling]

Notes

Normally the signal is complex, so the scatter plot contains clusters at point in the complex plane. For a binary signal such as BPSK, the point centers are nominally +/-1 on the real axis. Start is used to eliminate transients from the FIR pulse shaping filters from appearing in the scatter plot.

Examples

```python
>>> from sk_dsp_comm import digitalcom as dc
>>> x, b, data = dc.NRZ_bits(1000, 10, 'rc')
Add some noise so points are now scattered about +/-1.
```

```python
>>> y = dc.cpx_AWGN(x, 20, 10)
>>> yI, yQ = dc.scatter(y, 10, 60)
>>> plt.plot(yI, yQ, '.)
>>> plt.grid()
>>> plt.xlabel('In-Phase')
>>> plt.ylabel('Quadrature')
>>> plt.axis('equal')
>>> plt.show()
```

sk_dsp_comm.digitalcom.sqrt_rc_imp(Ns, alpha, M=6)
A truncated square root raised cosine pulse used in digital communications.

The pulse shaping factor $0 < \alpha < 1$ is required as well as the truncation factor $M$ which sets the pulse duration to be $2 \times M \times T_{symbol}$.

Parameters

- Ns [number of samples per symbol]
- alpha [excess bandwidth factor on (0, 1), e.g., 0.35]
- M [equals RC one-sided symbol truncation factor]

Returns
b [ndarray containing the pulse shape]

Notes

The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. When square root raised cosine (SRC) pulse is used to generate Tx signals and at the receiver used as a matched filter (receiver FIR filter), the received signal is now raised cosine shaped, thus having zero intersymbol interference and the optimum removal of additive white noise if present at the receiver input.

Examples

Ten samples per symbol and \( \alpha = 0.35 \).

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.digitalcom import sqrt_rc_imp
>>> b = sqrt_rc_imp(10, 0.35)
>>> n = arange(-10*6, 10*6+1)
>>> plt.stem(n, b)
>>> plt.show()
```

sk_dsp_comm.digitalcom.strips(x, Nx, fig_size=(6,4))

Plots the contents of real ndarray x as a vertical stacking of strips, each of length Nx. The default figure size is (6,4) inches. The yaxis tick labels are the starting index of each strip. The red dashed lines correspond to zero amplitude in each strip.

```
strips(x,Nx,my_figsize=(6,4))
```

Mark Wickert April 2014

sk_dsp_comm.digitalcom.time_delay(x, D, N=4)

A time varying time delay which takes advantage of the Farrow structure for cubic interpolation:

```python
y = time_delay(x, D, N=3)
```

Note that D is an array of the same length as the input signal x. This allows you to make the delay a function of time. If you want a constant delay just use D*zeros(len(x)). The minimum delay allowable is one sample or \( D = 1.0 \). This is due to the causal system nature of the Farrow structure.


Mark Wickert, February 2014

sk_dsp_comm.digitalcom.to_bin(data, width)

Convert an unsigned integer to a numpy binary array with the first element the MSB and the last element the LSB.

sk_dsp_comm.digitalcom.xcorr(x1, x2, Nlags)

\( r12, k = xcorr(x1, x2, Nlags) \). \( r12 \) and \( k \) are ndarrays Compute the energy normalized cross correlation between the sequences \( x1 \) and \( x2 \). If \( x1 = x2 \) the cross correlation is the autocorrelation. The number of lags sets how many lags to return centered about zero

```
fec_conv
```

A Convolutional Encoding and Decoding

Contents 107
Copyright (c) March 2017, Mark Wickert All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

```
sk_dsp_comm.fec_conv.binary (num, length=8)
   Format an integer to binary without the leading '0b'
```

```
sk_dsp_comm.fec_conv.conv_Pb_bound (R, dfree, Ck, SNRdB, hard_soft, M=2)
   Coded bit error probability
   Convolution coding bit error probability upper bound according to Ziemer & Peterson 7-16, p. 507

Mark Wickert November 2014
```

### Parameters

- **R**: Code rate
- **dfree**: Free distance of the code
- **Ck**: Weight coefficient
- **SNRdB**: Signal to noise ratio in dB
- **hard_soft**: 0 hard, 1 soft, 2 uncoded
- **M**: M-ary

### Notes

The code rate R is given by \( R_s = \frac{k}{n} \). Mark Wickert and Andrew Smit 2018

### Examples

```python
>>> import numpy as np
>>> from sk_dsp_comm import fec_conv as fec
>>> import matplotlib.pyplot as plt
>>> SNRdB = np.arange(2,12,.1)
>>> Pb = fec.conv_Pb_bound(1./2,10,[36, 0, 211, 0, 1404, 0, 11633],SNRdB,2)
```
>>> Pb_1_2 = fec.conv_Pb_bound(1./2,10,[36, 0, 211, 0, 1404, 0, 11633],SNRdB,1)
>>> Pb_3_4 = fec.conv_Pb_bound(3./4,4,[164, 0, 5200, 0, 151211, 0, 3988108],SNRdB,
˓→1)
>>> plt.semilogy(SNRdB,Pb)
>>> plt.semilogy(SNRdB,Pb_1_2)
>>> plt.semilogy(SNRdB,Pb_3_4)
>>> plt.axis([2,12,1e-7,1e0])
>>> plt.xlabel(r'$E_b/N_0$ (dB)')
>>> plt.ylabel(r'Symbol Error Probability')
>>> plt.legend(('Uncoded BPSK','R=1/2, K=7, Soft','R=3/4 (punc), K=7, Soft'),loc=
˓→'best')
>>> plt.grid();
>>> plt.show()

```python

class sk_dsp_comm.fec_conv.fec_conv(G=('111', '101'), Depth=10)

Class responsible for creating rate 1/2 convolutional code objects, and then encoding and decoding the user code set in polynomials of G. Key methods provided include conv_encoder(), viterbi_decoder(), puncture(), depuncture(), trellis_plot(), and traceback_plot().

Parameters

G: A tuple of two binary strings corresponding to the encoder polynomials

Depth: The decision depth employed by the Viterbi decoder method

Examples

```python
>>> from sk_dsp_comm import fec_conv
>>> # Rate 1/2
>>> cc1 = fec_conv.fec_conv(('101', '111'), Depth=10)  # decision depth is 10

>>> # Rate 1/3
>>> from sk_dsp_comm import fec_conv
>>> >>> cc2 = fec_conv.fec_conv(('101', '011', '111'), Depth=15)  # decision depth is 15

Methods

```

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bm_calc</code></td>
<td>Branch metrics calculation</td>
</tr>
<tr>
<td><code>conv_encoder</code></td>
<td>We get the 1/2 or 1/3 rate from self.rate Polys G1 and G2 are entered as binary strings, e.g., G1 = ‘111’ and G2 = ‘101’ for K = 3 G1 = ‘1011011’ and G2 = ‘1111001’ for K = 7 G3 is also included for rate 1/3 Input state as a binary string of length K-1, e.g., ‘00’ or ‘0000000’ e.g., state = ‘00’ for K = 3 e.g., state = ‘000000’ for K = 7 Mark Wickert and Andrew Smit 2018</td>
</tr>
<tr>
<td><code>depuncture</code></td>
<td>Apply de-puncturing to the soft bits coming from the channel.</td>
</tr>
<tr>
<td><code>puncture</code></td>
<td>Apply puncturing to the serial bits produced by convolutionally encoding.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>traceback_plot(self[, fsize])</code></td>
<td>Plots a path of the possible last 4 states.</td>
</tr>
<tr>
<td><code>trellis_plot(self[, fsize])</code></td>
<td>Plots a trellis diagram of the possible state transitions.</td>
</tr>
<tr>
<td><code>viterbi_decoder(self, x[, metric_type, ...])</code></td>
<td>A method which performs Viterbi decoding of noisy bit stream, taking as input soft bit values centered on +/-1 and returning hard decision 0/1 bits.</td>
</tr>
</tbody>
</table>

**bm_calc** (*self*, *ref_code_bits*, *rec_code_bits*, *metric_type*, *quant_level*)

```python
distance = bm_calc(ref_code_bits, rec_code_bits, metric_type) quant_type) Branch metrics calculation
```

Mark Wickert and Andrew Smit October 2018

**conv_encoder** (*self*, *input*, *state*)

```python
output, state = conv_encoder(input, state) We get the 1/2 or 1/3 rate from self.rate Polys G1 and G2 are entered as binary strings, e.g., G1 = '111' and G2 = '101' for K = 3 G1 = '1011011' and G2 = '1111001' for K = 7 G3 is also included for rate 1/3 Input state as a binary string of length K-1, e.g., state = '00' for K = 3 e.g., state = '000000' for K = 7 Mark Wickert and Andrew Smit 2018
```

**depuncture** (*self*, *soft_bits*, *puncture_pattern=('110', '101'), erase_value=3.5*)

Apply de-puncturing to the soft bits coming from the channel. Erasure bits are inserted to return the soft bit values back to a form that can be Viterbi decoded.

**Examples**

This example uses the following puncture matrix:

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{bmatrix}
\]

The upper row operates on the outputs for the \(G_1\) polynomial and the lower row operates on the outputs of the \(G_2\) polynomial.

```python
>>> import numpy as np
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv(('101', '111'))
>>> x = np.array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0])
>>> state = '00'
>>> y, state = cc.conv_encoder(x, state)
>>> yp = cc.puncture(y, ('110', '101'))
>>> cc.depuncture(yp, ('110', '101'), 1)
array([ 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 1., 0., 1.])
```

**puncture** (*self*, *code_bits*, *puncture_pattern=('110', '101'))

Apply puncturing to the serial bits produced by convolutionally encoding.

**Parameters**

- *code_bits* –
• **puncture_pattern**

Returns

**Examples**

This example uses the following puncture matrix:

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{bmatrix}
\]

The upper row operates on the outputs for the \(G_1\) polynomial and the lower row operates on the outputs of the \(G_2\) polynomial.

```python
>>> import numpy as np
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv(('101','111'))
>>> x = np.array([0, 0, 1, 1, 1, 0, 0, 0, 0, 0])
>>> state = '00'
>>> y, state = cc.conv_encoder(x, state)
>>> cc.puncture(y, ('110','101'))
array([ 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0.])
```

**traceback_plot** *(self, fsize=(6, 4))*

Plots a path of the possible last 4 states.

**Parameters**

- **fsize** [Plot size for matplotlib.]

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> from sk_dsp_comm import digitalcom as dc
>>> import numpy as np
>>> cc = fec_conv()
>>> x = np.random.randint(0,2,100)
>>> state = '00'
>>> y,state = cc.conv_encoder(x,state)
>>> # Add channel noise to bits translated to +1/-1
>>> yn = dc.cpx_AWGN(2*y-1,5,1) # SNR = 5 dB
>>> # Translate noisy +1/-1 bits to soft values on [0,7]
>>> yn = (yn.real+1)/2*7
>>> z = cc.viterbi_decoder(yn)
>>> cc.traceback_plot()
>>> plt.show()
```

**trellis_plot** *(self, fsize=(6, 4))*

Plots a trellis diagram of the possible state transitions.

**Parameters**

- **fsize** [Plot size for matplotlib.]
Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.fec_conv import fec_conv
>>> cc = fec_conv()
>>> cc.trellis_plot()
>>> plt.show()
```

**viterbi_decoder** *(self, x, metric_type='soft', quant_level=3)*

A method which performs Viterbi decoding of noisy bit stream, taking as input soft bit values centered on +/-1 and returning hard decision 0/1 bits.

**Parameters**

- **x**: Received noisy bit values centered on +/-1 at one sample per bit
- **metric_type**: 'hard' - Hard decision metric. Expects binary or 0/1 input values. 'unquant' - unquantized soft decision decoding. Expects +/-1 input values. 'soft' - soft decision decoding.
- **quant_level**: The quantization level for soft decoding. Expected input values between 0 and 2^quant_level-1. 0 represents the most confident 0 and 2^quant_level-1 represents the most confident 1. Only used for ‘soft’ metric type.

**Returns**

- **y**: Decoded 0/1 bit stream

Examples

```python
>>> import numpy as np
>>> from numpy.random import randint
>>> import sk_dsp_comm.fec_conv as fec
>>> import sk_dsp_comm.digitalcom as dc
>>> import matplotlib.pyplot as plt

# Soft decision rate 1/2 simulation

N_bits_per_frame = 10000
EbN0 = 4
total_bit_errors = 0
total_bit_count = 0
cc1 = fec.fec_conv(('11101','10011'),25)

# Encode with shift register starting state of '0000'
state = '0000'
while total_bit_errors < 100:
    # Create 100000 random 0/1 bits
    x = randint(0,2,N_bits_per_frame)
    y,state = cc1.conv_encoder(x,state)
    # Add channel noise to bits, include antipodal level shift to [-1,1]
    yn_soft = dc.cpx_AWGN(2*y-1,EbN0-3,1) # Channel SNR is 3 dB less for →rate 1/2
    yn_hard = ((np.sign(yn_soft.real)+1)/2).astype(int)
    z = cc1.viterbi_decoder(yn_hard,'hard')
    # Count bit errors
```

(continues on next page)
>> bit_count, bit_errors = dc.bit_errors(x, z)
>> total_bit_errors += bit_errors
>> total_bit_count += bit_count
>> print('Bits Received = %d, Bit errors = %d, BEP = %.2e' %
       (total_bit_count, total_bit_errors, total_bit_errors/total_bit_count))
>> print('******************************************')
>> print('Bits Received = %d, Bit errors = %d, BEP = %.2e' %
       (total_bit_count, total_bit_errors, total_bit_errors/total_bit_count))
Rate 1/2 Object
kmax = 0, taumax = 0
Bits Received = 9976, Bit errors = 77, BEP = 7.72e-03
kmax = 0, taumax = 0
Bits Received = 19952, Bit errors = 175, BEP = 8.77e-03
******************************************
Bits Received = 19952, Bit errors = 175, BEP = 8.77e-03

# Consider the trellis traceback after the sim completes
cc1.traceback_plot()
plt.show()

# Compare a collection of simulation results with soft decision
# bounds
SNRdB = np.arange(0, 12, 0.1)
Pb_uc = fec.conv_Pb_bound(1/3, 7, [4, 12, 20, 72, 225], SNRdB, 2)
Pb_s_third_3 = fec.conv_Pb_bound(1/3, 8, [3, 0, 15], SNRdB, 1)
Pb_s_third_4 = fec.conv_Pb_bound(1/3, 10, [6, 0, 6, 0], SNRdB, 1)
scikit-dsp-comm Documentation, Release 1.1.0

>>> Pb_s_third_5 = fec.conv_Pb_bound(1/3, 12, [12, 0, 12, 0, 56], SNRdB, 1)
>>> Pb_s_third_6 = fec.conv_Pb_bound(1/3, 13, [1, 8, 26, 20, 19, 62], SNRdB, 1)
>>> Pb_s_third_7 = fec.conv_Pb_bound(1/3, 14, [1, 0, 20, 0, 53, 0, 184], SNRdB, 1)
>>> Pb_s_third_8 = fec.conv_Pb_bound(1/3, 16, [1, 0, 24, 0, 113, 0, 287, 0],
    ...SNRdB, 1)
>>> Pb_s_half = fec.conv_Pb_bound(1/2, 7, [4, 12, 20, 72, 225], SNRdB, 1)
>>> plt.figure(figsize=(5, 5))
>>> plt.semilogy(SNRdB, Pb_uc)
>>> plt.semilogy(SNRdB, Pb_s_third_3, '--')
>>> plt.semilogy(SNRdB, Pb_s_third_4, '--')
>>> plt.semilogy(SNRdB, Pb_s_third_5, 'g')
>>> plt.semilogy(SNRdB, Pb_s_third_6, '--')
>>> plt.semilogy(SNRdB, Pb_s_third_7, '--')
>>> plt.semilogy(SNRdB, Pb_s_third_8, '--')
>>> plt.semilogy([0, 1, 2, 3, 4, 5], [9.08e-02, 2.73e-02, 6.52e-03,
    ...8.94e-04, 6.54e-05, 5e-6], 'gs')
>>> plt.axis([0, 12, 1e-7, 1e0])
>>> plt.title(r'Soft Decision Rate 1/2 Coding Measurements')
>>> plt.xlabel(r'$E_b/N_0$ (dB)')
>>> plt.ylabel(r'Symbol Error Probability')
>>> plt.grid();
>>> plt.show()

## Hard decision rate 1/3 simulation

```python
>>> N_bits_per_frame = 10000
>>> EbN0 = 3
>>> total_bit_errors = 0
>>> total_bit_count = 0
>>> cc2 = fec.fec_con(("11111", '11011', '10101'), 25)
>>> # Encode with shift register starting state of '0000'
>>> state = '0000'
>>> while total_bit_errors < 100:
...    # Create 100000 random 0/1 bits
...    x = randint(0, 2, N_bits_per_frame)
...    y, state = cc2.conv_encoder(x, state)
...    # Add channel noise to bits, include antipodal level shift to [-1,1]
...    yn_soft = dc.cpx_AWGN(2 * y - 1, EbN0 - 10 * np.log10(3), 1)  # Channel SNR is
...    # 10*log10(3) dB less
...    yn_hard = ((np.sign(yn_soft.real) + 1) / 2).astype(int)
...    z = cc2.viterbi_decoder(yn_hard.real, 'hard')
...    # Count bit errors
...    bit_count, bit_errors = dc.bit_errors(x, z)
...    total_bit_errors += bit_errors
...    total_bit_count += bit_count
...    print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %
...        (total_bit_count, total_bit_errors, total_bit_errors / total_bit_count))
...    print('****************************')
...    print('Bits Received = %d, Bit errors = %d, BEP = %1.2e' %
...        (total_bit_count, total_bit_errors, total_bit_errors / total_bit_count))
```

Rate 1/3 Object (continues on next page)
Soft Decision Rate 1/2 Coding Measurements

- Uncoded BPSK
- R=1/3, K=3, Soft
- R=1/3, K=4, Soft
- R=1/3, K=5, Soft
- R=1/3, K=6, Soft
- R=1/3, K=7, Soft
- R=1/3, K=8, Soft
- R=1/3, K=5, Sim
Bits Received = 9976, Bit errors = 251, BEP = 2.52e-02

>>>
>>> # Compare a collection of simulation results with hard decision
>>> # bounds
>>> SNRdB = np.arange(0,12,.1)
>>> Pb_uc = fec.conv_Pb_bound(1/3,7,[4, 12, 20, 72, 225],SNRdB,2)
>>> Pb_s_third_3_hard = fec.conv_Pb_bound(1/3,8,[3, 0, 15, 0, 58, 0, 201, 0],
→SNRdB,0)
>>> Pb_s_third_5_hard = fec.conv_Pb_bound(1/3,12,[12, 0, 12, 0, 56, 0, 320,
→0],SNRdB,0)
>>> Pb_s_third_7_hard = fec.conv_Pb_bound(1/3,14,[1, 0, 20, 0, 53, 0, 184],
→SNRdB,0)
>>> Pb_s_third_5_hard_sim = np.array([8.94e-04,1.11e-04,8.73e-06])
>>> plt.figure(figsize=(5,5))
>>> plt.semilogy(SNRdB,Pb_uc)
>>> plt.semilogy(SNRdB,Pb_s_third_3_hard,'r--')
>>> plt.semilogy(SNRdB,Pb_s_third_5_hard,'g--')
>>> plt.semilogy(SNRdB,Pb_s_third_7_hard,'k--')
>>> plt.semilogy(np.array([5,6,7]),Pb_s_third_5_hard_sim,'sg')
>>> plt.axis([0,12,1e-7,1e0])
>>> plt.title(r'Hard Decision Rate 1/3 Coding Measurements')
>>> plt.xlabel(r'$E_b/N_0$ (dB)')
>>> plt.ylabel(r'Symbol Error Probability')
>>> plt.legend(('Uncoded BPSK','R=1/3, K=3, Hard', 'R=1/3, K=5, Hard', 'R=1/3, K=7, Hard'),loc='upper right')
>>> plt.grid();
>>> plt.show()

>>> # Show the traceback for the rate 1/3 hard decision case
>>> cc2.traceback_plot()

sk_dsp_comm.fec_conv.hard_Pk(k, R, SNR)
Calculates Pk as found in Ziemer & Peterson eq. 7-12, p.505
Mark Wickert and Andrew Smit 2018

sk_dsp_comm.fec_conv.soft_Pk(k, R, SNR)
Calculates Pk as found in Ziemer & Peterson eq. 7-13, p.505
Mark Wickert November 2014

class sk_dsp_comm.fec_conv.trellis_branches(Ns)
A structure to hold the trellis states, bits, and input values for both ‘1’ and ‘0’ transitions. Ns is the number of states = 2(K−1).

class sk_dsp_comm.fec_conv.trellis_nodes(Ns)
A structure to hold the trellis from nodes and to nodes. Ns is the number of states = 2(K−1).

class sk_dsp_comm.fec_conv.trellis_paths(Ns, D)
A structure to hold the trellis paths in terms of traceback_states, cumulative_metrics, and traceback_bits. A full decision depth history of all this information is not essential, but does allow the graphical depiction created by the method traceback_plot(). Ns is the number of states = 2(K−1) and D is the decision depth. As a rule, D should be about 5 times K.
Hard Decision Rate 1/3 Coding Measurements

Symbol Error Probability

- Uncoded BPSK
- $R=1/3$, $K=3$, Hard
- $R=1/3$, $K=5$, Hard
- $R=1/3$, $K=7$, Hard

$E_b/N_0$ (dB) vs. Symbol Error Probability
fir_design_helper

Basic Linear Phase Digital Filter Design Helper

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

```
sk_dsp_comm.fir_design_helper.bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2,
                                            dpass_db, distop_db, fsamp=1)
```

Optimal FIR (equal ripple) Bandpass Order Determination

sk_dsp_comm.fir_design_helper.bandstop_order(f_stop1, f_pass1, f_pass2, f_stop2, dpass_dB, dstop_dB, fsamp=1)

Optimal FIR (equal ripple) Bandstop Order Determination


sk_dsp_comm.fir_design_helper.fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop, fs=1.0, N_bump=5)

Design an FIR bandpass filter using remez with order determination. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

sk_dsp_comm.fir_design_helper.fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fs=1.0, N_bump=5)

Design an FIR bandstop filter using remez with order determination. The filter order is determined based on f_pass1 Hz, f_stop1 Hz, f_stop2 Hz, f_pass2 Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

sk_dsp_comm.fir_design_helper.fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs=1.0, N_bump=5)

Design an FIR highpass filter using remez with order determination. The filter order is determined based on f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

sk_dsp_comm.fir_design_helper.fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs=1.0, N_bump=5)

Design an FIR lowpass filter using remez with order determination. The filter order is determined based on f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz.

Mark Wickert October 2016, updated October 2018

sk_dsp_comm.fir_design_helper.firwin_bpf(N_taps, f1, f2, fs=1.0, pass_zero=False)

Design a windowed FIR bandpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to sampling rate fs in Hz. The number of taps must be provided.

Mark Wickert October 2016

sk_dsp_comm.fir_design_helper.firwin_kaiser_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs=1.0, N_bump=0)

Design an FIR bandpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation.

Mark Wickert October 2016

sk_dsp_comm.fir_design_helper.firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs=1.0, N_bump=0)

Design an FIR bandstop filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation.

Mark Wickert October 2016
stopbands, all relative to a sampling rate of fs Hz. Note: The passband ripple cannot be set independent of the stopband attenuation. Note: The filter order is forced to be even (odd number of taps) so there is a center tap that can be used to form 1 - H_BPF.

Mark Wickert October 2016

```python
sk_dsp_comm.fir_design_helper.firwin_kaiser_hp\(f\_stop, \ f\_pass, \ d\_stop, \ fs=1.0, \ N\_bump=0\)
```

Design an FIR highpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on \(f\_pass\) Hz, \(f\_stop\) Hz, and the desired stopband attenuation \(d\_stop\) in dB, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation.

Mark Wickert October 2016

```python
sk_dsp_comm.fir_design_helper.firwin_kaiser_lp\(f\_pass, \ f\_stop, \ d\_stop, \ fs=1.0, \ N\_bump=0\)
```

Design an FIR lowpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on \(f\_pass\) Hz, \(f\_stop\) Hz, and the desired stopband attenuation \(d\_stop\) in dB, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation.

Mark Wickert October 2016

```python
sk_dsp_comm.fir_design_helper.firwin_lpf\(N\_taps, fc, fs=1.0\)
```

Design a windowed FIR lowpass filter in terms of passband critical frequencies \(f_1 < f_2\) in Hz relative to sampling rate fs in Hz. The number of taps must be provided.

Mark Wickert October 2016

```python
sk_dsp_comm.fir_design_helper.freqz_resp_list\(b, \ a=\text{array}[1], \ mode=’dB’, \ fs=1.0, \ Npts=1024, fsize=(6, 4)\)
```

A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

```python
freq\_resp(self,mode = ‘dB’,Npts = 1024)
```

A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

```python
freq\_resp(b,a=[1],mode = ‘dB’,Npts = 1024,fsize=(6,4))
```

\(b = \text{ndarray of numerator coefficients a = ndarray of denominator coefficients}\)

**mode = display mode:** ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec, all versus frequency in Hz

\(\text{Npts} = \text{number of points to plot; default is 1024}\)

\(\text{fsize} = \text{figure size; default is (6,4) inches}\)

Mark Wickert, January 2015

```python
sk_dsp_comm.fir_design_helper.lowpass_order\(f\_pass, \ f\_stop, \ dpass\_dB, \ dstop\_dB, \ fsamp=1\)
```

Optimal FIR (equal ripple) Lowpass Order Determination


**iir_design_helper**

Basic IIR Bilinear Transform-Based Digital Filter Design Helper
Design an IIR bandpass filter using scipy.signal.iirdesign. The filter order is determined based on \( f_{pass} \) Hz, \( f_{stop} \) Hz, and the desired stopband attenuation \( d_{stop} \) in dB, all relative to a sampling rate of \( fs \) Hz.

**Parameters**
- \( f_{stop1} \) [ndarray of the numerator coefficients]
- \( f_{pass} \) [ndarray of the denominator coefficients]
- Ripple_pass :
- Atten_stop :
- \( fs \) [sampling rate in Hz]
- ftype [Analog prototype from ‘butter’ ‘cheby1’, ‘cheby2’, ] ‘ellip’, and ‘bessel’

**Returns**
- \( b \) [ndarray of the numerator coefficients]
- \( a \) [ndarray of the denominator coefficients]
- sos [2D ndarray of second-order section coefficients]

**Examples**

```python
>>> fs = 48000
>>> f_pass = 8000
>>> f_stop = 5000
>>> b_but, a_but, sos_but = IIR_bpf(f_stop, f_pass, 0.5, 60, fs, 'butter')
>>> b_cheb1, a_cheb1, sos_cheb1 = IIR_hpf(f_stop, f_pass, 0.5, 60, fs, 'cheby1')
>>> b_cheb2, a_cheb2, sos_cheb2 = IIR_hpf(f_stop, f_pass, 0.5, 60, fs, 'cheby2')
>>> b_elli, a_elli, sos_elli = IIR_hpf(f_stop, f_pass, 0.5, 60, fs, 'ellip')
```
Design an IIR bandstop filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz.

Parameters

- `f_pass` : Passband critical frequency in Hz
- `f_stop` : Stopband critical frequency in Hz
- `Ripple_pass` : Filter gain in dB at `f_pass`
- `Atten_stop` : Filter attenuation in dB at `f_stop`
- `fs` [Sampling rate in Hz]
- `ftype` [Analog prototype from ‘butter’ ‘cheby1’, ‘cheby2’,] ‘ellip’, and ‘bessel’

Returns

- `b` [ndarray of the numerator coefficients]
- `a` [ndarray of the denominator coefficients]
- `sos` [2D ndarray of second-order section coefficients]

Examples

```python
>>> fs = 48000
>>> f_pass = 8000
>>> f_stop = 5000
>>> b.but,a.but,sos.but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter')
>>> b.cheb1,a.cheb1,sos.cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1')
>>> b.cheb2,a.cheb2,sos.cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2')
>>> b.ellip,a.ellip,sos.ellip = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip')
```
**ftype** [Analog prototype from ‘butter’, ‘cheby1’, ‘cheby2’,] ‘ellip’, and ‘bessel’

**Returns**

- **b** [ndarray of the numerator coefficients]
- **a** [ndarray of the denominator coefficients]
- **sos** [2D ndarray of second-order section coefficients]

**Notes**

Additionally a text string telling the user the filter order is written to the console, e.g., IIR cheby1 order = 8.

**Examples**

```bash
>>> fs = 48000
>>> f_pass = 5000
>>> f_stop = 8000
>>> b_but,a_but,sos_but = IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter')
>>> b_cheb1,a_cheb1,sos_cheb1 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1')
>>> b_cheb2,a_cheb2,sos_cheb2 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2')
>>> b_elli,a_elli,sos_elli = IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip')
```

Mark Wickert October 2016

**sk_dsp_comm.iir_design_helper.freqz_cas** *(sos, w)*

Cascade frequency response

Mark Wickert October 2016

**sk_dsp_comm.iir_design_helper.freqz_resp_cas_list** *(sos, mode='dB', Npts=1024, fs=1.0, fsize=(6,4))*

A method for displaying cascade digital filter form frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

freq_resp(self,mode = 'dB',Npts = 1024)

A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4))

**mode** = display mode: ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec, all versus frequency in Hz

Npts = number of points to plot; default is 1024

fs = figure size; default is (6,4) inches

Mark Wickert, January 2015

**sk_dsp_comm.iir_design_helper.freqz_list** *(b, a=array([1]), mode='dB', fs=1.0, Npts=1024, fs=1024, fsize=(6,4))*

A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

freq_res(self,mode = 'dB',Npts = 1024)
A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

\[
freqz\_resp(b,a=[1],\text{mode} = \text{'dB'},Npts = 1024,fsize=(6,4))
\]

- \(b\) = ndarray of numerator coefficients
- \(a\) = ndarray of denominator coefficients

**mode** = display mode: ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay\_s’ in samples and ‘groupdelay\_t’ in sec, all versus frequency in Hz

- \(Npts\) = number of points to plot; default is 1024
- \(fsize\) = figure size; default is (6,4) inches

Mark Wickert, January 2015

```python
sk_dsp_comm.iir_design_helper.sos_cascade(sos1, sos2)
```

Mark Wickert October 2016

```python
sk_dsp_comm.iir_design_helper.sos_zplane(sos, auto_scale=True, size=2, tol=0.001)
```

Create an z-plane pole-zero plot.

Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient ndarrays \(b\) and \(a\) respectively. Assume descending powers of \(z\).

**Parameters**

- **sos** [ndarray of the sos coefficients]
- **auto_scale** [bool (default True)]
- **size** [plot radius maximum when scale = False]

**Returns**

- \((M,N)\) [tuple of zero and pole counts + plot window]

**Notes**

This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots.

**Examples**

```python
>>> # Here the plot is generated using auto_scale
>>> sos_zplane(sos)
>>> # Here the plot is generated using manual scaling
>>> sos_zplane(sos, False, 1.5)
```

Mark Wickert October 2016

```python
sk_dsp_comm.iir_design_helper.unique_cpx_roots(rlist, tol=0.001)
```

The average of the root values is used when multiplicity is greater than one.

Mark Wickert October 2016
multirate_helper

sk_dsp_comm.multirate_helper.freqzResp(b, a=[1], mode='dB', fs=1.0, Npts=1024, fsize=(6, 4))

A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

freqResp(self, mode = 'dB', Npts = 1024)

A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib

freqzResp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4))  
  
  b = ndarray of numerator coefficients a = ndarray of denominator coefficients

  mode = display mode: ‘dB’ magnitude, ‘phase’ in radians, or ‘groupdelay_s’ in samples and ‘groupdelay_t’ in sec, all versus frequency in Hz

  Npts = number of points to plot; default is 1024

  fsize = figure size; default is (6,4) inches

Mark Wickert, January 2015

class sk_dsp_comm.multirate_helper.multirate_FIR(b)

A simple class for encapsulating FIR filtering, or FIR upsample/filter, or FIR filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods.

Mark Wickert March 2017

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dn(self, x, M_change=12)</td>
<td>Downsample and filter the signal</td>
</tr>
<tr>
<td>filter(self, x)</td>
<td>Filter the signal</td>
</tr>
<tr>
<td>up(self, x, L_change=12)</td>
<td>Upsample and filter the signal</td>
</tr>
<tr>
<td>zplane(self[, auto_scale, size, ...])</td>
<td>Plot the poles and zeros of the FIR filter in the z-plane</td>
</tr>
</tbody>
</table>

freqResp

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dn (self, x, M_change=12)</td>
<td>Downsample and filter the signal</td>
</tr>
<tr>
<td>filter (self, x)</td>
<td>Filter the signal</td>
</tr>
<tr>
<td>freqResp (self, mode='dB', fs=8000, ylim=[-100, 2])</td>
<td>Filter the signal</td>
</tr>
<tr>
<td>up (self, x, L_change=12)</td>
<td>Upsample and filter the signal</td>
</tr>
<tr>
<td>zplane (self, auto_scale=True, size=2, detect_mult=True, tol=0.001)</td>
<td>Plot the poles and zeros of the FIR filter in the z-plane</td>
</tr>
</tbody>
</table>

class sk_dsp_comm.multirate_helper.multirate_IIR(sos)

A simple class for encapsulating IIR filtering, or IIR upsample/filter, or IIR filter/downsample operations used
in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods. For added robustness to floating point quantization all filtering is done using the scipy.signal cascade of second-order sections filter method $y = \text{sosfilter}(\text{sos}, x)$.

Mark Wickert March 2017

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dn</code> (self, x[, M_change])</td>
<td>Downsample and filter the signal</td>
</tr>
<tr>
<td><code>filter</code> (self, x)</td>
<td>Filter the signal using second-order sections</td>
</tr>
<tr>
<td><code>freq_resp</code> (self[, mode, fs, ylim])</td>
<td>Frequency response plot</td>
</tr>
<tr>
<td><code>up</code> (self, x[, L_change])</td>
<td>Upsample and filter the signal</td>
</tr>
<tr>
<td><code>zplane</code> (self[, auto_scale, size, ...])</td>
<td>Plot the poles and zeros of the FIR filter in the z-plane</td>
</tr>
</tbody>
</table>

**Examples**

```python
dn (self, x, M_change=12)  # Downsample and filter the signal
filter (self, x)            # Filter the signal using second-order sections
freq_resp (self[, mode, fs, ylim])  # Frequency response plot
up (self, x, L_change=12)   # Upsample and filter the signal
zplane (self[, auto_scale=True, size=2, detect_mult=True, tol=0.001])  # Plot the poles and zeros of the FIR filter in the z-plane
```

class sk_dsp_comm.mltreter_helper.rate_change (M_change=12, fcutoff=0.9, N_filt_order=8, ftype='butter')

A simple class for encapsulating the upsample/filter and filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated.

Mark Wickert February 2015

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dn</code> (self, x)</td>
<td>Downsample and filter the signal</td>
</tr>
<tr>
<td><code>up</code> (self, x)</td>
<td>Upsample and filter the signal</td>
</tr>
</tbody>
</table>

**Examples**

```python
dn (self, x)          # Downsample and filter the signal
up (self, x)          # Upsample and filter the signal
```

**pyaudio_helper**

Support functions and classes for using PyAudio for real-time DSP

Copyright (c) September 2017, Mark Wickert, Andrew Smit All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

class sk_dsp_comm.pyaudio_helper.DSP_io_stream(stream_callback, in_idx=1, out_idx=4, frame_length=1024, fs=44100, Tcapture=0, sleep_time=0.1)

Real-time DSP one channel input/output audio streaming

Use PyAudio to explore real-time audio DSP using Python

Mark Wickert, Andrew Smit September 2017

Methods

- **DSP_callback_tic(self)**: Add new tic time to the DSP_tic list.
- **DSP_callback_toc(self)**: Add new toc time to the DSP_toc list.
- **DSP_capture_add_samples(self, new_data)**: Append new samples to the data_capture array and increment the sample counter. If length reaches Tcapture, then the newest samples will be kept.
- **DSP_capture_add_samples_stereo(self, ...)**: Append new samples to the data_capture_left array and the data_capture_right array and increment the sample counter.
- **cb_active_plot(self, start_ms, stop_ms[, ...])**: Plot timing information of time spent in the callback.
- **get_LR(self, in_data)**: Splits incoming packed stereo data into separate left and right channels and returns an array of left samples and an array of right samples.
- **in_out_check(self)**: Checks the input and output to see if they are valid.
- **interactive_stream(self[, Tsec, numChan])**: Stream audio with start and stop radio buttons.
- **pack_LR(self, left_out, right_out)**: Packs separate left and right channel data into one array to output and returns the output.
- **stop(self)**: Call to stop streaming.
- **stream(self[, Tsec, numChan])**: Stream audio using callback.

Continued on next page
Table 5 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stream_stats</code>&lt;br&gt;(self)</td>
<td>Display basic statistics of callback execution: ideal period between callbacks, average measured period between callbacks, and average time spent in the callback.</td>
</tr>
<tr>
<td><code>thread_stream</code>&lt;br&gt;(self[, Tsec, numChan])</td>
<td>Stream audio in a thread using callback.</td>
</tr>
</tbody>
</table>

**Interaction**

DSP_callback_tic (self)
Add new tic time to the DSP_tic list. Will not be called if Tcapture = 0.

DSP_callback_toc (self)
Add new toc time to the DSP_toc list. Will not be called if Tcapture = 0.

DSP_capture_add_samples (self, new_data)
Append new samples to the data_capture array and increment the sample counter. If length reaches Tcapture, then the newest samples will be kept. If Tcapture = 0 then new values are not appended to the data_capture array.

DSP_capture_add_samples_stereo (self, new_data_left, new_data_right)
Append new samples to the data_capture_left array and the data_capture_right array and increment the sample counter. If length reaches Tcapture, then the newest samples will be kept. If Tcapture = 0 then new values are not appended to the data_capture array.

cb_active_plot (self, start_ms, stop_ms, line_color='b')
Plot timing information of time spent in the callback. This is similar to what a logic analyzer provides when probing an interrupt.

cb_active_plot( start_ms, stop_ms, line_color='b')

get_LR (self, in_data)
Splits incoming packed stereo data into separate left and right channels and returns an array of left samples and an array of right samples

**Parameters**

- **in_data** [input data from the streaming object in the callback function.]

**Returns**

- **left_in** [array of incoming left channel samples]
- **right_in** [array of incoming right channel samples]

in_out_check (self)
Checks the input and output to see if they are valid

interactive_stream (self, Tsec=2, numChan=1)
Stream audio with start and stop radio buttons

Interactive stream is designed for streaming audio through this object using a callback function. This stream is threaded, so it can be used with ipywidgets. Click on the “Start Streaming” button to start streaming and click on “Stop Streaming” button to stop streaming.

**Parameters**

- **Tsec** [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite]

mode. When in infinite mode, the “Stop Streaming” radio button or Tsec.stop() can be...
used to stop the stream.

numChan [number of channels. Use 1 for mono and 2 for stereo.]

pack_LR (self, left_out, right_out)
Packs separate left and right channel data into one array to output and returns the output.

Parameters

left_out [left channel array of samples going to output]
right_out [right channel array of samples going to output]

Returns

out [packed left and right channel array of samples]

stop (self)
Call to stop streaming

stream (self, Tsec=2, numChan=1)
Stream audio using callback

Parameters

Tsec [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite]
mode. When in infinite mode, Tsec.stop() can be used to stop the stream.
numChan [number of channels. Use 1 for mono and 2 for stereo.]

stream_stats (self)
Display basic statistics of callback execution: ideal period between callbacks, average measured period between callbacks, and average time spent in the callback.

thread_stream (self, Tsec=2, numChan=1)
Stream audio in a thread using callback. The stream is threaded, so widgets can be used simultaneously during stream.

Parameters

Tsec [stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite]
mode. When in infinite mode, Tsec.stop() can be used to stop the stream.
numChan [number of channels. Use 1 for mono and 2 for stereo.]

sk_dsp_comm.pyaudio_helper.available_devices()
Display available input and output audio devices along with their port indices.

Returns Dictionary whose keys are the device index, the number of inputs and outputs, and their names.

Return type dict

class sk_dsp_comm.pyaudio_helper.loop_audio (x, start_offset=0)
Loop signal ndarray during playback. Optionally start_offset samples into the array. Array may be 1D (one channel) or 2D (two channel, Nsamps by 2)

Mark Wickert July 2017

Methods
get_samples (self, frame_count)

rtlsdr_helper

Support functions for the RTL-SDR using pyrtlsdr

Copyright (c) July 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

class sk_dsp_comm.rtlsdr_helper.RTLSDR_stream (rtl_in=0, rtc_fs=2400000.0, fc=103900000.0, gain=40, rtl_buffer_size=32768, audio_out=1, audio_buffsize=4096, audio_fs=48000)

Class used to set up an RTLSDR stream object

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear_buffer (self)</td>
<td>Clears the circular buffer used by the audio sink</td>
</tr>
<tr>
<td>clear_logs (self)</td>
<td>Used in Mono FM Receiver example to clear widget logs</td>
</tr>
<tr>
<td>get_bandwidth (self)</td>
<td>returns the bandwidth of the SDR</td>
</tr>
<tr>
<td>get_buffer (self)</td>
<td>Returns the data_sink buffer at the current index</td>
</tr>
<tr>
<td>get_center_freq (self)</td>
<td>Returns the center frequency of the SDR</td>
</tr>
<tr>
<td>get_data_out_async (self)</td>
<td>This method asynchronously returns data from the data_sink buffer when it is full.</td>
</tr>
<tr>
<td>get_gain (self)</td>
<td>Returns the receiver gain of the SDR</td>
</tr>
<tr>
<td>get_processed_stagel_frame (self)</td>
<td>Async method that can be used to get a frame of decimated data after the callback.</td>
</tr>
<tr>
<td>get_rf_frame (self)</td>
<td>Async method that can be used to get a frame of incoming RF samples.</td>
</tr>
<tr>
<td>get_sample_rate (self)</td>
<td>Returns the sample rate of the SDR</td>
</tr>
</tbody>
</table>

Continued on next page
Table 6 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_stage1_frame</code></td>
<td>Async method that can be used to get a frame of decimated data after the stage 1 decimation filter.</td>
</tr>
<tr>
<td><code>get_stage2_frame</code></td>
<td>Async method that can be used to get a frame of decimated data after the stage 2 decimation filter.</td>
</tr>
<tr>
<td><code>interactive_FM_Rx</code></td>
<td>Sets up interactive mono FM example</td>
</tr>
<tr>
<td><code>plot_processed_stage1</code></td>
<td>Async method that can be used to plot the PSD of a frame of decimated and processed samples from the SDR.</td>
</tr>
<tr>
<td><code>plot_rf</code></td>
<td>Async method that can be used to plot the PSD of a frame of incoming samples from the SDR.</td>
</tr>
<tr>
<td><code>plot_stage1</code></td>
<td>Async method that can be used to plot the PSD of a frame of decimated samples from the SDR.</td>
</tr>
<tr>
<td><code>plot_stage2</code></td>
<td>Async method that can be used to plot the PSD of a frame of data after the stage 2 decimator.</td>
</tr>
<tr>
<td><code>reset_data_out_queue</code></td>
<td>Clears data_sink queue</td>
</tr>
<tr>
<td><code>run_plot_processed_stage1_stream</code></td>
<td>This method can be used to instantiate a spectrum analyzer after the callback during a stream.</td>
</tr>
<tr>
<td><code>run_plot_rf_stream</code></td>
<td>This method can be used to instantiate a spectrum analyzer of the RF input during a stream.</td>
</tr>
<tr>
<td><code>run_plot_stage1_stream</code></td>
<td>This method can be used to instantiate a spectrum analyzer after stage 1 during a stream.</td>
</tr>
<tr>
<td><code>run_plot_stage2_stream</code></td>
<td>This method can be used to instantiate a spectrum analyzer after the callback during a stream.</td>
</tr>
<tr>
<td><code>run_user_stream</code></td>
<td>Starts a user stream.</td>
</tr>
<tr>
<td><code>set_NFFT</code></td>
<td>Sets the FFT size for any running spectrum analyzer</td>
</tr>
<tr>
<td><code>set_audio_buffsize</code></td>
<td>Sets the buffer size used by PyAudio to consume frames processed audio frames from the circular buffer.</td>
</tr>
<tr>
<td><code>set_audio_fs</code></td>
<td>Sets the audio sample rate.</td>
</tr>
<tr>
<td><code>set_audio_gain</code></td>
<td>Sets the audio gain value used to scale the PyAudio volume.</td>
</tr>
<tr>
<td><code>set_audio_gain_db</code></td>
<td>Sets the audio gain value (in dB) used to scale the audio_sink output volume.</td>
</tr>
<tr>
<td><code>set_audio_in</code></td>
<td>Selects the audio input device.</td>
</tr>
<tr>
<td><code>set_audio_out</code></td>
<td>Selects the audio output device.</td>
</tr>
<tr>
<td><code>set_fc</code></td>
<td>Sets tuning center frequency value (in Hz) on the SDR</td>
</tr>
<tr>
<td><code>set_fc_mhz</code></td>
<td>Sets tuning center frequency value (in MHz) on the SDR</td>
</tr>
<tr>
<td><code>set_fs</code></td>
<td>Sets the sample rate (in samples/second) to the SDR. This should generally be left at 2.4 Msps.</td>
</tr>
<tr>
<td><code>set_gain</code></td>
<td>Sets receiver gain value (in dB) on the SDR</td>
</tr>
<tr>
<td><code>set_refresh_rate</code></td>
<td>Sets the refresh_rate (in Hz) of any running spectrum analyzer</td>
</tr>
<tr>
<td><code>set_rtl_buffer_size</code></td>
<td>Sets the circular buffer size used by the audio_sink and the data_sink.</td>
</tr>
<tr>
<td><code>set_stage1_coeffs</code></td>
<td>Can be used to set the stage 1 decimation filter coefficients.</td>
</tr>
<tr>
<td><code>set_stage2_coeffs</code></td>
<td>Can be used to set the stage 2 decimation filter coefficients.</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 6 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show_logs(self)</code></td>
<td>Used in Mono FM Receiver example to show logs inside of a widget</td>
</tr>
<tr>
<td><code>stop(self)</code></td>
<td>Stops a running stream.</td>
</tr>
<tr>
<td><code>stop_all(self)</code></td>
<td>Stops any running spectrum analyzer and stops streaming</td>
</tr>
<tr>
<td><code>stop_all_plots(self)</code></td>
<td>Stops any running spectrum analyzer</td>
</tr>
<tr>
<td><code>stop_processed_stage1_plot(self)</code></td>
<td>Stops updating a callback spectrum analyzer instance</td>
</tr>
<tr>
<td><code>stop_rf_plot(self)</code></td>
<td>Stops updating an RF spectrum analyzer instance</td>
</tr>
<tr>
<td><code>stop_stage1_plot(self)</code></td>
<td>Stops updating a stage 1 spectrum analyzer instance</td>
</tr>
<tr>
<td><code>stop_stage2_plot(self)</code></td>
<td>Stops updating a stage 2 spectrum analyzer instance</td>
</tr>
<tr>
<td><code>toggle_invert(self)</code></td>
<td>Toggles between black and white background of a running spectrum analyzer</td>
</tr>
</tbody>
</table>

**clear_buffer (self)**
Cleans the circular buffer used by the audio sink

**clear_logs (self)**
Used in Mono FM Receiver example to clear widget logs

**get_bandwidth (self)**
returns the bandwidth of the SDR

**get_buffer (self)**
Returns the data_sink buffer at the current index

**get_center_freq (self)**
Returns the center frequency of the SDR

**get_data_out_async (self)**
This method asynchronously returns data from the data_sink buffer when it is full. This is used in the data_sink mode (audio_sink=False).

The following example shows how to continuously stream data and handle the buffer when it is full. The buffer will automatically get rewritten whenever it runs out of space, so the returned buffer must be handled whenever it is filled.

**get_gain (self)**
Returns the receiver gain of the SDR

**get_processed_stage1_frame (self)**
Async method that can be used to get a frame of decimated data after the callback.

Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> callback_data_frame = await sdr_stream.get_stage1_frame()

**get_rf_frame (self)**
Async method that can be used to get a frame of incoming RF samples.

Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> rf_data_frame = await sdr_stream.get_stage1_frame()

**get_sample_rate (self)**
Returns the sample rate of the SDR

**get_stage1_frame (self)**
Async method that can be used to get a frame of decimated data after the stage 1 decimation filter.

Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>> stage1_data_frame = await sdr_stream.get_stage1_frame()
get_stage2_frame (self)
Async method that can be used to get a frame of decimated data after the stage 2 decimation filter.

Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>>
stage2_data_frame = await sdr_stream.get_stage2_frame()

interactive_FM_Rx (self, fc=103900000.0, gain=40, audio_out=1, audio_buffsize=4096, audio_fs=48000)
Sets up interactive mono FM example

plot_processed_stage1 (self, NFFT=1024, FC=0, w=6, h=5)
Async method that can be used to plot the PSD of a frame of decimated and processed samples from the
SDR. This essentially acts as a power spectrum “probe” after the user-defined callback and before the
audio_sink or data_sink blocks.1 decimator and before the user-defined callback. Make sure a stream is
running before calling this method. This method must be awaited when called.

parameters: NFFT: Number of points used in the spectrum plot. Should be 2^N value FC: Frequency offset
for plotting w: width of figure h: height of figure

Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>>
await sdr_stream.plot_processed_stage1(1024,0,6,5)

This will return a spectrum plot

plot_rf (self, NFFT=1024, w=6, h=5)
Async method that can be used to plot the PSD of a frame of incoming samples from the SDR. This
essentially acts as a power spectrum “probe” right before the Stage 1 decimator. Make sure a stream is
running before calling this method. This method must be awaited when called.

parameters: NFFT: Number of points used in the spectrum plot. Should be 2^N value w: width of figure
h: height of figure

Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>>
await sdr_stream.plot_rf(1024,6,5)

This will return a spectrum plot

plot_stage1 (self, NFFT=1024, w=6, h=5)
Async method that can be used to plot the PSD of a frame of decimated samples from the SDR. This
essentially acts as a power spectrum “probe” after the stage 1 decimator and before the user-defined callback.
Make sure a stream is running before calling this method. This method must be awaited when called.

parameters: NFFT: Number of points used in the spectrum plot. Should be 2^N value w: width of figure
h: height of figure

Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>>
await sdr_stream.plot_stage1(1024,6,5)

This will return a spectrum plot

plot_stage2 (self, NFFT=1024, FC=0, w=6, h=5)
Async method that can be used to plot the PSD of a frame of data after the stage 2 decimator. This
essentially acts as a power spectrum “probe” after the stage2 decimator Make sure a stream is running
before calling this method. This method must be awaited when called.

parameters: NFFT: Number of points used in the spectrum plot. Should be 2^N value FC: Frequency offset
for plotting w: width of figure h: height of figure

Example: >>> sdr_stream = RTLSDR_stream() >>> sdr_stream.run_user_stream(callback,10,5) >>>
await sdr_stream.plot_processed_stage1(1024,0,6,5)

This will return a spectrum plot
**reset_data_out_queue** *(self)*

Clears data_sink queue

**run_plot_processed_stage1_stream** *(self, NFFT=1024, refresh_rate=2, invert=True, w=8, h=5)*

This method can be used to instantiate a spectrum analyzer after the callback during a stream. Call the stop_plot_rf_plot method in order to stop the plot from updating. Only one spectrum analyzer instance my be running at once. This only works when using %pylab widget or %pylab notebook

NFFT: fftsize used in plotting refresh_rate: defines how often the spectrum analyzer updates (in Hz) invert: Inverts the background to black when true or leaves it white when false w: width of figure h: height of figure

Example:

```python
>>> %pylab widget
>>> sdr_stream = RTLSDR_stream()
>>> sdr_stream.run_user_stream(callback,10,5)
>>> sdr_stream.run_plot_processed_stage1_stream(1024,2,True,8,5)
>>> sdr_stream.stop_processed_stage1_plot()
>>> sdr_stream.stop()
```

**run_plot_rf_stream** *(self, NFFT=1024, refresh_rate=2, invert=True, w=8, h=5)*

This method can be used to instantiate a spectrum analyzer of the RF input during a stream. Call the stop_plot_rf_plot method in order to stop the plot from updating. Only one spectrum analyzer instance my be running at once. This only works when using %pylab widget or %pylab notebook

NFFT: fftsize used in plotting refresh_rate: defines how often the spectrum analyzer updates (in Hz) invert: Inverts the background to black when true or leaves it white when false w: width of figure h: height of figure

Example:

```python
>>> %pylab widget
>>> sdr_stream = RTLSDR_stream()
>>> sdr_stream.run_user_stream(callback,10,5)
>>> sdr_stream.run_plot_rf_stream(1024,2,True,8,5)
>>> sdr_stream.stop_rf_plot()
>>> sdr_stream.stop()
```

**run_plot_stage1_stream** *(self, NFFT=1024, refresh_rate=2, invert=True, w=8, h=5)*

This method can be used to instantiate a spectrum analyzer after stage 1 during a stream. Call the stop_plot_rf_plot method in order to stop the plot from updating. Only one spectrum analyzer instance my be running at once. This only works when using %pylab widget or %pylab notebook

NFFT: fftsize used in plotting refresh_rate: defines how often the spectrum analyzer updates (in Hz) invert: Inverts the background to black when true or leaves it white when false w: width of figure h: height of figure

Example:

```python
>>> %pylab widget
>>> sdr_stream = RTLSDR_stream()
>>> sdr_stream.run_user_stream(callback,10,5)
>>> sdr_stream.run_plot_stage1_stream(1024,2,True,8,5)
>>> sdr_stream.stop_stage1_plot()
>>> sdr_stream.stop()
```

**run_plot_stage2_stream** *(self, NFFT=1024, refresh_rate=2, invert=True, w=8, h=5)*

This method can be used to instantiate a spectrum analyzer after the callback during a stream. Call the stop_plot_rf_plot method in order to stop the plot from updating. Only one spectrum analyzer instance my be running at once. This only works when using %pylab widget or %pylab notebook

NFFT: fftsize used in plotting refresh_rate: defines how often the spectrum analyzer updates (in Hz) invert: Inverts the background to black when true or leaves it white when false w: width of figure h: height of figure

Example:

```python
>>> %pylab widget
>>> sdr_stream = RTLSDR_stream()
>>> sdr_stream.run_user_stream(callback,10,5)
>>> sdr_stream.run_plot_stage2_stream(1024,2,True,8,5)
```
```python
>>> sdr_stream.stop_stage2_plot()
>>> sdr_stream.stop()
```

**run_user_stream** *(self, callback, M1, M2, b=False, stage1_ic=False, a=False, bb=False, stage2_ic=False, aa=False, audio_sink=True, user_var=None)*

Starts a user stream. A user stream follows the flow diagram in the class description. When audio_sink is True, the audio_sink blocks will be used and when audio_sink is False, the data sink block will be used. For any optional parameters set to false, default values will be used for stage 1 or stage 2 filters. The stop() method may be used to stop the stream.

**set_NFFT** *(self, NFFT)*
Sets the FFT size for any running spectrum analyzer

**set_audio_buffsize** *(self, audio_buffsize)*
Sets the buffer size used by PyAudio to consume frames processed audio frames from the circular buffer.

**set_audio_fs** *(self, audio_fs)*
Sets the audio sample rate. When the audio sink is used this should be equal to the radio sample rate (fs) / stage 1 decimation factor / stage 2 decimation factor

**set_audio_gain** *(self, gain)*
Sets the audio gain value used to scale the PyAudio volume.

**set_audio_gain_db** *(self, gain)*
Sets the audio gain value (in dB) used to scale the audio_sink output volume

**set_audio_in** *(self, audio_in)*
Selects the audio input device. This is not used in the class, but should be set to a valid audio input.

**set_audio_out** *(self, audio_out)*
Selects the audio output device. Use sk_dsp_comm.rtlsdr_helper.pah.available_devices() to get device indices.

**set_fc** *(self, fc)*
Sets tuning center frequency value (in Hz) on the SDR

**set_fc_mhz** *(self, fc)*
Sets tuning center frequency value (in MHz) on the SDR

**set_fs** *(self, fs)*
Sets the sample rate (in samples/second) to the SDR. This should generally be left at 2.4 Msps. The radio can only operate at specific rates.

**set_gain** *(self, gain)*
Sets receiver gain value (in dB) on the SDR

**set_refresh_rate** *(self, refresh_rate)*
Sets the refresh_rate (in Hz) of any running spectrum analyzer

**set_rtl_buffer_size** *(self, rtl_buffer_size)*
Sets the circular buffer size used by the audio_sink and the data_sink. When the audio_sink is used, this should be set to a fairly high number (around 2^15). When the data_sink is used, the buffer size can be changed to accommodate the scenario.

**set_stage1_coeffs** *(self, b, a=[1], zi=False)*
Can be used to set the stage 1 decimation filter coefficients. This can be used during an active stream.

**set_stage2_coeffs** *(self, bb, aa=[1], zi=False)*
Can be used to set the stage 2 decimation filter coefficients. This can be used during an active stream.

**show_logs** *(self)*
Used in Mono FM Receiver example to show logs inside of a widget
stop (self)
    Stops a running stream.

stop_all (self)
    Stops any running spectrum analyzer and stops streaming

stop_all_plots (self)
    Stops any running spectrum analyzer

stop_processed_stage1_plot (self)
    Stops updating a callback spectrum analyzer instance

stop_rf_plot (self)
    Stops updating an RF spectrum analyzer instance

stop_stage1_plot (self)
    Stops updating a stage 1 spectrum analyzer instance

stop_stage2_plot (self)
    Stops updating a stage 2 spectrum analyzer instance

toggle_invert (self)
    Toggles between black and white background of a running spectrum analyzer

sk_dsp_comm.rtlsdr_helper.complex2wav (filename, rate, x)
    Save a complex signal vector to a wav file for compact binary storage of 16-bit signal samples. The wav left and
    right channels are used to save real (I) and imaginary (Q) values. The rate is just a convnet way of documenting
    the original signal sample rate.

complex2wav(filename,rate,x)
    Mark Wickert April 2014

sk_dsp_comm.rtlsdr_helper.discrim (x)
    function disdata = discrim(x) where x is an angle modulated signal in complex baseband form.

    Mark Wickert

sk_dsp_comm.rtlsdr_helper.fsk_BEP (rx_data, m, flip)
    Estimate the BEP of the data bits recovered by the RTL-SDR Based FSK Receiver.

    The reference m-sequence generated in Python was found to produce sequences running in the opposite direction
    relative to the m-sequences generated by the mbed. To allow error detection the reference m-sequence is flipped.

    Mark Wickert April 2014

sk_dsp_comm.rtlsdr_helper.mono_FM (x, fs=2400000.0, file_name='test.wav')
    Decimate complex baseband input by 10 Design 1st decimation lowpass filter (f_c = 200 KHz)

sk_dsp_comm.rtlsdr_helper.pilot_PLL (xr, fq, fs, loop_type, Bn, zeta)
    Mark Wickert, April 2014

sk_dsp_comm.rtlsdr_helper.sccs_bit_sync (y, Ns)
    Symbol synchronization algorithm using SCCS

    y = baseband NRZ data waveform
    Ns = nominal number of samples per symbol

    Reworked from ECE 5675 Project Translated from m-code version Mark Wickert April 2014
sk_dsp_comm.rtlsdr_helper.stereo_FM(x, fs=2400000.0, file_name='test.wav')
Stereo demod from complex baseband at sampling rate fs. Assume fs is 2400 ksp
Mark Wickert July 2017

sk_dsp_comm.rtlsdr_helper.wav2complex(filename)
Return a complex signal vector from a wav file that was used to store the real (I) and imaginary (Q) values of a complex signal ndarray. The rate is included as means of recalling the original signal sample rate.
fs,x = wav2complex(filename)
Mark Wickert April 2014

sigsys
Signals and Systems Function Module
Copyright (c) March 2017, Mark Wickert All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

sk_dsp_comm.sigsys.BPSK_tx(N_bits, Ns, ach_fc=2.0, ach_lvl_dB=-100, pulse='rect', alpha=0.25, M=6)
Generates biphase shift keyed (BPSK) transmitter with adjacent channel interference.
Generates three BPSK signals with rectangular or square root raised cosine (SRC) pulse shaping of duration N_bits and Ns samples per bit. The desired signal is centered on f = 0, which the adjacent channel signals to the left and right are also generated at dB level relative to the desired signal. Used in the digital communications Case Study supplement.

Parameters
N_bits [the number of bits to simulate]
Ns [the number of samples per bit]
ach_fc [the frequency offset of the adjacent channel signals (default 2.0)]
ach_lvl_dB [the level of the adjacent channel signals in dB (default -100)]
pulse :the pulse shape ‘rect’ or ‘src’
**alpha** [square root raised cosine pulse shape factor (default = 0.25)]

**M** [square root raised cosine pulse truncation factor (default = 6)]

**Returns**

**x** [ndarray of the composite signal \(x_0 + \text{ach}_\text{lvl} \times (x_1p + x_1m)\)]

**b** [the transmit pulse shape]

**data0** [the data bits used to form the desired signal; used for error checking]

**Examples**

```python
>>> x, b, data0 = BPSK_tx(1000, 10, pulse='src')
```

**sk_dsp_comm.sigsys.CIC** \((M, K)\)

A functional form implementation of a cascade of integrator comb (CIC) filters.

**Parameters**

**M** [Effective number of taps per section (typically the decimation factor).]

**K** [The number of CIC sections cascaded (larger \(K\) gives the filter a wider image rejection bandwidth).]

**Returns**

**b** [FIR filter coefficients for a simple direct form implementation using the filter() function.]

**Notes**

Commonly used in multirate signal processing digital down-converters and digital up-converters. A true CIC filter requires no multiplies, only add and subtract operations. The functional form created here is a simple FIR requiring real coefficient multiplies via filter().

Mark Wickert July 2013

**sk_dsp_comm.sigsys.NRZ_bits** \((N_{\text{bits}}, N_s, \text{pulse}='\text{rect}', \alpha=0.25, M=6)\)

Generate non-return-to-zero (NRZ) data bits with pulse shaping.

A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping.

**Parameters**

**N_{\text{bits}}** [number of NRZ +/-1 data bits to produce]

**Ns** [the number of samples per bit,]

**pulse_type** ['rect', 'rc', 'src' (default 'rect')]

**alpha** [excess bandwidth factor(default 0.25)]

**M** [single sided pulse duration (default = 6)]

**Returns**

**x** [ndarray of the NRZ signal values]

**b** [ndarray of the pulse shape]

**data** [ndarray of the underlying data bits]
Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine), ‘src’ (root raised cosine). The actual pulse length is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import NRZ_bits
>>> from numpy import arange

>>> x, b, data = NRZ_bits(100, 10)
>>> t = arange(len(x))
>>> plt.plot(t, x)
>>> plt.ylim([-1.01, 1.01])
>>> plt.show()
```

`sk_dsp_comm.sigsys.NRZ_bits2(data, Ns, pulse='rect', alpha=0.25, M=6)`
Generate non-return-to-zero (NRZ) data bits with pulse shaping with user data
A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. The data sequence is user supplied.

Parameters

- `data` [ndarray of the data bits as 0/1 values]
- `Ns` [the number of samples per bit.]
- `pulse_type` ['rect', 'rc', 'src' (default 'rect')]
- `alpha` [excess bandwidth factor (default 0.25)]
- `M` [single sided pulse duration (default = 6)]

Returns

- `x` [ndarray of the NRZ signal values]
- `b` [ndarray of the pulse shape]

Notes

Pulse shapes include ‘rect’ (rectangular), ‘rc’ (raised cosine), ‘src’ (root raised cosine). The actual pulse length is 2*M+1 samples.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import NRZ_bits2
>>> from sk_dsp_comm.sigsys import m_seq
>>> from numpy import arange

>>> x, b = NRZ_bits2(m_seq(5), 10)
>>> t = arange(len(x))
>>> plt.ylim([-1.01, 1.01])
>>> plt.plot(t, x)
```
sk_dsp_comm.sigsys.OA_filter(x, h, N, mode=0)
Overlap and add transform domain FIR filtering.

This function implements the classical overlap and add method of transform domain filtering using a length P FIR filter.

Parameters
   x [input signal to be filtered as an ndarray]
   h [FIR filter coefficients as an ndarray of length P]
   N [FFT size > P, typically a power of two]
   mode [0 or 1, when 1 returns a diagnostic matrix]

Returns
   y [the filtered output as an ndarray]
   y_mat [an ndarray whose rows are the individual overlap outputs.]

Notes

y_mat is used for diagnostics and to gain understanding of the algorithm.

Examples

```python
>>> import numpy as np
>>> from sk_dsp_comm.sigsys import OA_filter
>>> n = np.arange(0,100)
>>> x = np.cos(2*np.pi*0.05*n)
>>> b = np.ones(10)
>>> y = OA_filter(x,h,N)
>>> # set mode = 1
>>> y, y_mat = OA_filter(x,h,N,1)
```

sk_dsp_comm.sigsys.OS_filter(x, h, N, mode=0)
Overlap and save transform domain FIR filtering.

This function implements the classical overlap and save method of transform domain filtering using a length P FIR filter.

Parameters
   x [input signal to be filtered as an ndarray]
   h [FIR filter coefficients as an ndarray of length P]
   N [FFT size > P, typically a power of two]
   mode [0 or 1, when 1 returns a diagnostic matrix]

Returns
   y [the filtered output as an ndarray]
   y_mat [an ndarray whose rows are the individual overlap outputs.]
Notes

y_mat is used for diagnostics and to gain understanding of the algorithm.

Examples

```python
>>> n = arange(0,100)
>>> x = cos(2*pi*0.05*n)
>>> b = ones(10)
>>> y = OS_filter(x,h,N)
>>> # set mode = 1
>>> y, y_mat = OS_filter(x,h,N,1)
```

sk_dsp_comm.sigsys.PN_gen(N_bits, m=5)
Maximal length sequence signal generator.
Generates a sequence 0/1 bits of N_bit duration. The bits themselves are obtained from an m-sequence of length m. Available m-sequence (PN generators) include m = 2,3,..,12, & 16.

Parameters

- **N_bits** [the number of bits to generate]
- **m** [the number of shift registers. 2,3, ..., 12, & 16]

Returns

- **PN** [ndarray of the generator output over N_bits]

Notes

The sequence is periodic having period 2**m - 1 (2^m - 1).

Examples

```python
>>> # A 15 bit period signal nover 50 bits
>>> PN = PN_gen(50,4)
```

sk_dsp_comm.sigsys.am_rx(x192)
AM envelope detector receiver for the Chapter 17 Case Study
The receiver bandpass filter is not included in this function.

Parameters

- **x192** [ndarray of the AM signal at sampling rate 192 ksps]

Returns

- **m_rx8** [ndarray of the demodulated message at 8 ksps]
- **t8** [ndarray of the time axis at 8 ksps]
- **m_rx192** [ndarray of the demodulated output at 192 ksps]
- **x_edet192** [ndarray of the envelope detector output at 192 ksps]
Notes

The bandpass filter needed at the receiver front-end can be designed using `b_bpf, a_bpf = am_rx_BPF()`.

Examples

```python
>>> import numpy as np
>>> n = np.arange(0,1000)
>>> # 1 kHz message signal
>>> m = np.cos(2*np.pi*1000/8000.*n)
>>> m_rx8,t8,m_rx192,x_edet192 = am_rx(x192)
```

```
sk_dsp_comm.sigsys.am_rx_BPF(N_order=7, ripple_dB=1, B=10000.0, fs=192000.0)
```

Bandpass filter design for the AM receiver Case Study of Chapter 17.

Design a 7th-order Chebyshev type 1 bandpass filter to remove/reduce adjacent channel interference at the envelope detector input.

Parameters

- **N_order** [the filter order (default = 7)]
- **ripple_dB** [the passband ripple in dB (default = 1)]
- **B** [the RF bandwidth (default = 10e3)]
- **fs** [the sampling frequency]

Returns

- **b_bpf** [ndarray of the numerator filter coefficients]
- **a_bpf** [ndarray of the denominator filter coefficients]

Examples

```python
>>> from scipy import signal
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import sk_dsp_comm.sigsys as ss

>>> # Use the default values
>>> b_bpf, a_bpf = ss.am_rx_BPF()
```

Pole-zero plot of the filter.

```python
>>> ss.zplane(b_bpf,a_bpf)
>>> plt.show()
```

Plot of the frequency response.

```python
>>> f = np.arange(0,192/2.,.1)
>>> w, Hbpf = signal.freqz(b_bpf,a_bpf,2*np.pi*f/192)
>>> plt.plot(f*10,20*np.log10(abs(Hbpf))
>>> plt.axis([0,1920/2.,-80,10])
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (kHz)")
>>> plt.show()
```
sk_dsp_comm.sigsys.am_tx(m, a_mod, fc=75000.0)
AM transmitter for Case Study of Chapter 17.

Assume input is sampled at 8 Ksps and upsampling by 24 is performed to arrive at fs_out = 192 Ksps.

Parameters
- m [ndarray of the input message signal]
- a_mod [AM modulation index, between 0 and 1]
- fc [the carrier frequency in Hz]

Returns
- x192 [ndarray of the upsampled by 24 and modulated carrier]
- t192 [ndarray of the upsampled by 24 time axis]
- m24 [ndarray of the upsampled by 24 message signal]

Notes
The sampling rate of the input signal is assumed to be 8 kHz.

Examples

```python
>>> n = arange(0,1000)
>>> # 1 kHz message signal
>>> m = cos(2*pi*1000/8000.*n)
>>> x192, t192 = am_tx(m, 0.8, fc=75e3)
```

sk_dsp_comm.sigsys.bin_num(n, n_bits)
Produce a signed representation of the number n using n_bits.

Parameters
- n – Number n
- n_bits – Number of bits

Returns

sk_dsp_comm.sigsys.biquad2(w_num, r_num, w_den, r_den)
A biquadratic filter in terms of conjugate pole and zero pairs.

Parameters
- w_num [zero frequency (angle) in rad/sample]
- r_num [conjugate zeros radius]
- w_den [pole frequency (angle) in rad/sample]
- r_den [conjugate poles radius; less than 1 for stability]

Returns
- b [ndarray of numerator coefficients]
- a [ndarray of denominator coefficients]
Examples

```python
>>> b, a = biquad2(pi/4., 1, pi/4., 0.95)
```

sk_dsp_comm.sigsys.bit_errors(z, data, start, Ns)

A simple bit error counting function.

In its present form this function counts bit errors between hard decision BPSK bits in +/-1 form and compares
them with 0/1 binary data that was transmitted. Timing between the Tx and Rx data is the responsibility of the
user. An enhanced version of this function, which features automatic synching will be created in the future.

Parameters

- `z` [ndarray of hard decision BPSK data prior to symbol spaced sampling]
- `data` [ndarray of reference bits in 1/0 format]
- `start` [timing reference for the received]
- `Ns` [the number of samples per symbol]

Returns

- `Pe_hat` [the estimated probability of a bit error]

Notes

The Tx and Rx data streams are exclusive-or'd and the then the bit errors are summed, and finally divided by
the number of bits observed to form an estimate of the bit error probability. This function needs to be enhanced
to be more useful.

Examples

```python
>>> from scipy import signal
>>> x, b, data = NRZ_bits(1000, 10)
>>> # set Eb/N0 to 8 dB
>>> y = cpx_AWGN(x, 8, 10)
>>> # matched filter the signal
>>> z = signal.lfilter(b, 1, y)
>>> # make bit decisions at 10 and Ns multiples thereafter
>>> Pe_hat = bit_errors(z, data, 10, 10)
```

sk_dsp_comm.sigsys.cascade_filters(b1, a1, b2, a2)

Cascade two IIR digital filters into a single (b,a) coefficient set.

To cascade two digital filters (system functions) given their numerator and denominator coefficients you simply
convolve the coefficient arrays.

Parameters

- `b1` [ndarray of numerator coefficients for filter 1]
- `a1` [ndarray of denominator coefficients for filter 1]
- `b2` [ndarray of numerator coefficients for filter 2]
- `a2` [ndarray of denominator coefficients for filter 2]

Returns

- `b` [ndarray of numerator coefficients for the cascade]
Examples

```python
>>> from scipy import signal
>>> b1,a1 = signal.butter(3, 0.1)
>>> b2,a2 = signal.butter(3, 0.15)
>>> b,a = cascade_filters(b1,a1,b2,a2)
```

```
sk_dsp_comm.sigsys.conv_integral(x1, tx1, x2, tx2, extent=('f', 'f'))
```

Continuous-time convolution of x1 and x2 with proper tracking of the output time axis.

Approximate the convolution integral for the convolution of two continuous-time signals using the SciPy function signal. The time (sequence axis) are managed from input to output. \( y(t) = x1(t) \ast x2(t) \).

**Parameters**

- **x1** [ndarray of signal x1 corresponding to tx1]
- **tx1** [ndarray time axis for x1]
- **x2** [ndarray of signal x2 corresponding to tx2]
- **tx2** [ndarray time axis for x2]
- **extent** [('e1','e2')] where ‘e1’, ‘e2’ may be ‘f’ finite, ‘r’ right-sided, or ‘l’ left-sided

**Returns**

- **y** [ndarray of output values y]
- **ty** [ndarray of the corresponding time axis for y]

**Notes**

The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The time steps used in x1(t) and x2(t) must match. The default extents of (‘f’,‘f’) are used for signals that are active (have support) on or within t1 and t2 respectively. A right-sided signal such as \( \exp(-at) \ast u(t) \) is semi-infinite, so it has extent ‘r’ and the convolution output will be truncated to display only the valid results.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss

>>> tx = np.arange(-5,10,.01)
>>> x = ss.rect(tx-2,4)  # pulse starts at t = 0
>>> y,ty = ss.conv_integral(x,tx,x,tx)
>>> plt.plot(ty,y)  # expect a triangle on [0,8]
>>> plt.show()

Now, consider a pulse convolved with an exponential.

```python
>>> h = 4*np.exp(-4*tx)*ss.step(tx)
>>> y,ty = ss.conv_integral(x,tx,h,tx,extent=('f','r'))  # note extents set
>>> plt.plot(ty,y)  # expect a pulse charge and discharge waveform
```
sk_dsp_comm.sigsys.conv_sum(x1, nx1, x2, nx2, extent=('f', 'f'))
Discrete convolution of x1 and x2 with proper tracking of the output time axis.

Convolve two discrete-time signals using the SciPy function `scipy.signal.convolution()`. The time (sequence axis) are managed from input to output. \( y[n] = x1[n]*x2[n] \).

**Parameters**
- **x1** [ndarray of signal x1 corresponding to nx1]
- **nx1** [ndarray time axis for x1]
- **x2** [ndarray of signal x2 corresponding to nx2]
- **nx2** [ndarray time axis for x2]
- **extent** [('e1', 'e2') where 'e1', 'e2' may be 'f' finite, 'r' right-sided, or 'l' left-sided]

**Returns**
- **y** [ndarray of output values y]
- **ny** [ndarray of the corresponding sequence index n]

**Notes**
The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The default extents of ('f', 'f') are used for signals that are active (have support) on or within n1 and n2 respectively. A right-sided signal such as \( a^n u[n] \) is semi-infinite, so it has extent ‘r’ and the convolution output will be truncated to display only the valid results.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss
>>> nx = np.arange(-5,10)
>>> x = ss.drect(nx,4)
>>> y,ny = ss.conv_sum(x,nx,x,nx)
>>> plt.stem(ny,y)
>>> plt.show()
```

Consider a pulse convolved with an exponential. (‘r’ type extent)

```python
>>> h = 0.5**nx*ss.dstep(nx)
>>> y,ny = ss.conv_sum(x,nx,h,nx,('f','r')) # note extents set
>>> plt.stem(ny,y) # expect a pulse charge and discharge sequence
```

sk_dsp_comm.sigsys.cpx_AWGN(x, EsN0, Ns)
Apply white Gaussian noise to a digital communications signal.

This function represents a complex baseband white Gaussian noise digital communications channel. The input signal array may be real or complex.

**Parameters**
- **x** [ndarray noise free complex baseband input signal.]
- **EsNO** [set the channel Es/No (Eb/No for binary) level in dB]
- **Ns** [number of samples per symbol (bit)]
Returns

\[ y \text{ [ndarray x with additive noise added.]} \]

Notes

Set the channel energy per symbol-to-noise power spectral density ratio (Es/N0) in dB.

Examples

```python
>>> x, b, data = NRZ_bits(1000, 10)
>>> # set Eb/N0 = 10 dB
>>> y = cpx_AWGN(x, 10, 10)
```

```
sk_dsp_comm.sigsy.cruise_control (wn, zeta, T, vcruise, vmax, tf_mode='H')
Cruise control with PI controller and hill disturbance.

This function returns various system function configurations for a the cruise control Case Study example found in the supplementary article. The plant model is obtained by the linearizing the equations of motion and the controller contains a proportional and integral gain term set via the closed-loop parameters natural frequency wn (rad/s) and damping zeta.

Parameters

- **wn** [closed-loop natural frequency in rad/s, nominally 0.1]
- **zeta** [closed-loop damping factor, nominally 1.0]
- **T** [vehicle time constant, nominally 10 s]
- **vcruise** [cruise velocity set point, nominally 75 mph]
- **vmax** [maximum vehicle velocity, nominally 120 mph]
- **tf_mode** ['H', 'HE', 'HVW', or 'HED' controls the system function returned by the function]
  - 'H' [closed-loop system function V(s)/R(s)]
  - 'HE' [closed-loop system function E(s)/R(s)]
  - 'HVW' [closed-loop system function V(s)/W(s)]
  - 'HED' [closed-loop system function E(s)/D(s), where D is the hill disturbance input]

Returns

- **b** [numerator coefficient ndarray]
- **a** [denominator coefficient ndarray]

Examples

```python
>>> # return the closed-loop system function output/input velocity
>>> b, a = cruise_control(wn, zeta, T, vcruise, vmax, tf_mode='H')
>>> # return the closed-loop system function loop error/hill disturbance
>>> b, a = cruise_control(wn, zeta, T, vcruise, vmax, tf_mode='HED')
```
sk_dsp_comm.sigsys.deci24(x)
Decimate by \( L = 24 \) using Butterworth filters.

The decimation is done using two three stages. Downsample sample by \( L = 2 \) and lowpass filter, downsample by 3 and lowpass filter, then downsample by \( L = 4 \) and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth lowpass.

**Parameters**
- \( x \) [ndarray of the input signal]

**Returns**
- \( y \) [ndarray of the output signal]

**Notes**
The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively.

**Examples**

```python
>>> y = deci24(x)
```

sk_dsp_comm.sigsys.delta_eps(t, eps)
Rectangular pulse approximation to impulse function.

**Parameters**
- \( t \) [ndarray of time axis]
- \( eps \) [pulse width]

**Returns**
- \( d \) [ndarray containing the impulse approximation]

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import delta_eps

>>> t = np.arange(-2,2,.001)
>>> d = delta_eps(t,.1)
>>> plt.plot(t,d)
>>> plt.show()
```

sk_dsp_comm.sigsys.dimpulse(n)
Discrete impulse function \( \delta[n] \).

**Parameters**
- \( n \) [ndarray of the time axis]

**Returns**
- \( x \) [ndarray of the signal \( \delta[n] \)]
Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import dimpulse

>>> n = arange(-5,5)
>>> x = dimpulse(n)
>>> plt.stem(n,x)
>>> plt.show()
```

Shift the delta left by 2.

```python
>>> x = dimpulse(n+2)
>>> plt.stem(n,x)
```

```
```

```
```
Downsample by factor M

Keep every Mth sample of the input. The phase of the input samples kept can be selected.

**Parameters**
- x [ndarray of input signal values]
- M [downsample factor]
- p [phase of decimated value, 0 (default), 1, ..., M-1]

**Returns**
- y [ndarray of the output signal values]

**Examples**

```python
>>> y = downsample(x, 3)
>>> y = downsample(x, 3, 1)
```

sk_dsp_comm.sigsys.**drect** (n, N)
Discrete rectangle function of duration N samples.

The signal is active on the interval 0 \(\leq n \leq N-1\). Also known as the rectangular window function, which is available in scipy.signal.

**Parameters**
- n [ndarray of the time axis]
- N [the pulse duration]

**Returns**
- x [ndarray of the signal]

**Notes**

The discrete rectangle turns on at n = 0, off at n = N-1 and has duration of exactly N samples.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import drect

>>> n = arange(-5, 5)
>>> x = drect(n, N=3)
>>> plt.stem(n, x)
>>> plt.show()

Shift the delta left by 2.

```python
>>> x = drect(n+2, N=3)
>>> plt.stem(n, x)
```

sk_dsp_comm.sigsys.**dstep** (n)
Discrete step function \(u[n]\).

```
Parameters

\( n \) [ndarray of the time axis]

Returns

\( x \) [ndarray of the signal \( u[n] \)]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import dstep

>>> n = arange(-5,5)
>>> x = dstep(n)
>>> plt.stem(n,x)
>>> plt.show()

Shift the delta left by 2.

```python
>>> x = dstep(n+2)
>>> plt.stem(n,x)
```
Examples

```python
>>> n = arange(0,100)
>>> # 1 kHz message signal
>>> m = cos(2*pi*1000/8000.*n)
>>> x192, t192, m24 = am_tx(m, 0.8, fc=75e3)
>>> y = env_det(x192)
```

`sk_dsp_comm.sigsys.ex6_2(n)`

Generate a triangle pulse as described in Example 6-2 of Chapter 6.

You need to supply an index array `n` that covers at least [-2, 5]. The function returns the hard-coded signal of the example.

**Parameters**

- **n** [time index ndarray covering at least -2 to +5.]

**Returns**

- **x** [ndarray of signal samples in x]

Examples

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> n = np.arange(-5,8)
>>> x = ss.ex6_2(n)
>>> plt.stem(n,x)  # creates a stem plot of x vs n
```

`sk_dsp_comm.sigsys.eye_plot(x, L, S=0)`

Eye pattern plot of a baseband digital communications waveform.

The signal must be real, but can be multivalued in terms of the underlying modulation scheme. Used for BPSK eye plots in the Case Study article.
Parameters

- x [ndarray of the real input data vector/array]
- L [display length in samples (usually two symbols)]
- S [start index]

Returns

Nothing [A plot window opens containing the eye plot]

Notes

Increase S to eliminate filter transients.

Examples

1000 bits at 10 samples per bit with ‘rc’ shaping.

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> x, b, data = ss.NRZ_bits(1000, 10, 'rc')
>>> ss.eye_plot(x, 20, 60)
```

`sk_dsp_comm.sigsys.fir_iir_notch(fi, fs, r=0.95)`
Design a second-order FIR or IIR notch filter.

A second-order FIR notch filter is created by placing conjugate zeros on the unit circle at angle corresponding to the notch center frequency. The IIR notch variation places a pair of conjugate poles at the same angle, but with radius $r < 1$ (typically 0.9 to 0.95).

Parameters

- fi [notch frequency is Hz relative to fs]
- fs [the sampling frequency in Hz, e.g. 8000]
- r [pole radius for IIR version, default = 0.95]

Returns

- b [numerator coefficient ndarray]
- a [denominator coefficient ndarray]

Notes

If the pole radius is 0 then an FIR version is created, that is there are no poles except at $z = 0$.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss

>>> b_FIR, a_FIR = ss.fir_iir_notch(1000, 8000, 0)
>>> ss.zplane(b_FIR, a_FIR)
>>> plt.show()
```
```python
>>> b_IIR, a_IIR = ss.fir_iir_notch(1000, 8000)
>>> ss.zplane(b_IIR, a_IIR)
```

**sk_dsp_comm.sigsyls**.from_wav(filename)

Read a wave file.

A wrapper function for scipy.io.wavfile.read that also includes int16 to float [-1,1] scaling.

**Parameters**

- `filename` [file name string]

**Returns**

- `fs` [sampling frequency in Hz]
- `x` [ndarray of normalized to 1 signal samples]

**Examples**

```python
>>> fs, x = from_wav('test_file.wav')
```

**sk_dsp_comm.sigsyls**.fs_approx(Xk, fk, t)

Synthesize periodic signal x(t) using Fourier series coefficients at harmonic frequencies.
Assume the signal is real so coefficients $X_k$ are supplied for nonnegative indicies. The negative index coefficients are assumed to be complex conjugates.

**Parameters**

- **$X_k$** [ndarray of complex Fourier series coefficients]
- **$f_k$** [ndarray of harmonic frequencies in Hz]
- **$t$** [ndarray time axis corresponding to output signal array $x_{\text{approx}}$]

**Returns**

- **$x_{\text{approx}}$** [ndarray of periodic waveform approximation over time span $t$]

**Examples**

```python
>>> t = arange(0,2,.002)
>>> # a 20% duty cycle pulse train
>>> n = arange(0,20,1) # 0 to 19th harmonic
>>> fk = 1*n % period = 1s
>>> t, x_approx = fs_approx(Xk,fk,t)
>>> plot(t,x_approx)
```

**sk_dsp_comm.sigsys.fs_coeff** ($xp$, $N$, $f_0$, one_side=True)

Numerically approximate the Fourier series coefficients given periodic $x(t)$.

The input is assumed to represent one period of the waveform $x(t)$ that has been uniformly sampled. The number of samples supplied to represent one period of the waveform sets the sampling rate.

**Parameters**

- **$xp$** [ndarray of one period of the waveform $x(t)$]
- **$N$** [maximum Fourier series coefficient, [0,...,$N$]]
- **$f_0$** [fundamental frequency used to form $f_k$.]

**Returns**

- **$X_k$** [ndarray of the coefficients over indices [0,1,...,$N$]]
- **$f_k$** [ndarray of the harmonic frequencies [0, $f_0$,2$f_0$,....,$N$f_0]]

**Notes**

len($xp$) >= $2*N+1$ as len($xp$) is the fft length.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> import sk_dsp_comm.sigsys as ss

>>> t = arange(0,1,1/1024.)
>>> # a 20% duty cycle pulse starting at $t = 0$
>>> x_rect = ss.rect(t-.1,0.2)
>>> Xk, fk = ss.fs_coeff(x_rect,25,10)
>>> # plot the spectral lines
```
sk_dsp_comm.sigsy.ft_approx(x, t, Nfft)
Approximate the Fourier transform of a finite duration signal using scipy.signal.freqz()

Parameters

- x [input signal array]
- t [time array used to create x(t)]
- Nfft [the number of frequency domain points used to approximate X(f) on the interval [fs/2, fs/2], where fs = 1/Dt. Dt being the time spacing in array t]

Returns

- f [frequency axis array in Hz]
- X [the Fourier transform approximation (complex)]

Notes

The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The default extents of ('f', 'f') are used for signals that are active (have support) on or within n1 and n2 respectively. A right-sided signal such as $a^n u[n]$ is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsy as ss

>>> fs = 100 # sampling rate in Hz
>>> tau = 1
>>> t = np.arange(-5, 5, 1/fs)
>>> x0 = ss.rect(t-.5, tau)
>>> plt.figure(figsize=(6,5))
>>> plt.plot(t, x0)
>>> plt.grid()
>>> plt.ylim([-0.1, 1.1])
>>> plt.xlim([-2, 2])
>>> plt.title(r'Exact Waveform')
>>> plt.xlabel(r'Time (s)')
>>> plt.ylabel(r'$x_0(t)$')
>>> plt.show()
```

```python
>>> # FT Exact Plot
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsy as ss

>>> fs = 100 # sampling rate in Hz
>>> tau = 1
>>> t = np.arange(-5, 5, 1/fs)
>>> x0 = ss.rect(t-.5, tau)
>>> fe = np.arange(-10, 10, .01)
```
```python
>>> X0e = tau*np.sinc(fe*tau)
>>> plt.plot(fe,abs(X0e))
>>> #plt.plot(f,angle(X0))
>>> plt.grid()
>>> plt.xlim([-10,10])
>>> plt.title(r'Exact (Theory) Spectrum Magnitude')
>>> plt.xlabel(r'Frequency (Hz)')
>>> plt.ylabel(r'$|X_0e(f)|$')
>>> plt.show()
```

```python
>>> # FT Approximation Plot
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import sk_dsp_comm.sigsys as ss

fs = 100  # sampling rate in Hz
tau = 1

t = np.arange(-5,5,1/fs)
x0 = ss.rect(t-.5,tau)
f,X0 = ss.ft_approx(x0,t,4096)
plt.plot(f,abs(X0))
>>> #plt.plot(f,angle(X0))
>>> plt.grid()
>>> plt.xlim([-10,10])
>>> plt.title(r'Approximation Spectrum Magnitude')
>>> plt.xlabel(r'Frequency (Hz)')
>>> plt.ylabel(r'$|X_0(f)|$');
>>> plt.tight_layout()
>>> plt.show()
```

**sk_dsp_comm.sigsys.interp24(x)**

Interpolate by \(L = 24\) using Butterworth filters.

The interpolation is done using three stages. Upsample by \(L = 2\) and lowpass filter, upsample by 3 and lowpass filter, then upsample by \(L = 4\) and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth lowpass.
Parameters

x [ndarray of the input signal]

Returns

y [ndarray of the output signal]

Notes

The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively.

Examples

```python
>>> y = interp24(x)
```

**sk_dsp_comm.sigsy.line_spectra** (fk, Xk, mode, sides=2, linetype='b', lwidth=2, floor_DB=-100, fsize=(6, 4))

Plot the Fourier series line spectral given the coefficients.

This function plots two-sided and one-sided line spectra of a periodic signal given the complex exponential Fourier series coefficients and the corresponding harmonic frequencies.

Parameters

- fk [vector of real sinusoid frequencies]
- Xk [magnitude and phase at each positive frequency in fk]
- mode ['mag' => magnitude plot, 'magdB' => magnitude in dB plot.]
- mode_cont ['magdBn' => magnitude in dB normalized, 'phase' => a phase plot in radians]
- sides [2; 2-sided or 1-sided]
- linetype [line type per Matplotlib definitions, e.g., ‘b’;]
- lwidth [2; linewidth in points]
**fsize**  [optional figure size in inches, default = (6,4) inches]

**Returns**

Nothing  [A plot window opens containing the line spectrum plot]

**Notes**

Since real signals are assumed the frequencies of \( f_k \) are 0 and/or positive numbers. The supplied Fourier coefficients correspond.

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm.sigsys import line_spectra
>>> n = np.arange(0,25)
>>> # a pulse train with 10 Hz fundamental and 20% duty cycle
>>> fk = n*10
>>> Xk = np.sinc(n*10*.02)*np.exp(-1j*2*np.pi*n*10*.01)  # 1j = sqrt(-1)
>>> line_spectra(fk,Xk,'mag')
>>> plt.show()
```

```python
>>> line_spectra(fk,Xk,'phase')
```

![Line Spectrum Plot](image)

**sk_dsp_comm.sigsys.lms_ic** \((r, M, mu, delta=1)\)

Least mean square (LMS) interference canceller adaptive filter.
A complete LMS adaptive filter simulation function for the case of interference cancellation. Used in the digital filtering case study.

**Parameters**

- `M` [FIR Filter length (order M-1)]
- `delta` [Delay used to generate the reference signal]
- `mu` [LMS step-size]
- `delta` [decorrelation delay between input and FIR filter input]

**Returns**

- `n` [ndarray Index vector]
- `r` [ndarray noisy (with interference) input signal]
- `r_hat` [ndarray filtered output (NB_hat[n])]
- `e` [ndarray error sequence (WB_hat[n])]
- `ao` [ndarray final value of weight vector]
- `F` [ndarray frequency response axis vector]
- `Ao` [ndarray frequency response of filter]

**Examples**

```python
>>> # import a speech signal
>>> fs, s = from_wav('OSR_us_000_0030_8k.wav')
```

(continues on next page)
sk_dsp_comm.sigsys.lp_samp \((fb, fs, fmax, N, shape='tri', fsize=(6, 4))\)

Lowpass sampling theorem plotting function.

Display the spectrum of a sampled signal after setting the bandwidth, sampling frequency, maximum display frequency, and spectral shape.

**Parameters**

- **fb** [spectrum lowpass bandwidth in Hz]
- **fs** [sampling frequency in Hz]
- **fmax** [plot over [-fmax,fmax]]
- **shape** ['tri' or 'line']
- **N** [number of translates, N positive and N negative]
- **fsize** [the size of the figure window, default (6,4)]

**Returns**

**Nothing** [A plot window opens containing the spectrum plot]

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm.sigsys import lp_samp
```

No aliasing as bandwidth 10 Hz < 25/2; fs > fb.

```python
>>> lp_samp(10,25,50,10)
>>> plt.show()
```

Now aliasing as bandwidth 15 Hz > 25/2; fs < fb.

```python
>>> lp_samp(15,25,50,10)
```

sk_dsp_comm.sigsys.lp_tri \((f,fb)\)

Triangle spectral shape function used by `lp_samp()`.

**Parameters**

- **f** [ndarray containing frequency samples]
- **fb** [the bandwidth as a float constant]

**Returns**

- **x** [ndarray of spectrum samples for a single triangle shape]

**Notes**

This is a support function for the lowpass spectrum plotting function `lp_samp()`.
Examples

```python
>>> x = lp_tri(f, fb)
```

`sck_dsp_comm.sigsys.m_seq(m)`
Generate an m-sequence ndarray using an all-ones initialization.

Available m-sequence (PN generators) include \( m = 2,3, \ldots, 12, \) & 16.

**Parameters**

- `m` [the number of shift registers, 2,3, ..., 12, & 16]

**Returns**

- `c` [ndarray of one period of the m-sequence]

**Notes**

The sequence period is \( 2^m - 1 \).

Examples

```python
>>> c = m_seq(5)
```

`sck_dsp_comm.sigsys.my_psd(x, NFFT=1024, Fs=1)`
A local version of NumPy’s PSD function that returns the plot arrays.

A `mlab.psd` wrapper function that returns two ndarrays; makes no attempt to auto plot anything.

**Parameters**

- `x` [ndarray input signal]
- `NFFT` [a power of two, e.g., \( 2^{10} = 1024 \)]
- `Fs` [the sampling rate in Hz]

**Returns**

- `Px` [ndarray of the power spectrum estimate]
- `f` [ndarray of frequency values]

**Notes**

This function makes it easier to overlay spectrum plots because you have better control over the axis scaling than when using `psd()` in the autoscale mode.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import log10
>>> from sk_dsp_comm import sigsys as ss
>>> x,b, data = ss.NRZ_bits(10000,10)
>>> Px,f = ss.my_psd(x,2**10,10)
```
sk_dsp_comm.sigsys.peaking \((GdB, fc, Q=3.5, fs=44100.0)\)
A second-order peaking filter having GdB gain at fc and approximately and 0 dB otherwise.

The filter coefficients returns correspond to a biquadratic system function containing five parameters.

**Parameters**

- **GdB** [Lowpass gain in dB]
- **fc** [Center frequency in Hz]
- **Q** [Filter Q which is inversely proportional to bandwidth]
- **fs** [Sampling frequency in Hz]

**Returns**

- **b** [ndarray containing the numerator filter coefficients]
- **a** [ndarray containing the denominator filter coefficients]

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm.sigsys import peaking
>>> from scipy import signal

>>> b,a = peaking(2.0,500)
>>> f = np.logspace(1,5,400)
>>> w,H = signal.freqz(b,a,2*np.pi*f/44100)
>>> plt.semilogx(f,20*np.log10(abs(H)))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
>>> plt.show()

>>> b,a = peaking(-5.0,500,4)
>>> w,H = signal.freqz(b,a,2*np.pi*f/44100)
>>> plt.semilogx(f,20*np.log10(abs(H)))
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel("Frequency (Hz)")
>>> plt.show()
```

sk_dsp_comm.sigsys.position_CD \((Ka, out_type='fb_exact')\)
CD sled position control case study of Chapter 18.

The function returns the closed-loop and open-loop system function for a CD/DVD sled position control system. The loop amplifier gain is the only variable that may be changed. The returned system function can however be changed.

**Parameters**

- **Ka** [loop amplifier gain, start with 50.]
- **out_type** ['open_loop' for open loop system function]
  - **out_type** ['fb_approx' for closed-loop approximation]
**out_type** ['fb_exact' for closed-loop exact]

**Returns**

- **b** [numerator coefficient ndarray]
- **a** [denominator coefficient ndarray]

**Notes**

With the exception of the loop amplifier gain, all other parameters are hard-coded from Case Study example.

**Examples**

```python
>>> b, a = position_CD(Ka, 'fb_approx')
>>> b, a = position_CD(Ka, 'fb_exact')
```

**sk_dsp_comm.sigsys.prin_alias** *(f_in, fs)*

Calculate the principle alias frequencies.

Given an array of input frequencies the function returns an array of principle alias frequencies.

**Parameters**

- **f_in** [ndarray of input frequencies]
- **fs** [sampling frequency]

**Returns**

- **f_out** [ndarray of principle alias frequencies]

**Examples**

```python
>>> # Linear frequency sweep from 0 to 50 Hz
>>> f_in = arange(0, 50, 0.1)
>>> # Calculate principle alias with fs = 10 Hz
>>> f_out = prin_alias(f_in, 10)
```

**sk_dsp_comm.sigsys.rc_imp** *(Ns, alpha, M=6)*

A truncated raised cosine pulse used in digital communications.

The pulse shaping factor $0 < \alpha < 1$ is required as well as the truncation factor $M$ which sets the pulse duration to be $2*M*T_{symbol}$.

**Parameters**

- **Ns** [number of samples per symbol]
- **alpha** [excess bandwidth factor on (0, 1), e.g., 0.35]
- **M** [equals RC one-sided symbol truncation factor]

**Returns**

- **b** [ndarray containing the pulse shape]
Notes

The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform.

Examples

Ten samples per symbol and alpha = 0.35.

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rc_imp

>>> b = rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()
```

```
sk_dsp_comm.sigsys.rect(t, tau)
Approximation to the rectangle pulse \( \Pi(t/\tau) \).

In this numerical version of \( \Pi(t/\tau) \) the pulse is active over \(-\tau/2 \leq t \leq \tau/2\).

**Parameters**

- **t** [ndarray of the time axis]
- **tau** [the pulse width]

**Returns**

- **x** [ndarray of the signal \( \Pi(t/\tau) \)]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rect

>>> t = arange(-1,5,.01)
>>> x = rect(t,1.0)
>>> plt.plot(t,x)
>>> plt.ylim([0, 1.01])
>>> plt.show()
```

To turn on the pulse at \( t = 1 \) shift \( t \).

```python
>>> x = rect(t - 1.0,1.0)
>>> plt.plot(t,x)
>>> plt.ylim([0, 1.01])
```

```
sk_dsp_comm.sigsys.rect_conv(n, N_len)
The theoretical result of convolving two rectangle sequences.

The result is a triangle. The solution is based on pure analysis. Simply coded as opposed to efficiently coded.

**Parameters**

- **n** [ndarray of time axis]
- **N_len** [rectangle pulse duration]
Returns

   y [ndarray of output signal]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import rect_conv
>>> n = arange(-5,20)
>>> y = rect_conv(n,6)
>>> plt.plot(n, y)
>>> plt.show()
```

**sk_dsp_comm.sigsys.scatter**(*x, Ns, start*)

Sample a baseband digital communications waveform at the symbol spacing.

Parameters

   *x* [ndarray of the input digital comm signal]

   *Ns* [number of samples per symbol (bit)]

   *start* [the array index to start the sampling]

Returns

   *xI* [ndarray of the real part of *x* following sampling]

   *xQ* [ndarray of the imaginary part of *x* following sampling]

Notes

Normally the signal is complex, so the scatter plot contains clusters at points in the complex plane. For a binary signal such as BPSK, the point centers are nominally +/-1 on the real axis. Start is used to eliminate transients from the FIR pulse shaping filters from appearing in the scatter plot.

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> x,b, data = ss.NRZ_bits(1000,10,'rc')
>>> # Add some noise so points are now scattered about +/-1
>>> y = ss.cpx_AWGN(x,20,10)
>>> yI,yQ = ss.scatter(y,10,60)
>>> plt.plot(yI,yQ,'.')
>>> plt.axis('equal')
>>> plt.ylabel("Quadrature")
>>> plt.xlabel("In-Phase")
>>> plt.grid()
>>> plt.show()
```

**sk_dsp_comm.sigsys.simpleQuant**(*x, Btot, Xmax, Limit*)

A simple rounding quantizer for bipolar signals having \(B_{tot} = B + 1\) bits.

This function models a quantizer that employs \(B_{tot}\) bits that has one of three selectable limiting types: saturation, overflow, and none. The quantizer is bipolar and implements rounding.
**Parameters**

- **x** [input signal ndarray to be quantized]
- **Btot** [total number of bits in the quantizer, e.g. 16]
- **Xmax** [quantizer full-scale dynamic range is [-Xmax, Xmax]]
- **Limit** = Limiting of the form ‘sat’, ‘over’, ‘none’

**Returns**

- **xq** [quantized output ndarray]

**Notes**

The quantization can be formed as \( e = xq - x \)

**Examples**

```python
>>> import matplotlib.pyplot as plt
>>> from matplotlib.mlab import psd
>>> import numpy as np
>>> from sk_dsp_comm import sigsys as ss

>>> n = np.arange(0,10000)
>>> x = np.cos(2*np.pi*0.211*n)
>>> y = ss.sinusoidAWGN(x,90)
>>> Px, f = psd(y,2**10,Fs=1)
>>> plt.plot(f, 10*np.log10(Px))
>>> plt.ylim([-80, 25])
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.xlabel(r'Normalized Frequency $\omega/2\pi$')
>>> plt.show()
```

![Power Spectral Density Plot](image)
`sk_dsp_comm.sigsys.simple_SA(x, NS, NFFT, fs, NAVG=1, window='boxcar')`

Spectral estimation using windowing and averaging.

This function implements averaged periodogram spectral estimation estimation similar to the NumPy’s `psd()` function, but more specialized for the the windowing case study of Chapter 16.

**Parameters**

- `x` [ndarray containing the input signal]
- `NS` [The subrecord length less zero padding, e.g. NS < NFFT]
- `NFFT` [FFT length, e.g., 1024 = 2**10]
- `fs` [sampling rate in Hz]
- `NAVG` [the number of averages, e.g., 1 for deterministic signals]
- `window` [hardcoded window ‘boxcar’ (default) or ‘hanning’]

**Returns**

- `f` [ndarray frequency axis in Hz on [0, fs/2]]
- `Sx` [ndarray the power spectrum estimate]

**Notes**

The function also prints the maximum number of averages K possible for the input data record.
Examples

```python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from sk_dsp_comm import sigsys as ss

>>> n = np.arange(0,2048)
>>> x = np.cos(2*np.pi*1000/10000*n) + 0.01*np.cos(2*np.pi*3000/10000*n)
>>> f, Sx = ss.simple_SA(x,128,512,10000)
>>> plt.plot(f, 10*np.log10(Sx))
>>> plt.ylim([-80, 0])
>>> plt.xlabel("Frequency (Hz)")
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.show()
```

With a hanning window.

```python
>>> f, Sx = ss.simple_SA(x,256,1024,10000,window='hanning')
>>> plt.plot(f, 10*np.log10(Sx))
>>> plt.xlabel("Frequency (Hz)")
>>> plt.ylabel("Power Spectral Density (dB)")
>>> plt.ylim([-80, 0])
```

`sk_dsp_comm.sigsys.sinusoidAWGN(x, SNRdB)`

Add white Gaussian noise to a single real sinusoid.

Input a single sinusoid to this function and it returns a noisy sinusoid at a specific SNR value in dB. Sinusoid power is calculated using `np.var`.

**Parameters**

- `x` [Input signal as ndarray consisting of a single sinusoid]
- `SNRdB` [SNR in dB for output sinusoid]

**Returns**

- `y` [Noisy sinusoid return vector]
Examples

```python
>>> # set the SNR to 10 dB
>>> n = arange(0,10000)
>>> x = cos(2*pi*0.04*n)
>>> y = sinusoidAWGN(x,10.0)
```

**sk_dsp_comm.sigsys.soi_snoi_gen**(*s, SIR\_dB, N, fi, fs=8000*)

Add an interfering sinusoidal tone to the input signal at a given SIR\_dB.

The input is the signal of interest (SOI) and number of sinusoid signals not of interest (SNOI) are added to the SOI at a prescribed signal-to-interference SIR level in dB.

**Parameters**

- **s** [ndarray of signal of SOI]
- **SIR\_dB** [interference level in dB]
- **N** [Trim input signal s to length N + 1 samples]
- **fi** [ndarray of interference frequencies in Hz]
- **fs** [sampling rate in Hz, default is 8000 Hz]

**Returns**

- **r** [ndarray of combined signal plus interference of length N+1 samples]

Examples

```python
>>> # load a speech ndarray and trim to 5*8000 + 1 samples
>>> fs,s = from_wav('OSR_us_000_0030_8k.wav')
>>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500])
```

**sk_dsp_comm.sigsys.splane**(*b, a, auto_scale=True, size=[-1, 1, -1, 1]*)

Create an s-plane pole-zero plot.
As input the function uses the numerator and denominator s-domain system function coefficient ndarrays b and a respectively. Assumed to be stored in descending powers of s.

**Parameters**

- `b` [numerator coefficient ndarray.]
- `a` [denominator coefficient ndarray.]
- `auto_scale` [True]
- `size` [[xmin,xmax,ymin,ymax] plot scaling when scale = False]

**Returns**

- `(M,N)` [tuple of zero and pole counts + plot window]

**Notes**

This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function `signal.unique_roots`.

**Examples**

```python
>>> # Here the plot is generated using auto_scale
>>> splane(b,a)
>>> # Here the plot is generated using manual scaling
>>> splane(b,a, False, [-10,1,-10,10])
```

**sk_dsp_comm.sigsy.sqrt_rc_imp** (`Ns`, `alpha`, `M=6`)  
A truncated square root raised cosine pulse used in digital communications.

The pulse shaping factor `0 < alpha < 1` is required as well as the truncation factor `M` which sets the pulse duration to be `2*M*Tsymbol`.

**Parameters**

- `Ns` [number of samples per symbol]
- `alpha` [excess bandwidth factor on (0, 1), e.g., 0.35]
- `M` [equals RC one-sided symbol truncation factor]

**Returns**

- `b` [ndarray containing the pulse shape]

**Notes**

The pulse shape `b` is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. When square root raised cosine (SRC) pulse is used generate Tx signals and at the receiver used as a matched filter (receiver FIR filter), the received signal is now raised cosine shaped, this having zero intersymbol interference and the optimum removal of additive white noise if present at the receiver input.
Examples

```python
>>> # ten samples per symbol and alpha = 0.35
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import sqrt_rc_imp
>>> b = sqrt_rc_imp(10,0.35)
>>> n = arange(-10*6,10*6+1)
>>> plt.stem(n,b)
>>> plt.show()
```

sk_dsp_comm.sigsys.step(t)
Approximation to step function signal u(t).

In this numerical version of u(t) the step turns on at t = 0.

Parameters

t [ndarray of the time axis]

Returns

x [ndarray of the step function signal u(t)]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import step
>>> t = arange(-1,5,.01)
>>> x = step(t)
>>> plt.plot(t,x)
>>> plt.ylim([-0.01, 1.01])
>>> plt.show()
```

To turn on at t = 1, shift t.
```python
gdb = np.array([30, 25, 20, 15, 10, 5, 0, 10, 15, 20])
Q = 3.5

x = step(t - 1.0)
plt.ylim([-0.01, 1.01])
plt.plot(t, x)
```

### `sk_dsp_comm.sigsys.ten_band_eq_filt(x, GdB, Q=3.5)`
Filter the input signal `x` with a ten-band equalizer having octave gain values in ndarray `GdB`.

The signal `x` is filtered using octave-spaced peaking filters starting at 31.25 Hz and stopping at 16 kHz. The `Q` of each filter is 3.5, but can be changed. The sampling rate is assumed to be 44.1 kHz.

**Parameters**
- `x` [ndarray of the input signal samples]
- `GdB` [ndarray containing ten octave band gain values [G0dB,...,G9dB]]
- `Q` [Quality factor vector for each of the NB peaking filters]

**Returns**
- `y` [ndarray of output signal samples]

**Examples**
```python
>>> # Test with white noise
>>> w = randn(100000)
>>> y = ten_band_eq_filt(x, GdB)
>>> psd(y, 2**10, 44.1)
```

### `sk_dsp_comm.sigsys.ten_band_eq_resp(GdB, Q=3.5)`
Create a frequency response magnitude plot in dB of a ten band equalizer using a semilogplot (semilogx()) type plot

**Parameters**
- `GdB` [Gain vector for 10 peaking filters [G0,...,G9]]
- `Q` [Quality factor for each peaking filter (default 3.5)]
Returns
Nothing [two plots are created]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from sk_dsp_comm import sigsys as ss
>>> ss.ten_band_eq_resp([0,10.0,0,0,-1,0,5,0,-4,0])
>>> plt.show()
```

sk_dsp_comm.sigsys.to_wav (filename, rate, x)
Write a wave file.
A wrapper function for scipy.io.wavfile.write that also includes int16 scaling and conversion. Assume input x is [-1,1] values.

Parameters
- filename [file name string]
- rate [sampling frequency in Hz]

Returns
Nothing [writes only the *.wav file]

Examples

```python
>>> to_wav('test_file.wav', 8000, x)
```

sk_dsp_comm.sigsys.tri (t, tau)
Approximation to the triangle pulse Lambda(t/tau).
In this numerical version of Lambda(t/tau) the pulse is active over -tau <= t <= tau.

Parameters
- t [ndarray of the time axis]
- tau [one half the triangle base width]

Returns
- x [ndarray of the signal Lambda(t/tau)]

Examples

```python
>>> import matplotlib.pyplot as plt
>>> from numpy import arange
>>> from sk_dsp_comm.sigsys import tri
>>> t = arange(-1,5,.01)
>>> x = tri(t,1.0)
>>> plt.plot(t,x)
>>> plt.show()
```

To turn on at t = 1, shift t.
Mark Wickert October 2016

**sk_dsp-comm.sigsys.upsample** *(x, L)*

Upsample by factor L

Insert L - 1 zero samples in between each input sample.

**Parameters**

- x [ndarray of input signal values]
- L [upsample factor]
Returns

\( y \) [ndarray of the output signal values]

Examples

```python
>>> y = upsample(x, 3)
```

`sk_dsp_comm.sigsz.zplane(b, a, auto_scale=True, size=2, detect_mult=True, tol=0.001)`

Create an z-plane pole-zero plot.

Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient ndarrays \( b \) and \( a \) respectively. Assume descending powers of \( z \).

Parameters

- \( b \) [ndarray of the numerator coefficients]
- \( a \) [ndarray of the denominator coefficients]
- `auto_scale` [bool (default True)]
- `size` [plot radius maximum when scale = False]

Returns

- \((M,N)\) [tuple of zero and pole counts + plot window]

Notes

This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at \( 1e-3 \) via the function `signal.unique_roots`.

Examples

```python
>>> # Here the plot is generated using auto_scale
>>> zplane(b,a)

>>> # Here the plot is generated using manual scaling
>>> zplane(b,a,False,1.5)
```

`synchronization`

A Digital Communications Synchronization and PLLs Function Module

Copyright (c) March 2017, Mark Wickert All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project.

Mark Wickert July 2014


Mark Wickert July 2014

Kp = The phase detector gain in the symbol tracking loop; for the NDA algorithm used here always 1

Mark Wickert July 2014


sk_dsp_comm.synchronization.PLL1(theta, fs, loop_type, Kv, fn, zeta, non_lin)
Baseband Analog PLL Simulation Model

Parameters

- **theta** – input phase deviation in radians
- **fs** – sampling rate in sample per second or Hz
- **loop_type** – 1, first-order loop filter \( F(s) = K_{LF} \); 2, integrator with lead compensation \( F(s) = (1 + s \tau_2)/(s \tau_1) \), i.e., a type II, or 3, lowpass with lead compensation \( F(s) = (1 + s \tau_2)/(1 + s \tau_1) \)
- **Kv** – VCO gain in Hz/v; note presently assume \( Kp = 1\)v/rad and \( K_{LF} = 1 \); the user can easily change this
- **fn** – Loop natural frequency (loops 2 & 3) or cutoff frequency (loop 1)
- **zeta** – Damping factor for loops 2 & 3
- **non_lin** – 0, linear phase detector; 1, sinusoidal phase detector

Returns theta_hat = Output phase estimate of the input theta in radians, ev = VCO control voltage, phi = phase error = theta - theta_hat

Notes

Alternate input in place of natural frequency, fn, in Hz is the noise equivalent bandwidth \( B_n \) in Hz.

Mark Wickert, April 2007 for ECE 5625/4625 Modified February 2008 and July 2014 for ECE 5675/4675 Python version August 2014

sk_dsp_comm.synchronization.PLL_cbb(x, fs, loop_type, Kv, fn, zeta)
Baseband Analog PLL Simulation Model

Parameters

- **x** – input phase deviation in radians
- **fs** – sampling rate in sample per second or Hz
- **loop_type** – 1, first-order loop filter \( F(s) = K_{LF} \); 2, integrator with lead compensation \( F(s) = (1 + s \tau_2)/(s \tau_1) \), i.e., a type II, or 3, lowpass with lead compensation \( F(s) = (1 + s \tau_2)/(1 + s \tau_1) \)
- **Kv** – VCO gain in Hz/v; note presently assume \( Kp = 1\)v/rad and \( K_{LF} = 1 \); the user can easily change this
- **fn** – Loop natural frequency (loops 2 & 3) or cutoff frequency (loop 1)
- **zeta** – Damping factor for loops 2 & 3

Returns theta_hat = Output phase estimate of the input theta in radians, ev = VCO control voltage, phi = phase error = theta - theta_hat

Mark Wickert, April 2007 for ECE 5625/4625 Modified February 2008 and July 2014 for ECE 5675/4675 Python version August 2014
sk_dsp_comm.synchronization.phase_step(z, Ns, p_step, Nstep)
Create a one sample per symbol signal containing a phase rotation step Nsymb into the waveform.

Parameters
- `z` – complex baseband signal after matched filter
- `Ns` – number of sample per symbol
- `p_step` – size in radians of the phase step
- `Nstep` – symbol sample location where the step turns on

Returns the one sample symbol signal containing the phase step

Mark Wickert July 2014

sk_dsp_comm.synchronization.time_step(z, Ns, t_step, Nstep)
Create a one sample per symbol signal containing a phase rotation step Nsymb into the waveform.

Parameters
- `z` – complex baseband signal after matched filter
- `Ns` – number of sample per symbol
- `t_step` – in samples relative to Ns
- `Nstep` – symbol sample location where the step turns on

Returns the one sample per symbol signal containing the phase step

Mark Wickert July 2014

Indices and tables
- genindex
- modindex
- search
S

sk_dsp_comm.coef2header, 92
sk_dsp_comm.digitalcom, 93
sk_dsp_comm.fec_conv, 107
sk_dsp_comm.fir_design_helper, 118
sk_dsp_comm.iir_design_helper, 120
sk_dsp_comm.multirate_helper, 125
sk_dsp_comm.pyaudio_helper, 126
sk_dsp_comm.rtlsdr_helper, 130
sk_dsp_comm.sigsys, 137
sk_dsp_comm.synchronization, 185
Index

A

am_rx() (in module sk_dsp_comm.sigsys), 141
am_rx_BPF() (in module sk_dsp_comm.sigsys), 142
am_tx() (in module sk_dsp_comm.sigsys), 142
available_devices() (in module sk_dsp_comm.pyaudio_helper), 129
AWGN_chan() (in module sk_dsp_comm.digitalcom), 94

B

bandpass_order() (in module sk_dsp_comm.fir_design_helper), 118
bandstop_order() (in module sk_dsp_comm.fir_design_helper), 119
bin2gray() (in module sk_dsp_comm.digitalcom), 101
bin_num() (in module sk_dsp_comm.sigsys), 144
binary() (in module sk_dsp_comm.fec_conv), 108
biquad2() (in module sk_dsp_comm.sigsys), 144
bit_errors() (in module sk_dsp_comm.digitalcom), 101
bit_errors() (in module sk_dsp_comm.sigsys), 145
bm_calc() (in module sk_dsp_comm.fec_conv.fec_conv method), 110
BPSK_BEP() (in module sk_dsp_comm.digitalcom), 94
BPSK_tx() (in module sk_dsp_comm.digitalcom), 94
BPSK_tx() (in module sk_dsp_comm.sigsys), 137

C

CA_code_header() (in module sk_dsp_comm.coeff2header), 92
cascade_filters() (in module sk_dsp_comm.fir_design), 145
cb_active_plot() (in module sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 128
chan_est_equalize() (in module sk_dsp_comm.digitalcom), 102
CIC() (in module sk_dsp_comm.sigsys), 138
clear_buffer() (in module sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 132
clear_logs() (in module sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 132
complex2wav() (in module sk_dsp_comm.rtlsdr_helper), 136
conv_encoder() (in module sk_dsp_comm.fec_conv.fec_conv method), 110
conv_integral() (in module sk_dsp_comm.sigsys), 146
conv_Pb_bound() (in module sk_dsp_comm.fec_conv), 108
cpx_AWGN() (in module sk_dsp_comm.sigsys), 148
cruise_control() (in module sk_dsp_comm.sigsys), 150

d

downsample() (in module sk_dsp_comm.rtlsdr_helper), 136
drect() (in module sk_dsp_comm.rtlsdr_helper), 152
dn() (in module sk_dsp_comm.multirate_helper.multirate_FIR method), 125
dn() (in module sk_dsp_comm.multirate_helper.multirate_IIR method), 126
dn() (in module sk_dsp_comm.multirate_helper.rate_change method), 126
downsample() (in module sk_dsp_comm.sigsys), 152
drect() (in module sk_dsp_comm.sigsys), 153
dn() (in module sk_dsp_comm.rtlsdr_helper.DSP_io_stream method), 128
DSP_callback_tic() (in module sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 128
DSP_callback_toc() (in module sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 128
DSP\_capture\_add\_samples() (sk\_dsp\_comm\_pyaudio\_helper\_\_\_\_DPS\_\_\_io\_\_\_stream method), 128
DSP\_capture\_add\_samples\_stereo() (sk\_dsp\_comm\_pyaudio\_helper\_\_\_\_DPS\_\_\_io\_\_\_stream method), 128
DSP\_io\_stream (class in sk\_dsp\_comm\_pyaudio\_helper), 127
dstep() (in module sk\_dsp\_comm\_sigsys), 153

E
env\_det() (in module sk\_dsp\_comm\_sigsys), 155
ex6\_2() (in module sk\_dsp\_comm\_sigsys), 156
eye\_plot() (in module sk\_dsp\_comm\_digitalcom), 102
eye\_plot() (in module sk\_dsp\_comm\_sigsys), 156

F
farrow\_resample() (in module sk\_dsp\_comm\_digitalcom), 103
fec\_conv (class in sk\_dsp\_comm\_fec\_conv), 109
filter() (sk\_dsp\_comm\_multirate\_helper\_multirate\_FIR method), 125
filter() (sk\_dsp\_comm\_multirate\_helper\_multirate\_IIR method), 126
FIR\_fix\_header() (in module sk\_dsp\_comm\_coeff2header), 93
FIR\_header() (in module sk\_dsp\_comm\_coeff2header), 93
fir\_remez\_notch() (in module sk\_dsp\_comm\_sigsys), 157
fir\_remez\_bpf() (in module sk\_dsp\_comm\_fir\_design\_helper), 119
fir\_remez\_bsf() (in module sk\_dsp\_comm\_fir\_design\_helper), 119
fir\_remez\_hpf() (in module sk\_dsp\_comm\_fir\_design\_helper), 119
fir\_remez\_lpf() (in module sk\_dsp\_comm\_fir\_design\_helper), 119
fir\_win\_bpf() (in module sk\_dsp\_comm\_fir\_design\_helper), 119
fir\_win\_kaiser\_bpf() (in module sk\_dsp\_comm\_fir\_design\_helper), 119
fir\_win\_kaiser\_bsf() (in module sk\_dsp\_comm\_fir\_design\_helper), 119
fir\_win\_kaiser\_hpf() (in module sk\_dsp\_comm\_fir\_design\_helper), 120
fir\_win\_kaiser\_lpf() (in module sk\_dsp\_comm\_fir\_design\_helper), 120
fir\_win\_lpf() (in module sk\_dsp\_comm\_fir\_design\_helper), 120
freq\_resp() (sk\_dsp\_comm\_multirate\_helper\_multirate\_FIR -- stage2\_frame)
GMSK_bb() (in module sk_dsp_comm.digitalcom), 95
gray2bin() (in module sk_dsp_comm.digitalcom), 104

H
hard_Pk() (in module sk_dsp_comm.fec_cone), 116

I
IIR_bpf() (in module sk_dsp_comm.iir_design_helper), 121
IIR_bsf() (in module sk_dsp_comm.iir_design_helper), 122
IIR_hp() (in module sk_dsp_comm.iir_design_helper), 122
IIR_lp() (in module sk_dsp_comm.iir_design_helper), 122
IIR_sos_header() (in module sk_dsp_comm.coeff2header), 93
in_out_check() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 128
interactive_FM_Rx() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 133
interactive_stream() (sk_dsp_comm.pyaudio_helper.DSP_io_stream method), 128
interp24() (in module sk_dsp_comm.sigsys), 163

L
line_spectra() (in module sk_dsp_comm.sigsys), 164
lms_ic() (in module sk_dsp_comm.sigsys), 165
lowpass_order() (in module sk_dsp_comm.fir_design_helper), 120
lp_samp() (in module sk_dsp_comm.sigsys), 167
lp_tri() (in module sk_dsp_comm.sigsys), 167

M
m_seq() (in module sk_dsp_comm.sigsys), 169
mono_FM() (in module sk_dsp_comm.rtlsdr_helper), 136
MPSK_bb() (in module sk_dsp_comm.digitalcom), 95
MPSK_BEP_thy() (in module sk_dsp_comm.digitalcom), 95
MPSK_gray_decode() (in module sk_dsp_comm.digitalcom), 96
MPSK_gray_encode_bb() (in module sk_dsp_comm.digitalcom), 96
multirate_FIR (class sk_dsp_comm.multirate_helper), 125
multirate_IIR (class sk_dsp_comm.multirate_helper), 125
mux_pilot_blocks() (in module sk_dsp_comm.digitalcom), 104
my_psd() (in module sk_dsp_comm.digitalcom), 104
my_psd() (in module sk_dsp_comm.sigsys), 169

N
NDA_symb_sync() (in module sk_dsp_comm.synchronization), 186
NRZ_bits() (in module sk_dsp_comm.sigsys), 138
NRZ_bits2() (in module sk_dsp_comm.sigsys), 139

O
OA_filter() (in module sk_dsp_comm.sigsys), 139
OFDM_rx() (in module sk_dsp_comm.digitalcom), 96
OFDM_tx() (in module sk_dsp_comm.digitalcom), 98
OS_filter() (in module sk_dsp_comm.sigsys), 140

P
plot_processed_stage1() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 133
plot_rf() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 133
plot_stage1() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 133
plot_stage2() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 133
PN_gen() (in module sk_dsp_comm.sigsys), 141
position_CD() (in module sk_dsp_comm.sigsys), 170
prin_alias() (in module sk_dsp_comm.sigsys), 172
puncture() (sk_dsp_comm.fec_cone.fec_cone method), 110

Q
Q_fctn() (in module sk_dsp_comm.digitalcom), 101
QAM_bb() (in module sk_dsp_comm.digitalcom), 100
QAM_BEP_thy() (in module sk_dsp_comm.digitalcom), 99
QAM_gray_decode() (in module sk_dsp_comm.digitalcom), 100
QAM_gray_encode_bb() (in module sk_dsp_comm.digitalcom), 100
QAM_SEP() (in module sk_dsp_comm.digitalcom), 99
QPSK_bb() (in module sk_dsp_comm.digitalcom), 101
QPSK_rx() (in module sk_dsp_comm.digitalcom), 101
QPSK_t() (in module sk_dsp_comm.digitalcom), 101
R
rate_change (class in sk_dsp_comm.multirate_helper), 126
rc_imp() (in module sk_dsp_comm.digitalcom), 105
rect() (in module sk_dsp_comm.sigsys), 173
reset_data_out_queue() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 133
RTLSDR_stream (class in sk_dsp_comm.rtlsdr_helper), 130
run_plot_processed_stag1_stream() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 134
run_plot_rf_stream() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 134
run_plot_stag1_stream() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 134
run_plot_stag2_stream() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 134
run_user_stream() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
RZ_bits() (in module sk_dsp_comm.digitalcom), 101
S
scatter() (in module sk_dsp_comm.digitalcom), 106
scatter() (in module sk_dsp_comm.sigsys), 175
sccs_bit_sync() (in module sk_dsp_comm.digitalcom), 136
set_audio_buffsize() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_audio_fs() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_audio_gain() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_audio_gain_db() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_audio_in() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_audio_out() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_fc() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_fc_mhz() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_fs() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_gain() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_NFFT() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_refresh_rate() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_rtl_buffer_size() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_stage1_coeffs() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
set_stage2_coeffs() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
show_logs() (sk_dsp_comm.rtlsdr_helper.RTLSDR_stream method), 135
simple_SA() (in module sk_dsp_comm.sigsys), 177
simpleQuant() (in module sk_dsp_comm.sigsys), 175
sinusoidAWGN() (in module sk_dsp_comm.sigsys), 178
sk_dsp_comm.coef2header (module), 92
sk_dsp_comm.digitalcom (module), 93
sk_dsp_comm.fec_conv (module), 107
sk_dsp_comm.fir_design_helper (module), 118
sk_dsp_comm.iir_design_helper (module), 120
sk_dsp_comm.multirate_helper (module), 125
sk_dsp_comm.pyaudio_helper (module), 126
sk_dsp_comm.rtlsdr_helper (module), 130
sk_dsp_comm.sigsys (module), 137
sk_dsp_comm.synchronization (module), 185
soft_Pk() (in module sk_dsp_comm.fec_conv), 116
soi_snoi_gen() (in module sk_dsp_comm.sigsys), 179
sos_cascade() (in module sk_dsp_comm.iir_design_helper), 124
sos_zplane() (in module sk_dsp_comm.iir_design_helper), 124
sparse() (in module sk_dsp_comm.sigsys), 179
sqrt_rc_imp() (in module sk_dsp_comm.digitalcom), 106