
NWB Specification Language
Release v2.0.0-beta

Aug 27, 2020

Table of Contents

1 NWB Specification Language 1
1.1 Introduction . 1
1.2 Extensions . 1
1.3 Namespaces . 2

1.3.1 Namespace declaration keys . 3
1.3.1.1 doc . 3
1.3.1.2 name . 3
1.3.1.3 full_name . 3
1.3.1.4 version . 3
1.3.1.5 date . 3
1.3.1.6 author . 3
1.3.1.7 contact . 3
1.3.1.8 schema . 4

1.4 Schema specification . 4
1.5 Groups . 5

1.5.1 Group specification keys . 5
1.5.1.1 neurodata_type_def and neurodata_type_inc 5
1.5.1.2 name . 7
1.5.1.3 default_name . 7
1.5.1.4 doc . 7
1.5.1.5 quantity . 7
1.5.1.6 linkable . 7
1.5.1.7 attributes . 8
1.5.1.8 datasets . 8
1.5.1.9 groups . 8
1.5.1.10 links . 8
1.5.1.11 _required . 8

1.6 Attributes . 9
1.6.1 Attribute specification keys . 9

1.6.1.1 name . 9
1.6.1.2 dtype . 9

1.6.1.2.1 Reference dtype . 11
1.6.1.2.2 Compound dtype . 11

1.6.1.3 dims . 12
1.6.1.4 shape . 13
1.6.1.5 value . 13

i

1.6.1.6 default_value . 13
1.6.1.7 doc . 13
1.6.1.8 required . 14

1.7 Links . 14
1.7.1 Link specification keys . 14

1.7.1.1 name . 14
1.7.1.2 target_type . 14
1.7.1.3 doc . 14
1.7.1.4 quantity . 14

1.8 Datasets . 14
1.8.1 Dataset specification keys . 15

1.8.1.1 neurodata_type_inc and neurodata_type_def 15
1.8.1.2 name . 15
1.8.1.3 default_name . 15
1.8.1.4 dtype . 15
1.8.1.5 dims . 16
1.8.1.6 shape . 16
1.8.1.7 value and default_value . 16
1.8.1.8 doc . 16
1.8.1.9 quantity . 16
1.8.1.10 linkable . 16
1.8.1.11 attributes . 16

1.9 Relationships . 16

2 Release Notes 17
2.1 Version 2.0.2 (Upcoming) . 17
2.2 Version 2.0.1 (March, 2019) . 17
2.3 Version 2.0.0 (January, 2019) . 17

2.3.1 Summary . 17
2.3.2 Currently unsupported features: . 20
2.3.3 YAML support . 20
2.3.4 `quantity` . 20
2.3.5 `merge` and `include` . 21
2.3.6 `structured_dimensions` . 21
2.3.7 `autogen` . 21

2.4 Version 1.1c (Oct. 7, 2016) . 22

3 Credits 23
3.1 Acknowledgments . 23
3.2 Authors . 23

3.2.1 NWB:N: Version 2.0.0 and later . 23
3.2.2 NWB:N: Version 1.0.x and earlier . 23

4 Legal 25
4.1 Copyright . 25
4.2 Licence . 25

5 Indices and tables 27

ii

CHAPTER 1

NWB Specification Language

Version: v2.0.0-beta Aug 27, 20201

1.1 Introduction

In order to support the formal and verifiable specification of neurodata file formats, NWB:N defines and uses the
NWB specification language. The specification language is defined in YAML (or optionally JSON) and defines formal
structures for describing the organization of complex data using basic concepts, e.g., Groups, Datasets, Attributes, and
Links. A specification typically consists of a declaration of a namespace and a set of schema specifications. Data
publishers can use the specification language to extend the format in order to store types of data not supported by the
NWB core format (Section 1.2).

See also:

• The mapping of objects described in the specification language to HDF5 is described in more detail in the NWB
storage docs available here http://nwb-storage.readthedocs.io/en/latest/

• Data structures for interacting with the specification language documents (e.g, namespace and specification
YAML/JSON files) are available as part of PyNWB. For further details see the PyNWB docs available here:
http://pynwb.readthedocs.io/en/latest/index.html

• For a general overview of the NWB:N data format see here: http://nwb-overview.readthedocs.io/en/latest/

• For detailed description of the actual NWB:N data format see here: http://nwb-
schema.readthedocs.io/en/latest/index.html

1.2 Extensions

As mentioned, extensions to the core format are specified via custom user namespaces. Each namespace must have
a unique name (i.e, must be different from NWB). The schema of new neurodata_types (groups, datasets etc.) are

1 The version number given here is for the specification language and is independent of the version number for the NWB format. The date after
the version number is the last modification date of this document.

1

http://nwb-storage.readthedocs.io/en/latest/
http://pynwb.readthedocs.io/en/latest/index.html

NWB Specification Language, Release v2.0.0-beta

then specified in separate schema specification files. While it is possible to define multiple namespaces in the same
file, most commonly, each new namespace will be defined in a separate file with corresponding schema specifications
being stored in one ore more additional YAML (or JSON) files. One or more namespaces can be used simultaneously,
so that multiple extensions can be used at the same time while avoiding potential name and type collisions between
extensions (as well as extensions and the NWB core spec).

The specification of namespaces is described in detail next in Section 1.3 and the specification of schema specifications
is described in Section 1.4 and subsequent sections.

Tip: The form package as part of the PyNWB Python API provides dedicated data structures and utilities that
support programmatic generation of extensions via Python programs, compared to writing YAML (or JSON) extension
documents by hand. One main advantage of using PyNWB is that it is easier to use and maintain. E.g., using PyNWB
helps ensure compliance of the generated specification files with the current specification language and the Python
programs can often easily be just rerun to generate updated versions of extension files (with little to no changes to the
program itself).

Tip: The hdmf-docutils package includes tools to generate Sphinx documentation from format specifications. In
particular the executable hdmf_init_sphinx_extension_doc provides functionality to setup documentation
for a format or extension defined by a namespace (similar to the documentation for NWB core namespace at http:
//nwb-schema.readthedocs.io/en/latest/). Use hdmf_init_sphinx_extension_doc --help to view the list
of options for generating the docs. The package also includes the executable hdmf_generate_format_docs
which is used for generating actual reStructuredText files and figures from YAML/JSON specification sources. For an
example see: http://pynwb.readthedocs.io/en/latest/example.html#documenting-extensions

See also:

For examples on how to create and use extensions in PyNWB see:

• http://pynwb.readthedocs.io/en/latest/example.html#extending-nwb : Examples showing how to extend NWB

• http://pynwb.readthedocs.io/en/latest/tutorials.html#extensions : Tutorial showing how to define and use exten-
sions

1.3 Namespaces

Namespaces are used to define a collections of specifications, to enable users to develop extensions in their own names-
pace and, hence, to avoid name/type collisions. Namespaces are defined in separate YAML files. The specification of
a namespace looks as follows:

namespaces:
- doc: NWB namespace

name: NWB
full_name: NWB core
version: 1.2.0
date: 2019-05-22
author:
- Andrew Tritt
- Oliver Ruebel
- Ryan Ly
- Ben Dichter
- Keith Godfrey
- Jeff Teeters

(continues on next page)

2 Chapter 1. NWB Specification Language

http://nwb-schema.readthedocs.io/en/latest/
http://nwb-schema.readthedocs.io/en/latest/
http://pynwb.readthedocs.io/en/latest/example.html#documenting-extensions
http://pynwb.readthedocs.io/en/latest/example.html#extending-nwb
http://pynwb.readthedocs.io/en/latest/tutorials.html#extensions

NWB Specification Language, Release v2.0.0-beta

(continued from previous page)

contact:
- ajtritt@lbl.gov
- oruebel@lbl.gov
- rly@lbl.gov
- bdichter@lbl.gov
- keithg@alleninstitute.org
- jteeters@berkeley.edu
schema:
- source: nwb.base.yaml
neurodata_types: null
doc : Base nwb types
title : Base types

- ...

The top-level key must be namespaces. The value of namespaces is a list with the specification of one (or more)
namespaces.

1.3.1 Namespace declaration keys

1.3.1.1 doc

Text description of the namespace.

1.3.1.2 name

Unique name used to refer to the namespace.

1.3.1.3 full_name

Optional string with extended full name for the namespace.

1.3.1.4 version

Version string for the namespace.

1.3.1.5 date

Date the namespace has been last modified or released. Formatting is %Y-%m-%d %H:%M:%S, e.g., 2017-04-25
17:14:13.

1.3.1.6 author

List of strings with the names of the authors of the namespace.

1.3.1.7 contact

List of strings with the contact information for the authors. Ordering of the contacts should match the ordering of the
authors.

1.3. Namespaces 3

NWB Specification Language, Release v2.0.0-beta

1.3.1.8 schema

List of the schema to be included in this namespace. The specification looks as follows:

- source: nwb.base.yaml
- source: nwb.ephys.yaml

doc: Types related to EPhys
title: EPhys
neurodata_types:
- ElectricalSeries

- namespace: core
neurodata_types:
- Interface

• source describes the name of the YAML (or JSON) file with the schema specification. The schema files should
be located in the same folder as the namespace file.

• namespace describes a named reference to another namespace. In contrast to source, this is a reference by
name to a known namespace (i.e., the namespace is resolved during the build and must point to an already
existing namespace). This mechanism is used to allow, e.g., extension of a core namespace (here the NWB core
namespace) without requiring hard paths to the files describing the core namespace.

• neurodata_types then is an optional list of strings indicating which neurodata_types should be included
from the given specification source or namespace. The default is neurodata_types: null indicating
that all neurodata_types should be included.

• doc is an optional key for source files with a doc string to further document the content of the source file.

• title is an option key for source files to provide a descriptive title for a file for documentation purposes.

Attention: As with any language, we can only use what is defined. This means that similar to include or import
statements in programming languages, e.g., Python, the source and namespace keys must be in order of
use. E.g., nwb.ephys.yaml defines ElectricalSeries which inherits from Timeseries that is defined
in nwb.base.yaml. This means that we have to list nwb.base.yaml before nwb.ephys.yaml since
otherwise Timeseries would not be defined when nwb.ephys.yaml is trying to use it.

1.4 Schema specification

The schema specification defines the groups, datasets and relationship that make up the format. Schema specifications
are stored in dict spec and consist of a list of Group specifications. Schemas may be distributed across multiple
YAML files to improve readability and to support logical organization of types. This is the main part of the format
specification. It is described in the following sections.

specs:
- ...

Note: Schema specifications are agnostic to namespaces, i.e., a schema (or type) becomes part of a namespace by
including it in the namespace as part of the schema description of the namespace. Hence, the same schema can be
reused across namespaces.

4 Chapter 1. NWB Specification Language

NWB Specification Language, Release v2.0.0-beta

1.5 Groups

Groups are specified as part of the top-level list or via lists stored in the key groups. The specification of a group is
described in YAML as follows:

Group specification
- neurodata_type_def: Optional new neurodata_type for the group

neurodata_type_inc: Optional neurodata_type the group should inherit from
name: Optional fixed name for the group. A group must either have a unique

→˓neurodata_type or a unique, fixed name.
default_name: Default name for the group
doc: Required description of the group
quantity: Optional quantity identifier for the group (default=1).
linkable: Boolean indicating whether the group is linkable (default=True)
attributes: Optional list of attribute specifications describing the attributes

→˓of the group
datasets: Optional list of dataset specifications describing the datasets

→˓contained in the group
groups: Optional list of group specifications describing the sub-groups contained

→˓in the group
links: Optional list of link specification describing the links contained in the

→˓group

The key/value pairs that make up a group specification are described in more detail next in Section Section 1.5.1. The
keys should be ordered as specified above for readability and consistency with the rest of the schema.

1.5.1 Group specification keys

1.5.1.1 neurodata_type_def and neurodata_type_inc

The concept of a neurodata_type is similar to the concept of Class in object-oriented programming. A neurodata_type
is a unique identifier for a specific type of group (or dataset) in a specification. By assigning a neurodata_type to a
group (or dataset) enables others to reuse that type by inclusion or inheritance (Note: only groups (or datasets) with a
specified type can be reused).

• `neurodata_type_def`: This key is used to define (i.e., create) a new neurodata_type and to assign that
type to the current group (or dataset).

• `neurodata_type_inc`: The value of the neurodata_type_inc key describes the base type of a
group (or dataset). The value must be an existing type.

Both `neurodata_type_def` and `neurodata_type_inc` are optional keys. To enable the unique iden-
tification, every group (and dataset) must either have a fixed name and/or a unique neurodata_type. This means, any
group (or dataset) with a variable name must have a unique neurodata_type.

The neurodata_type is determined by the value of the neurodata_type_def key or if no new type is defined then
the value of neurodata_type_inc is used to determine type. Or in other words, the neurodata_type is determined
by the last type in the ancestry (i.e., inheritance hierarchy) of an object.

Reusing existing neurodata_types

The combination of `neurodata_type_inc` and `neurodata_type_def` provides an easy-to-use mech-
anism for reuse of type specifications via inheritance (i.e., merge and extension of specifications) and inclusion (i.e.,
embedding of an existing type as a component, such as a subgroup, of a new specification). Here an overview of all
relevant cases:

1.5. Groups 5

NWB Specification Language, Release v2.0.0-beta

neurodata_type_incneurodata_type_defDescription
not set not set define a standard dataset or group without a type
not set set create a new neurodata_type from scratch
set not set include (reuse) neurodata_type without creating a new one (in-

clude)
set set merge/extend neurodata_type and create a new type (inheri-

tance/merge)

Example: Reuse by inheritance

Abbreviated YAML specification
- neurodata_type_def: Series

datasets:
- name: A

- neurodata_type_def: MySeries
neurodata_type_inc: Series
datasets:
- name: B

The result of this is that MySeries inherits dataset A from Series and adds its own dataset B, i.e., if we resolve the
inheritance, then the above is equivalent to:

Result:
- neurodata_type_def: MySeries

datasets:
- name: A
- name: B

Example: Reuse by inclusion

Abbreviated YAML specification
- neurodata_type_def: Series

datasets:
- name: A

- neurodata_type_def: MySeries
groups:
- neurodata_type_inc: Series

The result of this is that MySeries now includes a group of type Series, i.e., the above is equivalent to:

- neurodata_type_def: MySeries
groups:
- neurodata_type_inc: Series
datasets:
- name: A

Note: The keys `neurodata_type_def and `neurodata_type_inc` were introduced in version 1.2a
to simplify the concepts of inclusion and merging of specifications and replaced the keys `include` and
`merge```(and ```merge+`).

6 Chapter 1. NWB Specification Language

NWB Specification Language, Release v2.0.0-beta

1.5.1.2 name

String with the optional fixed name for the group.

Note: Every group must have either a unique fixed name or a unique neurodata_type determined by
(neurodata_type_def and neurodata_type_inc) to enable the unique identification of groups when stored
on disk.

1.5.1.3 default_name

Default name of the group.

Note: Only one of either name or default_name (or neither) should be specified as the fixed name given by name
would always overwrite the behavior of default_name.

1.5.1.4 doc

The value of the group specification doc key is a string describing the group. The doc key is required.

Note: In earlier versions (before version 1.2a) this key was called description

1.5.1.5 quantity

The quantity describes how often the corresponding group (or dataset) can appear. The quantity indicates both
minimum and maximum number of instances. Hence, if the minimum number of instances is 0 then the group (or
dataset) is optional and otherwise it is required. The default value is quantity=1.

value minimum quantity maximum quantity Comment
`zero_or_many` or `*` 0 unlimited Zero or more instances
`one_or_many` or `+` 1 unlimited One or more instances
`zero_or_one` or `?` 0 1 Zero or one instances
`1`, `2`, `3`, . . . n n Exactly n instances

Note: The quantity key was added in version 1.2a of the specification language as a replacement of the
`quantity_flag` that was used to encode quantity information via a regular expression as part of the main
key of the group.

1.5.1.6 linkable

Boolean describing whether the this group can be linked.

1.5. Groups 7

NWB Specification Language, Release v2.0.0-beta

1.5.1.7 attributes

List of attribute specifications describing the attributes of the group. See Section 1.6 for details.

attributes:
- ...

1.5.1.8 datasets

List of dataset specifications describing all datasets to be stored as part of this group. See Section 1.8 for details.

datasets:
- name: data1

doc: My data 1
type: int
quantity: 'zero_or_one'

- name: data2
doc: My data 2
type: text
attributes:
- ...

- ...

1.5.1.9 groups

List of group specifications describing all groups to be stored as part of this group

groups:
- name: group1

quantity: 'zero_or_one'
- ...

1.5.1.10 links

List of link specifications describing all links to be stored as part of this group. See Section 1.7 for details.

links:
- doc: Link to target type

name: link name
target_type: type of target
quantity: optional number of links allowed

- ...

1.5.1.11 _required

Attention: The _required key has been removed in version 2.0. An improved version may be added again
in later version of the specification language.

8 Chapter 1. NWB Specification Language

NWB Specification Language, Release v2.0.0-beta

1.6 Attributes

Attributes are specified as part of lists stored in the key attributes as part of the specifications of groups and
datasets. Attributes are typically used to further characterize or store metadata about the group, dataset, or link
they are associated with. Similar to datasets, attributes can define arbitrary n-dimensional arrays, but are typically used
to store smaller data. The specification of an attributes is described in YAML as follows:

...
attributes:
- name: Required string describing the name of the attribute

dtype: Required string describing the data type of the attribute
dims: Optional list describing the names of the dimensions of the data array stored

→˓by the attribute (default=None)
shape: Optional list describing the allowed shape(s) of the data array stored by

→˓the attribute (default=None)
value: Optional constant, fixed value for the attribute.
default_value: Optional default value for variable-valued attributes. Only one of

→˓value or default_value should be set.
doc: Required string with the description of the attribute
required: Optional boolean indicating whether the attribute is required

→˓(default=True)

The keys should be ordered as specified above for readability and consistency with the rest of the schema.

1.6.1 Attribute specification keys

1.6.1.1 name

String with the name for the attribute. The name key is required and must specify a unique attribute on the current
parent object (e.g., group or dataset)

1.6.1.2 dtype

String specifying the data type of the attribute. Allowable values are:

1.6. Attributes 9

NWB Specification Language, Release v2.0.0-beta

dtype spec value storage type size

• “float”
• “float32”

single precision floating point 32 bit

• “double”
• “float64”

double precision floating point 64 bit

• “long”
• “int64”

signed 64 bit integer 64 bit

• “int”
• “int32”

signed 32 bit integer 32 bit

• “short”
• “int16”

signed 16 bit integer 16 bit

• “int8”
signed 8 bit integer 8 bit

• “uint64”
unsigned 64 bit integer 64 bit

• “uint32”
unsigned 32 bit integer 32 bit

• “uint16”
unsigned 16 bit integer 16 bit

• “uint8”
unsigned 8 bit integer 8 bit

• “numeric”
any numeric type (i.e., int, uint, float
etc.)

8 to 64 bit

• “text”
• “utf”
• “utf8”
• “utf-8”

8-bit Unicode variable

• “ascii”
• “bytes”

ASCII text variable

• “bool”
8 bit integer with valid values 0 or 1 8 bit

• “isodatetime”
• “datetime”

ISO8061 datetime string, e.g., 2018-
09-28T14:43:54.123+02:00

variable

Note: The precision indicated in the specification is generally interpreted as a minimum precision. Higher precisions

10 Chapter 1. NWB Specification Language

NWB Specification Language, Release v2.0.0-beta

may be used if required by the particular data. In addition, since valid ASCII text is valid UTF-8-encoded Unicode,
ASCII text may be used where 8-bit Unicode is required. 8-bit Unicode cannot be used where ASCII is required.

1.6.1.2.1 Reference dtype

In addition to the above basic data types, an attribute or dataset may also store references to other data objects.
Reference dtypes are described via a dictionary. E.g.:

dtype:
target_type: ElectrodeGroup
reftype: object

target_type here describes the neurodata_type of the target that the reference points to and reftype de-
scribes the kind of reference. Currently the specification language supports two main reference types.

reftype value Reference type description

• “ref”
• “reference”
• “object”

Reference to another group or dataset of the given ‘
target_type

• region
Reference to a region (i.e. subset) of another dataset of
the given target_type

1.6.1.2.2 Compound dtype

Compound data types are essentially a struct, i.e., the data type is a composition of several primitive types. This is
useful to specify complex types, e.g., for storage of complex numbers consisting of a real and imaginary components,
vectors or tensors, as well to create table-like data structures. Compound data types are created by defining a list of
the form:

dtype:
- name: <name of the data value>
dtype: <one of the above basic dtype stings or references>
doc: <description of the data>

- name:
.
.
.

Note: Currently only “flat” compound types are allowed, i.e., a compound type may not contain other compound
types but may itself only consist of basic dtypes, e.g,. float, string, etc. or reference dtypes.

Below and example form the NWB:N format specification showing the use of compound data types to create a table-
like data structure for storing metadata about electrodes.

datasets:
- doc: 'a table for storing queryable information about electrodes in a single table'

dtype:
- name: id

(continues on next page)

1.6. Attributes 11

NWB Specification Language, Release v2.0.0-beta

(continued from previous page)

dtype: int
doc: a user-specified unique identifier

- name: x
dtype: float
doc: the x coordinate of the channels location

- name: y
dtype: float
doc: the y coordinate of the channels location

- name: z
dtype: float
doc: the z coordinate of the channels location

- name: imp
dtype: float
doc: the impedance of the channel

- name: location
dtype: ascii
doc: the location of channel within the subject e.g. brain region

- name: filtering
dtype: ascii
doc: description of hardware filtering

- name: description
dtype: utf8
doc: a brief description of what this electrode is

- name: group
dtype: ascii
doc: the name of the ElectrodeGroup this electrode is a part of

- name: group_ref
dtype:

target_type: ElectrodeGroup
reftype: object

doc: a reference to the ElectrodeGroup this electrode is a part of
attributes:
- doc: Value is 'a table for storing data about extracellular electrodes'

dtype: text
name: help
value: a table for storing data about extracellular electrodes

neurodata_type_inc: NWBData
neurodata_type_def: ElectrodeTable

1.6.1.3 dims

Optional key describing the names of the dimensions of the array stored as value of the attribute. If the attribute stores
an array, dims specifies the list of dimensions. If no dims is given, then attribute stores a scalar value.

In case there is only one option for naming the dimensions, the key defines a single list of strings:

...
dims:
- dim1
- dim2

In case that the attribute may have different forms, this will be a list of lists:

...
dims:

(continues on next page)

12 Chapter 1. NWB Specification Language

NWB Specification Language, Release v2.0.0-beta

(continued from previous page)

- - num_times
- - num_times

- num_channels

Each entry in the list defines an identifier/name of the corresponding dimension of the array data.

1.6.1.4 shape

Optional key describing the shape of the array stored as the value of the attribute. The description of shape must
match the description of dimensions in so far as if we name two dimensions in dims than we must also specify the
shape for two dimensions. We may specify null in case that the length of a dimension is not restricted, e.g.:

...
shape:
- null
- 3

Similar to dims shape may also be a list of lists in case that the attribute may have multiple valid shape options, e.g,:

...
shape:
- - 5
- - null

- 5

The default behavior for shape is:

...
shape: null

indicating that the attribute/dataset is a scalar.

1.6.1.5 value

Optional key specifying a fixed, constant value for the attribute. Default value is None, i.e., the attribute has a variable
value to be determined by the user (or API) in accordance with the current data.

1.6.1.6 default_value

Optional key specifying a default value for attributes that allow user-defined values. The default value is used in case
that the user does not specify a specific value for the attribute.

Note: Only one of either value or default_value should be specified (or neither) but never both at the same
time, as value would always overwrite the default_value.

1.6.1.7 doc

doc specifies the documentation string for the attribute and should describe the purpose and use of the attribute data.
The doc key is required.

1.6. Attributes 13

NWB Specification Language, Release v2.0.0-beta

1.6.1.8 required

Optional boolean key describing whether the attribute is required. Default value is True.

1.7 Links

The link specification is used to specify links to other groups or datasets. The link specification is a dictionary with
the following form:

links:
- name: link name

target_type: type of target
doc: Link to target type

Note: When mapped to storage, links should always remain identifiable as such. For example, in the context of
HDF5, this means that soft links (or external links) should be used instead of hard links.

The keys should be ordered as specified above for readability and consistency with the rest of the schema.

1.7.1 Link specification keys

1.7.1.1 name

Optional key specifying the name of the link.

1.7.1.2 target_type

target_type specifies the key for a group in the top level structure of a namespace. It is used to indicate that the
link must be to an instance of that structure.

1.7.1.3 doc

doc specifies the documentation string for the link and should describe the purpose and use of the linked data. The
doc key is required.

1.7.1.4 quantity

Optional key specifying how many allowable instances for that link. Default is 1. If name is defined, quantity may not
be >1. See Section 1.5.1.5 for details.

1.8 Datasets

Datasets are specified as part of lists stored in the key datasets as part of group specifications. The specification of
a datasets is described in YAML as follows:

14 Chapter 1. NWB Specification Language

NWB Specification Language, Release v2.0.0-beta

- datasets:
- neurodata_type_def: Optional new neurodata_type for the group
neurodata_type_inc: Optional neurodata_type the group should inherit from
name: fixed name of the dataset
default_name: default name of the dataset
dtype: Optional string describing the data type of the dataset
dims: Optional list describing the names of the dimensions of the dataset
shape: Optional list describing the shape (or possible shapes) of the dataset
value: Optional to fix value of dataset
default_value: Optional to set a default value for the dataset
doc: Required description of the dataset
quantity: Optional quantity identifier for the group (default=1).
linkable: Boolean indicating whether the group is linkable (default=True)
attributes: Optional list of attribute specifications describing the attributes

→˓of the group

The specification of datasets looks quite similar to attributes and groups. Similar to attributes, datasets describe the
storage of arbitrary n-dimensional array data. However, in contrast to attributes, datasets are not associated with a
specific parent group or dataset object but are (similar to groups) primary data objects (and as such typically manage
larger data than attributes). The key/value pairs that make up a dataset specification are described in more detail next
in Section Section 1.8.1. The keys should be ordered as specified above for readability and consistency with the rest
of the schema.

1.8.1 Dataset specification keys

1.8.1.1 neurodata_type_inc and neurodata_type_def

Same as for groups. See Section 1.5.1.1 for details.

1.8.1.2 name

String with the optional fixed name for the dataset

Note: Every dataset must have either a unique fixed name or a unique neurodata_type to enable the unique
identification of datasets when stored on disk.

1.8.1.3 default_name

Default name of the group.

Note: Only one of either name or default_name (or neither) should be specified as the fixed name given by name
would always overwrite the behavior of default_name.

1.8.1.4 dtype

String describing the data type of the dataset. Same as for attributes. See Section 1.6.1.2 for details. dtype may be
omitted for abstract classes. Best practice is to define dtype for most concrete classes.

1.8. Datasets 15

NWB Specification Language, Release v2.0.0-beta

1.8.1.5 dims

List describing the names of the dimensions of the dataset. Same as for attributes. See Section 1.6.1.3 for details.

1.8.1.6 shape

List describing the shape of the dataset. Same as for attributes. See Section 1.6.1.4 for details.

1.8.1.7 value and default_value

Same as for attributes. See Section 1.7 and Section 1.6.1.6 for details.

1.8.1.8 doc

The value of the dataset specification doc key is a string describing the dataset. The doc key is required.

Note: In earlier versions (before version 1.2a) this key was called description

1.8.1.9 quantity

Same as for groups. See Section 1.5.1.5 for details.

1.8.1.10 linkable

Boolean describing whether the this group can be linked.

1.8.1.11 attributes

List of attribute specifications describing the attributes of the group. See Section Attributes for details.

attributes:
- ...

1.9 Relationships

Note: Future versions will add explicit concepts for modeling of relationships, to replace the implicit relationships
encoded via shared dimension descriptions and implicit references in datasets in previous versions of the specification
language.

16 Chapter 1. NWB Specification Language

CHAPTER 2

Release Notes

2.1 Version 2.0.2 (Upcoming)

• add value and default_value as optional keys of a dataset.

• dtype changed from required to optional for datasets.

• add dtypes that are already supported in hdmf.spec: short (int16), uint64, bytes (ascii), and datetime (isodate-
time)

2.2 Version 2.0.1 (March, 2019)

• Added support for specifying a title and doc for source files as part of the schema portion of a
namespace specification. This was added to improve documentation of individual source files and to sup-
port sorting of types by source file with meaningful titles and text as part of autogenerated docs.

• Updated the docs for quantity to indicate that the default value is 1 if not specified.

2.3 Version 2.0.0 (January, 2019)

2.3.1 Summary

• Simplify reuse of neurodata_types:

– Added new key: `neurodata_type_def and ```neurodata_type_inc` (which in
combination replace the keys `neurodata_type`, `include` and `merge`). See below for
details.

– Removed key: `include`

– Removed key: `merge`

17

NWB Specification Language, Release v2.0.0-beta

– Removed key: `merge+`

– Removed key: `neurodata_type` (replaced by neurodata_type_inc and
neurodata_type_def)

– Removed `_properties` key. The primary use of the key is to define abstract specifications.
However, as format specifications don’t implement functions but define a layout of objects, any spec
(even if marked abstract) could still be instantiated and used in practice without limitations. Also, in
the current instantiation of NWB:N this concept is only used for the `Interface` type and it is
unclear why a user should not be able to use it. As such this concept was removed.

– To improve compliance of NWB:N inheritance mechanism with established object-oriented design
concepts, the option of restricting the use of subclasses in place of parent classes was removed. A
subclass is always also a valid instance of a parent class. This also improves consistency with the
NWB:N principle of a minimal specification that allows users to add custom data. This change affects
the `allow_subclasses` key of links and the subclasses option of the removed `include key.

• Improve readability and avoid collision of keys by replacing values encoded in keys with dedicated key/value pairs:

– Explicit encoding of names and types:

* Added `name` key

* Removed <. . . > name identifier (replaced by empty `name` key)

* Added `groups` key (previously groups were indicated by “/” as part of object’s key)

* Added `datasets` key (previously datasets were indicated by missing “/” as part of the
object’s key)

* Added `links` key (previously this was a key on the group and dataset specification). The
concept of links is with this now a first-class type (rather than being part of the group and
dataset specs).

* Removed link key on datasets as this functionality is now fully implemented by the links
key on groups.

* Removed / flag in keys to identify groups (replaced by `groups` and `datasets` keys)

– Explicit encoding of quantitites:

* Added new key `quantity` (which replaces the `quantity_flag`). See below for
details.

* Removed `quantity_flag` as part of keys

* Removed Exclude_in‘ key. The key is currently not used in the NWB core spec. This fea-
ture is superseded by the ability to overwrite the `quantity` key as part of the reuse of
`neurodata_types`

– Removed `_description` key. The key is no longer need because name conflicts with datasets
and groups are no longer possible since the name is now explicitly encoded in a dedicated key/value
pair.

• Improve human readability:

– Added support for YAML in addition to JSON

– Values, such as, names, types, quantities etc. are now explicitly encoded in dedicated key/value pairs
rather than being encoded as regular expressions in keys.

• Improve direct interpretation of data:

18 Chapter 2. Release Notes

NWB Specification Language, Release v2.0.0-beta

– Remove `references` key. This key was used in previous versions of NWB to generate implicit
data structures where datasets store references to part of other metadata structures. These implicit
data structures violate core NWB principles as they hinder the direct interpretation of data and cannot
be interpreted (neither by human nor program) based on NWB files alone without having additional
information about the specification as well. Through simple reorganization of metadata in the file,
all instances of these implicit data structures were replaced by simple links that can be interpreted
directly.

• Simplified specification of dimensions for datasets:

– Renamed `dimensions` key to `dims`

– Added key `shape` to allow the specification of the shape of datasets

– Removed custom keys for defining structures as types for dimensions:

* `unit` keys from previous structured dimensions are now `unit` attributes on the datasets
(i.e., all values in a dataset have the same units)

* The length of the structs are used to define the length of the corresponding dimension as part
of the `shape` key

* `alias` for components of dimensions are currently encoded in the dimensions name.

• Added support for default vs. fixed name for groups and datasets:

– Added default_name key for groups and dataset to allow the specification of default names for
objects that can have user-defined names (in addition to fixed names via name). Attributes can only
have a fixed name since attributes can not have a neurodata_type and can, hence, only be identified
via their fixed name.

• Updated specification of fixed and default values for attributes to make the behavior of keys explicit:

– Specifying attribute values:

* Added default_value key for attributes to specify a default value for attributes

* Removed const key for attributes which was used to control the behavior of the value
key, i.e., depending on the value of const the value key would either act as a fixed or
default value. By adding the default_value key this behavior now becomes explicit and
the behavior of the value key no longer depends on the value of another key (i.e., the const
key)

• Improved governance and reuse of specifications:

– The core specification documents are no longer stored as .py files as part of the original Python API
but are released as separate YAML (or optionally JSON) documents in a seperate repository

– All documentation has been ported to use reStructuredText (RST) markup that can be easily translated
to PDF, HTML, text, and many other forms.

– Documentation for source codes and the specification are auto-generated from source to ensure con-
sistency between sources and the documentation

• Avoid mixing of format specification and computations:

– Removed key `autogen` (without replacement). The autogen key was used to describe how to
compute certain derived datasets from the file. This feature was problematic with respect to the guid-
ing principles of NWB for a couple of reasons. E.g., the resulting datasets were often not interpretable
without the provenance of the autogeneration procedure and autogeneration itself and often described
the generation of derived data structures to ease follow-on computations. Describing computations as
part of a format specification is problematic as it creates strong dependencies and often unnecessary
restrictions for use and analysis of data stored in the format. Also, the reorganization of metadata has

2.3. Version 2.0.0 (January, 2019) 19

NWB Specification Language, Release v2.0.0-beta

eliminated the need for autogen in many cases. A autogen features is arguably the role of a data API
or intermediary derived-quantity API (or specification), rather than a format specification.

• Enhanced specification of data types via dtype:

– Enhanced the syntax for dtype to allow the specification of flat compound data types via lists of
types

– Enhanced the syntax for dtype to allow the specification of i) object references and ii) region refer-
ences

– Removed “!” syntax (e.g., “float32!”) previously used to specify a minimum precision. All types are
interpreted as minimum specs.

– Specified list of available data types and their names

– Added isodatetime dtype for specification of ISO8061 datetime string (e.g.,
2018-09-28T14:43:54.123+02:00) as data type

– Added bool dtype for specification fo boolean type fields (see PR691 (PyNWB) and I658 (PyNWB).

• Others:

– Removed key `__custom` (without replacement). This feature was used only in one location to
provide user hints where custom data could be placed, however, since the NWB specification approach
explicitly allows users to add custom data in any location, this information was not binding.

2.3.2 Currently unsupported features:

• `_required` : The current API does not yet support specification and verification of constraints previously
expressed via _required.

• Relationships are currently available only through implicit concepts, i.e., by sharing dimension names and
through implicit references as part of datasets. The goal is to provide explicit mechanisms for describing these
as well as more advanced relationships.

• `dimensions_specification`: This will be implemented in later version likely through the use of
relationships.

2.3.3 YAML support

To improve human readability of the specification language, Version 1.2a now allows specifications to be defined in
YAML as well as JSON (Version 1.1c allowed only JSON).

2.3.4 `quantity`

Version 1.1c of the specification language used a `quantity_flag` as part of the name key of groups and datasets
to the quantity

• ! - Required (this is the default)

• ?- Optional

• ^ - Recommended

• + - One or more instances of variable-named identifier required

• * - Zero or more instances of variable-named identifier allowed

20 Chapter 2. Release Notes

https://github.com/NeurodataWithoutBorders/pynwb/pull/691
https://github.com/NeurodataWithoutBorders/pynwb/issues/658

NWB Specification Language, Release v2.0.0-beta

Version 1.2a replaces the `quantity_flag` with a new key `quantity` with the following values:

value required number of instances
`zero_or_more` or `*` optional unlimited
`one_or_more` or `+` required unlimited but at least 1
`zero_or_one` or `?` optional 0 or 1
`1`, `2`, `3`, . . . required Fixed number of instances as indicated by the value

2.3.5 `merge` and `include`

To simplify the concept `include` and `merge`, version 1.2a introduced a new key `neurodata_type_def`
which describes the creation of a new neurodata_type. The combination `neurodata_type_def` and
`neurodata_type_inc simplifies the concepts of merge (i.e., inheritance/extension) and inclusion and allows
us to express the same concepts in an easier-to-use fashion. Accordingly, the keys `include`, `merge` and
`merge+` have been removed in version 1.2a. Here a summary of the basic cases:

neuro-
data_type_inc

neuro-
data_type_def

Description

not set not set define standard dataset or group without a type
not set set create a new neurodata_type from scratch
set not set include (reuse) neurodata_type without creating a new one (in-

clude)
set set merge/extend neurodata_type and create a new type (merge)

2.3.6 `structured_dimensions`

The definition of structured dimensions has been removed in version 1.2a. The concept of structs as dimensions is
problematic for several reasons: 1) it implies support for defining general tables with mixed units and data types which
are currently not supported, 2) they easily allow for colliding specification where mixed units are assigned to the same
value, 3) they are hard to use and unsupported by HDF5. Currently structured dimensions, however, have been used
only to encode information about “columns” of a dataset (e.g., to indicate that a dimension stores x,y,z values). This
information was translated to the dims` and `shape` keys and `unit` attributes. The more general concept
of structured dimensions will be implemented in future versions of the specification language and format likely via
support for modeling of relationships or support for table data structures (stay tuned)

2.3.7 `autogen`

The `autogen` key has been removed without replacement.

Reason: The autogen specification was originally used to specify that the attribute or dataset contents (values) can
be derived from the contents of the HDF5 file and, hence, generated and validated automatically. As such, autogen
crossed a broad range of different functionalities, including:

1. Specification of the structure of format datasets/attributes

2. Description of data constraints (e.g., the shape of the generated dataset directly depends on the structure of the
input data consumed by autogen),

3. Specification of the content (i.e., value) of datasets and attributes,

4. Description of computations to create derived data, and

5. Validation of the structure and content of datasets/attributes.

2.3. Version 2.0.0 (January, 2019) 21

NWB Specification Language, Release v2.0.0-beta

This mixing of functionality in turn led to several concerns:

• autogen exhibited a fairly complex syntax, which made it hard to interpret and use

• autogen is specifically used to create derived data from information that is already in the NWB file. At-
tributes/datasets generated via autogen: i) are redundant, ii) often require bookkeeping to ensure data consis-
tency, iii) generate dependencies across data and types, iv) have limited utility as the information can be derived
through other means, and v) interpretation of data values may require the provenance of autogen.

• Description of computations as part of a format specification was seen as problematic.

• There was potential for collisions between autogen and the specification of the dataset/attribute itself.

Usage in NWB autogen was used in NWB V.1.0.6 to generate 17 datasets/attributes primarily to: i) store the path of
links in separate datasets/attributes or ii) generate lists of datasets/groups of a given type/property. The datasets were
reviewed at a hackathon and determined to be non-essential and as such removed from the format as well.

2.4 Version 1.1c (Oct. 7, 2016)

• Original version of the specification language generated as part of the NWB pilot project

22 Chapter 2. Release Notes

CHAPTER 3

Credits

3.1 Acknowledgments

For details on the partners, members, and supporters of NWB:N please the http://www.nwb.org/ project website.
For specific contributions to the format specification and this document see the change logs of the Git repository at
https://github.com/NeurodataWithoutBorders/nwb-schema .

3.2 Authors

3.2.1 NWB:N: Version 2.0.0 and later

Documentation for Version 2 of the NWB:N specification and later have been created by Oliver Ruebel and Andrew
Tritt et al. in collaboration with the NWB:N community.

3.2.2 NWB:N: Version 1.0.x and earlier

The specification language and corresponding documentation for Version 1.0.5g (and earlier) of the NWB file format
were created by Jeff Teeters et al. as part of the first NWB pilot project. The documents for NWB:N 2 have been
adopted from the final version of format docs released by the original NWB pilot project.

23

NWB Specification Language, Release v2.0.0-beta

24 Chapter 3. Credits

CHAPTER 4

Legal

4.1 Copyright

“nwb-schema” Copyright (c) 2017-2020, The Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Innovation &
Partnerships Office at IPO@lbl.gov.

NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government
consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the
public, prepare derivative works, and perform publicly and display publicly, and to permit other to do so.

4.2 Licence

“nwb-schema” Copyright (c) 2017-2020, The Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

25

mailto:IPO@lbl.gov

NWB Specification Language, Release v2.0.0-beta

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

26 Chapter 4. Legal

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

27

	NWB Specification Language
	Introduction
	Extensions
	Namespaces
	Namespace declaration keys
	doc
	name
	full_name
	version
	date
	author
	contact
	schema

	Schema specification
	Groups
	Group specification keys
	neurodata_type_def and neurodata_type_inc
	name
	default_name
	doc
	quantity
	linkable
	attributes
	datasets
	groups
	links
	_required

	Attributes
	Attribute specification keys
	name
	dtype
	Reference dtype
	Compound dtype

	dims
	shape
	value
	default_value
	doc
	required

	Links
	Link specification keys
	name
	target_type
	doc
	quantity

	Datasets
	Dataset specification keys
	neurodata_type_inc and neurodata_type_def
	name
	default_name
	dtype
	dims
	shape
	value and default_value
	doc
	quantity
	linkable
	attributes

	Relationships

	Release Notes
	Version 2.0.2 (Upcoming)
	Version 2.0.1 (March, 2019)
	Version 2.0.0 (January, 2019)
	Summary
	Currently unsupported features:
	YAML support
	`quantity`
	`merge` and `include`
	`structured_dimensions`
	`autogen`

	Version 1.1c (Oct. 7, 2016)

	Credits
	Acknowledgments
	Authors
	NWB:N: Version 2.0.0 and later
	NWB:N: Version 1.0.x and earlier

	Legal
	Copyright
	Licence

	Indices and tables

