

 Navigation

 	
 index

 	ScaleIO-Framework latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/scaleio-framework/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/scaleio-framework/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ScaleIO-Framework latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 .docs/user-guide/installation.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Installation

Overview

ScaleIO-Framework is written in Go, so there are typically no dependencies that must be installed alongside its single binary file. The curl utility can be used to perform a simple deployment.

Deploying the latest version

TODO

Deploying a specific release

TODO

Build and install from source

The ScaleIO-Framework is also fairly simple to build from source:

Option 1: Build using a Docker container

TODO

Option 2: Conventional build from source

TODO

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/about/license.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Licensing

The legal stuff

ScaleIO-Framework License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

.docs/about/contributing.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Contributing to ScaleIO-Framework

The ScaleIO-Framework project welcomes, and depends, on contributions from developers
and users in the open source community. Contributions can be made in a number of
ways, a few examples are:

		Code patches via pull requests

		Documentation improvements

		Bug reports and patch reviews

Reporting an Issue

Please include as much detail as you can. This includes:

		The OS type and version

		The ScaleIO-Framework commit

		The storage, scheduler and container system in question

		A set of logs with debug-logging enabled that show the problem

Submitting Pull Requests

Once you are happy with your changes or you are ready for some feedback, push
it to your fork and send a pull request. For a change to be accepted it will
most likely need to have tests and documentation if it is a new feature.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

.docs/about/release-notes.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Release Notes

Upgrading

To upgrade the ScaleIO-Framework to the latest version, simply redeploy the Framework using the Marathon JSON based on the release you want to target. For example, if you are currently running version 0.1.0 and want to upgrade to 0.2.0, upgrading would simply consist of curl’ing the following JSON to Marathon:

{
 "id": "scaleio-scheduler",
 "uris": [
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-scheduler",
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-executor"
],
 "cmd": "chmod u+x scaleio-scheduler && ./scaleio-scheduler -loglevel=debug -rest.port=$PORT -uri=[IP ADDRESS FOR MESOS MASTER]:5050 -scaleio.clustername=[SCALEIO NAME] -scaleio.password=[SCALEIO GATEWAY PASSWORD] -scaleio.protectiondomain=[PROTECTION DOMAIN NAME] -scaleio.storagepool=[STORAGE POOL NAME] -scaleio.preconfig.primary=[MASTER MDM IP ADDRESS] -scaleio.preconfig.secondary=[SLAVE MDM IP ADDRESS] -scaleio.preconfig.tiebreaker=[TIEBREAKER MDM IP ADDRESS] -scaleio.preconfig.gateway=[GATEWAY IP ADDRESS]",
 "mem": 32,
 "cpus": 0.2,
 "instances": 1,
 "constraints": [
 ["hostname", "UNIQUE"]
]
}

Use the following REST API to determine the currently installed version of the ScaleIO-Framework:

GET [SCHEDULER IP/FQDN]:[Marathon Dynamic Port]/version

{
 "versionint": 1,
 "versionstr": "0.2.0"
}

Version 0.2.0 (2016/11/09)

ScaleIO Framework 0.2.0 introduces RHEL7/CentOS7 support and also refreshes the version of ScaleIO to versio 2.0.1 which is the latest as of writting this release..

New Features

		Addressed Issue #65 [https://github.com/codedellemc/scaleio-framework/issues/65]: RHEL7 and CentOS7 Support. Supports ScaleIO 2.0.1

		Addressed Issue #91 [https://github.com/codedellemc/scaleio-framework/issues/91]: Updated Ubuntu14 to support ScaleIO 2.0.1. The CloudFormation template in the demo folder has also been updated to handle ScaleIO 2.0.1.

		Fixed Issue #93 [https://github.com/codedellemc/scaleio-framework/pull/93]: The REX-ray configuration file that is created follows the suggested best practices.

		Added an intelligent reboot feature which will fix a reboot timing issue when the ScaleIO node that is running the scheduler is rebooted before other nodes have had the opportunity to contact it for the current state. I have not seen this happen yet, but there was certainly the possibility. That has been resolved now.

Enhancements

		Massive restructuring to the executor. This was largely in part due to time to market release of 0.1.0. With addition of RHEL7/CentOS7 support, the project needed to be restructured to support multiple platforms in a maintainable fashion.

		Removed the following flags. This is largely in part to due differences with both DEB and RPM package managers (in command and operational behavior) between versions of platforms (ie RHEL6 vs RHEL7).
		scaleio.deb.mdm

		scaleio.deb.sds

		scaleio.deb.sdc

		scaleio.deb.lia

		scaleio.deb.gw

		scaleio.rpm.mdm

		scaleio.rpm.sds

		scaleio.rpm.sdc

		scaleio.rpm.lia

		scaleio.rpm.gw

		Added platform specific flags for the ScaleIO packages. This is largely in part due to each platform having a different DEB or RPM between platform versions. Added the following flags:
		scaleio.ubuntu14.mdm

		scaleio.ubuntu14.sds

		scaleio.ubuntu14.sdc

		scaleio.ubuntu14.lia

		scaleio.ubuntu14.gw

		scaleio.rhel7.mdm

		scaleio.rhel7.sds

		scaleio.rhel7.sdc

		scaleio.rhel7.lia

		scaleio.rhel7.gw

		Renamed the following 3 flags to match the CPU flags.
		executor.memory.mdm -> executor.mem.mdm

		executor.memory.no -> executor.mem.non

		executor.memoryfactor -> executor.memfactor

		Added a new flag “Debug” to help with debugging the scheduler and executor. Among some of the things the debug flag does is prevent the reboot of the Mesos Agent node.

		Fixed Issues #94 [https://github.com/codedellemc/scaleio-framework/issues/94] and #72 [https://github.com/codedellemc/scaleio-framework/issues/72]: Documentation related changes.

Bug Fixes

		Supports Mesos Master leader changes. Implements the Mesos Master redirect functionality to connect to a different master.

		Fixed an issue that sometimes caused REX-Ray not to start on reboot. Placed additional dependencies on ScaleIO scini driver.

Version 0.1.0 (2016/09/28)

Initial Release

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_images/sio02.png
C ® 52.53.180.194:31713

For quick access, place your bookmarks here on t

executor-scaleiol = ScaleIO Running
executor-scaleio2 = ScaleIO Running

_images/logo1.png

_images/sio03.png
oy VMIARATMUN P 20D DEPLOYITICTILS S€arcn att apptications | A

Applications > scaleio-scheduler

scaleio-scheduler

@ Running (1 of 1 instances)

® OHealthy @ 0Unhealthy 1 Unknown (100%)
Instances Configuration Debug
U Refresh
@ D Status Error Log Output Log Version a Updated
e scaleio-scheduler.3a0b52d2-7f5f-11e6-b8f0-029932b7ebe8 Started] stderr (c] stdout 2 minutes ago 9/20/2016, 2:22:54 PM

10.0.0.22:31713

_images/logo.png

_static/minus.png

_static/comment.png

.docs/index.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

ScaleIO-Framework for Apache Mesos

[image: ScaleIO-Framework]

Overview

The ScaleIO Framework deploys Dell EMC ScaleIO as a simplified task in Apache Mesos. All the required components to consume and provision storage volumes from a ScaleIO cluster are automatically deployed and configured on the Mesos Agents. This creates an automated mechanism to have a fully configured and reliable persistent storage solution for containers running on Apache Mesos.

Key Features

		Installs required components on existing Mesos Agents to consume and provision ScaleIO storage volumes

		On-boards new Agent nodes with “native” access to ScaleIO volumes

		All Agent nodes are configured to be highly available so failed applications can be restarted on other Agent nodes while preserving their data using REX-Ray [https://github.com/emccode/rexray] as a container runtime volume driver

		Additional storage can be added to the ScaleIO cluster to expand capacity

What it does

TODO

Example workflow

What does the ScaleIO Framework really do under the covers? Up to this point, its been stated that the Framework automates the lifecycle of ScaleIO and any related components required to provision external persistent storage in a “run it and forget it” fashion, but what does that really mean?

The ScaleIO Framework performs the following steps on deployment. It installs and configures:

		Any dependencies required for ScaleIO to run. This is done via apt-get or yum.

		The ScaleIO SDS (or Server) package. This is the service that takes designated disks (physical or virtual) and contributes them to the ScaleIO cluster.

		The ScaleIO SDC (or Client) package. This is the service that provides access to ScaleIO volumes created within the ScaleIO cluster.

		REX-Ray [https://github.com/codedellemc/rexray] which provides Mesos the ability to provision external storage for tasks that are backed by Docker containers.

		mesos-module-dvdi [https://github.com/emccode/mesos-module-dvdi] and DVDCLI [https://github.com/emccode/dvdcli] which provides Mesos the ability to provision external storage for tasks that using the Mesos Universal Containerizer. This includes any configuration required on the Mesos Agent nodes.

Hello ScaleIO-Framework

TODO

Cleaning Up

TODO

Getting Help

Having issues? No worries, let’s figure it out together.

GitHub and Slack

If a little extra help is needed, please don’t hesitate to use
GitHub issues [https://github.com/codedellemc/scaleio-framework/issues] or join the active
conversation on the
{code} Community Slack Team [http://community.codedellemc.com/] in
the #mesos channel

 © Copyright 2016.
 Created using Sphinx 1.3.5.

demo/README.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Demo/Test the ScaleIO Framework for Apache Mesos

The requirements of having a 3-Node ScaleIO cluster along with an Apache Mesos Master and Agent cluster would heavily resource constrain a laptop or computer used for local development. An AWS CloudFormation template is provided that deploys and installs a fully configured Dell EMC ScaleIO and Apache Mesos cluster on Amazon AWS. This template currently works in the US-West-1 (aka N.California) region only.

NOTE: Deploying this template uses six (6) t2.medium instances in the N.California region, costing $0.068/hour. The AWS EC2 compute usage for this cluster will cost approximately $9.78/day. The template provisions nine (9) EBS volumes in total. Six (6) for the operating systems and three (3) 100-gigabyte volumes for ScaleIO storage.

Steps:

		Deploy The CloudFormation Template

		Verify ScaleIO Configuration

		Launch Framework

		Deploy Applications

Watch the YouTube Demo Video [https://youtu.be/tt6qhEkeVOQ?list=PLbssOJyyvHuWiBQAg9EFWH570timj2fxt] to see it in action.

Deploy CloudFormation Template

The password for administrator rights is F00barbaz. The ScaleIO nodes are deployed using Redhat 7.X instances and the Mesos nodes are Ubuntu 14.04 instances. The usernames used to log into those systems via ssh are ec2-user and ubuntu, respectively.

Within the AWS Web GUI:

		Verify you are in the N. California region.

		Within the drop-down of Services choose CloudFormation

		Click Create Stack, then Choose a Template

		Click Upload file to S3, and upload Framework_Testing_Cluster_Ubuntu.json

		Give the stack a unique name (such as: MesosFrameworkDemo)

		Select a keypair that exists in the N.California region

		Click next. Tags are optional. Click next

		Review the settings and click Create to create the stack

The stack will take approximately two minutes to build and the nodes will be available for ssh login.

Verify ScaleIO Configuration

It is important to determine the Master, Slave and TieBreaker MDM (Metadata Manager) nodes, as this information is needed to launch the framework. Through multiple testing scenarios, ScaleIONode2 (with the Private IP address of 10.0.0.12) is typically the Primary MDM node. SSH into that instance using the Public DNS or IP

ssh -i "keypair.pem" ec2-user@ScaleIONode2-IP-or-DNS

Run the following commands:

		Log into the ScaleIO shell:

scli –login –username admin –password F00barbaz
```



		Verify the MDM nodes:















scli –query_cluster
```


Sample output will look like this:

Cluster:
 Mode: 3_node, State: Normal, Active: 3/3, Replicas: 2/2
Master MDM:
 Name: Manager2, ID: 0x1ed68652078a0ab1
 IPs: 10.0.0.12, Management IPs: 10.0.0.12, Port: 9011
 Version: 2.0.5014
Slave MDMs:
 Name: Manager1, ID: 0x44691e69695396d0
 IPs: 10.0.0.11, Management IPs: 10.0.0.11, Port: 9011
 Status: Normal, Version: 2.0.5014
Tie-Breakers:
 Name: Tie-Breaker1, ID: 0x569bc3812558b2d2
 IPs: 10.0.0.13, Port: 9011
 Status: Normal, Version: 2.0.5014

Launch Framework

Before launching, open the Marathon UI at:

http://[MESOS MASTER PUBLIC DNS/IP ADDRESS]:8080

Utilize scaleio.json to correctly match and/or update the internal IP addresses of the Master, Slave, and TieBreaker MDM nodes. Typically, but not always, the defaults are the correct values:

{
 "id": "scaleio-scheduler",
 "uris": [
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-scheduler",
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-executor"
],
 "cmd": "chmod u+x scaleio-scheduler && ./scaleio-scheduler -loglevel=debug -rest.port=$PORT -uri=10.0.0.21:5050 -scaleio.clusterid=39f2e3fe27fbc1dc -scaleio.password=F00barbaz -scaleio.protectiondomain=default -scaleio.storagepool=default -scaleio.preconfig.primary=10.0.0.12 -scaleio.preconfig.secondary=10.0.0.11 -scaleio.preconfig.tiebreaker=10.0.0.13 -scaleio.preconfig.gateway=10.0.0.11",
 "mem": 32,
 "cpus": 0.2,
 "instances": 1,
 "constraints": [
 ["hostname", "UNIQUE"]
]
}

After verifying the values are correct in the JSON file, cURL the JSON to Marathon by running the following command:

curl -k -XPOST -d @scaleio.json -H "Content-Type: application/json" [MESOS MASTER PUBLIC DNS/IP ADDRESS]:8080/v2/apps

View the status of the ScaleIO framework by opening the Deployment UI.

		Within the Marathon UI at http://[MESOS MASTER PUBLIC DNS/IP ADDRESS]:8080, Click the scaleio-scheduler.

		The Private IP Address for the scheduler is listed. Substitute the Private IP with the Agent’s Public IP Address and keep the existing port values.

		A list Mesos Agent nodes with the current status of ScaleIO deployment can be seen and the page will automatically refresh itself.

[image: sio03]
[image: sio02]

The Agent Nodes WILL REBOOT after successful installation. This is done within this demo ONLY to make sure ScaleIO, Docker, REX-Ray and Marathon services are functioning properly. This process can take 2-5 minutes.

The status of ScaleIO deployment web portal will be restarted on the other Mesos Agent with a new port.

Deploy Applications

This particular setup has a 5 minute timeout. If a Docker image takes longer than 5 minutes to download, then deployment will fail. It’s suggested to go to each Mesos Agent and download the image using docker pull if there is a poor connection.

$ ssh -i "keypair.pem" ubuntu@MesosAgent1_IP_or_DNS
$ docker pull <image name>

Deploying Applications:

		Storage Persistence with Postgres using Mesos, Marathon, Docker, and REX-Ray [https://github.com/codedellemc/demo/tree/master/demo-persistence-with-postgres-marathon-docker]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/developer-guide/build-reference.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Build Reference

How to build the ScaleIO-Framework

Build Requirements

This project has very few build requirements, but there are still one or two
items of which to be aware. Also, please note that these are the requirements to
build ScaleIO-Framework, not run it.

Requirement | Version
————|——–
Operating System | Linux, OSX
Go [https://golang.org/] | >=1.7.3

Cross-Compilation

This project only currently supports running on Linux based platforms. Specifically
those outlined in the Requirements section on the main landing (aka README.md)
page. Although you can develop on OSX you will not be able to run on the OSX
platform.

Performing Builds

Building from source is pretty simple as all steps follow traditional golang
based projects. After forking the github project, there are two components that
make up the Framework, the scheduler and the executor. Simply navigate to each
directory and run the following build command:
glide up && GOOS=linux GOARCH=amd64 go build .

The output will look similar to the following:

[INFO] Downloading dependencies. Please wait...
[INFO] Fetching updates for github.com/stretchr/testify.
[INFO] Fetching updates for github.com/Sirupsen/logrus.
[INFO] Fetching updates for github.com/dvonthenen/goxplatform.
[INFO] Setting version for github.com/stretchr/testify to v1.1.3.
[INFO] Setting version for github.com/Sirupsen/logrus to v0.10.0.
[INFO] Resolving imports
[INFO] Fetching golang.org/x/sys/unix into /Users/vonthd/go/src/github.com/codedellemc/scaleio-framework/scaleio-scheduler/vendor
[INFO] Fetching github.com/golang/protobuf/proto into /Users/vonthd/go/src/github.com/codedellemc/scaleio-framework/scaleio-scheduler/vendor
[INFO] Fetching github.com/gogo/protobuf/jsonpb into /Users/vonthd/go/src/github.com/codedellemc/scaleio-framework/scaleio-scheduler/vendor
[INFO] Fetching github.com/codegangsta/negroni into /Users/vonthd/go/src/github.com/codedellemc/scaleio-framework/scaleio-scheduler/vendor
[INFO] Fetching github.com/gorilla/mux into /Users/vonthd/go/src/github.com/codedellemc/scaleio-framework/scaleio-scheduler/vendor
[INFO] Fetching github.com/twinj/uuid into /Users/vonthd/go/src/github.com/codedellemc/scaleio-framework/scaleio-scheduler/vendor
[INFO] Fetching github.com/gorilla/context into /Users/vonthd/go/src/github.com/codedellemc/scaleio-framework/scaleio-scheduler/vendor
[INFO] Downloading dependencies. Please wait...
[INFO] Setting references for remaining imports
[INFO] Project relies on 10 dependencies.

Upon completion of a successful build, you will not receive a “positive” notification
of that build, but rather you will find a completed binary at the root of the
folder.

Version File

There is a file at the root of the project named VERSION. The file contains
a single line with the target version of the project in the file. The version
follows the format:

(?<major>\d+)\.(?<minor>\d+)\.(?<patch>\d+)(-rc\d+)?

For example, during active development of version 0.1.0 the file would
contain the version 0.1.0. When it’s time to create 0.4.0‘s first
release candidate the version in the file will be changed to 0.1.0-rc1. And
when it’s time to release 0.1.0 the version is changed back to 0.1.0.

Please note that we’ve discussed making the actively developed version the
targeted version with a -dev suffix, but trying this resulted in confusion
for the RPM and DEB package managers when using unstable releases.

So what’s the point of the file if it’s basically duplicating the utility of a
tag? Well, the VERSION file in fact has two purposes:

		First and foremost updating the VERSION file with the same value as that
of the tag used to create a release provides a single, contextual reason to
push a commit and tag. Otherwise some random commit off of master would
be tagged as a release candidate or release. Always using the commit that
is related to updating the VERSION file is much cleaner.

		The contents of the VERSION file are also used during the build process
as a means of overriding the output of a git describe. This enables the
semantic version injected into the produced binary to be created using
the targeted version of the next release and not just the value of the
last, tagged commit.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

README.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

ScaleIO Framework for Apache Mesos

[image: logo]

The ScaleIO Framework deploys Dell EMC ScaleIO as a simplified task in Apache Mesos. All the required components to consume and provision storage volumes from a ScaleIO cluster are automatically deployed and configured on the Mesos Agents. This creates an automated mechanism to have a fully configured and reliable persistent storage solution for containers running on Apache Mesos.

Test it out following the Demo Guide using an AWS Cloud Formation Template and provided JSON files. Watch the YouTube Demo Video [https://youtu.be/tt6qhEkeVOQ?list=PLbssOJyyvHuWiBQAg9EFWH570timj2fxt] to see it in action.

Key Features

		Installs required components on existing Mesos Agents to consume and provision ScaleIO storage volumes

		On-boards new Agent nodes with “native” access to ScaleIO volumes

		All Agent nodes are configured to be highly available so failed applications can be restarted on other Agent nodes while preserving their data using REX-Ray [https://github.com/emccode/rexray] as a container runtime volume driver

		Additional storage can be added to the ScaleIO cluster to expand capacity

Requirements

		Ubuntu 14.04 or CentOS7/RHEL7

		Since Ubuntu support for ScaleIO is limited, this framework currently only supports ScaleIO version 2.0.1-2072.

		An existing 3-node or greater ScaleIO cluster using version 2.0.1-2072 must be running/provided. Primary, Secondary, and TieBreaker MDM are required for a minimal 3-node cluster.

		The ScaleIO cluster must have a Protection Domain and Storage Pool present which is capable of provisioning volumes.

		This Framework is implemented using HTTP APIs provided by Apache Mesos. This requires an Apache Mesos cluster running version 1.0 or higher.

IMPORTANT NOTE for Ubuntu 14.04: In order to avoid the Mesos Agent nodes from rebooting, it is highly recommended that the Agent Nodes have kernel version 4.2.0-30 installed prior to launching the scheduler. You can do this by running the following command prior to bringing up the Mesos Agent service:

apt-get -y update && apt-get -y install linux-image-4.4.0-38-generic

Launch the Framework on an Existing ScaleIO Cluster

No existing cluster? Follow the Demo Guide using an AWS Cloud Formation Template and provided JSON files to get started.

If MesosDNS [https://github.com/mesosphere/mesos-dns] or another service discovery application is not running in the Mesos cluster, create the following JSON to curl to Marathon:

{
 "id": "scaleio-scheduler",
 "uris": [
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-scheduler",
 "https://github.com/codedellemc/scaleio-framework/releases/download/v0.2.0/scaleio-executor"
],
 "cmd": "chmod u+x scaleio-scheduler && ./scaleio-scheduler -loglevel=debug -rest.port=$PORT -uri=[IP ADDRESS FOR MESOS MASTER]:5050 -scaleio.clustername=[SCALEIO NAME] -scaleio.password=[SCALEIO GATEWAY PASSWORD] -scaleio.protectiondomain=[PROTECTION DOMAIN NAME] -scaleio.storagepool=[STORAGE POOL NAME] -scaleio.preconfig.primary=[MASTER MDM IP ADDRESS] -scaleio.preconfig.secondary=[SLAVE MDM IP ADDRESS] -scaleio.preconfig.tiebreaker=[TIEBREAKER MDM IP ADDRESS] -scaleio.preconfig.gateway=[GATEWAY IP ADDRESS]",
 "mem": 32,
 "cpus": 0.2,
 "instances": 1,
 "constraints": [
 ["hostname", "UNIQUE"]
]
}

cURL to Marathon:

curl -k -XPOST -d @[SCALEIO JSON FILE] -H "Content-Type: application/json" [MARATHON IP ADDRESS]:8080/v2/apps

Example:

curl -k -XPOST -d @scaleio.json -H "Content-Type: application/json" 127.0.0.1:8080/v2/apps

Under the Covers

What does the ScaleIO Framework really do under the covers? Up to this point, its been stated that the Framework automates the lifecycle of ScaleIO and any related components required to provision external persistent storage in a “run it and forget it” fashion, but what does that really mean?

The ScaleIO Framework performs the following steps on deployment. It installs and configures:

		Any dependencies required for ScaleIO to run. This is done via apt-get or yum.

		The ScaleIO SDS (or Server) package. This is the service that takes designated disks (physical or virtual) and contributes them to the ScaleIO cluster.

		The ScaleIO SDC (or Client) package. This is the service that provides access to ScaleIO volumes created within the ScaleIO cluster.

		REX-Ray [https://github.com/codedellemc/rexray] which provides Mesos the ability to provision external storage for tasks that are backed by Docker containers.

		mesos-module-dvdi [https://github.com/emccode/mesos-module-dvdi] and DVDCLI [https://github.com/emccode/dvdcli] which provides Mesos the ability to provision external storage for tasks that using the Mesos Universal Containerizer. This includes any configuration required on the Mesos Agent nodes.

Road map / TBDs

The current release highlights the capabilities of combining Software Defined Storage with a platform that offers 2-layer scheduling. Subsequent versions will add significantly more features.

		Add CoreOS support

		Add ability to provision an entire ScaleIO cluster and include the MDM management nodes from initialization

		Allow more customization of the ScaleIO deployment

		Manage entire life cycle (upgrades, maintenance, etc) of all nodes in the ScaleIO cluster

		Manages health of a ScaleIO cluster by monitoring for critical events (Performance, Almost Full, etc)

Support

Please file bugs and issues on the Github issues page for this project. This is to help keep track and document everything related to this repo. For general discussions and further support, join the {code} by Dell EMC Community [http://community.codedellemc.com/] slack team. The code and documentation are released with no warranties or SLAs and are intended to be supported through a community driven process.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/user-guide/configuration.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Configuration

Setting the configuration files

Configuration

TODO

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/user-guide/troubleshooting.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Troubleshooting

Log file location

ScaleIO-Framework keeps a log in the stdout file for the Marathon’s task.

Debug output

The ScaleIO-Framework can be started with the -debug=true flag to maximize log detail.

To watch polly live, including error output and traces, you simply open the
stdout files on the Marathon task. A new window with the streaming output for
the stdout will be created.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/developer-guide/project-guidelines.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Project Guidelines

These are important.

People contributing code to this project must adhere to the following rules.
These standards are in place to keep code clean, consistent, and stable.

Documentation

There are two types of documentation: source and markdown.

Source Code

All source code should be documented in accordance with the
Go’s documentation rules [http://blog.golang.org/godoc-documenting-go-code].

Markdown

When creating or modifying the project’s README.md file or any of the
documentation in the .docs directory, please keep the following rules in
mind:

		All links to internal resources should be relative.

		All links to markdown files should include the file extension.

For example, the below link points to the anchor basic-configuration on the
Configuration page:

/user-guide/config#basic-configuration

However, when the above link is followed when viewing this page directly from
the Github repository instead of the generated site documentation, the link
will return a 404.

While it’s recommended that users view the generated site documentation instead
of the source Markdown directly, we can still fix it so that the above link
will work regardless. To fix the link, simply make it relative and add the
Markdown file extension:

../user-guide/config.md#basic-configuration

Now the link will work regardless from where it’s viewed.

Style & Syntax

All source files should be processed by the following tools prior to being
committed. Any errors or warnings produced by the tools should be corrected
before the source is committed.

Tool | Description
—–|————
gofmt [https://golang.org/cmd/gofmt/] | A golang source formatting tool
golint [https://github.com/golang/lint] | A golang linter
govet [https://golang.org/cmd/vet/] | A golang source optimization tool
gocyclo [https://github.com/fzipp/gocyclo] | A golang cyclomatic complexity detection tool. No function should have a score above 0.15

If Atom [https://atom.io/] is your IDE of choice, install the
go-plus [https://atom.io/packages/go-plus] package, and it will execute all of
the tools above less gocyclo upon saving a file.

In lieu of using Atom as the IDE, the project’s build procedures as outlined in
build-references.md automatically
executes the above tools as part of the build process and will fail the build
if problems are discovered.

Code Coverage

All new work submitted to the project should have associated tests where
applicable. If there is ever a question of whether or not a test is applicable
then the answer is likely yes.

This project uses
Codecov [https://codecov.io/github/codedellemc/scaleio-framework?branch=master]
for code coverage, and all pull requests are processed just as a build from master.
If a pull request decreases the project’s code coverage, the pull request will be
declined until such time that testing is added or enhanced to compensate.

Commit Messages

Commit messages should follow the guide 5 Useful Tips For a Better Commit
Message [https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message].
The two primary rules to which to adhere are:

		Commit message subjects should not exceed 50 characters in total and
should be followed by a blank line.

		The commit message’s body should not have a width that exceeds 72
characters.

For example, the following commit has a very useful message that is succinct
without losing utility.

commit e80c696939a03f26cd180934ba642a729b0d2941
Date: Tue Oct 20 23:47:36 2015 -0500

 Added --format,-f option for CLI

 This patch adds the flag '--format' or '-f' for the
 following CLI commands:

 * adapter instances
 * device [get]
 * snapshot [get]
 * snapshot copy
 * snapshot create
 * volume [get]
 * volume attach
 * volume create
 * volume map
 * volume mount
 * volume path

 The user can specify either '--format=yml|yaml|json' or
 '-f yml|yaml|json' in order to influence how the resulting,
 structured data is marshaled prior to being emitted to the console.

Please note that the output above is the full output for viewing a commit.
However, because the above message adheres to the commit message rules, it’s
quite easy to show just the commit’s subject:

$ git show e80c696939a03f26cd180934ba642a729b0d2941 --format="%s" -s
Added --format,-f option for CLI

It’s also equally simple to print the commit’s subject and body together:

$ git show e80c696939a03f26cd180934ba642a729b0d2941 --format="%s%n%n%b" -s
Added --format,-f option for CLI

This patch adds the flag '--format' or '-f' for the
following CLI commands:

 * adapter instances
 * device [get]
 * snapshot [get]
 * snapshot copy
 * snapshot create
 * volume [get]
 * volume attach
 * volume create
 * volume map
 * volume mount
 * volume path

The user can specify either '--format=yml|yaml|json' or
'-f yml|yaml|json' in order to influence how the resulting,
structured data is marshaled prior to being emitted to the console.

Submitting Changes

All developers are required to follow the
GitHub Flow model [https://guides.github.com/introduction/flow/] when
proposing new features or even submitting fixes.

Please note that although not explicitly stated in the referenced GitHub Flow
model, all work should occur on a fork of this project, not from within a
branch of this project itself.

Pull requests submitted to this project should adhere to the following
guidelines:

		Branches should be rebased off of the upstream master prior to being
opened as pull requests and again prior to merge. This is to ensure that
the build system accounts for any changes that may only be detected during
the build and test phase.

		Unless granted an exception a pull request should contain only a single
commit. This is because features and patches should be atomic – wholly
shippable items that are either included in a release, or not. Please
squash commits on a branch before opening a pull request. It is not a
deal-breaker otherwise, but please be prepared to add a comment or
explanation as to why you feel multiple commits are required.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/developer-guide/release-process.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

Release Process

How to release ScaleIO-Framework

Project Stages

This project has three parallels stages of release:

Name | Description
—–|————
unstable | The tip or HEAD of the master branch is referred to as unstable
staged | A commit tagged with the suffix -rc\d+ such as v0.1.0-rc2 is a staged release. These are release candidates.
stable | A commit tagged with a version sans -rc\d+ suffix such as v0.1.0 is a stable release.

There are no steps necessary to create an unstable release as that happens
automatically whenever an untagged commit is pushed to master. However, the
following workflow should be used when tagging a staged release candidate
or stable release.

		Review outstanding issues & pull requests

		Prepare release notes

		Update the version file

		Commit & pull request

		Tag the release

		Update the version file (again)

Review Issues & Pull Requests

The first step to a release is to review the outstanding
issues [https://github.com/codedellemc/scaleio-framework/issues] and
pull requests [https://github.com/codedellemc/scaleio-framework/pulls] that are tagged for
the release in question.

If there are outstanding issues requiring changes or pending pull requests to
be merged, handle those prior to tagging any commit as a release candidate or
release.

It is highly recommended that pull requests be merged synchronously after
rebasing each subsequent one off of the new tip of master. Remember, while
GitHub will update a pull request as in conflict if a change to master
results in a merge conflict with the pull request, GitHub will not force a
new build to spawn unless the pull request is actually updated.

At the very minimum a pull request’s build should be re-executed prior to the
pull request being merged if master has changed since the pull request was
opened.

Prepare Release Notes

Update the release notes at .docs/about/release-notes.md. This file is
project’s authoritative changelog and should reflect new features, fixes, and
any significant changes.

The most recent, stable version of the release notes are always available
online at
ScaleIO-Framework’s documentation site [http://scaleio-framework.rtfd.org/en/stable/about/release-notes/].

Update Version File

The VERSION file exists at the root of the project and should be updated to
reflect the value of the intended release.

For example, if creating the first release candidate for version 0.1.0, the
contents of the VERSION file should be a single line 0.1.0-rc1 followed by
a newline character:

$ cat VERSION
0.1.0-rc1

If releasing version 0.1.0 proper then the contents of the VERSION file
should be 0.1.0 followed by a newline character:

$ cat VERSION
0.1.0

Commit & Pull Request

Once all outstanding issues and pull requests are handled, the release notes
and version are updated, it’s time to create a commit.

Please make sure that the changes to the release notes and version files are
a part of the same commit. This makes identifying the aspects of a release,
staged or otherwise, far easier for future developers.

A release’s commit message can either be a reflection of the release notes or
something simple. Either way the commit message should have the following
subject format and first line in its body:

Release (Candidate) v0.1.0-rc1

This patch bumps the version to v0.1.0-rc1.

If the commit message is longer it should simply reflect the same information
from the release notes.

Once committed push the change to a fork and open a pull request. Even though
this commit marks a staged or official release, the pull request system is still
used to assure that the build completes successfully and there are no unforeseen
errors.

Tag the Release

Once the pull request marking the staged or stable release has been merged
into upstream‘s master it’s time to tag the release.

Tag Format

The release tag should follow a prescribed format depending upon the release
type:

Release Type | Tag Format | Example
——–|———|———
staged | vMAJOR.MINOR.PATCH-rc[0-9] | v0.1.0-rc1
stable | vMAJOR.MINOR-PATCH | v0.1.0

Tag Methods

There are two ways to tag a release:

		GitHub Releases [https://github.com/codedellemc/scaleio-framework/releases/new]

		Command Line

Command Line

If tagging a release via the command line be sure to fetch the latest changes
from upstream‘s master and either merge them into your local copy of
master or reset the local copy to reflect upstream prior to creating
any tags.

The following combination of commands can be used to create a tag for
0.1.0 Release Candidate 1:

git fetch upstream && \
 git checkout master && \
 git reset --hard upstream/master && \
 git tag -a -m v0.1.0-rc1 v0.1.0-rc1

The above example combines a few operations:

		The first command fetches the upstream changes

		The local master branch is checked out

		The local master branch is hard reset to upstream/master

		An annotated tag is created on master for v0.1.0-rc1, or 0.1.0 Release
Candidate 1, with a tag message of v0.1.0-rc1.

Please note that the third step will erase any changes that exist only in the
local master branch that do not also exist in the remote, upstream copy.
However, if the two branches are not equal this method should not be used to
create a tag anyway.

The above steps do not actually push the tag upstream. This is to allow for one
final review of all the changes before doing so since the appearance of a new,
annotated tag in the repository will cause the project’s build system to
automatically kick off a build that will result in the release of a staged or
stable release. For stable releases the project’s documentation will also be
updated.

Once positive everything looks good simply execute the following command to
push the tag to the upstream repository:

git push upstream v0.1.0-rc1

Update Version File (Again)

After a release is tagged there is one final step involving the VERSION file.
The contents of the file should be updated to reflect the next, targeted release
so that the produced artifacts reflect the targeted version value and not a
value based on the last, tagged commit.

Following the above examples where version v0.1.0-rc1 was just staged, the
VERSION file should be updated to indicate that 0.1.0 Release Candidate 2
(0.1.0-rc2) is the next, targeted release:

$ cat VERSION
0.1.0-rc2

Commit the change to the VERSION file with a commit message similar to the
following:

Bumped active dev version to v0.1.0-rc2

This patch bumps the active dev version to v0.1.0-rc2.

Once the VERSION file change is committed, push the change and open a pull
request to merge into the project.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/user-guide/restapi.html

 Navigation

 		
 index

 		ScaleIO-Framework latest documentation »

REST API

The ScaleIO-Framework REST API documentation at Apiary!

TODO

Coming soon!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

