
SBuildr
Release 0.6.2

Jan 11, 2020

Contents

1 Installation 3
1.1 Prerequisites . 3
1.2 Installing from PyPI . 3
1.3 Installing from Source . 3

2 A Small Example 5

3 API Documentation 7

4 Known Limitations 9
4.1 Project . 9
4.2 Profile . 13
4.3 Build Flags . 14

Index 17

i

ii

SBuildr, Release 0.6.2

A stupid, simple python-based meta-build system for C++ projects.

Contents 1

SBuildr, Release 0.6.2

2 Contents

CHAPTER 1

Installation

1.1 Prerequisites

1. RBuild

• Install Cargo

• Run cargo install rbuild

1.2 Installing from PyPI

pip install sbuildr

1.3 Installing from Source

1. Clone the SBuildr source repository.

2. Install locally with python setup.py install

3

https://github.com/pmarathe25/RBuild
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://github.com/pmarathe25/SBuildr

SBuildr, Release 0.6.2

4 Chapter 1. Installation

CHAPTER 2

A Small Example

For this example, we will assume the following directory structure:

minimal_project
build.py
include

math.hpp
src

factorial.cpp
factorial.hpp
fibonacci.cpp
fibonacci.hpp
utils.hpp

tests
test.cpp

The corresponding build.py file might look like this:

#!/usr/bin/env python
import sbuildr
import os

project = sbuildr.Project()

Build a library using two source files. Note that headers do not have to be
→˓specified manually.
Full file paths are only required in cases where a partial path would be ambiguous.
libmath = project.library("math", sources=["factorial.cpp", "fibonacci.cpp"], libs=[
→˓"stdc++"])

Specify that math.hpp is part of the public API for this library.
project.interfaces(["math.hpp"])

Specify a test for the project using the test.cpp source file. The resulting
→˓executable will

(continues on next page)

5

SBuildr, Release 0.6.2

(continued from previous page)

be linked against the library created above.
test = project.test("test", sources=["test.cpp"], libs=["stdc++", libmath])

Enable this script to be used interactively on the command-line
sbuildr.cli(project)

The call to the cli() function allows us to use the script to build interactively in a shell. For example, to run all tests
registered for this project, you can run: ./build.py test. This will configure the project, build all dependencies,
and finally run tests.

To view all available commands, you can run ./build.py --help

6 Chapter 2. A Small Example

CHAPTER 3

API Documentation

For more information, see the API Documentation

7

https://sbuildr.readthedocs.io/en/stable/

SBuildr, Release 0.6.2

8 Chapter 3. API Documentation

CHAPTER 4

Known Limitations

• SBuildr’s header scanning functionality does not take into account preprocessor #ifdefs. This means that an
#include in a false branch will still be used as a dependency during builds. Header scanning will also not
work for paths containing escaped characters.

4.1 Project

The project is the primary SBuildr’s primary interface. It keeps track of all source files, and project targets.

class sbuildr.Project(root: str = None, dirs: Set[str] = {}, build_dir: str = None)

PROJECT_API_VERSION = 1
Represents a project. Projects include two default profiles with the following configuration: release:
BuildFlags().O(3).std(17).march("native").fpic() debug: BuildFlags().
O(0).std(17).debug().fpic().define("S_DEBUG"), attaches file suffix “_debug” These
can be overridden using the profile() function.

Parameters

• root – The path to the root directory for this project. All directories and files within the
root directory are considered during searches for files. If no root directory is provided,
defaults to the containing directory of the script calling this constructor.

• dirs – Additional directories outside the root directory that are part of the project. These
directories and all contents will be considered during searches for files.

• build_dir – The build directory to use. If no build directory is provided, a directory
named ‘build’ is created in the root directory.

build(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] = None) →
float

Builds the specified targets for this project. Configuration should be run prior to calling this function.

Parameters

9

SBuildr, Release 0.6.2

• targets – The targets to build. Defaults to all targets.

• profile_names – The profiles for which to build the targets. Defaults to all profiles.

Returns Time elapsed during the build.

clean(profile_names: List[str] = None, nuke: bool = False, dry_run: bool = True)
Removes build directories and project artifacts.

Parameters

• profile_names – The profiles for which to remove build directories. Defaults to all
profiles.

• nuke – Whether to remove all build directories associated with the project, including
profile build directories.

• dry_run – Whether this is a dry-run, in which case SBuildr will only display which
directories would be removed rather than removing them. Defaults to True.

configure(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] = None,
BackendType: type = <class ’sbuildr.backends.rbuild.RBuildBackend’>)→ None

Configure does 3 things: 1. Finds dependencies for the specified targets. This involves potentially fetching
and building dependencies if they do not exist in the cache. 2. Configures the project’s build graph after
discovering libraries for targets. Before calling configure(), a target’s libs/lib_dirs lists are not guaran-
teed to be complete. 3. Configure the project for build using the specified backend type. This includes
generating any build configuration files required by this project’s backend.

This function must be called prior to building.

Parameters

• targets – The targets for which to configure the project. Defaults to all targets.

• profile_names – The names of profiles for which to configure the project. Defaults
to all profiles.

• BackendType – The type of backend to use. Since SBuildr is a meta-build system, it
can support multiple backends to perform builds. For example, RBuild (i.e. sbuildr.
backends.RBuildBackend) can be used for fast incremental builds. Note that this
should be a type rather than an instance of a backend.

executable(name: str, sources: List[str], flags: sbuildr.tools.flags.BuildFlags =
<sbuildr.tools.flags.BuildFlags object>, libs: List[Union[sbuildr.dependencies.dependency.DependencyLibrary,
sbuildr.project.target.ProjectTarget, sbuildr.graph.node.Library]] = [], compiler:
sbuildr.tools.compiler.Compiler = <sbuildr.tools.compiler.Compiler object>, in-
clude_dirs: List[str] = [], linker: sbuildr.tools.linker.Linker = <sbuildr.tools.linker.Linker
object>, depends: List[sbuildr.dependencies.dependency.Dependency] = [], inter-
nal=False)→ sbuildr.project.target.ProjectTarget

Adds an executable target to all profiles within this project.

Parameters

• name – The name of the target. This should NOT include platform-dependent extensions.

• sources – A list of names or paths of source files to include in this target.

• flags – Compiler and linker flags. See sbuildr.BuildFlags for details.

• libs – A list containing either ProjectTarget s, DependencyLibrary s or
Library s.

• compiler – The compiler to use for this target. Defaults to clang.

10 Chapter 4. Known Limitations

SBuildr, Release 0.6.2

• include_dirs – A list of paths for preprocessor include directories. These directories
take precedence over automatically deduced include directories.

• linker – The linker to use for this target. Defaults to clang.

• depends – Any additional dependencies not already captured in libs. This may include
header only packages for example.

• internal – Whether this target is internal to the project, in which case it will not be
installed.

Returns sbuildr.project.target.ProjectTarget

find(path)→ str
Attemps to locate a path in the project. If no paths were found, or multiple ambiguous paths were found,
raises an exception.

Parameters path – The path to find. This may be an absolute path, partial path, or file/directory
name.

Returns An absolute path to the matching file or directory.

install(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] =
None, headers: List[str] = None, header_install_path: str = ’/usr/local/include’, li-
brary_install_path: str = ’/usr/local/lib’, executable_install_path: str = ’/usr/local/bin’,
dry_run: bool = True)

Install the specified targets for the specified profiles.

Parameters

• targets – The targets to install. Defaults to all non-internal project targets.

• profile_names – The profiles for which to install. Defaults to the “release” profile.

• headers – The headers to install. Defaults to all headers that are part of the interface as
per interfaces() .

• header_install_path – The path to which to install headers. This defaults to one
of the default locations for the host OS.

• library_install_path – The path to which to install libraries. This defaults to one
of the default locations for the host OS.

• executable_install_path – The path to which to install executables. This de-
faults to one of the default locations for the host OS.

• dry_run – Whether to perform a dry-run only, with no file copying. Defaults to True.

install_profile()→ str
Returns the name of the profile for which this project will install targets.

install_targets()→ List[sbuildr.project.target.ProjectTarget]
Returns all targets that this project can install.

Returns A list of targets.

interfaces(headers: List[str], depends: List[sbuildr.dependencies.dependency.Dependency] = [])
→ List[str]

Specifies headers that are part of this project’s public interface. When running the install command on
the CLI, the headers specified via this function will be copied to installation directories.

Parameters headers – A list of paths to a public headers.

Returns The absolute paths of the discovered headers.

4.1. Project 11

SBuildr, Release 0.6.2

library(name: str, sources: List[str], flags: sbuildr.tools.flags.BuildFlags =
<sbuildr.tools.flags.BuildFlags object>, libs: List[Union[sbuildr.dependencies.dependency.DependencyLibrary,
sbuildr.project.target.ProjectTarget, sbuildr.graph.node.Library]] = [], compiler:
sbuildr.tools.compiler.Compiler = <sbuildr.tools.compiler.Compiler object>, include_dirs:
List[str] = [], linker: sbuildr.tools.linker.Linker = <sbuildr.tools.linker.Linker object>,
depends: List[sbuildr.dependencies.dependency.Dependency] = [], internal=False) →
sbuildr.project.target.ProjectTarget

Adds a library target to all profiles within this project.

Parameters

• name – The name of the target. This should NOT include platform-dependent extensions.

• sources – A list of names or paths of source files to include in this target.

• flags – Compiler and linker flags. See sbuildr.BuildFlags for details.

• libs – A list containing either ProjectTarget s, DependencyLibrary s or
Library s.

• compiler – The compiler to use for this target. Defaults to clang.

• include_dirs – A list of paths for preprocessor include directories. These directories
take precedence over automatically deduced include directories.

• linker – The linker to use for this target. Defaults to clang.

• depends – Any additional dependencies not already captured in libs. This may include
header only packages for example.

• internal – Whether this target is internal to the project, in which case it will not be
installed.

Returns sbuildr.project.target.ProjectTarget

run(targets: List[sbuildr.project.target.ProjectTarget], profile_names: List[str] = [])→ None
Runs targets from this project.

Parameters

• targets – The targets to run.

• profile_names – The profiles for which to run the targets.

run_tests(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] =
None)

Run tests from this project. Runs all tests from the project for all profiles by default.

Parameters

• targets – The test targets to run. Raises an exception if the target is not a test target.

• profile_names – The profiles for which to run the tests. Defaults to all profiles.

test(name: str, sources: List[str], flags: sbuildr.tools.flags.BuildFlags = <sbuildr.tools.flags.BuildFlags
object>, libs: List[Union[sbuildr.dependencies.dependency.DependencyLibrary,
sbuildr.project.target.ProjectTarget, sbuildr.graph.node.Library]] = [], compiler:
sbuildr.tools.compiler.Compiler = <sbuildr.tools.compiler.Compiler object>, include_dirs:
List[str] = [], linker: sbuildr.tools.linker.Linker = <sbuildr.tools.linker.Linker object>, depends:
List[sbuildr.dependencies.dependency.Dependency] = [])→ sbuildr.project.target.ProjectTarget

Adds an executable target to all profiles within this project. Test targets can be automatically built and run
by using the test command on the CLI.

Parameters

12 Chapter 4. Known Limitations

SBuildr, Release 0.6.2

• name – The name of the target. This should NOT include platform-dependent extensions.

• sources – A list of names or paths of source files to include in this target.

• flags – Compiler and linker flags. See sbuildr.BuildFlags for details.

• libs – A list containing either ProjectTarget s, DependencyLibrary s or
Library s.

• compiler – The compiler to use for this target. Defaults to clang.

• include_dirs – A list of paths for preprocessor include directories. These directories
take precedence over automatically deduced include directories.

• linker – The linker to use for this target. Defaults to clang.

• depends – Any additional dependencies not already captured in libs. This may include
header only packages for example.

Returns sbuildr.project.target.ProjectTarget

test_targets()→ List[sbuildr.project.target.ProjectTarget]
Returns all targets in this project that are tests.

Returns A list of targets.

uninstall(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] =
None, headers: List[str] = None, header_install_path: str = ’/usr/local/include’, li-
brary_install_path: str = ’/usr/local/lib’, executable_install_path: str = ’/usr/local/bin’,
dry_run: bool = True)

Uninstall the specified targets for the specified profiles.

Parameters

• targets – The targets to uninstall. Defaults to all non-internal project targets.

• profile_names – The profiles for which to uninstall. Defaults to the “release” profile.

• headers – The headers to uninstall. Defaults to all headers that are part of the interface
as per interfaces() .

• header_install_path – The path from which to uninstall headers. This defaults to
one of the default locations for the host OS.

• library_install_path – The path from which to uninstall libraries. This defaults
to one of the default locations for the host OS.

• executable_install_path – The path from which to uninstall executables. This
defaults to one of the default locations for the host OS.

• dry_run – Whether to perform a dry-run only, with no file copying. Defaults to True.

4.2 Profile

class sbuildr.Profile(flags: sbuildr.tools.flags.BuildFlags, build_dir: str, suffix: str)
Represents a profile in a project. A profile is essentially a set of options applied to targets in the project. For
example, a profile can be used to specify that all targets should be built with debug information, and that they
should have a “_debug” suffix.

Parameters

• flags – The flags to use for this profile. These will be applied to all targets for this profile.
Per-target flags always take precedence.

4.2. Profile 13

SBuildr, Release 0.6.2

• build_dir – An absolute path to the build directory to use.

• suffix – A file suffix to attach to all artifacts generated for this profile.

4.3 Build Flags

class sbuildr.BuildFlags
Abstract description of compiler and linker flags. These are interpreted by SBuildr’s compiler and linker inter-
faces and converted to concrete command-line flags.

It is possible to add two BuildFlags, in which case the right-hand side takes precedence when flags are set
for both instances. For example, BuildFlags.O(3).fpic() + BuildFlags.O(0) would result in a
value equivalent to: BuildFlags.O(0).fpic()

O(level: Union[int, str])→ sbuildr.tools.flags.BuildFlags
Sets the optimization level.

Parameters level – An integer or string indicating the optimization level. For example, to
disable optimization, this would be set to 0 or "0".

Returns self

debug(use=True)→ sbuildr.tools.flags.BuildFlags
Enables or disables generation of debug information.

Parameters use – Whether to generate debug information.

Returns self

define(macro)→ sbuildr.tools.flags.BuildFlags
Defines the specified macro during compilation. This can be useful to enable/disable code paths using
#ifdefs.

Parameters macro – The macro to define.

Returns self

fpic(use=True)→ sbuildr.tools.flags.BuildFlags
Enables or disables generation of position independent code.

Parameters use – Whether to generate position independent code.

Returns self

march(type: str)→ sbuildr.tools.flags.BuildFlags
Sets the microarchitecture.

Parameters type – A string describing the CPU microarchitecture.

Returns self

raw(opts: List[str])→ sbuildr.tools.flags.BuildFlags
Allows for providing raw options.

Parameters opts – A list of options, as strings. These are passed on to the compiler and linker
without modification.

Returns self

std(year: Union[int, str])→ sbuildr.tools.flags.BuildFlags
Sets the C++ standard.

14 Chapter 4. Known Limitations

SBuildr, Release 0.6.2

Parameters year – An integer or string indicating the last two digits of the year of the corre-
sponding C++ standard. For example, to use C++11, this would be set to 11 or "11".

Returns self

4.3. Build Flags 15

SBuildr, Release 0.6.2

16 Chapter 4. Known Limitations

Index

B
build() (sbuildr.Project method), 9
BuildFlags (class in sbuildr), 14

C
clean() (sbuildr.Project method), 10
configure() (sbuildr.Project method), 10

D
debug() (sbuildr.BuildFlags method), 14
define() (sbuildr.BuildFlags method), 14

E
executable() (sbuildr.Project method), 10

F
find() (sbuildr.Project method), 11
fpic() (sbuildr.BuildFlags method), 14

I
install() (sbuildr.Project method), 11
install_profile() (sbuildr.Project method), 11
install_targets() (sbuildr.Project method), 11
interfaces() (sbuildr.Project method), 11

L
library() (sbuildr.Project method), 11

M
march() (sbuildr.BuildFlags method), 14

O
O() (sbuildr.BuildFlags method), 14

P
Profile (class in sbuildr), 13
Project (class in sbuildr), 9
PROJECT_API_VERSION (sbuildr.Project attribute), 9

R
raw() (sbuildr.BuildFlags method), 14
run() (sbuildr.Project method), 12
run_tests() (sbuildr.Project method), 12

S
std() (sbuildr.BuildFlags method), 14

T
test() (sbuildr.Project method), 12
test_targets() (sbuildr.Project method), 13

U
uninstall() (sbuildr.Project method), 13

17

	Installation
	Prerequisites
	Installing from PyPI
	Installing from Source

	A Small Example
	API Documentation
	Known Limitations
	Project
	Profile
	Build Flags

	Index

