

SBuildr - Stupid Buildr

A stupid, simple python-based meta-build system for C++ projects.

Installation

Prerequisites

	RBuild [https://github.com/pmarathe25/RBuild]

	Install Cargo [https://doc.rust-lang.org/cargo/getting-started/installation.html]

	Run cargo install rbuild

Installing from PyPI

pip install sbuildr

Installing from Source

	Clone the SBuildr source repository [https://github.com/pmarathe25/SBuildr].

	Install locally with python setup.py install

A Small Example

For this example, we will assume the following directory structure:

minimal_project
├── build.py
├── include
│ └── math.hpp
├── src
│ ├── factorial.cpp
│ ├── factorial.hpp
│ ├── fibonacci.cpp
│ ├── fibonacci.hpp
│ └── utils.hpp
└── tests
 └── test.cpp

The corresponding build.py file might look like this:

#!/usr/bin/env python
import sbuildr
import os

project = sbuildr.Project()

Build a library using two source files. Note that headers do not have to be specified manually.
Full file paths are only required in cases where a partial path would be ambiguous.
libmath = project.library("math", sources=["factorial.cpp", "fibonacci.cpp"], libs=["stdc++"])

Specify that math.hpp is part of the public API for this library.
project.interfaces(["math.hpp"])

Specify a test for the project using the test.cpp source file. The resulting executable will
be linked against the library created above.
test = project.test("test", sources=["test.cpp"], libs=["stdc++", libmath])

Enable this script to be used interactively on the command-line
sbuildr.cli(project)

The call to the cli() function allows us to use the script to build interactively in a shell.
For example, to run all tests registered for this project, you can run: ./build.py test. This will configure the project, build all dependencies, and finally run tests.

To view all available commands, you can run ./build.py --help

API Documentation

For more information, see the API Documentation [https://sbuildr.readthedocs.io/en/stable/]

Known Limitations

	SBuildr’s header scanning functionality does not take into account preprocessor #ifdefs. This means that an #include in a false branch will still be used as a dependency during builds. Header scanning will also not work for paths containing escaped characters.

Project

The project is the primary SBuildr’s primary interface. It keeps track of all source files, and project targets.

	
class sbuildr.Project(root: str = None, dirs: Set[str] = {}, build_dir: str = None)

	
	
PROJECT_API_VERSION = 1

	Represents a project. Projects include two default profiles with the following configuration:
release: BuildFlags().O(3).std(17).march("native").fpic()
debug: BuildFlags().O(0).std(17).debug().fpic().define("S_DEBUG"), attaches file suffix “_debug”
These can be overridden using the profile() function.

	Parameters

	
	root – The path to the root directory for this project. All directories and files within the root directory are considered during searches for files. If no root directory is provided, defaults to the containing directory of the script calling this constructor.

	dirs – Additional directories outside the root directory that are part of the project. These directories and all contents will be considered during searches for files.

	build_dir – The build directory to use. If no build directory is provided, a directory named ‘build’ is created in the root directory.

	
build(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] = None) → float

	Builds the specified targets for this project. Configuration should be run prior to calling this function.

	Parameters

	
	targets – The targets to build. Defaults to all targets.

	profile_names – The profiles for which to build the targets. Defaults to all profiles.

	Returns

	Time elapsed during the build.

	
clean(profile_names: List[str] = None, nuke: bool = False, dry_run: bool = True)

	Removes build directories and project artifacts.

	Parameters

	
	profile_names – The profiles for which to remove build directories. Defaults to all profiles.

	nuke – Whether to remove all build directories associated with the project, including profile build directories.

	dry_run – Whether this is a dry-run, in which case SBuildr will only display which directories would be removed rather than removing them. Defaults to True.

	
configure(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] = None, BackendType: type = <class 'sbuildr.backends.rbuild.RBuildBackend'>) → None

	Configure does 3 things:
1. Finds dependencies for the specified targets. This involves potentially fetching and building dependencies if they do not exist in the cache.
2. Configures the project’s build graph after discovering libraries for targets. Before calling configure(), a target’s libs/lib_dirs lists are not guaranteed to be complete.
3. Configure the project for build using the specified backend type. This includes generating any build configuration files required by this project’s backend.

This function must be called prior to building.

	Parameters

	
	targets – The targets for which to configure the project. Defaults to all targets.

	profile_names – The names of profiles for which to configure the project. Defaults to all profiles.

	BackendType – The type of backend to use. Since SBuildr is a meta-build system, it can support multiple backends to perform builds. For example, RBuild (i.e. sbuildr.backends.RBuildBackend) can be used for fast incremental builds. Note that this should be a type rather than an instance of a backend.

	
executable(name: str, sources: List[str], flags: sbuildr.tools.flags.BuildFlags = <sbuildr.tools.flags.BuildFlags object>, libs: List[Union[sbuildr.dependencies.dependency.DependencyLibrary, sbuildr.project.target.ProjectTarget, sbuildr.graph.node.Library]] = [], compiler: sbuildr.tools.compiler.Compiler = <sbuildr.tools.compiler.Compiler object>, include_dirs: List[str] = [], linker: sbuildr.tools.linker.Linker = <sbuildr.tools.linker.Linker object>, depends: List[sbuildr.dependencies.dependency.Dependency] = [], internal=False) → sbuildr.project.target.ProjectTarget

	Adds an executable target to all profiles within this project.

	Parameters

	
	name – The name of the target. This should NOT include platform-dependent extensions.

	sources – A list of names or paths of source files to include in this target.

	flags – Compiler and linker flags. See sbuildr.BuildFlags for details.

	libs – A list containing either ProjectTarget s, DependencyLibrary s or Library s.

	compiler – The compiler to use for this target. Defaults to clang.

	include_dirs – A list of paths for preprocessor include directories. These directories take precedence over automatically deduced include directories.

	linker – The linker to use for this target. Defaults to clang.

	depends – Any additional dependencies not already captured in libs. This may include header only packages for example.

	internal – Whether this target is internal to the project, in which case it will not be installed.

	Returns

	sbuildr.project.target.ProjectTarget

	
find(path) → str

	Attemps to locate a path in the project. If no paths were found, or multiple ambiguous paths were found, raises an exception.

	Parameters

	path – The path to find. This may be an absolute path, partial path, or file/directory name.

	Returns

	An absolute path to the matching file or directory.

	
install(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] = None, headers: List[str] = None, header_install_path: str = '/usr/local/include', library_install_path: str = '/usr/local/lib', executable_install_path: str = '/usr/local/bin', dry_run: bool = True)

	Install the specified targets for the specified profiles.

	Parameters

	
	targets – The targets to install. Defaults to all non-internal project targets.

	profile_names – The profiles for which to install. Defaults to the “release” profile.

	headers – The headers to install. Defaults to all headers that are part of the interface as per interfaces() .

	header_install_path – The path to which to install headers. This defaults to one of the default locations for the host OS.

	library_install_path – The path to which to install libraries. This defaults to one of the default locations for the host OS.

	executable_install_path – The path to which to install executables. This defaults to one of the default locations for the host OS.

	dry_run – Whether to perform a dry-run only, with no file copying. Defaults to True.

	
install_profile() → str

	Returns the name of the profile for which this project will install targets.

	
install_targets() → List[sbuildr.project.target.ProjectTarget]

	Returns all targets that this project can install.

	Returns

	A list of targets.

	
interfaces(headers: List[str], depends: List[sbuildr.dependencies.dependency.Dependency] = []) → List[str]

	Specifies headers that are part of this project’s public interface.
When running the install command on the CLI, the headers specified via this function will be copied to installation directories.

	Parameters

	headers – A list of paths to a public headers.

	Returns

	The absolute paths of the discovered headers.

	
library(name: str, sources: List[str], flags: sbuildr.tools.flags.BuildFlags = <sbuildr.tools.flags.BuildFlags object>, libs: List[Union[sbuildr.dependencies.dependency.DependencyLibrary, sbuildr.project.target.ProjectTarget, sbuildr.graph.node.Library]] = [], compiler: sbuildr.tools.compiler.Compiler = <sbuildr.tools.compiler.Compiler object>, include_dirs: List[str] = [], linker: sbuildr.tools.linker.Linker = <sbuildr.tools.linker.Linker object>, depends: List[sbuildr.dependencies.dependency.Dependency] = [], internal=False) → sbuildr.project.target.ProjectTarget

	Adds a library target to all profiles within this project.

	Parameters

	
	name – The name of the target. This should NOT include platform-dependent extensions.

	sources – A list of names or paths of source files to include in this target.

	flags – Compiler and linker flags. See sbuildr.BuildFlags for details.

	libs – A list containing either ProjectTarget s, DependencyLibrary s or Library s.

	compiler – The compiler to use for this target. Defaults to clang.

	include_dirs – A list of paths for preprocessor include directories. These directories take precedence over automatically deduced include directories.

	linker – The linker to use for this target. Defaults to clang.

	depends – Any additional dependencies not already captured in libs. This may include header only packages for example.

	internal – Whether this target is internal to the project, in which case it will not be installed.

	Returns

	sbuildr.project.target.ProjectTarget

	
run(targets: List[sbuildr.project.target.ProjectTarget], profile_names: List[str] = []) → None

	Runs targets from this project.

	Parameters

	
	targets – The targets to run.

	profile_names – The profiles for which to run the targets.

	
run_tests(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] = None)

	Run tests from this project. Runs all tests from the project for all profiles by default.

	Parameters

	
	targets – The test targets to run. Raises an exception if the target is not a test target.

	profile_names – The profiles for which to run the tests. Defaults to all profiles.

	
test(name: str, sources: List[str], flags: sbuildr.tools.flags.BuildFlags = <sbuildr.tools.flags.BuildFlags object>, libs: List[Union[sbuildr.dependencies.dependency.DependencyLibrary, sbuildr.project.target.ProjectTarget, sbuildr.graph.node.Library]] = [], compiler: sbuildr.tools.compiler.Compiler = <sbuildr.tools.compiler.Compiler object>, include_dirs: List[str] = [], linker: sbuildr.tools.linker.Linker = <sbuildr.tools.linker.Linker object>, depends: List[sbuildr.dependencies.dependency.Dependency] = []) → sbuildr.project.target.ProjectTarget

	Adds an executable target to all profiles within this project. Test targets can be automatically built and run by using the test command on the CLI.

	Parameters

	
	name – The name of the target. This should NOT include platform-dependent extensions.

	sources – A list of names or paths of source files to include in this target.

	flags – Compiler and linker flags. See sbuildr.BuildFlags for details.

	libs – A list containing either ProjectTarget s, DependencyLibrary s or Library s.

	compiler – The compiler to use for this target. Defaults to clang.

	include_dirs – A list of paths for preprocessor include directories. These directories take precedence over automatically deduced include directories.

	linker – The linker to use for this target. Defaults to clang.

	depends – Any additional dependencies not already captured in libs. This may include header only packages for example.

	Returns

	sbuildr.project.target.ProjectTarget

	
test_targets() → List[sbuildr.project.target.ProjectTarget]

	Returns all targets in this project that are tests.

	Returns

	A list of targets.

	
uninstall(targets: List[sbuildr.project.target.ProjectTarget] = None, profile_names: List[str] = None, headers: List[str] = None, header_install_path: str = '/usr/local/include', library_install_path: str = '/usr/local/lib', executable_install_path: str = '/usr/local/bin', dry_run: bool = True)

	Uninstall the specified targets for the specified profiles.

	Parameters

	
	targets – The targets to uninstall. Defaults to all non-internal project targets.

	profile_names – The profiles for which to uninstall. Defaults to the “release” profile.

	headers – The headers to uninstall. Defaults to all headers that are part of the interface as per interfaces() .

	header_install_path – The path from which to uninstall headers. This defaults to one of the default locations for the host OS.

	library_install_path – The path from which to uninstall libraries. This defaults to one of the default locations for the host OS.

	executable_install_path – The path from which to uninstall executables. This defaults to one of the default locations for the host OS.

	dry_run – Whether to perform a dry-run only, with no file copying. Defaults to True.

Profile

	
class sbuildr.Profile(flags: sbuildr.tools.flags.BuildFlags, build_dir: str, suffix: str)

	Represents a profile in a project. A profile is essentially a set of options applied to targets in the project.
For example, a profile can be used to specify that all targets should be built with debug information, and that they should have a “_debug” suffix.

	Parameters

	
	flags – The flags to use for this profile. These will be applied to all targets for this profile. Per-target flags always take precedence.

	build_dir – An absolute path to the build directory to use.

	suffix – A file suffix to attach to all artifacts generated for this profile.

Build Flags

	
class sbuildr.BuildFlags

	Abstract description of compiler and linker flags. These are interpreted by SBuildr’s compiler and linker interfaces and converted to concrete command-line flags.

It is possible to add two BuildFlags, in which case the right-hand side takes precedence when flags are set for both instances. For example,
BuildFlags.O(3).fpic() + BuildFlags.O(0)
would result in a value equivalent to:
BuildFlags.O(0).fpic()

	
O(level: Union[int, str]) → sbuildr.tools.flags.BuildFlags

	Sets the optimization level.

	Parameters

	level – An integer or string indicating the optimization level. For example, to disable optimization, this would be set to 0 or "0".

	Returns

	self

	
debug(use=True) → sbuildr.tools.flags.BuildFlags

	Enables or disables generation of debug information.

	Parameters

	use – Whether to generate debug information.

	Returns

	self

	
define(macro) → sbuildr.tools.flags.BuildFlags

	Defines the specified macro during compilation. This can be useful to enable/disable code paths using #ifdefs.

	Parameters

	macro – The macro to define.

	Returns

	self

	
fpic(use=True) → sbuildr.tools.flags.BuildFlags

	Enables or disables generation of position independent code.

	Parameters

	use – Whether to generate position independent code.

	Returns

	self

	
march(type: str) → sbuildr.tools.flags.BuildFlags

	Sets the microarchitecture.

	Parameters

	type – A string describing the CPU microarchitecture.

	Returns

	self

	
raw(opts: List[str]) → sbuildr.tools.flags.BuildFlags

	Allows for providing raw options.

	Parameters

	opts – A list of options, as strings. These are passed on to the compiler and linker without modification.

	Returns

	self

	
std(year: Union[int, str]) → sbuildr.tools.flags.BuildFlags

	Sets the C++ standard.

	Parameters

	year – An integer or string indicating the last two digits of the year of the corresponding C++ standard. For example, to use C++11, this would be set to 11 or "11".

	Returns

	self

Index

 B
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U

B

 	
 	build() (sbuildr.Project method)

 	
 	BuildFlags (class in sbuildr)

C

 	
 	clean() (sbuildr.Project method)

 	
 	configure() (sbuildr.Project method)

D

 	
 	debug() (sbuildr.BuildFlags method)

 	
 	define() (sbuildr.BuildFlags method)

E

 	
 	executable() (sbuildr.Project method)

F

 	
 	find() (sbuildr.Project method)

 	
 	fpic() (sbuildr.BuildFlags method)

I

 	
 	install() (sbuildr.Project method)

 	install_profile() (sbuildr.Project method)

 	
 	install_targets() (sbuildr.Project method)

 	interfaces() (sbuildr.Project method)

L

 	
 	library() (sbuildr.Project method)

M

 	
 	march() (sbuildr.BuildFlags method)

O

 	
 	O() (sbuildr.BuildFlags method)

P

 	
 	Profile (class in sbuildr)

 	
 	Project (class in sbuildr)

 	PROJECT_API_VERSION (sbuildr.Project attribute)

R

 	
 	raw() (sbuildr.BuildFlags method)

 	
 	run() (sbuildr.Project method)

 	run_tests() (sbuildr.Project method)

S

 	
 	std() (sbuildr.BuildFlags method)

T

 	
 	test() (sbuildr.Project method)

 	
 	test_targets() (sbuildr.Project method)

U

 	
 	uninstall() (sbuildr.Project method)

SBuildr Changelog

Dates are in YYYY-MM-DD format.

v0.6.2 (2020-01-10)

	Dependency will now create destination directories for fetchers if they do not exist.

v0.6.1 (2019-09-07)

	Fixes a bug where tests were not being marked as internal.

	Fixes a bug where configure would not work if the specified targets had dependent targets that were not specified to configure.

	Fixes a bug where configure would configure all targets if an empty list of targets was provided.

	Fixes default list arguments in public API. Now, an empty list is distinguishable from a default argument.

	Fixes FileManager’s logic for disambiguating includes.

	Fixes FileManager’s logic for finding source nodes. This prevents headers from being scanned multiple times.

	Adds checks so that invalid target names are caught early.

	Adds default profiles to sbuildr test.

	Fixes a bug where multiple requests to a Dependency for the same library would result in only the last request being valid.

	Fixes a bug in GitFetcher when checking out different commits from different dependencies for the same source repository.

v0.6.0 (2019-08-27)

	Adds depends argument to Project.library(), Project.executable(), Project.test(), and Project.interfaces(). This can be used to specify any dependencies not captured in the libs argument - for example, header-only packages.

	The nuke option in Project.clean() now removes all build directories rather than just the Project’s build directory.

	Fixes a bug that prevented the sbuildr executable script from building test targets.

	Removes subcommands under configure in the sbuildr executable. Additionally, configure can now export a project using a specified build script.

	Changes tests back to test in the sbuildr executable.

	Adds Project API version so that old saved projects can be detected.

	Fetchers now support versioning. GitFetcher can checkout a specific commit, tag or branch.

	Nodes now supply print commands to the backend, so that informative messages are shown during the build.

	Combines Project’s find_dependencies, configure_graph and configure_backend into configure()

	Hashes for build artifacts now take more variables into account, thereby preventing collisions.

v0.5.0 (2019-08-21)

	tests in CLI now runs all profiles by default.

	tests now displays a summary at the end.

	Project’s install has been modified to interfaces and now only accepts headers. Libraries and executables are now marked for installation by default, unless internal=True is specified.

	The cli install/uninstall functions now allow the user to specify paths for installing executables, libraries, and headers.

	Restructures so that Generator is now part of the Project.

	targets in cli has been renamed to help.

	Adds configure and build to the Project.

	Adds DependencyBuilders and DependencyFetchers for dependency management.

	Adds GitFetcher for retrieving source code from git repositories.

	Adds CopyFetcher for copying directories.

	Adds SBuildrBuilder for building projects using the SBuildr build system.

	Renames Generator and associated classes/files to Backend.

	Pulls in most functions from cli into Project to enable more powerful scripting.

	Adds export() function to Project that pickles and writes it into the specified path. Project.load() can be used to retrieve it.

	Removes lazy header scanning - file manager now scans source files as they are added.

	Profile build directories can now be outside of the project’s build directory.

	All profiles now share a common build directory for intermediate objects. Final targets are still built in each profile’s individual subdirectory.

	Backend now only accepts a single graph describing the whole project. Thus, the backend does not need to know about file manager, profiles, etc.

	Libraries are now linked in a portable way - instead of using paths, names are used.

	Project now display a command that can be used to reproduce any executables that are run via the API.

	Project’s configure() is now configure_backend(). Additionally, projects are no longer tied to backends.

	Adds Library class to better abstract external libraries. This also allows for better handling of nested loader search path dependencies.

	Removes cli() and adds bin/sbuildr in its place. bin/sbuildr operates on saved projects, so it is much faster than running the build.py script each time.

	bin/sbuildr’s configure is now configure-backend.

	Adds deferred library propagation. Profiles can now set up libraries just before the build.

	Graph layers() now only returns nodes that are actually in the graph.

	Moves dependencies directory up one level.

	Adds find_dependencies and configure_graph to Project

	Adds single_dependency example

	Adds library name propagation in addition to just lib_dirs previously

	configure_graph() is now able to construct partial graphs.

	Project API functions no longer automatically call each other.

	SBuildrBuilder now proapagates sys.path to the PYTHONPATH environment variable correctly.

	Adds versioning for DependencyMetadata so dependencies in the cache with old versions of Metadata will automatically be rebuilt.

	Adds support for multiple build artifacts from nodes. Only the final artifact is usable by other nodes.

	All targets are now created in the common build directory. The per-profile build directories have hard-links to the targets in the common directory for ease-of-use.

v0.4.1 (2019-07-11)

	Changes generator to favor false positives (longer builds) for needs_configure() rather than false negatives (broken builds).

	Fixes a bug where a header with no project includes would be scanned multiple times during configuration.

	Adds support for defining macros via the compiler.

v0.4.0 (2019-07-06)

	Changes test command to tests

	Adds suggestion to reconfigure project on build failure.

	The generator build command now accepts Node rather than ProjectTargets.

	Greatly simplifies install/uninstall cli functions.

v0.3.2 (2019-06-29)

	Adds prerequisites section to README

v0.3.1 (2019-06-27)

	Adds minimal_project as an example in the examples/ directory

	Adds Sphinx configuration files for doc generation.

v0.3.0 (2019-06-26)

	Fixes an issue with duplicate libraries when linking.

	Adds documentation for public API functions.

v0.2.3 (2019-05-04)

	Adds test to cli() and Project to provide a convenient test runner.

v0.2.2 (2019-05-03)

	Fixes an issue with absolute paths in #includes not being handled correctly.

v0.2.1 (2019-05-03)

	Fixes errors in setup.py that prevented files from being packaged.

v0.2.0 (2019-05-03)

	Disables logging when python is run with -O. This can provide some speed improvements.

	Adds CompilerDef/LinkerDef to isolate behavior specific to individual compilers/linkers. Compiler/Linker can now operate in a platform-agnostic way.

	Adds BuildFlags to make compiler/linker flags platform agnostic from the user’s perspective.

	Adds Graph and rbuild generator.

	Adds raw options to BuildFlags

	Adds + and += overloads for BuildFlags

	Adds Project, which can track one or more directories and the files contained within.

	Adds FileManager, which can determine include directories required for a given file, assuming included files are also tracked by the manager.

	Adds the concept of Profiles, which allow for building the same targets with different options.

	Project now lazily evaluates targets, and only when configure is invoked.

	Adds exclude_dirs option to FileManager

	Split FileManager’s ‘source_info into source, which adds sources to the graph, and scan which scans for include directories. Removed includes since that information is now part of the Node.

	FileManager now tracks root directory and build directory instead of Project tracking it directly.

	Smarter find function in FileManager. Additionally, source uses find to make sure sources exist.

	Adds external to FileManager to be able to track files external to the project.

	FileManager’s find will now accept absolute paths that are outside the project.

	Improved handling of libraries in Project

	Overhauled Generator API

	FileManager can now create directories, but only in its build directory.

	Generator now accepts ProjectTargets to build rather than LinkedNodes

	Adds basic implementation of cli() with configure and build and a basic usage example.

	Adds run implementation in cli() that operates on the default profile.

	Adds rm to FileManager so that it can remove paths located in the build directory.

	Adds the nuclear option to clean in cli()

	Verbosity is now set during import, so that pre-subparser logging messages are displayed correctly.

	RBuildBackend updated to work with rbuild 0.3.0.

	cli() now accepts profile options for subparsers.

	Adds install to cli()

	Adds uninstall and help to cli()

	Adds suffixes for profiles. These will be applied to files when they are installed.

	Targets now support per-profile install paths

	install now supports file paths in addition to ProjectTargets

v0.1.0 (2019-02-16)

	Initial version, basic compiler functionality.

SBuildr - Stupid Buildr

A stupid, simple python-based meta-build system for C++ projects.

Installation

Prerequisites

	RBuild [https://github.com/pmarathe25/RBuild]

	Install Cargo [https://doc.rust-lang.org/cargo/getting-started/installation.html]

	Run cargo install rbuild

Installing from PyPI

pip install sbuildr

Installing from Source

	Clone the SBuildr source repository [https://github.com/pmarathe25/SBuildr].

	Install locally with python setup.py install

A Small Example

For this example, we will assume the following directory structure:

minimal_project
├── build.py
├── include
│ └── math.hpp
├── src
│ ├── factorial.cpp
│ ├── factorial.hpp
│ ├── fibonacci.cpp
│ ├── fibonacci.hpp
│ └── utils.hpp
└── tests
 └── test.cpp

The corresponding build.py file might look like this:

#!/usr/bin/env python
import sbuildr
import os

project = sbuildr.Project()

Build a library using two source files. Note that headers do not have to be specified manually.
Full file paths are only required in cases where a partial path would be ambiguous.
libmath = project.library("math", sources=["factorial.cpp", "fibonacci.cpp"], libs=["stdc++"])

Specify that math.hpp is part of the public API for this library.
project.interfaces(["math.hpp"])

Specify a test for the project using the test.cpp source file. The resulting executable will
be linked against the library created above.
test = project.test("test", sources=["test.cpp"], libs=["stdc++", libmath])

Enable this script to be used interactively on the command-line
sbuildr.cli(project)

The call to the cli() function allows us to use the script to build interactively in a shell.
For example, to run all tests registered for this project, you can run: ./build.py test. This will configure the project, build all dependencies, and finally run tests.

To view all available commands, you can run ./build.py --help

API Documentation

For more information, see the API Documentation [https://sbuildr.readthedocs.io/en/stable/]

Known Limitations

	SBuildr’s header scanning functionality does not take into account preprocessor #ifdefs. This means that an #include in a false branch will still be used as a dependency during builds. Header scanning will also not work for paths containing escaped characters.

 nav.xhtml

 Table of Contents

 		
 SBuildr - Stupid Buildr

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

