

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	AIR Equation Scoring Engine 0.9.2 documentation

Welcome to AIR Equation Scoring Engine’s documentation!

Contents:

	Quick Start: REST interface on Apache 2.4 for Windows
	Get the Dependencies

	Download the Software

	Configure Apache

	AIR Equation Scoring Engine RESTful Web Interface
	POST /isequivalent/

	AIR Equation Scoring Engine Python API
	Module airscore

	Module airscore.mathmlsympy.math_expression

	Extending the AIR Equation Scoring Engine
	BaseMathmlElement

	BaseMathmlContainer

	mathml_element()

	PartialSympyObject

	AIR EQUATION SCORING ENGINE ver. 0.9.2 – READ ME FIRST!
	COPYRIGHT

	DEPENDENCIES

	INSTALLATION

	NOTES FOR ECLIPSE USERS

	AIR Equation Scoring Engine Release Notes
	Version 0.9.2

	Version 0.9.1

	Version 0.9.0

Indices and tables

	Index

	Module Index

	Search Page

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AIR Equation Scoring Engine 0.9.2 documentation

Quick Start: REST interface on Apache 2.4 for Windows

Contents

	Get the Dependencies
	Apache httpd

	Python 2.7

	mod_wsgi

	Fiddler

	Download the Software

	Configure Apache

This document describes how to get up-and-running with the AIR Equation Scoring Engine‘s
RESTful web interface on a Windows machine running Apache httpd version 2.4.

The configuration described herein is meant for testing and development only.
You will probably want to set up something more robust for a production system.

Get the Dependencies

Apache httpd

You will need to install the Apache httpd server. These instructions were
written for version 2.4.4, but they should apply to any
version of Apache 2.2 or 2.4. I used the Windows 64 binary build from
Apache Lounge [http://www.apachelounge.com/download] Choose an appropriate download for your architecture (32-bit or 64-bit)

After you have installed the Apache binary, you will want to set it up so that
it runs as a Windows service. Open a command window in the Apache bin directory, and
execute:

httpd.exe -k install

More information on running Apache on Windows can be found at http://httpd.apache.org/docs/current/platform/windows.html.

Python 2.7

You will need to have the Python programming language installed. The
software was developed and tested
on Python 2.7.4 for 64-bit Windows. The software should run fine on any version
of 2.7. It has not been tested on Python 2.6 or earlier. It will not run on
any version of Python 3

A Windows installer for the latest version of Python may be downloaded from
here: http://www.python.org/download/

I recommend installing Python’s setuptools (https://pypi.python.org/pypi/setuptools)
and pip (https://pypi.python.org/pypi/pip). packages. Once the setuptools are installed,
you can install pip using:

c:\Python27\Scripts\easy-install pip

Then use pip to install the remaining Python dependencies:

c:\Python27\Scripts\pip install sympy
c:\Python27\Scripts\pip install django
c:\Python27\Scripts\pip install djangorestframework

mod_wsgi

An Apache plugin called mod_wsgi provides the bridge
between Apache and Python. It is easiest to acquire a pre-compiled binary
for this package. One is available from http://www.lfd.uci.edu/~gohlke/pythonlibs/#mod_wsgi
Be sure to download the version that is appropriate for your Apache version,
Python version and Windows architecture. After downloading the zip archive,
extract the single file that it contains (should be called mod_wsgi.so) and
drop it into the Apache modules directory (this is C:\Program Files\Apache24\modules
on my machine)

Fiddler

Finally, in order to test the setup, you will need some way of sending a POST
request to the Apache server. These instructions assume that you are using the
Fiddler utility (http://fiddler2.com/get-fiddler). If you prefer a different
utility, then modify them accordingly.

Download the Software

Download the latest version of the AIR Equation Scoring Engine from
https://bitbucket.org/sbacoss/equationscorer/downloads

Unzip the downloaded archive into a directory of your choosing. For security reasons,
this should not be a location under your server’s document root. In the rest
of this document, we will refer to this directory as {Equation-Scorer-Root}

Configure Apache

All of the remaining configuration is done in the main Apache configuration file,
httpd.conf On my machine, this file is located at
C:\Program Files\Apache24\conf\httpd.conf. Open this file in your favorite
text editor.

First, we need to enable the mod_wsgi. Locate the section that
has a whole bunch of lines that begin LoadModule, and add the following:

MODULE mod_wsgi ADDED XX/XX/20XX
LoadModule wsgi_module modules/mod_wsgi.so

This line enables the link between Apache and Python, but Apache still doesn’t
know what Python code to invoke when it sees a particular HTTP request. To
enable that, add the following lines at the end of httpd.conf

Configuration for equation scorer app
WSGIPythonHome C:/Python27
WSGIPythonPath {Equation-Scorer-Root}/eqscorer_rest;{Equation-Scorer-Root}/lib
WSGIScriptAlias /eq-scorer-rest {Equation-Scorer-Root}/eqscorer_rest/eqscorer_rest/wsgi.py

Where you replace {Equation-Scorer-Root}, everywhere it appears, with the actual
directory to which you unzipped the AIR Equation Scoring Engine. If your Python is
not installed in the standard location, you will have to change WSGIPythonHome
as well.

Although Apache now knows how to run the engine, it will refuse to do so unless
you tell it that it is allowed to. To do that, add the following
lines to the end of httpd.conf

<Directory "{Equation-Scorer-Root}/eqscorer_rest/eqscorer_rest">
 <Files "wsgi.py">
 Order allow,deny
 Allow from all
 Require all granted
 </Files>
</Directory>

Again, replacing {Equation-Scorer-Root} with the correct value.

Now, from the Windows Services control panel, restart the Apache service. If Apache
fails to start, then chances are you mistyped something in the httpd.conf

To test the service, fire up Fiddler, and find the Composer window. Select POST
for the request method. For the address, use http://127.0.0.1/eq-scorer-rest/isequivalent,
for the request headers, you should specify:

Content-Type: application/json; charset=utf-8
Accept: application/json

And for the request body, you should use:

{
 "answer":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mi>x</mi><mo>≤</mo><mn>3</mn></math>",
 "rubric":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mi>x</mi><mo>≤</mo><mn>3</mn></math>",
 "parameters":{}
}

Push the Execute button to submit the request. After a short delay (while Python
starts and loads all of its libraries), you should get a response of 200 OK. If you switch
to Fiddler’s Inspectors tab, you should see something like this:

HTTP/1.1 200 OK
Date: Fri, 14 Jun 2013 16:38:55 GMT
Server: Apache/2.4.4 (Win64) mod_wsgi/3.5-BRANCH Python/2.7.4
Vary: Accept,Cookie
Allow: POST, OPTIONS
Transfer-Encoding: chunked
Content-Type: application/json; charset=utf-8

1f
{"correct": true, "reason": ""}
0

Now read the API Documentation, and have fun!

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AIR Equation Scoring Engine 0.9.2 documentation

AIR Equation Scoring Engine RESTful Web Interface

Contents

	POST /isequivalent/
	Parameters

	Normal Return Values

	Return on Error

	Examples

The REST interface has a single access point. A POST to http://my_site/isequivalent/
with a JSON payload, returns a JSON object containing the results of the call.

POST /isequivalent/

Test whether an answer is mathematically equivalent to the rubric

Parameters

	answer (String, required)

	The test answer

A JSON string containing a MathML expression.

Per the JSON specification [http://www.json.org/],
all quotation marks within the MathML must be preceded by backslashes.
Any other “special” characters in the answer may be included in one of three ways:

	They may simply be embedded as unicode encoded using the charset of the
request (e.g., ≤)

	They may be escaped as XML escape sequences (e.g., ≤)

	They may be escaped as JSON escape sequences (e.g., \u2264)

	rubric (String, required)

	The rubric against which the answer will be compared.

A JSON string. Depending on the sympy_rubric parameter, this will be a MathML
expression (see answer) or an expression parsable by Sympy.

	parameters (Dictionary, optional)

	A dictionary of parameters that modify how sympy tests for equivalency. If omitted, all of the parameters
take on their default values. The keys permitted in parameters are the following:

	sympy_rubric (true or false, optional)

	Default false. If true, the rubric argument will be treated as a
Sympy string. If false, the rubric will be treated as MathML.

	allow_change_of_variable (true or false, optional)

	Default false

	allow_simplify (true or false, optional)

	Default true

	trigIdentities (true or false, optional)

	Default false

	logIdentities (true or false, optional)

	Default false

	forceAssumptions (true or false)

	Default false

Normal Return Values

	Status

	200 OK

	Body

	A JSON dictionary containing two entries

	correct (true or false)

	Whether or not the answer was equivalent to the rubric

	reason (true or false)

	If correct was true, then this will be an empty string. Otherwise
it will describe the reason that the answer was rejected. This may be
one of the following

	Answer is not equivalent to rubric

	SymPy determined that the answer and the rubric were not equivalent

	Unable to parse answer as mathml

	The answer was not valid mathml, or contains mathml constructs
that are not currently supported by this package.

	Unable to compare answer with rubric

	Sympy raised an error while attempting to test the answer and the
rubric for equivalence

Return on Error

If the answer field on the request is not parsable MathML, then a “normal”
return value will be reported, with a status of 200, a correct value of
false, and a reason value containing a message describing the reason for
the failure. In all other cases, a non-2xx error status will be returned.

The body of the error response will depend on where in the processing of the
request the error occurred. If an error occurs in the Equation Scorer REST code,
then the response code will be 400, and a JSON structure will be returned
identical to the one returned for a “normal” response.

Examples

Example 1:

POST /isequivalent/ HTTP/1.1
Host: example.com
Content-Type: application/json; charset=UTF-8
Accept: application/json

{
 "answer":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mi>x</mi><mo>≤</mo><mn>3</mn></math>",
 "rubric":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mi>x</mi><mo>≤</mo><mn>3</mn></math>"
}

Response 1:

HTTP/1.0 200 OK
Date: Thu, 13 Jun 2013 18:27:39 GMT
Server: WSGIServer/0.1 Python/2.7.4
Vary: Accept, Cookie
Content-Type: application/json; charset=utf-8
Allow: POST, OPTIONS

{"correct": true, "reason": ""}

Example 2 (Incorrect answer):

POST /isequivalent/ HTTP/1.1
Host: example.com
Content-Type: application/json; charset=UTF-8
Accept: application/json

{
 "answer":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mi>x</mi><mo>=</mo><mn>3</mn></math>",
 "rubric":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mi>x</mi><mo>≤</mo><mn>3</mn></math>"
}

Response 2:

HTTP/1.0 200 OK
Date: Thu, 13 Jun 2013 18:27:39 GMT
Server: WSGIServer/0.1 Python/2.7.4
Vary: Accept, Cookie
Content-Type: application/json; charset=utf-8
Allow: POST, OPTIONS

{"correct": false, "reason": "Answer is not equivalent to rubric"}

Example 3 (Parameters for equivalence check):

POST /isequivalent/ HTTP/1.1
Host: example.com
Content-Type: application/json; charset=UTF-8
Accept: application/json

{
 "answer":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mi>x</mi><mo>≤</mo><mn>3</mn></math>",
 "rubric":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mi>x</mi><mo>≤</mo><mn>3</mn></math>",
 "parameters":{ "allow_change_of_variable":true }
}

Response 3:

HTTP/1.0 200 OK
Date: Thu, 13 Jun 2013 18:27:39 GMT
Server: WSGIServer/0.1 Python/2.7.4
Vary: Accept, Cookie
Content-Type: application/json; charset=utf-8
Allow: POST, OPTIONS

{"correct": true, "reason": ""}

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AIR Equation Scoring Engine 0.9.2 documentation

AIR Equation Scoring Engine Python API

Contents

	Module airscore

	Module airscore.mathmlsympy.math_expression

Module airscore

The airscore module is the primary Python entry point for the AIR
Equation Scoring Engine. It provides two functions. The function
process_mathml_data() accepts inputs in the MathML [http://www.w3.org/Math/] format, and returns an equivalent expression in a
form that can be parsed by the Sympy [http://sympy.org/en/index.html]
symbolic mathematics library. The function isEquivalent() Uses Sympy
to determine if two sets of expressions, equations, or inequalities are
mathematically equivalent.

In order to compare a test answer, expressed in MathML, with a rubric, also
expressed in MathML, the two functions are used in conjunction, like this:

answer_txt = unicode(process_mathml_data(answer_mathml))
rubric_txt = unicode(process_mathml_data(rubric_mathml))
is_correct = isEquivalent(answer_txt, rubric_txt)

	
airscore.isEquivalent(response, rubric, allowChangeOfVariable=False, allowSimplify=True, trigIdentities=False, logIdentities=False, forceAssumptions=False)

	True if Sympy is able to determine that the two expressions are equivalent.

This function requires two parameters: a test answer and a rubric. Each of these
is a string. Each string defines an equality, an inequality, or an expression in
a form that can be parsed by the Sympy symbolic mathematics library. Alternatively,
the answer or rubric may be a list of such equations, inequalities or expressions,
enclosed in square brackets and separated by commas.

Additional optional parameters control the manipulations that Sympy will make when
attempting to determine the equivalence of the response and the rubric

	Parameters:	
	response (str [http://docs.python.org/library/functions.html#str]) – The test response

	rubric (str [http://docs.python.org/library/functions.html#str]) – The rubric for the test questions

	allowChangeOfVariables (bool [http://docs.python.org/library/functions.html#bool]) –

	allowSimplify (bool [http://docs.python.org/library/functions.html#bool]) –

	trigIdentities (bool [http://docs.python.org/library/functions.html#bool]) –

	logIdentities (bool [http://docs.python.org/library/functions.html#bool]) –

	forceAssumptions (bool [http://docs.python.org/library/functions.html#bool]) –

	
airscore.process_mathml_data(mathml_string, encoding=None)

	Convert MathML into a form that can be understood by Sympy

The provided string must either contain a <mathml:math> element as the root, or
it must contain a <response> element (no namespace), which contains zero or
more <mathml:math> elements as children.

	Parameters:	
	mathml_string (str() or unicode() [http://docs.python.org/library/functions.html#unicode]. If the provided object is unicode() [http://docs.python.org/library/functions.html#unicode],
it will be converted to a string by the specified encoding.) – A string containing a <mathml:math> or <response> element

	encoding (str [http://docs.python.org/library/functions.html#str]) – Name of the encoding that will be used in parsing the mathml_string. Defaults to UTF-8

	Returns:	A MathExpressionList object equivalent to the MathML original. This object’s
__unicode__() method returns a string that can be passed to Sympy

Module airscore.mathmlsympy.math_expression

Most of the classes and methods in airscore.mathmlsympy.math_expression
are mainly of interested to those who intend to extend the MathML parsing engine
to understand a wider selection of MathML elements. Two classes may be of
interest to ordinary users of these libraries, however. These are the
MathExpressionList class that is returned by
airscore.process_mathml_data(), and the MathExpression objects that
it contains.

	
class airscore.mathmlsympy.math_expression.MathExpression(math_node)

	The representation of a MathML expression, equality, or inequality that has been returned by the parser.

	
math_node

	airscore.mathmlsympy.mathml_containser.MathmlMath -
The XML element tree (see xml.etree.ElementTree [http://docs.python.org/library/xml.etree.elementtree.html#module-xml.etree.ElementTree]) that was
returned by the parser. Elements within the tree will be represented
by subclasses of
airscore.mathmlsympy.base_mathml_element.BaseMathmlElement,
which in turn subclasses xml.etree.ElementTree.Element [http://docs.python.org/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]

	
sympy_response

	list [http://docs.python.org/library/functions.html#list] of str [http://docs.python.org/library/functions.html#str] - A list of strings representing equations, inequalities or
expressions. This is the result of parsing the XML represented
by math_node. The list will consist of more than one
element if the math_node contains more than one equality or inequality
operator. Specifically, if the MathML represents something like:

A = B = C < D

then the list will contain three entries, corresponding to:

A = B
B = C
C < D

	
class airscore.mathmlsympy.math_expression.MathExpressionList

	A container for multiple MathExpression elements.

The __str__() and __unicode__() methods have been overridden to
return strings that will be useful to Sympy.

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AIR Equation Scoring Engine 0.9.2 documentation

Extending the AIR Equation Scoring Engine

Contents

	BaseMathmlElement

	BaseMathmlContainer

	mathml_element()

	PartialSympyObject

The AIR Equation Scoring Engine supports a limited subset of the
MathML [http://www.w3.org/Math/] standard. The most likely place that users
will want to extend the engine is to implement support for MathML constructs
that are not currently supported. This can be accomplished by writing
subclasses of
airscore.mathmlsympy.base_mathml_element.BaseMathmlElement or
airscore.mathmlsympy.mathml_containers.BaseMathmlContainer,
and registering the new classes with the parser using the
airscore.mathmlsympy.parser.mathml_element()
decorator. The interfaces for the relevant classes and methods are described
below.

BaseMathmlElement

	
class airscore.mathmlsympy.base_mathml_element.BaseMathmlElement(tag, attrib={}, **extra)

	This is the base class for all MathML elements in the XML tree

	
is_implicit_addend

	bool() - This node may appear as the implicit addend of an
integer (as the fractional part of a mixed number).

	
is_implicit_multiplicand

	bool() - When a number or a symbol appears to the left of this
node, an implicit multiplication should be performed.

	
is_inequality

	bool() - This is an equal sign or inequality operator. A chained
equation can be broken on this node.

	
is_number

	bool() - This node contains a number (digits, decimal
points, etc).

	
is_non_neg_integer

	bool() - This node is a non-negative integer. This flag is used
to detect when the numerator and denominator of a fraction contain simple
numbers, allowing us to use the fraction as part of a mixed number (see
is_implicit_addend).

	
validate_max_children

	int() - Maximum number of children permitted for this node.

	
validate_min_children

	int() - Minimum number of children permitted for this node.

	
validate_no_text

	bool() - If True, it is an error for this node to
contain text directly. Text may still exist inside of nested nodes.

	
validate_required_attributes

	set [http://docs.python.org/library/stdtypes.html#set] of str() - A set containing the names of required
attributes. Not namespace aware.

	
decoded_text

	unicode The text content

The default implementation decodes a limited dictionary of common unicode
values to sympy equivalents.

	
get_sympy_text()

	Get a string representing this node, including children

This is the main method that you will need to override in order
to control how this node and its children are rendered in the sympy
output.

The default implementation simply returns the decode_text
attribute.

Override to_sympy() instead if you need to control how this node
relates to its neighbors.

	Returns:	unicode - The string representing this node in a
sympy expression

	
pick_subclass()

	Change the leopard’s spots to zebra stripes

The xml.etree.ElementTree [http://docs.python.org/library/xml.etree.elementtree.html#module-xml.etree.ElementTree] parsing mechanism forces us to choose
the class for new elements when the start tag has been parsed, but before
any of the content has been read. There are a few MathML constructs
for which we need different classes, but they are represented
by the same start tag. Our parser calls this method after the end
tag has been processed, in order to give the element a chance to make
any changes it needs to make to finalize its class selection.

In most cases, this method does nothing (the default behavior). In a few
cases, however, this method will assign a new value to the instance’s
__class__ property in order to change the object into an
instance of a subclass of its original class.

We are using an admittedly obscure Python “feature,” and I can’t recommend
that you make a habit of altering the classes of existing objects. But for
this limited purpose it seemed the cleanest solution.

	Returns:	None

	
to_sympy(tail=<airscore.mathmlsympy.partial_sympy_object.PartialSympyObject object at 0x7fa60adbd550>)

	Return oneself as a “partial sympy object”

You will need to override this routine if you are changing the way this
node combines with its neighbor nodes. The default implementation
concatenates this node with its right-hand neighbor, adding a mutliplcation
operator to the list first if the right-hand neighbor is a suitable implicit
multiplicand.

Override get_sympy_text() instead if you need to change how this node
and its children are represented in the output, but not how this node is
related to its siblings.

	Parameters:	tail (airscore.mathmlsympy.partial_sympy_object.PartialSympyObject) – The head of a linked list of sympy objects which will become
the tail of the newly created object

	Returns:	airscore.mathmlsympy.partial_sympy_object.PartialSympyObject

	
validate()

	Validate the node content

This method is called during the processing of the XML end tag, immediately
after the call to pick_subclass(). Subclasses should perform any
required validation of the newly-created MathML object. An error should
be raised for a validation failure (usually ValueError)

The default implementation performs the following steps:

	Validate the number of children against the validate_min_children
and validate_max_children properties

	If validate_no_text is True, confirm that the element contains
no text.

	Confirm that children (if any) are subclasses of BaseMathmlElement

	Confirm that any attributes listed in validate_required_attributes
are present (but perform no validation on the attribute values)

	Returns:	None

	Raises:	ValueError

BaseMathmlContainer

	
class airscore.mathmlsympy.mathml_containers.BaseMathmlContainer(tag, attrib={}, **extra)

	The base class for all MathML container elements.

The base class for all MathML elements that can contain an arbitrary list
of other MathML elements. This includes elements like <math> and <row>, as
well as elements listed in the MathML spec as containing
an implicit <row> element.

	
get_sympy_text_list()

	Return a list containing text representations of simple equations or inequalities.

This method is the main loop of the parser for most MathML expressions. Most
containers will not need to override this method, but it is worth understanding how
it works. One oddity worth noting is that the parser parses the expression from
right to left, instead of the usual left-to-right.

If the expression is a “chained” equation, containing
more than one equals or inequality operator, then this function will return multiple
strings in its return list. Each return value will be a simple equation or
inequality–i.e., one that contains only one equals or inequality operator.

If the expression is already a simple equation or inequality, then a list containing a
single string represnting that equation or inequality will be returned.

If the expression contains no equality or inequality operators, then a list containing a
single string representing that expression will be returned.

	Returns:	list() of str()

mathml_element()

	
airscore.mathmlsympy.parser.mathml_element(*args)

	A decorator which registers the decorated class as a mathml element class

This decorator registers the association between a class and an element name
for the MathMLBuilder. In order to have the MathMLBuilder
use a particular class instead of the default xml.etree.ElementTree.Element [http://docs.python.org/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element]
class to represent a given XML element, decorate your class definition with this
decorator.

There are three permitted calling conventions. You can use the decorator
without arguments, like so:

@mathml_element
class bob(BaseMathmlElement):
 ...

in which case the new class will be used for elements named <bob> in the MathML
namespace. This usage is not ideal, as it requires your Python class to have the
same name (including case) as the MathML element.

You avoid this problem by specifying an element name like this:

@mathml_element('bob')
class MathMLBob(BaseMathmlElement):
 ...

Finally, if you have a class that should be associated with multiple MathML tag names,
you can specify all of the names as arguments to the mathml_element decorator()

@mathml_element('bob', 'jim', 'joe')
class MathMLBob(BaseMathmlElement):
 ...

In every case, the classes will only be used for elements in the MathML namespace
(http://www.w3.org/1998/Math/MathML)

No special effort beyond the use of this decorator is required to register
new classes for handling MathML elements. However, you must be certain that
the modules containing your classes have been imported before attempting to
process the XML data.

PartialSympyObject

	
class airscore.mathmlsympy.partial_sympy_object.PartialSympyObject(el, tail)

	An element in a linked list that represents a Sympy expression

	Parameters:	
	el (BaseMathmlElement) – The mathml element from which this object is derived

	tail (PartialSympyObject) – The next item in the list

	
next

	PartialSympyObject - The next rightward neighbor in the list.

	
is_closed

	bool() - Used in balancing absolute value bars. True
if the parser has encountered an odd number of absolute value bars to
the right of this point.

	
is_implicit_mutliplicand

	bool() - The is_implicit_multiplicand attribute of the
airscore.mathmlsympy.base_mathml_element.BaseMathmlElement
that generated this object.

	
is_implicit_addend

	bool() - The is_implicit_addend attribute of the
airscore.mathmlsympy.base_mathml_element.BaseMathmlElement
that generated this object.

	
is_number

	bool() - The is_number attribute of the
airscore.mathmlsympy.base_mathml_element.BaseMathmlElement
that generated this object.

	
text

	unicode() [http://docs.python.org/library/functions.html#unicode] - The result of the BaseMathmlElement.get_sympy_text()
method of the airscore.mathmlsympy.base_mathml_element.BaseMathmlElement
object that generated this object.

	
get_sympy_text()

	The concatenated text attributes of this node and all of the
nodes to its right.

	Returns:	unicode

	
itertext()

	Iterate through the linked list, returning the text attribute
of each node.

	Returns:	iterator of unicode

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AIR Equation Scoring Engine 0.9.2 documentation

AIR EQUATION SCORING ENGINE ver. 0.9.2 – READ ME FIRST!

COPYRIGHT

Equation Scoring Engine
Copyright (c) 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0
See accompanying file AIR-License-1_0.txt or at
https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0

The AIR Equation Scoring Engine is a Python application for evaluating
answers to tests in mathematics. The answers are submitted in MathML,
and are evaluated by comparing to a MathML rubric, using the Sympy
symbolic mathematics package.

The AIR Equation Scoring Engine consists of two assemblies. The main engine
has a Python API. It depends only on Sympy. This is located in the package
“airscore”

The second assembly provides a RESTful web interface to the main engine. This
assembly depends on Django and the Django REST framework, in addition to the
dependencies for the main assembly.

DEPENDENCIES

The AIR Equation Scoring Engine was developed on Python 2.7.5.

All of the required libraries can be installed from PyPi using
“pip install <package-name>”

Sympy: http://sympy.org/en/index.html
Django: https://www.djangoproject.com/
Django REST framework: http://django-rest-framework.org/

INSTALLATION

After downloading the project, add the directory “lib” to your Python path, or
else copy or symlink the contents of “lib” into a directory that is on your
Python path.

If you are using the REST interface, you must also add the directory
“eqscorer_rest” to your Python path, or else copy or symlink the contents of
“eqscorer_rest” into a directory that is on your Python path.

NOTES FOR ECLIPSE USERS

The project directory may be opened as a PyDev-Django project in eclipse. However
Eclipse makes default assumptions about the location of the settings module that
are wrong for this project. Eclipse users should open the project properties
window and select the “PyDev - Django” page. On this page, set the value for
“Django settings module” to “eqscorer_rest.settings”

If you do not perform this step, you will receive errors when attempting to run
the test server via “Run As -> PyDev: Django”

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	AIR Equation Scoring Engine 0.9.2 documentation

AIR Equation Scoring Engine Release Notes

Version 0.9.2

	Documentation changes

Version 0.9.1

	Updates to logic for “is-equivalent” assessment

	Support for <mathml:mtext> element

	Added \Box as alias for \u25fb (the box character)

	Protect against stack overflow on long expressions

	Permit rubric to be submitted in sympy syntax or as mathml

Version 0.9.0

	Initial release

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	AIR Equation Scoring Engine 0.9.2 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 airscore	

 	
 	
 airscore.mathmlsympy.base_mathml_element	

 	
 	
 airscore.mathmlsympy.math_expression	

 	
 	
 airscore.mathmlsympy.mathml_containers	

 	
 	
 airscore.mathmlsympy.partial_sympy_object	

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	AIR Equation Scoring Engine 0.9.2 documentation

Index

 A
 | B
 | D
 | G
 | I
 | M
 | N
 | P
 | S
 | T
 | V

A

 	

 	airscore (module)

 	airscore.mathmlsympy.base_mathml_element (module)

 	airscore.mathmlsympy.math_expression (module)

 	

 	airscore.mathmlsympy.mathml_containers (module)

 	airscore.mathmlsympy.partial_sympy_object (module)

B

 	

 	BaseMathmlContainer (class in airscore.mathmlsympy.mathml_containers)

 	

 	BaseMathmlElement (class in airscore.mathmlsympy.base_mathml_element)

D

 	

 	decoded_text (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

G

 	

 	get_sympy_text() (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement method)

 	

 	(airscore.mathmlsympy.partial_sympy_object.PartialSympyObject method)

 	

 	get_sympy_text_list() (airscore.mathmlsympy.mathml_containers.BaseMathmlContainer method)

I

 	

 	is_closed (airscore.mathmlsympy.partial_sympy_object.PartialSympyObject attribute)

 	is_implicit_addend (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 	

 	(airscore.mathmlsympy.partial_sympy_object.PartialSympyObject attribute)

 	is_implicit_multiplicand (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 	is_implicit_mutliplicand (airscore.mathmlsympy.partial_sympy_object.PartialSympyObject attribute)

 	is_inequality (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 	

 	is_non_neg_integer (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 	is_number (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 	

 	(airscore.mathmlsympy.partial_sympy_object.PartialSympyObject attribute)

 	isEquivalent() (in module airscore)

 	itertext() (airscore.mathmlsympy.partial_sympy_object.PartialSympyObject method)

M

 	

 	math_node (airscore.mathmlsympy.math_expression.MathExpression attribute)

 	MathExpression (class in airscore.mathmlsympy.math_expression)

 	

 	MathExpressionList (class in airscore.mathmlsympy.math_expression)

 	mathml_element() (in module airscore.mathmlsympy.parser)

N

 	

 	next (airscore.mathmlsympy.partial_sympy_object.PartialSympyObject attribute)

P

 	

 	PartialSympyObject (class in airscore.mathmlsympy.partial_sympy_object)

 	pick_subclass() (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement method)

 	

 	process_mathml_data() (in module airscore)

S

 	

 	sympy_response (airscore.mathmlsympy.math_expression.MathExpression attribute)

T

 	

 	text (airscore.mathmlsympy.partial_sympy_object.PartialSympyObject attribute)

 	

 	to_sympy() (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement method)

V

 	

 	validate() (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement method)

 	validate_max_children (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 	validate_min_children (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 	

 	validate_no_text (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 	validate_required_attributes (airscore.mathmlsympy.base_mathml_element.BaseMathmlElement attribute)

 Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0
.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		AIR Equation Scoring Engine 0.9.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Copyright 2013 American Institutes for Research

Distributed under the AIR Open Source License, Version 1.0

See accompanying file AIR-License-1_0.txt or at

https://bitbucket.org/sbacoss/equationscorer/wiki/AIR_Open_Source_License_1.0

.
 Created using Sphinx 1.2.2.

_static/down.png

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

