
say Documentation
Release 1.6.4

Jonathan Eunice

Jan 17, 2018

Contents

1 Usage 3

2 Indentation and Wrapping 5

3 Prefixes and Suffixes 7

4 The Value Proposition 9

5 Titles, Rules, and Spacing 11
5.1 Vertical Spacing . 12
5.2 This Just In . 12

6 Colors and Styles 13

7 Where and Wen You Like 15
7.1 Where . 15
7.2 When . 16
7.3 How . 16

8 Encodings and Unicode 17

9 Text and Templates 19

10 Iterpolators and Exceptions 21

11 Python 3 23

12 Alternatives 25

13 Notes 27

14 To-Dos 29

15 API Reference 31

16 Installation 35
16.1 Testing . 35

17 Change Log 37

i

ii

say Documentation, Release 1.6.4

It’s been almost fifty years since C introduced printf() and the basic formatted printing of positional parameters.
Isn’t it time for an upgrade? You betcha!

say evolves Python’s print statement/function, format function/method, and % string interpolation operator with
simpler, higher-level facilities. For example, it provides direct template formatting, a feature Python finally provided
in Python 3.6. In addition:

• DRY, Pythonic, inline string templates that piggyback Python’s well-proven format() method, syntax, and
underlying engine.

• A single output mechanism that works the same way across Python 2 or Python 3.

• A companion fmt() object for string formatting.

• Higher-order line formatting such as line numbering, indentation, and line-wrapping built in. You can get
substantially better output formatting with almost no additional code.

• Convenient methods for common formatting items such as titles, horizontal separators, and vertical whitespace.

• Easy styled output, including ANSI colors and user-defined styles and text transforms.

• Easy output to one or more files, without additional code or complexity.

• Super-duper template/text aggregator objects for easily building, reading, and writing multi-line texts.

Contents 1

say Documentation, Release 1.6.4

2 Contents

CHAPTER 1

Usage

from say import *

x = 12
nums = list(range(4))
name = 'Fred'

say("There are {x} things.")
say("Nums has {len(nums)} items: {nums}")
say("Name: {name!r}")

yields:

There are 12 things.
Nums has 4 items: [0, 1, 2, 3]
Name: 'Fred'

Or if you want the resulting string, rather than to print the string:

>>> fmt("{name} has {x} things and {len(nums)} numbers.")
'Fred has 12 things and 4 numbers.'

At this level, say is basically a simpler, nicer recasting of:

from __future__ import print_function

print("There are {0} things.".format(x))
print("Nums has {0} items: {1}".format(len(nums), nums))
print("Name: {0!r}".format(name))
s = "{0} has {1} things and {2} numbers.".format(name, x, len(nums))

(The import and numerical sequencing of {} format specs is required to make pure-Python code work correctly
from Python 2.6 forward from a single code base.)

But say and fmt read so much nicer! They are clear, simplem and direct, and don’t separate the place where the
value should appear from the value.

3

say Documentation, Release 1.6.4

Full expressions are are supported within the format braces ({}). Whatever variable names or expressions are found
therein will be evaluated in the context of the caller.

The more items that are being printed, and the complicated the format invocation, the more valuable this simple
inline specification becomes.

But say isn’t just replacing positional templates with inline templates. It also works in a variety of ways to up-level
the output-generation task. For example:

say.title('Discovered')
say("Name: {name:style=blue}", indent='+1')
say("Age: {age:style=blue}", indent='+1')

Prints a nicely formatted text block, with a proper title and indentation, and just the variable information in blue.

4 Chapter 1. Usage

CHAPTER 2

Indentation and Wrapping

Indentation is a common way to display data hierarchically. say will help you manage it. For example:

say('ITEMS')
for item in items:

say(item, indent=1)

will indent the items by one indentation level (by default, each indent level is four spaces, but you can change that
with the indent_str option).

If you want to change the default indentation level:

say.set(indent=1) # to an absolute level
say.set(indent='+1') # strings => set relative to current level

...

say.set(indent=0) # to get back to the default, no indent

Or you can use a with construct:

with say.settings(indent='+1'):
say(...)

anything say() emits here will be auto-indented +1 levels

anything say() emits here, after the with, will not be indented +1

Note: If using a string to indicate relative indent levels offends your sense of dimensionality or strict typing, there is
a class Relative that does the same thing in a more formal way. indent='+2' and indent=Relative(+2)
are identical.

If you have a lot of data or text to print, and it would normally create super-long, difficult-to-read lines, you can easily
wrap it:

5

say Documentation, Release 1.6.4

say("This is a really long...blah blah blah", wrap=40)

Will automatically wrap the text to the given width using Python’s standard textwrap module. Feel free to use
indentation and wrapping together.

6 Chapter 2. Indentation and Wrapping

CHAPTER 3

Prefixes and Suffixes

Every line can be given a prefix or suffix, if desired. For example:

with say.settings(prefix='> '):
say('this')
say('that')

Will give what text email and Markdown consider a quoted block look:

> this
> that

Or if you’d like some text to be quoted with blue quotes:

say(text, prefix=styled('> ', 'blue'))

And if you like your output numbered:

say.set(prefix=numberer())
say('this\nand\nthat')

yields:

1: this
2: and
3: that

You can instantiate different numberers for different files, and if you like, use the start keyword argument to start a
numberer on a designated value.

Aother common prefixing scenario is needing to use one prefix on the first line, but a second prefix on the remainder
of lines. The Python REPL uses this scheme, for example, with the prefix strings '>>> ' and '... '. If you’d like
that scheme, just:

say(text, prefix=first_rest('>>> ', '... '))

7

say Documentation, Release 1.6.4

8 Chapter 3. Prefixes and Suffixes

CHAPTER 4

The Value Proposition

While it’s easy enough to add a few spaces to the format string of any print statement or function in order to achieve
a little indentation, it’s easy to mistakenly type too many or too few spaces, or to forget to type them in some format
strings. If you’re indenting strings that themselves may contain multiple lines, the simple print approach breaks
because it won’t take multi-line strings into account. Nor will it be integrated with line wrapping or numbering or
other formatting you also want.

say, however, simply and correctly handles these combined formatting operations. Harder cases like multi-line
strings are just as nicely and well indented as simple ones–something not otherwise easily accomplished without
adding gunky, complexifying string manipulation code to every place in your program that prints anything.

This starts to illustrate say’s “do the right thing” philosophy. So many languages’ printing and formatting functions
“output values” at a low level. They may format basic data types, but they don’t provide straightforward ways to do
neat text transformations that rapidly yield correct, attractively-formatted output. say does. Over time, say will
provide even more high-level formatting options. For now: indentation, wrapping, and line numbering.

Note: If you do find any errors in the way say handles formatting operations, there’s an app for that. Let’s fix them
once, in a common place, in reusable code–not spread around many different programs.

9

https://bitbucket.org/jeunice/say/issues

say Documentation, Release 1.6.4

10 Chapter 4. The Value Proposition

CHAPTER 5

Titles, Rules, and Spacing

say defines a few convenience formatting functions:

say.title('Errors', char='-')
for i,e in enumerate(errors, start=1):

say("{i:3}: {e['name'].upper()}")

might yield:

--------------- Errors ---------------

1: I/O ERROR
2: COMPUTE ERROR

A similar method hr produces just a horizontal line (“rule”), like the HTML <hr> element. For either, one can
optionally specify the width (width), character repeated to make the line (char), and vertical separation/whitespace
above and below the item (vsep). Good options for the repeated character might be be ‘-‘, ‘=’, or parts of the Unicode
box drawing character set.

A final method, sep, creates a short left-aligned bar with optional following text. It’s useful for creating logical
subsections.:

say.sep("coffee")
say("I prefer coffee")
say.sep("tea", char="=", width=4)
say("I prefer tea")

Yields:

-- coffee
I prefer coffee

==== tea
I prefer tea

You can even define reusable styles for separators (and other say calls):

11

http://en.wikipedia.org/wiki/Box-drawing_character
http://en.wikipedia.org/wiki/Box-drawing_character

say Documentation, Release 1.6.4

tilde_sep = dict(char="~", width=4)
say.sep("pass one", **tilde_sep)

Yields:

~~~~ pass one

Note: The char parameter was until recently called sep, which conflicted with another use of sep. It has since
been renamed.

5.1 Vertical Spacing

You don’t need to add explicit newline characters here and there to achieve good vertical spacing. say.
blank_lines(n) emits n blank lines. And just about every say call also supports a vsep (vertical separation)
parameter.:

say('TITLE', vsep=(2,0) # add 2 newlines before (none after)
say('=====', vsep=(0,2)) # add 2 newlines after (none before)
say('something else', vsep=1) # add 1 newline before, 1 after

5.2 This Just In

A new capability is to differentially set the formatting parameters on a method by method basis. For example, if you
want to see titles in green:

say.title.set(style='green')

You could long set such options on a call-by-call basis, but being able to set the defaults just for specific methods
allows you to get more formatting in with fewer characters typed. This capability is available on a limited basis:
primarily for format-specific calls (blank_lines, hr, sep, and title) for now.

Note: title and sep now print out more vertical whitespace than in previous versions. This is a direct usage of this
method-by-method configurability. Basically, say.title.set(vsep=1) and say.sep.set(vsep=(1,0))
now come baked-in.

12 Chapter 5. Titles, Rules, and Spacing



CHAPTER 6

Colors and Styles

say has built-in support for style-driven formatting. By default, ANSI terminal colors and styles are automagically
supported.

answer = 42

say("The answer is {answer:style=bold+red}")

This uses the ansicolors module, though with a slightly more permissive syntax. Available colors are ‘black’, ‘blue’,
‘cyan’, ‘green’, ‘magenta’, ‘red’, ‘white’, and ‘yellow’. Available styles are ‘bold’, ‘italic’, ‘underline’, ‘blink’,
‘blink2’, ‘faint’, ‘negative’, ‘concealed’, and ‘crossed’. These styles can be combined with a + or | character. Note,
however, that not all styles are available on every terminal.

Note: When naming a style within the template braces ({}) of format strings, you can quote the style name or not.
fmt("{x:style=red+bold}") is equivalent to fmt("{x:style='red+bold'}").

You can define your own styles:

say.style(warning=lambda x: color(x, fg='red'))

Because styles are defined through executables (lambdas, usually), they can include decisions or text transformations
of arbitrary complexity. For example:

say.style(redwarn=lambda n: color(n, fg='red', style='bold') if int(n) < 0 else n)
...
say("Result: {n:style=redwarn}")

That will display the number n in bold red characters, but only if it’s value is negative. For positive numbers, n is
displayed normally.

Or define a style where a message is surrounded by red stars:

say.style(stars=lambda x: fmt('*** ', style='red') + \
fmt(x, style='black') + \

13

https://pypi.python.org/pypi/ansicolors


say Documentation, Release 1.6.4

fmt(' ***', style='red'))
say.style(redacted=lambda x: 'x' * len(x))

message = 'hey'
say(message, style='stars')
say(message, style='redacted')

Yields:

*** hey ***
xxx

(with red stars)

Note: Style defining lambdas (or functions) take string arguments. If the string is logically a number, it must be then
cast into an int, float, or whatever. The code must ultimate return a string.

You can also apply a style to the entire contents of a say or fmt invocation:

say("There is green everywhere!", style='green|underline')

Or try:

say.set(prefix=numberer(template=color('{n:>3}: ', fg='green')), \
wrap=20)

say('a long paragraph with gobs of text', style='indigo')

This correctly puts the line numbers in green, wraps the lines to 20 characters, and puts the text in indigo.

Styled formatting is an extremely powerful approach, giving the same kind of flexibility and abstraction seen for
styles in word processors and CSS-based Web design. It will be further developed. Plans already include replacing
textwrap with an ANSI-savvy text wrapping module, providing simpler ways to state complex formatting, and
mechanisms to auto-map styles into HTML output.

14 Chapter 6. Colors and Styles



CHAPTER 7

Where and Wen You Like

say is organized to put output to the place or places you want, and to do so only when you want. The destinations
and on/off status can easily be changed.

7.1 Where

say() writes to a list of files. By default the list is just standard output (sys.stdout). But with a simple configu-
ration call, it will write to different–even multiple–files:

say.set(files=[sys.stdout, "report.txt"])
say(...) # now prints to both sys.stdout and report.txt

Note that you never even had to open "report.txt". It’s okay if you pass in open file objects, but if you pass in
strings, they’ll be interpreted as file names of intended output files, and opened for you (with UTF-8 encoding, even).

With the above lines, you’re now both writing program output as normal and capturing it to a file for later inspection
and use. Try that with your normal print statement/function! It can be done. . . if you double the number of print
calls.

Note however that if you pass a file descriptor that you open yourself, and you’re using Python 2, you are responsible
for opening the file in a way that supports a proper encoding–a detail that Python 3 handles for you. Please see the
Encodings and Unicode section for more details and examples.

say does, by the by, also support the file argument in the same way Python 3’s print() does. This is a less
typical use, but is provided for compatiblity for those converting from print() calls.

You can also define your own targeted Say instances, for example for error reporting:

err = say.clone(files=[sys.stderr, 'error.txt'])
err("Failed with error {errcode}") # writes in both places
say("something else") # independent of err

15



say Documentation, Release 1.6.4

7.2 When

Output is great, but sometimes you need to go silent. If you want to stop printing for a while:

say.set(silent=True) # no printing until set to False

Or transiently:

say(...stuff..., silent=not verbose) # prints iff bool(verbose) is True

Of course, you don’t have to print at all. fmt() works exactly like say() and inherits most of its options, but doesn’t
print. (The C analogy: say : fmt :: printf : sprintf.)

7.3 How

On occasion it can be valuable to use say but not its varaible interpolation. The say.verbatim() method does
this. All the standard formmating applies, but {} variable templates will not be filled in.

16 Chapter 7. Where and Wen You Like



CHAPTER 8

Encodings and Unicode

Character encodings remain a fractious and often exasperating part of IT.

If you are deal with more than ASCII characters with any regularity whatsoever, for the love of God and all that is
holy, use Python 3. It has greatly superior support for Unicode characters, and will generally make your life much
eaiser.

say() and fmt() try to avoid encoding gotchas by working with Unicode strings.

In Python 3, all strings are Unicode strings, and all files are inherently smart enough to read and write to reasonable
encodings needed to store Unicode strings on disk. But in Python 2, there is a choice between str and unicode,
and most files are not smart enough to use rational encodings. Indeed, files that appear to have an encoding attribute
will not let you set that attribute, and they will not enforce that encoding when doing file IO. !@#$%^&!!!

So if you must use Python 2:

• Use unicode strings whenever possible.

• If you use the basie str type, include only ASCII characters, not encoded bytes from UTF-8 or whatever. If
you don’t do this, any trouble results be on your head.

• If say opens a file for you, it will do it with the codecs module with a default encoding of UTF-8. If you have
say write to a file that you open, you must use codecs.open(), io.open(), or a similar mechanism that
supports proper encoding. Else errors will result.

say has a long history of trying to make Python 2 automatically “do the right thing” even when basic Python 2
facilities do not. We have discovered, like so many others before us, that was a fool’s errand. Python 2 is simply ill-
prepared for day-in, day-out use of Unicode characters that are all around us in the modern global world. While say
continues some of this with respect to the default standard output (stdout) stream, many of the previous back-bends
to support auto-encoding have been withdrawn. If you choose to use Python 2, you are responsible for opening files
in a responsible, encoding-friendly way.:

from codecs import open

with open('outfile.txt', 'w', encoding='utf-8') as f:
say(u'Contains\u2012Unicode!', file=f)

17



say Documentation, Release 1.6.4

18 Chapter 8. Encodings and Unicode



CHAPTER 9

Text and Templates

Often the job of output is not about individual text lines, but about creating multi-line files such as scripts and reports.
This often leads away from standard output mechanisms toward template packages, but say has you covered here as
well.

from say import Text

# assume `hostname` and `filepath` already defined

script = Text()
script += """

!#/bin/bash

# Output the results of a ping command to the given file

ping {hostname!r} >{filepath!r}
"""

script.write_to("script.sh")

Then script.sh will contain:

!#/bin/bash

# Output the results of a ping command to the given file

ping 'server1234.example.com' >'ping-results.txt'

Text objects are basically a list of text lines. In most cases, when you add text (either as multi-line strings or lists
of strings), Text will automatically interpolate variables the same way say does. One can simply print or say
Text objects, as their str() value is the full text you would assume. Text objects have both text and lines
properties which can be either accessed or assigned to.

+= incremental assignment automatically removes blank starting and ending lines, and any whitespace prefix that is
common to all of the lines (i.e. it will dedent any given text). This ensures you don’t need to give up nice Python
program formatting just to include a template.

19



say Documentation, Release 1.6.4

While += is a handy way of incrementally building text, it isn’t strictly necessary in the simple example above; the
Text(...) constructor itself accepts a string or set of lines.

Other in-place operators are: |= for adding text while preserving leading white space (no dedent) and &= adds text
verbatim–without dedent or string interpolation.

One can read_from() a file (appending the contents of the file to the given text object, with optional interpolation
and dedenting). One can also write_to() a file. Use the append flag if you wish to add to rather than overwrite
the file of a given name, and you can set an output encoding if you like (encoding='utf-8' is the default).

So far we’ve discussed Text objects almost like strings, but they also act as lists of individual lines (strings). They
are, for example, indexable via [], and they are iterable. Their len() is the number of lines they contain. One can
append() or extend() them with one or multiple strings, respectively. append() takes a keyword parameter
interpolate that controls whether {} expressions in the string are interpolated. extend() additionally takes a
dedent flag that, if true, will automatically remove blank starting and ending lines, and any whitespace prefix that is
common to all of the lines.

If t is a Text instance, str(t) will be the full string representing it. If you wish to move from multiple lines to a
single-line, joined string, ' '.join(t) does the trick.

Text objects, unlike strings, are mutable. The replace(x, y) method will replace all instances of x with y in
situ. If given just one argument, a dict, all the keys will be replaced with their corresponding values.

Text doesn’t have the full set of text-onboarding options seen in textdata, but it should suit many circumstances. If
you need more, textdata can be used alongside Text.

Finally, it’s possible to use a Text object like a file and write to it. So:

t = Text()
say.set(files=[sys.stdout, t])

say('something')

will now append each thing said to both sys.stdout and t.

There is a related class Template that does not interpolate its format variables when constructed, but rather when
explicitly rendered. This suits certain form-filling operations:

t = Template("Dear {name},\n\nWelcome to our club!\n")
for name in 'Joe Jane Jeremey'.split():

print t.render()

20 Chapter 9. Text and Templates

http://pypi.python.org/pypi/textdata


CHAPTER 10

Iterpolators and Exceptions

You may want to write your own functions that take strings and interpolate {} format templates in them. The easy
way is:

from say import caller_fmt

def ucfmt(s):
return caller_fmt(s).upper()

If ucfmt() had used fmt(), it would not have worked. fmt() would look for interpolating values within the
context of ucfmt() and, not finding any, probably raised an exception. But using caller_fmt() it looks into the
context of the caller of ucfmt(), which is exactly where those values would reside. Voila!

And example of how this can work–and a useful tool in its own right–is FmtException. If you want to have
comprehensible error messages when something goes wrong, you could use fmt():

if bad_thing_has_happened:
raise ValueError(fmt("Parameters {x!r} or {y!r} invalid."))

But if you define your own exceptions, consider subclassing FmtException:

class InvalidParameters(FmtException, ValueError):
pass

...

if bad_thing_has_happened:
raise InvalidParameters("Parameters {x!r} or {y!r} invalid.")

You’ll save a few characters, and the code will be simpler and more comprehensible.

21



say Documentation, Release 1.6.4

22 Chapter 10. Iterpolators and Exceptions



CHAPTER 11

Python 3

Say works virtually the same way in Python 2 and Python 3. This can simplify software that should work across the
versions, without the hassle of from __future__ import print_function.

say attempts to mask some of the quirky complexities of the 2-to-3 divide, such as string encodings and codec use.
In general, things work best if you use Unicode strings any time you need to use non-ASCII characters. In Python 3,
this is automatic.

23



say Documentation, Release 1.6.4

24 Chapter 11. Python 3



CHAPTER 12

Alternatives

• ScopeFormatter provides variable interpolation into strings. It is amazingly compact and elegant. Sadly, it
only interpolates Python names, not full expressions. say has full expressions, as well as a framework for
higher-level printing features beyond ScopeFormatter’s. . . um. . . scope.

• interpolate is similar to say.fmt(), in that it can interpolate complex Python expressions, not just names.
Its i % "format string" syntax is a little odd, however, in the way that it re-purposes Python’s earlier
"C format string" % (values) style % operator. It also depends on the native print statement or
function, which doesn’t help bridge Python 2 and 3.

• Even simpler are invocations of % or format() using locals(). E.g.:

name = "Joe"
print "Hello, %(name)!" % locals()
# or
print "Hello, {name}!".format(**locals())

Unfortunately this has even more limitations than ScopeFormatter: it only supports local variables, not
globals or expressions. And the interpolation code seems gratuitous. Simpler:

say("Hello, {name}!")

• In the future, PEP 498 may provided some of the auto-formatting of literal strings that say does now.

25

http://pypi.python.org/pypi/ScopeFormatter
https://pypi.python.org/pypi/interpolate
https://www.python.org/dev/peps/pep-0498/


say Documentation, Release 1.6.4

26 Chapter 12. Alternatives



CHAPTER 13

Notes

• The say name was inspired by Perl’s say, but the similarity stops there.

• Automated multi-version testing managed with the wonderful pytest, pytest-cov, coverage, and tox. Packaging
linting with pyroma.

• Successfully packaged for, and tested against, all late-model versions of Python: 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6
as well as late models of PyPy and PyPy3.

• say has greater ambitions than just simple template printing. It’s part of a larger rethinking of how output
should be formatted. say.Text, show, and quoter are other down-payments on this larger vision. Stay tuned.

• In addition to being a practical module in its own right, say is testbed for options, a package that provides
high-flexibility option, configuration, and parameter management.

• The author, Jonathan Eunice or @jeunice on Twitter welcomes your comments and suggestions. If you’re using
say in your own work, drop me a note and tell me how you’re using it, how you like it, and what you’d like to
see!

27

http://perldoc.perl.org/functions/say.html
http://pypi.python.org/pypi/pytest
http://pypi.python.org/pypi/pytest-cov
http://pypi.python.org/pypi/coverage
http://pypi.python.org/pypi/tox
https://pypi.python.org/pypi/pyroma
http://pypi.python.org/pypi/show
http://pypi.python.org/pypi/quoter
http://pypi.python.org/pypi/options
mailto:jonathan.eunice@gmail.com
http://twitter.com/jeunice


say Documentation, Release 1.6.4

28 Chapter 13. Notes



CHAPTER 14

To-Dos

• Further formatting techniques for easily generating HTML output and formatting non-scalar values.

• Complete the transition to per-method styling and more refined named styles.

• Provide code that allows pylint to see that variables used inside the say and fmt format strings are indeed
thereby used.

29



say Documentation, Release 1.6.4

30 Chapter 14. To-Dos



CHAPTER 15

API Reference

class say.Say(**kwargs)
Say provides high-level printing functions. Instances are configurable and callable.

__call__(*args, **kwargs)
Primary interface. say(something)

__init__(**kwargs)
Make a Say instance with the given options.

blank_lines(n, **kwargs)
Output N blank lines (“vertical separation”). Unlike other methods, this does not obey normal vertical
separation rules, because it is about explicit vertical separation. If it obeyed vsep, it would usually gild the
lily (double space).

but(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

clone(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

static escape(s)
Double { and } characters in a string to ‘escape’ them so str.format doesn’t treat them as template
characters. NB This is NOT idempotent! Escaping more than once (when { or } are present ) = ERROR.

fork(**kwargs)
Create a new instance whose options are chained to this instance’s class’s options, then this instance’s
current values, then any difference values stated in kwwargs.

hr(**kwargs)
Print a horizontal line. Like the HTML hr tag. Optionally specify the width, character repeated to make
the line, and vertical separation.

Good options for the separator may be ‘-‘, ‘=’, or parts of the Unicode box drawing character set. http:
//en.wikipedia.org/wiki/Box-drawing_character

31

http://en.wikipedia.org/wiki/Box-drawing_character
http://en.wikipedia.org/wiki/Box-drawing_character


say Documentation, Release 1.6.4

options = Options(styles={}, files=[<open file '<stdout>', mode 'w'>], style=None, end='\n', silent=False, sep=' ', indent_str=' ', prefix='', indent=0, vsep=None, wrap=None, file=Transient, suffix='')

sep(text=”, **kwargs)
Print a short horizontal line, possibly with some text following, of the desired width. Useful as a separator
for different parts of output.

set(**kwargs)
Permanently change the reciver’s settings to those defined in the kwargs. An update-like function.

setfiles(files)
Set the list of output files. files is a list. For each item, if it’s a real file like sys.stdout, use it. If it’s
a string, assume it’s a filename and open it for writing.

settings(**kwargs)
Open a context manager for a with statement. Temporarily change settings for the duration of the with.

style(*args, **kwargs)
Define a style.

title(name, **kwargs)
Print a horizontal line with an embedded title.

verbatim(*args, **kwargs)
Say, but without interpretation. Useful for just its text decoration features.

class say.Fmt(**kwargs)
A type of Say that returns its result, rather than writes it to files.

__call__(*args, **kwargs)
Primary interface. say(something)

__init__(**kwargs)

blank_lines(n, **kwargs)
Output N blank lines (“vertical separation”). Unlike other methods, this does not obey normal vertical
separation rules, because it is about explicit vertical separation. If it obeyed vsep, it would usually gild the
lily (double space).

but(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

clone(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

escape(s)
Double { and } characters in a string to ‘escape’ them so str.format doesn’t treat them as template
characters. NB This is NOT idempotent! Escaping more than once (when { or } are present ) = ERROR.

fork(**kwargs)
Create a new instance whose options are chained to this instance’s class’s options, then this instance’s
current values, then any difference values stated in kwwargs.

hr(**kwargs)
Print a horizontal line. Like the HTML hr tag. Optionally specify the width, character repeated to make
the line, and vertical separation.

Good options for the separator may be ‘-‘, ‘=’, or parts of the Unicode box drawing character set. http:
//en.wikipedia.org/wiki/Box-drawing_character

options = Options(files=Prohibited, styles={}, suffix='', sep=' ', indent_str=' ', prefix='', file=Transient, wrap=None, indent=0, style=None, end=None, silent=Prohibited, vsep=None)

32 Chapter 15. API Reference

http://en.wikipedia.org/wiki/Box-drawing_character
http://en.wikipedia.org/wiki/Box-drawing_character


say Documentation, Release 1.6.4

sep(text=”, **kwargs)
Print a short horizontal line, possibly with some text following, of the desired width. Useful as a separator
for different parts of output.

set(**kwargs)
Permanently change the reciver’s settings to those defined in the kwargs. An update-like function.

setfiles(files)
Set the list of output files. files is a list. For each item, if it’s a real file like sys.stdout, use it. If it’s
a string, assume it’s a filename and open it for writing.

settings(**kwargs)
Open a context manager for a with statement. Temporarily change settings for the duration of the with.

style(*args, **kwargs)
Define a style.

title(name, **kwargs)
Print a horizontal line with an embedded title.

verbatim(*args, **kwargs)
Say, but without interpretation. Useful for just its text decoration features.

class say.Text(data=None, interpolate=True, dedent=True)

__init__(data=None, interpolate=True, dedent=True)

append(line, callframe=None, interpolate=True)

copy()
Make a copy.

extend(lines, callframe=None, interpolate=True, dedent=True)

insert(i, data, callframe=None, interpolate=True, dedent=True)

lines

re_replace(target, replacement)
Regular expression replacement. Target is either compiled re object or string that will be compiled into one.
Replacement is either string or function that takes re match object as a parameter and returns replacement
string.

read_from(filepath, interpolate=True, dedent=True, encoding=’utf-8’)
Reads lines from the designated file, appending them to the end of the given Text. By default, interpolates
and dedents any {} expressions.

render()
Equivalent to __str__. For compatibility with Template subclass.

replace(target, replacement=None)
Replace all instances of the target string with the replacement string. Works in situ, contra str.replace().

text

write(contents)
Make it possible for Text objects to operate like file objects, and be written to.

write_to(filepath, append=False, encoding=’utf-8’)
Write the Text instance’s contents to the given filepath. :param filepath: Filepath to write to. :param
append: Whether to appened to the file (if it exists) or overwrite (default) :param encoding: How to
encode the contents (default utf-8)

33



say Documentation, Release 1.6.4

34 Chapter 15. API Reference



CHAPTER 16

Installation

To install or upgrade to the latest version:

pip install -U say

To easy_install under a specific Python version (3.3 in this example):

python3.3 -m easy_install --upgrade say

(You may need to prefix these with sudo to authorize installation. In environments without super-user privileges, you
may want to use pip’s --user option, to install only for a single user, rather than system-wide.)

16.1 Testing

If you wish to run the module tests locally, you’ll need to install pytest and tox. For full testing, you will also need
pytest-cov and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

The provided tox.ini and toxcov.ini config files do not define a preferred package index / repository. If you
want to use them with a specific (presumably local) index, the -i option will come in very handy:

tox -i INDEX_URL

35



say Documentation, Release 1.6.4

36 Chapter 16. Installation



CHAPTER 17

Change Log

1.6.4 (May 27, 2017)

Now uses the latest version of ansicolors, extending to the full set of CSS color names and
hex notations, in addition to the traditional small set of ANSI color names. So say('this',
style='peachpuff') or say('this', style='#663399') to your heart’s content!

A future release will be needed to extend color name parsing to other notations such as ANSI numeric
and CSS rgb() spcs.

Also fixed a bug when wrapping, ANSI colors, and colored prefixes are used together.

1.6.3 (May 26, 2017)

Adds a say.verbatim method. It provides all the standard say formatting features, but does NOT
interpolate variable expressions in braces. Useful for managing pre-formatted text which might contain
expressions without the need for escaping.

Updated Python 2/3 compatibility strategy to be Python 3-centric. Retired _PY3 flag for _PY2 flag,
as Python 3 is now the default assumption. That we now exclude 2.x with x < 6 and 3.x with x < 3
helps greatly. 2.6 and 2.7 make great reaches forward toward 3.x, and 3.3 started to make strong reaches
backwards.

1.6.1 (May 23, 2017)

Replaces textwrap module with ansiwrap. ANSI-colored or styled text can now be correctly
wrapped, prefixed, etc. say version is bumped only slightly, but this marks a substantial advance in
ability to manage colored/styled text in a “just works” way, which is the original premise of the package.

1.6.0 (May 19, 2017)

Withdrew support for backflip-level attempts to make Python 2 files behave with rational encodings. If
say opens a file on your behalf, it will do the rigtht thing. It will also try very hard to do the right thing
with respect to sys.stdout. But for arbitrary files that you open, make sure they’re properly encoded.
Use codecs.open or io.open for that.

Reorganized some code. Added and reinstated tests. Bumped coverage +1%, to 97%.

Added file parameter to say(), to make 1:1 compatible with Python 3’s native print().

37



say Documentation, Release 1.6.4

1.6.1 (May 15, 2017)

Updated mechanism for method-specific option setting. Still work in progress, but code now much
cleaner.

The experimental operator form of say > has been withdrawn. The operator style isn’t consonant with
Python philosophy, complicated the code base, and only partially worked. Interesting idea, but experience
suggests not worth the trouble.

1.5.0 (May 14, 2017)

Changed name of parameter sep in hr, title, and sep methods because discovered it was conflating
and interfering with the sep parameter in the main options. The horizontal separator character that is
repeated N times is now addressed as char.

1.4.5 (March 22, 2017)

Added first_rest prefix helper. First line gets one prefix, (all) subsequent lines get another. Prefix
helpers reorganized into their own submodule, show.prefixes.

1.4.4 (March 22, 2017)

Fixed problem with Unicode stream handling under Python 2. It has slipped under the testing radar, given
too many mocks and not enough full-out integration testing. Oops!

1.4.3 (January 23, 2017)

Updates testing for early 2017 Python versions. Successfully packaged for, and tested against, all late-
model versions of Python: 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6, as well as PyPy 5.6.0 (based on 2.7.12) and
PyPy3 5.5.0 (based on 3.3.5). Python 3.2 removed from official support; no longer a current version of
Python and not well-supported by testing matrix.

1.4.2 (September 15, 2015)

Tested with Python 3.5.0 final.

1.4.0 (September 8, 2015)

Added ability to set styles for some methods such as title, hr, and sep as an overlay to class, object,
and per-call settings. This is a first delivery on what will become a general feature over the next few
releases. Added vertical spacing to title and sep methods for nicer layouts.

Increased testing line coverage to 96%, improving several routines’ robustness in the process.

1.3.12 (September 1, 2015)

Tweaks and testing for new version 1.4 of underlying options module.

New options version returns support for Python 2.6.

1.3.9 (August 26, 2015)

Reorganized documentation structure. Updated some setup dependencies.

1.3.5 (August 17, 2015)

Instituted integrated, multi-version coverage testing with tox, pytest, pytest-cov, and coverage. Initial
score: 86%.

1.3.4 (August 16, 2015)

Updated SayReturn logic, which was broken, in order to support an upgrade of show

1.3.3 (August 16, 2015)

38 Chapter 17. Change Log



say Documentation, Release 1.6.4

Added sep method for separators.

Some code cleanups and a few additional tests.å

Officially switched to YAML-format Change Log (CHANGES.yml)

1.3.2 (August 12, 2015)

Code cleanups.

1.3.1 (August 11, 2015)

Doc, config, and testing updates. Removed joiner module and tests. May import that funcationality
from quoter module in future.

Python 2.6 currently unsupported due to issues with underlying stuf module. Support may return,
depending on compatibility upgrades for future stuf releases.

1.3 (July 22, 2015)

Added Template class. A deferred-rendering version of Text

1.2.6 (July 22, 2015)

Configuration, testing matrix, and doc tweaks.

1.2.5 (December 29, 2014)

Fixed problem that was occuring with use of Unicode characters when rendered inside the Komodo IDE,
which set the sys.stdout encoding to US-ASCII not UTF-8. In those cases, now inserts a codec-
based writer object to do the encoding.

1.2.4 (June 4, 2014)

Now testing for Python 3.3 and 3.4. One slight problem with them when encoding to base64 or similar
bytes-oriented output that did not appear in earlier Python 3 builds. Examining.

Added gittip link as an experiment.

1.2.1 (October 16, 2013)

Fixed bug with quoting of style names/definitions.

Tweaked documentation of style definitions.

1.2.0 (September 30, 2013)

Added style definitions and convenient access to ANSI colors.

1.1.0 (September 24, 2013)

Line numbering now an optional way to format output.

Line wrapping is now much more precise. The wrap parameter now specifies the line length desired,
including however many characters are consumed by prefix, suffix, and indentation.

Vertical spacing is regularized and much better tested. The vsep option, previously available only on a
few methods, is now available everywhere. vsep=N gives N blank lines before and after the given output
statement. vsep=(M,N) gives M blank lines before, and N blank lines after. A new Vertical class
describes vertical spacing behind the scenes.

Say no longer attempts to handle file encoding itself, but passes this responsibility off to file objects,
such as those returned by io.open. This is cleaner, though it does remove the whimsical possibility of
automagical base64 and rot13 encodings. The encoding option is withdrawn as a result.

You can now set the files you’d like to output to in the same way you’d set any other option (e.g. say.
set(files=[...]) or say.clone(files=[...])). “Magic” parameter handling is enabled so

39



say Documentation, Release 1.6.4

that if any of the items listed are strings, then a file of that name is opened for writing. Beware, however,
that if you manage the files option explicitly (e.g. say.options.files.append(...)), you had
better provide proper open files. No magical interpretation is done then. The previously-necessary say.
setfiles() API remains, but is now deprecated.

fmt() is now handled by Fmt, a proper subclass of Say, rather than just through instance settings.

say() no longer returns the value it outputs. retvalue and encoded options have therefore been
withdrawn.

1.0.4 (September 16, 2013)

Had to back out part of the common __version__ grabbing. Not compatible with Sphinx / readthedocs
build process.

1.0.3 (September 16, 2013)

Added FmtException class

Tightened imports for namespace cleanliness.

Doc tweaks.

Added __version__ metadata common to module, setup.py, and docs.

1.0.2 (September 14, 2013)

Added prefix and suffix options to say and fmt, along with docs and tests.

1.0.1 (September 13, 2013)

Moved main documentation to Sphinx format in ./docs, and hosted the long-form documentation on
readthedocs.org. README.rst now an abridged version/teaser for the module.

1.0 (September 27, 2013)

Cleaned up source for better PEP8 conformance

Bumped version number to 1.0 as part of move to semantic versioning, or at least enough of it so as to
not screw up Python installation procedures (which don’t seem to understand 0.401 is a lesser version that
0.5, because 401 > 5).

40 Chapter 17. Change Log

http://semver.org


Index

Symbols
__call__() (say.Fmt method), 32
__call__() (say.Say method), 31
__init__() (say.Fmt method), 32
__init__() (say.Say method), 31
__init__() (say.Text method), 33

A
append() (say.Text method), 33

B
blank_lines() (say.Fmt method), 32
blank_lines() (say.Say method), 31
but() (say.Fmt method), 32
but() (say.Say method), 31

C
clone() (say.Fmt method), 32
clone() (say.Say method), 31
copy() (say.Text method), 33

E
escape() (say.Fmt method), 32
escape() (say.Say static method), 31
extend() (say.Text method), 33

F
Fmt (class in say), 32
fork() (say.Fmt method), 32
fork() (say.Say method), 31

H
hr() (say.Fmt method), 32
hr() (say.Say method), 31

I
insert() (say.Text method), 33

L
lines (say.Text attribute), 33

O
options (say.Fmt attribute), 32
options (say.Say attribute), 31

R
re_replace() (say.Text method), 33
read_from() (say.Text method), 33
render() (say.Text method), 33
replace() (say.Text method), 33

S
Say (class in say), 31
sep() (say.Fmt method), 32
sep() (say.Say method), 32
set() (say.Fmt method), 33
set() (say.Say method), 32
setfiles() (say.Fmt method), 33
setfiles() (say.Say method), 32
settings() (say.Fmt method), 33
settings() (say.Say method), 32
style() (say.Fmt method), 33
style() (say.Say method), 32

T
Text (class in say), 33
text (say.Text attribute), 33
title() (say.Fmt method), 33
title() (say.Say method), 32

V
verbatim() (say.Fmt method), 33
verbatim() (say.Say method), 32

W
write() (say.Text method), 33
write_to() (say.Text method), 33

41


	Usage
	Indentation and Wrapping
	Prefixes and Suffixes
	The Value Proposition
	Titles, Rules, and Spacing
	Vertical Spacing
	This Just In

	Colors and Styles
	Where and Wen You Like
	Where
	When
	How

	Encodings and Unicode
	Text and Templates
	Iterpolators and Exceptions
	Python 3
	Alternatives
	Notes
	To-Dos
	API Reference
	Installation
	Testing

	Change Log

