
simplesat Documentation
Release 0.2.0

Enthought, Inc.

Jul 20, 2017

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Usage from the CLI . 3

2 Architecture 5
2.1 Requests . 5
2.2 Package Hierarchy . 7
2.3 MiniSAT Engine . 10

3 SAT Solving 13
3.1 Encoding Relationships as Clauses . 13
3.2 Constraint Modifiers . 13
3.3 Requirements . 14

4 Comparing with PHP’s Composer library 15

5 API Reference 17
5.1 Main Interface . 17
5.2 Functional classes . 20
5.3 Package Hierarchy . 22
5.4 Conveniences . 23
5.5 Exceptions . 25
5.6 Lower level utilities . 25

6 Glossary 27

7 Bibliography 29

8 Indices and tables 31

Python Module Index 33

i

ii

simplesat Documentation, Release 0.2.0

A library for SAT-based dependency handling. The simplesat library provides facilities for describing packages
and their relationships, producing a set of CNF clauses, and producing a solution for the clauses, according to the
notion of a “policy,” which determines the order in which packages are tried.

Contents:

Contents 1

simplesat Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Getting Started

Installation

To install the python package, do as follows:

git clone --recursive https://github.com/enthought/sat-solver
cd sat-solver
pip install -e .

Usage from the CLI

To try things out from the CLI, you need to write a scenario file (YAML format), see simplesat/tests/
simple_numpy.yaml for a simple example.

To print the rules:

python scripts/print_rules.py simplesat/tests/simple_numpy.yaml

To print the operations:

python scripts/solve.py simplesat/tests/simple_numpy.yaml

3

simplesat Documentation, Release 0.2.0

4 Chapter 1. Getting Started

CHAPTER 2

Architecture

Simplesat’s API is modeled after the Composer library from PHP.

For a good overview of the public API of the entire system, you should look at the Scenario, upon which all of our
functional testing is based. The Scenario class shows how to build PackageMetadata instances from strings, use
them to create a Repository , Pool and Request and pass them to a DependencySolver for resolution.

That said, pictures help. Let’s look at how data flows through the object hierarchy. We’ll use the following symbols to
indicate singular objects and plural collections of objects.

singular plural

Requests

The purpose of the simplesat library as a whole is to produce a valid assignment of package states (installed or
not) that satisfy some particular set of constraints. This is expressed as a Transaction that is to be applied to the
“installed” repository. The Request object is our vehicle for communicating these constraints to the solver.

At its core, a Request is a collection of actions such as “install” and Requirement objects describing ranges,
such as numpy >= 1.8.1, which together form Job rules. The Request can have any number of such jobs, all of
which must be satisfiable simultaneously. If conflicting jobs are given, then the solver will fail with a simplesat.
errors.SatisifiabilityError.

5

simplesat Documentation, Release 0.2.0

Request

Job

Constraint Modifiers

Additionally, one may attach ConstraintModifiers to the Request. These are used to modify the constraints
of packages during the search for a solution.

Request

Job ConstraintModifiers

These constraints are not applied to the jobs themselves, only to their dependencies. For example, if one were to create
an install job for pandas < 0.17, while at the same time specifying a constraint modifier that allows any version of
pandas to satisfy any constraint, the modifier should not be applied. We assume that any constraint directly associated
with a Job is explicit and intentional.

Note that Request objects do not carry any direct information about packages. They merely describes constraints
that any solution of packages states must satisfy.

6 Chapter 2. Architecture

simplesat Documentation, Release 0.2.0

Package Hierarchy

A RepositoryPackageMetadata is the basic object describing a software package that we might want to
install. It has attached to it a collection of strings describing the packages upon which it depends, referred to as
installed_requires, as those with which it conflicts. To avoid paying the cost of parsing our entire uni-
verse of packages for every request, these attached constraints are not parsed into Requirement objects until they
are passed to the Pool later on. We’ll show them like this from now on to make it clear that they don’t exist until
needed.

Requirement

RepositoryInfo

A package object also has a RepositoryInfo attached to it, which is not currently used for solving, but provides
information about the source of the package.

PackageMetadata

constraint_strings RepositoryInfo

Requirement

parses-to

For testing or interactive exploration, these can be created via the PrettyPackageStringParser:

2.2. Package Hierarchy 7

simplesat Documentation, Release 0.2.0

from okonomiyaki.versions import EnpkgVersion
ps = PrettyPackageStringParser(EnpkgVersion.from_string)
package = ps.parse_to_package(

'foo 1.8.2; install_requires (bar ^= 3.0.0, baz == 1.2.3-4)
'; conflicts (quux ^= 2.1.2)')

Repository

A Repository is made out of many of these such packages.

Repository

PackageMetadata

RepositoryInfo Requirement

and can be created from them like so:

repo = Repository(iter_of_packages)
repo.add_package(additional_package)

Pool

The Repository class does not support any kind of complicated querying. When it is time to identify pack-
ages according to constraints such as numpy >= 1.7.2, we must create a Pool. A Pool contains many such
Repository objects and exposes an API to query them for packages.

8 Chapter 2. Architecture

simplesat Documentation, Release 0.2.0

Pool

Repository ConstraintModifiers

PackageMetadata

RepositoryInfo Requirement

The ConstraintModifiers<simplesat.constraints.ConstraintModifiers object is also at-
tached to the Pool. It is used to modify incoming Requirement objects before using them to query for matching
packages. This happens implicitly in the Pool.what_provides() method. The result of such modification can
be inspected directly by calling Pool.modify_requirement(), which is used internally. The Pool is used like
so:

repository = Repository(packages)
requirement = InstallRequirement._from_string("numpy ^= 1.8.1")
pool = Pool([repository], modifiers=ConstraintModifiers())
package_metadata_instances = pool.what_provides(requirement)

These are not modified. Used for handling e.g. jobs.
more_instances = pool.what_provides(requirement, modify=False)

We now have a complete picture describing the organization of package data.

2.2. Package Hierarchy 9

simplesat Documentation, Release 0.2.0

Request

Job ConstraintModifiers

Requirement

Pool

Repository

PackageMetadata

MiniSAT Engine

When it comes time to process a Request and find a suitable set of package assignments, we must create a
DependencySolver. This in turn will initialize four pieces that together work to resolve the request.

• The first is the Pool, which we’ve already seen.

• The Pool is passed along with the Request to a RulesGenerator, which generates an appropriate set of
conjunctive normal form (CNF) clauses describing the problem.

• Next is the Policy, which determines the order in which new package assignments are tried. The simplest pos-
sible Policy could suggest unassigned packages in arbitrary order, but typically we will want to do something
more sophisticated.

• Lastly, we create a MiniSat object and feed it the rules from the RulesGenerator and the Policy to
help make suggestions when it gets stuck. This is the core SAT solving engine. It is responsible for exploring
the search space and returning an AssignmentSet that satisfies the clauses.

10 Chapter 2. Architecture

simplesat Documentation, Release 0.2.0

DependencySolver

Policy

Pool

RulesGenerator

MiniSat

AssignmentSet

As the MiniSat explores the search space, it will update the AssignmentSet. When it reaches a point where
it must make a guess to continue it will ask the Policy for a new package to try. The Policy looks at the
AssignmentSet and Pool to choose a suitable candidate. This continues until either the MiniSat finds a solution
or determines that the problem is unsatisifiable.

The entire system looks like this.

2.3. MiniSAT Engine 11

simplesat Documentation, Release 0.2.0

DependencySolver

Policy

Pool

Request

MiniSat

RulesGenerator AssignmentSet

Repository

ConstraintModifiers

Job

PackageMetadata

Requirement

12 Chapter 2. Architecture

CHAPTER 3

SAT Solving

Encoding Relationships as Clauses

The RulesGenerator is responsible for rooting out all of the relevant packages for this problem and creating
PackageRule objects describing their relationships. An example might be translating a requirement such as numpy
into (+numpy-1.8.1 | +numpy-1.8.2 | +numpy-1.8.3), where the + operator indicates that the pack-
age should be installed and | is logical OR. In prose one might read this as “Must install one of numpy-1.8.1,
numpy-1.8.2, or numpy-1.8.3.”

To build up a total set of rules, we start at each of our Job rules and cycle recursively though package metadata,
adding new rules as we discover new packages. This is done by running each of our requirements through the Pool
and asking it which packages match.

Constraint Modifiers

The key notion here is that Pool.what_provides() gives us a very flexible abstraction for package querying.
When we want to manipulate the way package dependencies are handled, we don’t need to modify the packages
themselves, it is enough to modify the querying function such that it responds in the way that we want.

We attach the ConstraintModifiers to the Pool itself, and at query time, the Pool may transform the
Requirement as necessary. The current implementation results in the transformations below. The original re-
quirement is on the far left, with the result of each type of transformation to the right of it. * is a wild-card that
matches any version.

13

simplesat Documentation, Release 0.2.0

Original Allow newer Allow older Allow any
* * * *
> 1.1.1-1 > 1.1.1-1 * *
>= 1.1.1-1 >= 1.1.1-1 * *
< 1.1.1-1 * < 1.1.1-1 *
<= 1.1.1-1 * <= 1.1.1-1 *
^= 1.1.1 >= 1.1.1 <= 1.1.1-* *
== 1.1.1-1 >= 1.1.1-1 <= 1.1.1-1 *
!= 1.1.1-1 != 1.1.1-1 != 1.1.1-1 != 1.1.1-1

Requirements

There are currently three different Requirement classes: Requirement, InstallRequirement and
ConflictRequirement. They have no internal differences, but this split allows us to reliably track the origin
of a requirement via its type and avoid using it in an inappropriate context.

We care about the difference between a requirement created from package.install_requires vs one cre-
ated from package.conflicts vs one created from parsing a pretty string into a Job. It only makes sense for
modifiers to apply to constraints created from install_requires; we don’t want to modify a constraint that
the user explicitly gave us and we don’t know what it means to allow_newer for a conflicts constraint at all.
By creating an InstallRequirement only when reading package.install_requires and then explicitly
checking for that class at the only point where we might modify it, we can prevent ourselves from modifying the
wrong kind of requirement. The same goes for ConflictRequirement, although there is currently no use case
differentiating it from a plain Requirement.

Top-level (“Job”) requirements are created by external code because the only way to communicate a requirement
to the system is via a Requirement object attached to a Request. All others are created as needed by the
RulesGenerator while it puts together rules based on package metadata.

So user-given requirements like install foo^=1.0 or update bar are turned into normal Requirement
objects because they should not be modified. Getting this wrong can lead to “install inconsistent sets of packages”
bugs.

When to use each requirement class

InstallRequirement Requirements derived from package.install_requires metadata. For example:

for constraints in package.install_requires:
req = InstallRequirement.from_constraints(constraints)

Note: Currently, this is the only type of requirement that can be passed to modify_requirement.

ConflictRequirement Requirements derived from package.conflicts metadata. For example:

for constraints in package.conflicts:
req = ConflictRequirement.from_constraints(constraints)

Requirement, All other requirements, including those coming directly from a user via a simplesat.request.
Request.

14 Chapter 3. SAT Solving

CHAPTER 4

Comparing with PHP’s Composer library

First, clone composer’s somewhere on your machine:

git clone https://github.com/composer/composer

Then, use the scripts/scenario_to_php.py script to write a PHP file that will print the composer’s solution
for a given scenario:

python scripts/scenario_to_php.py \
--composer-root <path to composer github checkout> \
simplesat/tests/simple_numpy.yaml \
scripts/print_operations.php.in

python scripts/scenario_to_php.py \
--composer-root <path to composer github checkout> \
simplesat/tests/simple_numpy.yaml \
scripts/print_rules.php.in

This will create scripts/print_operations.php and scripts/print_rules.php scripts you can sim-
ply execute with php:

php scripts/print_rules.php
php scripts/print_operations.php

15

simplesat Documentation, Release 0.2.0

16 Chapter 4. Comparing with PHP’s Composer library

CHAPTER 5

API Reference

This covers all of the interfaces in Simplesat. For an overview of how these pieces fit together, take a look at Architec-
ture.

Main Interface

For testing of the validity of a set of requirements, typical usage might be the following:

installed_repository = Repository([package1, package2])
remote_repository = Repository([package1, package3, package4])

R = Requirment.from_string
requirements = [R('package1 > 1.2.3'), R('package4 < 2.8')]
repositories = [installed_repository, remote_repository]

if packages_are_consistent(installed_repository):
print("Installed packages are OK!")

if requirements_are_satisfiable(repositories, requirements):
print("The requirements are mutually compatible.")

else:
print("The requirements conflict.")

if requirements_are_complete(repositories, requirements):
print("These requirements include all necessary dependencies.")

else:
print("The requirements are incomplete. Dependencies are missing.")

simplesat.dependency_solver.packages_are_consistent(packages, modifiers=None)
Return True if all packages can be installed together.

Note: This will return False if more than one version of a package is present because we only permit one at a

17

simplesat Documentation, Release 0.2.0

time.

Parameters

• packages (iterable of PackageMetadata) – The packages to check for consis-
tency.

• modifiers (ConstraintModifiers, optional) – If not None, modify require-
ments before resolving packages.

Returns True if every package in packages can be installed simultaneously, otherwise False.

Return type bool

simplesat.dependency_solver.requirements_are_complete(packages, requirements, mod-
ifiers=None)

Return True if requirements includes all required transitive dependencies. I.e. it will report whether all the
packages that are needed are explicitly required.

Parameters

• packages (iterable of PackageMetadata) – The packages available to draw
from when satisfying requirements.

• requirements (iterable of Requirement) – The requirements used to identify
relevent packages.

• modifiers (ConstraintModifiers, optional) – If not None, modify require-
ments before resolving packages.

Returns True if the requirements specify all necessary packages.

Return type bool

simplesat.dependency_solver.requirements_are_satisfiable(packages, requirements,
modifiers=None)

Determine if the requirements can be satisfied together.

Parameters

• packages (iterable of PackageMetadata) – The packages available to draw
from when satisfying requirements.

• requirements (list of Requirement) – The requirements used to identify
relevent packages.

• modifiers (ConstraintModifiers, optional) – If not None, modify require-
ments before resolving packages.

Returns Return True if the requirements can be satisfied by the packages.

Return type bool

simplesat.dependency_solver.satisfy_requirements(packages, requirements, modi-
fiers=None)

Find a collection of packages that satisfy the requirements.

Parameters

• packages (iterable of PackageMetadata) – The packages available to draw
from when satisfying requirements.

• requirements (list of Requirement) – The requirements used to identify
relevent packages.

18 Chapter 5. API Reference

simplesat Documentation, Release 0.2.0

• modifiers (ConstraintModifiers, optional) – If not None, modify require-
ments before resolving packages.

Returns Return a tuple of packages that together satisfy all of the requirements. The packages are
in topological order.

Return type tuple of PackageMetadata

Raises SatisfiabilityError – If the requirements cannot be satisfied using the packages.

simplesat.dependency_solver.simplify_requirements(packages, requirements)
Return a reduced, but equivalent set of requirements.

Parameters

• packages (iterable of PackageMetadata) – The packages available to draw
from when satisfying requirements.

• requirements (list of Requirement) – The requirements used to identify
relevent packages.

Returns The reduced requirements.

Return type tuple of Requirement

class simplesat.constraints.requirement.ConflictRequirement(name, con-
straints=None)

A Requirement that describes packages which must not be installed.

class simplesat.constraints.requirement.InstallRequirement(name, con-
straints=None)

A Requirement that describes packages to be installed.

class simplesat.constraints.requirement.Requirement(name, constraints=None)
Requirements instances represent a ‘package requirement’, that is a package + version constraints.

Parameters

• name (str) – PackageInfo name

• specs (seq) – Sequence of constraints

classmethod from_constraints(constraint_tuple)
Return a Requirement object from a PackageMetadata constraint tuple.

Parameters constraints – A 2-tuple of constraints where the first element is the distribution
name, and the second is a tuple of tuple of string, representing a disjuntion of conjunctions
of version ranges, e.g. ('nose', (('< 1.4', '>= 1.3'),)).

Returns A Requirement that matches the given constraints.

Return type Requirement

Raises

• InvalidConstraint – If there is more than one conjunction. In less formal terms, we
do not currently support the OR operator.

• InvalidConstraint – If the constraint tuple has the wrong shape.

classmethod from_package_string(package_string, version_factory=<bound
method type.from_string of <class
‘okonomiyaki.versions.enpkg.EnpkgVersion’>>)

Creates a requirement from a package full version.

Parameters

5.1. Main Interface 19

simplesat Documentation, Release 0.2.0

• package_string (str) – The package string, e.g. ‘numpy-1.8.1-1’

• version_factory (callable, optional) – A function from version strings to
version objects.

Returns A requirement matching the exact package and version in package_string.

Return type Requirement

has_any_version_constraint
True if there is any version constraint.

matches(version_candidate)
Returns True if the given version matches this set of requirements, False otherwise.

Parameters version_candidate (obj) – A valid version object (must match the version
factory of the requirement instance).

to_constraints()
Return a constraint tuple as described by from_constraints().

simplesat.constraints.requirement.parse_package_full_name(full_name)
Parse a package full name (e.g. ‘numpy-1.6.0-1’) into a (name, version_string) pair.

Functional classes

Internally, these make use of the DependencySolver. To use it yourself, you’ll need to create some Packages,
populate at least one Repository with them, add that to a Pool and give all of that to the constructor. Then you
can make some Requirements that describe what you’d like to do, add them to a Request and pass it to solve.

class simplesat.dependency_solver.DependencySolver(pool, remote_repositories,
installed_repository,
use_pruning=True, strict=False)

Top-level class for resolving a package management scenario.

The solver is configured at construction time with packages repositories and a Policy and exposes an API for
computing a Transaction that describes what to do.

Parameters

• pool (Pool) – Pool against which to resolve Requirements.

• remote_repositories (list of Repository) – Repositories containing pack-
age available for installation.

• installed_repository (Repository) – Repository containing the packages which
are currently installed.

• use_pruning (bool, optional) – When True, attempt to prune package operations
that are not strictly necessary for meeting the requirements. Without this, packages whose
assignments have changed as an artefact of the search process, but which are not needed for
the solution will be modified.

A typical example might be the installation of a dependency for a package that was proposed
but later backtracked away.

• strict (bool, optional) – When true, behave more harshly when dealing with bro-
ken packages. INFO level log messages become WARNINGs and missing dependencies
become errors rather than causing the package to be ignored.

20 Chapter 5. API Reference

simplesat Documentation, Release 0.2.0

>>> from simplesat.constraints.package_parser import \
... pretty_string_to_package as P
>>> numpy1921 = P('numpy 1.9.2-1; depends (MKL 10.2-1)')
>>> mkl = P('MKL 10.3-1')
>>> installed_repository = Repository([mkl])
>>> remote_repository = Repository([mkl, numpy1921])
>>> request = Request()
>>> request.install(Requirement.from_string('numpy >= 1.9'))
>>> request.allow_newer('MKL')
>>> pool = Pool([installed_repo] + remote_repos)
>>> pool.modifiers = request.modifiers
>>> solver = DependencySolver(pool, remote_repos, installed_repo)
>>> transaction = solver.solve(request)

solve(request)
Given a request return a Transaction that would satisfy it.

Parameters request (Request) – The request that should be satisifed.

Returns The operations to apply to resolve the request.

Return type Transaction

Raises SatisfiabilityError – If no resolution is found.

solve_with_hint(request)
Given a request return a Transaction that would satisfy it.

If the solver cannot find a solution, it will raise a SatisfiabilityErrorWithHint exception, that contains
enough information to give a human-readable error message.

Parameters request (Request) – The request that should be satisifed.

Returns The operations to apply to resolve the request.

Return type Transaction

Raises SatisfiabilityErrorWithHint – If no resolution is found.

class simplesat.request.Request(modifiers=NOTHING, jobs=NOTHING)
A proposed change to the state of the installed repository.

The Request is built up from Requirement objects and ad-hoc package constraint modifiers.

Parameters modifiers (ConstraintModifiers, optional) – The contraint modifiers
are used to relax constraints when deciding on which packages meet a requirement.

>>> from simplesat.request import Request
>>> from simplesat.constraints import Requirement
>>> request = Request()
>>> recent_mkl = Requirement.from_string('MKL >= 11.0')
>>> request.install(recent_mkl)
>>> request.jobs
[_Job(requirement=Requirement('MKL >= 11.0-0'), kind=<JobType.install: 1>)]
>>> request.modifiers
ConstraintModifiers(allow_newer=set(), allow_any=set(), allow_older=set())
>>> request.allow_newer('MKL')
>>> request.modifiers.asdict()
{'allow_older': [], 'allow_any': ['MKL'], 'allow_newer': []}

5.2. Functional classes 21

simplesat Documentation, Release 0.2.0

Package Hierarchy

class simplesat.package.PackageMetadata(name, version, install_requires=None, con-
flicts=None, provides=None)

PackageMetadata represents an immutable, versioned Python distribution and its relationship with other pack-
ages.

class simplesat.repository.Repository(packages=None)
A Repository is a set of packages that knows about which package it contains.

It also supports the iterator protocol. Iteration is guaranteed to be deterministic and independent of the order in
which packages have been added.

Parameters packages (list of PackageMetadata) – The packages available in this
repository.

>>> from simplesat.constraints.package_parser import \
... pretty_string_to_package as P
>>> mkl = P('MKL 10.3-1')
>>> numpy1921 = P('numpy 1.9.2-1; depends (MKL)')
>>> numpy1922 = P('numpy 1.9.2-2; depends (MKL, libgfortran)')
>>> repository = Repository([mkl, numpy1922])
>>> repository.add_package(numpy1921)
>>> assert list(repository) == some_pkgs + [another_one]
>>> numpies = repository.find_packages['numpy']
>>> assert numpies == [numpy1921, numpy1922]

add_package(package_metadata)
Add the given package to this repository.

Parameters package (PackageMetadata) – The package metadata to add. May be a sub-
class of PackageMetadata.

Note: If the same package is added multiple times to a repository, every copy will be available when
calling find_package or when iterating.

find_package(name, version)
Search for the first match of a package with the given name and version.

Parameters

• name (str) – The package name to look for.

• version (EnpkgVersion) – The version to look for.

Returns package – The corresponding metadata.

Return type PackageMetadata

find_packages(name)
Returns an iterable of package metadata with the given name, sorted from lowest to highest version.

Parameters name (str) – The package’s name

Returns packages – Iterable of PackageMetadata instances (order is from lower to higher ver-
sion)

Return type iterable

22 Chapter 5. API Reference

simplesat Documentation, Release 0.2.0

update(iterable)
Add the packages from the given iterable into this repository.

class simplesat.pool.Pool(repositories=None, modifiers=None)
A pool of repositories.

The main feature of a pool is to search for every package matching a given requirement.

Parameters

• repositories (list of Repository, optional) – The repositories to query
for packages.

• modifiers (ConstraintModifiers, optional) – If given, modify the require-
ments prior to querying.

add_repository(repository)
Add the repository to this pool.

Parameters repository (Repository) – The repository to add

id_to_package(package_id)
Returns the package of the given ‘package id’.

id_to_string(package_id)
Convert a package id to a nice string representation.

iter_package_ids()
Iterate over all package ids.

iter_packages()
Iterate over all PackageMetadata objects.

modify_requirement(requirement)
Return requirement modified by the pool’s ConstraintModifiers.

package_id(package)
Returns the ‘package id’ of the given package.

what_provides(requirement, use_modifiers=True)
Computes the list of packages fulfilling the given requirement.

Parameters

• requirement (Requirement) – The requirement to match candidates against.

• use_modifiers (bool) – If True, modify the requirement according to self.modifiers.

Returns The packages satisfying requirement.

Return type list of PackageMetadata

Conveniences

simplesat.constraints.package_parser.constraints_to_pretty_strings(constraint_tuples)
Convert a sequence of constraint tuples as used in PackageMetadata to a list of pretty constraint strings.

Parameters constraint_tuples (tuple of constraint) – Sequence of constraint tu-
ples, e.g. ((“MKL”, ((“< 11”, “>= 10.1”),)),)

simplesat.constraints.package_parser.package_to_pretty_string(package)
Given a PackageMetadata instance, returns a pretty string.

5.4. Conveniences 23

simplesat Documentation, Release 0.2.0

class simplesat.test_utils.Scenario(packages, remote_repositories, installed_repository, request,
decisions, operations, pretty_operations, failure=None)

A high level description of a scenario that should be solved.

The Scenario class bundles together several important related pieces of data that together characterize a package
management scenario. This includes a Request, a singular Repository representing packages that are
currently installed and a list of Repository representing available packages.

The key feature is the ability to create one from a human-readable yaml description:

>>> Scenario.from_yaml(io.StringIO(u'''
... packages:
... - MKL 10.2-1
... - MKL 10.3-1
... - numpy 1.7.1-1; depends (MKL == 10.3-1)
... - numpy 1.8.1-1; depends (MKL == 10.3-1)
...
... request:
... - operation: "install"
... requirement: "numpy"
... ''')

simplesat.test_utils.generate_rules_for_requirement(pool, requirement, in-
stalled_map=None)

Generate CNF rules for a requirement.

Parameters

• pool (Pool) – A Pool of Repositories to use when fulfilling the requirement.

• requirement (Requirement) – The description of the package to be installed.

Returns rules – Package rules describing the given scenario.

Return type list

simplesat.test_utils.parse_package_list(packages)
Yield PackageMetadata instances given an sequence of pretty package strings.

Parameters packages (iterator) – An iterator of package strings (e.g. ‘numpy 1.8.1-1; de-
pends (MKL ^= 10.3)’).

simplesat.dependency_solver.requirements_from_packages(packages)
Return a list of requirements, one to match each package in packages.

Parameters packages (iterable of PackageMetadata) – The packages for which to
generate requirements.

Returns The matching requirements.

Return type tuple of Requirement

simplesat.dependency_solver.packages_from_requirements(packages, requirements,
modifiers=None)

Return a new tuple that only contains packages explicitly mentioned in the requirements.

Parameters

• packages (iterable of PackageMetadata) – The packages available for inclu-
sion in the result.

• requirements (list of Requirement) – The requirements used to identify rele-
vant packages. All packages that satisfy any of the requirements will be included.

24 Chapter 5. API Reference

simplesat Documentation, Release 0.2.0

• modifiers (ConstraintModifiers, optional) – If not None, modify require-
ments before resolving packages.

Returns A tuple containing the relevant packages.

Return type Tuple of PackageMetadata

Exceptions

exception simplesat.errors.SatisfiabilityErrorWithHint(unsat, conflicting_jobs)
A satistibiality error class with information about minimally unsatisfiable problem.

This is used when one wants to give more human-readable error messages about conflicts and other satistiability
issues.

Lower level utilities

These are used internally.

simplesat.utils.graph.backtrack(end, start, visited)
Return a tuple of nodes from start to end by recursively looking up the current node in visited. visited is a
dictionary of one-way edges between nodes.

simplesat.utils.graph.breadth_first_search(start, neighbor_func, targets, tar-
get_func=None, visited=None)

Return an iterable of paths from start to each reachable terminal node end.

Parameters

• start (node) – The starting point of the search

• neighbor_func (callable) – Returns the neighbors of a node

• targets (set) – The nodes we’re searching for. The search terminates when each mem-
ber of targets has been encountered at least once, but only path is returned per target.

• target_func (callable, optional) – If given, then target_func is applied to node
and the result is used to determine if node is a target via target_func(node) in
targets.

• visited (dict, optional) – If given, it will be used to track the current path. You
can use it to directly inspect the search path after calling breadth_first_search().

Yields path (tuple of nodes) – A path from node start to some node end such that termi-
nate_func(end) is in targets, by following neighbors as given by neighborfunc(node):

>>> start = 0
>>> targets = {10, 4}
>>> def target_func(node):
... return node*2
>>> def neighbor_func(node):
... return [node + 1]
>>> tuple(breadth_first_search(start, neighbor_func, targets, target_
→˓func))
((0, 1, 2), (0, 1, 2, 3, 4, 5))

5.5. Exceptions 25

simplesat Documentation, Release 0.2.0

simplesat.utils.graph.connected_nodes(node, neighbor_func, visited=None)
Recursively build up a set of nodes connected to node by following neighbors as given by neighbor_func(node),
i.e. “flood fill.”

>>> def neighbor_func(node):
... return {-node, min(node+1, 5)}
>>> connected_nodes(0, neighbor_func)
{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

simplesat.utils.graph.package_lit_dependency_graph(pool, package_lits, closed=True)
Return a dict of nodes to edges, suitable for use with toposort().

Parameters

• pool (Pool) – The pool to use when resolving package literals to packages.

• package_lits (iterable of int) – The package literals to build the dependency
graph for. These can be positive or negative. The sign will be maintained.

• closed (bool, optional) – If True, only include edges to packages dependencies that
are themselves in package_lits. No package literals that are not in package_lits will appear
in the graph.

Returns nodes_to_edges – A dict of package_literals to sets of package_literals, as described in
toposort().

Return type dict

simplesat.utils.graph.toposort(nodes_to_edges)
Return an iterator over topologically sorted groups of nodes.

Output is a list of sets in topological order. The first set consists of items with no dependences, each subsequent
set consists of items that depend upon items in the preceeding sets.

Parameters nodes_to_edges (dict from node to set(node)) – A directed graph ex-
pressed as a dictionary of edges whose keys are nodes and values are all of the nodes on which
the key depends.

For example, if node 1 depends on 2, we have {1: {2}, 2: set()}.

Yields set of nodes – Each yielded set contains nodes which depend only on nodes that have already
been yielded in a previous set. The first set contains the nodes with no outgoing edges.

Raises ValueError – If the graph contains cyclic dependencies.

>>> print '\n'.join(repr(sorted(x)) for x in toposort2({
... 2: set([11]),
... 9: set([11,8]),
... 10: set([11,3]),
... 11: set([7,5]),
... 8: set([7,3]),
... }))

{3, 5, 7}
{8, 11}
{2, 9, 10}

simplesat.utils.graph.transitive_neighbors(nodes_to_edges)
Return the set of all reachable nodes for each node in the nodes_to_edges adjacency dict.

26 Chapter 5. API Reference

CHAPTER 6

Glossary

Repository A collection of packages from a single source. An example of repository might be the pack-
ages already installed on the system, or a set of available packages from a package server.

Pool A collection of multiple Repositories. The pool provides an interface for querying repositories for
packages that satisfy Requirements.

Policy A strategy for proposing the next package to try when the solver must make an assumption.

Package In the object hierarchy, a “package” refers to a PackageMetadata instance. This describes
a package, its dependencies “install_requires” and the packages with which it conflicts.

Colloquially, this refers to any kind of software distribution we might be trying to manage.

Request The operations that we wish to apply to the collection of packages. This might include installing
a new package, removing a package, or upgrading all installed packages.

Requirement An object representation of a package range string, such as numpy > 1.8.2-2 or pip
^= 8.0.1. These are created from dependency information attached to PackageMetadata and
passed to the Pool to query the available packages.

27

simplesat Documentation, Release 0.2.0

28 Chapter 6. Glossary

CHAPTER 7

Bibliography

• Niklas Eén, Niklas Sörensson: An Extensible SAT-solver. SAT 2003

• Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, Sharad Malik: Efficient Conflict Driven Learning in
a Boolean Satisfiability Solver. Proc. ICCAD 2001, pp. 279-285.

• Donald Knuth: The art of computer programming. Vol. 4, Pre-fascicle 6A, Par. 7.2.2.2. (Satisfiability).

On the use of SAT solvers for managing packages:

• Fosdem 2008 presentation: Using SAT for solving package dependencies. More details on the SUSE wiki.

• The 0install project.

• Chris Tucker, David Shuffelton, Ranjit Jhala, Sorin Lerner: OPIUM: Optimal Package Install/Uninstall Man-
ager. Proc. ICSE 2007, pp. 178-188

29

http://minisat.se/downloads/MiniSat.pdf
https://www.princeton.edu/~chaff/publication/iccad2001_final.pdf
https://www.princeton.edu/~chaff/publication/iccad2001_final.pdf
http://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz
https://files.opensuse.org/opensuse/en/b/b9/Fosdem2008-solver.pdf
https://en.opensuse.org/openSUSE:Libzypp_satsolver
http://0install.net
https://cseweb.ucsd.edu/~lerner/papers/opium.pdf
https://cseweb.ucsd.edu/~lerner/papers/opium.pdf

simplesat Documentation, Release 0.2.0

30 Chapter 7. Bibliography

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

31

simplesat Documentation, Release 0.2.0

32 Chapter 8. Indices and tables

Python Module Index

s
simplesat.constraints.package_parser,

23
simplesat.constraints.requirement, 19
simplesat.errors, 25
simplesat.package, 22
simplesat.pool, 23
simplesat.repository, 22
simplesat.request, 21
simplesat.sat.policy, 21
simplesat.test_utils, 23
simplesat.utils.graph, 25

33

simplesat Documentation, Release 0.2.0

34 Python Module Index

Index

A
add_package() (simplesat.repository.Repository method),

22
add_repository() (simplesat.pool.Pool method), 23

B
backtrack() (in module simplesat.utils.graph), 25
breadth_first_search() (in module simplesat.utils.graph),

25

C
ConflictRequirement (class in simple-

sat.constraints.requirement), 19
connected_nodes() (in module simplesat.utils.graph), 25
constraints_to_pretty_strings() (in module simple-

sat.constraints.package_parser), 23

D
DependencySolver (class in simple-

sat.dependency_solver), 20

F
find_package() (simplesat.repository.Repository method),

22
find_packages() (simplesat.repository.Repository

method), 22
from_constraints() (simple-

sat.constraints.requirement.Requirement
class method), 19

from_package_string() (simple-
sat.constraints.requirement.Requirement
class method), 19

G
generate_rules_for_requirement() (in module simple-

sat.test_utils), 24

H
has_any_version_constraint (simple-

sat.constraints.requirement.Requirement
attribute), 20

I
id_to_package() (simplesat.pool.Pool method), 23
id_to_string() (simplesat.pool.Pool method), 23
InstallRequirement (class in simple-

sat.constraints.requirement), 19
iter_package_ids() (simplesat.pool.Pool method), 23
iter_packages() (simplesat.pool.Pool method), 23

M
matches() (simplesat.constraints.requirement.Requirement

method), 20
modify_requirement() (simplesat.pool.Pool method), 23

P
package_id() (simplesat.pool.Pool method), 23
package_lit_dependency_graph() (in module simple-

sat.utils.graph), 26
package_to_pretty_string() (in module simple-

sat.constraints.package_parser), 23
PackageMetadata (class in simplesat.package), 22
packages_are_consistent() (in module simple-

sat.dependency_solver), 17
packages_from_requirements() (in module simple-

sat.dependency_solver), 24
parse_package_full_name() (in module simple-

sat.constraints.requirement), 20
parse_package_list() (in module simplesat.test_utils), 24
Pool (class in simplesat.pool), 23

R
Repository (class in simplesat.repository), 22
Request (class in simplesat.request), 21
Requirement (class in simplesat.constraints.requirement),

19

35

simplesat Documentation, Release 0.2.0

requirements_are_complete() (in module simple-
sat.dependency_solver), 18

requirements_are_satisfiable() (in module simple-
sat.dependency_solver), 18

requirements_from_packages() (in module simple-
sat.dependency_solver), 24

S
SatisfiabilityErrorWithHint, 25
satisfy_requirements() (in module simple-

sat.dependency_solver), 18
Scenario (class in simplesat.test_utils), 23
simplesat.constraints.package_parser (module), 23
simplesat.constraints.requirement (module), 19
simplesat.errors (module), 25
simplesat.package (module), 22
simplesat.pool (module), 23
simplesat.repository (module), 22
simplesat.request (module), 21
simplesat.sat.policy (module), 21
simplesat.test_utils (module), 23
simplesat.utils.graph (module), 25
simplify_requirements() (in module simple-

sat.dependency_solver), 19
solve() (simplesat.dependency_solver.DependencySolver

method), 21
solve_with_hint() (simple-

sat.dependency_solver.DependencySolver
method), 21

T
to_constraints() (simple-

sat.constraints.requirement.Requirement
method), 20

toposort() (in module simplesat.utils.graph), 26
transitive_neighbors() (in module simplesat.utils.graph),

26

U
update() (simplesat.repository.Repository method), 22

W
what_provides() (simplesat.pool.Pool method), 23

36 Index

	Getting Started
	Installation
	Usage from the CLI

	Architecture
	Requests
	Package Hierarchy
	MiniSAT Engine

	SAT Solving
	Encoding Relationships as Clauses
	Constraint Modifiers
	Requirements

	Comparing with PHP's Composer library
	API Reference
	Main Interface
	Functional classes
	Package Hierarchy
	Conveniences
	Exceptions
	Lower level utilities

	Glossary
	Bibliography
	Indices and tables
	Python Module Index

