

Sardana Home Page

[image: image1] [image: image2]

Sardana is a software suite for Supervision, Control and Data Acquisition
in scientific installations. It aims to reduce cost and time of design,
development and support of the control and data acquisition systems.
Sardana development was started at the ALBA [http://www.albasynchrotron.es] synchrotron and today is
supported by a larger community which includes several other laboratories
and individuals (ALBA [http://www.albasynchrotron.es], DESY [http://www.desy.de], MaxIV [http://www.maxiv.se/], Solaris [http://www.synchrotron.uj.edu.pl/en_GB/], ESRF [http://esrf.eu]).

You can download Sardana from PyPi [http://pypi.python.org/pypi/sardana], check its Documentation [http://sardana.readthedocs.org] or get support
from its community and the latest code from the
project page [https://github.com/sardana-org/sardana].

Projects related to Sardana

	Sardana uses Taurus [http://taurus-scada.org/] for control system access and user interfaces

	Sardana is based on Tango [http://www.tango-controls.org/]

	The command line interface for Sardana (Spock) is based on IPython [http://ipython.org/]

	Last Update

	Jun 02, 2018

	Release

	2.4.0

Sardana 2.4 Documentation

Sardana is a software suite for Supervision, Control and Data Acquisition in
scientific installations.

	User’s Guide
	Overview

	Getting started

	Spock

	Sardana-Taurus Widgets

	Scans

	Standard macro catalog

	Screenshots

	FAQ

	Developer’s Guide
	Overview

	Writing macros

	Writing controllers

	Writing recorders

	Sardana Testing

	API

	Migration guide

	Examples

	Development guidelines

	Sardana Enhancement Proposals

	Glossary

	To do

	History of changes
	History of modifications

	Version history

	Index

	Module Index

	Search Page

User’s Guide

	Overview
	What do we “sell” to our users

	Starting a procedure

	Taurus as a toolkit for applications

	Configure – don’t program

	How to write your own procedure

	How to adapt it to your own hardware

	Symbolic Sketch

	Getting started
	Installing

	Working directly from Git

	Dependencies

	Running the server

	Running the client

	Spock
	Starting spock from the command line

	Starting spock with a custom profile

	Spock IPython Primer

	Executing macros

	Stopping macros

	Exiting spock

	Getting help

	Moving motors

	Counting

	Scanning

	Using spock as a Python console

	Using spock as a Tango console

	Sardana-Taurus Widgets
	MacroExecutor

	Sequencer

	Experiment Configuration

	Sardana Editor

	Scans
	Step scans

	Continuous scans

	Configuration

	Standard macro catalog
	motion related macros

	counting macros

	diffractometer related macros

	environment related macros

	list related macros

	measurement configuration macros

	advanced element manipulation macros

	reload code macros

	scan macros

	Screenshots
	Sardana oriented graphical user interfaces

	Graphical user interface screen shots

	FAQ
	What is the Sardana SCADA and how do I get an overview over the different components?

	How do I install Sardana?

	How to work with Taurus GUI?

	How to produce your own Taurus GUI panel?

	How to call procedures?

	How to write procedures?

	How to write scan procedures?

	How to adapt SARDANA to your own hardware?

	How to add your own file format?

	How to use the standard macros?

	How to add conditions in macros?

	How to write your own Taurus application?

	Which are the standard Taurus graphical GUI components?

	How to write your own Taurus widget?

	How to work with the graphical GUI editor?

	What are the minimum software requirements for sardana?

	How to configure the system?

	How to write your own Taurus schema?

	What are the interfaces to the macro server and the pool?

	What are the data file formats used in the system and how can I read them?

	What is the file format of the configuration files?

Overview

Sardana is the control program initially developed at ALBA [http://www.cells.es/]. Our mission
statement:

Produce a modular, high performance, robust, and generic user environment for control applications in large and small installations. Make Sardana the generic user environment distributed in the Tango project and the standard basis of collaborations in control.

Up to now, control applications in large installations have been notoriously
difficult to share. Inspired by the success of the Tango [http://www.tango-controls.org/] collaboration, ALBA [http://www.cells.es/]
decided to start the creation of a generic tool to enlarge the scope of the
Tango [http://www.tango-controls.org/] project to include a standard client program - or better a standard
generic user environment. From the beginning our aim has been to involve others
in this process. At this moment in time the user environment consists of a
highly configurable standard graphical user interface, a standard command line
interface understanding SPEC [http://www.certif.com/] commands, and a standard way to compose new
applications either by programming or with a graphical tool. It further
consists of a standard macro executer, standard set of macros, a standard range
of common hardware types (like motors, counters, cameras and so on) and a
configuration editor to set all this up. The origin of the Sardana name comes
from a Catalan dance to honor the region where the ALBA [http://www.cells.es/] synchrotron is build.
The toolkit to build Sardana has been C++, Python [http://www.python.org/], Qt [http://qt.nokia.com/products/] and Tango [http://www.tango-controls.org/]. If you like
the tools you will love Sardana.

What do we “sell” to our users

Let’s start our excursion into the Sardana world by a word of caution. We will
talk a lot about technical possibilities and implementation details. Our users
will judge us on the ease of use of the final GUI, its robustness and the
features it offers. There are millions of ways to arrive at this end result.
Our claim is however that by doing it the Sardana way and developing the
application out of lego components in a collaborative environment we will
arrive at higher quality software with much higher efficiency.

The following screen shot of an early prototype of a specific beamline
application should serve as a reminder of this final goal.

[image: ../_images/snapshot01.png]
Inside this application we have many features common to other beamline control
applications or w some accelerator applications. The following screen shot
shows such a standard application which has been done without programming -
just by configuring the application. This illustrates one of the design
guidelines in Sardana: Always provide a generic interface which can be
specialized for an application.

[image: ../_images/snapshot02.png]

Starting a procedure

At the heart of the Sardana system are standard reusable procedures. From past
experiences, the importance of standard procedures has been realized and has
influenced most of the major design decisions. To illustrate this point, please
let me walk you through different ways how to start such a procedure without
going into too many details. You might want to think of a scan as an example.
One way of starting a procedure is with a command line interface. Users
familiar with SPEC [http://www.certif.com/] will immediately recognize this way. In effect, inside
Sardana most of the standard SPEC [http://www.certif.com/] commands (including many diffractometer
geometries thanks to Frédéric Picca from the SOLEIL [http://www.synchrotron-soleil.fr/] synchrotron) are provided
as standard procedures and can be invoked in the same way.

[image: ../_images/snapshot03.png]
Every procedure can also be started from a GUI. This does not need any
programming or configuration from the user of the system. When a new procedure
is created, it is automatically visible inside the GUI and command line tools.

[image: ../_images/snapshot04.png]
This GUI interface will mainly be used for procedures which are rarely used and
where a specialized interface has not yet been developed. An example of how to
use the same procedure in order to carry out energy spread and emittance
measurements is presented in the following picture.

[image: ../_images/snapshot05.png]
The standard Qt [http://qt.nokia.com/products/] designer can be used to create new graphical elements (widgets)
and connect them to the system for even greater flexibility. The following
screen shot shows the standard qt designer with some fancy widgets developed in
house.

[image: ../_images/snapshot06.png]

Taurus as a toolkit for applications

The GUI toolkit for Sardana is called Taurus [http://packages.python.org/taurus/]. The graphical user interfaces in
this paper have been created with this toolkit. It can be used in conjunction
or independent from the rest of the system. It can be used to create custom
panels inside the generic GUI or to create stand alone applications. Again,
this approach of take what you need has been implemented to foster the widest
range of collaborations. Almost all applications in the ALBA [http://www.cells.es/] machine control
system have been created with this toolkit. Creating the applications out of
standard components has been proven to be extremely powerful. In the
Graphical user interface screen shots chapter you can see some of the graphical user
interfaces used.

Configure – don’t program

The Sardana system comes with a configuration editor to allow non-experts to add
and configure components. The editor adapts dynamically to the hardware
controllers present. New hardware controller can be easily written and
integrated into the system without restarting it.

[image: ../_images/snapshot07.png]
This configuration editor is currently being rewritten to be more wizard based
and provide better guidance for the end user.

How to write your own procedure

Another example I would like to look into is how to write your own procedure.
The simplest possible way is to use an editor to assemble commands and execute
them. This batch files type of procedures are useful to automatically run
procedures over night and for similar simple applications. The following screen
shots show the procedure executer with this feature enabled.

[image: ../_images/snapshot08.png]
To go further I would like to explain some internal details. All procedures are
executed in a central place (called the macro server). There can be more than
one macro server per system but for the following I assume the common case of a
unique macro server. This macro server holds all the general procedures
centrally. It provides a controlled environment for these procedures. They can
be edited, run, debugged under its supervision. This allows for example to
automatically roll back changes made in case of problems, log access and grant
permissions. The procedures executed in the macro server provided by the
current Sardana system are Python [http://www.python.org/] functions or classes. Writing a procedure as
a function is more straightforward and recommended for the beginners. Writing it
is a class is a way to group the different methods which concerns this
procedure. As an example, in some procedures it could be possible to do very
specific things in case the user orders an emergency abort of the procedure.
The following example shows the procedure to move a motor.

from sardana.macroserver.macro import macro, Type

@macro([["moveable", Type.Moveable, None, "moveable to move"],
 ["position", Type.Float, None, "absolute position"]])
def move(self, moveable, position):
 """This macro moves a moveable to the specified position"""
 moveable.move(position)
 self.output("%s is now at %s", moveable.getName(), moveable.getPosition())

As you can see in the example, the procedure must be documented and the input
parameters described. From this information, the graphical user interface is
constructed. It is also possible now to start the procedure from the command
line interface and use the tab key to automatically complete the input. The
actual action is actually carried out in the run method. The motor movement is
started and the procedure waits until it arrives at its destiny. The Python [http://www.python.org/]
classes should stay small and very simple. All complicated code can be put into
modules and tested separately from the system.

How to adapt it to your own hardware

As the system has been thought from the beginning to be used at different
institutes, no assumptions of the hardware used could be made. There exists
therefore a mechanism to adapt the Sardana system to your own hardware. This
adaptor also has another very important role to play. This is best explained
with the motor as example. We consider more or less everything which can be
changed in the system a motor. The term which should have better been used to
describe this thing should have been therefore movable. A motor can be a
temperature of a temperature controller which can be changed, a motor from an
insertion device which needs a highly complicated protocol to be moved, or just
about anything. Sometimes we also consider calculated value like H,K,L, the
height of a table, and the gap of a slit to be a motor. All these different
motors can be scanned with the same generic procedures without having to
worry about on which elements it is working on. You can add one of these pseudo
motors with the configuration editor. It is easily possible to add new types of
pseudo motors. This has only to be done once and the Sardana system already
provides a large variety of these types.

[image: ../_images/snapshot09.png]
Please find in the following an example for adding a completely new type in the
case of a slit.

The actual information how to create a motor of type slit is kept in the two
methods calc_physical and calc_pseudo which can be used to do the
transformation between the different coordinate systems. Or to say it in the
language of Sardana between the pseudo motors gap and offset and the real
motors left blade and right blade.

[image: ../_images/snapshot10.png]
Once again the information in the beginning allows the graphical user interface
to be created automatically once it is loaded into the system.

Symbolic Sketch

I would like to end this summary with a symbolic sketch of the different
subsystems in Sardana.

[image: ../_images/sardana_sketch.png]
The user will normally not be concerned with these implementation details. It is
presented here to allow appreciating the modularity of the system.

Getting started

The next chapters describe the necessary steps to get started with sardana,
from installation to having a running system on your machine.

	Installing

	Working directly from Git

	Dependencies

	Running the server

	Running the client

Installing

Installing with pip 1 (platform-independent)

Sardana can be installed using pip. The following command will
automatically download and install the latest release of Sardana (see
pip –help for options):

pip install sardana

You can test the installation by running:

python -c "import sardana; print sardana.Release.version"

Installing from PyPI manually 2 (platform-independent)

You may alternatively install from a downloaded release package:

	Download the latest release of Sardana from http://pypi.python.org/pypi/sardana

	Extract the downloaded source into a temporary directory and change to it

	run:

python setup.py install

You can test the installation by running:

python -c "import sardana; print sardana.Release.version"

Linux (Debian-based)

Since v1.4, Sardana is part of the official repositories of Debian (and Ubuntu
and other Debian-based distros). You can install it and all its dependencies by
doing (as root):

aptitude install python-sardana

You can test the installation by running:

python -c "import sardana; print sardana.Release.version"

(see more detailed instructions in this step-by-step howto [https://sourceforge.net/p/sardana/wiki/Howto-Sardana-on-Debian8/])

Windows

	Download the latest windows binary from http://pypi.python.org/pypi/sardana

	Run the installation executable

	test the installation:

C:\Python27\python -c "import sardana; print sardana.Release.version"

Windows installation shortcut

This chapter provides a quick shortcut to all windows packages which are
necessary to run Sardana on your windows machine

	Install all dependencies:

	Download and install latest PyTango [http://pytango.readthedocs.io/] from PyTango downdoad page [http://pypi.python.org/pypi/PyTango]

	Download and install latest Taurus [http://www.taurus-scada.org/] from Taurus downdoad page [http://pypi.python.org/pypi/taurus]

	Download and install latest lxml [http://lxml.de] from lxml downdoad page [http://pypi.python.org/pypi/lxml]

	Download and install latest itango from itango download page [http://pypi.python.org/pypi/itango]

	Finally download and install latest Sardana from Sardana downdoad page [http://pypi.python.org/pypi/sardana]

Working directly from Git

Sometimes it is convenient to work directly from the git source without
installing. To do so, you can clone sardana from our main git repository:

git clone https://github.com/sardana-org/sardana.git sardana

And then you can directly execute sardana binaries (Pool, MacroServer, Sardana
or spock from the command line):

homer@pc001:~/workspace$ cd sardana
homer@pc001:~/workspace/sardana$ scripts/Sardana

Tip

If you plan to work normally from git without installing, you may want
to add the sardana/scripts directory to your PATH variable and
sardana/src to your PYTHONPATH variable.

Dependencies

Sardana has dependencies on some python libraries:

	Sardana uses Tango as the middleware so you need PyTango [http://pytango.readthedocs.io/] 7 or later
installed. You can check it by doing:

python -c 'import PyTango; print PyTango.Release.version'

	Sardana clients are developed with Taurus so you need Taurus [http://www.taurus-scada.org/] 3.6.0 or later
installed. You can check it by doing:

python -c 'import taurus; print taurus.Release.version'

	Sardana operate some data in the XML format and requires lxml [http://lxml.de] library 2.1 or
later. You can check it by doing:

python -c 'import lxml.etree; print lxml.etree.LXML_VERSION'

	spock (Sardana CLI) requires itango 0.0.1 or later 3.

Footnotes

	1

	This command requires super user previledges on linux systems. If your
user has them you can usually prefix the command with sudo:
sudo pip -U sardana. Alternatively, if you don’t have
administrator previledges, you can install locally in your user
directory with: pip --user sardana
In this case the executables are located at <HOME_DIR>/.local/bin. Make
sure the PATH is pointing there or you execute from there.

	2

	setup.py install requires user previledges on linux systems. If your
user has them you can usually prefix the command with sudo:
sudo python setup.py install. Alternatively, if you don’t have
administrator previledges, you can install locally in your user directory
with: python setup.py install --user
In this case the executables are located at <HOME_DIR>/.local/bin. Make
sure the PATH is pointing there or you execute from there.

	3

	PyTango < 9 is compatible with itango >= 0.0.1 and < 0.1.0,
while higher versions with itango >= 0.1.6.

Running Sardana as a tango server

Note

if you have Tango <= 7.2.6 without all patches applied, Sardana server
will not work due to a known bug. Please follow the instructions from
Running Pool and MacroServer tango servers separately instead.

Sardana is based on a client-server architecture. On the server part, sardana
can be setup with many different configurations. Advanced details on sardana
server configuration can be found here <LINK>.

This chapter describes how to run sardana server with it’s simplest
configuration. The only decision you have to make is which name you will give
to your system. From here on lab-01 will be used as the system name. Please
replace this name with your own system name whenever apropriate.

The sardana server is called (guess what) Sardana. To start the server just
type in the command line:

homer@pc001:~$ Sardana lab-01

The first time the server is executed, it will inform you that server lab-01
is not registered and it will offer to register it. Just answer ‘y’. This will
register a new instance of Sardana called lab-01 and the server will be
started. You should get an output like this:

homer@pc001:~$ Sardana lab-01
lab-01 does not exist. Do you wish create a new one (Y/n) ? y
DServer/Sardana/Lab-01 has no event channel defined in the database - creating it

That’t it! You now have a running sardana server. Not very impressive, is it?
The Running the client chapter describes how to start up a
CLI application called spock which connects to the sardana server you
have just started through an object of type Door called Door_lab-01_1.

You can therefore skip the next chapter and go directly to
Running the client.

Running Pool and MacroServer tango servers separately

Note

You should only read this chapter if you have Tango <= 7.2.6
without all patches applied. If you do, please follow in instructions from
Running Sardana as a tango server instead.

It is possible to separate sardana server into two different servers (in the
first sardana versions, this was actually the only way start the sardana
system). These servers are called Pool and MacroServer. The Pool server
takes care of hardware communication and MacroServer executes procedures
(macros) using a connection to Pool(s) server(s).

To start the Pool server just type in the command line:

homer@pc001:~$ Pool lab-01

The first time the server is executed, it will inform you that server lab-01
is not registered and it will offer to register it. Just answer ‘y’. This will
register a new instance of Pool called lab-01 and the server will be
started. You should get an output like this:

homer@pc001:~$ Pool lab-01
lab-01 does not exist. Do you wish create a new one (Y/n) ? y
DServer/Pool/Lab-01 has no event channel defined in the database - creating it

Next, start the MacroServer server in the command line:

homer@pc001:~$ MacroServer lab-01

The first time the server is executed, it will inform you that server lab-01
is not registered and it will offer to register it. Just answer ‘y’. Next, it
will ask you to which Pool(s) you want your MacroServer to communicate with.
Select the previously created Pool from the list, press Return once and
Return again to finish with Pool selection. This will register a new
instance of MacroServer called lab-01 and the server will be started.
You should get an output like this:

homer@pc001:~$ MacroServer lab-01
lab-01 does not exist. Do you wish create a new one (Y/n) ?
Pool_lab-01_1 (a.k.a. Pool/lab-01/1) (running)
Please select pool to connect to (return to finish): Pool_lab-01_1
Please select pool to connect to (return to finish):
DServer/MacroServer/lab-01 has no event channel defined in the database - creating it

Running the client

After the server has been started, you can start one or more client applications
(CLIs and/or GUIs) that connect to the server. Each client
connects to a specific door on the server. A single sardana can be configured
with many doors allowing multiple clients to be connected at the same time.

When the sardana server was first executed, part of the registration process
created one door for you so now you just have to start the client application
from the command line:

homer@pc001:~$ spock

Spock is an IPython [http://ipython.org/] based CLI. When you start spock without arguments
it will assume a default profile called spockdoor. The first time spock is
executed, it will inform you that profile spockdoor doesn’t exist and it will
offer to create one. Just answer ‘y’. After, it will ask you to which door
should the default spockdoor profile connect to. Select the door name
corresponding to your sardana server (Door_lab-01_1) and press return. By now
you should get an output like this:

homer@pc001:~$ spock
Profile 'spockdoor' does not exist. Do you want to create one now ([y]/n)? y
Available Door devices from sardanamachine:10000 :
Door_lab-01_1 (a.k.a. Door/lab-01/1)
Door name from the list? Door_lab-01_1

Storing ipython_config.py in /home/homer/.config/ipython/profile_spockdoor... [DONE]
Spock 1.0.0 -- An interactive laboratory application.

help -> Spock's help system.
object? -> Details about 'object'. ?object also works, ?? prints more.

IPython profile: spockdoor

Connected to Door_lab-01_1

Door_lab-01_1 [1]:

That’s it! You now have a running sardana client. Still not impressed, I see!
The next chapter describes how to start adding new elements to your sardana
environment.

Populating your sardana with items

One of sardana’s goals is to allow you to execute procedures (what we call in
sardana macros, hence from here on we will use the term macro). A macro
is basically a piece of code. You can write macros using the Python [http://www.python.org/] language
to do all sorts of things. The sky is the limit here!

Sardana comes with a catalog of macros that help
users in a laboratory to run their experiments. Most of these macros
involve interaction with sardana elements like motors and experimental channels.
Therefore, the first step in a new sardana demo is to populate your system with
some elements. Fortunately, sardana comes with a macro called sar_demo that
does just that. To execute this macro just type on the command line
sar_demo.
You should get an output like this:

Door_lab-01_1 [1]: sar_demo

Creating controllers motctrl01, ctctrl01... [DONE]
Creating motors mot01, mot02, mot03, mot04... [DONE]
Creating measurement group mntgrp01... [DONE]

You should now have in your sardana system a set of simulated motors and
counters with which you can play.

Hint

for clearing sardana from the elements created by the demo, execute
clear_sar_demo

The next chapter (spock) will give you a complete overview
of spock’s interface.

Spock

Spock is the prefered CLI for sardana. It is based on IPython [http://ipython.org/]. Spock
automatically loads other IPython [http://ipython.org/] extensions like the ones for PyTango [http://packages.python.org/PyTango/] and
pylab. It as been extended in sardana to provide a customized interface for
executing macros and automatic access to sardana elements.

Spock tries to mimic SPEC [http://www.certif.com/]’s command line interface. Most SPEC [http://www.certif.com/] commands are
available from spock console.

[image: ../_images/spock_snapshot01.png]
Spock CLI in action

Starting spock from the command line

To start spock just type in the command line:

marge@machine02:~$ spock

This will start spock with a “default profile” for the user your are logged
with. There may be many sardana servers running on your system so the first
time you start spock, it will ask you to which sardana system you want to
connect to by asking to which of the existing doors you want to use:

marge@machine02:~$ spock
Profile 'spockdoor' does not exist. Do you want to create one now ([y]/n)?
Available Door devices from homer:10000 :
On Sardana LAB-01:
 LAB-01-D01 (running)
 LAB-01-D02 (running)
On Sardana LAB-02:
 LAB-02-D01
Please select a Door from the list? LAB-01-D01
Storing ipy_profile_spockdoor.py in /home/marge/.ipython... [DONE]

Note

If only one Door exists in the entire system, spock will automatically
connect to that door thus avoiding the previous questions.

Afterward, spock CLI will start normally:

Spock 7.2.1 -- An interactive sardana client.

help -> Spock's help system.
object? -> Details about 'object'. ?object also works, ?? prints more.

Spock's sardana extension 1.0 loaded with profile: spockdoor (linked to door 'LAB-01-D01')

LAB-01-D01 [1]:

Starting spock with a custom profile

spock allows each user to start a spock session with different configurations
(known in spock as profiles). All you have to do is start spock with
the profile name as an option.

If you use ipython version > 0.10 you can do it using –profile option:

spock --profile=<profile name>

Example:

marge@machine02:~$ spock --profile=D1

Otherwise (ipython version 0.10) you can do it using -p option:

spock -p <profile name>

Example:

marge@machine02:~$ spock -p D1

The first time a certain profile is used you will be asked to which door you
want to connect to (see previous chapter).

Spock IPython [http://ipython.org/] Primer

As mentioned before, spock console is based on IPython [http://ipython.org/]. Everything you can do
in IPython is available in spock. The IPython [http://ipython.org/] documentation provides excelent
tutorials, tips & tricks, cookbooks, videos, presentations and reference guide.
For comodity we summarize some of the most interesting IPython [http://ipython.org/] chapters here:

	
	IPython web page [http://ipython.org/]

	Introducing IPython [http://ipython.org/ipython-doc/stable/interactive/tutorial.html#tutorial]

	
	IPython Tips & Tricks [http://ipython.org/ipython-doc/stable/interactive/tips.html#tips]

	Command-line usage [http://ipython.org/ipython-doc/stable/interactive/reference.html#command-line-options]

Executing macros

Executing sardana macros in spock is the most useful feature of spock. It is
very simple to execute a macro: just type the macro name followed by a space
separated list of parameters (if the macro has any parameters). For example,
one of the most used macros is the
wa (stands for “where all”) that
shows all current motor positions. To execute it just type:

LAB-01-D01 [1]: wa

Current Positions (user, dial)

 Energy Gap Offset
 100.0000 43.0000 100.0000
 100.0000 43.0000 100.0000

(user for user position (number above); dial for
dial position (number below).)

A similar macro exists that only shows the desired motor positions
(wm):

LAB-01-D01 [1]: wm gap offset
 Gap Offset
User
 High 500.0 100.0
 Current 100.0 43.0
 Low 5.0 -100.0
Dial
 High 500.0 100.0
 Current 100.0 43.0
 Low 5.0 -100.0

To get the list of all existing macros use
lsmac:

LAB-01-D01 [1]: lsdef
 Name Module Brief Description
------------------- ------------- --
 a2scan scans two-motor scan. a2scan scans two motors, as specifi[...]
 a2scan scans three-motor scan . a3scan scans three motors, as sp[...]
 ascan scans Do an absolute scan of the specified motor. ascan s[...]
 defmeas expert Create a new measurement group
 fscan scans N-dimensional scan along user defined paths. The mo[...]
 lsa lists Lists all existing objects
 lsm lists Lists all motors
 lsmac expert Lists all macros.
 mv standard Move motor(s) to the specified position(s)
 mvr standard Move motor(s) relative to the current position(s)
 wa standard Show all motor position.
 wm standard Show the position of the specified motors.
<...>

Miscellaneous

	lsm shows the list of
motors.

	lsct shows the list of
counters.

	lsmeas shows the list of
measurement groups

	lsctrl shows the list of
controllers

	sar_info object
displays detailed information about an element

Stopping macros

Some macros may take a long time to execute. To stop a macro in the middle of
its execution type Control+c.

Macros that move motors or acquire data from sensors will automatically stop all
motion and/or all acquisition.

Exiting spock

To exit spock type Control+d or exit() inside a spock console.

Getting help

spock not only knows all the macros the sardana server can run but it also
information about each macro parameters, result and documentation. Therefore it
can give you precise help on each macro. To get help about a certain macro just
type the macro name directly followed by a question mark(‘?’):

LAB-01-D01 [1]: ascan?

Syntax:
 ascan <motor> <start_pos> <final_pos> <nr_interv> <integ_time>

Do an absolute scan of the specified motor.
 ascan scans one motor, as specified by motor. The motor starts at the
 position given by start_pos and ends at the position given by final_pos.
 The step size is (start_pos-final_pos)/nr_interv. The number of data points collected
 will be nr_interv+1. Count time is given by time which if positive,
 specifies seconds and if negative, specifies monitor counts.

Parameters:
 motor : (Motor) Motor to move
 start_pos : (Float) Scan start position
 final_pos : (Float) Scan final position
 nr_interv : (Integer) Number of scan intervals
 integ_time : (Float) Integration time

Moving motors

A single motor may be moved using the
mv motor position macro.
Example:

LAB-01-D01 [1]: mv gap 50

will move the gap motor to 50. The prompt only comes back after the motion as
finished.

Alternatively, you can have the motor position displayed on the screen as it is
moving by using the umv macro
instead. To stop the motor(s) before they have finished moving, type
Control+c.

You can use the mvr motor
relative_position macro to move a motor relative to its current position:

LAB-01-D01 [1]: mvr gap 2

will move gap by two user units.

Counting

You can count using the ct value
macro. Without arguments, this macro counts for one second using the active
measurement group set by the environment variable ActiveMntGrp.

Door_lab-01_1 [1]: ct 1.6

Wed Jul 11 11:47:55 2012

 ct01 = 1.6
 ct02 = 3.2
 ct03 = 4.8
 ct04 = 6.4

To see the list of available measurement groups type
lsmeas. The active measuremnt group
is marked with an asterisk (*):

Door_lab-01_1 [1]: lsmeas

 Active Name Timer Experim. channels
 -------- ---------- ------- ---
 * mntgrp01 ct01 ct01, ct02, ct03, ct04
 mntgrp21 ct04 ct04, pcII0, pcII02
 mntgrp24 ct04 ct04, pcII0

to switch active measurement groups type
senv ActiveMntGrp mg_name.

You can also create, modify and select measurement groups using the
expconf command

Scanning

Sardana provides a catalog of different standard scan macros. Absolute-position
motor scans such as ascan,
a2scan and
a3scan move one, two or three motors
at a time. Relative-position motor scans are
dscan,
d2scan and
d3scan. The relative-position scans
all return the motors to their starting positions after the last point. Two
motors can be scanned over a grid of points using the
mesh scan.

Continuous versions exist of many of the standard scan macros (e.g.
ascanc,
d3scanc,
meshc,…). The continuous scans
differ from their standard counterparts (also known as step scans) in that
the data acquisition is done without stopping the motors. Continuous scans are
generally faster but less precise than step scans, and some details must be
considered (see Scans).

As it happens with ct, the scan
macros will also use the active measurement group to decide which experiment
channels will be involved in the operation.

Here is the output of performing an
ascan of the gap in a slit:

LAB-01-D01 [1]: ascan gap 0.9 1.1 20 1
ScanDir is not defined. This operation will not be stored persistently. Use "senv ScanDir <abs directory>" to enable it
Scan #4 started at Wed Jul 11 12:56:47 2012. It will take at least 0:00:21
 #Pt No gap ct01 ct02 ct03
 0 0.9 1 4604 8939
 1 0.91 1 5822 8820
 2 0.92 1 7254 9544
 3 0.93 1 9254 8789
 4 0.94 1 11265 8804
 5 0.95 1 13583 8909
 6 0.96 1 15938 8821
 7 0.97 1 18076 9110
 8 0.98 1 19638 8839
 9 0.99 1 20825 8950
 10 1 1 21135 8917
 11 1.01 1 20765 9013
 12 1.02 1 19687 9135
 13 1.03 1 18034 8836
 14 1.04 1 15876 8901
 15 1.05 1 13576 8933
 16 1.06 1 11328 9022
 17 1.07 1 9244 9205
 18 1.08 1 7348 8957
 19 1.09 1 5738 8801
 20 1.1 1 4575 8975
Scan #4 ended at Wed Jul 11 12:57:18 2012, taking 0:00:31.656980 (dead time was 33.7%)

Scan storage

As you can see, by default, the scan is not recorded into any file. To store
your scans in a file, you must set the environment variables ScanDir and
ScanFile:

LAB-01-D01 [1]: senv ScanDir /tmp
ScanDir = /tmp

LAB-01-D01 [2]: senv ScanFile scans.h5
ScanFile = scans.h5

Sardana will activate a proper recorder to store the scans persistently
(currently, .h5 will store in NeXus [http://www.nexusformat.org/] format. All other extensions are
interpreted as SPEC [http://www.certif.com/] format).

You can also store in multiples files by assigning the ScanFile with a list
of files:

LAB-01-D01 [2]: senv ScanFile "['scans.h5', 'scans.dat']"
ScanFile = ['scans.h5', 'scans.dat']

Viewing scan data

Sardana provides a scan data viewer for scans which were stored in a NeXus [http://www.nexusformat.org/]
file. Without arguments, showscan
will show you the result of the last scan in a GUI:

[image: ../_images/spock_snapshot02.png]
Scan data viewer in action

showscan scan_number will display
data for the given scan number.

The history of scans is available through the
scanhist macro:

LAB-01-D01 [1]: scanhist
 # Title Start time End time Stored
 --- ------------------------------- --------------------- --------------------- -------------
 1 dscan mot01 20.0 30.0 10 0.1 2012-07-03 10:35:30 2012-07-03 10:35:30 Not stored!
 3 dscan mot01 20.0 30.0 10 0.1 2012-07-03 10:36:38 2012-07-03 10:36:43 Not stored!
 4 ascan gap01 10.0 100.0 20 1.0 12:56:47 12:57:18 Not stored!
 5 ascan gap01 1.0 10.0 20 0.1 13:19:05 13:19:13 scans.h5

Using spock as a Python [http://www.python.org/] console

You can write any Python [http://www.python.org/] code inside a spock console since spock uses IPython [http://ipython.org/]
as a command line interpreter. For example, the following will work inside a
spock console:

LAB-01-D01 [1]: def f():
 ...: print("Hello, World!")
 ...:
 ...:

LAB-01-D01 [2]: f()
Hello, World!

Using spock as a Tango [http://www.tango-controls.org/] console

As metioned in the beggining of this chapter, the sardana spock automatically
activates the PyTango [http://packages.python.org/PyTango/] ‘s ipython console extension. Therefore all Tango [http://www.tango-controls.org/]
features are automatically available on the sardana spock console. For example,
creating a DeviceProxy will work inside the sardana spock
console:

LAB-01-D01 [1]: tgtest = PyTango.DeviceProxy("sys/tg_test/1")

LAB-01-D01 [2]: print(tgtest.state())
RUNNING

Footnotes

	1

	The PyTango [http://packages.python.org/PyTango/] ipython documentation can be found here

Sardana Taurus Extension widgets

Sardana provides several taurus [http://taurus-scada.org/devel/api/taurus.html#module-taurus]-based widgets for being used in GUIs

	MacroExecutor
	MacroExecutor as a stand-alone application

	Editing macro parameters
	Using standard editor

	Using custom editors

	Editing favourites list

	Sequencer
	Sequencer as a stand-alone application

	Editing sequence

	Editing macro parameters

	Experiment Configuration
	Measurement group configuration
	Experimental channel configuration

	Sardana Editor

MacroExecutor User’s Interface

Contents

	MacroExecutor User’s Interface

	MacroExecutor as a stand-alone application

	Editing macro parameters

	Using standard editor

	Using custom editors

	Editing favourites list

MacroExecutor provides an user-friendly graphical interface to macro execution.
It is divided into 3 main areas: actions bar, parameters editor and favourites list.
Their functionalities are supported by Spock command line and macro progress bar.
User has full control over macros thanks to action buttons: Start(Resume), Stop, Pause located in actions bar
Graphical parameters editor provides a clear way to set and modify macro execution settings (parameters).
Macros which are more frequently used can be permanently stored in favourites list.
Once macro was started Door’s state led and macro progress bar informs user about its status.
Current macro settings (parameters) are translated to spock syntax, and represented in non editable
spock command line.

[image: ../../_images/macroexecutor01.png]

MacroExecutor as a stand-alone application

You may also use MacroExecutor as a stand-alone application. In this case it appears embedded
in window and some extra functionalities are provided.
You can launch the stand-alone MacroExecutor with the following command:

macroexecutor [options] [<macro_executor_dev_name> <door_dev_name>]

Options:

--taurus-log-level=LEVEL
 taurus log level. Allowed values are (case
 insensitive): critical, error, warning/warn, info,
 debug, trace

--taurus-polling-period=MILLISEC
 taurus global polling period in milliseconds

--taurus-serialization-mode=SERIAL
 taurus serialization mode. Allowed values are (case
 insensitive): serial, concurrent (default)

--tango-host=TANGO_HOST
 Tango host name

The model list is optional and is a space-separated list of two device names: macro server and door.
If not provided at the application startup, models can be later on changed in configuration dialog.

Extra functionalities:

	Changing macro configuration

Todo

This chapter is not ready… Sorry for inconvenience.

	Configuring custom editors

Todo

This chapter is not ready… Sorry for inconvenience.

Editing macro parameters

Using standard editor

If no custom parameter editor is assigned to macro, default editor is used to configure execution settings (parameters).
Parameters are represented in form of tree (with hidden root node) - every parameter is a separate branch with two columns:
parameter name and parameter value.
Editor is populated with default values of parameters, if this in not a case ‘None’ values are used. (If macro execution settings
were restored e.g. from favourites list, editor is populated with stored values). Values become editable either by double-clicking on them,
or by pressing F2 button when value is selected. This action opens default parameter editor (combobox with predefined values, spin box etc.).

In case of macros with single parameters only, tree has only a one level branch, and then tree representation looks more like a list
(because of hidden root node)

[image: ../../_images/macroparameterseditor01.png]

In case of macros which contain repeat parameters, concept of tree is more visible.

[image: ../../_images/macroparameterseditor02.png]

	adding new parameter repetition

First select parameter node and if its maximum number of repetition is not exceeded, button with ‘+’ sign appears enabled.
After pressing this button child branch with new repetition appears in tree editor.

[image: ../../_images/macroparameterseditor03.png]

	modifying repetition order

First select repetition node (with #<number> text), and buttons with arrows becomes enable (if it is feasible to change order)

[image: ../../_images/macroparameterseditor04.png]

	removing parameter repetition

First select repetition node (with #<number> text), and if it’s minimum number of repetition is not reached, button with ‘-‘ sign appears enabled.
After pressing this button child branch disappears from tree editor. (see previous picture)

[image: ../../_images/macroparameterseditor05.png]

Using custom editors

Todo

This chapter is not ready… Sorry for inconvenince.

Editing favourites list

Once macro parameters are configured they can be easily stored in favourites list for later reuse.

	adding a favourite

Clicking in Add to favourites button (the one with yellow star), adds a new entry in favourite list,
with current macro and its current settings.

	restoring a favourite

To restore macro from favourites list just select it in the list and macro parameters editor will immediately populate with stored settings.

	modifying favouites list

First select favourite macro and buttons with arrows becomes enable (if it is feasible to change order)

	removing a favourite

First select favourite macro, button with ‘-‘ sign appears enabled. After pressing this button, previously selected macro disappears from the list.

Sequencer User’s Interface

Contents

	Sequencer User’s Interface

	Sequencer as a stand-alone application

	Editing sequence

	Editing macro parameters

Sequencer provides an user-friendly interface to compose and execute sequences of macros. Sequence of macros allows execution
of ordered set of macros with just one trigger. It also allows using a concept of hooks (macros attached and executed in defined places of other macros).
It is divided into 3 main areas: actions bar, sequence editor and parameters editor.
Sequence editor allows you modifying sequences in many ways: appending new macros, changing macros locations and removing macros.
Graphical parameters editor (standard/custom) provides a clear way to set/modify macro execution settings(parameters).
Once sequence of macros is in execution phase, Sequencer informs user about its state with Door’s state led and macros progress bars.
User has full control over sequence, with action buttons: Start, Stop, Pause, Resume.
If desirable, sequences can be permanently stored into a file and later on restored from there.
This functionality is provided thanks to action buttons: Save and Open a sequence.

[image: ../../_images/sequencer01.png]

Sequencer as a stand-alone application

You may also use Sequencer as a stand-alone application. In this case it appears embedded
in window and some extra functionalities are provided.
You can launch the stand-alone Sequencer with the following command:

sequencer [options] [<macro_executor_dev_name> <door_dev_name>]

Options:

--taurus-log-level=LEVEL
 taurus log level. Allowed values are (case
 insensitive): critical, error, warning/warn, info,
 debug, trace

--taurus-polling-period=MILLISEC
 taurus global polling period in milliseconds

--taurus-serialization-mode=SERIAL
 taurus serialization mode. Allowed values are (case
 insensitive): serial, concurrent (default)

--tango-host=TANGO_HOST
 Tango host name

The model list is optional and is a space-separated list of two device names: macro server and door.
If not provided at the application startup, device names can be later on selected from Macro Configuration Dialog.

Extra functionalities:

	MacroConfigurationDialog

Todo

This chapter in not ready… Sorry for inconvenience.

	CustomEditorsPathDialog

Todo

This chapter in not ready… Sorry for inconvenience.

Editing sequence

Sequence is represented as a flat list of ordered macros, in this view each macro is represented as a new line with 4 columns:
Macro (macro name), Parameters (comma separated parameter values), Progress (macro progress bar) and Pause
(pause point before macro execution - not implemented yet). Macros which contain hooks, expand with branched macros.
Macro parameters values can be edited from parameters editor, to do so select one macro in sequence editor by clicking on it.
Selected macro becomes highlighted, and parameters editor populate with its current parameters values.

[image: ../../_images/sequenceeditor01.png]

	adding a new macro

First select macro from macro combo box, and when you are sure to add it to the sequence, press ‘+’ button.
To add macro as a hook of other macro, before adding it, please select its parent macro in the sequence, and then press ‘+’ button.
If no macro was selected as a parent, macro will be automatically appended at the end of the list.

[image: ../../_images/sequenceeditor02.png]

	reorganizing sequence

Macros which are already part of a sequence, can be freely moved around, either in execution order or in hook place (if new macro accepts hooks).
To move macro first select it in the sequence by single clicking on it (it will become highlighted). Then a set of buttons with arrows
become enabled. Clicking on them will cause selected macro changin its position in the sequence (either vertically - execution order or horizontal
parent macro - hook macro relationship)

[image: ../../_images/sequenceeditor03.png]

	remove macro

Macros which are already part of a sequence, can be freely removed from it. To do so first select macro in a sequence by
single clicking on it (it will become highlighted). Then button with ‘-‘ becomes enabled. Clicking on it removes selected macro.

[image: ../../_images/sequenceeditor04.png]

	configuring hook execution place

If macro is embedded as a hook in parent macro, please follow these instructions to configure its hook execution place.
First select macro in a sequence by single clicking on it (it will become highlighted).
Then using right mouse button open context menu, go to ‘Hook places’ sub-menu and select hook places which interest you
(you can select more than one).

[image: ../../_images/sequenceeditor05_raw.png]

Editing macro parameters

To obtain information about editing macro parameters, please refer to the following link Editing macro parameters

Experiment Configuration user interface

Contents

	Experiment Configuration user interface

	Measurement group configuration

	Experimental channel configuration

Experiment Configuration widget a.k.a. expconf is a complete interface to
define all the experiment configuration. It consists of three main groups of
parameters organized in tabs:

	Measurement group

	Snapshot group

	Storage

The parameters may be modified in an arbitrary order, at any of the tabs, and
will be maintained as pending to apply until either applied or reset by the
user.

Measurement group configuration

In the measurement group tab the user can:

	create or remove a measurement group

	select the active measurement group

	add or remove channels of the measurement group

	reorganize the order of the channels in the measurement group

	change configuration of a particular channel (or its controller) in the
selected measurement group

[image: ../../_images/expconf01.png]
Measurement group tab of the expconf widget with the mntgrp configuration.

Experimental channel configuration

In the measurement group table the user can modify the following parameters of
a given channel or its controller:

	enabled - include or exclude (True or False) the channel in the acquisition
process.

	output - whether the channel acquisition results should be printed, for example,
by the output recorder during the scan. Can be either True or False.

	shape - shape of the data

	data type - type of the data

	plot type - select the online scan plot type for the channel. Can have one
of the following values:
- No - no plot
- Spectrum - suitable for scalar values
- Image - suitable for spectrum values

	plot axes - select the abscissa (x axis) of the plot. Can be either
- <idx> - scan index (point number)
- <mov> - master moveable (in case of a2scan - the first motor) used in the scan
- any of the scalar experimental channels used in the measurement group

	timer - channel to be used as timer. Timer controls the acqusition in terms of the
integration time. Applies on the controller level.

	monitor - channel to be used as monitor. Monitor controls the acquisition in
terms of the monitor counts. Applies on the controller level.

	synchronizer - the element that will synchronize the channel’s
acquisition. Can be either a Trigger/Gate
element or the software synchronizer. Configurable only for the timerable
controllers. Applies on the controller level.

	synchronization - the synchronization type. Can be either Trigger or Gate.
Configurable only for the timerable controllers. Applies on the controller level.

	conditioning - expression to evaluate on the data before displaying it

	normalization - normalization mode for the data

	nexus path - location of the data of this channel withing the NeXus tree

Sardana Editor’s interface

Contents

	Sardana Editor’s interface

Todo

Sardana Editor documentation to be written

Scans

Perhaps the most used type of macro is the scan macros. In general terms, we
call scan to a macro that moves one or more motors
and acquires data along the path of the motor(s).

Note

Sardana provides a Scan Framework
for developing scan macros so that the scan macros behave in a consistent way.
Unless otherwise specified, the following discussion applies to scan macros
based on such framework.

The various scan macros mostly differ in how many motors are moved and the
definition of their paths.

Typically, the selection of which data is going to be acquired depends on the
active measurement group and is not fixed by the macro itself (although
there is no limitation in this sense).

Depending on whether the motors are stopped before acquiring the data or not, we
can classify the scan macros in step scans or continuous scans,
respectively.

[image: ../_images/trend_ascanVSascanc.png]
Trend plot showing a step scan (ascan m_cp1_1 0 1000 8 .5)
followed by a continuous scan (ascanc m_cp1_1 0 1000 .5).
The line corresponds to the motor position and the blue shaded areas
correspond to the intervals in which the data acquisition took place.

Step scans

In a step scan, the motors are moved to given points, and once they reach each
point they stop. Then, one or more channels are acquired for a certain amount
of time, and only when the data acquisition is finished, the motors proceed to
the next point.

In this way, the position associated to a data readout is well known and does
not change during the acquisition time.

Some examples of step scan macros are:
ascan,
a2scan, …
dscan,
d2scan, …
mesh.

Continuous scans

In a continuous scan, the motors are not stopped for acquisition, which
therefore takes place while the motors are moving. The most common reason for
using this type of scan is optimizing the acquisition time by not having to
wait for motors to accelerate and decelerate between acquisitions.

The continuous scans introduce some constraints and issues that should be
considered.

	If a continuous scan involves moving more than one motor simultaneously
(as it is done, e.g. in a2scan),
then the movements of the motors should be synchronized so that they all
start their path at the same time and finish it at the same time.

	If motors do not maintain a constant velocity along the path of their
movement, the trajectories followed when using more than one motor may not
be linear.

	While in step scans it is possible to scan two pseudo-motors that access
the same physical motors (e.g. the gap and offset of a slit, being both
pseudo-motors accessing the same physical motors attached to each blade of
the slit), in a continuous scan the motions cannot be decoupled in a
synchronized way.

	Backslash correction is incompatible with continuous scans, so you should
keep in mind that continuous scans should only be done in the backslash-free
direction of the motor (typically, by convention the positive one for a
physical motor).

In order to address the first two issues, the
scan framework attempts the following:

	If the motors support changing their velocity, Sardana will adjust the
velocities of the motors so that they all start and finish the required path
simultaneously. For motors that specify a range of allowed velocities, this
range will be used (for motors that do not specify a maximum allowed
velocity, the current “top velocity” will be assumed to be the maximum)

	For motors that can maintain a constant velocity after an acceleration phase
(this is the case for most physical motors), Sardana will transparently
extend the user-given path both at the beginning and the end in order to
allow for the motors to move at constant velocity along all the user defined
path (i.e., the motors are allowed time and room to accelerate before
reaching the start of the path and to decelerate after the end of the nominal
path selected by the user)

These two actions can be seen in the following plot of the positions of the two
motors involved in a a2scanc.

[image: ../_images/trend_a2scanc.png]
Trend plot showing a two-motor continuous scan
(a2scanc m_cp1_1 100 200 m_cp1_2 0 500 .1).
The lines correspond to the motor positions and the blue shaded areas correspond to the intervals in
which the data acquisition took place.

Both motors are capable of same velocity and acceleration, but since the
required scan path for m_cp1_1 is shorter than that for m_cp1_2, its top
velocity has been adjusted (gentler slope for m_cp1_1) so that both motors go
through the user-requested start and stop positions simultaneously.

The same figure also shows how the paths for both motors have been automatically
(and transparently, for the user) extended to guarantee that the user defined
path is followed at constant velocity and that the data acquisition takes place
also while the motors are running at constant velocity.

The synchronization of movement and acquisition can be done via hardware or
via software. Currently Sardana provides two different interfaces for
continuous scans. They can be easily differentiated by the scan name suffix:

	c - allows only software synchronization

	ct - allows both software and hardware synchronization (introduced with
SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

In the c type of scans, in order to optimize the acquisition time, Sardana
attempts to perform as many acquisitions as allowed during the scan time. Due
to the uncertainty in the delay times involved, it is not possible to know
beforehand how many acquisitions will be completed. In other words, the number
of acquired points along a continuous scan is not fixed (but it is guaranteed
to be as large as possible). Some examples of continuous scan macros are:
ascanc,
a2scanc, …
dscanc,
d2scanc, …
meshc.

In the ct type of scans, Sardana perform the exact number of acquisitions
selected by the user by the means of hardware or software synchronization
configurable on the
measurement group level.
The software synchronized channels may not follow the synchronization pace and
some acquisitions may need to be skipped. In order to mitigate this risk an
extra latency time can be spend in between the scan points. Another possibility
is to enable data interpolation in order to fill the gaps in the scan records.
Some examples of continuous scan macros are:
ascanct,
a2scanct, …
dscanct,
d2scanct, …
At the time of writing the ct types of continuous scans
still do not support acquiring neither of: 1D,
2D, Pseudo Counter
nor external attributes e.g. Tango [http://www.tango-controls.org] however their support is planned in the
near future.

Note

The creation of two different types of continuous scans is just the result
of the iterative development of the Scan Framework.
Ideally they will merge into one based on the ct approach. This process
may require backwards incompatible changes (up to and including removal of
the affected scan macros) if deemed necessary by the core developers.

Configuration

Scans are highly configurable using the environment variables
(on how to use environment variables see environment related macros in
Standard macro catalog).

Following variables are supported:

	ApplyExtrapolation

	Enable/disable the extrapolation method to fill the missing parts of the
very first scan records in case the software synchronized acquisition could
not follow the pace. Can be used only with the continuous acquisition
macros e.g. ct type of continuous scans or timescan. Its value is of
boolean type.

Note

The ApplyExtrapolation environment variable has been included in
Sardana on a provisional basis. Backwards incompatible changes
(up to and including removal of this variable) may occur if deemed
necessary by the core developers.

	ApplyInterpolation

	Enable/disable the zero order hold [https://en.wikipedia.org/wiki/Zero-order_hold] a.k.a. “constant interpolation”
method to fill the missing parts of the scan records in case the software
synchronized acquisition could not follow the pace. Can be used only
with the continuous acquisition macros ct type of continuous scans or
timescan. Its value is of boolean type.

Note

The ApplyInterpolation environment variable has been included in
Sardana on a provisional basis with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md]. Backwards incompatible
changes (up to and including removal of this variable) may occur if
deemed necessary by the core developers.

	DirectoryMap

	In case that the server and the client do not run on the same host, the scan
data may be easily shared between them using the NFS. Since some of the
tools e.g. showscan rely on the scan data file the DirectoryMap may help in
overcoming the shared directory naming issues between the hosts.

Its value is a dictionary with keys pointing to the server side directory
and values to the client side directory/ies (string or list of strings).

	ScanDir

	Its value is of string type and indicates an absolute path to the directory
where scan data will be stored.

	ScanFile

	Its value may be either of type string or of list of strings. In the second
case data will be duplicated in multiple files (different file formats may
be used). Recorder class is implicitly selected based on the file extension.
For example “myexperiment.spec” will by default store data in SPEC
compatible format (see more about the extension to recorder map in
Writing recorders).

	ScanRecorder

	Its value may be either of type string or of list of strings. If
ScanRecorder variable is defined, it explicitly indicates which recorder
class should be used and for which file defined by ScanFile (based on the
order).

Example 1:

ScanFile = myexperiment.spec
ScanRecorder = FIO_FileRecorder

FIO_FileRecorder will write myexperiment.spec file.

Example 2:

ScanFile = myexperiment.spec, myexperiment.h5
ScanRecorder = FIO_FileRecorder

FIO_FileRecorder will write myexperiment.spec file and
NXscan_FileRecorder will write the myexpriment.h5. The selection of the
second recorder is based on the extension.

	SharedMemory

	Its value is of string type and it indicates which shared memory recorder should
be used during the scan e.g. “sps” will use SPSRecorder (sps Python module
must be installed on the PC where the MacroServer runs).

See also

For more information about the implementation details of the scan
macros in Sardana, see
scan framework

Standard macro catalog

motion related macros

	
	wa

	wm

	pwa

	
	pwm

	set_lim

	set_lm

	
	set_pos

	mv

	umv

	
	mvr

	umvr

	tw

	
	lsm

	lspm

counting macros

	
	ct

	uct

	
	settimer

	lsexp

	
	lsmeas

	lsct

	
	ls0d

	ls1d

	
	ls2d

	lspc

diffractometer related macros

	
	addreflection

	affine

	br

	ca

	caa

	ci

	
	computeub

	freeze

	getmode

	hklscan

	hscan

	kscan

	
	latticecal

	loadcrystal

	lscan

	newcrystal

	or0

	or1

	
	orswap

	pa

	savecrystal

	setaz

	setlat

	setmode

	
	setor0

	setor1

	setorn

	th2th

	ubr

	wh

environment related macros

	
	lsenv

	
	senv

	
	usenv

	
	dumpenv

	

list related macros

	
	lsenv

	lsa

	lsm

	lspm

	
	lsexp

	lsior

	lsmeas

	lsct

	
	ls0d

	ls1d

	ls2d

	lspc

	
	lsctrl

	lsi

	lsctrllib

	
	lsa

	lsmac

	lsmaclib

measurement configuration macros

	
	defmeas

	
	udefmeas

	

	

	

advanced element manipulation macros

	
	defelem

	udefelem

	
	renameelem

	
	defctrl

	
	udefctrl

	
	prdef

reload code macros

	
	relmac

	relmaclib

	
	addmaclib

	rellib

	
	relctrlcls

	
	relctrllib

	
	addctrllib

scan macros

	
	ascan

	a2scan

	a3scan

	a4scan

	amultiscan

	dscan

	
	d2scan

	d3scan

	d4scan

	dmultiscan

	mesh

	fscan

	
	scanhist

	ascanc

	a2scanc

	a3scanc

	a4scanc

	dscanc

	
	d2scanc

	d3scanc

	d4scanc

	meshc

	ascanct

	a2scanct

	
	a3scanct

	a4scanct

	dscanct

	d2scanct

	d3scanct

	d4scanct

Screenshots

Here you will find a host of example figures.

Sardana oriented graphical user interfaces

[image: TaurusGUI at work]
TaurusGUI at work.

[image: TaurusGUI with synoptic and macro widget]
TaurusGUI with synoptic and macro widget

[image: Spock console]
Spock console

[image: TaurusGUI with synoptic and macro panel]
TaurusGUI with synoptic and macro panel

Graphical user interface screen shots

[image: ALBA_'s Storage ring GUI]
ALBA [http://www.cells.es/]’s Storage ring GUI

[image: ALBA_'s LINAC to booster beam charge monitor GUI]
ALBA [http://www.cells.es/]’s LINAC to booster beam charge monitor GUI

[image: ALBA_'s beam position monitor GUI]
ALBA [http://www.cells.es/]’s beam position monitor GUI

[image: ALBA_'s Radio frequency plant GUI]
ALBA [http://www.cells.es/]’s Radio frequency plant GUI

[image: ALBA_'s tune excitation panel]
ALBA [http://www.cells.es/]’s tune excitation panel

[image: ALBA_'s fluorescent screen main panel]
ALBA [http://www.cells.es/]’s fluorescent screen main panel

[image: ALBA_'s front end GUI]
ALBA [http://www.cells.es/]’s front end GUI

[image: ALBA_'s digital low level radio frequency GUI]
ALBA [http://www.cells.es/]’s digital low level radio frequency GUI

[image: ALBA_'s vaccum GUI]
ALBA [http://www.cells.es/]’s vaccum GUI

[image: Sardana configuration GUI]
Sardana configuration GUI

Todo

The FAQ is work-in-progress. Many answers need polishing and mostly
links need to be added

FAQ

What is the Sardana SCADA [http://en.wikipedia.org/wiki/SCADA] and how do I get an overview over the different components?

An overview over the different Sardana components is shown in the following figure:

[image: ../_images/sardana_sketch.png]
The basic Sardana SCADA [http://en.wikipedia.org/wiki/SCADA] philosophy can be found here.

How do I install Sardana?

The Sardana SCADA [http://en.wikipedia.org/wiki/SCADA] system consists of different components which have to be
installed:

	Tango [http://www.tango-controls.org/]: The control system middleware and tools

	PyTango [http://packages.python.org/PyTango/]: The Python [http://www.python.org/] language binding for Tango [http://www.tango-controls.org/]

	Taurus [http://packages.python.org/taurus/]: The GUI toolkit which is part of Sardana SCADA [http://en.wikipedia.org/wiki/SCADA]

	The Sardana device pool, macro server and tools

The complete sardana installation instructions can be found
here.

How to work with Taurus [http://packages.python.org/taurus/] GUI?

A user documentation for the Taurus [http://packages.python.org/taurus/] GUI application can be found
here [http://packages.python.org/taurus/].

How to produce your own Taurus [http://packages.python.org/taurus/] GUI panel?

The basic philosophy of Taurus [http://packages.python.org/taurus/] GUI is to provide automatic
GUI s which are automatically replaced by more and more specific
GUI s if these are found.

Refer to the user documentation on TaurusGUI [http://www.tango-controls.org/static/taurus/latest/doc/html/users/ui/taurusgui.html] for more
details on how to work with panels

How to call procedures?

The central idea of the Sardana SCADA [http://en.wikipedia.org/wiki/SCADA] system is to execute procedures centrally.
The execution can be started from either:

	spock offers a command line interface with commands very similar to SPEC [http://www.certif.com/].
It is documented here.

	Procedures can also be executed with from a GUI. Taurus provides
generic widgets for macro execution [http://www.tango-controls.org/static/taurus/latest/doc/html/users/ui/macros/].

	Procedures can also be executed in specific GUI s and specific Taurus [http://packages.python.org/taurus/]
widgets. The API to execute macros from python code is documented
here <LINK>.

How to write procedures?

User written procedures are central to the Sardana SCADA [http://en.wikipedia.org/wiki/SCADA] system.
Documentation how to write macros can be found here.
Macro writers might also find the following documentation interesting:

	Documentation on how to debug macros can be found here <LINK>

	In addition of the strength of the python language macro writers can
interface with common elements (motors, counters) , call other macros
and use many utilities provided. The macro API can be found
here.

	Documentation how to document your macros can be found
here

How to write scan procedures?

A very common type of procedure is the scan where some quantity is
varied while recording some other quantities. See the documentation on the
Sardana Scan API

How to adapt SARDANA to your own hardware?

Sardana is meant to be interfaced to all types of different hardware with all
types of control systems. For every new hardware item the specific behavior
has to be programmed by writing a controller code. The documentation how to
write Sardana controllers and pseudo controllers can be found
here.
This documentation also includes the API which can be used to interface
to the specific hardware item.

How to add your own file format?

Documentation how to add your own file format can be found here <LINK>.

How to use the standard macros?

The list of all standard macros and their usage can be found here <LINK>.

How to add conditions in macros?

Executing macros and moving elements can be subject to external conditions
(for example an interlock). New types of software interlocks can be easily
added to the system and are documented here <LINK>.

How to write your own Taurus application?

You have basically two possibilities to write your own Taurus [http://packages.python.org/taurus/] application
Start from get General TaurusGUI and create a configuration file. This approach
is documented here <LINK>.
Start to write your own Qt application in python starting from the Taurus [http://packages.python.org/taurus/] main
window. This approach is documented here <LINK>.

Which are the standard Taurus graphical GUI components?

A list of all standard Taurus GUI components together with screen shots
and example code can be found here <LINK>

How to write your own Taurus widget?

A tutorial of how to write your own Taurus widget can be found
here.

How to work with the graphical GUI editor?

Taurus [http://packages.python.org/taurus/] uses the QtDesigner/QtCreator as a graphical editor. Documentation
about QtDesigner/QtCreator [http://qt.nokia.com/products/developer-tools/].
The Taurus [http://packages.python.org/taurus/] specific parts here [http://taurus-scada.org/devel/designer_tutorial.html#taurusqtdesigner-tutorial].

What are the minimum software requirements for sardana?

Sardana is developed under GNU/Linux, but should run also on Windows and OS-X.
The dependencies for installing Sardana can be found here <LINK>.

How to configure the system?

Adding and configuring hardware items on an installation is described
here <LINK>.

How to write your own Taurus schema?

Taurus is not dependent on Tango. Other control systems or just python modules
can be interfaced to it by writing a schema. This approach is documented
here <LINK> and a tutorial can be found here <LINK>

What are the interfaces to the macro server and the pool?

The low level interfaces to the Sardana Device Pool and the Macro server can
be found here <LINK>.

What are the data file formats used in the system and how can I read them?

It is easily possible to add your own file format but the standard file formats are documented here:

	The SPEC [http://www.certif.com/] file format is documented here <LINK> and here is a list
of tools to read it <LINK>

	The EDF file format is documented here <LINK> and here is a list
of tools to read it <LINK>

	The NEXUS file format is documented here <LINK> and here is a list
of tools to read it <LINK>

What is the file format of the configuration files?

The configuration files for the Taurus [http://packages.python.org/taurus/] GUI are defined here <LINK>.

Developer’s Guide

	Overview
	Global overview

	Macro Server

	Pool

	Controller

	Motor

	Pseudo motor

	IO register

	Trigger/gate

	Counter/timer

	0D experiment channel

	1D experiment channel

	2D experiment channel

	Pseudo counter

	Measurement Group

	Writing macros
	General macro development

	Scan macro development

	Writing controllers
	What is a controller

	How to write a motor controller

	How to write a counter/timer controller

	How to write a 0D controller

	How to write a 1D controller

	How to write a 2D controller

	How to write a trigger/gate controller

	How to write an I/O register controller

	How to write a pseudo motor controller

	How to write a pseudo counter controller

	Writing recorders
	Overview

	What is a recorder?

	Type of recorders

	Writing a custom recorder

	Configuration

	Sardana Testing
	General test documentation

	Run Sardana tests from command line

	Test-driven development example

	Sardana Unit Test examples

	API
	Macro API

	Controller API

	Motor API

	I/O register

	Counter/timer API

	0D experiment channel API

	1D experiment channel API

	2D experiment channel API

	Trigger/gate API

	Pseudo motor API

	Pseudo counter API

	Measurement group API

	Pool tango API

	Macro server tango API

	Library

	Test API

	Migration guide
	How to migrate your macro code

	How to migrate your controller code

	Examples
	Macro examples

	Controller examples

	Development guidelines
	Overview

	How to contribute to sardana

	Cloning and forking sardana from Git

	The old code repositories

	Documentation

	Coding conventions

Overview

	Global overview
	Architecture

	Macro Server

	Pool
	Hardware access

	Controller

	Motor

	Pseudo motor
	Advanced topics

	IO register

	Trigger/gate

	Counter/timer

	0D experiment channel

	1D experiment channel

	2D experiment channel

	Pseudo counter

	Measurement Group
	Configuration

Global overview

This chapter gives an overview of the sardana architecture and describes each of
the different components in some detail.
If you find this document to be to technical please consider reading the
Overview guide first.

The following chapters assume a that you have a minimum knowledge of the Tango [http://www.tango-controls.org/]
system and basic computer science.

Architecture

Sardana consists of a software library which contains sardana kernel engine, a
server and a client library which allow sardana to run as a
client-server based distributed control system.
The communication protocols between servers and clients are
plug-ins in sardana. At this time, the only
implemented protocol is Tango [http://www.tango-controls.org/]. In earlier versions, sardana was tightly
connected to Tango [http://www.tango-controls.org/]. This documentation, is therefore centered in the
Tango [http://www.tango-controls.org/] server implementation. When other comunication protocols become
available, the documentation will be revised.

Client applications (both GUI and CLI) can connect to the
sardana server through the high level sardana client API or through the
low level pure Tango [http://www.tango-controls.org/] channels.
Client applications can be build with the purpose of operating an existing
sardana server or of configuring it.

Sardana server (SDS)

The sardana server consists of a sardana tango device server (SDS)
running a sardana kernel engine.
This server runs as an OS daemon. Once configured, this server
acts as a container of device objects which can be accessed by the outside
world as tango device objects.
Typically, a sardana server will consist of:

	a low level Pool object which manages all the server objects related
to motion control and data acquisition (controllers, motors, counters,
experiment channels, etc).

	a Macro Server object which manages the execution of macros
(procedures) and client connection points (called doors).

	a set of low level objects (controllers, motors, counters, experiment
channels, etc) controlled by the Pool object

	a set of Door objects managed by the macro server. A Door is the
preferred access point from a client application to the to the sardana
server

[image: ../../_images/sardana_server.png]
A diagram representing a sardana server with its objects

A sardana server may contain only a Pool object or a Macro Server object or both.
It may NOT contain more than one Pool object or more than one Macro Server object.

If necessary, your sardana system may be splitted into two (or more) sardana servers.
A common configuration is to have a sardana server with a Pool (in this case we call
the server a Device Pool server) and a second server with a Macro Server (this server
is called MacroServer server).

The following figures show some of the possible alternative configurations

[image: ../../_images/pool_server.png]
1 - Sardana configured to be a single Pool DS (no MacroServer present)

[image: ../../_images/macroserver_server.png]
2 - Sardana configured to be a single MacroServer DS (no Pool present)

[image: ../../_images/macroserver_pool_server.png]
3 - Sardana configured with a MacroServer DS connecting to an underlying
Pool DS

[image: ../../_images/sardana_pool_server.png]
4 - Sardana configured with a Sardna DS connecting to another underlying
Pool DS

The following chapters describe each of the Sardana objects in more detail.

Macro Server overview

The Macro Server object is the sardana server object which manages all high
level sardana objects related to macro execution, namely doors, macro libraries
and macros themselves.

The main purpose of the Macro Server is to run macros. Macros are just pieces
of Python [http://www.python.org/] code (functions or classes) which reside in a macro library (Python [http://www.python.org/]
file). Macros can be written by anyone with knowledge of Python [http://www.python.org/].

The Macro Server is exposed on the sardana server as a Tango [http://www.tango-controls.org/] device.
Through configuration, the Macro Server can be told to connect to a
Pool device. This is the most common configuration.
You can, however, tell the Macro Server to connect to more than one Pool device
or to no Pool devices at all.

When connected to a Pool device(s), the Macro Server uses the Pool device
introspection API to discover which elements are available. The existing
macros will be able to access these elements (through parameters passed to the
macro or using the macro API) and act on them.

In order to be able to run macros, you must first connect to the Macro Server
entry point object called Door. A single Macro Server can have many active
Doors at the same time but a Door can only run one macro at a time.
Each Door is exposed on the sardana server as a Tango [http://www.tango-controls.org/] device.

You are not in any way restricted to the standard macros provided by the sardana
system. You can write as many macros as you need. Writing your own macros is
easy. The macro equivalent of Python [http://www.python.org/]’s Hello, World! example:

from sardana.macroserver.macro import macro

@macro()
def hello_world(self):
 self.output("Hello, World!")

Here is a simple example of a macro to move any moveable element to a certain
value:

from sardana.macroserver.macro import macro, Type

@macro([["moveable", Type.Moveable, None, "moveable to move"],
 ["position", Type.Float, None, "absolute position"]])
def my_move(self, moveable, position):
 """This macro moves a moveable to the specified position"""

 moveable.move(position)
 self.output("%s is now at %s", moveable, moveable.getPosition())

Information on how to write your own sardana macros can be found
here.

The complete macro API can be found here.

Pool overview

The Pool object is the sardana server object which manages all other hardware level
sardana objects related with motion control and data acquisition. This object is
exposed to the world as a Tango [http://www.tango-controls.org/] device. It’s API consists of a series
of methods (Tango [http://www.tango-controls.org/] commands) and members (Tango [http://www.tango-controls.org/] attributes) which allow
external applications to create/remove/rename and monitor the different hardware
level sardana objects.

The Pool could be seen as a kind of intelligent device container to
control the experiment hardware. It has two basic features which are:

	Hardware access using dynamically created/deleted devices
according to the experiment needs

	Management of some very common and well defined actions regularly done
on a laboratory/factory (motion control, data acquisition, etc.)

Hardware access

Core hardware access

Most of the times, it is possible to define a list of very common objects found
in most of the experiments. Objects commonly used to drive an experiment
usually fit in one of the following categories:

	
	Moveables

	
	Motor

	Pseudo motor

	Group of moveables

	IORegister (a.k.a. discrete motor)

	
	Experimental channels

	
	Counter/Timer

	0D (Multimeter like)

	1D (MCA like)

	2D (CCD like)

	Pseudo Counter

	Communication channels

Each different controlled hardware object will also be exposed as an independent
Tango [http://www.tango-controls.org/] class. The sardana device server will embed all these Tango [http://www.tango-controls.org/] classes
together. The pool Tango [http://www.tango-controls.org/] device is the “container interface” and allows the
user to create/delete classical Tango [http://www.tango-controls.org/] devices which are instances of these
embedded classes.

Controller overview

Each different hardware object is directly controlled by a software object
called controller. This object is responsible for mapping the communication
between a set of hardware objects (example motors) and the underlying hardware
(example: a motor controller crate). The controller object is also exposed as
a Tango [http://www.tango-controls.org/] device.

Usually a controller is capable of handling several hardware objects.
For example, a motor controller crate is capable of controlling several motors
(generally called axis 1).

The controller objects can be created/deleted/renamed dynamically in a running
pool.

A specific type of controller needs to be created to handle each specific type
of hardware. Therefore, to each type of hardware controller there must be
associated a specific controller software component. You can write a
specific controller software component (plug-in) that is able to
communicate with the specific hardware. You can this way extend the initial
pool capabilities to talk to all kinds of different hardware.

[image: ../../_images/sardana_server_np200.png]
A diagram representing a sardana server with a controller class
NSC200Controller, an instance of that controller np200ctrl_1 “connected”
to a real hardware and a single motor npm_1.

A sardana controller is responsible for it’s sardana element(s). Example: an
Icepap hardware motor controller can control up to 128 individual motor axis.
In the same way, the coresponding software motor controller IcepapController
will own the individual motor axises.

[image: ../../_images/sardana_server_icepap.png]
A diagram representing a sardana server with a controller class
IcepapController, an instance of that controller icectrl_1 “connected”
to a real hardware and motors icem_[1..5].

These are the different types of controllers recognized by sardana:

	MotorController

	You should use/write a MotorController sardana plug-in if
the the device you want to control has a moveable interface.
The MotorController actually fullfils a changeable interface.
This means that, for example, a power supply that has a current which you
want to ramp could also be implemented as a MotorController.

Example: the Newport NSC200 motor controller

	CounterTimerController

	This controller type is designed to control a device capable of counting
scalar values (and, optionaly have a timer).

Example: The National Instruments 6602 8-Channel Counter/Timer

	ZeroDController

	This controller type is designed to control a device capable of supplying
scalar values. The API provides a way to obtain a value over a
certain acquisition time through different algorithms (average, maximum,
integration).

Example: an electrometer

	OneDController

	This controller type is designed to control a device capable of supplying
1D values. It has a very similar API to CounterTimerController

Example: an MCA

	TwoDController

	This controller type is designed to control a device capable of supplying
2D values. It has a very similar API to CounterTimerController

Example: a CCD

	PseudoMotorController

	A controller designed to export virtual motors that represent a new view
over the actual physical motors.

Example: A slit pseudo motor controller provides gap and offset virtual
motors over the physical blades

	PseudoCounterController

	A controller designed to export virtual counters that represent a new view
over the actual physical counters/0Ds.

	IORegisterController

	A controller designed to control hardware registers.

Controller plug-ins can be written in Python [http://www.python.org/] (and in the future in C++).
Each controller code is basically a Python [http://www.python.org/] class that needs to obey a
specific API.

Here is an a extract of the pertinent part of a Python [http://www.python.org/] motor controller code
that is able to talk to a Newport motor controller:

from sardana.pool.controller import MotorController, \
 Type, Description, DefaultValue

class NSC200Controller(MotorController):
 """This class is the Tango Sardana motor controller for the Newport NewStep
 handheld motion controller NSC200.
 This controller communicates through a Device Pool serial communication
 channel."""

 ctrl_properties = \
 { 'SerialCh' : { Type : str,
 Description : 'Communication channel name for the serial line' },
 'SwitchBox': { Type : bool,
 Description : 'Using SwitchBox',
 DefaultValue : False},
 'ControllerNumber' : { Type : int,
 Description : 'Controller number',
 DefaultValue : 1 } }

 def __init__(self, inst, props, *args, **kwargs):
 MotorController.__init__(self, inst, props, *args, **kwargs)

 self.serial = None
 self.serial_state_event_id = -1

 if self.SwitchBox:
 self.MaxDevice = 8

 def AddDevice(self, axis):
 if axis > 1 and not self.SwitchBox:
 raise Exception("Without using a Switchbox only axis 1 is allowed")

 if self.SwitchBox:
 self._setCommand("MX", axis)

 def DeleteDevice(self, axis):
 pass

 _STATE_MAP = { NSC200.MOTOR_OFF : State.Off, NSC200.MOTOR_ON : State.On,
 NSC200.MOTOR_MOVING : State.Moving }

 def StateOne(self, axis):
 if self.SwitchBox:
 self._setCommand("MX", axis)

 status = int(self._queryCommand("TS"))
 status = self._STATE_MAP.get(status, State.Unknown)
 register = int(self._queryCommand("PH"))
 lower = int(NSC200.getLimitNegative(register))
 upper = int(NSC200.getLimitPositive(register))

 switchstate = 0
 if lower == 1 and upper == 1: switchstate = 6
 elif lower == 1: switchstate = 4
 elif upper == 1: switchstate = 2
 return status, "OK", switchstate

 def ReadOne(self, axis):
 try:
 if self.SwitchBox:
 self._setCommand("MX", axis)
 return float(self._queryCommand("TP"))
 except:
 raise Exception("Error reading position, axis not available")

 def PreStartOne(self, axis, pos):
 return True

 def StartOne(self, axis, pos):
 if self.SwitchBox:
 self._setCommand("MX", axis)
 status = int(self._queryCommand("TS"))
 if status == NSC200.MOTOR_OFF:
 self._setCommand("MO","")
 self._setCommand("PA", pos)
 self._log.debug("[DONE] sending position")

 def StartAll(self):
 pass

 def AbortOne(self, axis):
 if self.SwitchBox:
 self._setCommand("MX", axis)
 self._setCommand("ST", "")

See also

	Writing controllers

	How to write controller plug-ins in sardana

	Controller API reference

	the controller API

	Controller

	the controller tango device API

Footnotes

	1

	The term axis will be used from here on to refer to the ID of
a specific hardware object (like a motor) with respect to its controller.

Motor overview

The motor is one of the most used elements in sardana. A motor represents
anything that can be changed (and can potentially take some time to do it),
so, not only physical motors (like a stepper motors) fit into this category but
also, for example, a power supply for which the electrical current can be
modified.
As it happens with the motor controller hardware and its physical motor(s),
a sardana motor is always associated with its sardana motor controller.

[image: ../../_images/sardana_server_icepap_np200.png]
A diagram representing a sardana server with a several motor controllers
and their respective motors.

The motor object is also exposed as a Tango [http://www.tango-controls.org/] device.

See also

	Motor API reference

	the motor API

	Motor

	the motor tango device API

Pseudo motor overview

The pseudo motor interface acts like an abstraction layer for a motor
or a set of motors allowing the user to control the experiment by
means of an interface which is more meaningful to him(her).

One of the most basic examples is the control of a slit. The slit has two blades
with one motor each. Usually the user doesn’t want to control the experiment by
directly handling these two motor positions since they have little meaning from
the experiments perspective. Instead, it would be more useful for the user to
control the experiment by means of changing the gap and offset values. In the
Slit controller, pseudo motors gap and
offset will provide the necessary interface for controlling the experiments
gap and offset values respectively.

[image: ../../_images/slits.gif]
An animation 1 representing a system of slits composed from horizontal
blades (left and right) an vertical blades (top and bottom).

In order to translate the motor positions into the pseudo motor positions and
vice versa, calculations have to be performed. The device pool provides
PseudoMotorController class that can be
overwritten to provide new calculations.

The pseudo motor position gets updated automatically every time one of its
motors position gets updated e.g. when the motion is in progress.

The pseudo motor object is also exposed as a Tango [http://www.tango-controls.org/] device.

See also

	Pseudo motor API reference

	the pseudo motor API

	PseudoMotor

	the pseudo motor tango device API

Advanced topics

Drift correction

Pseudomotors which have siblings and are based on physical motors with an
inaccurate or a finite precision positioning system could be affected by the
drift effect.

Why does it happen?

Each move of a pseudomotor requires calculation of the physical motors
positions in accordance with the current positions of its siblings.
The consecutive movements of a pseudomotor can accumulate errors
of the positioning system and cause drift of its siblings.

Who is affected?

	Inaccurate positioning systems which lead to a discrepancy between
the write and the read position of the physical motors. In this case the
physical motors must have a position sensor e.g. encoder but
must not be configured in closed loop (in some special cases,
where the closed loop is not precise enough, the drift effect can be
observed as well). This setup can lead to the situation where write and
read values of the position attribute of the physical motors are
different e.g. due to the loosing steps problems or the inaccurate
step_per_unit calibration.

	Finite precision physical motors e.g. stepper is affected by
the rounding error when moving to a position which does not translate
into a discrete number of steps that must be commanded to the hardware.

How is it solved in Sardana?

Sardana implements the drift correction which use is optional but enabled
by default for all pseudomotors. It is based on the use of the write
value, instead of the read value, of the siblings’ positions, together with
the new desired position of the pseudomotor being moved, during the
calculation of the physical positions. The write value of the
pseudomotor’s position gets updated at each move of the pseudomotor or
any of the underneath motors.

Note

Movements being stopped unexpectedly: abort by the user,
over-travel limit or any other exceptional condition may cause
considerable discrepancy in the motor’s write and read positions.
In the subsequent pseudomotor’s move, Sardana will also correct this
difference by using the write instead of read values.

The drift correction is configurable with the DriftCorrection property
either globally (on the Pool device level) or locally (on each PseudoMotor
device level).

Example

Let’s use the slit pseudomotor controller to visualize the drift effect.
This controller comprises two pseudomotors: gap and offset, each of them based
on the same two physical motors: right and left. In this example we will
simulate the inaccurate positioning of the left motor (loosing of 0.002 unit
every 1 unit move).

Drift correction disabled

	Initial state: gap and offset are at positions 0 (gap totally closed and
offset at the nominal position)

Door_lab_1 [1]: wm right left gap offset
 right left gap offset
User
 High Not specified Not specified Not specified Not specified
 Current 0.000 0.000 0.000 0.000
 Low Not specified Not specified Not specified Not specified

	Move gap to 1

Door_lab_1 [2]: mv gap 1

The calculation of the physical motors’ positions gives us 0.5 for both right
and left (in accordance with the current offset of 0)

Door_lab_1 [3]: wm right left gap offset
 right left gap offset
User
 High Not specified Not specified Not specified Not specified
 Current 0.500 0.498 0.998 0.001
 Low Not specified Not specified Not specified Not specified

We observe that the gap pseudomotor did not reach the desired
position of 1 due to the left’s positioning problem. Left’s
position write and read discrepancy of 0.002 causes that the gap reached
only 0.998 and that the offset drifted to 0.001.

	Move gap to 2

Door_lab_1 [4]: mv gap 2

The calculation of the physical motors’ positions gives us 1.001 for right
and 0.999 for left (in accordance with the current offset of 0.001).

Door_lab_1 [5]: wm right left gap offset
 right left gap offset
User
 High Not specified Not specified Not specified Not specified
 Current 1.001 0.997 1.998 0.002
 Low Not specified Not specified Not specified Not specified

We observe that the gap pseudomotor did not reach the desired position of 2
due to the left’s positioning problem. Left’s position write and
read discrepancy of 0.002 causes that the gap reached only 1.998 and that
the offset drifted again by 0.001 and the total accumulated drift is 0.002.

	Move gap to 3

The calculation of the physical motors’ positions gives us 1.502 for right
and 1.498 for left (in accordance with the current offset of 0.002).

Door_lab_1 [6]: mv gap 3

Door_lab_1 [7]: wm right left gap offset
 right left gap offset
User
 High Not specified Not specified Not specified Not specified
 Current 1.502 1.496 2.998 0.003
 Low Not specified Not specified Not specified Not specified

We observe that the gap pseudomotor did not reach the desired position of 3
due to the left’s positioning problem. Left’s position write and
read discrepancy of 0.002 causes that the gap reached only 2.998 and that
the offset drifted by 0.001 and the total accumulated drift is 0.003.

[image: ../../_images/drift_correction_disabled.png]
This sketch demonstrates the above example where offset drifted by 0.003.

Drift correction enabled

	Initial state: gap and offset are at positions 0 (gap totally closed and
offset at the nominal position)

Door_lab_1 [1]: wm right left gap offset
 right left gap offset
User
 High Not specified Not specified Not specified Not specified
 Current 0.000 0.000 0.000 0.000
 Low Not specified Not specified Not specified Not specified

	Move gap to 1

Door_lab_1 [2]: mv gap 1

The calculation of the physical motors’ positions gives us 0.5 for both right
and left (in accordance with the last set offset of 0).

Door_lab_1 [3]: wm right left gap offset
 right left gap offset
User
 High Not specified Not specified Not specified Not specified
 Current 0.500 0.498 0.998 0.001
 Low Not specified Not specified Not specified Not specified

We observe that the gap pseudomotor did not reach the desired position of 1
due to the left’s positioning problem. Left’s position write and
read discrepancy of 0.002 causes that the gap reached only 0.998 and that
the offset drifted to 0.001.

	Move gap to 2

Door_lab_1 [4]: mv gap 2

The calculation of the physical motors’ positions gives us 1 for right
and 1 for left (in accordance to the last set offset 0).

Door_lab_1 [5]: wm right left gap offset
 right left gap offset
User
 High Not specified Not specified Not specified Not specified
 Current 1.000 0.998 1.998 0.001
 Low Not specified Not specified Not specified Not specified

We observe that the gap pseudomotor did not reach the desired position of 2
due to the left’s positioning problem. Left’s position write and
read discrepancy of 0.002 causes that the gap reached only 1.998 and that
the offset drifted again by 0.001 but thanks to the drift correction is
maintained at this value.

	Move gap to 3

Door_lab_1 [6]: mv gap 3

The calculation of the physical motors’ positions gives us 1.5 for right
and 1.5 for left (in accordance to the last set offset of 0).

Door_lab_1 [7]: wm right left gap offset
 right left gap offset
User
 High Not specified Not specified Not specified Not specified
 Current 1.500 1.498 2.998 0.001
 Low Not specified Not specified Not specified Not specified

We observe that the gap pseudomotor did not reach the desired position of 3
due to the left’s positioning problem. Left’s position write and
read discrepancy of 0.002 causes that the gap reached only 2.998 and that
the offset drifted again by 0.001 but thanks to the drift correction is
maintained at this value.

[image: ../../_images/drift_correction_enabled.png]
This sketch demonstrates the above example where offset’s drift was
corrected.

Footnotes

	1

	We would like to thank Dominique Heinis for sharing his expertise in
blender.

I/O register overview

The IOR is a generic element which allows to write/read from a given hardware
register a value. This value type may be one of: int [https://docs.python.org/dev/library/functions.html#int],
float [https://docs.python.org/dev/library/functions.html#float], bool [https://docs.python.org/dev/library/functions.html#bool] but the hardware usually expects a fixed type
for a given register.

The IOR has a very wide range of applications it can serve to control the
PLC registers, a discrete motor, etc.

See also

	I/O register API reference

	the I/O register API

	IORegister

	the I/O register tango device API

Trigger/gate overview

The trigger/gate represents synchronization devices like for example the
digital trigger and/or gate generators. Their main role is to synchronize
acquisition of the experimental channels.

Trigger or gate characteristics could be described in either the time and/or
the position configuration domains.

In the time domain, elements are configured in time units (seconds) and
generation of the synchronization signals is based on passing time.

The concept of position domain is based on the relation between
the trigger/gate and the moveable element. In the position domain,
elements are configured in distance units of the moveable element configured as
the feedback source (this could be mm, mrad, degrees, etc.). In this case
generation of the synchronization signals is based on receiving updates from
the source.

See also

	Trigger/Gate API reference

	the trigger/gate API

	TriggerGate

	the trigger/gate tango device API

Counter/timer overview

The counter/timer is one of the most used elements in Sardana. A counter/timer
represents an experimental channel which acquisition result is a scalar value.
As indicates its name it is foreseen to interface hardware couters or timers
but it also fits well with other hardware like ADC or electrometer.

The acquisition operation on a counter/timer is executed over the integration
time specified by the user. Counter/timer can be controlled by either software
or hardware synchronization (Trigger/Gate)
and multiple repetitions, also specified by the user are, are possible within
the same acquisition operation.

See also

	Counter/Timer API reference

	the counter/timer API

	CTExpChannel

	the counter/timer tango device API

0D channel overview

The 0D experimental channel is used to access any kind of device which returns
a scalar value and which are not counter/timer. Very often (but not always),
this is a commercial measurement equipment connected to a GPIB bus.

In order to have as precise as possible measurement, a dedicated acquisition
operation is implemented for 0D channels. This operation will simply read the
data from the hardware as fast as it can (only “sleeping” 10 mS between each
reading) and a computation is done on the resulting data set to return only
one value. Three types of computation are foreseen. The user selects which one
he needs with an attribute.

The time during which this acquisition loop will get data is controlled by the
counters/timers present in the measurement group - when all of them finish
acquiring the 0D acquisition operation will also stop.

See also

	0D channel API reference

	the 0D experiment channel API

	ZeroDExpChannel

	the 0D experiment channel tango device API

1D channel overview

The 1D represents an experimental channel which acquisition result is a
spectrum value. It is foreseen to interface with MCA or position
sensitive detectors.

The acquisition operation on a 1D channel is executed over the integration
time specified by the user. 1D channels can be controlled by either software
or hardware synchronization (Trigger/Gate)
and multiple repetitions, also specified by the user are, are possible within
the same acquisition operation.

See also

	1D channel API reference

	the 1D experiment channel API

	OneDExpChannel

	the 1D experiment channel tango device API

2D channel overview

The 2D represents an experimental channel which acquisition result is an
image value. It is foreseen to interface with CCD or photon-counting
array detectors.

The acquisition operation on a 2D channel is executed over the integration
time specified by the user. 2D channels can be controlled by either software
or hardware synchronization (Trigger/Gate)
and multiple repetitions, also specified by the user are, are possible within
the same acquisition operation.

See also

	2D channel API reference

	the 2D experiment channel API

	TwoDExpChannel

	the 2D experiment channel tango device API

Pseudo counter overview

Pseudo counter acts like an abstraction layer for a counter or a set of
counters allowing the user to see the experiment results by means of an
interface which is more meaningful to him.

One example of a pseudo counter is
IoverI0 useful for normalizing the
measurement results in order to make them comparable.

In order to translate the counter values into the pseudo counter values,
calculations have to be performed. The device pool provides
PseudoCounterController class that can be
overwritten to provide new calculations.

The pseudo counter value gets updated automatically every time one of its
counters value gets updated e.g. when the acquisition is in progress.

Each pseudo counter is represented by a Tango [http://www.tango-controls.org] device whose interface allows to
obtain a calculation result (scalar value).

See also

	Pseudo counter API reference

	the pseudo counter API

	PseudoCounter

	the pseudo counter tango device API

Measurement group overview

The measurement group interface allows the user to access several data
acquisition channels at the same time. The measurement group is the key
interface to be used when acquiring the data. The Pool can have several
measurement groups and use them simultaneously. When creating a measurement
group, the user compose it from:

	Counter/Timer

	0D

	1D

	2D

	Pseudo Counter

	external attribute e.g. Tango [http://www.tango-controls.org]

It is not possible to have several times the same channel in a measurement group.

Configuration

In order to properly use the measurement group, each of the timerable
controllers (Counter/Timer, 1D or 2D) needs to be assigned one of its channels
as the timer or the monitor. The first timer or monitor becomes the master one
for the whole measurement group.

By default, the data acquisition channels are synchronized by software,
meaning that the acquisition will be commanded to start (or start and stop)
with the software precission. In order to achieve a better synchonization the
hardware triggerring (or gating) can be used by configuring a
Trigger/Gate as the controller’s
synchronizer.

The measurement group configuration can by modified with the
expconf widget.

See also

	Measurement group API reference

	the measuremenent group API

	MeasurementGroup

	the measurement group tango device API

	PoolMeasurementGroup

	the measurement group class API

Writing macros

	General macro development
	What is a macro

	What should and should not be a macro

	How to start writing a macro

	Writing a macro function

	Adding parameters to your macro

	Macro context

	Calling other macros from inside your macro

	Accessing environment

	Logging

	Reports

	Advanced macro calls

	Writing a macro class

	Using external python libraries

	Plotting

	Asking for user input

	Showing progress in long macros

	Scan macro development
	A basic example on writing a step scan

	A basic example on writing a continuous scans

	Hooks support in scans

	More examples

Writing macros

This chapter provides the necessary information to write macros in sardana. The
complete macro API can be found here.

What is a macro

A macro in sardana describes a specific procedure that can be executed at any
time. Macros run inside the sardana sandbox. This simply means that each time
you run a macro, the system makes sure the necessary environment for it to run
safely is ready.

Macros can only be written in Python [http://www.python.org/]. A macro can be a function or a
class. In order for a function to be recognized as a macro, it
must be properly labeled as a macro (this is done with a special
macro decorator. Details are explaind below). In the same way, for a
class to be recognized as a macro, it must inherit from a
Macro super-class. Macros are case sensitive. This means that
helloworld is a different macro than HelloWorld.

The choice between writing a macro function or a macro class
depends not only on the type of procedure you want to write, but also (and
probably, most importantly) on the type of programming you are most confortable
with.

If you are a scientist, and you have a programming background on a functional
language (like fortran, matlab, SPEC [http://www.certif.com/]), then you might prefer to write macro
functions. Computer scientists (young ones, specially), on the other hand,
often have a background on object oriented languages (Java, C++, C#) and feel
more confortable writing macro classes.

Classes tend to scale better with the size of a program or library. By writing
a macro class you can benefit from all advantages of object-oriented
programming. This means that, in theory:

	it would reduce the amount of code you need to write

	reduce the complexity of your code y by dividing it into small,
reasonably independent and re-usable components, that talk to each other
using only well-defined interfaces

	Improvement of productivity by using easily adaptable pre-defined
software components

In practice, however, and specially if you don’t come from a programming
background, writing classes requires a different way of thinking. It will also
require you to extend your knowledge in terms of syntax of a programming
language.

Furthermore, most tasks you will probably need to execute as macros, often don’t
fit the class paradigm that object-oriented languages offer. If you are
writing a sequencial procedure to run an experiment then you are probably
better of writing a python function which does the job plain and simple.

One reason to write a macro as a class is if, for example, you want to extend
the behaviour of the mv macro. In
this case, probably you would want to extend the existing macro by writing
your own macro class which inherits from the original macro and this way
benefit from most of the functionallity already existing in the original macro.

What should and should not be a macro

The idea of a macro is simply a piece of Python [http://www.python.org/] code that can be executed from
control system interface (GUI/CLI). Therefore, anything that
you don’t need to be executed by the interface should NOT be a macro.

When you have a big library of functions and classes, the approach to expose
them to sardana should be to first carefully decide which procedures should be
invoked by a GUI/CLI (namely the name of the procedure, which
parameters it should receive and if it returns any value). Then write the
macro(s) which invoke the code of the original library (see Using
external python libraries).
Avoid the temptation to convert the functions/classes of the original library
into macros because:

	This will most certainly break your code (any code that calls a function
or class that has been converted to a macro will fail)

	It will excessively polute the macro list (imagine a GUI with a
combo box to select which macro to execute. If you have hundreds of macros
it will take forever to find the one to execute even if they are in
alphabetical order)

How to start writing a macro

Since macros are essencially Python [http://www.python.org/] code, they reside inside a Python [http://www.python.org/] file. In
sardana, we call a Python [http://www.python.org/] file which contains macros a macro library.

At the time of writing, the easiest way to create a new macro is from spock (we
are currently working on a macro editor GUI).

Preparing your text editor

Before launching spock it is important to decide which text editor you will use
to write your macros. Unless configured otherwise, spock will use the editor
specified by the system environment variable EDITOR. If this variable
is not set, it will default to vi under Linux/Unix and to notepad under
Windows. The following line explains how to set the EDITOR
environment variable to gedit under linux using bash shell:

$ export EDITOR=gedit

If you choose gedit it is important to properly configure it to write Python [http://www.python.org/]
code:

Go to Edit ‣ Preferences ‣ Editor and select:

	Tab width : 4

	Insert spaces instead of tabs

[image: ../../_images/gedit_config.png]

If you choose kwrite it is important to properly configure it to write Python [http://www.python.org/]
code:

Go to Settings ‣ Configure editor… and choose
Editing:

	
	In General tab:

	
	Tab width : 4

	Insert spaces instead of tabulators

	
	In Indentation tab:

	
	Default indentation mode : Python

	Indentation width : 4

[image: ../../_images/kwrite_config.png]

Now you are ready to start writing your macro! Type spock on the command
line. Once you are in spock, you can use the
edmac to create/edit macros. Let’s
say you want to create a new macro called hello_world in a new macro library
called salute. Just type in:

LAB-01-D01 [1]: edmac hello_world salute
Opening salute.hello_world...
Editing...

This will bring your favorite editor to life with a macro function template
code for the macro hello_world.

[image: ../../_images/macro_edit.png]

The next chapter will explain how to fill this template with useful code. After
you finish editing the macro, save the file, exit the editor and go back to
spock. You’ll be asked if you want the new code to be load on the server. Just
answer ‘y’.

LAB-01-D01 [1]: edmac hello_world salute
Openning salute.hello_world...
Editing...
Do you want to apply the new code on the server? [y] y

Writing a macro function

As mentioned before, macros are just simple Python [http://www.python.org/] functions which have been
labeled as macros. In Python [http://www.python.org/], these labels are called decorators. Here is
the macro function version of Hello, World!:

	1
2
3
4
5
6

	from sardana.macroserver.macro import macro

@macro()
def hello_world(self):
 """This is a hello world macro"""
 self.output("Hello, World!")

	line 1

	imports the macro symbol from the sardana macro package.
sardana.macroserver.macro is the package which contains most symbols
you will require from sardana to write your macros.

	line 3

	this line decorates de following function as a macro. It is
crucial to use this decorator in order for your function to be
recognized by sardana as a valid macro.

	line 4

	this line contains the hello_world function definition. Every
macro needs at least one parameter. The first parameter is the macro
execution context. It is usually called self but you can name it
anything. This parameter gives you access to the entire context where the
macro is being run. Through it, you’ll be able to do all sorts of things,
from sending text to the output to ask for motors or even execute other
macros.

	line 5

	Documentation for this macro. You should always document your macro!

	line 6

	this line will print Hello, World! on your screen.

Note

If you already know a little about Python [http://www.python.org/] your are probably wondering why
not use print "Hello, World!"?

Remember that your macro will be executed by a Sardana server which may be
running in a different computer than the computer you are working on.
Executing a normal print would just print the text in the server.
Therefore you need to explicitly say you want the text on the computer you
are working and not the server. The way to do it is using
output() instead of print.

If you prefer, you can use the context version of Python [http://www.python.org/] print() [https://docs.python.org/dev/library/functions.html#print]
function (it is a bit more powerful than
output(), and has a slightly
different syntax)

	1
2
3
4
5
6
7
8
9

	# mandatory first line in your code if you use Python < 3.0
from __future__ import print_function

from sardana.macroserver.macro import macro

@macro()
def hello_world(self):
 """This is an hello world macro"""
 self.print("Hello, World!")

The following footnote describes how to discover your Python [http://www.python.org/]
version 2.

Remeber that a macro is, for all purposes, a normal Python [http://www.python.org/] function.
This means you CAN inside a macro write ANY valid Python [http://www.python.org/] code. This
includes for [https://docs.python.org/dev/reference/compound_stmts.html#for] and while [https://docs.python.org/dev/reference/compound_stmts.html#while] loops, if [https://docs.python.org/dev/reference/compound_stmts.html#if] …
elif [https://docs.python.org/dev/reference/compound_stmts.html#elif] … else [https://docs.python.org/dev/reference/compound_stmts.html#else] conditional execution, etc…

	1
2
3
4
5
6
7

	import numpy.fft

@macro()
def fft_my_wave(self):
 wave_device = self.getDevice("sys/tg_test/1")
 wave = wave_device.wave
 wave_fft = numpy.fft.fft(wave)

Adding parameters to your macro

Standard Python [http://www.python.org/] allows you to specify parameters to a function by placing comma
separated parameter names between the () in the function definition. The
macro API, in adition, enforces you to specify some extra parameter
information. At first, this may look like a useless complication, but you will
apreciate clear benefits soon enough. Here are some of them:

	error prevention: a macro will not be allowed to run if the given
parameter if of a wrong type

	CLIs like Spock will be able to offer autocomplete
facilities (press <tab> and list of allowed parameters show up)

	GUIs can display list of allowed parameter values in combo
boxes which gives increased usability and prevents errors

	Documentation can be generated automatically

So, here is an example on how to define a macro that needs one parameter:

@macro([["moveable", Type.Moveable, None, "moveable to get position"]])
def where_moveable(self, moveable):
 """This macro prints the current moveable position"""
 self.output("%s is now at %s", moveable.getName(), moveable.getPosition())

Here is another example on how to define a macro that needs two parameters:

	Moveable (motor, pseudo motor)

	Float (motor absolute position to go to)

	1
2
3
4
5
6
7
8

	from sardana.macroserver.macro import macro, Type

@macro([["moveable", Type.Moveable, None, "moveable to move"],
 ["position", Type.Float, None, "absolute position"]])
def move(self, moveable, position):
 """This macro moves a moveable to the specified position"""
 moveable.move(position)
 self.output("%s is now at %s", moveable.getName(), moveable.getPosition())

The parameter information is a list [https://docs.python.org/dev/library/stdtypes.html#list] of list [https://docs.python.org/dev/library/stdtypes.html#list]s. Each list [https://docs.python.org/dev/library/stdtypes.html#list]
being a composed of four elements:

	parameter name

	parameter type

	parameter default value (None means no default value)

	parameter description

Here is a list of the most common allowed parameter types:

	Integer: an integer number

	Float: a real number

	Boolean: a boolean True or False

	String: a string

	Moveable: a moveable element (motor, pseudo-motor)

	Motor: a pure motor

	ExpChannel: an experimental channel (counter/timer, 0D,
pseudo-counter, …)

	Controller: a controller

	ControllerClass: an existing controller class plugin

	MacroCode: a macro

	MeasurementGroup: a measurement group

	Any: anything, really

The complete list of types distributed with sardana is made up by these five
simple types: Integer, Float, Boolean, String, Any, plus
all available sardana interfaces (Interface)

Repeat parameters

A special parameter type is the repeat parameter (a.k.a. ParamRepeat,
originating from the ParamRepeat class which usage is deprecated).
The repeat parameter type is a list of parameter members. It is possible to
pass from zero to multiple repetitions of the repeat parameter items at the
execution time.

The repeat parameter definition allows to:

	restrict the minimum and/or maximum number of repetitions

	nest repeat parameters inside of another repeat parameters

	define multiple repeat parameters in the same macro

Repeat parameter values are passed to the macro function in the form of a list.
If the repeat parameter definition contains just one member it is a plain list
of items.

	1
2
3
4
5
6
7
8

	@macro([["moveables", [
 ["moveable", Type.Moveable, None, "moveable to get position"]
],
 None, "list of moveables to get positions"]])
def where_moveables(self, moveables):
 """This macro prints the current moveables positions"""
 for moveable in moveables:
 self.output("%s is now at %s", moveable.getName(), moveable.getPosition())

But if the repeat parameter definition contains more than one member
each item is an internal list of the members.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	@macro([["m_p_pairs", [
 ["moveable", Type.Moveable, None, "moveable to be moved"],
 ["position", Type.Float, None, "absolute position"]
],
 None, "list of moveables and positions to be moved to"]])
def move_multiple(self, m_p_pairs):
 """This macro moves moveables to the specified positions"""
 for moveable, position in m_p_pairs:
 moveable.move(position)
 self.output("%s is now at %s", moveable.getName(), moveable.getPosition())

A set of macro parameter examples can be found
here.

Macro context

One of the most powerfull features of macros is that the entire context of
sardana is at your disposal. Simply put, it means you have access to all
sardana elements by means of the first parameter on your macro (you can give
this parameter any name but usually, by convention it is called self).

self provides access to an extensive catalog of functions you can use in
your macro to do all kinds of things. The complete catalog of functions can be
found here.

Let’s say you want to write a macro that explicitly moves a known theta motor
to a certain position. You could write a macro which receives the motor as
parameter but that would be a little silly since you already know beforehand
which motor you will move. Instead, a better solution would be to ask sardana
for a motor named “theta” and use it directly. Here is how you can acomplish
that:

	1
2
3
4
5
6

	@macro([["position", Type.Float, None, "absolute position"]])
def move_theta(self, position):
 """This macro moves theta to the specified position"""
 th = self.getMotor("th")
 th.move(position)
 self.output("Motor ended at %s", moveable.getPosition())

Calling other macros from inside your macro

One of the functions of the macro decorator is to pass the knowledge of all
existing macros to your macro. This way, without any special imports, your
macro will know about all other macros on the system even if they have been
written in other files.

Lets recreate the two previous macros (where_moveable and move) to execute
two of the macros that exist in the standard macro catalog
(wm and
mv)

Here is the new version of where_moveable

@macro([["moveable", Type.Moveable, None, "moveable to get position"]])
def where_moveable(self, moveable):
 """This macro prints the current moveable position"""
 self.wm([moveable]) # self.wm(moveable) backwards compatibility - see note

… and the new version of move

	1
2
3
4
5
6

	@macro([["moveable", Type.Moveable, None, "moveable to move"],
 ["position", Type.Float, None, "absolute position"]])
def move(self, moveable, position):
 """This macro moves a moveable to the specified position"""
 self.mv([moveable, position]) # self.mv(moveable, position) backwards compatibility - see note
 self.output("%s is now at %s", moveable.getName(), moveable.getPosition())

Note

Both wm and
mv
use repeat parameters.
From Sardana 2.0 the repeat parameter values must be passed as lists of
items. An item of a repeat parameter containing more than one member is a
list. In case when a macro defines only one repeat parameter
and it is the last parameter, for the backwards compatibility reasons, the
plain list of items’ members is allowed.

Accessing environment

The sardana server provides a global space to store variables, called
environment. The environment is a dictionary [https://docs.scipy.org/doc/numpy/glossary.html#term-dictionary] storing a value for
each variable. This environment is stored persistently so if the sardana
server is restarted the environment is properly restored.

Variables are case sensitive.

The value of an existing environment variable can be accessed using
getEnv(). Setting the value of an environment variable is done
with setEnv().

For example, we know the ascan macro increments a ScanID environment
variable each time it is executed. The following example executes a scan and
outputs the new ScanID value:

@macro([["moveable", Type.Moveable, None, "moveable to get position"]])
def fixed_ascan(self, moveable):
 """This does an ascan starting at 0 ending at 100, in 10 intervals
 with integration time of 0.1s"""

 self.ascan(moveable, 0, 100, 10, 0.1)
 scan_id = self.getEnv('ScanID')
 self.output("ScanID is now %d", scan_id)

Logging

The Macro API includes a set of methods that allow you to write log
messages with different levels:

	
	debug()

	info()

	
	warning()

	error()

	
	critical()

	log()

	
	output()

As you’ve seen, the special output() function has the same effect
as a print statement (with slightly different arguments).

Log messages may have several destinations depending on how your sardana server
is configured. At least, one destination of each log message is the client(s)
(spock, GUI, other) which are connected to the server. Spock, for example,
handles the log messages by printing to the console with different colours. By
default, spock prints all log messages with level bigger than
debug() (You can change this behaviour by typing debug on in
spock). Another typical destination for log messages is a log file.

Here is an example on how to write a logging information message:

	1
2
3
4
5

	@macro()
def lets_log(self):
 self.info("Starting to execute %s", self.getName())
 self.output("Hello, World!")
 self.info("Finished to executing %s", self.getName())

Reports

Once the report facility has been properly configured, report messages can be
sent to the previously configured report file.

There are several differences between reporting and
logging. The first difference is that log messages may
or may not be recorded, depending on the configured filters on the target
(example: log file). A report will always be recorded.

Another difference is that report messages are not sent to the clients. The idea
of a report is to silently record in a file that something as happened.

A third difference is that unlike logs, reports have no message level associated
to them (actually since internally the log library is used to report messages,
every report record as the predefined level INFO but this is just an
implementation detail).

A report message can be emited at any time in the macro using the
report() method:

@macro()
def lets_report(self):
 self.report("this is an official report of macro '%s'", self.getName())

This would generate the following report message in the report file:

INFO 2012-07-18 09:39:34,943: this is an official report of macro ‘lets_report’

Advanced macro calls

As previously explained (see calling macros), you can use
the Macro API to call other macros from inside your own macro:

@macro([["moveable", Type.Moveable, None, "moveable to get position"]])
def fixed_ascan(self, moveable):
 """This does an ascan starting at 0 ending at 100, in 10 intervals
 with integration time of 0.1s"""
 self.ascan(moveable, 0, 100, 10, 0.1)

An explicit call to execMacro() would have the same effect:

@macro([["moveable", Type.Moveable, None, "moveable to get position"]])
def fixed_ascan(self, moveable):
 """This does an ascan starting at 0 ending at 100, in 10 intervals
 with integration time of 0.1s"""
 self.execMacro('ascan', moveable, '0', '100', '10', '0.2')

The advantage of using execMacro() is that it supports passing
parameters with different flavors:

	parameters as strings:

self.execMacro('ascan', motor.getName(), '0', '100', '10', '0.2')
self.execMacro('mv', [[motor.getName(), '0']])
self.execMacro('mv', motor.getName(), '0') # backwards compatibility - see note

	parameters as space separated string:

	1
2
3
4
5

	self.execMacro('ascan %s 0 100 10 0.2' % motor.getName())
self.execMacro('mv [[%s 0]]' % motor.getName())
self.execMacro('mv %s 0' % motor.getName()) # backwards compatibility - see note
self.execMacro('mv [[%s 0][%s 20]]' % (motor.getName(), motor2.getName()))
self.execMacro('mv %s 0 %s 20' % (motor.getName(), motor2.getName())) # backwards compatibility - see note

	parameters as concrete types:

self.execMacro(['ascan', motor, 0, 100, 10, 0.2])
self.execMacro(['mv', [[motor, 0]]])
self.execMacro(['mv', motor, 0]) # backwards compatibility - see note

Note

Macro mv
use repeat parameters.
From Sardana 2.0 the repeat parameter values must be passed as lists of
items. An item of a repeat parameter containing more than one member is a
list.
In case when a macro defines only one repeat parameter
and it is the last parameter, for the backwards compatibility reasons, the
plain list of items’ members is allowed.

Accessing macro data

Sometimes it is desirable to access data generated by the macro we just called.
For these cases, the Macro API provides a pair of low level methods
createMacro() and runMacro() together with
data().

Let’s say that you need access to the data generated by a scan. First you call
createMacro() with the same parameter you would give to
execMacro(). This will return a tuple composed from a macro object
and the result of the prepare() method. Afterward you call runMacro() giving
as parameter the macro object returned by createMacro().
In the end, you can access the data generated by the macro
using data():

@macro([["moveable", Type.Moveable, None, "moveable to get position"]])
def fixed_ascan(self, moveable):
 """This runs the ascan starting at 0 ending at 100, in 10 intervals
 with integration time of 0.1s"""

 ret = self.createMacro('ascan', moveable, '0', '100', '10', '0.2')
 # createMacro returns a tuple composed from a macro object
 # and the result of the Macro.prepare method
 my_scan, _ = ret
 self.runMacro(my_scan)
 print len(my_scan.data)

A set of macro call examples can be found
here.

Writing a macro class

This chapter describes an advanced alternative to writing macros as Python [http://www.python.org/]
classes. If words like inheritance, polimorphism sound like a lawyer’s
horror movie then you probably should only read this if someone expert in
sardana already told you that the task you intend to do cannot be accomplished
by writing macro functions.

The simplest macro class that you can write MUST obey the following rules:

	Inherit from Macro

	Implement the run() method

The run() method is the place where you write the code of your
macro. So, without further delay, here is the Hello, World! example:

	1
2
3
4
5
6
7

	from sardana.macroserver.macro import Macro

class HelloWorld(Macro):
 """Hello, World! macro"""

 def run(self):
 print "Hello, World!"

Let’s say you want to pass an integer parameter to your macro. All you have to
do is declare the parameter by using the param_def Macro member:

	1
2
3
4
5
6
7
8
9

	from sardana.macroserver.macro import Macro, Type

class twice(Macro):
 """Macro twice. Prints the double of the given value"""

 param_def = [["value", Type.Float, None, "value to be doubled"]]

 def run(self, value):
 self.output(2*value)

Note

As soon as you add a param_def you also need to
modify the run() method to support the new paramter(s).

A set of macro parameter examples can be found
here.

Preparing your macro for execution

Additionaly to the run() method, you may write a
prepare() method where you may put code to prepare the macro for
execution (for example, checking pre-conditions for running the macro). By
default, the prepare method is an empty method. Here is an example on how to
prepare HelloWorld to run only after year 1989:

import datetime
from sardana.macroserver.macro import Macro

class HelloWorld(Macro):
 """Hello, World! macro"""

 def prepare(self):
 if datetime.datetime.now() < datetime.datetime(1990,01,01):
 raise Exception("HelloWorld can only run after year 1989")

 def run(self):
 print "Hello, World!"

Using external python libraries

Macro libraries can use code e.g. call functions and instantiate classes
defined by external python libraries. In order to import the external libraries
inside the macro library, they must be available for the python interpreter
running the Sardana/MacroServer server
(see Running server).

This could be achieved in two ways:

	Adding the directory containing the external library to the PythonPath
property of the MacroServer tango device (path separators can be \n
or :).

	Adding the directory containing the external library to the PYTHONPATH
OS environment variable of the Sardana/MacroServer process.

The external libraries can be reloaded at Sardana/MacroServer server
runtime using the rellib macro.

Plotting

Remember that your macro will be executed by a Sardana server which may be
running in a different computer than the computer you are working on. Executing
a normal plot (from matplotlib or guiqwt [https://pythonhosted.org/guiqwt/index.html#module-guiqwt]) would just try to show
a plot in the server machine. The macro API provides a way to plot
graphics from inside your macro whenver the client that runs the macro
understands the plot request (don’t worry, spock does understand!)

The plotting API is the same used by pyplot [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot]. The
API is accessible through the macro context (self). Here is an
example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	import math
from numpy import linspace
from scipy.integrate import quad
from scipy.special import j0

from sardana.macroserver.macro import macro

def j0i(x):
 """Integral form of J_0(x)"""
 def integrand(phi):
 return math.cos(x * math.sin(phi))
 return (1.0/math.pi) * quad(integrand, 0, math.pi)[0]

@macro()
def J0_plot(self):
 """Sample J0 at linspace(0, 20, 200)"""
 x = linspace(0, 20, 200)
 y = j0(x)
 x1 = x[::10]
 y1 = map(j0i, x1)
 self.pyplot.plot(x, y, label=r'$J_0(x)$') #
 self.pyplot.plot(x1, y1, 'ro', label=r'$J_0^{integ}(x)$')
 self.pyplot.title(r'Verify $J_0(x)=\frac{1}{\pi}\int_0^{\pi}\cos(x \sin\phi)\,d\phi$')
 self.pyplot.xlabel('x')
 self.pyplot.legend()

Running this macro from spock will result in something like:

[image: ../../_images/macro_plotting1.png]

Just for fun, the following macro computes a fractal and plots it as an image:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	import numpy

@macro([["interactions", Type.Integer, None, ""],
 ["density", Type.Integer, None, ""]])
def mandelbrot(self, interactions, density):

 x_min, x_max = -2, 1
 y_min, y_max = -1.5, 1.5

 x, y = numpy.meshgrid(numpy.linspace(x_min, x_max, density),
 numpy.linspace(y_min, y_max, density))

 c = x + 1j * y
 z = c.copy()

 fractal = numpy.zeros(z.shape, dtype=numpy.uint8) + 255

 finteractions = float(interactions)
 for n in range(interactions):
 z *= z
 z += c
 mask = (fractal == 255) & (abs(z) > 10)
 fractal[mask] = 254 * n / finteractions
 self.pyplot.imshow(fractal)

And the resulting image (interactions=20, density=512):

[image: ../../_images/macro_fractal.png]

A set of macro plotting examples can be found
here.

Known plotting limitations

When you plot from inside a macro with self.pyplot.plot, the sardana server
will “ask” spock to execute the desired function with the given parameters.
This means that the result of plotting (a sequence of
Line2D) is not available in the sardana server (since
the actual line is in spock). The result of any function call in
self.pyplot will always be None!

This means that the following code which works in a normal IPython [http://ipython.org/] console will
NOT work inside a macro:

LAB-01-D01 [1]: line = plot(range(10))[0]

LAB-01-D01 [2]: line.set_linewidth(5)

Also consider that each time you plot the complete data to be plotted is sent
from the server to the client… so please avoid plotting arrays of 10,000,000
points!

Asking for user input

It is possible to ask for user input inside a macro.

Hint

Asking for input in the middle of long macros will cause the macro to
stop and wait for user input. If you write a long macro that might be
executed in the middle of the night please take the appropriate steps
to make sure you don’t arrive in the morning and you are faced with
a message box waiting for you to answer a question that could be avoided
with a proper default value. To make sure your macro can run in
unattended mode make sure that:

	it implements the interactive interface

	every input() gives a default_value
keyword argument

(read on to see how to meet these requirements)

In pure Python [http://www.python.org/], to ask for user input you can use the raw_input() (Python
2) / input() [https://docs.python.org/dev/library/functions.html#input] (Python 3)

>>> answer = raw_input('--> ')
--> Monty Python's Flying Circus
>>> answer
"Monty Python's Flying Circus"

The Macro API provides a much more powerful version of
input() since it can accept a wide variaty of options.

Similar to what happens with Plotting, when input is requested from
inside a macro, the question will be sent to the client (example: spock) which
ordered the macro to be executed. At this time the macro is stopped waiting for
the client to answer. The client must “ask” the user for a proper value and the
answer is sent back to the server which then resumes the macro execution.

Asking for user input is straightforward:

@macro()
def ask_name(self):
 """Macro function version to ask for user name"""

 answer = self.input("What's your name?")
 self.output("So, your name is '%s'", answer)

Executing this macro will make spock popup an Input Dialog Box like this one:

[image: ../../_images/macro_input.png]

When you type your name and press OK the macro finishes printing
the output:

LAB-01-D01 [1]: ask_name
Non interactive macro 'ask_name' is asking for input (please set this macro interactive to True)
So, your name is 'Homer Simpson'

The macro prints a warning message saying that the macro was not declared as
interactive. All macros that request user input should be declared as
interactive. This is because the sardana server can run a macro in unattended
mode. When an interactive macro is run in unattended mode, all
input() instructions that have a default value will return
automatically the default value without asking the user for input.

To declare a macro as interactive set the interactive
keyword argument in the macro decorator to True
(default value for interactive is False), like this:

@macro(interactive=True)
def ask_name(self):
 """Macro function version to ask for user name"""

 answer = self.input("What's your name?")
 self.output("So, your name is '%s'", answer)

To declare a macro class as interactive set the interactive member to
True (default value for interactive is False), like this:

class ask_name(Macro):
 """Macro class version to ask for user name"""

 interactive = True

 def run(self):
 answer = self.input("What's your name?")
 self.output("So, your name is '%s'", answer)

a helper imacro decorator and a iMacro class exist which can
be used instead of the macro decorator and Macro class to
transparently declare your macro as interactive:

from sardana.macroserver.macro import imacro, iMacro

interactive macro function version

@imacro()
def ask_name(self):
 """Macro function version to ask for user name"""

 answer = self.input("What's your name?")
 self.output("So, your name is '%s'", answer)

interactive macro class version

class ask_name(iMacro):
 """Macro class version to ask for user name"""

 def run(self):
 answer = self.input("What's your name?")
 self.output("So, your name is '%s'", answer)

The following sub-chapters explain the different options available for macro
user input.

Specifying input data type

The default return type of input is str [https://docs.python.org/dev/library/stdtypes.html#str] which mimics the
pure Python [http://www.python.org/] input function. However, often you want to restrict the user input
to a specific data type like Integer, Float or even complex object like
Moveable or to a list of possible options.

The macro input API provides an easy way to do this by
specifying the concrete data type in the
keyword argument data_type. The following examples
shows how to ask for an Integer, a Moveable, and single/multiple
selection from a list of options:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	from sardana.macroserver.macro import imacro, Type

@imacro()
def ask_number_of_points(self):
 """asks user for the number of points"""

 nb_points = self.input("How many points?", data_type=Type.Integer)
 self.output("You selected %d points", nb_points)

@imacro()
def ask_for_moveable(self):
 """asks user for a motor"""

 moveable = self.input("Which moveable?", data_type=Type.Moveable)
 self.output("You selected %s which is at %f", moveable, moveable.getPosition())

@imacro()
def ask_for_car_brand(self):
 """asks user for a car brand"""

 car_brands = "Mazda", "Citroen", "Renault"
 car_brand = self.input("Which car brand?", data_type=car_brands)
 self.output("You selected %s", car_brand)

@imacro()
def ask_for_multiple_car_brands(self):
 """asks user for several car brands"""

 car_brands = "Mazda", "Citroen", "Renault", "Ferrari", "Porche", "Skoda"
 car_brands = self.input("Which car brand(s)?", data_type=car_brands,
 allow_multiple=True)
 self.output("You selected %s", ", ".join(car_brands))

… and these are the corresponding dialogs that will popup in spock:

[image: input_integer] [image: input_moveable] [image: input_select_radio]
[image: input_select_multiple]

Providing a default value

Providing a default value is very important since it will allow your macro
to run in unattended mode. When given, the default_value
keyword argument value type must be compatible with
the data_type keyword argument. Providing a
default value is easy. The following examples repeat the previous data type
examples giving compatible default values:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	from sardana.macroserver.macro import imacro, Type

@imacro()
def ask_number_of_points(self):
 """asks user for the number of points"""

 nb_points = self.input("How many points?", data_type=Type.Integer,
 default_value=100)
 self.output("You selected %d points", nb_points)

@imacro()
def ask_for_moveable(self):
 """asks user for a motor"""

 moveable = self.input("Which moveable?", data_type=Type.Moveable,
 default_value="gap01")
 self.output("You selected %s which is at %f", moveable, moveable.getPosition())

@imacro()
def ask_for_car_brand(self):
 """asks user for a car brand"""

 car_brands = "Mazda", "Citroen", "Renault"
 car_brand = self.input("Which car brand?", data_type=car_brands,
 default_value=car_brands[1])
 self.output("You selected %s", car_brand)

@imacro()
def ask_for_multiple_car_brands(self):
 """asks user for several car brands. Default is every other car brand
 in the list"""

 car_brands = "Mazda", "Citroen", "Renault", "Ferrari", "Porche", "Skoda"
 car_brands = self.input("Which car brand(s)?", data_type=car_brands,
 allow_multiple=True,
 default_value=car_brands[::2])
 self.output("You selected %s", ", ".join(car_brands))

Giving a title

By default, the Dialog window title will contain the name of the macro which
triggered user input. You can override the default behaviour with the
keyword argument title:

	1
2
3
4
5
6
7

	@imacro()
def ask_peak(self):
 """asks use for peak current of points with a custom title"""

 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection")
 self.output("You selected a peak of %f A", peak)

… and this is the corresponding dialog:

[image: input_float_title]

Specifying label and unit

The key and unit keyword arguments can be used to
provide additional label and unit information respectively and prevent user
mistakes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	@imacro()
def ask_peak_v2(self):
 """asks use for peak current of points with a custom title,
 default value, label and units"""

 label, unit = "peak", "mA"
 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection", key=label, unit=unit,
 default_value=123.4)
 self.output("You selected a %s of %f %s", label, peak, unit)

… and this is the corresponding dialog:

[image: input_float_title_label_unit]

Limiting ranges, setting decimal places and step size

When numeric input is requested, it might be useful to prevent user input
outside a certain range. This can be achieved with the minimum and maximum
keyword arguments:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	@imacro()
def ask_peak_v3(self):
 """asks use for peak current of points with a custom title,
 default value, label, units and ranges"""

 label, unit = "peak", "mA"
 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection", key=label, unit=unit,
 default_value=123.4, minimum=0.0, maximum=200.0)
 self.output("You selected a %s of %f %s", label, peak, unit)

An additional step keyword argument may help
increase usability by setting the step size in a input spin box:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	@imacro()
def ask_peak_v4(self):
 """asks use for peak current of points with a custom title,
 default value, label, units, ranges and step size"""

 label, unit = "peak", "mA"
 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection", key=label, unit=unit,
 default_value=123.4, minimum=0.0, maximum=200.0,
 step=5)
 self.output("You selected a %s of %f %s", label, peak, unit)

When asking for a decimal number, it might be useful to use the decimals
keyword argument to indicate how many decimal places
to show in a input spin box:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	@imacro()
def ask_peak_v5(self):
 """asks use for peak current of points with a custom title,
 default value, label, units, ranges, step size and decimal places"""

 label, unit = "peak", "mA"
 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection", key=label, unit=unit,
 default_value=123.4, minimum=0.0, maximum=200.0,
 step=5, decimals=2)
 self.output("You selected a %s of %f %s", label, peak, unit)

A set of macro input examples can be found
here.

Showing progress in long macros

Some of the macros you write may take a long time to execute. It could be useful
to provide frequent feedback on the current progress of your macro to prevent
users from thinking the system is blocked. The way to do this is by
yield [https://docs.python.org/dev/reference/simple_stmts.html#yield]ing a new progress number in the ode everytime you want to
send a progress.

The following code shows an example:

import time

@macro([["duration", Type.Integer, 1, "time to sleep (s)"]])
def nap(self, duration):

 fduration = float(duration)
 for i in range(duration):
 time.sleep(1)
 yield (i+1) / fduration * 100

The important code here is line 9. Everytime the macro execution reaches this
line of code, basically it tells sardana to send a progress with the desired
value. By default, the value is interpreted has a percentage and should have
the range between 0.0 and 100.0.

Actually, even if your macro doesn’t explicitly send macro progress reports,
sardana always generates a 0.0 progress at the beginning of the macro and a
last 100.0 progress at the end so for example, in a GUI, the progress
bar showing the macro progress will always reach the end (unless an error
occurs) no matter how you program the progress.

[image: macro_progress]

It is possible to generate a progress that doesn’t fit the 0 - 100.0 range. The
above macro has been modified to send a progress with a customized range:

import time

@macro([["duration", Type.Integer, 1, "time to sleep (s)"]])
def nap(self, duration):

 status = { 'range' : [0, duration] }

 fduration = float(duration)
 for i in range(duration):
 time.sleep(1)
 status['step'] = i+1
 yield status

You may notice that this way, the range can be changed dynamically. A progress
bar in a GUI is programmed to adjust not only the current progress
value but also the ranges so it is safe to change them if necessary.

Footnotes

	1

	To find the absolute path for sardana’s source code type on the
command line python -c "import sys, sardana; sys.stdout.write(str(sardana.__path__))"

	2

	To check which version of Python [http://www.python.org/] you are using type on the command
line python -c "import sys; sys.stdout.write(sys.version)"

Scan Framework

In general terms, we call scan to a macro that moves one or more motors and
acquires data along the path of the motor(s). See the
introduction to the concept of scan in Sardana.

While a scan macro could be written from scratch, Sardana provides a higher-
level API (the scan framework) that greatly simplifies the development of
scan macros by taking care of the details about synchronization of motors and
of acquisitions.

The scan framework is implemented in the scan
module, which provides the GScan base class
and its specialized derived classes SScan
and CScan for step and continuous scans,
respectively.

Creating a scan macro consists in writing a generic macro (see
the generic macro writing instructions) in
which an instance of GScan is created
(typically in the prepare() method) which is then invoked in the
run() method.

Central to the scan framework is the
generator() function, which
must be passed to the GScan constructor. This generator is a function that
allows to construct the path of the scan (see
GScan for detailed information on the
generator).

A basic example on writing a step scan

Step scans are built using an instance of the
SScan class, which requires a step generator
that defines the path for the motion. Since in a step scan the data is acquired
at each step, the generator controls both the motion and the acquisition.

Note that in general, the generator does not need to generate a determinate (or
even finite) number of steps. Also note that it is possible to write generators
that vary their current step based on the acquired values (e.g., changing step
sizes as a function of some counter reading).

The ascan_demo macro illustrates
the most basic features of a step scan:

class ascan_demo(Macro):
 """
 This is a basic reimplementation of the ascan` macro for demonstration
 purposes of the Generic Scan framework. The "real" implementation of
 :class:`sardana.macroserver.macros.ascan` derives from
 :class:`sardana.macroserver.macros.aNscan` and provides some extra features.
 """

 hints = { 'scan' : 'ascan_demo'} #this is used to indicate other codes that the macro is a scan
 env = ('ActiveMntGrp',) #this hints that the macro requires the ActiveMntGrp environment variable to be set

 param_def = [
 ['motor', Type.Moveable, None, 'Motor to move'],
 ['start_pos', Type.Float, None, 'Scan start position'],
 ['final_pos', Type.Float, None, 'Scan final position'],
 ['nr_interv', Type.Integer, None, 'Number of scan intervals'],
 ['integ_time', Type.Float, None, 'Integration time']
]

 def prepare(self, motor, start_pos, final_pos, nr_interv, integ_time, **opts):
 #parse the user parameters
 self.start = numpy.array([start_pos], dtype='d')
 self.final = numpy.array([final_pos], dtype='d')
 self.integ_time = integ_time

 self.nr_points = nr_interv+1
 self.interv_size = (self.final - self.start) / nr_interv
 self.name='ascan_demo'
 env = opts.get('env',{}) #the "env" dictionary may be passed as an option

 #create an instance of GScan (in this case, of its child, SScan
 self._gScan=SScan(self, generator=self._generator, moveables=[motor], env=env)

 def _generator(self):
 step = {}
 step["integ_time"] = self.integ_time #integ_time is the same for all steps
 for point_no in xrange(self.nr_points):
 step["positions"] = self.start + point_no * self.interv_size #note that this is a numpy array
 step["point_id"] = point_no
 yield step

 def run(self,*args):
 for step in self._gScan.step_scan(): #just go through the steps
 yield step

 @property
 def data(self):
 return self._gScan.data #the GScan provides scan data

The ascan_demo shows only basic
features of the scan framework, but it already shows that writing a step scan
macro is mostly just a matter of writing a generator function.

It also shows that the scan.gscan.GScan.data() method can be used to
provide the needed return value of data()

A basic example on writing a continuous scans

Continuous scans are built using an instance of the
CScan class. Since in the continuous scans
the acquisition and motion are decoupled, CScan requires two independent
generators:

	a waypoint generator: which defines the path for the motion in a very
similar way as the step generator does for a continuous scan. The steps
generated by this generator are also called “waypoints”.

	a period generator which controls the data acquisition steps.

Essentially, CScan implements the continuous
scan as an acquisition loop (controlled by the period generator) nested within
a motion loop (controlled by the waypoint generator). Note that each loop is
run on an independent thread, and only limited communication occurs between the
two (basically the acquisition starts at the beginning of each movement and
ends when a waypoint is reached).

The ascanc_demo macro illustrates
the most basic features of a continuous scan::

class ascanc_demo(Macro):
 """
 This is a basic reimplementation of the ascanc` macro for demonstration
 purposes of the Generic Scan framework. The "real" implementation of
 :class:`sardana.macroserver.macros.ascanc` derives from
 :class:`sardana.macroserver.macros.aNscan` and provides some extra features.
 """

 hints = { 'scan' : 'ascanc_demo'} #this is used to indicate other codes that the macro is a scan
 env = ('ActiveMntGrp',) #this hints that the macro requires the ActiveMntGrp environment variable to be set

 param_def = [
 ['motor', Type.Moveable, None, 'Motor to move'],
 ['start_pos', Type.Float, None, 'Scan start position'],
 ['final_pos', Type.Float, None, 'Scan final position'],
 ['integ_time', Type.Float, None, 'Integration time']
]

 def prepare(self, motor, start_pos, final_pos, integ_time, **opts):
 self.name='ascanc_demo'
 #parse the user parameters
 self.start = numpy.array([start_pos], dtype='d')
 self.final = numpy.array([final_pos], dtype='d')
 self.integ_time = integ_time
 env = opts.get('env',{}) #the "env" dictionary may be passed as an option

 #create an instance of GScan (in this case, of its child, CScan
 self._gScan = CScan(self,
 waypointGenerator=self._waypoint_generator,
 periodGenerator=self._period_generator,
 moveables=[motor],
 env=env)

 def _waypoint_generator(self):
 #a very simple waypoint generator! only start and stop points!
 yield {"positions":self.start, "waypoint_id": 0}
 yield {"positions":self.final, "waypoint_id": 1}

 def _period_generator(self):
 step = {}
 step["integ_time"] = self.integ_time
 point_no = 0
 while(True): #infinite generator. The acquisition loop is started/stopped at begin and end of each waypoint
 point_no += 1
 step["point_id"] = point_no
 yield step

 def run(self,*args):
 for step in self._gScan.step_scan():
 yield step

See also

for another example of a continuous scan implementation
(with more elaborated waypoint generator), see the code of
meshc

Hooks support in scans

In general, the Hooks API provided by the
Hookable base class allows a macro to run
other code (the hook callable) at certain points of its execution. The hooks
use a “hints” mechanism to pass the receiving macro some extra information on
how/when they should be executed. The hints are strings, and its content is not
fixed by the API, being up to each macro to identify, use and/or ignore them.

You can find some examples of the use of hooks in the
hooks module.

In the case of the scan macros, the hooks can be either registered directly via
the Hooks API or passed as key:values of the “step” dictionary returned by the
scan generator() (see
GScan for more details).

The hints for a given hook are used by the scan framework to select the moment
of the scan execution that the given hook is run. The following is a list of
hint strings that scan macros support (other hints are ignored):

	‘pre-scan-hooks’ : before starting the scan.

	‘pre-move-hooks’ : for steps: before starting to move.

	‘post-move-hooks’: for steps: after finishing the move.

	‘pre-acq-hooks’ : for steps: before starting to acquire.

	‘post-acq-hooks’ : for steps: after finishing acquisition but before
recording the step.

	‘post-step-hooks’ : for steps: after finishing recording the step.

	‘post-scan-hooks’ : after finishing the scan

See the code of hooked_scan
for a macro that demonstrates the use of the hook points of a scan.

Other examples of the hooks module
can be illustrative.

Also, note that the Taurus MacroExecutor widget allows the user to dynamically
add hooks to existing macros before execution.

More examples

Other macros in the examples module
illustrate more features of the scan framework.

See also the code of the standard scan macros in the
scan module.

Finally, the documentation and code of GScan,
SScan and
CScan may be helpful.

Writing controllers

This chapter provides the necessary information to write controllers in sardana.

An overview of the pool controller concept can be found
here.

The complete controller API can be found
here.

First, the common interface to all controller types is explained. After, a
detailed chapter will focus on each specific controller type:

	What is a controller

	How to write a motor controller

	How to write a counter/timer controller

	How to write a 0D controller

	How to write a 1D controller

	How to write a 2D controller

	How to write a trigger/gate controller

	How to write an I/O register controller

	How to write a pseudo motor controller

	How to write a pseudo counter controller

What is a controller

A controller in sardana is a piece of software capable of translating
between the sardana API and a specific hardware API. Sardana
expects a controller to obey a specific API in order to be able to
properly configure and operate with it. The hardware API used by the
controller could be anything, from a pure serial line to shared memory or a
remote server written in Tango [http://www.tango-controls.org/], Taco [http://www.esrf.eu/Infrastructure/Computing/TACO/] or even EPICS [http://www.aps.anl.gov/epics/].

Controllers can only be written in Python [http://www.python.org/] (in future also C++ will be
possible). A controller must be a class inheriting from one of the
existing controller types:

	
	MotorController

	CounterTimerController

	ZeroDController

	
	OneDController

	TwoDController

	IORegisterController

	
	TriggerGateController

	PseudoMotorController

	PseudoCounterController

A controller is designed to incorporate a set of generic individual elements.
Each element has a corresponding axis. For example, in a motor
controller the elements will be motors, but in a counter/timer controller the
elements will be experimental channels.

Some controller classes are designed to target a specific type of hardware.
Other classes of controllers, the pseudo classes, are designed to provide a
high level view over a set of underlying lower level controller elements.

We will focus first on writing low level hardware controllers since they
share some of the API and after on the pseudo controllers.

Controller - The basics

The first thing to do is to import the necessary symbols from sardana library.
As you will see, most symbols can be imported through the
sardana.pool.controller module:

import springfieldlib

from sardana.pool.controller import MotorController

class SpringfieldMotorController(MotorController):
 """A motor controller intended for demonstration purposes only"""
 pass

The common API to all low level controllers includes the set of methods
to:

	construct the controller

	add/delete a controller element 1

	obtain the state of controller element(s) 2

	define, set and get extra axis attributes

	define, set and get extra controller attributes

	define, set and get extra controller properties

In the following chapters the examples will be based on a motor controller
scenario.

The examples use a springfieldlib module which emulates a motor hardware
access library.

The springfieldlib can be downloaded from
here.

The Springfield motor controller can be downloaded from
here.

Constructor

The constructor consists of the
__init__() method. This method is
called when you create a new controller of that type and every time the sardana
server is started. It will also be called if the controller code has changed
on the file and the new code is reloaded into sardana.

It is NOT mandatory to override the __init__()
from MotorController . Do it only
if you need to add some initialization code. If you do it, it is very important
to follow the two rules:

	use the method signature: __init__(self, inst, props, *args, **kwargs)

	always call the super class constructor

The example shows how to implement a constructor for a motor controller:

class SpringfieldMotorController(MotorController):

 def __init__(self, inst, props, *args, **kwargs):
 super(SpringfieldMotorController, self).__init__(inst, props, *args, **kwargs)

 # initialize hardware communication
 self.springfield = springfieldlib.SpringfieldMotorHW()

 # do some initialization
 self._motors = {}

Add/Delete axis

Each individual element in a controller is called axis. An axis is represented
by a number. A controller can support one or more axes. Axis numbers don’t need
to be sequencial. For example, at one time you may have created for your motor
controller instance only axis 2 and 5.

Two methods are called when creating or removing an element from a controller.
These methods are AddDevice() and
DeleteDevice(). The
AddDevice() method is called when a
new axis belonging to the controller is created in sardana. The
DeleteDevice() method is
called when an axis belonging to the controller is removed from sardana.
These methods are also called when the sardana server is started and if the
controller code has changed on the file and the new code is reloaded into
sardana.

The example shows an example how to implement these methods on a motor
controller:

class SpringfieldMotorController(MotorController):

 def AddDevice(self, axis):
 self._motors[axis] = True

 def DeleteDevice(self, axis):
 del self._motor[axis]

Get axis state

To get the state of an axis, sardana calls the
StateOne() method. This method
receives an axis as parameter and should return either:

	state (State) or

	
	a sequence of two elements:

	
	state (State)

	status (str [https://docs.python.org/dev/library/stdtypes.html#str])

(For motor controller see get motor state):

The state should be a member of State (For backward
compatibility reasons, it is also supported to return one of
PyTango.DevState). The status could be any string.

If you return a State object, sardana will compose a
status string with:

<axis name> is in <state name>

Here is an example of the possible implementation of
StateOne() :

from sardana import State

class SpringfieldMotorController(MotorController):

 StateMap = {
 1 : State.On,
 2 : State.Moving,
 3 : State.Fault,
 }

 def StateOne(self, axis):
 springfield = self.springfield
 state = self.StateMap[springfield.getState(axis)]
 status = springfield.getStatus(axis)
 return state, status

Extra axis attributes

Each axis is associated a set of standard attributes. These attributes depend
on the type of controller (example, a motor will have velocity, acceleration but
a counter won’t).

Additionally, you can specify an additional set of extra attributes on each axis.

Lets suppose that a Springfield motor controller can do close loop on hardware.
We could define an extra motor attribute on each axis that (de)actives close
loop on demand.

The first thing to do is to specify which are the extra attributes.
This is done through the axis_attributes.
This is basically a dictionary where the keys are attribute names and the value
is a dictionary describing the folowing properties for each attribute:

	config. parameter

	Mandatory

	Key

	Default value

	Example

	data type & format

	Yes

	Type

	—

	int [https://docs.python.org/dev/library/functions.html#int]

	data access

	No

	Access

	ReadWrite

	ReadOnly

	description

	No

	Description

	“” (empty string)

	“the motor encoder source”

	default value

	No

	DefaultValue

	—

	12345

	getter method name

	No

	FGet

	“get” + <name>

	“getEncoderSource”

	setter method name

	No

	FSet

	“set” + <name>

	“setEncoderSource”

	memorize value

	No

	Memorize

	Memorized

	NotMemorized

	max dimension size

	No

	MaxDimSize

	Scalar: (); 1D: (2048,); 2D: (2048, 2048)

	(2048,)

Here is an example of how to specify the scalar, boolean, read-write CloseLoop
extra attribute in a Springfield motor controller:

from sardana import DataAccess
from sardana.pool.controller import Type, Description, DefaultValue, Access, FGet, FSet

class SpringfieldMotorController(MotorController):

 axis_attributes = {
 "CloseLoop" : {
 Type : bool,
 Description : "(de)activates the motor close loop algorithm",
 DefaultValue : False,
 },
 }

 def getCloseLoop(self, axis):
 return self.springfield.isCloseLoopActive(axis)

 def setCloseLoop(self, axis, value):
 self.springfield.setCloseLoop(axis, value)

When sardana needs to read the close loop value, it will first check if the
controller has the method specified by the FGet
keyword (we didn’t specify it in
axis_attributes so it defaults to
getCloseLoop). It will then call this controller method which
should return a value compatible with the attribute data type.

As an alternative, to avoid filling the controller code with pairs of get/set
methods, you can choose not to write the getCloseLoop and setCloseLoop methods.
This will trigger sardana to call the
GetAxisExtraPar()
/SetAxisExtraPar() pair of methods.
The disadvantage is you will end up with a forest of if [https://docs.python.org/dev/reference/compound_stmts.html#if] …
elif [https://docs.python.org/dev/reference/compound_stmts.html#elif] … else [https://docs.python.org/dev/reference/compound_stmts.html#else] statements. Here is the alternative
implementation:

from sardana import DataAccess
from sardana.pool.controller import Type, Description, DefaultValue, Access, FGet, FSet

class SpringfieldMotorController(MotorController):

 axis_attributes = {
 "CloseLoop" : {
 Type : bool,
 Description : "(de)activates the motor close loop algorithm",
 DefaultValue : False,
 },
 }

 def GetAxisExtraPar(self, axis, parameter):
 if parameter == 'CloseLoop':
 return self.springfield.isCloseLoopActive(axis)

 def SetAxisExtraPar(self, axis, parameter, value):
 if parameter == 'CloseLoop':
 self.springfield.setCloseLoop(axis, value)

Sardana gives you the choice: we leave it up to you to decide which is the
better option for your specific case.

Extra controller attributes

Besides extra attributes per axis, you can also define extra attributes at the
controller level.
In order to do that you have to specify the extra controller attribute(s) within
the ctrl_attributes member. The
syntax for this dictionary is the same as the one used for
axis_attributes.

Here is an example on how to specify a read-only float matrix attribute called
ReflectionMatrix at the controller level:

class SpringfieldMotorController(MotorController):

 ctrl_attributes = {
 "ReflectionMatrix" : {
 Type : ((float,),),
 Description : "The reflection matrix",
 Access : DataAccess.ReadOnly,
 },
 }

 def getReflectionMatrix(self):
 return ((1.0, 0.0), (0.0, 1.0))

Or, similar to what you can do with axis attributes:

class SpringfieldMotorController(MotorController):

 ctrl_attributes = \
 {
 "ReflectionMatrix" : {
 Type : ((float,),),
 Description : "The reflection matrix",
 Access : DataAccess.ReadOnly,
 },
 }

 def GetCtrlPar(self, name):
 if name == "ReflectionMatrix":
 return ((1.0, 0.0), (0.0, 1.0))

Extra controller properties

A more static form of attributes can be defined at the controller level.
These properties are loaded into the controller at the time of object
construction. They are accessible to your controller at any time but it is
not possible for a user from outside to modify them.
The way to define ctrl_properties is
very similar to the way you define extra axis attributes or extra controller
attributes.

Here is an example on how to specify a host and port properties:

class SpringfieldMotorController(MotorController):

 ctrl_properties = \
 {
 "host" : {
 Type : str,
 Description : "host name"
 },
 "port" : {
 Type : int,
 Description : "port number",
 DefaultValue: springfieldlib.SpringfieldMotorHW.DefaultPort
 },
 }

 def __init__(self, inst, props, *args, **kwargs):
 super(SpringfieldMotorController, self).__init__(inst, props, *args, **kwargs)

 host = self.host
 port = self.port

 # initialize hardware communication
 self.springfield = springfieldlib.SpringfieldMotorHW(host=host, port=port)

 # do some initialization
 self._motors = {}

As you can see from lines 15 and 16, to access your controller properties
simply use self.<property name>. Sardana assures that every property has a
value. In our case, when a SpringfieldMotorController is created, if port
property is not specified by the user (example: using the defctrl macro in
spock), sardana assignes the default value
springfieldlib.SpringfieldMotorHW.DefaultPort. On the other hand, since host
has no default value, if it is not specified by the user, sardana will complain
and fail to create and instance of SpringfieldMotorController.

Error handling

When you write a controller it is important to properly handle errors
(example: motor power overload, hit a limit switch, lost of communication with
the hardware).

These are the two basic sardana rules you should have in mind:

	The exceptions which are not handled by the controller are handled by sardana,
usually by re-raising the exception (when sardana runs as a Tango [http://www.tango-controls.org/] DS a
translation is done from the Python [http://www.python.org/] exception to a Tango [http://www.tango-controls.org/] exception).
The StateOne() method is handled a
little differently: the state is set to Fault and the status will contain
the exception information.

	When the methods which are supposed to return a value (like
GetAxisPar()) don’t return a value
compatible with the expected data type (including None [https://docs.python.org/dev/library/constants.html#None]) a
TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] exception is thrown.

In every method you should carefully choose how to do handle the possible
exceptions/errors.

Usually, catch and handle is the best technique since it is the code of your
controller which knows exactly the workings of the hardware. You can
discriminate errors and decide a proper handle for each. Essencially, this
technique consists of:

	catching the error (if an exception: with try [https://docs.python.org/dev/reference/compound_stmts.html#try] … except [https://docs.python.org/dev/reference/compound_stmts.html#except]
clause, if an expected return of a function: with a if [https://docs.python.org/dev/reference/compound_stmts.html#if] …
elif [https://docs.python.org/dev/reference/compound_stmts.html#elif] … else [https://docs.python.org/dev/reference/compound_stmts.html#else] statement, etc)

	raise a proper exception (could be the same exception that has been catched)
or, if in StateOne(), return the
apropriate error state (Fault, Alarm) and a descriptive status.

Here is an example: if the documentation of the underlying library says that:

reading the motor closeloop raises CommunicationFailed if it is not
possible to communicate with the Springfield hardware

reading the motor state raises MotorPowerOverload if the motors
has a power overload or a MotorTempTooHigh when the motor
temperature is too high

then you should handle the exception in the controller and return a proper
state information:

def getCloseLoop(self, axis):
 # Here the "proper exception" to raise in case of error is actually the
 # one that is raised from the springfield library so handling the
 # exception is transparent. Nice!
 return self.springfield.isCloseLoopActive(axis)

def StateOne(self, axis):
 springfield = self.springfield

 try:
 state = self.StateMap[springfield.getState(axis)]
 status = springfield.getStatus(axis)
 except springfieldlib.MotorPowerOverload:
 state = State.Fault
 status = "Motor has a power overload"
 except springfieldlib.MotorTempTooHigh:
 temp = springfield.getTemperature(axis)
 state = State.Alarm
 status = "Motor temperature is too high (%f degrees)" % temp

 limit_switches = MotorController.NoLimitSwitch
 hw_limit_switches = springfield.getLimits(axis)
 if hw_limit_switches[0]:
 limit_switches |= MotorController.HomeLimitSwitch
 if hw_limit_switches[1]:
 limit_switches |= MotorController.UpperLimitSwitch
 if hw_limit_switches[2]:
 limit_switches |= MotorController.LowerLimitSwitch
 return state, status, limit_switches

Hiding the exception is usually a BAD technique since it prevents the user
from finding what was the cause of the problem. You should only use it in
extreme cases (example: if there is a bug in sardana which crashes the server
if you try to properly raise an exception, then you can temporarely use
this technique until the bug is solved).

Example:

def getCloseLoop(self, axis):
 # BAD error handling technique
 try:
 return self.springfield.isCloseLoopActive(axis)
 except:
 pass

Footnotes

	1

	Pseudo controllers don’t need to manage their individual axis. Therefore,
for pseudos you will not implement these methods

	2

	For pseudo controllers, sardana will calculate the state of each pseudo
axis based on the state of the elements that serve as input to the
pseudo controller. Therefore, for pseudos you will not implement these
methods

How to write a motor controller

The basics

An example of a hypothetical Springfield motor controller will be build
incrementally from scratch to aid in the explanation.

By now you should have read the general controller basics chapter. You should
now have a MotorController with a proper constructor, add and delete axis methods:

import springfieldlib

from sardana.pool.controller import MotorController

class SpringfieldMotorController(MotorController):

 def __init__(self, inst, props, *args, **kwargs):
 super(SpringfieldMotorController, self).__init__(inst, props, *args, **kwargs)

 # initialize hardware communication
 self.springfield = springfieldlib.SpringfieldMotorHW()

 # do some initialization
 self._motors = {}

 def AddDevice(self, axis):
 self._motors[axis] = True

 def DeleteDevice(self, axis):
 del self._motor[axis]

The get axis state method has some details that will be explained below.

The examples use a springfieldlib module which emulates a motor hardware
access library.

The springfieldlib can be downloaded from
here.

The Springfield motor controller can be downloaded from
here.

The following code describes a minimal Springfield base motor controller
which is able to return both the state and position of a motor as well as move
a motor to the desired position:

class SpringfieldBaseMotorController(MotorController):
 """The most basic controller intended from demonstration purposes only.
 This is the absolute minimum you have to implement to set a proper motor
 controller able to get a motor position, get a motor state and move a
 motor.

 This example is so basic that it is not even directly described in the
 documentation"""

 MaxDevice = 128

 def __init__(self, inst, props, *args, **kwargs):
 """Constructor"""
 super(SpringfieldBaseMotorController, self).__init__(
 inst, props, *args, **kwargs)
 self.springfield = springfieldlib.SpringfieldMotorHW()

 def ReadOne(self, axis):
 """Get the specified motor position"""
 return self.springfield.getPosition(axis)

 def StateOne(self, axis):
 """Get the specified motor state"""
 springfield = self.springfield
 state = springfield.getState(axis)
 if state == 1:
 return State.On, "Motor is stopped"
 elif state == 2:
 return State.Moving, "Motor is moving"
 elif state == 3:
 return State.Fault, "Motor has an error"

 def StartOne(self, axis, position):
 """Move the specified motor to the specified position"""
 self.springfield.move(axis, position)

 def StopOne(self, axis):
 """Stop the specified motor"""
 self.springfield.stop(axis)

This code is shown only to demonstrate the minimal controller API.
The advanced motor controller chapters describe how to account for more complex
behaviour like reducing the number of hardware accesses or synchronize motion of
multiple motors.

Get motor state

To get the state of a motor, sardana calls the
StateOne() method. This method
receives an axis as parameter and should return either:

	state (State) or

	
	a sequence of two elements:

	
	state (State)

	status (str [https://docs.python.org/dev/library/stdtypes.html#str]) or limit switches (int [https://docs.python.org/dev/library/functions.html#int])

	
	a sequence of three elements:

	
	state (State)

	status (str [https://docs.python.org/dev/library/stdtypes.html#str])

	limit switches (int [https://docs.python.org/dev/library/functions.html#int])

The state should be a member of State (For backward
compatibility reasons, it is also supported to return one of
PyTango.DevState). The status could be any string. The limit switches
is a integer with bits representing the three possible limits: home, upper
and lower. Sardana provides three constants which can be ored together to
provide the desired limit switch:

	
	NoLimitSwitch

	
	HomeLimitSwitch

	
	UpperLimitSwitch

	
	LowerLimitSwitch

To say both home and lower limit switches are active (rare!) you can do:

limit_switches = MotorController.HomeLimitSwitch | MotorController.LowerLimitSwitch

If you don’t return a status, sardana will compose a status string with:

<axis name> is in <state name>

If you don’t return limit switches, sardana will assume all limit switches are
off.

Here is an example of the possible implementation of
StateOne():

from sardana import State

class SpringfieldMotorController(MotorController):

 StateMap = {
 1 : State.On,
 2 : State.Moving,
 3 : State.Fault,
 }

 def StateOne(self, axis):
 springfield = self.springfield
 state = self.StateMap[springfield.getState(axis)]
 status = springfield.getStatus(axis)

 limit_switches = MotorController.NoLimitSwitch
 hw_limit_switches = springfield.getLimits(axis)
 if hw_limit_switches[0]:
 limit_switches |= MotorController.HomeLimitSwitch
 if hw_limit_switches[1]:
 limit_switches |= MotorController.UpperLimitSwitch
 if hw_limit_switches[2]:
 limit_switches |= MotorController.LowerLimitSwitch
 return state, status, limit_switches

Get motor position

To get the motor position, sardana calls the
ReadOne() method. This method
receives an axis as parameter and should return a valid position. Sardana
interprets the returned position as a dial position.

Here is an example of the possible implementation of
ReadOne():

class SpringfieldMotorController(MotorController):

 def ReadOne(self, axis):
 position = self.springfield.getPosition(axis)
 return position

Move a motor

When an order comes for sardana to move a motor, sardana will call the
StartOne() method. This method receives
an axis and a position. The controller code should trigger the hardware motion.
The given position is always the dial position.

Here is an example of the possible implementation of
StartOne():

class SpringfieldMotorController(MotorController):

 def StartOne(self, axis, position):
 self.springfield.move(axis, position)

As soon as StartOne() is invoked,
sardana expects the motor to be moving. It enters a high frequency motion
loop which asks for the motor state through calls to
StateOne(). It will keep the loop
running as long as the controller responds with State.Moving.
If StateOne() raises an exception
or returns something other than State.Moving, sardana will assume the motor
is stopped and exit the motion loop.

For a motion to work properly, it is therefore, very important that
StateOne() responds correctly.

Stop a motor

It is possible to stop a motor when it is moving. When sardana is ordered to
stop a motor motion, it invokes the StopOne()
method. This method receives an axis parameter. The controller should make
sure the desired motor is gracefully stopped, if possible, respecting the
configured motion parameters (like deceleration and base_rate).

Here is an example of the possible implementation of
StopOne():

class SpringfieldMotorController(MotorController):

 def StopOne(self, axis):
 self.springfield.stop(axis)

Abort a motor

In a danger situation (motor moving a table about to hit a wall), it is
desirable to abort a motion as fast as possible. When sardana is ordered to
abort a motor motion, it invokes the AbortOne()
method. This method receives an axis parameter. The controller should make
sure the desired motor is stopped as fast as it can be done, possibly losing
track of position.

Here is an example of the possible implementation of
AbortOne():

class SpringfieldMotorController(MotorController):

 def AbortOne(self, axis):
 self.springfield.abort(axis)

Note

The default implementation of StopOne()
calls AbortOne() so, if your
controller cannot distinguish stopping from aborting, it is sufficient
to implement AbortOne().

Standard axis attributes

By default, sardana expects every axis to have a set of attributes:

	acceleration

	deceleration

	velocity

	base rate

	steps per unit

To set and retrieve the value of these attributes, sardana invokes pair of
methods: GetAxisPar()
/SetAxisPar()

Here is an example of the possible implementation:

class SpringfieldMotorController(MotorController):

 def GetAxisPar(self, axis, name):
 springfield = self.springfield
 name = name.lower()
 if name == "acceleration":
 v = springfield.getAccelerationTime(axis)
 elif name == "deceleration":
 v = springfield.getDecelerationTime(axis)
 elif name == "base_rate":
 v = springfield.getMinVelocity(axis)
 elif name == "velocity":
 v = springfield.getMaxVelocity(axis)
 elif name == "step_per_unit":
 v = springfield.getStepPerUnit(axis)
 return v

 def SetAxisPar(self, axis, name, value):
 springfield = self.springfield
 name = name.lower()
 if name == "acceleration":
 springfield.setAccelerationTime(axis, value)
 elif name == "deceleration":
 springfield.setDecelerationTime(axis, value)
 elif name == "base_rate":
 springfield.setMinVelocity(axis, value)
 elif name == "velocity":
 springfield.setMaxVelocity(axis, value)
 elif name == "step_per_unit":
 springfield.setStepPerUnit(axis, value)

See also

	What to do when…

	What to do when your hardware motor controller doesn’t support
steps per unit

Define a position

Sometimes it is useful to reset the current position to a certain value.
Imagine you are writing a controller for a hardware controller which handles
stepper motors. When the hardware is asked for a motor position it will
probably answer some value from an internal register which is
incremented/decremented each time the motor goes up/down a step. Probably this
value as physical meaning so the usual procedure is to move the motor to a known
position (home switch, for example) and once there, set a meaningful position to
the current position. Some motor controllers support reseting the internal
register to the desired value. If your motor controller can do this the
implementation is as easy as writing the
DefinePosition() and call the
proper code of your hardware library to do it:

class SpringfieldMotorController(MotorController):

 def DefinePosition(self, axis, position):
 self.springfield.setCurrentPosition(axis, position)

See also

What to do when…

What to do when your hardware motor controller doesn’t support
defining the position

What to do when…

This chapter describes common difficult situations you may face when writing
a motor controller in sardana, and possible solutions to solve them.

	my controller doesn’t support steps per unit

	Many (probably, most) hardware motor controllers don’t support steps per
unit at the hardware level. This means that your sardana controller should
be able to emulate steps per unit at the software level.
This can be easily done, but it requires you to make some changes in your
code.

We will assume now that the Springfield motor controller doesn’t support
steps per unit feature. The first that needs to be done is to modify the
AddDevice() method so it is able to
to store the resulting conversion factor between the hardware read position
and the position the should be returned (the step_per_unit).
The ReadOne() also needs to be
rewritten to make the proper calculation.
Finally GetAxisPar() /
SetAxisPar() methods need to
be rewritten to properly get/set the step per unit value:

class SpringfieldMotorController(MotorController):

 def AddDevice(self, axis):
 self._motor[axis] = dict(step_per_unit=1.0)

 def ReadOne(self, axis):
 step_per_unit = self._motor[axis]["step_per_unit"]
 position = self.springfield.getPosition(axis)
 return position / step_per_unit

 def GetAxisPar(self, axis, name):
 springfield = self.springfield
 name = name.lower()
 if name == "acceleration":
 v = springfield.getAccelerationTime(axis)
 elif name == "deceleration":
 v = springfield.getDecelerationTime(axis)
 elif name == "base_rate":
 v = springfield.getMinVelocity(axis)
 elif name == "velocity":
 v = springfield.getMaxVelocity(axis)
 elif name == "step_per_unit":
 v = self._motor[axis]["step_per_unit"]
 return v

 def SetAxisPar(self, axis, name, value):
 springfield = self.springfield
 name = name.lower()
 if name == "acceleration":
 springfield.setAccelerationTime(axis, value)
 elif name == "deceleration":
 springfield.setDecelerationTime(axis, value)
 elif name == "base_rate":
 springfield.setMinVelocity(axis, value)
 elif name == "velocity":
 springfield.setMaxVelocity(axis, value)
 elif name == "step_per_unit":
 self._motor[axis]["step_per_unit"] = value

	my controller doesn’t support defining the position

	Some controllers may not be able to reset the position to a different value.
In these cases, your controller code should be able to emulate such a
feature. This can be easily done, but it requires you to make some changes
in your code.

We will now assume that the Springfield motor controller doesn’t support
steps per unit feature. The first thing that needs to be done is to modify the
AddDevice() method so it is able
to store the resulting offset between the hardware read position and the
position the should be returned (the define_position_offset).
The ReadOne() also needs to be
rewritten to take the define_position_offset into account.
Finally DefinePosition()
needs to be written to update the define_position_offset to the desired
value:

class SpringfieldMotorController(MotorController):

 def AddDevice(self, axis):
 self._motor[axis] = dict(define_position_offset=0.0)

 def ReadOne(self, axis):
 dp_offset = self._motor[axis]["define_position_offset"]
 position = self.springfield.getPosition(axis)
 return position + dp_offset

 def DefinePosition(self, axis, position):
 current_position = self.springfield.getPosition(axis)
 self._motor[axis]["define_position_offset"] = position - current_position

Advanced topics

Timestamp a motor position

When you read the position of a motor from the hardware sometimes it is
necessary to associate a timestamp with that position so you can track the
position of a motor in time.

If sardana is executed as a Tango device server, reading the position
attribute from the motor device triggers the execution of your controller’s
ReadOne() method. Tango responds with
the value your controller returns from the call to
ReadOne() and automatically assigns
a timestamp. However this timestamp has a certain delay since the time the
value was actually read from hardware and the time Tango generates the timestamp.

To avoid this, sardana supports returning in
ReadOne() an object that contains both
the value and the timestamp instead of the usual numbers.Number [https://docs.python.org/dev/library/numbers.html#numbers.Number].
The object must be an instance of SardanaValue.

Here is an example of associating a timestamp in
ReadOne():

import time
from sardana.pool.controller import SardanaValue

class SpringfieldMotorController(MotorController):

 def ReadOne(self, axis):
 return SardanaValue(value=self.springfield.getPosition(axis),
 timestamp=time.time())

If your controller communicates with a Tango device, Sardana also supports
returning a DeviceAttribute object. Sardana will use this
object’s value and timestamp. Example:

class TangoMotorController(MotorController):

 def ReadOne(self, axis):
 return self.device.read_attribute("position")

Multiple motion synchronization

This chapter describes an extended API that allows you to better
synchronize motions involing more than one motor, as well as optimize
hardware communication (in case the hardware interface also supports this).

Often it is the case that the experiment/procedure the user runs requires to
move more than one motor at the same time.
Imagine that the user requires motor at axis 1 to be moved to 100mm and motor
axis 2 to be moved to -20mm.
Your controller will receive two consecutive calls to
StartOne():

StartOne(1, 100)
StartOne(2, -20)

and each StartOne will probably connect to the hardware (through serial line,
socket, Tango [http://www.tango-controls.org/] or EPICS [http://www.aps.anl.gov/epics/]) and ask the motor to be moved.
This will do the job but, there will be a slight desynchronization between the
two motors because hardware call of motor 1 will be done before hardware call
to motor 2.

Sardana provides an extended start motion which gives you the possibility
to improve the syncronization (and probably reduce communications) but your
hardware controller must somehow support this feature as well.

The complete start motion API consists of four methods:

	PreStartAll()

	PreStartOne()

	StartOne()

	StartAll()

Except for StartOne(), the
implemenation of all other start methods is optional and their default
implementation does nothing (PreStartOne()
actually returns True).

So, actually, the complete algorithm for motor motion in sardana is:

/FOR/ Each controller(s) implied in the motion
 - Call PreStartAll()
/END FOR/

/FOR/ Each motor(s) implied in the motion
 - ret = PreStartOne(motor to move, new position)
 - /IF/ ret is not true
 /RAISE/ Cannot start. Motor PreStartOne returns False
 - /END IF/
 - Call StartOne(motor to move, new position)
/END FOR/

/FOR/ Each controller(s) implied in the motion
 - Call StartAll()
/END FOR/

So, for the example above where we move two motors, the complete sequence of
calls to the controller is:

PreStartAll()

if not PreStartOne(1, 100):
 raise Exception("Cannot start. Motor(1) PreStartOne returns False")
if not PreStartOne(2, -20):
 raise Exception("Cannot start. Motor(2) PreStartOne returns False")

StartOne(1, 100)
StartOne(2, -20)

StartAll()

Sardana assures that the above sequence is never interrupted by other calls,
like a call from a different user to get motor state.

Suppose the springfield library tells us in the documentation that:

… to move multiple motors at the same time use:

moveMultiple(seq<pair<axis, position>>)

Example:

moveMultiple([[1, 100], [2, -20]])

We can modify our motor controller to take profit of this hardware feature:

class SpringfieldMotorController(MotorController):

 def PreStartAll(self):
 # clear the local motion information dictionary
 self._moveable_info = []

 def StartOne(self, axis, position):
 # store information about this axis motion
 motion_info = axis, position
 self._moveable_info.append(motion_info)

 def StartAll(self):
 self.springfield.moveMultiple(self._moveable_info)

In case of stopping/aborting of the motors (or any other stoppable/abortable
elements) the synchronization may be as important as in case of starting
them. Let’s take an example of a motorized two-legged table and its
translational movement. A desynchronized stop/abort of the motors may introduce
an extra angle of the table that in very specific cases may be not desired e.g.
activation of the safety limits, closed loop errors, etc.

In this case the complete algorithm for stopping/aborting the motor motion in
sardana is:

/FOR/ Each controller(s) implied in the motion

 - Call PreStopAll()

 /FOR/ Each motor of the given controller implied in the motion
 - ret = PreStopOne(motor to stop)
 - /IF/ ret is not true
 /RAISE/ Cannot stop. Motor PreStopOne returns False
 - /END IF/
 - Call StopOne(motor to stop)
 /END FOR/

 - Call StopAll()

/END FOR/

Each of the hardware controller method calls is protected in case of errors
so the stopping/aborting algorithm tries to stop/abort as many axes/controllers.

A similar principle applies when sardana asks for the state and position of
multiple axis. The two sets of methods are, in these cases:

	
	PreStateAll()

	PreStateOne()

	StateAll()

	StateOne()

	
	PreReadAll()

	PreReadOne()

	ReadAll()

	ReadOne()

The main differences between these sets of methods and the ones from start motion
is that StateOne() /
ReadOne() methods are called AFTER
the corresponding StateAll() /
ReadAll() counterparts and they are
expeced to return the state/position of the requested axis.

The internal sardana algorithm to read position is:

/FOR/ Each controller(s) implied in the reading (executed concurrently)

 - Call PreReadAll()

 /FOR/ Each motor(s) of the given controller implied in the reading
 - PreReadOne(motor to read)
 /END FOR/

 - Call ReadAll()

 /FOR/ Each motor(s) of the given controller implied in the reading
 - ReadOne(motor to read)
 /END FOR/

/END FOR/

Here is an example assuming the springfield library tells us in the
documentation that:

… to read the position of multiple motors at the same time use:

getMultiplePosition(seq<axis>) -> dict<axis, position>

Example:

positions = getMultiplePosition([1, 2])

The new improved code could look like this:

class SpringfieldMotorController(MotorController):

 def PreRealAll(self):
 # clear the local position information dictionary
 self._position_info = []

 def PreReadOne(self, axis):
 self._position_info.append(axis)

 def ReadAll(self):
 self._positions = self.springfield.getMultiplePosition(self._position_info)

 def ReadOne(self, axis):
 return self._positions[axis]

How to write a counter/timer controller

The basics

An example of a hypothetical Springfield counter/timer controller will be build
incrementally from scratch to aid in the explanation.

By now you should have read the general controller basics chapter. You should
be able to create a CounterTimerController with:

	a proper constructor,

	add and delete axis methods

	get axis state

import springfieldlib

from sardana.pool.controller import CounterTimerController

class SpringfieldCounterTimerController(CounterTimerController):

 def __init__(self, inst, props, *args, **kwargs):
 super(SpringfieldCounterTimerController, self).__init__(inst, props, *args, **kwargs)

 # initialize hardware communication
 self.springfield = springfieldlib.SpringfieldCounterHW()

 # do some initialization
 self._counters = {}

 def AddDevice(self, axis):
 self._counters[axis] = True

 def DeleteDevice(self, axis):
 del self._counters[axis]

 StateMap = {
 1 : State.On,
 2 : State.Moving,
 3 : State.Fault,
 }

 def StateOne(self, axis):
 springfield = self.springfield
 state = self.StateMap[springfield.getState(axis)]
 status = springfield.getStatus(axis)
 return state, status

The examples use a springfieldlib module which emulates a counter/timer
hardware access library.

The springfieldlib can be downloaded from
here.

The Springfield counter/timer controller can be downloaded from
here.

The following code describes a minimal Springfield base counter/timer controller
which is able to return both the state and value of an individual counter as
well as to start an acquisition:

class SpringfieldBaseCounterTimerController(CounterTimerController):
 """The most basic controller intended from demonstration purposes only.
 This is the absolute minimum you have to implement to set a proper counter
 controller able to get a counter value, get a counter state and do an
 acquisition.

 This example is so basic that it is not even directly described in the
 documentation"""

 def __init__(self, inst, props, *args, **kwargs):
 """Constructor"""
 super(SpringfieldBaseCounterTimerController,
 self).__init__(inst, props, *args, **kwargs)
 self.springfield = springfieldlib.SpringfieldCounterHW()

 def ReadOne(self, axis):
 """Get the specified counter value"""
 return self.springfield.getValue(axis)

 def StateOne(self, axis):
 """Get the specified counter state"""
 springfield = self.springfield
 state = springfield.getState(axis)
 if state == 1:
 return State.On, "Counter is stopped"
 elif state == 2:
 return State.Moving, "Counter is acquiring"
 elif state == 3:
 return State.Fault, "Counter has an error"

 def StartOne(self, axis, value=None):
 """acquire the specified counter"""
 self.springfield.StartChannel(axis)

 def LoadOne(self, axis, value, repetitions):
 self.springfield.LoadChannel(axis, value)

 def StopOne(self, axis):
 """Stop the specified counter"""
 self.springfield.stop(axis)

Get counter state

To get the state of a counter, sardana calls the
StateOne() method. This method
receives an axis as parameter and should return either:

	state (State) or

	
	a sequence of two elements:

	
	state (State)

	status (str [https://docs.python.org/dev/library/stdtypes.html#str])

The state should be a member of State (For backward
compatibility reasons, it is also supported to return one of
PyTango.DevState). The status could be any string.

Load a counter

To load a counter with either the integration time or the monitor counts,
sardana calls the LoadOne() method.
This method receives axis, value and repetitions parameters. For the moment
let’s focus on the first two of them.

Here is an example of the possible implementation of
LoadOne():

class SpringfieldCounterTimerController(CounterTimerController):

 def LoadOne(self, axis, value, repetitions):
 self.springfield.LoadChannel(axis, value)

Get counter value

To get the counter value, sardana calls the
ReadOne() method. This method
receives an axis as parameter and should return a valid counter value. Sardana
notifies the pseudo counters about the new counter value so they can be updated
(see Pseudo counter overview for more details).

Here is an example of the possible implementation of
ReadOne():

class SpringfieldCounterTimerController(CounterTimerController):

 def ReadOne(self, axis):
 value = self.springfield.getValue(axis)
 return value

Start a counter

When an order comes for sardana to start a counter, sardana will call the
StartOne() method. This method receives
an axis as parameter. The controller code should trigger the hardware acquisition.

Here is an example of the possible implementation of
StartOne():

class SpringfieldCounterTimerController(CounterTimerController):

 def StartOne(self, axis, value):
 self.springfield.StartChannel(axis)

As soon as StartOne() is invoked,
sardana expects the counter to be acquiring. It enters a high frequency acquisition
loop which asks for the counter state through calls to
StateOne(). It will keep the loop
running as long as the controller responds with State.Moving.
If StateOne() raises an exception
or returns something other than State.Moving, sardana will assume the counter
is stopped and exit the acquisition loop.

For an acquisition to work properly, it is therefore, very important that
StateOne() responds correctly.

Stop a counter

It is possible to stop a counter when it is acquiring. When sardana is ordered to
stop a counter acquisition, it invokes the StopOne()
method. This method receives an axis parameter. The controller should make
sure the desired counter is gracefully stopped.

Here is an example of the possible implementation of
StopOne():

class SpringfieldCounterTImerController(CounterTimerController):

 def StopOne(self, axis):
 self.springfield.StopChannel(axis)

Abort a counter

In an emergency situation, it is desirable to abort an acquisition
as fast as possible. When sardana is ordered to abort a counter acquisition,
it invokes the AbortOne()
method. This method receives an axis parameter. The controller should make
sure the desired counter is stopped as fast as it can be done.

Here is an example of the possible implementation of
AbortOne():

class SpringfieldCounterTimerController(CounterTimerController):

 def AbortOne(self, axis):
 self.springfield.AbortChannel(axis)

Timer and monitor roles

Usually counters can work in either of two modes: timer or monitor. In both of
them, one counter in a group is assigned a special role to control when
the rest of them should stop counting. The stopping condition is based on the
integration time in case of the timer or on the monitor counts in case of the
monitor. The assignment of this special role is based on the measurement group
Configuration. The controller receives
this configuration (axis number) via the controller parameter timer
and monitor. The currently used acquisition mode is set via the controller
parameter acquisition_mode.

Advanced topics

Timestamp a counter value

When you read the value of a counter from the hardware sometimes it is
necessary to associate a timestamp with that value so you can track the
value of a counter in time.

If sardana is executed as a Tango device server, reading the value
attribute from the counter device triggers the execution of your controller’s
ReadOne() method. Tango responds with
the value your controller returns from the call to
ReadOne() and automatically assigns
a timestamp. However this timestamp has a certain delay since the time the
value was actually read from hardware and the time Tango generates the timestamp.

To avoid this, sardana supports returning in
ReadOne() an object that contains both
the value and the timestamp instead of the usual numbers.Number [https://docs.python.org/dev/library/numbers.html#numbers.Number].
The object must be an instance of SardanaValue.

Here is an example of associating a timestamp in
ReadOne():

import time
from sardana.pool.controller import SardanaValue

class SpringfieldCounterTimerController(CounterTimerController):

 def ReadOne(self, axis):
 return SardanaValue(value=self.springfield.getValue(axis),
 timestamp=time.time())

If your controller communicates with a Tango device, Sardana also supports
returning a DeviceAttribute object. Sardana will use this
object’s value and timestamp. Example:

class TangoCounterTimerController(CounterTimerController):

 def ReadOne(self, axis):
 return self.device.read_attribute("value")

Multiple acquisition synchronization

This chapter describes an extended API that allows you to better
synchronize acquisitions involving more than one counter, as well as optimize
hardware communication (in case the hardware interface also supports this).

Often it is the case that the experiment/procedure the user runs requires to
acquire more than one counter at the same time
(see Measurement group overview).
Imagine that the user requires counter at axis 1 and counter at axis 2 to be
acquired.
Your controller will receive two consecutive calls to
StartOne():

StartOne(1)
StartOne(2)

and each StartOne will probably connect to the hardware (through serial line,
socket, Tango [http://www.tango-controls.org/] or EPICS [http://www.aps.anl.gov/epics/]) and ask the counter to be started.
This will do the job but, there will be a slight desynchronization between the
two counters because hardware call of counter 1 will be done before hardware call
to counter 2.

Sardana provides an extended start acquisition which gives you the possibility
to improve the synchronization (and probably reduce communications) but your
hardware controller must somehow support this feature as well.

The complete start acquisition API consists of four methods:

	PreStartAll()

	PreStartOne()

	StartOne()

	StartAll()

Except for StartOne(), the
implementation of all other start methods is optional and their default
implementation does nothing (PreStartOne()
actually returns True).

So, actually, a simplified algorithm for counter acquisition start in sardana is:

/FOR/ Each controller(s) implied in the acquisition
 - Call PreStartAll()
/END FOR/

/FOR/ Each counter(s) implied in the acquisition
 - ret = PreStartOne(counter to acquire, new position)
 - /IF/ ret is not true
 /RAISE/ Cannot start. Counter PreStartOne returns False
 - /END IF/
 - Call StartOne(counter to acquire, new position)
/END FOR/

/FOR/ Each controller(s) implied in the acquisition
 - Call StartAll()
/END FOR/

So, for the example above where we acquire two counters, the complete sequence of
calls to the controller is:

PreStartAll()

if not PreStartOne(1):
 raise Exception("Cannot start. Counter(1) PreStartOne returns False")
if not PreStartOne(2):
 raise Exception("Cannot start. Counter(2) PreStartOne returns False")

StartOne(1)
StartOne(2)

StartAll()

Sardana assures that the above sequence is never interrupted by other calls,
like a call from a different user to get counter state.

Suppose the springfield library tells us in the documentation that:

… to acquire multiple counters at the same time use:

startCounters(seq<axis>)

Example:

startCounters([1, 2])

We can modify our counter controller to take profit of this hardware feature:

class SpringfieldCounterTimerController(MotorController):

 def PreStartAll(self):
 # clear the local acquisition information dictionary
 self._counters_info = []

 def StartOne(self, axis):
 # store information about this axis motion
 self._counters_info.append(axis)

 def StartAll(self):
 self.springfield.startCounters(self._counters_info)

Hardware synchronization

The synchronization achieved in Multiple acquisition synchronization
may not be enough when it comes to acquiring with multiple controllers at the
same time or to executing multiple acquisitions in a row.
Some of the controllers can be synchronized on an external hardware
event and in this case several important aspects needs to be taken into account.

Synchronization type

First of all the controller needs to know which type of synchronization will
be used. This is assigned on the measurement group
Configuration level. The controller
receives one of the AcqSynch values via the
controller parameter synchronization.

The selected mode will change the behavior of the counter after the
StartOne() is invoked. In case one of
the software modes was selected, the counter will immediately start acquiring.
In case one of the hardware modes was selected, the counter will immediately
get armed for the hardware events, and will wait with the acquisition until they
occur.

Here is an example of the possible implementation of
SetCtrlPar():

from sardana.pool import AcqSynch

class SpringfieldCounterTimerController(CounterTimerController):

 SynchMap = {
 AcqSynch.SoftwareTrigger : 1,
 AcqSynch.SoftwareGate : 2,
 AcqSynch.HardwareTrigger: 3,
 AcqSynch.HardwareGate: 4
 }

 def SetCtrlPar(self, name, value):
 super(SpringfieldMotorController, self).SetCtrlPar(name, value)
 synchronization = SynchMap[value]
 if name == "synchronization":
 self.springfield.SetSynchronization(synchronization)

Multiple acquisitions

It is a very common scenario to execute multiple hardware synchronized
acquisitions in a row. One example of this type of measurements are the
Continuous scans. The controller receives the number of
acquisitions via the third argument of the
LoadOne() method.

Here is an example of the possible implementation of
LoadOne():

class SpringfieldCounterTimerController(CounterTimerController):

 def LoadOne(self, axis, value, repetitions):
 self.springfield.LoadChannel(axis, value)
 self.springfield.SetRepetitions(repetitions)
 return value

Get counter values

During the hardware synchronized acquisitions the counter values are usually
stored in the hardware buffers. Sardana enters a high frequency acquisition loop
after the StartOne() is invoked
which, apart of asking for the counter state through calls to the
StateOne() method, will try to retrieve
the counter values using the ReadOne() method.
It will keep the loop running as long as the controller responds with State.Moving.
Sardana executes one extra readout after the state has changed in order to retrieve
the final counter values.

The ReadOne() method is used indifferently
of the selected synchronization but its return values should depend on it and
can be:

	a single counter value: either float [https://docs.python.org/dev/library/functions.html#float] or SardanaValue
in case of the SoftwareTrigger or
SoftwareGate synchronization

	a sequence of counter values: either float [https://docs.python.org/dev/library/functions.html#float] or SardanaValue
in case of the HardwareTrigger or
HardwareGate synchronization

Sardana assumes that the counter values are returned in the order of acquisition
and that there are no gaps in between them.

Todo

document how to skip the readouts while acquiring

How to write a 0D controller

Todo

complete 0D controller howto

Get 0D state

To get the state of a 0D, sardana calls the
StateOne() method. During the
acquisition loop this method is called only once when it is about to
exit. This method receives an axis as parameter and should return either:

	state (State) or

	
	a sequence of two elements:

	
	state (State)

	status (str [https://docs.python.org/dev/library/stdtypes.html#str])

The state should be a member of State (For backward
compatibility reasons, it is also supported to return one of
PyTango.DevState). The status could be any string.

If you don’t return a status, sardana will compose a status string with:

<axis name> is in <state name>

The controller could return on of the four states On, Alarm, Fault
or Unknown. Apart of that sardana could set Moving or Fault state
to the 0D. The Moving state is set during the acquisition loop to indicate that
it is acquiring data. The Fault state is set when the controller software is
not available (impossible to load it).
The controller should return Fault if a fault is reported from the hardware
controller or if the controller software returns an unforeseen state.
The controller should return Unknown state if an exception occurs during the
communication between the pool and the hardware controller.

How to write a 1D controller

The basics

Todo

document 1D controller howto

How to write a 2D controller

The basics

Todo

document 2D controller howto

How to write a trigger/gate controller

The basics

An example of a hypothetical Springfield trigger/gate controller will be build
incrementally from scratch to aid in the explanation.

By now you should have read the general controller basics chapter. You should
be able to create a TriggerGateController with:

	a proper constructor

	add and delete axis methods

	get axis state

import springfieldlib

from sardana.pool.controller import TriggerGateController

class SpringfieldTriggerGateController(TriggerGateController):

 def __init__(self, inst, props, *args, **kwargs):
 super(SpringfieldTriggerGateController, self).__init__(inst, props, *args, **kwargs)

 # initialize hardware communication
 self.springfield = springfieldlib.SpringfieldTriggerHW()

 # do some initialization
 self._triggers = {}

 def AddDevice(self, axis):
 self._triggers[axis] = True

 def DeleteDevice(self, axis):
 del self._triggers[axis]

 StateMap = {
 1 : State.On,
 2 : State.Moving,
 3 : State.Fault,
 }

 def StateOne(self, axis):
 springfield = self.springfield
 state = self.StateMap[springfield.getState(axis)]
 status = springfield.getStatus(axis)
 return state, status

The examples use a springfieldlib module which emulates a trigger/gate
hardware access library.

The springfieldlib can be downloaded from
here.

The Springfield trigger/gate controller can be downloaded from
here.

The following code describes a minimal Springfield base trigger/gate controller
which is able to return the state of an individual trigger as well as to start
a synchronization:

class SpringfieldBaseTriggerGateController(TriggerGateController):
 """The most basic controller intended from demonstration purposes only.
 This is the absolute minimum you have to implement to set a proper trigger
 controller able to get a trigger value, get a trigger state and do an
 acquisition.

 This example is so basic that it is not even directly described in the
 documentation"""

 def __init__(self, inst, props, *args, **kwargs):
 """Constructor"""
 super(SpringfieldBaseTriggerGateController, self).__init__(
 inst, props, *args, **kwargs)
 self.springfield = springfieldlib.SpringfieldTriggerHW()

 def StateOne(self, axis):
 """Get the specified trigger state"""
 springfield = self.springfield
 state = springfield.getState(axis)
 if state == 1:
 return State.On, "Trigger is stopped"
 elif state == 2:
 return State.Moving, "Trigger is running"
 elif state == 3:
 return State.Fault, "Trigger has an error"

 def StartOne(self, axis, value=None):
 """acquire the specified trigger"""
 self.springfield.StartChannel(axis)

 def SynchOne(self, axis, synchronization):
 self.springfield.SynchChannel(axis, synchronization)

 def StopOne(self, axis):
 """Stop the specified trigger"""
 self.springfield.stop(axis)

Get trigger state

To get the state of a trigger, sardana calls the
StateOne() method. This method
receives an axis as parameter and should return either:

	state (State) or

	
	a sequence of two elements:

	
	state (State)

	status (str [https://docs.python.org/dev/library/stdtypes.html#str])

The state should be a member of State (For backward
compatibility reasons, it is also supported to return one of
PyTango.DevState). The status could be any string.

Load synchronization description

To load a trigger with the synchronization description
sardana calls the SynchOne() method.
This method receives axis and synchronization parameters.

Here is an example of the possible implementation of
SynchOne():

class SpringfieldTriggerGateController(TriggerGateController):

 def SynchOne(self, axis, synchronization):
 self.springfield.SynchChannel(axis, synchronization)

Synchronization description

Synchronization is a data structure following a special convention. It is
composed from the groups of equidistant intervals described by: the initial
point and delay, total and active intervals and the number of repetitions.
These information can be expressed in different synchronization domains if
necessary: time and/or position.

[image: ../../_images/synchronization_description.png]
This sketch depicts parameters describing a group.

Sardana defines two enumeration classes to help in manipulations of the
synchronization description. The SynchParam defines the
parameters used to describe a group. The SynchDomain
defines the possible domains in which a parameter may be expressed.

The following code demonstrates creation of a synchronization description
expressed in time and position domains (moveable’s velocity = 10 units/second
and acceleration time = 0.1 second). It will generate 10 synchronization pulses
of length 0.1 second equally spaced on a distance of 100 units.

from sardana.pool import SynchParam, SynchDomain

synchronization = [
 {
 SynchParam.Delay: {SynchDomain.Time: 0.1, SynchDomain.Position: 0.5},
 SynchParam.Initial: {SynchDomain.Time: None, SynchDomain.Position: 0},
 SynchParam.Active: {SynchDomain.Time: 0.1, SynchDomain.Position: 1},
 SynchParam.Total: {SynchDomain.Time: 1, SynchDomain.Position: 10},
 SynchParam.Repeats: 10},
 }
]

Start a trigger

When an order comes for sardana to start a trigger, sardana will call the
StartOne() method. This method receives
an axis as parameter. The controller code should trigger the hardware acquisition.

Here is an example of the possible implementation of
StartOne():

class SpringfieldTriggerGateController(TriggerGateController):

 def StartOne(self, axis):
 self.springfield.StartChannel(axis)

As soon as StartOne() is invoked,
sardana expects the trigger to be running. It enters a high frequency
synchronization loop which asks for the trigger state through calls to
StateOne(). It will keep the loop
running as long as the controller responds with State.Moving.
If StateOne() raises an exception
or returns something other than State.Moving, sardana will assume the trigger
is stopped and exit the synchronization loop.

For an synchronization to work properly, it is therefore, very important that
StateOne() responds correctly.

Stop a trigger

It is possible to stop a trigger when it is running. When sardana is ordered to
stop a trigger synchronization, it invokes the
StopOne() method. This method receives
an axis parameter. The controller should make sure the desired trigger is
gracefully stopped.

Here is an example of the possible implementation of
StopOne():

class SpringfieldTriggerGateController(TriggerGateController):

 def StopOne(self, axis):
 self.springfield.StopChannel(axis)

Abort a trigger

In an emergency situation, it is desirable to abort a synchronization
as fast as possible. When sardana is ordered to abort a trigger synchronization,
it invokes the AbortOne()
method. This method receives an axis parameter. The controller should make
sure the desired trigger is stopped as fast as it can be done.

Here is an example of the possible implementation of
AbortOne():

class SpringfieldTriggerGateController(TriggerGateController):

 def AbortOne(self, axis):
 self.springfield.AbortChannel(axis)

How to write an I/O register controller

The basics

Todo

document IORegister controller howto

How to write a pseudo motor controller

The basics

Todo

document pseudo motor controller howto

How to write a pseudo counter controller

The basics

An example of a X-ray beam position monitor (XBPM) pseudo counter controller
will be build incrementally from scratch to aid in the explanation. Its purpose
is to provide an easy feedback about the beam position in the vertical and
horizontal axes as well as the total intensity of the beam.

By now you should have read the general controller basics chapter. Let’s start
from writing a PseudoCounterController
subclass with a proper constructor and the roles defined.

from sardana.pool.controller import PseudoCounterController

class XBPMPseudoCounterController(PseudoCounterController):

 counter_roles = ('top', 'bottom', 'right', 'left')
 pseudo_counter_roles = ('vertical', 'horizontal', 'total')

 def __init__(self, inst, props, *args, **kwargs):
 super(XBPMPseudoCounterController, self).__init__(inst, props, *args, **kwargs)

The counter_roles and
pseudo_counter_roles
tuples contains names of the counter and pseudo counter roles respectively.
These names are used when creating the controller instance and their order is
important when writing the controller itself. Each controller will define its
own roles.

The constructor does nothing apart of calling the parent class constructor but
could be used to implement any necessary initialization.

The pseudo counter calculations are implemented in the
calc() method:

def calc(self, index, counter_values):
 top, bottom, right, left = counter_values

 if index == 1: # vertical
 vertical = (top - bottom)/(top + bottom)
 return vertical
 elif index == 2: # horizontal
 horizontal = (right - left)/(right + left)
 return horizontal
 elif index == 3: # total
 total = (top + bottom + right + left) / 4
 return total

From the implementation we can conclude that the vertical pseudo counter will
give values from -1 to 1 depending on the beam position in the vertical
dimension. If the beam passes closer to the top sensor, the value will be more
positive. If the beam passes closer to the bottom sensor the value will be more
negative. The value close to the zero indicates the beam centered in the middle.
Similarly behaves the horizontal pseudo counter. The total pseudo counter is
the mean value of all the four sensors and indicates the beam intensity.

Including external variables in the calculation

The pseudo counter calculation may require an arbitrary variable which is not
a counter value. One can use Taurus [http://packages.python.org/taurus/] or PyTango [http://packages.python.org/PyTango/] libraries in order to
read their attributes and use them in the calculation. It is even possible
to write pseudo counters not based at all on the counters. In this case it is
enough to define an empty
counter_roles tuple.

Writing recorders

Overview

Sardana macros may produce data and users are usually interested in storing
or visualizing it. Sardana delegates this work to the recorders.
A good example of the recorder usage are the scan macros developed with the
Scan Framework. Recorders are in charge of writing data to
its destinations, for example a file, the Spock output or to plot it on a graph.

What is a recorder?

Recorder class is a Sardana element managed by the MacroServer. It is
identified by its name, and is located in a recorder library - another Sardana
element which is also identified by its name. Recorders are developed as
Python classes, and recorder libraries are just Python modules aggregating these
classes.

Type of recorders

Sardana defines some standard recorders e.g. the Spock output recorder or the
SPEC file recorder. From the other hand users may define their custom recorders.
Sardana provides the following standard recorders (grouped by types):

	
	file [*]

	
	FIO_FileRecorder

	NXscan_FileRecorder

	SPEC_FileRecorder

	
	shared memory [*]

	
	SPSRecorder

	ShmRecorder

	
	output

	
	JsonRecorder [*]

	OutputRecorder

[*] Scan Framework provides mechanisms to enable and select this recorders using
the environment variables.

Writing a custom recorder

Todo

document how to write custom recorders

Configuration

Custom recorders may be added to the Sardana system by placing the recorder
library module in a directory which is specified by the MacroServer
RecorderPath property. RecorderPath property may contain an ordered,
colon-separated list of directories.
In case of overriding recorders by name or by file extension (in case of the
file recorders), recorders located in the first paths are of higher priority
than the ones from the last paths.

Three types of overriding may occur:

	By recorder library name

	If Python modules with the same name are located in different directories,
the library located in the the higher priority directory will be loaded.

	By recorder name

	If two recorder classes with the same name appear in two different modules,
only the recorder from the library located in the higher
priority module will be loaded. If both modules are located in the same
directory, the behavior is undetermined.

	By file extension

	If two different recorders supporting the same file extension appear in two
different modules, the one from the higher priority path will be used
when selection is based on the extension (but both will be available for the
selection by name). If both of these recorders’ modules are located in the
same directory, the system will assign a list of recorders to a given
extension. Then the application is in charge of deciding which one to use.

As previously mentioned recorders are selectable by either the recorder name or
the extension. During the MacroServer startup the extension to recorder map is
generated while loading the recorder libraries. This dynamically created map
may be overridden by the custom map defined in the sardanacustomsettings
module (SCAN_RECORDER_MAP variable with a dictionary where key is the scan file
extension e.g. “.h5” and value is the recorder name e.g. “MyCustomRecorder”,
where both keys and values are of type string). The SCAN_RECORDER_MAP will make
an union with the dynamically created map taking precedence in case the
extensions repeats in both of them.

Sardana Testing

	General test documentation
	Sardana Test Framework

	Sardana Test Framework for testing macros

	Links

	Run Sardana tests from command line
	Run test suite

	Run a single test

	sar_demo test environment

	Test-driven development example
	Test development

	Macro development

	Sardana Unit Test examples
	test ct

	test list

	test scan

	test wm

	sardanavalue

	parameter

Sardana Testing

Sardana Test Framework

A testing framework allowing to test the Sardana features is included with the
Sardana distribution. It is useful for test-driven development and it allows
to find bugs in the code.

The first implementation of the Framework is an outcome of the Sardana
Enhancement Proposal 5 (SEP5) [http://sourceforge.net/p/sardana/wiki/SEP5/].

Ideally, whenever possible, bug reports should be accompanied by a test
revealing the bug.

The first tests implemented are focused on Unit Tests, but the same framework
should be used for integration and system tests as well.

The sardana.test module includes testsuite.py. This file provides an
auto-discovering suite for all tests implemented in Sardana.

The following are some key points to keep in mind when using this framework:

	The Sardana Test Framework is based on unittest [https://docs.python.org/dev/library/unittest.html#module-unittest] which should be
imported from taurus.external in order to be compatible with all
versions of python supported by Taurus.

	all test-related code is contained in submodules named test which appear
in any module of Sardana.

	
	test-related code falls in one of these three categories:

	
	Actual test code (classes that derive from unittest.TestCase)

	Utility classes/functions (code to simplify development of test code)

	Resources (accessory files required by some test). They are located in
subdirectories named res situated inside the folders named test.

For a more complete description of the conventions on how to write tests with
the Sardana Testing Framework, please refer to the
[SEP5](http://sourceforge.net/p/sardana/wiki/SEP5/).

Sardana Test Framework for testing macros

Sardana Test Framework provides tools for testing macros. These tools come
from sardana.macroserver.macros.test module

Tests meant to be incorporated in the Sardana distribution must be portable.
For this reason it is strongly encouraged to use only elements created
by the sar_demo macro. Only in the case where this is not possible, one may
create specific elements for a test; these elements must be removed at the
end of the test execution (e.g. using the tearDown method).

The module sardana.macroserver.macros.test provides utilities to simplify
the tests for macro execution and macro stop. Macro test classes can inherit
from RunMacroTestCase,
RunStopMacroTestCase or
BaseMacroTestCase.

Another utility provided is the option to execute the same test with
many different macro input parameters. This is done by decorating the test
class with any of the decorators of the the macro tests family.

This decorator is provided by sardana.macroserver.macros.test.

Specificities:

	Macros such as ‘lsm’ inherit from RunMacroTestCase as it is interesting to
test if the macros can be executed. Helper methods
(such as RunMacroTestCase.macro_runs()) can be overriden when
programming new test cases. New helpers can be created as well.

	Scan macros inherits from RunStopMacroTestCase as it is interesting to test
both: if the macros can be executed and if they can be aborted.

Links

For a more complete description of the conventions used when writing tests, see:
http://sourceforge.net/p/sardana/wiki/SEP5/

For more information about unittest framework:
http://docs.python.org/2/library/unittest.html

Run tests from command line

Run test suite

Running the Sardana test suite from command line can be done in two
different ways:

	Sardana tests can be executed using the setuptools test command prior to
the installation by executing the following command from within the sardana
project directory:

python setup.py test

This will execute only a subset of all the sardana tests - the unit test suite.
The functional tests, that require the sar_demo test environment, are
excluded on purpose.

	The complete Sardana test suite, that includes the unit and the functional tests
can be executed only after the Sardana installation by executing the
sardanatestsuite script.

Run a single test

Executing a single test from command line is done by doing:

python -m unittest test_name

Where test_name is the test module that has to be run.

That can be done with more verbosity by indicating the option -v.

python -m unittest -v test_name

sar_demo test environment

Some of the Sardana tests e.g. the ones that test the macros, require a running Sardana
instance with the sar_demo macro executed previosly. By default the tests will try to
connect to the door/demo1/1 door in order to run the macros there. The default door
name can be changed in the sardanacustomsettings module.

Test-driven development example

In this section it is presented a practical example of how to code a macro
by doing test-driven development thanks to the tools provided by the Sardana
Test Framework.

Consider that we want to write a new macro named “sqrtmac” for calculating the
square root of an input number. The “sqrtmac” specifications are:

	Its data must be given in the form {‘in’:x,’out’:s}

	Its output (‘out’) must be the square root of the input data (‘in’).

	Macro must raise an Exception of type ValueError if negative numbers are given as input.

Test development

First we design the tests according to the specifications considering the
features that are required for the macro. For doing so we will need some
imports in order to be able to use the base classes and decorators.
In this case the important base class is RunMacroTestCase, and
we import testRun and testFail to be used as decorators:

"""Tests for sqrt macro"""
import numpy as np
import unittest
from sardana.macroserver.macros.test import RunMacroTestCase, testRun, testFail

Now we will write a basic test, that will check the execution of the sqrtmac for
a given input x = 12345.678. For doing so, we inherit from unittest and
from RunMacroTestCase. In this implementation we will calculate in the test the
sqrt of the input parameter and then, using assertEqual, we will verify that
this value is equal to the output of the macro. The helper method macro_runs is
used for executing the macro:

"""Tests for a macro calculating the sqrt of an input number"""
import numpy as np
import unittest
from sardana.macroserver.macros.test import RunMacroTestCase, testRun, testFail

class sqrtmacTest(RunMacroTestCase, unittest.TestCase):
 """Test of sqrt macro. It verifies that macro sqrt can be executed.
 """
 macro_name = "sqrtmac"

 def test_sqrtmac(self):

 macro_params = [str(x)]
 self.macro_runs(macro_params)

 data=self.macro_executor.getData()
 expected_output = 49

 msg = 'Macro output does not equals the expected output'
 self.assertEqual(data['in'] ,float(macro_params[0]), msg)
 self.assertEqual(data['out'] ,expected_output, msg)

Now, two new tests are added thanks to the decorator and the helper functions.
In this case we will use the decorator @testRun. The same test case can be
launched with different sets of parameters. One decorator is used for each set
of parameters.

One of the tests will run the sqrtmac macro for an input value of 9 and
verify that the macro has been executed without problems.

Another test added will run the sqrt for an input of 2.25 and will verify
its input and output values against the expected values which we pass to the
decorator. A wait_timeout of 5s will be given; this means, that if the test
does not finish within 5 seconds, the current test will give an error and
the following test will be executed:

"""Tests for a macro calculating the sqrt of an input number"""
import numpy as np
import unittest
from sardana.macroserver.macros.test import RunMacroTestCase, testRun, testFail

@testRun(macro_params=['9'])
@testRun(macro_params=['2.25'], data={'in':2.25,'out':1.5}, wait_timeout=5)
class sqrtmacTest(RunMacroTestCase, unittest.TestCase):
 """Test of sqrt macro. It verifies that macro sqrt can be executed.
 """
 macro_name = "sqrtmac"

 def test_sqrtmac(self):

 macro_params = [str(x)]
 self.macro_runs(macro_params)

 data=self.macro_executor.getData()
 expected_output = 49

 msg = 'Macro output does not equals the expected output'
 self.assertEqual(data['in'] ,float(macro_params[0]), msg)
 self.assertEqual(data['out'] ,expected_output, msg)

The following test implemented must check that the macro is raising an Exception
if negative numbers are passed as input. The type of exception raised must be a
ValueError. For developing this test we will use the decorator testFail which
allows to test if a macro is raising an Exception before finishing its
execution. The final implementation of our test file test_sqrt.py is as
follows:

"""Tests for a macro calculating the sqrt of an input number"""
import numpy as np
import unittest
from sardana.macroserver.macros.test import RunMacroTestCase, testRun, testFail

@testRun(macro_params=['9'])
@testRun(macro_params=['2.25'], data={'in':2.25,'out':1.5}, wait_timeout=5)
@testFail(macro_params=['-3.0'], exception=ValueError, wait_timeout=5)
class sqrtmacTest(RunMacroTestCase, unittest.TestCase):
 """Test of sqrt macro. It verifies that macro sqrt can be executed.
 """
 macro_name = "sqrtmac"

 def test_sqrtmac(self):

 macro_params = [str(x)]
 self.macro_runs(macro_params)

 data=self.macro_executor.getData()
 expected_output = 49

 msg = 'Macro output does not equals the expected output'
 self.assertEqual(data['in'] ,float(macro_params[0]), msg)
 self.assertEqual(data['out'] ,expected_output, msg)

Macro development

Thanks to the test that we have designed precedently we can now implement
the macro and check if it is developed according to the specifications.

We do a first implementation of the macro by calculating the square root
of an input number. Then we will execute the test and analyze the results. The
first implementation looks like this:

import numpy as np
from sardana.macroserver.macro import Macro, Type

class sqrtmac(Macro):
 """Macro sqrtmac"""

 param_def = [["value", Type.Float, 9,
 "input value for which we want the square root"]]
 result_def = [["result", Type.Float, None,
 "square root of the input value"]]

 def run (self, n):
 ret = np.sqrt(n)
 return ret

An its ouput on the screen:

sardana/src/sardana/macroserver/macros/test> python -m unittest -v test_sqrtmac
test_sqrtmac (test_sqrtmac.sqrtmacTest) ... ERROR
test_sqrtmac_macro_fails (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_fails(macro_params=['-3.0'], exception=<type 'exceptions.ValueError'>, wait_timeout=5) ... FAIL
test_sqrtmac_macro_runs (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_runs(macro_params=['2.25'], wait_timeout=5, data={'out': 1.5, 'in': 2.25}) ... ERROR
test_sqrtmac_macro_runs_2 (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_runs(macro_params=['9']) ... ok

==
ERROR: test_sqrtmac (test_sqrtmac.sqrtmacTest)
--
Traceback (most recent call last):
 .
 .
 .
 desc = Exception: Macro 'sqrtmac' does not produce any data

==
ERROR: test_sqrtmac_macro_runs (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_runs(macro_params=['2.25'], wait_timeout=5, data={'out': 1.5, 'in': 2.25})
--
Traceback (most recent call last):
 .
 .
 .
 desc = Exception: Macro 'sqrtmac' does not produce any data

==
FAIL: test_sqrtmac_macro_fails (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_fails(macro_params=['-3.0'], exception=<type 'exceptions.ValueError'>, wait_timeout=5)
--
Traceback (most recent call last):
 File "/siciliarep/tmp/mrosanes/workspace/GIT/projects/sardana/src/sardana/macroserver/macros/test/base.py", line 144, in newTest
 return helper(**helper_kwargs)
 File "/siciliarep/tmp/mrosanes/workspace/GIT/projects/sardana/src/sardana/macroserver/macros/test/base.py", line 271, in macro_fails
 self.assertEqual(state, 'exception', msg)
AssertionError: Post-execution state should be "exception" (got "finish")

--
Ran 4 tests in 0.977s

FAILED (failures=1, errors=2)

At this moment two tests are giving an error because ‘sqrtmac’ does not produce
data, and one test is failing because the exception is not treat.
The test that is giving ‘Ok’ is only testing that the macro can be
executed.

The second step will be to set the input and output data of the macro and
execute the test again:

import numpy as np
from sardana.macroserver.macro import Macro, Type

class sqrtmac(Macro):
 """Macro sqrtmac"""

 param_def = [["value", Type.Float, 9,
 "input value for which we want the square root"]]
 result_def = [["result", Type.Float, None,
 "square root of the input value"]]

 def run (self, n):
 ret = np.sqrt(n)
 self.setData({'in':n,'out':ret})
 return ret

An its ouput on the screen:

sardana/macroserver/macros/test> python -m unittest -v test_sqrtmac
test_sqrtmac (test_sqrtmac.sqrtmacTest) ... ok
test_sqrtmac_macro_fails (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_fails(macro_params=['-3.0'], exception=<type 'exceptions.ValueError'>, wait_timeout=5) ... FAIL
test_sqrtmac_macro_runs (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_runs(macro_params=['2.25'], wait_timeout=5, data={'out': 1.5, 'in': 2.25}) ... ok
test_sqrtmac_macro_runs_2 (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_runs(macro_params=['9']) ... ok

==
FAIL: test_sqrtmac_macro_fails (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_fails(macro_params=['-3.0'], exception=<type 'exceptions.ValueError'>, wait_timeout=5)
--
Traceback (most recent call last):
 File "/siciliarep/tmp/mrosanes/workspace/GIT/projects/sardana/src/sardana/macroserver/macros/test/base.py", line 142, in newTest
 return helper(**helper_kwargs)
 File "/siciliarep/tmp/mrosanes/workspace/GIT/projects/sardana/src/sardana/macroserver/macros/test/base.py", line 267, in macro_fails
 self.assertEqual(state, 'exception', msg)
AssertionError: Post-execution state should be "exception" (got "finish")

--
Ran 4 tests in 0.932s

FAILED (failures=1)

As we can see, the test_sqrtmac_macro_fails is Failing, because the case of
negative numbers is still not suppported. The rest of tests that are testing the
execution and the expected output values are OK.

Finally we arrive to the complete implementation of the macro taking into
account the Exception that should be raised if we enter a negative number
as input parameter. For coding this macro test-driven development has been
used:

import numpy as np
from sardana.macroserver.macro import Macro, Type

class sqrtmac(Macro):
 """Macro sqrtmac"""

 param_def = [["value", Type.Float, 9,
 "input value for which we want the square root"]]
 result_def = [["result", Type.Float, None,
 "square root of the input value"]]

 def run (self, n):
 if (n<0):
 raise ValueError("Negative numbers are not accepted.")

 ret = np.sqrt(n)
 self.setData({'in':n,'out':ret})
 return ret

An the output on the console after executing the test looks like this:

sardana/macroserver/macros/test> python -m unittest -v test_sqrtmac
test_sqrtmac (test_sqrtmac.sqrtmacTest) ... ok
test_sqrtmac_macro_fails (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_fails(macro_params=['-3.0'], exception=<type 'exceptions.ValueError'>, wait_timeout=5) ... ok
test_sqrtmac_macro_runs (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_runs(macro_params=['2.25'], wait_timeout=5, data={'out': 1.5, 'in': 2.25}) ... ok
test_sqrtmac_macro_runs_2 (test_sqrtmac.sqrtmacTest)
Testing sqrtmac with macro_runs(macro_params=['9']) ... ok

--
Ran 4 tests in 0.928s

OK

Sardana Unit Test Examples

	test ct
	CtTest

	test list
	LsTest

	LsmTest

	LspmTest

	LsctrlTest

	LsctTest

	Ls0dTest

	Ls1dTest

	Ls2dTest

	test scan
	ANscanTest

	DNscanTest

	DNscancTest

	AscanTest

	DscanTest

	MeshTest

	test wm
	WBase

	WmTest

	sardanavalue
	SardanaValueTestCase

	parameter
	ParamTestCase

test_ct

Tests for ct macros

Classes

	
	CtTest

	

	

CtTest

[image: Inheritance diagram of CtTest]

	
class CtTest(*a, **kw)

	Test of ct macro. It verifies that macro ct can be executed.
It inherits from RunStopMacroTestCase and from unittest.TestCase.
It tests two executions of the ct macro with two different input
parameters.
Then it does another execution and it tests if the execution can be
aborted.

test_list

Tests for list macros

Classes

	
	LsTest

	LsmTest

	LspmTest

	
	LsctrlTest

	LsctTest

	Ls0dTest

	
	Ls1dTest

	Ls2dTest

LsTest

[image: Inheritance diagram of LsTest]

	
class LsTest

	Base class for testing macros used to list elements.
See RunMacroTestCase for requirements.
LsTest use the lists of elem_type generated by SarDemoEnv as
reference for compare with the output of the tested ls macro.

	LsTest provide the class member:

	
	
	elem_type (str): Type of the element to validate (mandatory).

	Must be a valid type for SarDemoEnv class.

	It provides the helper method:

	
	check_elements()

	
elem_type = None

	

	
check_elements(list1, list2)

	A helper method to evaluate if all elements of list1 are in list2.
:params list1: (seq<str>) List of elements to evaluate.
:params list2: (seq<str>) List of elements for validate.

	
macro_runs(**kwargs)

	Reimplementation of macro_runs method for ls macros.
It verifies that elements (elem_type) gotten by parsing the
macro executor log output are in the correspondent
list (elem_type) of SardanaEnv.

	
assertFinished(msg)

	Asserts that macro has finished.

	
door_name = 'door/demo1/1'

	

	
macro_fails(macro_name=None, macro_params=None, wait_timeout=inf, exception=None)

	Check that the macro fails to run for the given input parameters

	Parameters

	
	macro_name – (str) macro name (takes precedence over macro_name
class member)

	macro_params – (seq<str>) input parameters for the macro

	wait_timeout – maximum allowed time for the macro to fail. By
default infinite timeout is used.

	exception – (str or Exception) if given, an additional check of
the type of the exception is done.
(IMPORTANT: this is just a comparison of str
representations of exception objects)

	
macro_name = None

	

	
setUp()

	Preconditions:
- Those from BaseMacroTestCase
- the macro executor registers to all the log levels

	
tearDown()

	The macro_executor instance must be removed

LsmTest

[image: Inheritance diagram of LsmTest]

	
class LsmTest(*a, **kw)

	Class used for testing the ‘lsm’ macro.
It verifies that all motors created by sar_demo are listed after
execution of the macro ‘lsm’.

	
macro_name = 'lsm'

	

	
elem_type = 'moveable'

	

LspmTest

[image: Inheritance diagram of LspmTest]

	
class LspmTest(*a, **kw)

	Class used for testing the ‘lspm’ macro.
It verifies that all pseudomotors created by sar_demo are listed after
execution of the macro ‘lspm’.

	
macro_name = 'lspm'

	

	
elem_type = 'pseudomotor'

	

LsctrlTest

[image: Inheritance diagram of LsctrlTest]

	
class LsctrlTest(*a, **kw)

	Class used for testing the ‘lsctrl’ macro.
It verifies that all controllers created by sar_demo are listed after
execution of the macro ‘lsctrl’.

	
macro_name = 'lsctrl'

	

	
elem_type = 'controller'

	

LsctTest

[image: Inheritance diagram of LsctTest]

	
class LsctTest(*a, **kw)

	Class used for testing the ‘lsct’ macro.
It verifies that all ct created by sar_demo are listed after
execution of the macro ‘lsct’.

	
macro_name = 'lsct'

	

	
elem_type = 'ctexpchannel'

	

Ls0dTest

[image: Inheritance diagram of Ls0dTest]

	
class Ls0dTest(*a, **kw)

	Class used for testing the ‘ls0d’ macro.
It verifies that all 0d created by sar_demo are listed after
execution of the macro ‘ls0d’.

	
macro_name = 'ls0d'

	

	
elem_type = 'zerodexpchannel'

	

Ls1dTest

[image: Inheritance diagram of Ls1dTest]

	
class Ls1dTest(*a, **kw)

	Class used for testing the ‘ls1d’ macro.
It verifies that all 1d created by sar_demo are listed after
execution of the macro ‘ls1d’.

	
macro_name = 'ls1d'

	

	
elem_type = 'onedexpchannel'

	

Ls2dTest

[image: Inheritance diagram of Ls2dTest]

	
class Ls2dTest(*a, **kw)

	Class used for testing the ‘ls2d’ macro.
It verifies that all 2d created by sar_demo are listed after
execution of the macro ‘ls2d’.

	
macro_name = 'ls2d'

	

	
elem_type = 'twodexpchannel'

	

test_scan

Tests for scan macros

Functions

	
parsing_log_output(log_output)

	A helper method to parse log output of an executed scan macro.
:params log_output: (seq<str>) Result of macro_executor.getLog(‘output’)
(see description in BaseMacroExecutor).

	Returns

	(seq<number>) The numeric data of a scan.

Classes

	
	ANscanTest

	DNscanTest

	
	DNscancTest

	AscanTest

	
	DscanTest

	MeshTest

ANscanTest

[image: Inheritance diagram of ANscanTest]

	
class ANscanTest

	Not yet implemented. Once implemented it will test anscan.
See RunStopMacroTestCase for requirements.

DNscanTest

[image: Inheritance diagram of DNscanTest]

	
class DNscanTest

	Not yet implemented. Once implemented it will test the macro dnscanc.
See ANscanTest for requirements.

DNscancTest

[image: Inheritance diagram of DNscancTest]

	
class DNscancTest

	Not yet implemented. Once implemented it will test the macro dnscanc.
See DNscanTest for requirements.

AscanTest

[image: Inheritance diagram of AscanTest]

	
class AscanTest(*a, **kw)

	Test of ascan macro. See ANscanTest for requirements.
It verifies that macro ascan can be executed and stoped and tests
the output of the ascan using data from log system and macro data.

	
macro_name = 'ascan'

	

	
macro_runs(macro_params=None, wait_timeout=30.0)

	Reimplementation of macro_runs method for ascan macro.
It verifies using double checking, with log output and data from
the macro:

	The motor initial and final positions of the scan are the
ones given as input.

	Intervals in terms of motor position between one point and
the next one are equidistant.

DscanTest

[image: Inheritance diagram of DscanTest]

	
class DscanTest(*a, **kw)

	Test of dscan macro. It verifies that macro dscan can be executed and
stoped. See DNscanTest for requirements.

	
macro_name = 'dscan'

	

MeshTest

[image: Inheritance diagram of MeshTest]

	
class MeshTest(*a, **kw)

	Test of mesh macro. It verifies that macro mesh can be executed and
stoped. See RunStopMacroTestCase for requirements.

	
macro_name = 'mesh'

	

test_wm

Tests for wm macros

Classes

	
	WBase

	
	WmTest

	

WBase

[image: Inheritance diagram of WBase]

	
class WBase

	Base class for testing macros used to read position.

	
macro_runs(**kw)

	Testing the execution of the ‘wm’ macro and verify that the log
‘output’ exists.

WmTest

[image: Inheritance diagram of WmTest]

	
class WmTest(*a, **kw)

	Test of wm macro. It verifies that the macro ‘wm’ can be executed.
It inherits from WmBase and from unittest.TestCase.
It tests the execution of the ‘wm’ macro and verifies that the log ‘output’
exists.

	
macro_name = 'wm'

	

test_sardanavalue

Unit tests for sardanavalue module

Classes

	
	SardanaValueTestCase

	

	

SardanaValueTestCase

[image: Inheritance diagram of SardanaValueTestCase]

	
class SardanaValueTestCase(*a, **kw)

	Instantiating in different ways a Sardana Value and perform some
verifications.

	
testInstanceCreation()

	Instantiate in different ways a SardanaValue object.

	
testSardanaValueWithExceptionInfo()

	Verify the creation of SardanaValue when exc_info != None.
Verify that ‘Error’ is contained in the returned string.

	
testSardanaValueWithNoExceptionInfo()

	Verify the creation of SardanaValue when exc_info is not specified
and we give a value as argument of the SardanaValue constructor.
SardanaValue representation shall contain its value.

test_parameter

test_parameter module documentation

Classes

	
	ParamTestCase

	

	

ParamTestCase

[image: Inheritance diagram of ParamTestCase]

	
class ParamTestCase(*a, **kw)

	Instantiate in different ways a Param object and verify that
they are correct instances from the class Param.

	
testInstanceCreation()

	Instantiate in different ways a Param object.

Sardana API

APIs

	Macro API

	Controller API

	Motor API

	I/O register

	Counter/timer API

	0D experiment channel API

	1D experiment channel API

	2D experiment channel API

	Trigger/gate API

	Pseudo motor API

	Pseudo counter API

	Measurement group API

	Pool tango API

	Macro server tango API

	Library

	Test API

Macro API reference

Macro class

	
class Macro(*args, **kwargs)

	The Macro base class. All macros should inherit directly or indirectly
from this class.

	
Init

	internal variable

	
Running

	internal variable

	
Pause

	internal variable

	
Stop

	internal variable

	
Fault

	internal variable

	
Finished

	internal variable

	
Ready

	internal variable

	
Abort

	internal variable

	
Exception

	internal variable

	
All = 'All'

	Constant used to specify all elements in a parameter

	
BlockStart = '<BLOCK>'

	internal variable

	
BlockFinish = '</BLOCK>'

	internal variable

	
param_def = []

	This property holds the macro parameter description.
It consists of a sequence of parameter information objects.
A parameter information object is either:

	a simple parameter object

	a parameter repetition object

A simple parameter object is a sequence of:

	a string representing the parameter name

	a member of Macro.Type representing the parameter data type

	a default value for the parameter or None if there is no default value

	a string with the parameter description

Example:

param_def = (('value', Type.Float, None, 'a float parameter'))

A parameter repetition object is a sequence of:

	a string representing the parameter repetition name

	a sequence of parameter information objects

	a dictionary representing the parameter repetition semantics or None
to use the default parameter repetition semantics. Dictionary keys are:

	min - integer representing minimum number of repetitions or None
for no minimum.

	max - integer representing maximum number of repetitions or None
for no maximum.

Default parameter repetition semantics is { 'min': 1, 'max' : None }
(in other words, “at least one repetition” semantics)

Example:

param_def = (
 ('motor_list', (('motor', Type.Motor, None, 'motor name')), None, 'List of motors')
)

	
result_def = []

	This property holds the macro result description.
It a single parameter information object.

See also

param_def

	
hints = {}

	Hints to give a client to perform special tasks.
Example: scan macros give hints on the types of hooks they support. A
GUI can use this information to allow a scan to have sub-macros
executed as hooks.

	
env = ()

	a set of mandatory environment variable names without which your macro
cannot run

	
interactive = False

	decide if the macro should be able to receive input from the user
[default: False]. A macro which asks input but has this flag set to False
will print a warning message each time it is executed

	
run(*args)

	Macro API. Runs the macro. Overwrite MANDATORY! Default implementation
raises RuntimeError.

	Raises

	RuntimeError

	
prepare(*args, **kwargs)

	Macro API. Prepare phase. Overwrite as necessary.
Default implementation does nothing

	
on_abort()

	Macro API. Hook executed when an abort occurs.
Overwrite as necessary. Default implementation does nothing

	
on_pause()

	Macro API. Hook executed when a pause occurs.
Overwrite as necessary. Default implementation does nothing

	
on_stop()

	Macro API. Hook executed when a stop occurs.
Overwrite as necessary. Default implementation calls
on_abort()

	
checkPoint(**kwargs)

	Macro API.
Empty method that just performs a checkpoint. This can be used
to check for the stop. Usually you won’t need to call this method

	
pausePoint(**kwargs)

	Macro API.
Will establish a pause point where called. If an external source as
invoked a pause then, when this this method is called, it will be block
until the external source calls resume.
You may want to call this method if your macro takes a considerable time
to execute and you may whish to pause it at some time. Example:

for i in range(10000):
 time.sleep(0.1)
 self.output("At step %d/10000", i)
 self.pausePoint()

	Parameters

	timeout (float [https://docs.python.org/dev/library/functions.html#float]) – timeout in seconds [default: None, meaning wait forever]

	
macros

	Macro API.
An object that contains all macro classes as members. With
the returning object you can invoke other macros. Example:

m = self.macros.ascan('th', '0', '90', '10', '2')
scan_data = m.data

	
getMacroStatus(**kwargs)

	Macro API.
Returns the current macro status. Macro status is a dict [https://docs.python.org/dev/library/stdtypes.html#dict] where
keys are the strings:

	id - macro ID (internal usage only)

	range - the full progress range of a macro (usually a
tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] of two numbers (0, 100))

	state - the current macro state, a string which can have values
start, step, stop and abort

	step - the current step in macro. Should be a value inside the
allowed macro range

	Returns

	the macro status

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
getName(**kwargs)

	Macro API.
Returns this macro name

	Returns

	the macro name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
getID(**kwargs)

	Macro API.
Returns this macro id

	Returns

	the macro id

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
getParentMacro(**kwargs)

	Macro API.
Returns the parent macro reference.

	Returns

	the parent macro reference or None if there is no parent macro

	Return type

	Macro

	
getDescription(**kwargs)

	Macro API.
Returns a string description of the macro.

	Returns

	the string description of the macro

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
getParameters(**kwargs)

	Macro API.
Returns a the macro parameters. It returns a list containning the
parameters with which the macro was executed

	Returns

	the macro parameters

	Return type

	list [https://docs.python.org/dev/library/stdtypes.html#list]

	
getExecutor(**kwargs)

	Macro API.
Returns the reference to the object that invoked this macro. Usually
is a MacroExecutor object.

	Returns

	the reference to the object that invoked this macro

	Return type

	MacroExecutor

	
getDoorObj(**kwargs)

	Macro API.
Returns the reference to the Door that invoked this macro.

	Returns

	the reference to the Door that invoked this macro.

	Rype

	Door

	
getManager(**kwargs)

	Macro API.
Returns the manager for this macro (usually a MacroServer)

	Returns

	the MacroServer

	Return type

	MacroServer

	
manager

	Macro API.
Returns the manager for this macro (usually a MacroServer)

	Returns

	the MacroServer

	Return type

	MacroServer

	
getMacroServer(**kwargs)

	Macro API.
Returns the MacroServer for this macro

	Returns

	the MacroServer

	Return type

	MacroServer

	
macro_server

	Macro API.
Returns the MacroServer for this macro

	Returns

	the MacroServer

	Return type

	MacroServer

	
getDoorName(**kwargs)

	Macro API.
Returns the string with the name of the Door that invoked this macro.

	Returns

	the string with the name of the Door that invoked this macro.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
getCommand(**kwargs)

	Macro API.
Returns the string used to execute the macro.
Ex.: ‘ascan M1 0 1000 100 0.8’

	Returns

	the macro command.

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
getDateString(**kwargs)

	Macro API.
Helper method. Returns the current date in a string.

	Parameters

	time_format (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the format in which the date should be
returned (optional, default value is
‘%a %b %d %H:%M:%S %Y’

	Returns

	the current date

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
outputDate(**kwargs)

	Macro API.
Helper method. Outputs the current date into the output buffer

	Parameters

	time_format (str [https://docs.python.org/dev/library/stdtypes.html#str]) – (str) the format in which the date should be
returned (optional, default value is
‘%a %b %d %H:%M:%S %Y’

	
sendRecordData(**kwargs)

	Macro API.
Sends the given data to the RecordData attribute of the Door

	Parameters

	data – (sequence) the data to be sent

	
plot(**kwargs)

	Macro API.
Sends the plot command to the client using the ‘RecordData’ DevEncoded
attribute. The data is encoded using the pickle -> BZ2 codec.

	Parameters

	
	args – the plotting args

	kwargs – the plotting keyword args

	
pylab

	

	
pyplot

	

	
getData(**kwargs)

	Macro API.
Returns the data produced by the macro.

	Raises

	Exception if no data has been set before on this macro

	Returns

	the data produced by the macro

	Return type

	object [https://docs.python.org/dev/library/functions.html#object]

	
setData(**kwargs)

	Macro API. Sets the data for this macro

	Parameters

	data (object [https://docs.python.org/dev/library/functions.html#object]) – new data to be associated with this macro

	
data

	macro data

	
print(**kwargs)

	Macro API.
Prints a message. Accepted args and
kwargs are the same as print(). Example:

self.print("this is a print for macro", self.getName())

Note

you will need python >= 3.0. If you have python 2.x then you must
include at the top of your file the statement:

from __future__ import print_function

	
input(**kwargs)

	Macro API.
If args is present, it is written to standard output without a trailing
newline. The function then reads a line from input, converts it to a
string (stripping a trailing newline), and returns that.

Depending on which type of application you are running, some of the
keywords may have no effect (ex.: spock ignores decimals when a number
is asked).

Recognized kwargs:

	data_type : [default: Type.String] specific input type. Can also
specify a sequence of strings with possible values (use
allow_multiple=True to say multiple values can be selected)

	key : [default: no default] variable/label to assign to this input

	unit: [default: no default] units (useful for GUIs)

	timeout : [default: None, meaning wait forever for input]

	default_value : [default: None, meaning no default value]
When given, it must be compatible with data_type

	allow_multiple : [default: False] in case data_type is a
sequence of values, allow multiple selection

	minimum : [default: None] When given, must be compatible with data_type (useful for GUIs)

	maximum : [default: None] When given, must be compatible with data_type (useful for GUIs)

	step : [default: None] When given, must be compatible with data_type (useful for GUIs)

	decimals : [default: None] When given, must be compatible with data_type (useful for GUIs)

Examples:

device_name = self.input("Which device name (%s)?", "tab separated")

point_nb = self.input("How many points?", data_type=Type.Integer)

calc_mode = self.input("Which algorithm?", data_type=["Average", "Integral", "Sum"],
 default_value="Average", allow_multiple=False)

	
output(**kwargs)

	Macro API.
Record a log message in this object’s output. Accepted args and
kwargs are the same as logging.Logger.log() [https://docs.python.org/dev/library/logging.html#logging.Logger.log].
Example:

self.output("this is a print for macro %s", self.getName())

	Parameters

	
	msg (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the message to be recorded

	args – list of arguments

	kwargs – list of keyword arguments

	
log(**kwargs)

	Macro API.
Record a log message in this object’s logger. Accepted args and
kwargs are the same as logging.Logger.log() [https://docs.python.org/dev/library/logging.html#logging.Logger.log].
Example:

self.debug(logging.INFO, "this is a info log message for macro %s", self.getName())

	Parameters

	
	level (int [https://docs.python.org/dev/library/functions.html#int]) – the record level

	msg (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the message to be recorded

	args – list of arguments

	kwargs – list of keyword arguments

	
debug(**kwargs)

	Macro API.
Record a debug message in this object’s logger. Accepted args and
kwargs are the same as logging.Logger.debug() [https://docs.python.org/dev/library/logging.html#logging.Logger.debug].
Example:

self.debug("this is a log message for macro %s", self.getName())

	Parameters

	
	msg (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the message to be recorded

	args – list of arguments

	kw – list of keyword arguments

	
info(**kwargs)

	Macro API.
Record an info message in this object’s logger. Accepted args and
kwargs are the same as logging.Logger.info() [https://docs.python.org/dev/library/logging.html#logging.Logger.info].
Example:

self.info("this is a log message for macro %s", self.getName())

	Parameters

	
	msg (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the message to be recorded

	args – list of arguments

	kwargs – list of keyword arguments

	
warning(**kwargs)

	Macro API.
Record a warning message in this object’s logger. Accepted args and
kwargs are the same as logging.Logger.warning() [https://docs.python.org/dev/library/logging.html#logging.Logger.warning].
Example:

self.warning("this is a log message for macro %s", self.getName())

	Parameters

	
	msg (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the message to be recorded

	args – list of arguments

	kwargs – list of keyword arguments

	
error(**kwargs)

	Macro API.
Record an error message in this object’s logger. Accepted args and
kwargs are the same as logging.Logger.error() [https://docs.python.org/dev/library/logging.html#logging.Logger.error].
Example:

self.error("this is a log message for macro %s", self.getName())

	Parameters

	
	msg (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the message to be recorded

	args – list of arguments

	kwargs – list of keyword arguments

	
critical(**kwargs)

	Macro API.
Record a critical message in this object’s logger. Accepted args and
kwargs are the same as logging.Logger.critical() [https://docs.python.org/dev/library/logging.html#logging.Logger.critical].
Example:

self.critical("this is a log message for macro %s", self.getName())

	Parameters

	
	msg (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the message to be recorded

	args – list of arguments

	kwargs – list of keyword arguments

	
trace(**kwargs)

	Macro API. Record a trace message in this object’s logger.

	Parameters

	
	msg – (str) the message to be recorded

	args – list of arguments

	kw – list of keyword arguments

	
traceback(**kwargs)

	Macro API.
Logs the traceback with level TRACE on the macro logger.

	
stack(**kwargs)

	Macro API.
Logs the stack with level TRACE on the macro logger.

	
report(**kwargs)

	Macro API.
Record a log message in the sardana report (if enabled) with default
level INFO. The msg is the message format string, and the args are
the arguments which are merged into msg using the string formatting
operator. (Note that this means that you can use keywords in the
format string, together with a single dictionary argument.)

kwargs are the same as logging.Logger.debug() [https://docs.python.org/dev/library/logging.html#logging.Logger.debug] plus an optional
level kwargs which has default value INFO

Example:

self.report("this is an official report of macro %s", self.getName())

	Parameters

	
	msg (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the message to be recorded

	args – list of arguments

	kwargs – list of keyword arguments

	
flushOutput(**kwargs)

	Macro API.
Flushes the output buffer.

	
getMacroThread(**kwargs)

	Macro API.
Returns the python thread where this macro is running

	Returns

	the python thread where this macro is running

	Return type

	threading.Thread [https://docs.python.org/dev/library/threading.html#threading.Thread]

	
getMacroThreadID(**kwargs)

	Macro API.
Returns the python thread id where this macro is running

	Returns

	the python thread id where this macro is running

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
createExecMacroHook(**kwargs)

	Macro API.
Creates a hook that executes the macro given as a sequence of strings
where the first string is macro name and the following strings the
macro parameters

	Parameters

	
	par_str_sequence – the macro parameters

	parent_macro – the parent macro object. If None is given (default) then the
parent macro is this macro

	Returns

	a ExecMacroHook object (which is a callable object)

	
createMacro(**kwargs)

	Macro API. Create a new macro and prepare it for execution
Several different parameter formats are supported:

several parameters:
self.execMacro('ascan', 'th', '0', '100', '10', '1.0')
self.execMacro('mv', [[motor.getName(), '0']])
self.execMacro('mv', motor.getName(), '0') # backwards compatibility - see note
self.execMacro('ascan', 'th', 0, 100, 10, 1.0)
self.execMacro('mv', [[motor.getName(), 0]])
self.execMacro('mv', motor.getName(), 0) # backwards compatibility - see note
th = self.getObj('th')
self.execMacro('ascan', th, 0, 100, 10, 1.0)
self.execMacro('mv', [[th, 0]])
self.execMacro('mv', th, 0) # backwards compatibility - see note

a sequence of parameters:
self.execMacro(['ascan', 'th', '0', '100', '10', '1.0')
self.execMacro(['mv', [[motor.getName(), '0']]])
self.execMacro(['mv', motor.getName(), '0']) # backwards compatibility - see note
self.execMacro(('ascan', 'th', 0, 100, 10, 1.0))
self.execMacro(['mv', [[motor.getName(), 0]]])
self.execMacro(['mv', motor.getName(), 0]) # backwards compatibility - see note
th = self.getObj('th')
self.execMacro(['ascan', th, 0, 100, 10, 1.0])
self.execMacro(['mv', [[th, 0]]])
self.execMacro(['mv', th, 0]) # backwards compatibility - see note

a space separated string of parameters (this is not compatible
with multiple or nested repeat parameters, furthermore the repeat
parameter must be the last one):
self.execMacro('ascan th 0 100 10 1.0')
self.execMacro('mv %s 0' % motor.getName())

Note

From Sardana 2.0 the repeat parameter values must be passed
as lists of items. An item of a repeat parameter containing more
than one member is a list. In case when a macro defines only one
repeat parameter and it is the last parameter, for the backwards
compatibility reasons, the plain list of items’ members is allowed.

	Parameters

	pars – the command parameters as explained above

	Returns

	a sequence of two elements: the macro object and the result of
preparing the macro

	Return type

	tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]<Macro, seq<obj>>

	
prepareMacroObj(**kwargs)

	Macro API. Prepare a new macro for execution

	Parameters

	
	name (macro_name_or_klass) – name of the macro to be prepared or
the macro class itself

	pars – list of parameter objects

	init_opts – keyword parameters for the macro constructor

	prepare_opts – keyword parameters for the macro prepare

	Returns

	a sequence of two elements: the macro object and the result of
preparing the macro

	
prepareMacro(**kwargs)

	Macro API. Prepare a new macro for execution
Several different parameter formats are supported:

several parameters:
self.execMacro('ascan', 'th', '0', '100', '10', '1.0')
self.execMacro('mv', [[motor.getName(), '0']])
self.execMacro('mv', motor.getName(), '0') # backwards compatibility - see note
self.execMacro('ascan', 'th', 0, 100, 10, 1.0)
self.execMacro('mv', [[motor.getName(), 0]])
self.execMacro('mv', motor.getName(), 0) # backwards compatibility - see note
th = self.getObj('th')
self.execMacro('ascan', th, 0, 100, 10, 1.0)
self.execMacro('mv', [[th, 0]])
self.execMacro('mv', th, 0) # backwards compatibility - see note

a sequence of parameters:
self.execMacro(['ascan', 'th', '0', '100', '10', '1.0')
self.execMacro(['mv', [[motor.getName(), '0']]])
self.execMacro(['mv', motor.getName(), '0']) # backwards compatibility - see note
self.execMacro(('ascan', 'th', 0, 100, 10, 1.0))
self.execMacro(['mv', [[motor.getName(), 0]]])
self.execMacro(['mv', motor.getName(), 0]) # backwards compatibility - see note
th = self.getObj('th')
self.execMacro(['ascan', th, 0, 100, 10, 1.0])
self.execMacro(['mv', [[th, 0]]])
self.execMacro(['mv', th, 0]) # backwards compatibility - see note

a space separated string of parameters (this is not compatible
with multiple or nested repeat parameters, furthermore the repeat
parameter must be the last one):
self.execMacro('ascan th 0 100 10 1.0')
self.execMacro('mv %s 0' % motor.getName())

Note

From Sardana 2.0 the repeat parameter values must be passed
as lists of items. An item of a repeat parameter containing more
than one member is a list. In case when a macro defines only one
repeat parameter and it is the last parameter, for the backwards
compatibility reasons, the plain list of items’ members is allowed.

	Parameters

	
	args – the command parameters as explained above

	kwargs – keyword optional parameters for prepare

	Returns

	a sequence of two elements: the macro object and the result of
preparing the macro

	
runMacro(**kwargs)

	Macro API. Runs the macro. This the lower level version of
execMacro(). The method only
returns after the macro is completed or an exception is thrown.
It should be used instead of execMacro when some operation needs to
be done between the macro preparation and the macro execution.
Example:

macro = self.prepareMacro("mymacro", "myparam")
self.do_my_stuff_with_macro(macro)
self.runMacro(macro)

	Parameters

	macro_obj – macro object

	Returns

	macro result

	
execMacroObj(**kwargs)

	Macro API. Execute a macro in this macro. The method only returns
after the macro is completed or an exception is thrown. This is a
higher level version of runMacro method. It is the same as:

macro = self.prepareMacroObjs(name, *args, **kwargs)
self.runMacro(macro)
return macro

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – name of the macro to be prepared

	args – list of parameter objects

	kwargs – list of keyword parameters

	Returns

	a macro object

	
execMacro(**kwargs)

	Macro API. Execute a macro in this macro. The method only
returns after the macro is completed or an exception is thrown. Several
different parameter formats are supported:

several parameters:
self.execMacro('ascan', 'th', '0', '100', '10', '1.0')
self.execMacro('mv', [[motor.getName(), '0']])
self.execMacro('mv', motor.getName(), '0') # backwards compatibility - see note
self.execMacro('ascan', 'th', 0, 100, 10, 1.0)
self.execMacro('mv', [[motor.getName(), 0]])
self.execMacro('mv', motor.getName(), 0) # backwards compatibility - see note
th = self.getObj('th')
self.execMacro('ascan', th, 0, 100, 10, 1.0)
self.execMacro('mv', [th, 0]])
self.execMacro('mv', th, 0) # backwards compatibility - see note

a sequence of parameters:
self.execMacro(['ascan', 'th', '0', '100', '10', '1.0')
self.execMacro(['mv', [[motor.getName(), '0']]])
self.execMacro(['mv', motor.getName(), '0']) # backwards compatibility - see note
self.execMacro(('ascan', 'th', 0, 100, 10, 1.0))
self.execMacro(['mv', [[motor.getName(), 0]]])
self.execMacro(['mv', motor.getName(), 0]) # backwards compatibility - see note
th = self.getObj('th')
self.execMacro(['ascan', th, 0, 100, 10, 1.0])
self.execMacro(['mv', [[th, 0]]])
self.execMacro(['mv', th, 0]) # backwards compatibility - see note

a space separated string of parameters (this is not compatible
with multiple or nested repeat parameters, furthermore the repeat
parameter must be the last one):
self.execMacro('ascan th 0 100 10 1.0')
self.execMacro('mv %s 0' % motor.getName())

Note

From Sardana 2.0 the repeat parameter values must be passed
as lists of items. An item of a repeat parameter containing more
than one member is a list. In case when a macro defines only one
repeat parameter and it is the last parameter, for the backwards
compatibility reasons, the plain list of items’ members is allowed.

	Parameters

	pars – the command parameters as explained above

	Returns

	a macro object

	
getTangoFactory(**kwargs)

	Macro API. Helper method that returns the tango factory.

	Returns

	the tango factory singleton

	Return type

	TangoFactory [http://taurus-scada.org/devel/api/taurus/core/tango/_TangoFactory.html#taurus.core.tango.TangoFactory]

	
getDevice(**kwargs)

	Macro API. Helper method that returns the device for the given
device name

	Returns

	the taurus device for the given device name

	Return type

	TaurusDevice [http://taurus-scada.org/devel/api/taurus/core/_TaurusDevice.html#taurus.core.TaurusDevice]

	
setLogBlockStart(**kwargs)

	Macro API. Specifies the begining of a block of data. Basically
it outputs the ‘BLOCK’ tag

	
setLogBlockFinish(**kwargs)

	Macro API. Specifies the end of a block of data. Basically it
outputs the ‘/BLOCK’ tag

	
outputBlock(**kwargs)

	Macro API. Sends an line tagged as a block to the output

	Parameters

	line (str [https://docs.python.org/dev/library/stdtypes.html#str]) – line to be sent

	
getPools(**kwargs)

	Macro API. Returns the list of known device pools.

	Returns

	the list of known device pools

	Return type

	seq<Pool>

	
addObj(**kwargs)

	Macro API. Adds the given object to the list of controlled
objects of this macro. In practice it means that if a stop is
executed the stop method of the given object will be called.

	Parameters

	
	obj (object [https://docs.python.org/dev/library/functions.html#object]) – the object to be controlled

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – wheater or not reserve with priority [default: 0 meaning no
priority]

	
addObjs(**kwargs)

	Macro API. Adds the given objects to the list of controlled
objects of this macro. In practice it means that if a stop is
executed the stop method of the given object will be called.

	Parameters

	obj_list (sequence) – list of objects to be controlled

	
returnObj(obj)

	Removes the given objects to the list of controlled objects of this
macro.

	Parameters

	obj – object to be released from the control

	Return type

	object [https://docs.python.org/dev/library/functions.html#object]

	
getObj(**kwargs)

	Macro API. Gets the object of the given type belonging to the
given pool with the given name. The object (if found) will automatically
become controlled by the macro.

	Raises

	MacroWrongParameterType if name is not a string

	Raises

	AttributeError if more than one matching object is found

	Parameters

	
	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – string representing the name of the object. Can be a regular
expression

	type_class – the type of object [default: All]

	subtype – a string representing the subtype [default: All]
Ex.: if type_class is Type.ExpChannel, subtype could be
‘CTExpChannel’

	pool – the pool to which the object should belong [default: All]

	reserve – automatically reserve the object for this macro [default: True]

	Returns

	the object or None if no compatible object is found

	
getObjs(**kwargs)

	Macro API. Gets the objects of the given type belonging to the
given pool with the given names. The objects (if found) will
automatically become controlled by the macro.

	Parameters

	
	names – a string or a sequence of strings representing the
names of the objects. Each string can be a regular
expression

	type_class – the type of object (optional, default is All).
Example: Type.Motor, Type.ExpChannel

	subtype – a string representing the subtype (optional,
default is All)
Ex.: if type_class is Type.ExpChannel, subtype could
be ‘CTExpChannel’

	pool – the pool to which the object should belong (optional,
default is All)

	reserve – automatically reserve the object for this macro
(optional, default is True)

	Returns

	a list of objects or empty list if no compatible object is
found

	
findObjs(**kwargs)

	Macro API. Gets the objects of the given type belonging to the
given pool with the given names. The objects (if found) will
automatically become controlled by the macro.

	Parameters

	
	names – a string or a sequence of strings representing the names of the
objects. Each string can be a regular expression

	type_class – the type of object (optional, default is All)

	subtype – a string representing the subtype [default: All]
Ex.: if type_class is Type.ExpChannel, subtype could be
‘CTExpChannel’

	pool – the pool to which the object should belong [default: All]

	reserve – automatically reserve the object for this macro [default: True]

	Returns

	a list of objects or empty list if no compatible object is found

	
getMacroNames(**kwargs)

	Macro API. Returns a list of strings containing the names of all
known macros

	return

	a sequence of macro names

	rtype

	seq<str [https://docs.python.org/dev/library/stdtypes.html#str]>

	
getMacros(**kwargs)

	Macro API. Returns a sequence of
MacroClass
/MacroFunction objects for all
known macros that obey the filter expression.

	Parameters

	filter – a regular expression for the macro name (optional, default is None
meaning match all macros)

	Returns

	a sequence of MacroClass
/MacroFunction
objects

	Return type

	seq<MacroClass
/MacroFunction>

	
getMacroLibraries(**kwargs)

	Macro API. Returns a sequence of
MacroLibrary objects for all
known macros that obey the filter expression.

	Parameters

	filter – a regular expression for the macro library [default: None meaning
match all macro libraries)

	Returns

	a sequence of MacroLibrary
objects

	Return type

	seq<MacroLibrary>

	
getMacroLibrary(**kwargs)

	Macro API. Returns a
MacroLibrary object for the
given library name.

	Parameters

	lib_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – library name

	Returns

	a macro library MacroLibrary

	Return type

	MacroLibrary

	
getMacroLib(**kwargs)

	Macro API. Returns a
MacroLibrary object for the
given library name.

	Parameters

	lib_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – library name

	Returns

	a macro library MacroLibrary

	Return type

	MacroLibrary

	
getMacroLibs(**kwargs)

	Macro API. Returns a sequence of
MacroLibrary objects for all
known macros that obey the filter expression.

	Parameters

	filter – a regular expression for the macro library [default: None meaning
match all macro libraries)

	Returns

	a sequence of MacroLibrary
objects

	Return type

	seq<MacroLibrary>

	
getMacroInfo(**kwargs)

	Macro API. Returns the corresponding
MacroClass
/MacroFunction object.

	Parameters

	macro_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – a string with the desired macro name.

	Returns

	a MacroClass
/MacroFunction object or
None if the macro with the given name was not found

	Return type

	MacroClass
/MacroFunction

	
getMotion(**kwargs)

	Macro API. Returns a new Motion object containing the given
elements.

	Raises

	Exception if no elements are defined or the elems is not recognized
as valid, or an element is not found or an element appears more
than once

	Parameters

	
	elems – list of moveable object names

	motion_source – obj or list of objects containing moveable elements. Usually this
is a Pool object or a list of Pool objects (optional, default is
None, meaning all known pools will be searched for the given
moveable items

	read_only – not used. Reserved for future use

	cache – not used. Reserved for future use

	Returns

	a Motion object

	
getElementsWithInterface(**kwargs)

	

	
getControllers(**kwargs)

	

	
getMoveables(**kwargs)

	

	
getMotors(**kwargs)

	

	
getPseudoMotors(**kwargs)

	

	
getIORegisters(**kwargs)

	

	
getMeasurementGroups(**kwargs)

	

	
getExpChannels(**kwargs)

	

	
getCounterTimers(**kwargs)

	

	
get0DExpChannels(**kwargs)

	

	
get1DExpChannels(**kwargs)

	

	
get2DExpChannels(**kwargs)

	

	
getPseudoCounters(**kwargs)

	

	
getInstruments(**kwargs)

	

	
getElementWithInterface(**kwargs)

	

	
getController(**kwargs)

	

	
getMoveable(**kwargs)

	

	
getMotor(**kwargs)

	

	
getPseudoMotor(**kwargs)

	

	
getIORegister(**kwargs)

	

	
getMeasurementGroup(**kwargs)

	

	
getExpChannel(**kwargs)

	

	
getCounterTimer(**kwargs)

	

	
get0DExpChannel(**kwargs)

	

	
get1DExpChannel(**kwargs)

	

	
get2DExpChannel(**kwargs)

	

	
getPseudoCounter(**kwargs)

	

	
getInstrument(**kwargs)

	

	
getEnv(**kwargs)

	Macro API. Gets the local environment matching the given
parameters:

	door_name and macro_name define the context where to look for
the environment. If both are None, the global environment is
used. If door name is None but macro name not, the given macro
environment is used and so on…

	If key is None it returns the complete environment, otherwise
key must be a string containing the environment variable name.

	Raises

	UnknownEnv

	Parameters

	
	key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – environment variable name [default: None, meaning all environment]

	door_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – local context for a given door [default: None, meaning no door
context is used]

	macro_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – local context for a given macro [default: None, meaning no macro
context is used]

	Returns

	a dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the environment

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
getGlobalEnv(**kwargs)

	Macro API. Returns the global environment.

	Returns

	a dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the global environment

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
getAllEnv(**kwargs)

	Macro API. Returns the enviroment for the macro.

	Returns

	a dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the environment for the macro

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
getAllDoorEnv(**kwargs)

	Macro API. Returns the enviroment for the door where the macro
is running.

	Returns

	a dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the environment

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
setEnv(**kwargs)

	Macro API. Sets the environment key to the new value and
stores it persistently.

	Returns

	a tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] with the key and value objects stored

	Return type

	tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]<str [https://docs.python.org/dev/library/stdtypes.html#str], object>

	
unsetEnv(**kwargs)

	Macro API. Unsets the given environment variable.

	Parameters

	key (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the environment variable name

	
reloadLibrary(**kwargs)

	Macro API. Reloads the given library(=module) names

	Raises

	ImportError in case the reload process is not
successfull

	Parameters

	lib_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – library(=module) name

	Returns

	the reloaded python module object

	
reloadMacro(**kwargs)

	Macro API. Reloads the module corresponding to the given macro
name

	Raises

	MacroServerExceptionList in case the macro is unknown or the
reload process is not successfull

	Parameters

	macro_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – macro name

	
reloadMacros(**kwargs)

	Macro API. Reloads the modules corresponding to the given macro
names.

	Raises

	MacroServerExceptionList in case the macro(s) are unknown or
the reload process is not successfull

	Parameters

	macro_names (sequence<str [https://docs.python.org/dev/library/stdtypes.html#str]>) – a list of macro names

	
reloadMacroLibrary(**kwargs)

	Macro API. Reloads the given library(=module) names

	Raises

	MacroServerExceptionList in case the reload process is not
successfull

	Parameters

	lib_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – library(=module) name

	Returns

	the MacroLibrary for the
reloaded library

	Return type

	MacroLibrary

	
reloadMacroLibraries(**kwargs)

	Macro API. Reloads the given library(=module) names

	Raises

	MacroServerExceptionList in case the reload process is not
successfull for at least one lib

param lib_names: a list of library(=module) names
:type lib_name: seq<str [https://docs.python.org/dev/library/stdtypes.html#str]>

	Returns

	a sequence of MacroLibrary
objects for the reloaded libraries

	Return type

	seq<MacroLibrary>

	
reloadMacroLib(**kwargs)

	Macro API. Reloads the given library(=module) names

	Raises

	MacroServerExceptionList in case the reload process is not
successfull

	Parameters

	lib_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – library(=module) name

	Returns

	the MacroLibrary for the
reloaded library

	Return type

	MacroLibrary

	
reloadMacroLibs(**kwargs)

	Macro API. Reloads the given library(=module) names

	Raises

	MacroServerExceptionList in case the reload process is not
successfull for at least one lib

param lib_names: a list of library(=module) names
:type lib_name: seq<str [https://docs.python.org/dev/library/stdtypes.html#str]>

	Returns

	a sequence of MacroLibrary
objects for the reloaded libraries

	Return type

	seq<MacroLibrary>

	
getViewOption(**kwargs)

	

	
getViewOptions(**kwargs)

	

	
setViewOption(**kwargs)

	

	
resetViewOption(**kwargs)

	

	
executor

	Unofficial Macro API. Alternative to getExecutor() that
does not throw StopException in case of a Stop. This should be
called only internally

	
door

	Unofficial Macro API. Alternative to getDoorObj() that
does not throw StopException in case of a Stop. This should be
called only internally

	
parent_macro

	Unofficial Macro API. Alternative to getParentMacro that does not
throw StopException in case of a Stop. This should be called only
internally by the Executor

	
description

	Unofficial Macro API. Alternative to getDescription() that
does not throw StopException in case of a Stop. This should be
called only internally by the Executor

	
isAborted()

	Unofficial Macro API.

	
isStopped()

	Unofficial Macro API.

	
isPaused()

	Unofficial Macro API.

	
classmethod hasResult()

	Unofficial Macro API. Returns True if the macro should return
a result or False otherwise

	Returns

	True if the macro should return a result or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
getResult()

	Unofficial Macro API. Returns the macro result object (if any)

	Returns

	the macro result object or None

	
setResult(result)

	Unofficial Macro API. Sets the result of this macro

	Parameters

	result – (object) the result for this macro

	
exec_()

	Internal method. Execute macro as an iterator

	
stop()

	Internal method. Activates the stop flag on this macro.

	
abort()

	Internal method. Aborts the macro abruptly.

	
setProcessingStop(yesno)

	Internal method. Activates the processing stop flag on this
macro

	
isProcessingStop()

	Internal method. Checks if this macro is processing stop

	
pause(cb=None)

	Internal method. Pauses the macro execution. To be called by the
Door running the macro to pause the current macro

	
resume(cb=None)

	Internal method. Resumes the macro execution. To be called by
the Door running the macro to resume the current macro

iMacro class

	
class iMacro(*args, **kwargs)

	
	
interactive = True

	

macro decorator

	
class macro(param_def=None, result_def=None, env=None, hints=None, interactive=None)

	Class designed to decorate a python function to transform it into a
macro. Examples:

@macro()
def my_macro1(self):
 self.output("Executing %s", self.getName())

@macro([["moveable", Type.Moveable, None, "motor to watch"]])
def where_moveable(self, moveable):
 self.output("Moveable %s is at %s", moveable.getName(), moveable.getPosition())

imacro decorator

	
imacro

	

Controller API reference

	Controller - Base API for all controller types

	MotorController - Motor controller API

	CounterTimerController - Counter/Timer controller API

	ZeroDController - 0D controller API

	PseudoMotorController - PseudoMotor controller API

	PseudoCounterController - PseudoCounter controller API

	IORegisterController - IORegister controller API

Data Type definition

When writing a new controller you may need to specify extra attributes (per
controller or/and per axis) as well as extra properties. This chapter describes
how to describe the data type for each of this additional members.
Controller data type definition has the following equivalences. This means you
can use any of the given possibilities to describe a field data type. The
possibilities are ordered by preference (example: usage of int [https://docs.python.org/dev/library/functions.html#int] is
preferred to “int” or “PyTango.DevLong”):

	
	for 0D data types:

	
	integer: int [https://docs.python.org/dev/library/functions.html#int] | DataType.Integer | “int” | “integer” | “long” | long | [“PyTango.”] “DevLong”

	double: float [https://docs.python.org/dev/library/functions.html#float] | DataType.Double | “double” | “float” | [“PyTango.”] “DevDouble”

	string: str [https://docs.python.org/dev/library/stdtypes.html#str] | DataType.String | “str” | “string” | [“PyTango.”] “DevString”

	boolean: bool [https://docs.python.org/dev/library/functions.html#bool] | DataType.Boolean | “bool” | “boolean” | [“PyTango.”] “DevBoolean”

	
	for 1D data types:

	
	integer: (int [https://docs.python.org/dev/library/functions.html#int],) | (DataType.Integer,) | (“int”,) | (“integer”,) | (long,) | (“long”,) | [“PyTango.”] “DevVarLongArray” | ([“PyTango.”] “DevLong”,)

	double: (float [https://docs.python.org/dev/library/functions.html#float],) | (DataType.Double,) | (“double”,) | (“float”,) | [“PyTango.”] “DevVarDoubleArray” | ([“PyTango.”] “DevDouble”,)

	string: (str [https://docs.python.org/dev/library/stdtypes.html#str],) | (DataType.String,) | (“str”,) | (“string”,) | [“PyTango.”] “DevVarStringArray” | ([“PyTango.”] “DevString”,)

	boolean: (bool [https://docs.python.org/dev/library/functions.html#bool],) | (DataType.Boolean,) | (“bool”,) | (“boolean”,) | [“PyTango.”] “DevVarBooleanArray” | ([“PyTango.”] “DevBoolean”,)

Deprecated since version 1.0: [“PyTango.”] “Dev”<concrete type string> types are considered deprecated.

Note

when string, types are case insensitive. This means “long” is the same as “LONG”

Here is an example on how to define extra attributes per axis:

	EncoderSource: a scalar r/w string

	ReflectionMatrix: a 2D readable float with customized getter method

from sardana import State, DataAccess
from sardana.pool.controller import MotorController, \
 Type, Description, DefaultValue, Access, FGet, FSet

class MyMotorCtrl(MotorController):

 axis_attributes = \
 {
 'EncoderSource' : { Type : str,
 Description : 'motor encoder source', },

 'ReflectionMatrix' : { Type : ((float,),),
 Access : DataAccess.ReadOnly,
 FGet : 'getReflectionMatrix', },
 }

 def getAxisExtraPar(self, axis, name):
 name = name.lower()
 if name == 'encodersource':
 return self._encodersource[axis]

 def setAxisPar(self, axis, name, value):
 name = name.lower()
 if name == 'encodersource':
 self._encodersource[axis] = value

 def getReflectionMatrix(self, axis):
 return ((1.0, 0.0), (0.0, 1.0))

Motor API reference

The motor is one of the most used elements in sardana. A motor represents
anything that can be changed (and can potentially take some time to do it).

This chapter explains the generic motor API in the context of sardana.
In sardana there are, in fact, two Motor APIs. To better explain why,
let’s consider the case were sardana server is running as a Sardana Tango
device server:

[image: ../../_images/sardana_server_internal_motor.png]
Every motor in sardana is represented in the sardana kernel as a
PoolMotor. The PoolMotor API is not directly
accessible from outside the sardana server. This is a low level API
that is only accessbile to someone writing a server extension to sardana. At
the time of writing, the only available sardana server extension is Tango.

The second motor interface consists on the one provided by the server extension,
which is in this case the one provided by the Tango motor device interface:
Motor. The Tango motor interface tries to
mimic the as closely as possible the PoolMotor API.

See also

	Motor overview

	the motor overview

	Motor

	the motor tango device API

A motor will have, at least, a state, and a position. The state
indicates at any time if the motor is stopped, in alarm or moving. The
position, indicates the current user position. Unless a motor
controller is specifically programmed not to, it’s motors will also have:

	limit switches

	the three limit switches (home, upper and lower). Each switch is
represented by a boolean value: False means inactive while True means
active.

low level PoolMotor API.

high level Tango Motor API: limit_switches tango attribute

	acceleration

	motor acceleration (usually acceleration time in seconds, but it’s up to
the motor controller class to decide)

acceleration

	deceleration

	motor deceleration (usually deceleration time in seconds, but it’s up to
the motor controller class to decide)

deceleration

	velocity

	top velocity

velocity

	base rate

	initial velocity

base_rate

	dial position

	the dial position

dial_position

	offset

	the offset to be applied in the motor position computation [default: 0.0]

offset

	sign

	the sign to be applied in the motor position computation [default: 1,
possible values are (1, -1)]

sign

	steps per unit

	This is the number of motor steps per user position [default:
1.0]

step_per_unit

	backlash

	If this is defined to be something different than 0, the motor will
always stop the motion coming from the same mechanical direction. This
means that it could be possible to ask the motor to go a little bit after
the desired position and then to return to the desired position. The value
is the number of steps the motor will pass the desired position if it
arrives from the “wrong” direction. This is a signed value. If the sign is
positive, this means that the authorized direction to stop the motion is
the increasing motor position direction. If the sign is negative, this
means that the authorized direction to stop the motion is the decreasing
motor position direction.

backlash

	instability time

	This property defines the time in milliseconds that the software
managing a motor movement will wait between it detects the end of the
motion and the last motor position reading. It is typically used for motors
that move mechanics which have an instability time after each motion.

instability_time

The available operations are:

	start move absolute (user position)

	starts to move the motor to the given absolute user position

start_move()

	stop

	stops the motor in an orderly fashion

	abort

	stops the motor motion as fast as possible (possibly without
deceleration time and loss of position)

Motor state

On a sardana tango server, the motor state can be obtained by reading the state
attribute or by executing the state command. The diagram shows the internal
sequence of calls.

[image: ../../_images/sardana_server_internal_motor_read_state_flow.png]

Motor position

The motor’s current user position can be obtained by reading the
position attribute. The diagram shows the internal sequence of calls.

[image: ../../_images/sardana_server_internal_motor_read_position_flow.png]

Motion

The most useful thing to do with a motor is, of course, to move it. To move a
motor to another absolute user position you have to write the value
into the position attribute.

[image: ../../_images/sardana_server_internal_motor_write_position_flow.png]
Before allowing a movement, some pre-conditions are automatically checked by
tango (not represented in the diagram):

	motor is in a proper state;

	requested position is within the allowed motor boundaries (if
defined)

Then, the dial position is calculated taking into account the offset,
signal as well as a possible backlash.

Afterward, and because the motor may be part of a pseudo motor system, other
pre-conditions are checked:

	is the final dial position (including backlash) within the
motor boundaries (if defined)

	will the resulting motion end in an allowed position for all the
pseudo motors that depend on this motor

After all pre-conditions are checked, the motor will deploy a motion job into
the sardana kernel engine which will trigger a series of calls to the
underlying motor controller.

The motor awaits for the PreStartOne()
to signal that the motion will be possible to return successfully from the move
request.

The following diagram shows the motion state machine of a motor. The black state
transitions are the ones which can be triggered by a user.
For simplicity, only the most relevant states involved in a motor
motion are shown. Error states are omitted.

[image: Basic motion diagram]

I/O register API reference

The IOR is a generic element which allows to write/read from a given hardware
register a value. This value type may be one of: int [https://docs.python.org/dev/library/functions.html#int], float [https://docs.python.org/dev/library/functions.html#float],
bool [https://docs.python.org/dev/library/functions.html#bool].

An IOR has a state, and a value attributes. The state
indicates at any time if the IOR is stopped, in alarm or moving.
The value, indicates the current IOR value.

The available operations are:

	write register(value)

	executes write operation on the IOR with the given value

write_register()

See also

	I/O register overview

	the I/O register overview

	IORegister

	the I/O register tango device API

Counter/Timer API reference

The counter/timer is one of the most used elements in sardana. A counter/timer
represents an experimental channel which acquisition result is a scalar value.

A counter/timer has a state, and a value attributes. The state
indicates at any time if the counter/timer is stopped, in alarm or moving.
The value, indicates the current counter/timer value.

The available operations are:

	start acquisition(integration time)

	starts to acquire the counter/timer with the given integration time

start_acquisition()

	stop

	stops the counter/timer acquisition in an orderly fashion

	abort

	stops the counter/timer acquisition as fast as possible

See also

	Counter/timer overview

	the counter/timer overview

	CTExpChannel

	the counter/timer tango device API

0D channel API reference

The 0D experimental channel is used to access any kind of device which returns
a scalar value and which are not counter/timer.

A 0D has a state, and a value attributes. The state indicates at any
time if the 0D is stopped, in alarm or moving. The value behaves exactly the
same as the accumulated value attribute.

The other attributes are:

	accumulation

	Defines the computation type done on the values gathered during the
acquisition. Three type of computation are supported:

	Sum - the accumulation value attribute is the sum of all the data read
during the acquisition. This is the default type.

	Average - the accumulation value attribute is the average of all the data
read during the acquisition.

	Integral - the accumulation value attribute is a type of the integral of
all the data read during the acquisition.

	current value

	This is the current a.k.a. instant value of the experimental channel.
If the current value attribute is read while the acquisition is in
progress, it returns the last updated by the acquisition operation value
(cache). When there is no acquisition in progress the current value read
executes the hardware readout and returns an updated value.

	accumulated value

	This is the result of the data acquisition after the computation defined by
the accumulation attribute has been applied. This value is 0 until an
acquisition has been started. After an acquisition, the attribute value
stays unchanged until the next acquisition is started.

	accumulation buffer

	This buffer is filled with the instant values read by the acquisition
operation.

	time buffer

	This buffer is filled with the timestamps of the instant values present in
the accumulation buffer and it is also filled during the acquisition
operation.

The available operations are:

	start acquisition(integration time)

	starts to acquire the 0D with the given integration time

start_acquisition()

	stop

	stops the 0D acquisition in an orderly fashion

	abort

	stops the 0D acquisition as fast as possible

See also

	0D channel overview

	the 0D experiment channel overview

	ZeroDExpChannel

	the 0D experiment channel tango device API

1D channel API reference

A 1D represents an experimental channel which acquisition result is a spectrum
value.

A 1D has a state, and a value attributes. The state indicates at any
time if the 1D is stopped, in alarm or moving. The value, indicates the
current 1D value.

The other attributes are:

	data source

	Unique identifier for the 1D data (value attribute)

The available operations are:

	start acquisition(integration time)

	starts to acquire the 1D with the given integration time

start_acquisition()

	stop

	stops the 1D acquisition in an orderly fashion

	abort

	stops the 1D acquisition as fast as possible

See also

	1D channel overview

	the 1D experiment channel overview

	OneDExpChannel

	the 1D experiment channel tango device API

2D channel API reference

A 2D represents an experimental channel which acquisition result is a image
value.

A 2D has a state, and a value attributes. The state indicates at any
time if the 2D is stopped, in alarm or moving. The value, indicates the
current 2D value.

The other attributes are:

	data source

	Unique identifier for the 2D data (value attribute)

The available operations are:

	start acquisition(integration time)

	starts to acquire the 2D with the given integration time

start_acquisition()

	stop

	stops the 2D acquisition in an orderly fashion

	abort

	stops the 2D acquisition as fast as possible

See also

	2D channel overview

	the 2D experiment channel overview

	TwoDExpChannel

	the 2D experiment channel tango device API

Trigger/Gate API reference

The trigger/gate element represents synchronization devices like for example
the digital trigger and/or gate generators that are used to synchronize the
experimental channels.

A trigger/gate has a state, and a index attributes. The state
indicates at any time if the trigger/gate is stopped, in alarm or moving.
The index, indicates the current trigger/gate index.

See also

	Trigger/gate overview

	the trigger/gate overview

	TriggerGate

	the trigger/gate tango device API

Pseudo motor API reference

A pseudo motor has a state, and a position attributes. The state
indicates at any time if the pseudo motor is stopped, in alarm or moving. The
state is composed from the states of all the physical motors involved in the
pseudo motor. So, if one of the motors is in moving or alarm state, the whole
pseudo motor will be in that state. The position, indicates the current
position.

The other pseudo motor’s attributes are:

	drift correction

	Flag to enable/disable drift correction while calculating physical
motor(s) position(s). When enabled, the write sibling(s) position(s) will
be used, when disabled, the read sibiling(s) position(s) will be
used instead. By default drift correction is enabled.

drift_correction

	siblings

	List of other psuedo motor objects that belongs to the same controller.

siblings

The available operations are:

	start move absolute

	Starts to move the pseudo motor to the given absolute position.

start_move()

	stop

	Stops the pseudo motor motion, by stopping all the physical motors, in an
orderly fashion.

	abort

	Stops the pseudo motor motion, by stopping all the physical motors, as
fast as possible (possibly without deceleration time and loss of position).

See also

	Pseudo motor overview

	the pseudo-motor overview

	PseudoMotor

	the pseudo-motor tango device API

Pseudo counter API reference

A pseudo counter has a state, and a value attributes. The state
indicates at any time if the psuedo counter is stopped, in alarm or moving. The
state is composed from the states of all the physical counters involved in the
pseudo counter. So, if one of the counters is in moving or alarm state, the
whole pseudo counter will be in that state. The value, indicates the current
value.

The other pseudo counter’s attributes are:

	siblings

	List of other psuedo counter objects that belongs to the same controller.

siblings

The available operations are:

	start acquisition(integration time)

	starts to acquire the pseudo counter with the given integration time

start_acquisition()

	stop

	stops the pseudo counter acquisition in an orderly fashion

	abort

	stops the pseudo counter acquisition as fast as possible

See also

	Pseudo counter overview

	the pseudo-counter overview

	PseudoCounter

	the pseudo-counter tango device API

Measurement group API reference

The measurement group is a group element. It aggregates other elements like
experimental channels (counter/timer, 0D, 1D and 2D or external attribute e.g.
Tango [http://www.tango-controls.org]) and trigger/gates. The measurement group role is to execute acquisitions
using the aggregated elements.

A measurement group has a state attribute. The state indicates at any time
if the measurement group is stopped, in alarm or moving. The state is composed
from the states of all the elements involved in the measurement group. So, if
one of the involved element (experimental channel or trigger/gate) is in moving
or alarm state, the whole measurement group will be in that state.

The other measurement group’s attributes are:

	timer

	The name of the channel used as a timer.

	integration time

	Integration time to be used in the acquisition operation.

	monitor count

	Monitor count to be used in the acquisition operation.

	acquisition mode

	Acquisition mode to be used in the acquisition operation, either Timer or
Monitor.

	latency time

	Latency time between two consecutive acquisitions in the same acquisition
operation.

	synchronization

	Describes the acquisition operation synchronization. It is composed from
the group(s) of equidistant acquisitions described by the following
parameters:

	initial point

	initial delay

	total interval

	active interval

	number of repetitions

These parameters can be expressed in different synchronization domains if
necessary (time and/or position).

	moveable

	Name of the master moveable.

Note: This attribute has been included in Sardana on a provisional
basis. Backwards incompatible changes (up to and including its removal)
may occur if deemed necessary by the core developers.

The available operations are:

	start acquisition()

	Starts to acquire the measurement group.

start_acquisition()

See also

	Measurement group overview

	the measurement group overview

	MeasurementGroup

	the measurement group tango device API

Device Pool Tango [http://www.tango-controls.org/] API

Todo

Device Pool chapter is out of date. Need to update it and distribute chapters logically around the sardana documentation

Introduction

This paper describes what could be the implementation of the Sardana
device pool. This work is based on Jorg’s paper called “Reordered
SPEC [http://www.certif.com/]”. It is not at all a final version of this device pool. It is rather
a first approach to define this pool more precisely and to help defining its
features and the way it could be implemented.

Overall pool design

The pool could be seen as a kind of intelligent Tango [http://www.tango-controls.org/] device container
to control the experiment hardware. In a first approach, it requires
that the hardware to be controlled is connected to the control
computer or to external crate(s) connected to the control computer
using bus coupler. It has two basic features which are:

	Hardware access using dynamically created/deleted Tango [http://www.tango-controls.org/] devices
according to the experiment needs

	Management of some very common and well defined action regularly done
on a beam line (scanning, motor position archiving….)

To achieve these two goals and to provide the user with a way to
control its behavior, it is implemented as a Tango [http://www.tango-controls.org/] class with commands
and attributes like any other Tango [http://www.tango-controls.org/] class.

Hardware access

Core hardware access

Most of the times, it is possible to define a list of very common
devices found in most of the experiments, a list of communication link
used between the experiment hardware and the control computer(s) and
some of the most commonly used protocol used on these communication
links. Devices commonly used to drive an experiment are:

	Motor

	Group of motor

	Pseudo motor

	Counter/Timer

	Multi Channel Analyzer

	CCD cameras

	And some other that I don’t know

Communication link used to drive experiment devices are:

	Serial line

	GPIB

	Socket

	And some other that I don’t know (USB????)

Protocol used on the communication links are:

	Modbus

	Ans some other that I don’t know

Each of the controlled hardware (one motor, one pseudo-motor, one
serial line device,…) will be driven by independent Tango [http://www.tango-controls.org/] classes.
The pool device server will embed all these Tango [http://www.tango-controls.org/] classes together
(statically linked). The pool Tango [http://www.tango-controls.org/] device is the “container
interface” and allows the user to create/delete classical Tango [http://www.tango-controls.org/]
devices which are instances of these embedded classes. This is
summarized in the following drawing.

[image: ../../_images/hard.png]
Therefore, the three main actions to control a new equipment using the
pool will be (assuming the equipment is connected to the control
computer via a serial line):

	Create the serial line Tango [http://www.tango-controls.org/] device with one of the Pool device
command assigning it a name like “MyNewEquipment”.

	Connect to this newly created Tango [http://www.tango-controls.org/] device using its assigned name

	Send order or write/read data to/from the new equipment using for
instance the WriteRead command of the serial line Tango [http://www.tango-controls.org/] device

When the experiment does not need this new equipment any more, the
user can delete the serial line Tango [http://www.tango-controls.org/] device with another pool device
command. Note that most of the time, creating Tango [http://www.tango-controls.org/] device means
defining some device configuration parameters (Property in Tango [http://www.tango-controls.org/]
language). The Tango [http://www.tango-controls.org/] wizard will be used to retrieve which properties
have to be defined and will allow the user to set them on the fly.
This means that all the Tango [http://www.tango-controls.org/] classes embedded within the Pool must
have their wizard initialized.

Extending pool features

From time to time, it could be useful to extend the list of Tango [http://www.tango-controls.org/]
classes known by the device pool in case a new kind of equipment (not
using the core hardware access) is added to the experiment. Starting
with Tango [http://www.tango-controls.org/] 5.5 (and the associated Pogo), each Tango [http://www.tango-controls.org/] class has a
method which allow the class to be dynamically loaded into a running
process. This feature will be used to extend the pool feature. It has
to be checked that it is possible for Tango [http://www.tango-controls.org/] Python class.

[image: ../../_images/dyn.png]
To achieve this feature, the pool Tango [http://www.tango-controls.org/] device will have commands to

	Load a Tango [http://www.tango-controls.org/] class. This command will dynamically add two other
commands and one attribute to the pool device Tango [http://www.tango-controls.org/] interface. These
commands and the attribute are:

	Command: Create a device of the newly loaded class

	Command: Delete a device of the newly loaded class

	Attribute: Get the list of Tango [http://www.tango-controls.org/] devices instances of the newly
created class

	Unload a Tango [http://www.tango-controls.org/] class

	Reload a Tango [http://www.tango-controls.org/] class

Global actions

The following common actions regularly done on a beam line experiment
will be done by the pool device server:

	Evaluating user constraint(s) before moving motor(s)

	Scanning

	Saving experiment data

	Experiment management

	Archiving motor positions

Sardana core hardware access

The Sardana Motor management

The user motor interface

The motor interface is a first approach of what could be a complete
motor interface. It is statically linked with the Pool device server
and supports several attributes and commands. It is implemented in C++
and used a set of the so-called “controller” methods. The motor
interface is always the same whatever the hardware is. This is the
rule of the “controller” to access the hardware using the
communication link supported by the motor controller hardware (network
link, serial line…).

[image: ../../_images/motor.png]
The controller code has a well-defined interface and can be written
using Python or C++. In both cases, it will be dynamically loaded into
the pool device server process.

The states

The motor interface knows five states which are ON, MOVING, ALARM,
FAULT and UNKNOWN. A motor device is in MOVING state when it is
moving! It is in ALARM state when it has reached one of the limit
switches and is in FAULT if its controller software is not available
(impossible to load it) or if a fault is reported from the hardware
controller. The motor is in the UNKNOWN state if an exception occurs
during the communication between the pool and the hardware controller.
When the motor is in ALARM state, its status will indicate which limit
switches is active.

The commands

The motor interface supports 3 commands on top of the Tango [http://www.tango-controls.org/] classical
Init, State and Status commands. These commands are summarized in the
following table:

	Command name

	Input data type

	Output data type

	Abort

	void

	void

	SetPosition

	Tango::DevDouble

	void

	SaveConfig

	void

	void

	Abort : It aborts a running motion. This command does not have input or
output argument.

	SetPosition : Loads a position into controller. It has one input argument which is
the new position value (a double). It is allowed only in the ON or
ALARM states. The unit used for the command input value is the
physical unit: millimeters or milli-radians. It is always an absolute
position.

	SaveConfig : Write some of the motor parameters in database. Today, it writes the
motor acceleration, deceleration, base_rate and velocity into database
as motor device properties. It is allowed only in the ON or ALARM
states

The classical Tango [http://www.tango-controls.org/] Init command destroys the motor and re-create it.

The attributes

The motor interface supports several attributes which are summarized
in the following table:

	Name

	Data type

	Data format

	Writable

	Memorized

	Ope/Expert

	Position

	Tango::DevDouble

	Scalar

	R/W

	No *

	Ope

	DialPosition

	Tango::DevDouble

	Scalar

	R

	No

	Exp

	Offset

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Exp

	Acceleration

	Tango::DevDouble

	Scalar

	R/W

	No

	Exp

	Base_rate

	Tango::DevDouble

	Scalar

	R/W

	No

	Exp

	Deceleration

	Tango::DevDouble

	Scalar

	R/W

	No

	Exp

	Velocity

	Tango::DevDouble

	Scalar

	R/W

	No

	Exp

	Limit_Switches

	Tango::DevBoolean

	Spectrum

	R

	No

	Exp

	SimulationMode

	Tango::DevBoolean

	Scalar

	R

	No

	Exp

	Step_per_unit

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Exp

	Backlash

	Tango::DevLong

	Scalar

	R/W

	Yes

	Exp

	Position : This is read-write scalar double attribute. With the classical Tango
min and max_value attribute properties, it is easy to define
authorized limit for this attribute. See the definition of the
DialPosition and Offset attributes to get a precise definition of the
meaning of this attribute. It is not allowed to read or write this
attribute when the motor is in FAULT or UNKNOWN state. It is also not
possible to write this attribute when the motor is already MOVING. The unit used for this attribute is the physical unit: millimeters or
milli-radian. It is always an absolute position. The value of this attribute is memorized in the Tango [http://www.tango-controls.org/] database but not
by the default Tango [http://www.tango-controls.org/] system memorization. See chapter
XXX: Unknown inset LatexCommand ref{sub:Archiving-motor-position}:
for details about motor position archiving.

	DialPosition : This attribute is the motor dial position. The following formula
links together the Position, DialPosition, Sign and Offset attributes:

Position = Sign * DialPosition + Offset

This allows to have the motor position centered around any position
defined by the Offset attribute (classically the X ray beam position).
It is a read only attribute. To set the motor position, the user has
to use the Position attribute. It is not allowed to read this
attribute when the motor is in FAULT or UNKNOWN mode. The unit used
for this attribute is the physical unit: millimeters or milli-radian.
It is also always an absolute position.

	Offset : The offset to be applied in the motor position computation. By
default set to 0. It is a memorized attribute. It is not allowed to
read or write this attribute when the motor is in FAULT, MOVING or
UNKNOWN mode.

	Acceleration : This is an expert read-write scalar double attribute. This parameter
value is written in database when the SaveConfig command is executed.
It is not allowed to read or write this attribute when the motor is in
FAULT or UNKNOWN state.

	Deceleration : This is an expert read-write scalar double attribute. This parameter
value is written in database when the SaveConfig command is executed.
It is not allowed to read or write this attribute when the motor is in
FAULT or UNKNOWN state.

	Base_rate : This is an expert read-write scalar double attribute. This parameter
value is written in database when the SaveConfig command is executed.
It is not allowed to read or write this attribute when the motor is in
FAULT or UNKNOWN state.

	Velocity : This is an expert read-write scalar double attribute. This parameter
value is written in database when the SaveConfig command is executed.
It is not allowed to read or write this attribute when the motor is in
FAULT or UNKNOWN state.

	Limit_Switches : Three limit switches are managed by this attribute. Each of the
switch are represented by a boolean value: False means inactive while
True means active. It is a read only attribute. It is not possible to
read this attribute when the motor is in UNKNOWN mode. It is a
spectrum attribute with 3 values which are:

	Data[0] : The Home switch value

	Data[1] : The Upper switch value

	Data[2] : The Lower switch value

	SimulationMode : This is a read only scalar boolean attribute. When set, all motion
requests are not forwarded to the software controller and then to the
hardware. When set, the motor position is simulated and is immediately
set to the value written by the user. To set this attribute, the user
has to used the pool device Tango [http://www.tango-controls.org/] interface. The value of the
position, acceleration, deceleration, base_rate, velocity and offset
attributes are memorized at the moment this attribute is set. When
this mode is turned off, if the value of any of the previously
memorized attributes has changed, it is reapplied to the memorized
value. It is not allowed to read this attribute when the motor is in
FAULT or UNKNOWN states.

	Step_per_unit : This is the number of motor step per millimeter or per degree. It is
a memorized attribute. It is not allowed to read or write this
attribute when the motor is in FAULT or UNKNOWN mode. It is also not
allowed to write this attribute when the motor is MOVING. The default
value is 1.

	Backlash : If this attribute is defined to something different than 0, the
motor will always stop the motion coming from the same mechanical
direction. This means that it could be possible to ask the motor to go
a little bit after the desired position and then to return to the
desired position. The attribute value is the number of steps the motor
will pass the desired position if it arrives from the “wrong”
direction. This is a signed value. If the sign is positive, this means
that the authorized direction to stop the motion is the increasing
motor position direction. If the sign is negative, this means that the
authorized direction to stop the motion is the decreasing motor
position direction. It is a memorized attribute. It is not allowed to
read or write this attribute when the motor is in FAULT or UNKNOWN
mode. It is also not allowed to write this attribute when the motor is
MOVING. Some hardware motor controllers are able to manage this
backlash feature. If it is not the case, the motor interface will
implement this behavior.

All the motor devices will have the already described attributes but
some hardware motor controller supports other features which are not
covered by this list of pre-defined attributes. Using Tango [http://www.tango-controls.org/] dynamic
attribute creation, a motor device may have extra attributes used to
get/set the motor hardware controller specific features. The main
characteristics of these extra attributes are :

	Name defined by the motor controller software (See next chapter)

	Data type is BOOLEAN, LONG, DOUBLE or STRING defined by the motor
controller software (See next chapter)

	The data format is always Scalar

	The write type is READ or READ_WRITE defined by the motor controller
software (See next chapter). If the write type is READ_WRITE, the
attribute is memorized by the Tango [http://www.tango-controls.org/] layer

The motor properties

Each motor device has a set of properties. Five of these properties
are automatically managed by the pool software and must not be changed
by the user. These properties are named Motor_id, _Acceleration,
_Velocity, _Base_rate and _Deceleration. The user properties are:

	Property name

	Default value

	Sleep_bef_last_read

	0

This property defines the time in milli-second that the software
managing a motor movement will wait between it detects the end of the
motion and the last motor position reading.

Getting motor state and limit switches using event

The simplest way to know if a motor is moving is to survey its state.
If the motor is moving, its state will be MOVING. When the motion is
over, its state will be back to ON (or ALARM if a limit switch has
been reached). The pool motor interface allows client interested by
motor state or motor limit switches value to use the Tango [http://www.tango-controls.org/] event
system subscribing to motor state change event. As soon as a motor
starts a motion, its state is changed to MOVING and an event is sent.
As soon as the motion is over, the motor state is updated ans another
event is sent. In the same way, as soon as a change in the limit
switches value is detected, a change event is sent to client(s) which
have subscribed to change event on the Limit_Switches attribute.

Reading the motor position attribute

For each motor, the key attribute is its position. Special care has
been taken on this attribute management. When the motor is not moving,
reading the Position attribute will generate calls to the controller
and therefore hardware access. When the motor is moving, its position
is automatically read every 100 milli-seconds and stored in the Tango
polling buffer. This means that a client reading motor Position
attribute while the motor is moving will get the position from the
Tango [http://www.tango-controls.org/] polling buffer and will not generate extra controller calls. It
is also possible to get a motor position using the Tango [http://www.tango-controls.org/] event system.
When the motor is moving, an event is sent to the registered clients
when the change event criterion is true. By default, this change event
criterion is set to be a difference in position of 5. It is tunable on
a motor basis using the classical motor Position attribute abs_change
property or at the pool device basis using its DefaultMotPos_AbsChange
property. Anyway, not more than 10 events could be sent by second.
Once the motion is over, the motor position is made unavailable from
the Tango [http://www.tango-controls.org/] polling buffer and is read a last time after a tunable
waiting time (Sleep_bef_last_read property). A forced change event
with this value is sent to clients using events.

The Motor Controller

XXX: Unknown inset LatexCommand label{sub:The-Motor-Controller}:

Each controller code is built as a shared library or as a Python
module which is dynamically loaded by the pool device the first time
one controller using the shared library (or the module) is created.
Each controller is uniquely defined by its name following the syntax:

<controller_file_name>.<controller_class_name>/<instance_name>

At controller creation time, the pool checks the controller unicity on
its control system (defined by the TANGO_HOST). It is possible to
write controller using either C++ or Python language. Even if a Tango
device server is a multi-threaded process, every access to the same
controller will be serialized by a monitor managed by the Motor
interface. This monitor is attached to the controller class and not to
the controller instance to handle cases where several instances of the
same controller class is used. For Python controller, this monitor
will also take care of taking/releasing the Python Global Interpreter
Lock (GIL) before any call to the Python controller is executed.

The basic

For motor controller, a pre-defined set of methods has to be
implemented in the class implementing the controller interface. These
methods can be splitted in 6 different types which are:

	Methods to create/remove motor

	Methods to move motor(s)

	Methods to read motor(s) position

	Methods to get motor(s) state

	Methods to configure a motor

	Remaining methods.

These methods, their rules and their execution sequencing is detailed
in the following sub-chapters. The motor controller software layer is
also used to inform the upper level of the features supported by the
underlying hardware. This is called the controller features . It is detailed in a following sub-chapter. Some controller may need
some configuration data. This will be supported using Tango
properties. This is detailed in a dedicated sub-chapter.

Specifying the motor controller features

A controller feature is something that motor hardware controller is
able to do or require on top of what has been qualified as the basic
rules. Even if these features are common, not all the controllers
implement them. Each of these common features are referenced by a pre-
defined string. The controller code writer defined (from a pre-defined
list) which of these features his hardware controller
implements/requires. This list (a Python list or an array of C
strings) has a well-defined name used by the upper layer software to
retrieve it. The possible strings in this list are (case independent):

	CanDoBacklash : The hardware controller manages the motor backlash if the user
defines one

	WantRounding : The hardware controller wants an integer number of step

	encoder : The hardware knows how to deal with encoder

	home : The hardware is able to manage home switch

	home_acceleration : It is possible to set the acceleration for motor homing

	home_method _ xxx : The hardware knows the home method called xxx

	home_method_yyy : The hardware knows the home method called yyy

The name of this list is simply: ctrl_features . If this list is not defined, this means that the hardware does not
support/require any of the additional features. The Tango [http://www.tango-controls.org/] motor class
will retrieve this list from the controller before the first motor
belonging to this controller is created. As an example, we suppose
that we have a pool with two classes of motor controller called Ctrl_A
and Ctrl_B. The controllers features list are (in Python)

Controller A : ctrl_features = ['CanDoBacklash','encoder']
ControllerB : ctrl_features = ['WantRounding','home','home_method_xxx']

All motors devices belonging to the controller A will have the Encoder
and Backlash features. For these motors, the backlash will be done by
the motor controller hardware. All the motors belonging to the
controller B will have the rounding, home and home_method features.
For these motors, the backlash will be done by the motor interface
code.

Specifying the motor controller extra attributes

XXX: Unknown inset LatexCommand label{par:Specifying-the-motor}:

Some of the hardware motor controller will have features not defined
in the features list or not accessible with a pre-defined feature. To
provide an interface to these specific hardware features, the
controller code can define extra attributes. Another list called : ctrl_extra_attributes is used to define them. This list (Python dictionary or an array of
classical C strings) is used to define the name, data and read-write
type of the Tango [http://www.tango-controls.org/] attribute which will be created to deal with these
extra features. The attribute created for these controller extra
features are all:

	Boolean, Long, Double or String

	Scalar

	Read or Read/Write (and memorized if Read/Write).

For Python classes (Python controller class), it is possible to define
these extra attributes informations using a Python dictionary called ctrl_extra _ attributes . The extra attribute name is the dictionary element key. The
dictionary element value is another dictionary with two members which
are the extra attribute data type and the extra attribute read/write
type. For instance, for our IcePap controller, this dictionary to
defined one extra attribute called “SuperExtra” of data type Double
which is also R/W will be:

ctrl_extra_attributes = { "SuperExtra" : { "Type" : "DevDouble", "R/W Type", "READ_WRITE" } }

For C++ controller class, the extra attributes are defined within an
array of Controller::ExtraAttrInfo structures. The name of this array has to be
<Ctrl_class_name>_ctrl_extra_attributes. Each
Controller::ExtraAttrInfo structure has three elements which are all
pointers to classical C string (const char *). These elements are:

	The extra attribute name

	The extra attribute data type

	The extra attribute R/W type

A NULL pointer defined the last extra attribute. The following is an
example of extra attribute definition for a controller class called
“DummyController”:

Controller::ExtraAttrInfo DummyController_ctrl_extra_attributes[] =
 { { "SuperExtra", "DevDouble", "Read_Write" }, NULL };

The string describing the extra attribute data type may have the
following value (case independent):

	DevBoolean, DevLong, DevDouble or DevString (in Python, a preceding
“PyTango.” is allowed)

The string describing the extra attribute R/W type may have the
following value (case independent)

	Read or Read_Write (in Python, a preceding “PyTango.” is allowed)

Methods to create/remove motor from controller

Two methods are called when creating or removing motor from a
controller. These methods are called AddDevice and DeleteDevice . The AddDevice method is called when a new motor belonging to the
controller is created within the pool. The DeleteDevice method is
called when a motor belonging to the controller is removed from the
pool.

Methods to move motor(s)

Four methods are used when a request to move motor(s) is executed.
These methods are called PreStartAll , PreStartOne , StartOne and StartAll .
The algorithm used to move one or several motors is the following:

/FOR/ Each controller(s) implied in the motion
 - Call PreStartAll()
/END FOR/

/FOR/ Each motor(s) implied in the motion
 - ret = PreStartOne(motor to move, new position)
 - /IF/ ret is true
 - Call StartOne(motor to move, new position)
 - /END IF/
/END FOR/

/FOR/ Each controller(s) implied in the motion
 - Call StartAll()
/END FOR/

The following array summarizes the rule of each of these methods:

	
	
	
	
	

	Default action

	Does nothing

	Return true

	Does nothing

	Does nothing

	Externally called by

	Writing the Position attribute

	Writing the Position attribute

	Writing the Position attribute

	Writing the Position attribute

	Internally called

	Once for each implied controller

	For each implied motor

	For each implied motor

	Once for each implied controller

	Typical rule

	Init internal data for motion

	Check if motor motion is possible

	Set new motor position in internal data

	Send order to physical controller

This algorithm covers the sophisticated case where a physical
controller is able to move several motors at the same time. For some
simpler controller, it is possible to implement only the StartOne()
method. The default implementation of the three remaining methods is
defined in a way that the algorithm works even in such a case.

Methods to read motor(s) position

Four methods are used when a request to read motor(s) position is
received. These methods are called PreReadAll, PreReadOne, ReadAll and
ReadOne. The algorithm used to read position of one or several motors
is the following:

/FOR/ Each controller(s) implied in the reading
 - Call PreReadAll()
/END FOR/

/FOR/ Each motor(s) implied in the reading
 - PreReadOne(motor to read)
/END FOR/

/FOR/ Each controller(s) implied in the reading
 - Call ReadAll()
/END FOR/

/FOR/ Each motor(s) implied in the reading
 - Call ReadOne(motor to read)
/END FOR/

The following array summarizes the rule of each of these methods:

	
	
	
	
	

	Default action

	Does nothing

	Does nothing

	Does nothing

	Print message on the screen and returns NaN. Mandatory for Python

	Externally called by

	Reading the Position attribute

	Reading the Position attribute

	Reading the Position attribute

	Reading the Position attribute

	Internally called

	Once for each implied controller

	For each implied motor

	For each implied controller

	Once for each implied motor

	Typical rule

	Init internal data for reading

	Memorize which motor has to be read

	Send order to physical controller

	Return motor position from internal data

This algorithm covers the sophisticated case where a physical
controller is able to read several motors positions at the same time.
For some simpler controller, it is possible to implement only the
ReadOne() method. The default implementation of the three remaining
methods is defined in a way that the algorithm works even in such a
case.

Methods to get motor(s) state

XXX: Unknown inset LatexCommand label{par:Methods-to-get-state}:

Four methods are used when a request to get motor(s) state is
received. These methods are called PreStateAll, PreStateOne, StateAll
and StateOne. The algorithm used to get state of one or several motors
is the following :

/FOR/ Each controller(s) implied in the state getting
 - Call PreStateAll()
/END FOR/

/FOR/ Each motor(s) implied in the state getting
 - PreStateOne(motor to get state)
/END FOR/

/FOR/ Each controller(s) implied in the state getting
 - Call StateAll()
/END FOR/

/FOR/ Each motor(s) implied in the getting state
 - Call StateOne(motor to get state)
/END FOR/

The following array summarizes the rule of each of these methods:

	
	
	
	
	

	Default action

	Does nothing

	Does nothing

	Does nothing

	Mandatory for Python

	Externally called by

	Reading the motor state

	Reading the motor state

	Reading the motor state

	Reading the motor state

	Internally called

	Once for each implied controller

	For each implied motor

	For each implied controller

	Once for each implied motor

	Typical rule

	Init internal data for reading

	Memorize which motor has to be read

	Send order to physical controller

	Return motor state from internal data

This algorithm covers the sophisticated case where a physical
controller is able to read several motors state at the same time. For
some simpler controller, it is possible to implement only the
StateOne() method. The default implementation of the three remaining
methods is defined in a way that the algorithm works even in such a
case.

Methods to configure a motor

The rule of these methods is to

	Get or Set motor parameter(s) with methods called GetPar() or SetPar()

	Get or Set motor extra feature(s) parameter with methods called
GetExtraAttributePar() or SetExtraAttributePar()

The following table summarizes the usage of these methods:

	
	
	
	
	

	Called by

	Reading the Velocity, Acceleration, Base_rate, Deceleration and eventually Backlash attributes

	Writing the Velocity, Acceleration, Base_rate, Deceleration, Step_per_unit and eventually Backlash attribute

	Reading any of the extra attributes

	Writing any of the extra attributes

	Rule

	Get parameter from physical controller

	Set parameter in physical controller

	Get extra attribute value from the physical layer

	Set additional attribute value in physical controller

Please, note that the default implementation of the GetPar() prints a
message on the screen and returns a NaN double value. The
GetExtraAttributePar() default implementation also prints a message on
the screen and returns a string set to “Pool_met_not_implemented”.

The remaining methods

The rule of the remaining methods are to

	Load a new motor position in a controller with a method called
DefinePosition()

	Abort a running motion with a method called AbortOne()

	Send a raw string to the controller with a method called SendToCtrl()

The following table summarizes the usage of these methods:

	
	
	
	

	Called by

	The motor SetPosition command

	The motor Abort command

	The Pool SendToController command

	Rule

	Load a new motor position in controller

	Abort a running motion

	Send the input string to the controller and returns the controller answer

Controller properties

XXX: Unknown inset LatexCommand label{par:Controller-properties}:

Each controller may have a set of properties to configure itself. Properties are defined at the controller class
level but can be re-defined at the instance level. It is also possible
to define a property default value. These default values are stored
within the controller class code. If a default value is not adapted to
specific object instance, it is possible to define a new property
value which will be stored in the Tango [http://www.tango-controls.org/] database. Tango [http://www.tango-controls.org/] database
allows storing data which are not Tango [http://www.tango-controls.org/] device property. This storage
could be seen simply as a couple name/value. Naming convention for
this kind of storage could be defined as:

controller_class->prop: value or
controller_class/instance->prop: value

The calls necessary to retrieve/insert/update these values from/to the
database already exist in the Tango [http://www.tango-controls.org/] core. The algorithm used to
retrieve a property value is the following:

- Property value = Not defined

/IF/ Property has a default value
 - Property value = default value
/ENDIF/

/IF/ Property has a value defined in db at class level
 - Property value = class db value
/ENDIF/

/IF/ Property has a value defined in db at instance level
 - Property value = instance db value
/ENDIF/

/IF/ Property still not defined
 - Error
/ENDIF/

As an example, the following array summarizes the result of this
algorithm. The example is for an IcePap controller and the property is
the port number (called port_number):

	
	
	
	
	
	

	default value

	5000

	5000

	5000

	5000

	

	class in DB

	
	
	5150

	5150

	

	inst. in DB

	
	5200

	
	5250

	

	Property value

	5000

	5200

	5150

	5250

	Error

	Case 1: The IcePap controller class defines one property called
port_number and assigns it a default value of 5000

	Case 2 : An IcePap controller is created with an instance name
“My_IcePap”. The property IcePap/My_IcePap->port_number has been set
to 5200 in db

	Case 3: The hard coded value of 5000 for port number does not fulfill
the need. A property called IcePap->port_number set to 5150 is defined
in db.

	Case 4: We have one instance of IcePap called “My_IcePap” for which we
have defined a property “IcePap/My_IcePap” set to 5250.

	Case 5: The IcePap controller has not defined a default value for the
property.

In order to provide the user with a friendly interface, all the
properties defined for a controller class have to have informations
hard-coded into the controller class code. We need at least three
informations and sometimes four for each property. They are:

	The property name (Mandatory)

	The property description (Mandatory)

	The property data type (Mandatory)

	The property default value (Optional)

With these informations, a graphical user interface is able to build
at controller creation time a panel with the list of all the needed
properties, their descriptions and eventually their default value. The
user then have the possibility to re-define property value if the
default one is not valid for his usage. This is the rule of the
graphical panel to store the new value into the Tango [http://www.tango-controls.org/] database. The
supported data type for controller property are:

	Property data type

	String to use in property definition

	Boolean

	DevBoolean

	Long

	DevLong

	Double

	DevDouble

	String

	DevString

	Boolean array

	DevVarBooleanArray

	Long array

	DevVarLongArray

	Double array

	DevVarDoubleArray

	String array

	DevVarStringArray

For Python classes (Python controller class), it is possible to define
these properties informations using a Python dictionary called class_prop . The property name is the dictionary element key. The dictionary
element value is another dictionary with two or three members which
are the property data type, the property description and an optional
default value. If the data type is an array, the default value has to
be defined in a Python list or tuple. For instance, for our IcePap
port number property, this dictionary will be

class_prop = { "port_number" : { "Type" : "DevLong", "Description",
 "Port on which the IcePap software server is listening", "DefaultValue" : 5000 } }

For C++ controller class, the properties are defined within an array
of Controller::PropInfo structures. The name of this array has to be
<Ctrl_class_name>_class_prop. Each Controller::PropInfo structure has
four elements which are all pointers to classical C string (const char
*). These elements are:

	The property name

	The property description

	The property data type

	The property default value (NULL if not used)

A NULL pointer defined the last property. The following is an example
of property definition for a controller class called “DummyController”:

Controller::PropInfo DummyController_class_prop[] =
{{"The prop","The first CPP property","DevLong","12"},
 {"Another_Prop","The second CPP property","DevString",NULL},
 {"Third_Prop","The third CPP property","DevVarLongArray","11,22,33"},
 NULL};

The value of these properties is passed to the controller at
controller instance creation time using a constructor parameter. In
Python, this parameter is a dictionnary and the base class of the
controller class will create one object attribute for each property.
In our Python example, the controller will have an attribute called
“port_number” with its value set to 5000. In C++, the controller
contructor receives a vector of Controller::Properties structure. Each Controller::Properties structure has two elements
which are:

	The property name as a C++ string

	
	The property value in a PropData structure. This PropData structure has four elements which are

	
	A C++ vector of C++ bool type

	A C++ vector of C++ long type

	A C++ vector of C++ double type

	A C++ vector of C++ string.

Only the vector corresponding to the property data type has a size
different than 0. If the property is an array, the vector has as many
elements as the property has.

The MaxDevice property

Each controller has to have a property defining the maximum number of
device it supports. This is a mandatory requirement. Therefore, in
Python this property is simply defined by setting the value of a
controller data member called MaxDevice which will be taken as the default value for the controller. In C++,
you have to define a global variable called
<Ctrl_class_name>_MaxDevice. The management of the number of devices created using a controller
(limited by this property) will be completely done by the pool
software. The information related to this property is automatically
added as first element in the information passed to the controller at
creation time. The following is an example of the definition of this
MaxDevice property in C++ for a controller class called
“DummyController”

long DummyController_MaxDevice = 16;

C++ controller

For C++, the controller code is implemented as a set of classes: A
base class called Controller and a class called MotorController which inherits from Controller. Finally, the user has to write its
controller class which inherits from MotorController.

XXX: Unknown layout Subparagraph: The Controller class
XXX: XXX: Unknown inset LatexCommand label{sub:The-Cpp-Controller-class}:
This class defined two pure virtual methods, seven virtual methods and
some data types. The methods defined in this class are:

	void Controller::AddDevice (long axe_number)
Pure virtual

	void Controller::DeleteDevice (long axe_number)
Pure virtual

	void Controller::PreStateAll ()
The default implementation does nothing

	void Controller::PreStateOne (long idx_number)
The default implementation does nothing. The parameter is the device
index in the controller

	void Controller::StateAll ()
The default implementation does nothing

	void Controller::StateOne (long idx_number,CtrlState *ptr)
Read a device state. The CtrlState data type is a structure with two
elements which are:

	A long dedicated to return device state (format ??)

	A string used in case the motor is in FAULT and the controller is able
to return a string describing the fault.

	string Controller::SendToCtrl (string in_string)
Send the input string to the controller without interpreting it and
returns the controller answer

	Controller::CtrlData Controller::GetExtraAttributePar (long idx_number,string &extra_attribute_name)
Get device extra attribute value. The name of the extra attribute is
passed as the second argument of the method. The default definition of
this method prints a message on the screen and returns a string set to
“Pool_meth_not_implemented”. The CtrlData data type is a structure
with the following elements

	A data type enumeration called data_type describing which of the
following element is valid (BOOLEAN, LONG, DOUBLE or STRING)

	A boolean data called bo_data for boolean transfer

	A long data called lo_data for long transfer

	A double data called db_data for double transfer

	A C++ string data called str_data for string transfer

	void Controller::SetExtraAttributePar (long idx_number, string &extra_attribute_name, Controller::CtrlData
&extra_attribute_value)
Set device extra attribute value.

It also has one data member which is the controller instance name with
one method to return it

	string & Controller::get_name (): Returns the controller instance name

XXX: Unknown layout Subparagraph: The MotorController class
This class defined twelve virtual methods with default implementation.
The virtual methods declared in this class are:

	void MotorController::PreStartAll ()
The default implementation does nothing.

	bool MotorController::PreStartOne (long axe_number, double wanted_position)
The default implementation returns True.

	void MotorController::StartOne (long axe_number, double wanted_position)
The default implementation does nothing.

	void MotorController::StartAll ()
Start the motion. The default implementation does nothing.

	void MotorController::PreReadAll ()
The default implementation does nothing.

	void MotorController::PreReadOne (long axe_number)
The default implementation does nothing.

	void MotorController::ReadAll ()
The default implementation does nothing.

	double MotorController::ReadOne (long axe_number)
Read a position. The default implementation does nothing.

	void MotorController::AbortOne (long axe_number)
Abort a motion. The default implementation does nothing.

	void MotorController::DefinePosition (long axe_number, double new_position)
Load a new position. The default implementation does nothing.

	Controller::CtrlData MotorController::GetPar (long axe_number, string &par_name)
Get motor parameter value. The CtrlData data type is a structure with
the following elements

	A data type enumeration called data_type describing which of the
following element is valid (BOOLEAN, LONG, DOUBLE or STRING)

	A boolean data called bo_data for boolean transfer

	A long data called lo_data for long transfer

	A double data called db_data for double transfer

	A C++ string data called str_data for string transfer

A motor controller has to handle four or five different possible
values for the “par_name” parameter which are:

	Acceleration

	Deceleration

	Velocity

	Base_rate

	Backlash which has to be handled only for controller which has the
backlash feature

The default definition of this method prints a message on the screen
and returns a NaN double value.

	void MotorController::SetPar (long axe_number, string &par_name, Controller::CtrlData &par_value)
Set motor parameter value. The default implementation does nothing. A
motor controller has to handle five or six different value for the
“par_name” parameter which are:

	Acceleration

	Deceleration

	Velocity

	Base_rate

	Step_per_unit

	Backlash which has to be handled only for controller which has the
backlash feature

The description of the CtrlData type is given in the documentation of
the GetPar() method. The default definition of this method does
nothing

This class has only one constructor which is

	MotorController::MotorController (const char *)
Constructor of the MotorController class with the controller name as
instance name

Please, note that this class defines a structure called MotorState
which inherits from the Controller::CtrlState and which has a data
member:

	A long describing the motor limit switches state (bit 0 for the Home
switch, bit 1 for Upper Limit switch and bit 2 for the Lower Limit
switch)

This structure is used in the StateOne() method.

XXX: Unknown layout Subparagraph: The user controller class
XXX: XXX: Unknown inset LatexCommand label{par:The-user-controller}:
The user has to implement the remaining pure virtual methods
(AddDevice and DeleteDevice) and has to re-define virtual methods if
the default implementation does not cover his needs. The controller
code has to define two global variables which are:

	Motor_Ctrl_class_name (for Motor controller). This is an array of classical C strings
terminated by a NULL pointer. Each array element is the name of a
Motor controller class defined in this file.

	<CtrlClassName>_MaxDevice . This variable is a long defining the maximum number of device that
the controller hardware can support.

On top of that, a controller code has to define a C function (defined
as “extern C”) which is called by the pool to create instance(s) of
the controller class. This function has the following definition:

Controller * **_create_<Controller class name>** (const char *ctrl_instance_name,vector<Controller::Properties> &props)

For instance, for a controller class called DummyController, the name
of this function has to be: _create_DummyController(). The parameters
passed to this function are:

	The forth parameter given to the pool during the CreateController
command (the instance name).

	A reference to a C++ vector with controller properties as defined in
XXX: Unknown inset LatexCommand ref{par:Controller-properties}:

The rule of this C function is to create one instance of the user
controller class passing it the arguments it has received. The
following is an example of these definitions

//
// Methods of the DummyController controller
//
....

const char *Motor_Ctrl_class_name[] = {"DummyController",NULL};

long DummyController_MaxDevice = 16;

extern "C" {
Controller *_create_DummyController(const char *inst,vector<Controller::Properties> &prop)
{
 return new DummyController(inst,prop);
}
}

On top of these mandatory definitions, you can define a controller
documentation string, controller properties, controller features and
controller extra features. The documentation string is the first
element of the array returned by the Pool device GetControllerInfo
command as detailed in
XXX: Unknown inset LatexCommand ref{ite:GetControllerInfo:}:
. It has to be defined as a classical C string (const char *) with a
name like <Ctrl_class_name>_doc. The following is an example of a
controller C++ code defining all these elements.

//
// Methods of the DummyController controller
//
....

const char *Motor_Ctrl_class_name[] = {"DummyController",NULL};
const char *DummyController_doc = "This is the C++ controller for the DummyController class";

long DummyController_MaxDevice = 16;

char *DummyController_ctrl_extra_features_list[] = {{"Extra_1","DevLong","Read_Write"},
 {"Super_2","DevString","Read"},
 NULL};
char *DummyController_ctrl_features[] = {"WantRounding","CanDoBacklash",NULL};

Controller::PropInfo DummyController_class_prop[] =
{{"The prop","The first CPP property","DevLong","12"},
 {"Another_Prop","The second CPP property","DevString",NULL},
 {"Third_Prop","The third CPP property","DevVarLongArray","11,22,33"},
 NULL};

extern "C" {
Controller *_create_DummyController(const char *inst,vector<Controller::Properties> &prop)
{
 return new DummyController(inst,prop);
}
}

Python controller

The principle is exactly the same than the one used for C++ controller
but we don’t have pure virtual methods with a compiler checking if
they are defined at compile time. Therefore, it is the pool software
which checks that the following methods are defined within the
controller class when the controller module is loaded (imported):

	AddDevice

	DeleteDevice

	StartOne or StartAll method

	ReadOne method

	StateOne method

With Python controller, there is no need for function to create
controller class instance. With the help of the Python C API, the pool
device is able to create the needed instances. Note that the
StateOne() method does not have the same signature for Python
controller.

	tuple Stat e One (self,axe_number)
Get a motor state. The method has to return a tuple with two or three
elements which are:

	The motor state (as defined by Tango)

	The limit switch state (integer with bit 0 for Home switch, bit 1 for
Upper switch and bit 2 for Lower switch)

	A string describing the motor fault if the controller has this
feature.

A Python controller class has to inherit from a class called MotorController . This does not add any feature but allow the pool software to realize
that this class is a motor controller.

Python controller examples

XXX: Unknown layout Subparagraph: A minimum controller code
The following is an example of the minimum code structure needed to
write a Python controller :

1 import socket
2 import PyTango
3 import MotorController
4
5 class MinController(MotorController.MotorController):
6
7 #
8 # Some controller definitions
9 #
10
11 MaxDevice = 1
12
13 #
14 # Controller methods
15 #
16
17 def __init__(self,inst,props):
18 MotorController.MotorController.__init__(self,inst,props)
19 self.inst_name = inst
20 self.socket_connected = False
21 self.host = "the_host"
22 self.port = 1111
23
24 #
25 # Connect to the icepap
26 #
27
28 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
29 self.sock.connect(self.host, self.port)
30 self.socket_connected = True
31
32 print "PYTHON -> Connected to", self.host, " on port", self.port
33
34
35 def AddDevice(self,axis):
36 print "PYTHON -> MinController/",self.inst_name,": In AddDevice method for axis",axis
37
38 def DeleteDevice(self,axis):
39 print "PYTHON -> MinController/",self.inst_name,": In DeleteDevice method for axis",axis
40
41 def StateOne(self,axis):
42 print "PYTHON -> MinController/",self.inst_name,": In StateOne method for axis",axis
43 tup = (PyTango.DevState.ON,0)
44 return tup
45
46 def ReadOne(self,axis):
47 print "PYTHON -> MinController/",self.inst_name,": In ReadOne method for axis",axis
48 self.sock.send("Read motor position")
49 pos = self.sock.recv(1024)
50 return pos
51
52 def StartOne(self,axis,pos):
53 print "PYTHON -> MinController/",self.inst_name,": In StartOne method for axis",axis," with pos",pos
54 self.sock.send("Send motor to position pos")

Line 11: Definition of the mandatory MaxDevice property set to 1 in
this minimum code
Line 17-32: The IcePapController constructor code
Line 35-36: The AddDevice method
Line 38-39: The DeleteDevice method
Line 41-44: The StateOne method
Line 46-50: The ReadOne method reading motor position from the
hardware controller
Line 52-54: The StartOne method writing motor position at position pos

XXX: Unknown layout Subparagraph: A full features controller code
The following is an example of the code structure needed to write a
full features Python controller :

1 import socket
2 import PyTango
3 import MotorController
4
5 class IcePapController(MotorController.MotorController)
6 "This is an example of a Python motor controller class"
7 #
8 # Some controller definitions
9 #
10
11 MaxDevice = 128
12 ctrl_features = ['CanDoBacklash']
13 ctrl_extra_attributes = {'IceAttribute':{'Type':'DevLong','R/W Type':'READ_WRITE'}}
14 class_prop = {'host':{'Type':'DevString','Description':"The IcePap controller
15 host name",'DefaultValue':"IcePapHost"},
16 'port':{'Type':'DevLong','Description':"The port on which the
17 IcePap software is listenning",'DefaultValue':5000}}
18
19 #
20 # Controller methods
21 #
22
23 def __init__(self,inst,props):
24 MotorController.MotorController.__init__(self,inst,props)
25 self.inst_name = inst
26 self.socket_connected = False
27
28 #
29 # Connect to the icepap
30 #
31
32 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
33 self.sock.connect(self.host, self.port)
34 self.socket_connected = True
35
36 print "PYTHON -> Connected to", self.host, " on port", self.port
37
38
39 def AddDevice(self,axis):
40 print "PYTHON -> IcePapController/",self.inst_name,": In AddDevice method for axis",axis
41
42 def DeleteDevice(self,axis):
43 print "PYTHON -> IcePapController/",self.inst_name,": In DeleteDevice method for axis",axis
44
45 def PreReadAll(self):
46 print "PYTHON -> IcePapController/",self.inst_name,": In PreReadAll method"
47 self.read_pos = []
48 self.motor_to_read = []
49
50 def PreReadOne(self,axis):
51 print "PYTHON -> IcePapController/",self.inst_name,": In PreReadOne method for axis",axis
52 self.motor_to_read.append(axis)
53
54 def ReadAll(self):
55 print "PYTHON -> IcePapController/",self.inst_name,": In ReadAll method"
56 self.sock.send("Read motors in the motor_to_read list")
57 self.read_pos = self.sock.recv(1024)
58
59 def ReadOne(self,axis):
60 print "PYTHON -> IcePapController/",self.inst_name,": In ReadOne method for axis",axis
61 return read_pos[axis]
62
63 def PreStartAll(self):
64 print "PYTHON -> IcePapController/",self.inst_name,": In PreStartAll method"
65 self.write_pos = []
66 self.motor_to_write = []
67
68 def PreStartOne(self,axis,pos):
69 print "PYTHON -> IcePapController/",self.inst_name,": In PreStartOne method for axis",axis," with pos",pos
70 return True
71
72 def StartOne(self,axis,pos):
73 print "PYTHON -> IcePapController/",self.inst_name,": In StartOne method for axis",axis," with pos",pos
74 self.write_pos.append(pos)
75 self.motor_to_write(axis)
76
77 def StartAll(self):
78 print "PYTHON -> IcePapController/",self.inst_name,": In StartAll method"
79 self.sock.send("Write motors in the motor_to_write list at position in the write_pos list"
80
81 def PreStateAll(self):
82 print "PYTHON -> IcePapController/",self.inst_name,": In PreStateAll method"
83 self.read_state = []
84 self.motor_to_get_state = []
85
86 def PreStateOne(self,axis):
87 print "PYTHON -> IcePapController/",self.inst_name,": In PreStateOne method for axis",axis
88 self.motor_to_get_state.append(axis)
89
90 def StateAll(self):
91 print "PYTHON -> IcePapController/",self.inst_name,": In StateAll method"
92 self.sock.send("Read motors state for motor(s) in the motor_to_get_state list")
93 self.read_state = self.sock.recv(1024)
94
95 def StateOne(self,axis):
96 print "PYTHON -> IcePapController/",self.inst_name,": In StateOne method for axis",axis
97 one_state = [read_state[axis]]
98 return one_state
99
100 def SetPar(self,axis,name,value):
101 if name == 'Acceleration'
102 print "Setting acceleration to",value
103 elif name == 'Deceleration'
104 print "Setting deceleartion to",value
105 elif name == 'Velocity'
106 print "Setting velocity to",value
107 elif name == 'Base_rate'
108 print "Setting base_rate to",value
109 elif name == 'Step_per_unit'
110 print "Setting step_per_unit to",value
111 elif name == 'Backlash'
112 print "Setting backlash to",value
113
114 def GetPar(self,axis,name):
115 ret_val = 0.0
116 if name == 'Acceleration'
117 print "Getting acceleration"
118 ret_val = 12.34
119 elif name == 'Deceleration'
120 print "Getting deceleration"
121 ret_val = 13.34
122 elif name == 'Velocity'
123 print "Getting velocity"
124 ret_val = 14.34
125 elif name == 'Base_rate'
126 print "Getting base_rate"
127 ret_val = 15.34
128 elif name == 'Backlash'
129 print "Getting backlash"
130 ret_val = 123
131 return ret_val
132
133 def SetExtraAttributePar(self,axis,name,value):
134 if name == 'IceAttribute'
135 print "Setting IceAttribute to",value
136
137 def GetExtraAttributePar(self,axis,name):
138 ret_val = 0.0
139 if name == 'IceAttribute'
140 print "Getting IceAttribute"
141 ret_val = 12.34
142 return ret_val
143
144 def AbortOne(self,axis):
145 print "PYTHON -> IcePapController/",self.inst_name,": Aborting motion for axis:",axis
146
147 def DefinePosition(self,axis,value):
148 print "PYTHON -> IcePapController/",self.inst_name,": Defining position for axis:",axis
149
150 def __del__(self):
151 print "PYTHON -> IcePapController/",self.inst_name,": Aarrrrrg, I am dying"
152
153 def SendToCtrl(self,in_str)
154 print "Python -> MinController/",self.inst_name,": In SendToCtrl method"
155 self.sock.send("The input string")
156 out_str = self.sock.recv(1024)
157 return out_str

Line 6 : Definition of the Python DocString which will also be used
for the first returned value of the Pool device GetControllerInfo
command. See chapter
XXX: Unknown inset LatexCommand ref{ite:GetControllerInfo:}:
to get all details about this command.
Line 11: Definition of the mandatory MaxDevice property set to 128
Line 12: Definition of the pre-defined feature supported by this
controller. In this example, only the backlash
Line 13: Definition of one controller extra feature called IceFeature
Line 14-17: Definition of 2 properties called host and port
Line 23-36: The IcePapController constructor code. Note that the
object attribute host and port automatically created by the property
management are used on line 32
Line 39-40: The AddDevice method
Line 42-43: The DeleteDevice method
Line 45-48: The PreReadAll method which clears the 2 list read_pos and
motor_to_read
Line 50-52: The PreReadOne method. It stores which method has to be
read in the motor_to_read list
Line 54-57: The ReadAll method. It send the request to read motor
positions to the controller and stores the result in the internal
read_pos list
Line 59-61: The ReadOne method returning motor position from the
internal read_pos list
Line 63-66: The PreStartAll method which clears 2 internal list called
write_pos and motor_to_write
Line 68-70: The PreStartOne method
Line 72-75: The StartOne method which appends in the write_pos and
motor_to_write list the new motor position and the motor number which
has to be moved
Line 77-79: The StartAll method sending the request to the controller
Line 81-84: The PreStateAll method which clears 2 internal list called
read_state and motor_to_get_state
Line 86-88: The PreStateOne method
Line 90-93: The StateAll method sending the request to the controller
Line 95-98: The StateOne method returning motor state from the
internal read_state list
Line 100-112: The SetPar method managing the acceleration,
deceleration, velocity, base_rate and backlash attributes (because
defined in line 11)
Line 114-131: The GetPar method managing the same 5 parameters plus
the step_per_unit
Line 133-135: The SetExtraAttributePar method for the controller extra
feature defined at line 12
Line 137-142: The GetExtraAttributePar method for controller extra
feature
Line 144-145: The AbortOne method
Line 147-148: The DefinePosition method
Line 153-157: The SendToCtrl method

Defining available controller features

Four data types and two read_write modes are available for the
attribute associated with controller features. The possible data type
are:

	BOOLEAN

	LONG

	DOUBLE

	STRING

The read_write modes are:

	READ

	READ_WRITE

All the attributes created to deal with controller features and
defined as READ_WRITE will be memorized attributes. This means that
the attribute will be written with the memorized value just after the
device creation by the Tango [http://www.tango-controls.org/] layer. The definition of a controller
features means defining three elements which are the feature name, the
feature data type and the feature read_write mode. It uses a C++
structure called MotorFeature with three elements which are a C string
(const char *) for the feature name and two enumeration for the
feature data type and feature read_write mode. All the available
features are defined as an array of these structures in a file called MotorFeatures.h

Controller access when creating a motor

When you create a motor (a new one or at Pool startup time), the calls
executed on the controller depend if a command “SaveConfig” has
already been executed for this motor. If the motor is new and the
command SaveConfig has never been executed for this motor, the
following controller methods are called:

	The AddDevice() method

	The SetPar() method for the Step_per_unit parameter

	The GetPar() method for the Velocity parameter

	The GetPar() method for the Acceleration parameter

	The GetPar() method for the Deceleration parameter

	The GetPar() method for the Base_rate parameter

If the motor is not new and if a SaveConfig command has been executed
on this motor, during Pool startup sequence, the motor will be created
and the following controller methods will be called:

	The AddDevice() method

	The SetPar() method for the Step_per_unit parameter

	The SetPar() method for the Velocity parameter

	The SetPar() method for the Acceleration parameter

	The SetPar() method for the Deceleration parameter

	The SetPar() method for the Base_rate parameter

	The SetExtraAttributePar() method for each of the memorized motor
extra attributes

The pool motor group interface

The motor group interface allows the user to move several motor(s) at
the same time. It supports several attributes and commands. It is
implemented in C++ and is mainly a set of controller methods call or
individual motor call. The motor group interface is statically linked
with the Pool device server. When creating a group, the user can
define as group member three kinds of elements which are :

	A simple motor

	Another already created group

	A pseudo-motor

Nevertheless, it is not possible to have several times the same
physical motor within a group. Therefore, each group has a logical
structure (the one defined by the user when the group is created) and
a physical structure (the list of physical motors really used in the
group).

The states

The motor group interface knows four states which are ON, MOVING,
ALARM and FAULT. A motor group device is in MOVING state when one of
the group element is in MOVING state. It is in ALARM state when one of
the motor is in ALARM state (The underlying motor has reached one of
the limit switches). A motor group device is in FAULT state as long as
any one of the underlying motor is in FAULT state.

The commands

The motor interface supports 1 command on top of the Tango [http://www.tango-controls.org/] Init, State
and Status command. This command is summarized in the following table:

	Command name

	Input data type

	Output data type

	Abort

	void

	void

	Abort : It aborts a running motion. This command does not have input or
output argument. It aborts the motion of the motor(s) member of the
group which are still moving while the command is received.

The attributes

The motor group supports the following attributes:

	Name

	Data type

	Data format

	Writable

	Position

	Tango::DevVarDoubleStringArray

	Spectrum

	R/W

	P osition : This is a read/write spectrum of double attribute. Each spectrum
element is the position of one motor. The order of this array is the
order used when the motor group has been created. The size of this
spectrum has to be the size corresponding to the motor number when the
group is created. For instance, for a group created with 2 motors,
another group of 3 motors and one pseudo-motor, the size of this
spectrum when written has to be 6 (2 + 3 + 1)

The properties

Each motor group has 6 properties. Five of them are automatically
managed by the pool software and must not be changed by the user.
These properties are called Motor_group_id, Pool_device, Motor_list,
User_group_elt and Pos_spectrum_dim_x. The last property called
Sleep_bef_last_read is a user property.This user property is:

	Property name

	Default value

	Sleep_bef_last_read

	0

It defines the time in milli-second that the software managing a motor
group motion will wait between it detects the end of the motion of the
last group element and the last group motors position reading.

Getting motor group state using event

The simplest way to know if a motor group is moving is to survey its
state. If the group is moving, its state will be MOVING. When the
motion is over, its state will be back to ON. The pool motor interface
allows client interested by group state to use the Tango [http://www.tango-controls.org/] event system
subscribing to motor group state change event. As soon as a group
starts a motion, its state is changed to MOVING and an event is sent.
As soon as the motion is over, the group state is updated ans another
event is sent. Events will also be sent to each motor element of the
group when they start moving and when they stop. These events could be
sent before before the group state change event is sent in case of
group motion with different motor motion for each group member.

Reading the group position attribute

For each motor group, the key attribute is its position. Special care
has been taken on this attribute management. When the motor group is
not moving (None of the motor are moving), reading the Position
attribute will generate calls to the controller(s) and therefore
hardware access. When the motor group is moving (At least one of its
motor is moving), its position is automatically read every 100 milli-
seconds and stored in the Tango [http://www.tango-controls.org/] polling buffer. This means that a
client reading motor group Position attribute while the group is
moving will get the position from the Tango [http://www.tango-controls.org/] polling buffer and will
not generate extra controller calls. It is also possible to get a
group position using the Tango [http://www.tango-controls.org/] event system. When the group is moving,
an event is sent to the registered clients when the change event
criterion is true. By default, this change event criterion is set to
be a difference in position of 5. It is tunable on a group basis using
the classical group Position attribute “abs_change” property or at the
pool device basis using its DefaultMotGrpPos_AbsChange property.
Anyway, not more than 10 events could be sent by second. Once the
motion is over (None of the motors within the group are moving), the
group position is made unavailable from the Tango [http://www.tango-controls.org/] polling buffer and
is read a last time after a tunable waiting time (Sleep_bef_last_read
property). A forced change event with this value is sent to clients
using events.

The ghost motor group

In order to allow pool client software to be entirely event based,
some kind of polling has to be done on each motor to inform them on
state change which are not related to motor motion. To achieve this
goal, one internally managed motor group is created. Each pool motor
is a member of this group. The Tango [http://www.tango-controls.org/] polling thread polls the state
command of this group (Polling period tunable with the pool
Ghostgroup_PollingPeriod property). The code of this group state
command detects change in every motor state and send a state change
event on the corresponding motor. This motor group is not available to
client and is even not defined in the Tango [http://www.tango-controls.org/] database. This is why it
is called the ghost group.

The pool pseudo motor interface

The pseudo motor interface acts like an abstraction layer for a motor
or a set of motors allowing the user to control the experiment by
means of an interface which is more meaningful to him(her).

Each pseudo motor is represented by a C++ written tango device whose
interface allows for the control of a single position (scalar value).

In order to translate the motor positions into pseudo positions and
vice versa, calculations have to be performed. The device pool
provides a python API class that can be overwritten to provide new
calculations.

The states

The pseudo motor interface knows four states which are ON, MOVING,
ALARM and FAULT. A pseudo motor device is in MOVING state when at
least one motor is in MOVING state. It is in ALARM state when one of
the motor is in ALARM state (The underlying motor has reached one of
the limit switches. A pseudo motor device is in FAULT state as long as
any one of the underlying motor is in FAULT state).

The commands

The pseudo motor interface supports 1 command on top of the Tango
Init, State and Status commands. This command is summarized in the
following table:

	Command name

	Input data type

	Output data type

	Abort

	void

	void

	Abort : It aborts a running movement. This command does not have input or
output argument. It aborts the movement of the motor(s) member of the
pseudo motor which are still moving while the command is received.

The attributes

The pseudo motor supports the following attributes:

	Name

	Data type

	Data format

	Writable

	Position

	Tango::DevDouble

	Scalar

	R/W

	Position : This is read-write scalar double attribute. With the classical Tango
min and max_value, it is easy to define authorized limit for this
attribute. It is not allowed to read or write this attribute when the
pseudo motor is in FAULT or UNKNOWN state. It is also not possible to
write this attribute when the motor is already MOVING.

The PseudoMotor system class

This chapter describes how to write a valid python pseudo motor system
class.

Prerequisites

Before writing the first python pseudo motor class for your device
pool two checks must be performed:

	The device pool PoolPath property must exist and must point to the directory which will contain
your python pseudo motor module. The syntax of this PseudoPath
property is the same used in the PATH or PYTHONPATH environment
variables. Please see
XXX: Unknown inset LatexCommand ref{sub:PoolPath}:
for more information on setting this property

	A PseudoMotor.py file is part of the device pool distribution and is
located in <device pool home dir>/py_pseudo. This directory must be in
the PYTHONPATH environment variable or it must be part of the PoolPath device pool property metioned above

Rules

A correct pseudo motor system class must obey the following rules:

	the python class PseudoMotor of the PseudoMotor module must be
imported into the current namespace by using one of the python import
statements:

from PseudoMotor import *
import PseudoMotor or
from PseudoMotor import PseudoMotor or

	the pseudo motor system class being written must be a subclass of the
PseudoMotor class (see example below)

	the class variable motor_roles must be set to be a tuple of text descriptions containing each motor
role description. It is crucial that all necessary motors contain a
textual description even if it is an empty one. This is because the
number of elements in this tuple will determine the number of required
motors for this pseudo motor class. The order in which the roles are
defined is also important as it will determine the index of the motors
in the pseudo motor system.

	the class variable pseudo_motor_roles must be set if the pseudo motor class being written represents more
than one pseudo motor. The order in which the roles are defined will
determine the index of the pseudo motors in the pseudo motor system.
If the pseudo motor class represents only one pseudo motor then this
operation is optional. If omitted the value will of pseudo_motor_roles
will be set to:

	if the pseudo motor class needs some special parameters then the class
variable parameters must be set to be a dictionary of <parameter name>
: { <property> : <value> } values where:

<parameter name> - is a string representing the name of the parameter

<property> - is one of the following mandatory properties:
‘Description’, ‘Type’. The ‘Default Value’ property is optional.

<value> - is the corresponding value of the property. The
‘Description’ can contain any text value. The ‘Type’ must be one of
available Tango [http://www.tango-controls.org/] property data types and ‘Default Value’ must be a
string containning a valid value for the corresponding ‘Type’ value.

	the pseudo motor class must implement a calc_pseudo method with the following signature:

number = calc_pseudo(index, physical_pos, params = None)

The method will receive as argument the index of the pseudo motor for
which the pseudo position calculation is requested. This number refers
to the index in the pseudo_motor_roles class variable.

The physical_pos is a tuple containing the motor positions.

The params argument is optional and will contain a dictionary of
<parameter name> : <value>.

The method body should contain a code to translate the given motor
positions into pseudo motor positions.

The method will return a number representing the calculated pseudo
motor position.

	the pseudo motor class must implement a calc_physical method with the following signature:

number = calc_physical(index, pseudo_pos, params = None)

The method will receive as argument the index of the motor for which
the physical position calculation is requested. This number refers to
the index in the motor_roles class variable.

The pseudo_pos is a tuple containing the pseudo motor positions.

The params argument is optional and will contain a dictionary of
<parameter name> : <value>.

The method body should contain a code to translate the given pseudo
motor positions into motor positions.

The method will return a number representing the calculated motor
position.

	Optional implementation of calc_all_pseudo method with the following signature:

()/[]/number = calc_all_pseudo(physical_pos,params = None)

The method will receive as argument a physical_pos which is a tuple of
motor positions.

The params argument is optional and will contain a dictionary of
<parameter name> : <value>.

The method will return a tuple or a list of calculated pseudo motor
positions. If the pseudo motor class represents a single pseudo motor
then the return value could be a single number.

	Optional implementation of calc_all_physical method with the following signature:

()/[]/number = calc_all_physical(pseudo_pos, params = None)

The method will receive as argument a pseudo_pos which is a tuple of
pseudo motor positions.

The params argument is optional and will contain a dictionary of
<parameter name> : <value>.

The method will return a tuple or a list of calculated motor
positions. If the pseudo motor class requires a single motor then the
return value could be a single number.

Note: The default implementation calc_all_physical and calc_all_pseudo methods will call calc_physical and calc_pseudo for each motor and
physical motor respectively. Overwriting the default implementation
should only be done if a gain in performance can be obtained.

Example

One of the most basic examples is the control of a slit. The slit has
two blades with one motor each. Usually the user doesn’t want to
control the experiment by directly handling these two motor positions
since their have little meaning from the experiments perspective.

[image: ../../_images/gap_offset.png]
Instead, it would be more useful for the user to control the
experiment by means of changing the gap and offset values. Pseudo
motors gap and offset will provide the necessary interface for
controlling the experiments gap and offset values respectively.

The calculations that need to be performed are:

[image: \[\left\{ \begin{array}{l} gap=sl2t+sl2b\\ offset=\frac{sl2t-sl2b}{2}\end{array}\right.\]]

[image: \[\left\{ \begin{array}{l} sl2t=-offset+\frac{gap}{2}\\ sl2b=offset+\frac{gap}{2}\end{array}\right.\]]

The corresponding python code would be:

01 class Slit(PseudoMotor):
02 """A Slit system for controlling gap and offset pseudo motors."""
04
05 pseudo_motor_roles = ("Gap", "Offset")
06 motor_roles = ("Motor on blade 1", "Motor on blade 2")
07
08 def calc_physical(self,index,pseudo_pos,params = None):
09 half_gap = pseudo_pos[0]/2.0
10 if index == 0:
11 return -pseudo_pos[1] + half_gap
12 else
13 return pseudo_pos[1] + half_gap
14
15 def calc_pseudo(self,index,physical_pos,params = None):
16 if index == 0:
17 return physical_pos[1] + physical_pos[0]
18 else:
19 return (physical_pos[1] - physical_pos[0])/2.0

read gap position diagram

The following diagram shows the sequence of operations performed when
the position is requested from the gap pseudo motor:

[image: ../../_images/gap_read.png]

write gap position diagram

The following diagram shows the sequence of operations performed when
a new position is written to the gap pseudo motor:

[image: ../../_images/gap_write.png]

The Counter/Timer interface

The Counter/Timer user interface

The Counter/Timer interface is statically linked with the Pool device
server and supports several attributes and commands. It is implemented
in C++ and used a set of the so-called “controller” methods. The
Counter/Timer interface is always the same whatever the hardware is.
This is the rule of the “controller” to access the hardware using the
communication link supported by the hardware (network link, Serial
line…).

The controller code has a well-defined interface and can be written
using Python or C++. In both cases, it will be dynamically loaded into
the pool device server process.

The states

The Counter/Timer interface knows four states which are ON, MOVING,
FAULT and UNKNOWN. A Counter/Timer device is in MOVING state when it
is counting! It is in FAULT if its controller software is not
available (impossible to load it), if a fault is reported from the
hardware controller or if the controller software returns an
unforeseen state. The device is in the UNKNOWN state if an exception
occurs during the communication between the pool and the hardware
controller.

The commands

The Counter/Timer interface supports 2 commands on top of the Tango
classical Init, State and Status commands. These commands are
summarized in the following table:

	Command name

	Input data type

	Output data type

	Start

	void

	void

	Stop

	void

	void

	Start : When the device is used as a counter, this commands allows the
counter to start counting. When it is used as a timer, this command
starts the timer. This command changes the device state from ON to
MOVING. It is not allowed to execute this command if the device is
already in the MOVING state.

	Stop : When the device is used as a counter, this commands stops the
counter. When it is used as a timer, this command stops the timer.
This commands changes the device state from MOVING to ON. It is a no
action command if this command is received and the device is not in
the MOVING state.

The attributes

The Counter/Timer interface supports several attributes which are
summarized in the following table:

	Name

	Data type

	Data format

	Writable

	Memorized

	Ope/Expert

	Value

	Tango::DevDouble

	Scalar

	R/W

	No

	Ope

	SimulationMode

	Tango::DevBoolean

	Scalar

	R

	No

	Ope

	Value : This is read-write scalar double attribute. Writing the value is
used to clear (or to preset) a counter or to set a timer time. For
counter, reading the value allows the user to get the count number.
For timer, the read value is the elapsed time since the timer has been
started. After the acquisition, the value stays unchanged until a new
count/time is started. For timer, the unit of this attribute is the
second.

	SimulationMode : This is a read only scalar boolean attribute. When set, all the
counting/timing requests are not forwarded to the software controller
and then to the hardware. When set, the device Value is always 0. To
set this attribute, the user has to used the pool device Tango
interface. It is not allowed to read this attribute when the device is
in FAULT or UNKNOWN states.

The properties

Each Counter/Timer device has one property which is automatically
managed by the pool software and must not be changed by the user. This
property is named Channel_id.

The Counter/Timer controller

The CounterTimer controller follows the same principles already
explained for the Motor controller in chapter
XXX: Unknown inset LatexCommand ref{sub:The-Motor-Controller}:

The basic

For Counter/Timer, the pre-defined set of methods which has to be
implemented can be splitted in 7 different types which are:

	Methods to create/remove counter/timer experiment channel

	Methods to get channel(s) state

	Methods to read channel(s)

	Methods to load channel(s)

	Methods to start channel(s)

	Methods to configure a channel

	Remaining method

The CounterTimer controller features

Not defined yet

The CounterTimer controller extra attributes

The definition is the same than the one defined for Motor controller
and explained in chapter
XXX: Unknown inset LatexCommand ref{par:Specifying-the-motor}:

Methods to create/remove Counter Timer Channel

Two methods are called when creating or removing counter/timer channel
from a controller. These methods are called AddDevice and DeleteDevice . The AddDevice method is called when a new channel belonging to the
controller is created within the pool. The DeleteDevice method is
called when a channel belonging to the controller is removed from the
pool.

Method(s) to get Counter Timer Channel state.

These methods follow the same definition than the one defined for
Motor controller which are detailed in chapter
XXX: Unknown inset LatexCommand ref{par:Methods-to-get-state}:
.

Method(s) to read Counter Timer Experiment Channel

Four methods are used when a request to read channel(s) value is
received. These methods are called PreReadAll, PreReadOne, ReadAll and
ReadOne. The algorithm used to read value of one or several channels
is the following :

/FOR/ Each controller(s) implied in the reading
 - Call PreReadAll()
/END FOR/

/FOR/ Each channel(s) implied in the reading
 - PreReadOne(channel to read)
/END FOR/

/FOR/ Each controller(s) implied in the reading
 - Call ReadAll()
/END FOR/

/FOR/ Each channel(s) implied in the reading
 - Call ReadOne(channel to read)
/END FOR/

The following array summarizes the rule of each of these methods:

	
	
	
	
	

	Default action

	Does nothing

	Does nothing

	Does nothing

	Print message on the screen and returns NaN. Mandatory for Python

	Externally called by

	Reading the Value attribute

	Reading the Value attribute

	Reading the Value attribute

	Reading the Value attribute

	Internally called

	Once for each implied controller

	For each implied channel

	For each implied controller

	Once for each implied channel

	Typical rule

	Init internal data for reading

	Memorize which channel has to be read

	Send order to physical controller

	Return channel value from internal data

This algorithm covers the sophisticated case where a physical
controller is able to read several channels positions at the same
time. For some simpler controller, it is possible to implement only
the ReadOne() method. The default implementation of the three
remaining methods is defined in a way that the algorithm works even in
such a case.

Method(s) to load Counter Timer Experiment Channel

Four methods are used when a request to load channel(s) value is
received. These methods are called PreLoadAll, PreLoadOne, LoadAll and
LoadOne. The algorithm used to load value in one or several channels
is the following:

/FOR/ Each controller(s) implied in the loading
 - Call PreLoadAll()
/END FOR/

/FOR/ Each channel(s) implied in the loading
 - ret = PreLoadOne(channel to load,new channel value)
 - /IF/ ret is true
 - Call LoadOne(channel to load, new channel value)
 - /END IF/
/END FOR/

/FOR/ Each controller(s) implied in the loading
 - Call LoadAll()
/END FOR/

The following array summarizes the rule of each of these methods:

	
	
	
	
	

	Default action

	Does nothing

	Returns true

	Does nothing

	Does nothing

	Externally called by

	Writing the Value attribute

	Writing the Value attribute

	Writing the Value attribute

	Writing the Value attribute

	Internally called

	Once for each implied controller

	For each implied channel

	For each implied channel

	Once for each implied controller

	Typical rule

	Init internal data for loading

	Check if counting is possible

	Set new channel value in internal data

	Send order to physical controller

This algorithm covers the sophisticated case where a physical
controller is able to write several channels positions at the same
time. For some simpler controller, it is possible to implement only
the LoadOne() method. The default implementation of the three
remaining methods is defined in a way that the algorithm works even in
such a case.

Method(s) to start Counter Timer Experiment Channel

Four methods are used when a request to start channel(s) is received.
These methods are called PreStartAllCT, PreStartOneCT, StartAllCT and
StartOneCT. The algorithm used to start one or several channels is the
following:

/FOR/ Each controller(s) implied in the starting
 - Call PreStartAllCT()
/END FOR/

/FOR/ Each channel(s) implied in the starting
 - ret = PreStartOneCT(channel to start)
 - /IF/ ret is true
 - Call StartOneCT(channel to start)
 - /END IF/
/END FOR/

/FOR/ Each controller(s) implied in the starting
 - Call StartAllCT()
/END FOR/

The following array summarizes the rule of each of these methods:

	
	
	
	
	

	Default action

	Does nothing

	Returns true

	Does nothing

	Does nothing

	Externally called by

	The Start command

	The Start command

	The Start command

	The Start command

	Internally called

	Once for each implied controller

	For each implied channel

	For each implied channel

	Once for each implied controller

	Typical rule

	Init internal data for starting

	Check if starting is possible

	Set new channel value in internal data

	Send order to physical controller

This algorithm covers the sophisticated case where a physical
controller is able to write several channels positions at the same
time. For some simpler controller, it is possible to implement only
the StartOneCT() method. The default implementation of the three
remaining methods is defined in a way that the algorithm works even in
such a case.

Methods to configure Counter Timer Experiment Channel

The rule of these methods is to

	Get or Set channel extra attribute(s) parameter with methods called
GetExtraAttributePar() or SetExtraAttributePar()

The following table summarizes the usage of these methods:

	
	
	

	Called by

	Reading any of the extra attributes

	Writing any of the extra attributes

	Rule

	Get extra attribute value from the physical layer

	Set additional attribute value in physical controller

The GetExtraAttributePar() default implementation returns a string set
to “Pool_meth_not_implemented”.

Remaining methods

The rule of the remaining methods is to

	Send a raw string to the controller with a method called SendToCtrl()

	Abort a counting counter/timer with a method called AbortOne()

The following table summarizes the usage of this method:

	
	
	

	Called by

	The Pool SendToController command

	The Stop CounterTimer command

	Rule

	Send the input string to the controller and returns the controller answer

	Abort a running count

The Counter Timer controller properties (including the MaxDevice

property)

The definition is the same than the one defined for Motor controller
and explained in chapter
XXX: Unknown inset LatexCommand ref{par:Controller-properties}:

C++ controller

For C++, the controller code is implemented as a set of classes: A
base class called Controller and a class called CoTiController which inherits from Controller. Finally, the user has to write its
controller class which inherits from CoTiController. The Controller
class has already been detailed in
XXX: Unknown inset LatexCommand ref{sub:The-Cpp-Controller-class}:
.

XXX: Unknown layout Subparagraph: The CoTiController class
The CoTiController class defines thirteen virtual methods which are:

	void CoTiController::PreReadAll ()
The default implementation does nothing

	void CoTiController::PreReadOne (long idx_to_read)
The default implementation does nothing

	void CoTiController::ReadAll ()
The default implementation does nothing

	double CoTiController::ReadOne (long idx_to_read)
The default implementation prints a message on the screen and return a
NaN value

	void CoTiController::PreLoadAll ()
The default implementation does nothing

	bool CoTiController::PreLoadOne (long idx_to_load,double new_value)
The default implementation returns true

	void CoTiController::LoadOne (long idx_to_load,double new_value)
The default implementation does nothing

	void CoTiController::LoadAll ()
The default implementation does nothing

	void CoTiController::PreStartAllCT ()
The default implementation does nothing

	bool CoTiController::PreStartOneCT (long idx_to_start)
The default implementation returns true

	void CoTiController::StartOneCT (long idx_to_start)
The default implementation does nothing

	void CoTiController::StartAllCT ()
The default implementation does nothing

	void CoTiController::AbortOne (long idx_to_abort)
The default implementation does nothing

This class has one constructor which is

	CoTiController::CoTiController (const char *)
Constructor of the CoTiController class with the controller instance
name as parameter

XXX: Unknown layout Subparagraph: The user controller class
The user has to implement the remaining pure virtual methods
(AddDevice and DeleteDevice) and has to re-define virtual methods if
the default implementation does not cover his needs. The controller
code has to define two global variables which are:

	CounterTimer_Ctrl_class_name : This is an array of classical C strings terminated by a NULL
pointer. Each array element is the name of a Counter Timer Channel
controller defined in the file.

	<CtrlClassName>_MaxDevice : Idem motor controller definition

On top of that, a controller code has to define a C function to create
the controller object. This is similar to the Motor controller
definition which is documented in
XXX: Unknown inset LatexCommand ref{par:The-user-controller}:

Python controller

The principle is exactly the same than the one used for C++ controller
but we don’t have pure virtual methods with a compiler checking if
they are defined at compile time. Therefore, it is the pool software
which checks that the following methods are defined within the
controller class when the controller module is loaded (imported):

	AddDevice

	DeleteDevice

	ReadOne method

	StateOne method

	StartOneCT or StartAllCT method

	LoadOne or LoadAll method

With Python controller, there is no need for function to create
controller class instance. With the help of the Python C API, the pool
device is able to create the needed instances. Note that the
StateOne() method does not have the same signature for Python
controller.

	tuple Stat e One (self,idx_number)
Get a channel state. The method has to return a tuple with one or two
elements which are:

	The channel state (as defined by Tango)

	A string describing the motor fault if the controller has this
feature.

A Python controller class has to inherit from a class called
CounterTimerController . This does not add any feature but allows the pool
software to realize that this class is a Counter Timer Channel controller.

The Unix Timer

A timer using the Unix getitimer() and setitimer() system calls is
provided. It is a Counter/Timer C++ controller following the
definition of the previous chapter. Therefore, the device created
using this controller will have the Tango [http://www.tango-controls.org/] interface as the one
previously described.

The Unix Timer controller shared library is called UxTimer.so and the
Controlller class is called UnixTimer . This controller is foresee to
have only one device (MaxDevice = 1)

The ZeroDExpChannel interface

The ZeroDExpChannel is used to access any kind of device which returns
a scalar value and which are not counter or timer. Very often (but not
always), this is a commercial measurement equipment connected to a
GPIB bus. In order to have a precise as possible measurement, an
acquisition loop is implemented for these ZeroDExpChannel device. This
acquisition loop will simply read the data from the hardware as fast
as it can (only “sleeping” 20 mS between each reading) and a
computation is done on the resulting data set to return only one
value. Three types of computation are foreseen. The user selects which
one he needs with an attribute. The time during which this acquisition
loop will get data is also defined by an attribute

The ZeroDExpChannel user interface

The ZeroDExpChannel interface is statically linked with the Pool
device server and supports several attributes and commands. It is
implemented in C++ and used a set of the so-called “controller”
methods. The ZeroDExpChannel interface is always the same whatever the
hardware is. This is the rule of the “controller” to access the
hardware using the communication link supported by the hardware
(network link, GPIB…).

The controller code has a well-defined interface and can be written
using Python or C++. In both cases, it will be dynamically loaded into
the pool device server process.

The states

The ZeroDExpChannel interface knows five states which are ON, MOVING,
ALARM, FAULT and UNKNOWN. A ZeroDExpChannel device is in MOVING state
when it is acquiring data! It is in ALARM state when at least one
error has occured during the last acquisition. It is in FAULT if its
controller software is not available (impossible to load it), if a
fault is reported from the hardware controller or if the controller
software returns an unforeseen state. The device is in the UNKNOWN
state if an exception occurs during the communication between the pool
and the hardware controller.

The commands

The ZeroDExpChannel interface supports 2 commands on top of the Tango
classical Init, State and Status commands. These commands are
summarized in the following table:

	Command name

	Input data type

	Output data type

	Start

	void

	void

	Stop

	void

	void

	Start : Start the acquisition for the time defined by the attribute
CumulatedTime. If the CumulatedTime attribute value is 0, the
acquisition will not automatically stop until a Stop command is
received. This command changes the device state from ON to MOVING. It
is not allowed to execute this command if the device is already in the
MOVING state.

	Stop : Stop the acquisition. This commands changes the device state from
MOVING to ON. It is a no action command if this command is received
and the device is not in the MOVING state.

The attributes

The ZeroDExpChannel interface supports several attributes which are
summarized in the following table:

	Name

	Data type

	Data format

	Writable

	Memorized

	Ope/Expert

	Value

	Tango::DevDouble

	Scalar

	R

	No

	Ope

	CumulatedValue

	Tango::DevDouble

	Scalar

	R

	No

	Ope

	CumulationTime

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Ope

	CumulationType

	Tango::DevLong

	Scalar

	R/W

	Yes

	Ope

	CumulatedPointsNumber

	Tango::DevLong

	Scalar

	R

	No

	Ope

	CumulatedPointsError

	Tango::DevLong

	Scalar

	R

	No

	Ope

	SimulationMode

	Tango::DevBoolean

	Scalar

	R

	No

	Ope

	Value : This is read scalar double attribute. This is the live value reads
from the hardware through the controller

	CumulatedValue : This is a read scalar double attribute. This is the result of the
data acquisition after the computation defined by the CumulationType
attribute has been applied. This value is 0 until an acquisition has
been started. After an acquisition, the attribute value stays
unchanged until the next acquisition is started. If during the
acquisition some error(s) has been received while reading the data,
the attribute quality factor will be set to ALARM

	CumulationTime : This is a read-write scalar double and memorized attribute. This is
the acquisition time in seconds. The acquisition will automatically
stops after this CumulationTime. Very often, reading the hardware
device to get one data is time-consuming and it is not possible to
read the hardware a integer number of times within this
CumulationTime. A device property called StopIfNoTime (see
XXX: Unknown inset LatexCommand ref{ite:StopIfNoTime:-A-boolean}:
) allows the user to tune the acquisition loop.

	CumulationType : This a read-write scalar long and memorized attribute. Defines the
computation type done of the values gathered during the acquisition.
Three type of computation are supported:

	Sum: The CumulatedValue attribute is the sum of all the data read
during the acquisition. This is the default type.

	Average: The CumulatedValue attribute is the average of all the data
read during the acquisition

	Integral: The CumulatedValue attribute is a type of the integral of
all the data read during the acquisition

	CumulatedPointsNumber : This is a read scalar long attribute. This is the number of data
correctly read during the acquisition. The attribute value is 0 until
an acquisition has been started and stay unchanged between the end of
the acquisition and the start of the next one.

	CumulatedPointsError : This is a read scalar long attribute. This is the number of times it
was not possible to read the data from the hardware due to error(s).
The property ContinueOnError allows the user to define what to do in
case of error. The attribute value is 0 until an acquisition has been
started and stay unchanged between the end of the acquisition and the
start of the next one.

	SimulationMode : This is a read only scalar boolean attribute. When set, all the
acquisition requests are not forwarded to the software controller and
then to the hardware. When set, the device Value, CumulatedValue,
CumulatedPointsNumber and CumulatedPointsError are always 0. To set
this attribute, the user has to used the pool device Tango [http://www.tango-controls.org/] interface.
The value of the CumulationTime and CumulationType attributes are
memorized at the moment this attribute is set. When this mode is
turned off, if the value of any of the previously memorized attributes
has changed, it is reapplied to the memorized value. It is not allowed
to read this attribute when the device is in FAULT or UNKNOWN states.

The properties

Each ZeroDExpChannel device has a set of properties. One of these
properties is automatically managed by the pool software and must not
be changed by the user. This property is named Channel_id. The user
properties are:

	Property name

	Default value

	StopIfNoTime

	true

	ContinueOnError

	true

	XXX: Unknown inset LatexCommand label{ite:StopIfNoTime:-A-boolean}:
StopIfNoTime : A boolean property. If this property is set to true, the acquisition
loop will check before acquiring a new data that it has enough time to
do this. To achieve this, the acquisition loop measures the time
needed by the previous data read and checks that the actual time plus
the acquisition time is still less than the CumulationTime. If not,
the acquisition stops. When this property is set to false, the
acquisition stops when the acquisition time is greater or equal than
the CumulationTime

	ContinueOnError : A boolean property. If this property is set to true (the default),
the acquisition loop continues reading the data even after an error
has been received when trying to read data. If it is false, the
acquisition stops as soon as an error is detected when trying to read
data from the hardware.

Getting ZeroDExpChannel state using event

The simplest way to know if a Zero D Experiment Channel is acquiring
data is to survey its state. If the device is acquiring data, its
state will be MOVING. When the acquisition is over, its state will be
back to ON. The pool ZeroDExpChannel interface allows client
interested by Experiment Channel state value to use the Tango [http://www.tango-controls.org/] event
system subscribing to channel state change event. As soon as a channel
starts an acquisition, its state is changed to MOVING and an event is
sent. As soon as the acquisition is over (for one reason or another),
the channel state is updated and another event is sent.

XXX: Unknown inset LatexCommand label{par:Reading-the-ZeroDExpChannel}:

Reading the ZeroDExpChannel CumulatedValue attribute

During an acquisition, events with CumulatedValue attribute are sent
from the device server to the interested clients. The acquisition loop
will periodically read this event and fire an event. The first and the
last events fired during the acquisition loop do not check the change
event criteria. The other during the acquisition loop check the change
event criteria

The ZeroDExpChannel Controller

The ZeroDExpChannel controller follows the same principles already
explained for the Motor controller in chapter
XXX: Unknown inset LatexCommand ref{sub:The-Motor-Controller}:

The basic

For Zero Dimension Experiment Channel, the pre-defined set of methods
which has to be implemented can be splitted in 5 different types which
are:

	Methods to create/remove zero dimension experiment channel

	Methods to get channel(s) state

	Methods to read channel(s)

	Methods to configure a channel

	Remaining method

The ZeroDExpChannel controller features

Not defined yet

The ZeroDExpChannel controller extra attributes

The definition is the same than the one defined for Motor controller
and explained in chapter
XXX: Unknown inset LatexCommand ref{par:Specifying-the-motor}:

Methods to create/remove Zero D Experiment Channel

Two methods are called when creating or removing experiment channel
from a controller. These methods are called AddDevice and DeleteDevice . The AddDevice method is called when a new channel belonging to the
controller is created within the pool. The DeleteDevice method is
called when a channel belonging to the controller is removed from the
pool.

Method(s) to get Zero D Experiment Channel state.

These methods follow the same definition than the one defined for
Motor controller which are detailed in chapter
XXX: Unknown inset LatexCommand ref{par:Methods-to-get-state}:
.

Method(s) to read Zero D Experiment Channel

Four methods are used when a request to read channel(s) value is
received. These methods are called PreReadAll, PreReadOne, ReadAll and
ReadOne. The algorithm used to read value of one or several channels
is the following:

/FOR/ Each controller(s) implied in the reading
 - Call PreReadAll()
/END FOR/

/FOR/ Each channel(s) implied in the reading
 - PreReadOne(channel to read)
/END FOR/

/FOR/ Each controller(s) implied in the reading
 - Call ReadAll()
/END FOR/

/FOR/ Each channel(s) implied in the reading
 - Call ReadOne(channel to read)
/END FOR/

The following array summarizes the rule of each of these methods:

	
	
	
	
	

	Default action

	Does nothing

	Does nothing

	Does nothing

	Print message on the screen and returns NaN. Mandatory for Python

	Externally called by

	Reading the Value attribute

	Reading the Value attribute

	Reading the Value attribute

	Reading the Value attribute

	Internally called

	Once for each implied controller

	For each implied channel

	For each implied controller

	Once for each implied channel

	Typical rule

	Init internal data for reading

	Memorize which channel has to be read

	Send order to physical controller

	Return channel value from internal data

This algorithm covers the sophisticated case where a physical
controller is able to read several channels positions at the same
time. For some simpler controller, it is possible to implement only
the ReadOne() method. The default implementation of the three
remaining methods is defined in a way that the algorithm works even in
such a case.

Methods to configure Zero D Experiment Channel

The rule of these methods is to

	Get or Set channel extra attribute(s) parameter with methods called
GetExtraAttributePar() or SetExtraAttributePar()

The following table summarizes the usage of these methods:

	
	
	

	Called by

	Reading any of the extra attributes

	Writing any of the extra attributes

	Rule

	Get extra attribute value from the physical layer

	Set additional attribute value in physical controller

The GetExtraAttributePar() default implementation returns a string set
to “Pool_meth_not_implemented”.

Remaining method

The rule of the remaining method is to

	Send a raw string to the controller with a method called SendToCtrl()

The following table summarizes the usage of this method:

	
	

	Called by

	The Pool SendToController command

	Rule

	Send the input string to the controller and returns the controller answer

The ZeroDExpChannel controller properties (including the MaxDevice property)

The definition is the same than the one defined for Motor controller
and explained in chapter
XXX: Unknown inset LatexCommand ref{par:Controller-properties}:

C++ controller

For C++, the controller code is implemented as a set of classes: A
base class called Controller and a class called ZeroDController which inherits from Controller. Finally, the user has to write its
controller class which inherits from ZeroDController. The Controller
class has already been detailed in
XXX: Unknown inset LatexCommand ref{sub:The-Cpp-Controller-class}:
.

XXX: Unknown layout Subparagraph: The ZeroDController class
The ZeroDController class defines four virtual methods which are:

	void ZeroDController::PreReadAll ()
The default implementation does nothing

	void ZeroDController::PreReadOne (long idx_to_read)
The default implementation does nothing

	void ZeroDController::ReadAll ()
The default implementation does nothing

	double ZeroDController::ReadOne (long idx_to_read)
The default implementation prints a message on the screen and return a
NaN value

This class has one constructor which is

	ZeroDController::ZeroDController (const char *)
Constructor of the ZeroDController class with the controller instance
name as parameter

XXX: Unknown layout Subparagraph: The user controller class
The user has to implement the remaining pure virtual methods
(AddDevice and DeleteDevice) and has to re-define virtual methods if
the default implementation does not cover his needs. The controller
code has to define two global variables which are:

	ZeroDExpChannel_Ctrl_class_name : This is an array of classical C strings terminated by a NULL
pointer. Each array element is the name of a ZeroDExpChannel
controller defined in the file.

	<CtrlClassName>_MaxDevice : Idem motor controller definition

On top of that, a controller code has to define a C function to create
the controller object. This is similar to the Motor controller
definition which is documented in
XXX: Unknown inset LatexCommand ref{par:The-user-controller}:

Python controller

The principle is exactly the same than the one used for C++ controller
but we don’t have pure virtual methods with a compiler checking if
they are defined at compile time. Therefore, it is the pool software
which checks that the following methods are defined within the
controller class when the controller module is loaded (imported):

	AddDevice

	DeleteDevice

	ReadOne method

	StateOne method

With Python controller, there is no need for function to create
controller class instance. With the help of the Python C API, the pool
device is able to create the needed instances. Note that the
StateOne() method does not have the same signature for Python
controller.

	tuple Stat e One (self,idx_number)
Get a channel state. The method has to return a tuple with one or two
elements which are:

	The channel state (as defined by Tango)

	A string describing the motor fault if the controller has this
feature.

A Python controller class has to inherit from a class called ZeroDController . This does not add any feature but allows the pool software to
realize that this class is a Zero D Experiment Channel controller.

The OneDExpChannel interface

To be filled in

The TwoDExpChannel interface

To be filled in

The Measurement Group interface

The measurement group interface allows the user to access several data
acquisition channels at the same time. It is implemented as a C++
Tango [http://www.tango-controls.org/] device that is statically linked with the Pool device server. It
supports several attributes and commands.

The measurement group is the key interface to be used when getting
data. The Pool can have several measurement groups but only one will
be ‘in use’ at a time. When creating a measurement group, the user can
define four kinds of channels which are:

	Counter/Timer

	ZeroDExpChannel

	OneDExpChannel

	TwoDExpChannel

In order to properly use the measurement group, one of the channels
has to be defined as the timer or the monitor. It is not possible to
have several times the same channel in a measurement group. It is also
not possible to create two measurement groups with exactly the same
channels.

The States

The measurement group interface knows five states which are ON,
MOVING, ALARM, FAULT. A group is in MOVING state when it is acquiring
data (which means that the timer/monitor channel is in MOVING state).
A STANDBY state means that the group is not the current active group
of the Pool it belongs to. An ON state means that the group is ready
to be used. ALARM means that no timer or monitor are defined for the
group. If at least one of the channels reported a FAULT by the
controller(s) of that(those) channel(s), the group will be in FAULT
state.

The commands

The measurement group interface supports three commands on top of the
Tango [http://www.tango-controls.org/] Init, State and Status commands. These commands are summarized
in the following table:

	Command name

	Input data type

	Output data type

	Start

	void

	void

	Abort

	void

	void

	AddExpChannel

	String

	void

	RemoveExpChannel

	String

	void

	Start : When the device is in timer mode (Integration_time attribute > 0),
it will start counting on all channels at the same time until the
timer channel reaches a value of the Integration_time attribute. When
the device in in monitor mode (Integration_count attribute > 0), it
will start counting on all channels at the same time until de monitor
channel reaches the value of the Integration_count attribute. For more
details on setting the acquisition mode see
XXX: Unknown inset LatexCommand ref{Measurement Group: The attributes}:
. This command will change the device state to MOVING. It will not be
allowed to execute this command if the device is already in MOVING
state. This command does not have any input or output arguments. The
state will change from MOVING to ON only when the last channel reports
that its acquisition has finished.

	Abort : It aborts the running data acquisition. It will stop each channel
member of the measurement group. This command does not have any input
or output arguments.

	AddExpChannel : adds a new experiment channel to the measurement group. The given
string argument must be a valid experiment channel in the pool and
must not be one of the channels of the measurement group. An event
will be sent on the corresponding attribute representing the list of
channels in the measurement group. For example, if the given channel
is a Counter/Timer channel, then an event will be sent for the
attribute “Counters “(See below for a list of attributes in the measurement group).

	RemoveExpChannel : removes the given channel from the measurement group. The given
string argument must be a valid experiment channel in the measurement
group. If the channel to be deleted is the current Timer/Monitor then
the value for the corresponding attribute will be set to “Not Initialized “and an event will be sent. An event will be sent on the corresponding
attribute representing the list of channels in the measurement group.

XXX: Unknown inset LatexCommand label{Measurement Group: The attributes}:

The attributes

A measurement group will support 8+n (n being the number of channels)
attributes summarized in the following table:
=== ================ ===================== ======== ========= ==========
Name Data type Data format Writable Memorized Ope/Expert
=== ================ ===================== ======== ========= ==========
Integration_time Tango::DevDouble Scalar R/W Yes Ope
Integration_count Tango::DevLong Scalar R/W Yes Ope
Timer Tango::DevString Scalar R/W Yes Ope
Monitor Tango::DevString Scalar R/W Yes Ope
Counters Tango::DevString Spectrum R No Ope
ZeroDExpChannels Tango::DevString Spectrum R No Ope
OneDExpChannels Tango::DevString Spectrum R No Ope
TwoDExpChannels Tango::DevString Spectrum R No Ope
<channel_name [image: _{\text{i}}] >_Value Tango::DevDouble Scalar/Spectrum/Image R No Ope
=== ================ ===================== ======== ========= ==========

	Integration_time : The group timer integration time. Setting this value to >0 will set
the measurement group acquisition mode to timer. It will force
Integration_count attribute to 0 (zero). It will also exclude the
current Timer channel from the list of Counters. Units are in seconds.

	Integration_count : The group monitor count value. Setting this value to >0 will set the
measurement group acquisition mode change to monitor. It will force
Integration_time attribute to 0 (zero).

	Timer : The name of the channel used as a Timer. A “Not Initialized “value means no timer is defined

	Monitor : The name of the channel used as a Monitor. A “Not Initialized “value means no timer is defined

	Counter : The list of counter names in the group

	ZeroDExpChannels : The list of 0D Experiment channel names in the group

	OneDExpChannels : The list of 1D Experiment channel names in the group

	TwoDExpChannels : The list of 2D Experiment channel names in the group

	<channel_name [image: _{\text{i}}] >_Value : (with [image: 0\leq i<n]) attributes dynamically created (one for each channel) which will
contain the corresponding channel Value(for Counter/Timer, 1D or
2DExpChannels), CumulatedValue(for 0DExpChannels). For Counter/Timers
and 0DExpChannels the data format will be Scalar. For 1DExpChannels it
will be Spectrum and for 2DExpChannels it will be Image.

The properties

Device properties

Each measurement group has five properties. All of them are managed
automatically by the pool software and must not be changed by the
user. These properties are called Measurement_group_id, Pool_device,
CT_List, ZeroDExpChannel_List, OneDExpChannel_List,
TwoDExpChannel_List.

XXX: Unknown inset LatexCommand label{measurement group:Checking-operation-modes}:

Checking operation mode

Currently, the measurement group supports two operation modes. The
table below shows how to determine the current mode for a measurement
group.

	mode

	Integration_time

	Integration_count

	Timer

	>0.0

	0

	Monitor

	0.0

	>0

	Undef

	0.0

	0

‘Undef’ means no valid values are defined in Integration_time and in
Integration_count. You will not be able to execute the Start command
in this mode.

Getting measurement group state using event

The simplest way to know if a measurement group is acquiring data is
to survey its state. If a measurement group is acquiring data its
state will be MOVING. When the data acquisition is over, its state
will change back to ON. The data acquisition is over when the
measurement group detects that all channels finished acquisition
(their state changed from MOVING to ON).The pool group interface
allows clients interested in group state to use the Tango [http://www.tango-controls.org/] event system
subscribing to measurement group state change event. As soon as a
group starts acquiring data, its state is changed to MOVING and an
event is sent. A new event will be sent when the data acquisition
ends. Events will also be sent to each channel of the group when they
start acquiring data and when they stop.

Reading the measurement group channel values

For each measurement group there is a set of key dynamic attributes
representing the value of each channel in the group. They are named
<channel_name [image: _{\text{i}}] >_Value. Special care has been taken on the management of these
attributes with distinct behavior depending on the type of channel the
attribute represents (Counter/Timer, 0D, 1D or 2D channel).

Counter/Timer channel values

A Counter/Timer Value is represented by a scalar read-only double
attribute. When the measurement group is not taking data, reading the
counter/timer value will generate calls to the controller and
therefore hardware access. When the group is taking data (master
channel is moving), the value of a counter/timer is read every 100
miliseconds and stored in the Tango [http://www.tango-controls.org/] polling buffer. This means that a
client reading the value of the channel while the group is moving will
get the value from the Tango [http://www.tango-controls.org/] polling buffer and will not generate exra
controller calls. It is also possible to get the value using the Tango
event system. When the group is moving, an event is sent to the
registered clients when the change event criteria is true. This is
applicable for each Counter/Timer channel in the group. By default,
this change event criterion is set to be an absolute difference in the
value of 5.0. It is tunable by attribute using the classical “abs_change “property or the pool device basis using its defaultCtGrpVal_AbsChange
property. Anyway, not more than 10 events could be sent by second.
Once the data acquisition is over, the value is made unavailable from
the Tango [http://www.tango-controls.org/] polling buffer and is read a last time. A forced change
event is sent to clients using events.

Zero D channel values

A ZeroDExpChannel CumulatedValue is represented by a scalar read-only
double attribute. Usually a ZeroDChannel represents the value of a
single device (ex.: multimeter). Therefore, has hardware access cannot
be optimized for a group of devices, reading the value on the
measurement group device attribute has exactly the same behavior as
reading it directly on the CumulatedValue attribute of the
ZeroDChannel device (see
XXX: Unknown inset LatexCommand ref{par:Reading-the-ZeroDExpChannel}:
).

One D channel values

To be filled in

Two D channel values

To be filled in

Performance

Measurement group devices can often contain many channels. Client
applications often request channel values for the set (or subset) of
channels in a group. Read requests for these channel values through
the <channel_name [image: _{\text{i}}] >_Value attributes of a measurement group should be done by clients in
groups as often as possible. This can be achieved by using the client
Tango [http://www.tango-controls.org/] API call read_attributes on a DeviceProxy object. This will
ensure maximum performance by minimizing hardware access since the
measurement group can order channel value requests per controller thus
avoiding unecessary calls to the hardware.

Measurement group configuration

Timer/Monitor

Measurement group operation mode can be checked/set through the
Integration_time and Integration_count (see
XXX: Unknown inset LatexCommand ref{measurement group:Checking-operation-modes}:
). Setting the Integration_time to >0.0 will make the data acquisition
(initiated by the invoking the Start command) finish when the channel
defined in the Timer attribute reaches the value of Integration_time.
Setting the Integration_count to >0 will make the data acquisition
(initiated by the invoking the Start command) finish when the channel
defined in the Monitor attribute reaches the value of
Integration_count.

In either case, the measurement group will NOT assume that the master
channel(timer/monitor) is able to stop all the other channels in the
group, so it will force a Stop on these channels as soon as it detects
that the master has finished. This is the case of the UnixTimer
channel which itself has no knowledge of the channels involved and
therefore is not able to stop them directly.

Integration_time, Integration_count, timer and monitor are memorized
attributes. This means that the configuration values of these
attributes are stored in the database. The next time the Pool starts
the values are restored. This is done in order to reduce Pool
configuration at startup to the minimum.

The ghost measurement group

In order to allow pool client software to be entirely event based,
some kind of polling has to be done on each channel to inform them on
state change which are not related to data acquisition. To achieve
this goal, one internally managed measurement group is created. Each
pool channel (counter/timer, 0D, 1D or 2D experiment channel) is a
member of this group. The Tango [http://www.tango-controls.org/] polling thread polls the state command
of this group (Polling period tunable with the pool
Ghostgroup_PollingPeriod property). The code of this group state
command detects change in every channel state and send a state change
event on the corresponding channel. This measurment group is not
available to client and is even not defined in the Tango [http://www.tango-controls.org/] database.
This is why it is called the ghost measurement group.

The pool serial line, GPIB, socket interfaces

To be filled in

The pool Modbus interface

To be filled in

Extending pool features

To be filled in

Common task handled by the pool

Constraint

Two types of constraint are identified.

	Simple constraint: This type of constraint is valid only for motor
motion. It limits motor motion. This in not the limit switches which
are a hardware protection. It’s a software limit. This type of
constraint is managed by the min_value and max_value property of the
motor Position Tango [http://www.tango-controls.org/] attribute. Tango [http://www.tango-controls.org/] core will refused to write the
attribute (Position) if outside the limits set by these min_value and
max_value attribute properties. These values are set on motor Position
attribute in physical unit.
Warning : The backlash has to be taken into account in the management of this
limit. In order to finish the motion always coming from the same
direction, sometimes the motor has to go a little bit after the wanted
position and then returns to the desired position. The limit value has
to take the backlash value into account. If the motor backlash
attribute is modified, it will also change the Position limit value.

[image: ../../_images/limit.png]

	User constraint: This kind of constraint is given to the user to allow
him to write constraint macros which will be executed to allow or
disallow an action to be done on one object. In the pool case, the
object is a writable attribute and the action is writing the
attribute. Therefore, the following algorithm is used when writing an
attribute with constraint:

/IF/ Simple constraint set
 /IF/ New value outside limits
 - Throw an exception
 /ENDIF/
/ENDIF/

/IF/ Some user constraint associated to this attribute
 /FOR/ All the user constraint
 - Evaluate the constraint
 /IF/ The constraint evaluates to False
 - Throw an exception
 /ENDIF/
 /ENDFOR/
/ENDIF/

- Write the attribute

The first part of this algorithm is part of the Tango [http://www.tango-controls.org/] core. The second
part will be coded in the Pool Tango [http://www.tango-controls.org/] classes and in a first phase will
be available only for the Position attribute of the Motor class.

User constraint implementation

When the user creates a constraint, he has to provide to the pool the
following information:

	The name of the object to which the constraint belongs. It is the name
of the writable Tango [http://www.tango-controls.org/] attribute (actually only a motor position
attribute.

A user constraint will be written using the Python language. It has to
be a Python class with a constructor and a “Evaluate” method. This
class has to inherit from a class called PoolConstraint. This will
allow the pool software to dynamically discover that this class is a
pool constraint. The class may define the depending
attributes/devices. A depending attribute/device is an object used to
evaluate if the constraint is true or false. The depending attributes
have to be defined in a list called depending_attr_list . Each element in this list is a dictionnary with up to 2 elements
which are the description of the depending attribute and eventually a
default value. The depending devices have to be defined in a list
called depending_dev_list which follow the same syntax than the depending_attr_list. A
constraint may also have properties as defined in
XXX: Unknown inset LatexCommand ref{par:Controller-properties}:
. The constructor will receive three input arguments which are:

	A list with the depending attribute name

	A list with the depending device name

	A dictionnary (name:value) with the properties definition

One rule of the constructor is to build the connection with these
Tango [http://www.tango-controls.org/] objects and to keep them in the instance. The Evaluate method
will evaluate the constraint and will return true or false. It
receives as input argument a list with the result of a read_attribute
call executed on all the depending attributes.

Five pool device commands and two attribute allow the management of
these constraints. The commands are CreateConstraint , DeleteConstraint , EvaluateContraint, GetConstraintClassInfo and GetConstraint . The attributes are called ConstraintList and ConstraintClassList . They are all detailed in chapters
XXX: Unknown inset LatexCommand ref{sub:Device-pool-commands}:
and
XXX: Unknown inset LatexCommand ref{sub:Device-pool-attributes}:
. The following is an example of a user constraint

1 import PyTango
2
3 class MyConstraint(PoolConstraint):
4
5 depending_attr_list = [{'DefaultValue':"first_mot/position",
6 'Description':"X position"},
7 {'DefaultValue':"second_mot/position",
8 'Description':"Z position"},
9 {'DefaultValue':"first_mot/velocity",
10 'Description':"X position speed"}]
11
11 depending_dev_list = [{'DefaultValue':"first_dev",
12 'Description':"Air pressure device"}]
13
14 inst_prop = {'MyProp':{'Type':PyTango.DevLong,'Description':'The psi constant',
15 'DefaultValue',1234}}
16
17 def __init__(self,attr_list,dev_list,prop_dict)
18 self.air_device = PyTango.DeviceProxy(dev_list[0])
19 self.const = prop_dict["MyProp"]
20
21 def Evaluate(self,att_value):
22 if att_value[0].value > (xxx * self.const)
23 return False
24 elif att_value[1].value > yyy
25 return False
26 elif att_value[2].value > zzz
27 return False
28 elif self.air_device.state() == PyTango.FAULT
29 return False
30 return True

Line 3 : The class inherits from the PoolConstraint class
Line 5-10: Definition of the depending attributes
Line 11-12: Definition of the depending devices
Line 14-15: Definition of a constraint property
Line 17-19: The constructor
Line 21-30: The Evaluate method

Archiving motor position

XXX: Unknown inset LatexCommand label{sub:Archiving-motor-position}:

It is not possible to archive motor position using the Tango [http://www.tango-controls.org/] memorized
attribute feature because Tango [http://www.tango-controls.org/] writes the attribute value into the
database just after it has been set by the user. In case of motors
which need some time to go to the desired value and which from time to
time do not go exactly to the desired value (for always possible to
have position which is a integer number of motor steps), it is more
suited to store the motor position at the end of the motion. To
achieve this, the pool has a command (called ArchieveMotorPosition) which will store new motor positions into the database. This command
will be polled by the classical Tango [http://www.tango-controls.org/] polling thread in order to
execute it regularly. The algorithm used by this command is the
following:

- Read motors position for all motors which are not actually moving

- /FOR/ all motors
 - /IF/ The new position just read is different than the old one
 - Mark the motor as storable
 - /ENDIF/
- /ENDFOR/

- Store in DB position of all storable motors
- Memorize motors position

In order to minimize the number of calls done on the Tango [http://www.tango-controls.org/] database,
we need to add to the Tango [http://www.tango-controls.org/] database software the ability to store x
properties of one attribute of y devices into the database in one call
(or may be simply the same property of one attribute of several
device).

Scanning

To be filled in

Experiment management

To be filled in

The pool device Tango [http://www.tango-controls.org/] interface

The pool is implemented as a C++ Tango [http://www.tango-controls.org/] device server and therefore
supports a set of commands/attributes. It has several attributes to
get object (motor, pseudo-motor, controller) list. These lists are
managed as attributes in order to have events on them when a new
object (motor, controller…) is created/deleted.

Device pool commands

XXX: Unknown inset LatexCommand label{sub:Device-pool-commands}:

On top of the three classical Tango [http://www.tango-controls.org/] commands (State, Status and Init),
the pool device supports the commands summarized in the following
table:

	Device type

	Name

	Input data type

	Output data type

	related

	InitController

	Tango::DevString

	void

	commands

	ReloadControllerCode
SendToController

	Tango::DevString
Tango::DevVarStringArray

	void
Tango::DevString

	Motor

	CreateMotor

	Tango::DevVarLongStringArray

	void

	related commands

	DeleteMotor

	Tango::DevString

	void

	Motor group

	CreateMotorGroup

	Tango::DevVarStringArray

	void

	related commands

	DeleteMotorGroup
GetPseudoMotorInfo

	Tango::DevString
Tango::DevVarStringArray

	void
Tango::DevVarStringArray

	Pseudo motor

	CreatePseudoMotor

	Tango::DevVarStringArray

	void

	related commands

	DeletePseudoMotor
ReloadPseudoMotorCode
GetConstraintClassInfo
CreateConstraint

	Tango::DevString
Tango::DevString
Tango::DevString
Tango::DevVarStringArray

	void
void
Tango::DevVarStringArray
void

	User Constraint

	DeleteConstraint

	Tango::DevString

	void

	related

	EvaluateConstraint

	Tango::DevString

	Tango::DevBoolean

	commands

	GetConstraint
ReloadConstraintCode

	Tango::DevString
Tango::DevString

	Tango::DevVarLongArray
void

	Experiment Channel

	CreateExpChannel

	Tango::DevVarStringArray

	void

	related commands

	DeleteExpChannel

	Tango::DevString

	void

	Measurement group

	CreateMeasurementGroup

	Tango::DevVarStringArray

	void

	related commands

	DeleteMeasurementGroup

	Tango::DevString

	void

	Dyn loaded Tango

	LoadTangoClass

	
	

	class related

	UnloadTangoClass

	
	

	commands

	ReloadTangoClass

	
	

	Dyn. created

	CreateXXX

	
	

	commands

	DeleteXXX

	
	

	Miscellaneous

	ArchiveMotorPosition

	void

	void

	CreateController : This command creates a controller object. It has four arguments (all
strings) which are:

	The controller device type: Actually three types are supported as
device type. They are:

	“Motor” (case independent) for motor device

	“CounterTimer” (case independent) for counter timer device

	“ZeroDExpChannel” (case independent) for zero dimension experiment
channel device

	Controller code file name: For C++ controller, this is the name of the
controller shared library file. For Python controller, this is the
name of the controller module. This parameter is only a file name, not
a path. The path is automatically taken from the pool device PooPath property. It is not necessary to change your LD_LIBRARY_PATH or
PYTHONPATH environment variable. Everything is taken from the PoolPath
property.

	Controller class name: This is the name of the class implementing the
controller. This class has to be implemented within the controller
shared library or Python module passed as previous argument

	Instance name: It is a string which allows the device pool to deal
with several instance of the same controller class. The pool checks
that this name is uniq within a control system.

The list of created controllers is kept in one of the pool device
property and at next startup time, all controllers will be
automatically re-created. If you have several pool device within a
control system (the same TANGO_HOST), it is not possible to have two
times the same controller defines on different pool device. Even if
the full controller name is <Controller file name>.<Controller class
name>/<Instance name>, each created controller has an associated name
which is:

<Instance name>

which has to be used when the controller name is requested. This name
is case independent.

	DeleteController : This command has only one input argument which is the controller
name (as defined previously). It is not possible to delete a
controller with attached device(s). You first have to delete
controller’s device(s).

	InitController : This command is used to (re)-initialize a controller if the
controller initialization done at pool startup time has failed. At
startup time, the device pool creates controller devices even if the
controller initialization has failed. All controller devices are set
to the FAULT state. This command will try to re-create the controller
object and if successful, send an “Init” command to every controller
devices. Its input argument is the controller name.

	GetControllerInfo : This command has three or four input parameters which are:
XXX: Unknown inset LatexCommand label{ite:GetControllerInfo:}:

	The controller device type

	The controller code file name: For C++ controller, this is the name of
the controller shared library file. For Python controller, this is the
name of the controller module. This parameter is only a file name, not
a path. The path is automatically taken from the pool device PooPath property.

	The controller class name: This is the name of the class implementing
the controller. This class has to be implemented within the controller
shared library or Python module passed as previous argument

	The controller instance name: This parameter is optional. If you do
not specify it, the command will return information concerning
controller properties as defined at the class level. If you defined
it, the command will return information concerning controller
properties for this specific controller instance.

It returns to the caller all the informations related to controller
properties as defined in the controller code and/or in the Tango
database. The following format is used to return these informations:

	The string describing the controller (or an empty string if not
defined)

	Number of controller properties

	For each property:

	The property name

	The property data type

	The property description

	The property default value (Empty string if not defined)

	ReloadControllerCode : The controller code is contains in a shared library dynamically
loaded or in a Python module. The aim of this command is to unlink the
pool to the shared library and to reload it (or Reload the Python
module). The command argument is a string which is the controller file
name as defined for the CreateController command. For motor
controller, it is not possible to do this command if one of the motor
attached to controller(s) using the code within the file is actually
moving. All motor(s) attached to every controller(s) using this file
is switched to FAULT state during this command execution. Once the
code is reloaded, an “Init” command is sent to every controller
devices.

	SendToController : Send data to a controller. The first element of the input argument
array is the controller name. The second one is the string to be sent
to the controller. This command returns the controller answer or an
empty string is the controller does not have answer.

	CreateMotor : This command creates a new motor. It has three arguments which are:

	The motor name (a string). This is a Tango [http://www.tango-controls.org/] device alias. It is not
allowed to have ‘/’ character within this name. It is a case
independent name.

	The motor controller name (a string)

	The axe number within the controller

The motor is created as a Tango [http://www.tango-controls.org/] device and automatically registered in
the database. At next startup time, all motors will be automatically
re-created. A Tango [http://www.tango-controls.org/] name is assigned to every motor. This name is a
Tango [http://www.tango-controls.org/] device name (3 fields) and follow the syntax:

motor/controller_instance_name/axe_number

in lower case letters.

	DeleteMotor : This command has only one argument which is the motor name as given
in the first argument of the CreateMotor command. The device is
automatically unregistered from the Tango [http://www.tango-controls.org/] database and is not
accessible any more even for client already connected to it.

	CreateMotorGroup : This command creates a new motor group. It has N arguments which
are:

	The motor group name (a string). This is a Tango [http://www.tango-controls.org/] device alias. It is
not allowed to have ‘/’ character within this name. It is a case
independent name.

	The list of motor element of the group (motor name or another group
name or pseudo-motor name)

The motor group is created as a Tango [http://www.tango-controls.org/] device and automatically
registered in the database. At next startup time, all motor groups
will be automatically re-created. A Tango [http://www.tango-controls.org/] name is assigned to every
motor group. This name is a Tango [http://www.tango-controls.org/] device name (3 fields) and follow
the syntax:

mg/ds_instance_name/motor_group_name

in lower case letters.

	DeleteMotorGroup : This command has only one argument which is the motor group name as
given in the first argument of the CreateMotorGroup command. The
device is automatically unregistered from the Tango [http://www.tango-controls.org/] database and is
not accessible any more even for client already connected to it. This
command is not allowed if another motor group is using the motor group
to be deleted.

	GetPseudoMotorInfo :
XXX: Unknown inset LatexCommand label{sub:GetPseudoMotorClassInfo}:
: This command has one input argument (a string):

<module_name>.<class_name>

The command returns a list of strings representing the pseudo motor
system information with the following meaning:

pseudo_info[0] - textual description of the pseudo motor class.

pseudo_info[1] - (=M) the number of motors required by this pseudo
motor class.

pseudo_info[2] - (=N) the number of pseudo motors that the pseudo
motor system aggregates.

pseudo_info[3] - the number of parameters required by the pseudo motor
system.

pseudo_info[4..N+4] - the textual description of the roles of the N
motors.

pseudo_info[N+5..N+M+5] - the textual description of the roles of the
M pseudo motors.

pseudo_info[N+M+6..N+M+P+6] - the textual description of the P
parameters.

example :

GetPseudoMotorInfo('PseudoLib.Slit')

could have as a return:

["A Slit system for controlling gap and offset pseudo motors.",
"2",
"2",
"0",
"Motor on blade 1",
"Motor on blade 2",
"Gap",
"Offset"]

	CreatePseudoMotor :This command has a variable number of input arguments (all strings):

	the python file which contains the pseudo motor python code.

	the class name representing the pseudo motor system.

	the N pseudo motor names. These will be the pseudo motor alias for the
corresponding pseudo motor tango devices.

	the M motor names. These names are the existing tango motor alias.

N and M must conform to the class name information. See
XXX: Unknown inset LatexCommand ref{sub:GetPseudoMotorClassInfo}:
to find how to get class information.

For each given pseudo motor name a Tango [http://www.tango-controls.org/] pseudo motor device is
created and automatically registered in the database. At next startup time, all pseudo motors will be automatically re-
created. A Tango [http://www.tango-controls.org/] name is assigned to every pseudo motor. This name is
a Tango [http://www.tango-controls.org/] device name (3 fields) and follow the syntax:

pm/python_module_name.class_name/pseudo_motor_name

For each Tango [http://www.tango-controls.org/] pseudo motor device the device pool will also create a
corresponding alias named pseudo_motor_name.

If a motor group Tango [http://www.tango-controls.org/] device with the given motor names doesn’t exist
then the device pool will also create a motor group with the following
name:

mg/tango_device_server_instance_name/_pm_<internal motor group number>

This motor group is built for internal Pool usage. It is not intended
that the pseudo motor is accessed directly through this motor group.
However, if needed elsewhere, it can be accessed as the usual motor
group without any special restrictions.

example:

CreatePseudoMotor(‘PseudoLib.py’,’Slit’,’gap01’,’offset01’,’blade01’,’
blade02’)

	DeletePseudoMotor : This command has only one argument which is the pseudo motor
identifier. The device is automatically unregistered from the Tango
database and is not accessible any more even for client already
connected to it. This command is not allowed if a motor group is using
the pseudo motor to be deleted.

	ReloadPseudoMotorCode :The calculation code is contains in a dynamically loaded Python
module. The aim of this command is to reload the Python module. The
command argument is a string which is the python module as defined for
the CreatePseudoMotor and GetPseudoMotorInfo commands. It is not
possible to do this command if one of the motor attached to pseudo
motor system(s) using code within the file is actually moving. All
pseudo motor(s) using this file are switched to FAULT state during
this command execution.

	CreateExpChannel : This command creates a new experiment channel. It has three
arguments which are:

	The experiment channel name (a string). This is a Tango [http://www.tango-controls.org/] device alias.
It is not allowed to have ‘/’ character within this name. It is a case
independent name.

	The experiment channel controller name (a string)

	The index number within the controller

The experiment channel is created as a Tango [http://www.tango-controls.org/] device and automatically
registered in the database. At next startup time, all created
experiment channels will be automatically re-created. A Tango [http://www.tango-controls.org/] name is
assigned to every experiment channel. This name is a Tango [http://www.tango-controls.org/] device name
(3 fields) and follow the syntax:

expchan/controller_instance_name/index_number

in lower case letters. The precise type of the experiment channel
(Counter/Timer, ZeroD, OneD…) is retrieved by the pool device from
the controller given as command second parameter.

	DeleteExpChannel : This command has only one argument which is the experiment channel
name as given in the first argument of the CreateExpChannel command.
The device is automatically unregistered from the Tango [http://www.tango-controls.org/] database and
is not accessible any more even for client already connected to it.

	GetConstraintClassInfo : This command has one input parameter (a string) which is the
constraint class name. It returns to the caller all the information
related to constraint dependencies and to constraint properties as
defined in the constraint code. The following format is used to return
properties:

	Depending attributes number

	Depending attribute name

	Depending attribute description

	Depending devices number

	Depending device name

	Depending device description

	Class property number

	Class property name

	Class property description

	Class property default value (Set to “NotDef” if not defined)

	Instance property number

	Instance property name

	Instance property description

	Instance property default value (Set to “NotDef” if not defined)

	CreateMeasurementGroup : This command creates a new measurement group. It has N arguments
which are:

	The measurement group name (a string). This is a Tango [http://www.tango-controls.org/] device alias.
It is not allowed to have ‘/’ character within this name. It is a case
independent name.

	The list of channel elements of the group (Counter/Timer, 0D, 1D or 2D
experiment channel)

The measurement group is created as a Tango [http://www.tango-controls.org/] device and automatically
registered in the database. At next startup time, all measurement
groups will be automatically re-created. A Tango [http://www.tango-controls.org/] name is assigned to
every measurement group. This name is a Tango [http://www.tango-controls.org/] device name (3 fields)
and follow the syntax:

mntgrp/ds_instance_name/measurement_group_name

in lower case letters.

	DeleteMeasurementGroup : This command has only one argument which is the measurement group
name as given in the first argument of the CreateMeasurementGroup
command. The device is automatically unregistered from the Tango
database and is not accessible any more even for client already
connected to it.

	AddConstraint : This command creates a user constraint object. It has several
arguments (all strings) which are:

	Constraint code file name: The name of the constraint module. This
parameter is only a file name, not a path. The path is automatically
taken from the pool PooPath property.

	Constraint class name: This is the name of the class implementing the
controller. This class has to be implemented within the controller
shared library or Python module passed as previous argument

	Instance name: It is a string which allows the device pool to deal
with several instance of the same controller class.

	The object to which the constraint belongs. It has to be a writable
attribute name (actually only a motor position)

	The list of depending objects. (Variable length list which may be
empty)

The list of created constraints is kept in one of the pool device
property and at next startup time, all constraints will be
automatically re-created. It is possible to create several constraint
on the same object. They will be executed in the order of their
creation. Each created constraint has a associated name which is:

<Constraint class name>/<Instance name>

	DeleteConstraint : This command has only one argument which is the constraint name as
define previously.

	EvaluateConstraint : This command has only one argument which is the constraint name. It
runs the “evaluate” method of the constraint and sends the return
value to the caller

	GetConstraint : The input parameter of this command is the name of a Tango [http://www.tango-controls.org/] object.
Actually, it has to be the name of one of the motor Position
attribute. The command returns the list of Constraint ID attached to
this object.

	ReloadConstraintCode : The constraint code is contains in a Python module. The aim of this
command is to reload the Python module. The command argument is a
string which is the constraint file name as defined for
theAddConstraint command. All object(s) using this constraint are
switched to FAULT state during this command execution.

	LoadTangoClass :

	UnloadTangoClass :

	ReloadTangoClass :

	CreateXXX :

	DeleteXXX:

	ArchiveMotorPosition : Send new motor(s) position to the database. This command will be
polled with a default polling period of 10 seconds.

The classical Tango [http://www.tango-controls.org/] Init command destroys all constructed controller(s) and re-create them
reloading their code. Then, it sends an “Init” command to every
controlled objects (motor, pseudo-motor and motor group) belonging to
the pool device. Motor(s) are switched to FAULT state when controller
are destroyed.

The pool device knows only two states which are ON and ALARM. The pool
device is in ALARM state if one of its controller failed during its
initialization phase. It is in ON state when all controllers are
correctly constructed. In case the pool device in in ALARM state, its
status indicates which controller is faulty.

Device pool attributes

XXX: Unknown inset LatexCommand label{sub:Device-pool-attributes}:

The device pool supports the following attributes:

	Name

	Data type

	Data format

	Writable

	ControllerList

	Tango::DevString

	Spectrum

	R

	ControllerClassList

	Tango::DevString

	Spectrum

	R

	MotorList

	Tango::DevString

	Spectrum

	R

	MotorGroupList

	Tango::DevString

	Spectrum

	R

	PseudoMotorList

	Tango::DevString

	Spectrum

	R

	PseudoMotorClassList

	Tango::DevString

	Spectrum

	R

	ExpChannelList

	Tango::DevString

	Spectrum

	R

	MeasurementGroupList

	Tango::DevString

	Spectrum

	R

	ConstraintList

	Tango::DevString

	Spectrum

	R

	ConstraintClassList

	Tango::DevString

	Spectrum

	R

	SimulationMode

	Tango::DevBoolean

	Scalar

	R/W

	XXXList

	Tango::DevString

	Spectrum

	R

	ControllerList : This is a read only spectrum string attribute. Each spectrum element
is the name of one controller following the syntax:

<instance_name> - <Ctrl file>.<controller_class_name/instance_name> -
<Device type> <Controller language> Ctrl (<Ctrl file>)

	ControllerClassList : This is a read only spectrum string attribute. Each spectrum element
is the name of one of the available controller class that the user can
create. To build this list, the pool device server is using a property
called PoolPath which defines the path where all files containing controller code
should be (Python and C++ controllers). The syntax used for this
PoolPath property is similar to the syntax used for Unix PATH
environment variable (list of absolute path separated by the “:”
character). Each returned string has the following syntax:

Type: <Ctrl dev type> - Class: <Ctrl class name> - File: <Abs ctrl
file path>

	MotorList : This is a read only spectrum string attribute. Each spectrum element
is the name of one motor known by this pool. The syntax is:

<Motor name> (<Motor tango name>)

	MotorGroupList : This is a read only spectrum string attribute. Each spectrum element
is the name of one motor group known by this pool. The syntax is:

<Motor group name> (<Motor group tango name>) Motor list: <List of
group members> (<List of physical motors in the group>)

The last information is displayed only if the physical group structure
differs from the logical one (pseudo-motor or other group used as
group member)

	PseudoMotorList :This is a read only spectrum string attribute. Each spectrum element
is the name of one motor known by this pool. The syntax is:

<pseudo motor name> (<pseudo motor tango name>) Motor List: <motor
name>1,…,<motor name>M

	ExpChannelList : This is a read only spectrum string attribute. Each spectrum element
is the name of one experiment channel known by this pool. The syntax
is:

<Exp Channel name> (<Channel tango name>) <Experiment channel type>

The string describing the experiment channel type may be:

	Counter/Timer Experiment Channel

	Zero D Experiment Channel

	MeasurementGroupList : This is a read only spectrum string attribute. Each spectrum element
is the name of one measurement group known by the pool. The syntax is:

<Measurement group name> (<Measurement group tango name>) Experiment
Channel list: <List of group members>

	PseudoMotorClassList :This is a read only spectrum string attribute. Each spectrum element
is the name of a valid Pseudo python system class. The syntax is:

<python module name>.<python class name>

. The python files to be found depend on the current value of the pool
path. See
XXX: Unknown inset LatexCommand ref{sub:PoolPath}:

	ConstraintClassList : This is a read only spectrum string attribute. Each spectrum element
is the name of one of the available constraint class that the user can
create. To build this list, the pool device server is using a property
called PoolPath which defines the path where all files containing constraint code
should be. The syntax used for this property is similar to the syntax
used for Unix PATH environment variable (list of absolute path
separated by the “:” character). To find constraint classes, the pool
will look into all Python files (those with a .py suffix) for classes
definition which inherit from a base class called PoolConstraint .

	ConstraintList : This is a read only spectrum string attribute. each spectrum element
is one of the constraint actually registered in the pool. The syntax
of each string is:

<Constraint class name/instance name> - <associated to> - <depending
on attribute(s) - <depending on device(s)>

	SimulationMode : This is a read-write scalar boolean attribute. If set to true, all
the pool device(s) are switched to Simulation mode. This means that
all commands received by pool device(s) will not be forwarded to the
associated controllers.

	XXXList :

Device pool property

The pool device supports the following property:

	Property name

	Property data type

	Default value

	PoolPath

	String

	

	DefaultMotPos_AbsChange

	Double

	5

	DefaultMotGrpPos_AbsChange

	Double

	5

	DefaultCtVal_AbsChange

	Double

	5

	DefaultZeroDVal_AbsChange

	Double

	5

	DefaultCtGrpVal_AbsChange

	Double

	5

	DefaultZeroDGrpVal_AbsChange

	Double

	5

	GhostGroup_PollingPeriod

	String

	5000

	MotThreadLoop_SleepTime

	Long

	10

	NbStatePerRead

	Long

	10

	ZeroDNbReadPerEvent

	Long

	5

	PoolPath :
XXX: Unknown inset LatexCommand label{sub:PoolPath}:
The path (same syntax than the Unix PATH environment variable) where
the pool software is able to locate Controller software, Pseudo-motor
software or Constraint software for both Python or C++ languages

	DefaultMotPos_AbsChange : The default value used to trigger change event when the position
attribute is changing (the associated motor is moving). This property
has a hard-coded default value set to 5

	DefaultMotGrpPos_AbsChange : The default value used to trigger change event when the group device
position attribute is changing. This property has a hard-coded default
value set to 5

	DefaultCtVal_AbsChange : The default value used to trigger change event when the
counter/timer attribute is changing (the counter is counting or the
timer is timing). This property has a hard-coded default value set to
5

	DefaultZeroDVal_AbsChange : The default value used to trigger change event when the Zero
Dimension Experiment Channel is acquiring data. This property has a
hard-coded default value set to 5

	DefaultCtGrpVal_AbsChange : The default value used to trigger change event when the
counter/timer attribute(s) of a measurement group is(are) changing
(the counter is counting or the timer is timing). This property has a
hard-coded default value set to 5

	DefaultZeroDGrpVal_AbsChange : The default value used to trigger change event when the Zero
Dimension Experiment Channel(s) of a measurement group is(are)
acquiring data. This property has a hard-coded default value set to 5

	GhostGroup_PollingPeriod : The ghost motor/measurement group polling period in mS. This
property has a default value of 5000 (5 sec)

	MotThreadLoop_SleepTime : The time (in mS) during which the motion thread will sleep between
two consecutive motor state request. The default value is 10

	NbStatePerRead : The number of motor state request between each position attribute
reading done by the motion thread. The default value is 10. This means
that during a motion, the motor position is read by the thread every
100 mS (10 * 10)

	ZeroDNbReadPerEvent : The number of times the Zero D Experiment Channel value is read by
the acquisition thread between firing a change event. The event will
be effectively fired to the interested clients according to the
CumulatedValue attribute “Absolute Change” property value.

	Controller : An internally managed property which allow the pool device to
remember which controller has been created.

Creating device

This chapter gives details on what has to be done to create device
using the device pool in order to check the work to be done by a
Sardana configuration tool.

Creating motor

The following is the action list which has to be done when you want to
create a new motor:

	Display the list of all the controller the pool already has.

	Select one of this controller

	If the user selects a new controller

	Read the attribute ControllerClassList to get the list of Controller
installed in your system

	Select one of the controller class

	With the GetControllerInfo command, get the list of controller
properties

	Give a controller instance name

	Display and eventually change the controller properties (if any)

	Create the controller object using the CreateController pool command

	Give a motor name and a motor axis number in the selected controller

	Create the motor with the CreateMotor pool command

	Read the attribute list of the newly created motor

	Display and eventually change the motor attributes related to motor
features and eventually to extra-features

Creating motor group

The following is the action list which has to be done when creating a
motor group

	Give a name to the motor group

	Display the list of all registered motors (attribute MotorList), all
registered motor groups (attribute MotorGroupList), all registered
pseudo motors (attribute PseudoMotorList) and select those which have
to be member of the group.

	Create the group (command CreateMotorGroup)

Creating a pseudo motor system

The following is the action list which has to be done when you want to
create a new pseudo motor:

	Display the list of all available pseudo motor system classes and
select one of them

	if there is no proper pseudo system class write one in Python

	update the PoolPath Pool property if necessary

	Get the selected pseudo motor system class information

	Give names to the pseudo motors involved in the selected pseudo motor
system

	Create the motor(s) which are involved (if they have are not created
yet: See
XXX: Unknown inset LatexCommand ref{sub:Creating-motor}:
) and assign the coresponding roles

	Create the pseudo motor system (command CreatePseudoMotor)

Creating a user constraint

The following is the action list which has to be done when you want to
create a new user constraint:

	Display the list of all the constraint the pool already has.

	Select one of this constraint

	If the user selects a new constraint

	Read the attribute ConstraintClassList to get the list of Constraint
installed in your system

	Select one of the constraint class

	With the GetConstraintClassInfo command, get the list of constraint
dependencies and properties

	Give a constraint instance name

	If it is the first constraint of this class

	Display and eventually change the constraint class properties (if any)

	Display and eventually change the constraint depending attribute (if
any)

	Display and eventually change the constraint depending device (if any)

	Display and eventually change the constraint instance properties (if
any)

	Create the constraint object using the CreateConstraint pool command

Some words on internal implementation

This chapter gives some details on some part of the pool
implementation in order to clarify reader ideas

Moving motor

Moving a motor means writing its Position attribute. In Tango, it is
already splitted in two actions which are:

	Call a Motor class method called “is_allowed”

	Call a Motor class method called “write_Position”

The second method will be executed only if the first one returns true.
The move order is sent to the motor (via the controller) in the code
of the second method.

The is_allowed method

The code implemented in this method follow the algorithm:

- /IF/ There are any Pseudo Motor using the motor
 - /FOR/ All these Pseudo Motors
 - /IF/ They have some limits defined
 - Compute new Pseudo Motor position if motor moved to the desired value
 - /IF/ The computed value is outside the authorized window
 - Return False
 - /ENDIF/
 - /ENDIF/
 - /ENDFOR/
- /ENDIF/

- /IF/ There are some user constraint attached to the motor
 - /FOR/ Each user constraint
 - /IF/ The constraint has some depending attribute(s)
 - Read these attributes
 - /ENDIF/
 - /IF/ If the execution of the contraint "Evaluate" method returns False
 - Return False
 - /ENDIF/
 - /ENDFOR/
- /ENDIF/

- Return True

The write_Position method

The code implemented in this method follows the algorithm:

- Compute the dial position from the user position
- /IF/ A backlash is defined for this motor and the controller does not manage it
 - Update motor desired position according to motion direction and backlash value
- /ENDIF/
- Start a thread sending it which motor has to move to which position
- Wait for thread acknowledge
- Return to caller

The motion thread will execute the following algorithm:

- /FOR/ Each controller(s) implied in the motion
 - Lock the controller object
 - Call PreStartAll()
- /ENDFOR/

- /FOR/ Each motor(s) implied in the motion
 - ret = PreStartOne(motor to move, new position)
 - /IF/ ret is true
 - Call StartOne(motor to move, new position)
 - /ELSE/
 - Inform write_Position that an error occurs
 - Send acknowledge to write_Position method
 - /ENDIF/
- /ENDFOR/

- /FOR/ Each motor(s) implied in the motion
 - Set motor state to MOVING and send a Tango_ event to the requesting client
- /ENDFOR/

- /FOR/ Each controller(s) implied in the motion
 - Call StartAll()
 - Unlock the controller object
- /ENDFOR/

- Send acknowledge to the write_Position method

- /WHILE/ One of the motor state is MOVING (From controller)
 - Sleep for 10 mS

 - /IF/ One of the motor implied in the motion is not moving any more
 - /IF/ This motor has backlash and the motion is in the "wrong" direction
 - Ask for a backlash motion in the other direction
 (Easy to write, not as easy to do...)
 - /ENDIF/
 - Send a Tango_ event on the state attribute to the requesting client
 - Leave the loop
 - /ENDIF/

 - /IF/ it is time to read the motor position
 - Read the motor position
 - Send a change event on the Position attribute to the requested client if
 the change event criterion is true
 - /ENDIF/
- /ENDWHILE/

- Sleep for the time defined by the motor (group) Sleep_bef_last_read property
- Read the motor position
- Send a forced change event on the Position attribute to the requesting client
 with the value set to the one just read

Data acquisition

Data aquisition is triggered by invoking a Start command on the
measurement group. The code implemented implements the following
algorithm.

/IF/ in timer mode
 - Write CumulationTime on all 0D channels with Integration_time value
/ELIF/ in monitor mode
 - Write CumulationTime on all 0D channels with 0(zero) value
/ENDIF/

/FOR/ Each 0D channel implied in the data aquisition
 - Load configuration
/END FOR/

- Start a CounterTimer thread with channels involved, master channel and the proper value to be set on it
- Wait for CounterTimer thread acknowledge

/FOR/ Each 0D channel implied in the data aquisition
 - Send Start command
/END FOR/

- Return to caller

The Counter/Timer thread will execute the following algorithm:

- Calculate the list of controllers involved and determine which controller has the master channel
/FOR/ Each channel(s) implied in the data aquisition
 - Lock the channel object
/END FOR/

/FOR/ Each controller(s) implied in the data acquisition
 - Lock the controller object
/END FOR/

/FOR/ Each channel(s) implied in the data acquisition
 - Load configuration
/END FOR/

- Load the master channel - timer(monitor) - with the integration time(count)

/FOR/ Each controller(s) implied in the data acquisition
 - Call PreStartAllCT()
/END FOR/

/FOR/ Each channel(s), except for the master channel, implied in the data acquisition,
 - Call PreStartOneCT(channel)
 - Call StartOneCT(channel)
/END FOR/

/FOR/ Each controller(s) implied in the data aquisition
 - Call StartAllCT()
/END FOR/

- Call PreStartAllCT() on the controller which contains the master channel
- Call PreStartOneCT(master channel)
- Call StartOneCT(master channel)
- Call StartAllCT() on the controller which contains the master channel

/FOR/ Each controller(s) implied in the data aquisition
 - Unlock the controller object
/END FOR/

/FOR/ Each channel(s) implied in the data aquisition
 - Unlock the channel object
/END FOR/

- Send acknowledge to the Start method

/WHILE/ master channel state is MOVING (From controller)
 - Sleep for 10 * sleepTime mS

 /IF/ If master channel is not moving any more
 - Stop all channels
 - Send a Tango event on the state attribute to the requesting client
 - Leave the loop
 /ENDIF/

 /IF/ it is time to read the channel values
 - Read the channel values
 - Send a change event on each value attribute to the requested client if
 the change event criterion is true
 /ENDIF/
/ENDWHILE/

- Read the channel values
- Send a forced change event on each value attribute to the requesting client
 with the value set to the one just read

Macro Server

Todo

document this chapter

Introduction

This paper describes the macro server Tango [http://www.tango-controls.org/] API.

sardana

This package provides the sardana library

Packages

	pool

	macroserver

	tango

Modules

	sardanadefs

	sardanabase

	sardanacontainer

	sardanaevent

	sardanamodulemanager

	sardanameta

	sardanamanager

	sardanaattribute

	sardanavalue

pool

This is the main device pool module

Modules

	controller

	pool

	poolacquisition

	poolaction

	poolbasechannel

	poolbaseobject

	poolcontainer

	poolcontroller

	poolcontrollermanager

	poolcountertimer

	pooldefs

	poolelement

	poolexception

	poolexternal

	poolgroupelement

	poolinstrument

	poolioregister

	poolmeasurementgroup

	poolmetacontroller

	poolmonitor

	poolmotion

	poolmotor

	poolmotorgroup

	poolmoveable

	poolobject

	poolonedexpchannel

	poolpseudocounter

	poolpseudomotor

	pooltwodexpchannel

	poolutil

	poolzerodexpchannel

Classes

	
	Controller

	MotorController

	
	CounterTimerController

	
	PseudoMotorController

Constants

	
	ControllerAPI

	

	

controller

This module contains the definition of the Controller base classes

Constants

	
Type = 'type'

	Constant data type (to be used as a key in the definition of
axis_attributes or ctrl_attributes)

	
Access = 'r/w type'

	Constant data access (to be used as a key in the definition of
axis_attributes or ctrl_attributes)

	
Description = 'description'

	Constant description (to be used as a key in the definition of
axis_attributes or ctrl_attributes)

	
DefaultValue = 'defaultvalue'

	Constant default value (to be used as a key in the definition of
axis_attributes or ctrl_attributes)

	
FGet = 'fget'

	Constant for getter function (to be used as a key in the definition of
axis_attributes or ctrl_attributes)

	
FSet = 'fset'

	Constant for setter function (to be used as a key in the definition of
axis_attributes or ctrl_attributes)

	
Memorize = 'memorized'

	Constant memorize (to be used as a key in the definition of
axis_attributes or ctrl_attributes)
Possible values for this key are Memorized, MemorizedNoInit
and NotMemorized

	
Memorized = 'true'

	Constant memorized (to be used as a value in the Memorize field
definition in axis_attributes or
ctrl_attributes)

	
MemorizedNoInit = 'true_without_hard_applied'

	Constant memorize but not write at initialization (to be used as a value
in the Memorize field definition in
axis_attributes or ctrl_attributes)

	
NotMemorized = 'false'

	Constant not memorize (to be used as a value
in the Memorize field definition in
axis_attributes or ctrl_attributes)

	
MaxDimSize = 'maxdimsize'

	Constant MaxDimSize (to be used as a key in the definition of
axis_attributes or ctrl_attributes)

Interfaces

	
	Readable

	Startable

	
	Stopable

	Loadable

	
	Synchronizer

Classes

	
	Controller

	PseudoController

	MotorController

	PseudoMotorController

	
	CounterTimerController

	ZeroDController

	OneDController

	
	TwoDController

	PseudoCounterController

	IORegisterController

Readable interface

[image: Inheritance diagram of Readable]

	
class Readable

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

A Readable interface. A controller for which it’s axis are ‘readable’
(like a motor, counter or 1D for example) should implement this interface

	
PreReadAll()

	Controller API. Override if necessary.
Called to prepare a read of the value of all axis.
Default implementation does nothing.

	
PreReadOne(axis)

	Controller API. Override if necessary.
Called to prepare a read of the value of a single axis.
Default implementation does nothing.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	
ReadAll()

	Controller API. Override if necessary.
Called to read the value of all selected axis
Default implementation does nothing.

	
ReadOne(axis)

	Controller API. Override is MANDATORY!
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	Returns

	the axis value

	Return type

	object [https://docs.python.org/dev/library/functions.html#object]

Startable interface

[image: Inheritance diagram of Startable]

	
class Startable

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

A Startable interface. A controller for which it’s axis are ‘startable’
(like a motor, for example) should implement this interface

	
PreStartAll()

	Controller API. Override if necessary.
Called to prepare a start of all axis (whatever pre-start means).
Default implementation does nothing.

	
PreStartOne(axis, value)

	Controller API. Override if necessary.
Called to prepare a start of the given axis (whatever pre-start means).
Default implementation returns True.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	value (float [https://docs.python.org/dev/library/functions.html#float]) – new value

	Returns

	True means a successfull pre-start or False for a failure

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
StartOne(axis, value)

	Controller API. Override if necessary.
Called to do a start of the given axis (whatever start means).
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	value (float [https://docs.python.org/dev/library/functions.html#float]) – new value

	
StartAll()

	Controller API. Override is MANDATORY!
Default implementation does nothing.

Stopable interface

[image: Inheritance diagram of Stopable]

	
class Stopable

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

A Stopable interface. A controller for which it’s axis are ‘stoppable’
(like a motor, for example) should implement this interface

	
PreAbortAll()

	Controller API. Override if necessary.
Called to prepare a abort of all axis (whatever pre-abort means).
Default implementation does nothing.

	
PreAbortOne(axis)

	Controller API. Override if necessary.
Called to prepare a abort of the given axis (whatever pre-abort means).
Default implementation returns True.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	Returns

	True means a successfull pre-abort or False for a failure

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
AbortOne(axis)

	Controller API. Override is MANDATORY!
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].
Aborts one of the axis

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	
AbortAll()

	Controller API. Override if necessary.
Aborts all active axis of this controller.
Default implementation does nothing.

	
PreStopAll()

	Controller API. Override if necessary.
Called to prepare a stop of all axis (whatever pre-stop means).
Default implementation does nothing.

	
PreStopOne(axis)

	Controller API. Override if necessary.
Called to prepare a stop of the given axis (whatever pre-stop means).
Default implementation returns True.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	Returns

	True means a successfull pre-stop or False for a failure

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
StopOne(axis)

	Controller API. Override if necessary.
Stops one of the axis.
This method is reserved for future implementation.
Default implementation calls AbortOne().

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

New in version 1.0.

	
StopAll()

	Controller API. Override if necessary.
Stops all active axis of this controller.
Default implementation does nothing.

Loadable interface

[image: Inheritance diagram of Loadable]

	
class Loadable

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

A Loadable interface. A controller for which it’s axis are ‘loadable’
(like a counter, 1D or 2D for example) should implement this interface

	
PreLoadAll()

	Controller API. Override if necessary.
Called to prepare loading the integration time / monitor value.
Default implementation does nothing.

	
PreLoadOne(axis, value, repetitions)

	Controller API. Override if necessary.
Called to prepare loading the master channel axis with the integration
time / monitor value.
Default implementation returns True.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	value (float [https://docs.python.org/dev/library/functions.html#float]) – integration time /monitor value

	repetitions (int [https://docs.python.org/dev/library/functions.html#int]) – number of repetitions

	Returns

	True means a successfull PreLoadOne or False for a failure

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
LoadAll()

	Controller API. Override if necessary.
Called to load the integration time / monitor value.
Default implementation does nothing.

	
LoadOne(axis, value, repetitions)

	Controller API. Override is MANDATORY!
Called to load the integration time / monitor value.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	value (float [https://docs.python.org/dev/library/functions.html#float]) – integration time /monitor value

	repetitions (int [https://docs.python.org/dev/library/functions.html#int]) – number of repetitions

	value – integration time /monitor value

Synchronizer interface

[image: Inheritance diagram of Synchronizer]

	
class Synchronizer

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

A Synchronizer interface. A controller for which its axis are ‘Able to
Synchronize’ should implement this interface

	
PreSynchAll()

	Controller API. Override if necessary.
Called to prepare loading the synchronization description.
Default implementation does nothing.

	
PreSynchOne(axis, description)

	Controller API. Override if necessary.
Called to prepare loading the axis with the synchronization description.
Default implementation returns True.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	list<dict> – synchronization description

	Returns

	True means a successfull PreSynchOne or False for a failure

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
SynchAll()

	Controller API. Override if necessary.
Called to load the synchronization description.
Default implementation does nothing.

	
SynchOne(axis, description)

	Controller API. Override is MANDATORY!
Called to load the axis with the synchronization description.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	description (list<dict>) – synchronization description

Abstract Controller

[image: Inheritance diagram of Controller]

	
class Controller(inst, props, *args, **kwargs)

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

Base controller class. Do NOT inherit from this class directly

	Parameters

	
	inst (str [https://docs.python.org/dev/library/stdtypes.html#str]) – controller instance name

	props (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – a dictionary containning pairs of property name,
property value

	args –

	kwargs –

	
class_prop = {}

	
Deprecated since version 1.0.

use ctrl_properties instead

	
ctrl_features = []

	A sequence of str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller features

	
ctrl_extra_attributes = {}

	
Deprecated since version 1.0.

use axis_attributes instead

	
ctrl_properties = {}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing controller properties where:

	key : (str [https://docs.python.org/dev/library/stdtypes.html#str]) controller property name

	value : dict [https://docs.python.org/dev/library/stdtypes.html#dict] with with three str [https://docs.python.org/dev/library/stdtypes.html#str] keys (“type”,
“description” and “defaultvalue” case insensitive):

	for Type, value is one of the values described in
Data Type definition

	for Description, value is a str [https://docs.python.org/dev/library/stdtypes.html#str] description of the
property.
if is not given it defaults to empty string.

	for DefaultValue, value is a python object or None if no
default value exists for the property.

Example:

from sardana.pool.controller import MotorController, \
 Type, Description, DefaultValue

class MyCtrl(MotorController):

 ctrl_properties = \
 {
 'host' : { Type : str,
 Description : "host name" },
 'port' : { Type : int,
 Description : "port number",
 DefaultValue: 5000 }
 }

	
ctrl_attributes = {}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containning controller extra attributes where:

	key : (str [https://docs.python.org/dev/library/stdtypes.html#str]) controller attribute name

	value : dict [https://docs.python.org/dev/library/stdtypes.html#dict] with str [https://docs.python.org/dev/library/stdtypes.html#str] possible keys: “type”,
“r/w type”, “description”, “fget”, “fset” and “maxdimsize”
(case insensitive):

	for Type, value is one of the values described in
Data Type definition

	for Access, value is one of
DataAccess (“read” or “read_write”
(case insensitive) strings are also accepted) [default: ReadWrite]

	for Description, value is a str [https://docs.python.org/dev/library/stdtypes.html#str] description of the
attribute [default: “” (empty string)]

	for FGet, value is a str [https://docs.python.org/dev/library/stdtypes.html#str] with the method name for
the attribute getter [default: “get”<controller attribute name>]

	for FSet, value is a str [https://docs.python.org/dev/library/stdtypes.html#str] with the method name for
the attribute setter. [default, if Access = “read_write”:
“set”<controller attribute name>]

	for DefaultValue, value is a python object or None if no
default value exists for the attribute. If given, the attribute is
set when the controller is first created.

	for Memorize, value is a str [https://docs.python.org/dev/library/stdtypes.html#str] with possible values:
Memorized, MemorizedNoInit and
NotMemorized [default: Memorized]

New in version 1.1.

	
	for MaxDimSize, value is a tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] with possible values:

	
	for scalar must be an empty tuple (() or [])
[default: ()]

	for 1D arrays a sequence with one value (example: (1024,))
[default: (2048,)]

	for 1D arrays a sequence with two values (example: (1024, 1024))
[default: (2048, 2048)]

New in version 1.1.

New in version 1.0.

Example:

from sardana.pool.controller import PseudoMotorController, \
 Type, Description, DefaultValue, DataAccess

class HKLCtrl(PseudoMotorController):

 ctrl_attributes = \
 {
 'ReflectionMatrix' : { Type : ((float,),),
 Description : "The reflection matrix",
 Access : DataAccess.ReadOnly,
 FGet : 'getReflectionMatrix', },
 }

 def getReflectionMatrix(self):
 return ((1.0, 0.0), (0.0, 1.0))

	
axis_attributes = {}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containning controller extra attributes for each axis
where:

	key : (str [https://docs.python.org/dev/library/stdtypes.html#str]) axis attribute name

	value : dict [https://docs.python.org/dev/library/stdtypes.html#dict] with three str [https://docs.python.org/dev/library/stdtypes.html#str] keys
(“type”, “r/w type”, “description” case insensitive):

	for Type, value is one of the values described in
Data Type definition

	for Access, value is one of
DataAccess (“read” or “read_write”
(case insensitive) strings are also accepted)

	for Description, value is a str [https://docs.python.org/dev/library/stdtypes.html#str] description of the
attribute

	for DefaultValue, value is a python object or None if no
default value exists for the attribute. If given, the attribute is
set when the axis is first created.

	for Memorize, value is a str [https://docs.python.org/dev/library/stdtypes.html#str] with possible values:
Memorized, MemorizedNoInit and
NotMemorized [default: Memorized]

New in version 1.1.

	
	for MaxDimSize, value is a tuple [https://docs.python.org/dev/library/stdtypes.html#tuple] with possible values:

	
	for scalar must be an empty tuple (() or [])
[default: ()]

	for 1D arrays a sequence with one value (example: (1024,))
[default: (2048,)]

	for 1D arrays a sequence with two values (example: (1024, 1024))
[default: (2048, 2048)]

New in version 1.1.

New in version 1.0.

Example:

from sardana.pool.controller import MotorController, \
 Type, Description, DefaultValue, DataAccess

class MyMCtrl(MotorController):

 axis_attributes = \
 {
 'EncoderSource' : { Type : str,
 Description : 'motor encoder source', },
 }

 def getAxisPar(self, axis, name):
 name = name.lower()
 if name == 'encodersource':
 return self._encodersource[axis]

 def setAxisPar(self, axis, name, value):
 name = name.lower()
 if name == 'encodersource':
 self._encodersource[axis] = value

	
standard_axis_attributes = {}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the standard attributes present on each axis
device

	
gender = None

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
model = 'Generic'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller model name

	
organization = 'Sardana team'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller organization

	
image = None

	A str [https://docs.python.org/dev/library/stdtypes.html#str] containning the path to the image file

	
logo = None

	A str [https://docs.python.org/dev/library/stdtypes.html#str] containning the path to the image logo file

	
_findAPIVersion()

	Internal. By default return the Pool Controller API
version of the pool where the controller is running

	
_getPoolController()

	Internal.

	
AddDevice(axis)

	Controller API. Override if necessary. Default implementation
does nothing.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	
DeleteDevice(axis)

	Controller API. Override if necessary. Default implementation
does nothing.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	
inst_name

	Controller API. The controller instance name.

Deprecated since version 1.0: use GetName() instead

	
GetName()

	Controller API. The controller instance name.

	Returns

	the controller instance name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

New in version 1.0.

	
GetAxisName(axis)

	Controller API. The axis name.

	Returns

	the axis name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

New in version 1.0.

	
PreStateAll()

	Controller API. Override if necessary.
Called to prepare a read of the state of all axis.
Default implementation does nothing.

	
PreStateOne(axis)

	Controller API. Override if necessary.
Called to prepare a read of the state of a single axis.
Default implementation does nothing.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	
StateAll()

	Controller API. Override if necessary.
Called to read the state of all selected axis.
Default implementation does nothing.

	
StateOne(axis)

	Controller API. Override is MANDATORY.
Called to read the state of one axis.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

	
SetCtrlPar(parameter, value)

	Controller API. Override if necessary.
Called to set a parameter with a value. Default implementation sets
this object member named ‘_’+parameter with the given value.

New in version 1.0.

	
GetCtrlPar(parameter)

	Controller API. Override if necessary.
Called to set a parameter with a value. Default implementation returns
the value contained in this object’s member named ‘_’+parameter.

New in version 1.0.

	
SetAxisPar(axis, parameter, value)

	Controller API. Override is MANDATORY.
Called to set a parameter with a value on the given axis. Default
implementation calls deprecated SetPar() which, by
default, raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

New in version 1.0.

	
GetAxisPar(axis, parameter)

	Controller API. Override is MANDATORY.
Called to get a parameter value on the given axis. Default
implementation calls deprecated GetPar() which, by
default, raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

New in version 1.0.

	
SetAxisExtraPar(axis, parameter, value)

	Controller API. Override if necessary.
Called to set a parameter with a value on the given axis. Default
implementation calls deprecated SetExtraAttributePar()
which, by default, raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

New in version 1.0.

	
GetAxisExtraPar(axis, parameter)

	Controller API. Override if necessary.
Called to get a parameter value on the given axis. Default
implementation calls deprecated GetExtraAttributePar()
which, by default, raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

New in version 1.0.

	
SetPar(axis, parameter, value)

	Controller API. Called to set a parameter with a value on
the given axis. Default implementation raises
NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

Deprecated since version 1.0: use SetAxisPar() instead

	
GetPar(axis, parameter)

	Controller API. Called to get a parameter value on the given
axis. Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

Deprecated since version 1.0: use GetAxisPar() instead

	
SetExtraAttributePar(axis, parameter, value)

	Controller API. Called to set a parameter with a value on the
given axis. Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

Deprecated since version 1.0: use SetAxisExtraPar() instead

	
GetExtraAttributePar(axis, parameter)

	Controller API. Called to get a parameter value on the given
axis. Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

Deprecated since version 1.0: use GetAxisExtraPar() instead

	
GetAxisAttributes(axis)

	Controller API. Override if necessary.
Returns a dictionary of all attributes per axis.
Default implementation returns a new dict [https://docs.python.org/dev/library/stdtypes.html#dict] with the standard
attributes plus the axis_attributes

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	Returns

	a dict containing attribute information as defined in
axis_attributes

New in version 1.0.

	
SendToCtrl(stream)

	Controller API. Override if necessary.
Sends a string to the controller.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

	Parameters

	stream (str [https://docs.python.org/dev/library/stdtypes.html#str]) – stream to be sent

	Returns

	any relevant information e.g. response of the controller

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

Abstract Pseudo Controller

[image: Inheritance diagram of PseudoController]

	
class PseudoController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.Controller

Base class for all pseudo controllers.

Motor Controller API

[image: Inheritance diagram of MotorController]

	
class MotorController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.Controller, sardana.pool.controller.Startable, sardana.pool.controller.Stopable, sardana.pool.controller.Readable

Base class for a motor controller. Inherit from this class to implement
your own motor controller for the device pool.

A motor controller should support these axis parameters:

	acceleration

	deceleration

	velocity

	base_rate

	step_per_unit

These parameters are configured through the
GetAxisPar()/SetAxisPar()
API (in version <1.0 the methods were called
GetPar()/SetPar(). Default
GetAxisPar() and
SetAxisPar() still call
GetPar() and SetPar()
respectively in order to maintain backward compatibility).

	
NoLimitSwitch = 0

	A constant representing no active switch.

	
HomeLimitSwitch = 1

	A constant representing an active home switch.
You can OR two or more switches together. For example, to say both
upper and lower limit switches are active:

limit_switches = self.HomeLimitSwitch | self.LowerLimitSwitch

	
UpperLimitSwitch = 2

	A constant representing an active upper limit switch.
You can OR two or more switches together. For example, to say both
upper and lower limit switches are active:

limit_switches = self.UpperLimitSwitch | self.LowerLimitSwitch

	
LowerLimitSwitch = 4

	A constant representing an active lower limit switch.
You can OR two or more switches together. For example, to say both
upper and lower limit switches are active:

limit_switches = self.UpperLimitSwitch | self.LowerLimitSwitch

	
standard_axis_attributes = {'Acceleration': {'type': <type 'float'>, 'description': 'Acceleration time (s)'}, 'Backlash': {'type': <type 'float'>, 'description': 'Backlash'}, 'Base_rate': {'type': <type 'float'>, 'description': 'Base rate'}, 'Deceleration': {'type': <type 'float'>, 'description': 'Deceleration time (s)'}, 'DialPosition': {'type': <type 'float'>, 'description': 'Dial Position'}, 'Limit_switches': {'type': (<type 'bool'>,), 'description': "This attribute is the motor limit switches state. It's an array with 3 \nelements which are:\n0 - The home switch\n1 - The upper limit switch\n2 - The lower limit switch\nFalse means not active. True means active"}, 'Offset': {'type': <type 'float'>, 'description': 'Offset'}, 'Position': {'type': <type 'float'>, 'description': 'Position'}, 'Sign': {'type': <type 'float'>, 'description': 'Sign'}, 'Step_per_unit': {'type': <type 'float'>, 'description': 'Steps per unit'}, 'Velocity': {'type': <type 'float'>, 'description': 'Velocity'}}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the standard attributes present on each axis
device

	
gender = 'Motor controller'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
GetAxisAttributes(axis)

	Motor Controller API. Override if necessary.
Returns a sequence of all attributes per axis.
Default implementation returns a dict [https://docs.python.org/dev/library/stdtypes.html#dict] containning:

	Position

	DialPosition

	Offset

	Sign

	Step_per_unit

	Acceleration

	Deceleration

	Base_rate

	Velocity

	Backlash

	Limit_switches

plus all attributes contained in axis_attributes

Note

Normally you don’t need to Override this method. You just implement
the class member axis_attributes. Typically,
you will need to Override this method in two cases:

	certain axes contain a different set of extra attributes
which cannot be simply defined in
axis_attributes

	some axes (or all) don’t implement a set of standard
moveable parameters (ex.: if a motor controller is created to
control a power supply, it may have a position (current) and
a velocity (ramp speed) but it may not have acceleration)

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	Returns

	a dict containing attribute information as defined in
axis_attributes

New in version 1.0.

	
DefinePosition(axis, position)

	Motor Controller API. Override is recommended!
This method is called to load a new motor position.
Default implementation does nothing.

Pseudo Motor Controller API

[image: Inheritance diagram of PseudoMotorController]

	
class PseudoMotorController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.PseudoController

Base class for a pseudo motor controller. Inherit from this class to
implement your own pseudo motor controller for the device pool.

Every Pseudo Motor implementation must be a subclass of this class.
Current procedure for a correct implementation of a Pseudo Motor class:

	
	mandatory:

	
	define the class level attributes
pseudo_motor_roles,
motor_roles

	write CalcPseudo() method

	write CalcPhysical() method.

	
	optional:

	
	write CalcAllPseudo() and
CalcAllPhysical() if great performance
gain can be achived

	
pseudo_motor_roles = ()

	a sequence of strings describing the role of each pseudo motor axis in
this controller

	
motor_roles = ()

	a sequence of strings describing the role of each motor in this
controller

	
standard_axis_attributes = {'Position': {'type': <type 'float'>, 'description': 'Position'}}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the standard attributes present on each axis
device

	
gender = 'Pseudo motor controller'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
CalcAllPseudo(physical_pos, curr_pseudo_pos)

	Pseudo Motor Controller API. Override if necessary.
Calculates the positions of all pseudo motors that belong to the
pseudo motor system from the positions of the physical motors.
Default implementation does a loop calling
PseudoMotorController.calc_pseudo() for each pseudo motor role.

	Parameters

	
	physical_pos (sequence<float>) – a sequence containing physical
motor positions

	curr_pseudo_pos (sequence<float>) – a sequence containing the
current pseudo motor
positions

	Returns

	a sequece of pseudo motor positions (one for each pseudo
motor role)

	Return type

	sequence<float>

New in version 1.0.

	
CalcAllPhysical(pseudo_pos, curr_physical_pos)

	Pseudo Motor Controller API. Override if necessary.
Calculates the positions of all motors that belong to the pseudo
motor system from the positions of the pseudo motors.
Default implementation does a loop calling
PseudoMotorController.calc_physical() for each motor role.

	Parameters

	
	pseudo_pos (sequence<float>) – a sequence containing pseudo motor
positions

	curr_physical_pos (sequence<float>) – a sequence containing the
current physical motor
positions

	Returns

	a sequece of motor positions (one for each motor role)

	Return type

	sequence<float>

New in version 1.0.

	
CalcPseudo(axis, physical_pos, curr_pseudo_pos)

	Pseudo Motor Controller API. Override is MANDATORY.
Calculate pseudo motor position given the physical motor positions

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – the pseudo motor role axis

	physical_pos (sequence<float>) – a sequence containing motor
positions

	curr_pseudo_pos (sequence<float>) – a sequence containing the
current pseudo motor
positions

	Returns

	a pseudo motor position corresponding to the given axis
pseudo motor role

	Return type

	float [https://docs.python.org/dev/library/functions.html#float]

New in version 1.0.

	
CalcPhysical(axis, pseudo_pos, curr_physical_pos)

	Pseudo Motor Controller API. Override is MANDATORY.
Calculate physical motor position given the pseudo motor positions.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – the motor role axis

	pseudo_pos (sequence<float>) – a sequence containing pseudo motor positions

	curr_physical_pos (sequence<float>) – a sequence containing the current physical
motor positions

	Returns

	a motor position corresponding to the given axis motor role

	Return type

	float [https://docs.python.org/dev/library/functions.html#float]

New in version 1.0.

	
calc_all_pseudo(physical_pos)

	Pseudo Motor Controller API. Override if necessary.
Calculates the positions of all pseudo motors that belong to the
pseudo motor system from the positions of the physical motors.
Default implementation does a loop calling
PseudoMotorController.calc_pseudo() for each pseudo motor role.

	Parameters

	physical_pos (sequence<float>) – a sequence of physical motor
positions

	Returns

	a sequece of pseudo motor positions (one for each pseudo
motor role)

	Return type

	sequence<float>

Deprecated since version 1.0: implement CalcAllPseudo() instead

	
calc_all_physical(pseudo_pos)

	Pseudo Motor Controller API. Override if necessary.
Calculates the positions of all motors that belong to the pseudo
motor system from the positions of the pseudo motors.
Default implementation does a loop calling
PseudoMotorController.calc_physical() for each motor role.

	Parameters

	pseudo_pos (sequence<float>) – a sequence of pseudo motor positions

	Returns

	a sequece of motor positions (one for each motor role)

	Return type

	sequence<float>

Deprecated since version 1.0: implement CalcAllPhysical()
instead

	
calc_pseudo(axis, physical_pos)

	Pseudo Motor Controller API. Override is MANDATORY.
Calculate pseudo motor position given the physical motor positions

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – the pseudo motor role axis

	physical_pos (sequence<float>) – a sequence of motor positions

	Returns

	a pseudo motor position corresponding to the given axis
pseudo motor role

	Return type

	float [https://docs.python.org/dev/library/functions.html#float]

Deprecated since version 1.0: implement CalcPseudo() instead

	
calc_physical(axis, pseudo_pos)

	Pseudo Motor Controller API. Override is MANDATORY.
Calculate physical motor position given the pseudo motor positions.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – the motor role axis

	pseudo_pos (sequence<float>) – a sequence of pseudo motor positions

	Returns

	a motor position corresponding to the given axis motor role

	Return type

	float [https://docs.python.org/dev/library/functions.html#float]

Deprecated since version 1.0: implement CalcPhysical() instead

	
GetMotor(index_or_role)

	Returns the motor for a given role/index.

Warning

	Use with care: Executing motor methods can be dangerous!

	Since the controller is built before any element (including
motors), this method will FAIL when called from the controller
constructor

	Parameters

	index_or_role (int [https://docs.python.org/dev/library/functions.html#int] or str [https://docs.python.org/dev/library/stdtypes.html#str]) – index number or role name

	Returns

	Motor object for the given role/index

	Return type

	PoolMotor

	
GetPseudoMotor(index_or_role)

	Returns the pseudo motor for a given role/index.

Warning

	Use with care: Executing pseudo motor methods can be dangerous!

	Since the controller is built before any element (including pseudo
motors), this method will FAIL when called from the controller
constructor

	Parameters

	index_or_role (int [https://docs.python.org/dev/library/functions.html#int] or str [https://docs.python.org/dev/library/stdtypes.html#str]) – index number or role name

	Returns

	PseudoMotor object for the given role/index

	Return type

	PoolPseudoMotor

Counter Timer Controller API

[image: Inheritance diagram of CounterTimerController]

	
class CounterTimerController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.Controller, sardana.pool.controller.Readable, sardana.pool.controller.Startable, sardana.pool.controller.Stopable, sardana.pool.controller.Loadable

Base class for a counter/timer controller. Inherit from this class to
implement your own counter/timer controller for the device pool.

A counter timer controller should support these controller parameters:

	timer

	monitor

	trigger_type

	
standard_axis_attributes = {'Data': {'type': <type 'str'>, 'description': 'Data'}, 'Value': {'type': <type 'float'>, 'description': 'Value'}}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the standard attributes present on each axis
device

	
gender = 'Counter/Timer controller'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
get_trigger_type()

	

	
PreStartAllCT()

	Counter/Timer Controller API. Override if necessary.
Called to prepare an acquisition of all selected axis.
Default implementation does nothing.

Deprecated since version 1.0: use PreStartAll() instead

	
PreStartOneCT(axis)

	Counter/Timer Controller API. Override if necessary.
Called to prepare an acquisition a single axis.
Default implementation returns True.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	Returns

	True means a successfull PreStartOneCT or False for a failure

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

Deprecated since version 1.0: use PreStartOne() instead

	
StartOneCT(axis)

	Counter/Timer Controller API. Override if necessary.
Called to start an acquisition of a selected axis.
Default implementation does nothing.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

Deprecated since version 1.0: use StartOne() instead

	
StartAllCT()

	Counter/Timer Controller API. Override is MANDATORY!
Called to start an acquisition of a selected axis.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

Deprecated since version 1.0: use StartAll() instead

	
PreStartAll()

	Controller API. Override if necessary.
Called to prepare a write of the position of all axis. Default
implementation calls deprecated
PreStartAllCT() which, by default, does
nothing.

New in version 1.0.

	
PreStartOne(axis, value=None)

	Controller API. Override if necessary.
Called to prepare a write of the position of a single axis.
Default implementation calls deprecated
PreStartOneCT() which, by default,
returns True.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	value (float [https://docs.python.org/dev/library/functions.html#float]) – the value

	Returns

	True means a successfull pre-start or False for a failure

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

New in version 1.0.

	
StartOne(axis, value=None)

	Controller API. Override if necessary.
Called to write the position of a selected axis. Default
implementation calls deprecated
StartOneCT() which, by default, does
nothing.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

	value (float [https://docs.python.org/dev/library/functions.html#float]) – the value

	
StartAll()

	Controller API. Override is MANDATORY!
Default implementation calls deprecated
StartAllCT() which, by default, raises
NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

0D Controller API

[image: Inheritance diagram of ZeroDController]

	
class ZeroDController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.Controller, sardana.pool.controller.Readable, sardana.pool.controller.Stopable

Base class for a 0D controller. Inherit from this class to
implement your own 0D controller for the device pool.

	
standard_axis_attributes = {'Data': {'type': <type 'str'>, 'description': 'Data'}, 'Value': {'type': <type 'float'>, 'description': 'Value'}}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the standard attributes present on each axis
device

	
gender = '0D controller'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
AbortOne(axis)

	This method is not executed by the system.
Default implementation does nothing.

	Parameters

	axis (int [https://docs.python.org/dev/library/functions.html#int]) – axis number

1D Controller API

[image: Inheritance diagram of OneDController]

	
class OneDController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.Controller, sardana.pool.controller.Readable, sardana.pool.controller.Startable, sardana.pool.controller.Stopable, sardana.pool.controller.Loadable

Base class for a 1D controller. Inherit from this class to
implement your own 1D controller for the device pool.

New in version 1.2.

	
standard_axis_attributes = {'Data': {'type': <type 'str'>, 'description': 'Data'}, 'Value': {'maxdimsize': (16384,), 'type': (<type 'float'>,), 'description': 'Value'}}

	

	
gender = '1D controller'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
GetAxisPar(axis, parameter)

	Controller API. Override is MANDATORY.
Called to get a parameter value on the given axis.
If parameter == ‘data_source’, default implementation returns None,
meaning let sardana decide the proper URI for accessing the axis value.
Otherwise, default implementation calls deprecated
GetPar() which, by default, raises
NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

New in version 1.2.

2D Controller API

[image: Inheritance diagram of TwoDController]

	
class TwoDController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.Controller, sardana.pool.controller.Readable, sardana.pool.controller.Startable, sardana.pool.controller.Stopable, sardana.pool.controller.Loadable

Base class for a 2D controller. Inherit from this class to
implement your own 2D controller for the device pool.

	
standard_axis_attributes = {'Value': {'maxdimsize': (4096, 4096), 'type': ((<type 'float'>,),), 'description': 'Value'}}

	

	
gender = '2D controller'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
GetAxisPar(axis, parameter)

	Controller API. Override is MANDATORY.
Called to get a parameter value on the given axis.
If parameter == ‘data_source’, default implementation returns None,
meaning let sardana decide the proper URI for accessing the axis value.
Otherwise, default implementation calls deprecated
GetPar() which, by default, raises
NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError].

New in version 1.2.

Pseudo Counter Controller API

[image: Inheritance diagram of PseudoCounterController]

	
class PseudoCounterController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.Controller

Base class for a pseudo counter controller. Inherit from this class to
implement your own pseudo counter controller for the device pool.

Every Pseudo Counter implementation must be a subclass of this class.
Current procedure for a correct implementation of a Pseudo Counter class:

	
	mandatory:

	
	define the class level attributes
counter_roles,

	write Calc() method

	
pseudo_counter_roles = ()

	a sequence of strings describing the role of each pseudo counter axis in
this controller

	
counter_roles = ()

	a sequence of strings describing the role of each counter in this
controller

	
standard_axis_attributes = {'Data': {'type': <type 'str'>, 'description': 'Data'}, 'Value': {'type': <type 'float'>, 'description': 'Value'}}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the standard attributes present on each axis
device

	
gender = 'Pseudo counter controller'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
Calc(axis, values)

	Pseudo Counter Controller API. Override is MANDATORY.
Calculate pseudo counter position given the counter values.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – the pseudo counter role axis

	values (sequence<float>) – a sequence containing current values
of underlying elements

	Returns

	a pseudo counter value corresponding to the given axis
pseudo counter role

	Return type

	float [https://docs.python.org/dev/library/functions.html#float]

New in version 1.0.

	
calc(axis, values)

	Pseudo Counter Controller API. Override is MANDATORY.
Calculate pseudo counter value given the counter values.

	Parameters

	
	axis (int [https://docs.python.org/dev/library/functions.html#int]) – the pseudo counter role axis

	values (sequence<float>) – a sequence containing current values
of underlying elements

	Returns

	a pseudo counter value corresponding to the given axis
pseudo counter role

	Return type

	float [https://docs.python.org/dev/library/functions.html#float]

Deprecated since version 1.0: implement Calc() instead

	
CalcAll(values)

	Pseudo Counter Controller API. Override if necessary.
Calculates all pseudo counter values from the values of counters.
Default implementation does a loop calling
PseudoCounterController.Calc() for each pseudo counter role.

	Parameters

	values (sequence<float>) – a sequence containing current values
of underlying elements

	Returns

	a sequece of pseudo counter values (one for each pseudo
counter role)

	Return type

	sequence<float>

New in version 1.2.

IO Register Controller API

[image: Inheritance diagram of IORegisterController]

	
class IORegisterController(inst, props, *args, **kwargs)

	Bases: sardana.pool.controller.Controller, sardana.pool.controller.Readable

Base class for a IORegister controller. Inherit from this class to
implement your own IORegister controller for the device pool.

	
predefined_values = ()

	
Deprecated since version 1.0.

use axis_attributes instead

	
standard_axis_attributes = {'Value': {'type': <type 'float'>, 'description': 'Value'}}

	A dict [https://docs.python.org/dev/library/stdtypes.html#dict] containing the standard attributes present on each axis
device

	
gender = 'I/O register controller'

	A str [https://docs.python.org/dev/library/stdtypes.html#str] representing the controller gender

	
WriteOne(axis, value)

	IORegister Controller API. Override if necessary.

pool

This module contains the main pool class

Functions

	
	get_thread_pool()

	

	

Classes

	
	Pool

	

	

Pool

[image: Inheritance diagram of Pool]

	
class Pool(full_name, name=None)

	Bases: sardana.pool.poolcontainer.PoolContainer, sardana.pool.poolobject.PoolObject, sardana.sardanamanager.SardanaElementManager, sardana.sardanamanager.SardanaIDManager

The central pool class.

	
Default_MotionLoop_StatesPerPosition = 10

	Default value representing the number of state reads per position
read during a motion loop

	
Default_MotionLoop_SleepTime = 0.01

	Default value representing the sleep time for each motion loop

	
Default_AcqLoop_StatesPerValue = 10

	Default value representing the number of state reads per value
read during a motion loop

	
Default_AcqLoop_SleepTime = 0.01

	Default value representing the sleep time for each acquisition loop

	
Default_DriftCorrection = True

	

	
init_local_logging()

	

	
clear_remote_logging()

	

	
init_remote_logging(host=None, port=None)

	Initializes remote logging.

	Parameters

	
	host (str [https://docs.python.org/dev/library/stdtypes.html#str]) – host name [default: None, meaning use the machine host name
as returned by socket.gethostname() [https://docs.python.org/dev/library/socket.html#socket.gethostname]].

	port – port number [default: None, meaning use
logging.handlers.DEFAULT_TCP_LOGGING_PORT

	
serialize(*args, **kwargs)

	

	
set_motion_loop_sleep_time(motion_loop_sleep_time)

	

	
get_motion_loop_sleep_time()

	

	
motion_loop_sleep_time

	motion sleep time (s)

	
set_motion_loop_states_per_position(motion_loop_states_per_position)

	

	
get_motion_loop_states_per_position()

	

	
motion_loop_states_per_position

	Number of State reads done before doing a position read in the motion loop

	
set_acq_loop_sleep_time(acq_loop_sleep_time)

	

	
get_acq_loop_sleep_time()

	

	
acq_loop_sleep_time

	acquisition sleep time (s)

	
set_acq_loop_states_per_value(acq_loop_states_per_value)

	

	
get_acq_loop_states_per_value()

	

	
acq_loop_states_per_value

	Number of State reads done before doing a value read in the acquisition loop

	
set_drift_correction(drift_correction)

	

	
get_drift_correction()

	

	
drift_correction

	drift correction

	
monitor

	

	
ctrl_manager

	

	
set_python_path(path)

	

	
set_path(path)

	

	
get_controller_libs()

	

	
get_controller_lib_names()

	

	
get_controller_class_names()

	

	
get_controller_classes()

	

	
get_controller_class_info(name)

	

	
get_controller_classes_info(names)

	

	
get_controller_libs_summary_info()

	

	
get_controller_classes_summary_info()

	

	
get_elements_str_info(obj_type=None)

	

	
get_elements_info(obj_type=None)

	

	
get_acquisition_elements_info()

	

	
get_acquisition_elements_str_info()

	

	
create_controller(**kwargs)

	

	
create_element(**kwargs)

	

	
create_motor_group(**kwargs)

	

	
create_measurement_group(**kwargs)

	

	
rename_element(old_name, new_name)

	Rename an object

	Parameters

	
	old_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – old object name

	new_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – new object name

	
delete_element(name)

	

	
create_instrument(full_name, klass_name, id=None)

	

	
stop()

	

	
abort()

	

	
reload_controller_lib(lib_name)

	

	
reload_controller_class(class_name)

	

	
get_element_id_graph()

	

	
get_moveable_id_graph()

	

	
get_moveable_graph()

	

poolacquisition

This module is part of the Python Pool libray. It defines the class for an
acquisition

Classes

	
	PoolCTAcquisition

	

	

PoolCTAcquisition

[image: Inheritance diagram of PoolCTAcquisition]

	
class PoolCTAcquisition(main_element, name='CTAcquisition', slaves=None)

	Bases: sardana.pool.poolacquisition.PoolAcquisitionBase

	
get_read_value_loop_ctrls()

	

	
in_acquisition(states)

	Determines if we are in acquisition or if the acquisition has ended
based on the current unit trigger modes and states returned by the
controller(s)

	Parameters

	states (dict<PoolElement, State>) – a map containing state information as returned by
read_state_info

	Returns

	returns True if in acquisition or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
action_loop

	

poolaction

This module is part of the Python Pool libray. It defines the class for an
abstract action over a set of pool elements

Functions

	
	get_thread_pool()

	

	

Classes

	
	PoolAction

	OperationInfo

	
	PoolActionItem

	
	ActionContext

	
get_thread_pool()

	Returns the global pool of threads for Sardana

	Returns

	the global pool of threads object

	Return type

	taurus.core.util.ThreadPool [http://taurus-scada.org/devel/api/taurus/core/util/_ThreadPool.html#taurus.core.util.ThreadPool]

PoolAction

[image: Inheritance diagram of PoolAction]

	
class PoolAction(main_element, name='GlobalAction')

	Bases: taurus.core.util.log.Logger

A generic class to handle any type of operation (like motion or
acquisition)

	
get_main_element()

	Returns the main element for this action

	Returns

	sardana.pool.poolelement.PoolElement

	
main_element

	Returns the main element for this action

	Returns

	sardana.pool.poolelement.PoolElement

	
get_pool()

	Returns the pool object for this action

	Returns

	sardana.pool.pool.Pool

	
pool

	Returns the pool object for this action

	Returns

	sardana.pool.pool.Pool

	
clear_elements()

	Clears all elements from this action

	
add_element(element)

	Adds a new element to this action.

	Parameters

	element (sardana.pool.poolelement.PoolElement) – the new element to be added

	
remove_element(element)

	Removes an element from this action. If the element is not part of
this action, a ValueError is raised.

	Parameters

	element (sardana.pool.poolelement.PoolElement) – the new element to be removed

	Raises

	ValueError

	
get_elements(copy_of=False)

	Returns a sequence of all elements involved in this action.

	Parameters

	copy_of (bool [https://docs.python.org/dev/library/functions.html#bool]) – If False (default) the internal container of elements is
returned. If True, a copy of the internal container is
returned instead

	Returns

	a sequence of all elements involved in this action.

	Return type

	seq<sardana.pool.poolelement.PoolElement>

	
get_pool_controller_list()

	Returns a list of all controller elements involved in this action.

	Returns

	a list of all controller elements involved in this action.

	Return type

	list<sardana.pool.poolelement.PoolController>

	
get_pool_controllers()

	Returns a dict of all controller elements involved in this action.

	Returns

	a dict of all controller elements involved in this action.

	Return type

	dict<sardana.pool.poolelement.PoolController,
seq<sardana.pool.poolelement.PoolElement>>

	
is_running()

	Determines if this action is running or not

	Returns

	True if action is running or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
run(*args, **kwargs)

	Runs this action

	
start_action(*args, **kwargs)

	Start procedure for this action. Default implementation raises
NotImplementedError

	Raises

	NotImplementedError

	
set_finish_hooks(hooks)

	Set finish hooks for this action.

	Parameters

	hooks (OrderedDict or None [https://docs.python.org/dev/library/constants.html#None]) – an ordered dictionary where keys are the hooks and values
is a flag if the hook is permanent (not removed after the execution)

	
add_finish_hook(hook, permanent=True)

	Append one finish hook to this action.

	Parameters

	
	hook (callable) – hook to be appended

	permanent (boolean) – flag if the hook is permanent (not removed after the
execution)

	
remove_finish_hook(hook)

	Remove finish hook.

	
finish_action()

	Finishes the action execution. If a finish hook is defined it safely
executes it. Otherwise nothing happens

	
stop_action(*args, **kwargs)

	Stop procedure for this action.

	
abort_action(*args, **kwargs)

	Aborts procedure for this action

	
emergency_break()

	Tries to execute a stop. If it fails try an abort

	
was_stopped()

	Determines if the action has been stopped from outside

	Returns

	True if action has been stopped from outside or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
was_aborted()

	Determines if the action has been aborted from outside

	Returns

	True if action has been aborted from outside or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
was_action_interrupted()

	Determines if the action has been interruped from outside (either
from an abort or a stop).

	Returns

	True if action has been interruped from outside or False
otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
action_loop()

	Action loop for this action. Default implementation raises
NotImplementedError

	Raises

	NotImplementedError

	
read_state_info(ret=None, serial=False)

	Reads state information of all elements involved in this action

	Parameters

	
	ret (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – output map parameter that should be filled with state
information. If None is given (default), a new map is
created an returned

	serial (bool [https://docs.python.org/dev/library/functions.html#bool]) – If False (default) perform controller HW state requests
in parallel. If True, access is serialized.

	Returns

	a map containing state information per element

	Return type

	dict<sardana.pool.poolelement.PoolElement, stateinfo>

	
raw_read_state_info(ret=None, serial=False)

	Unsafe. Reads state information of all elements involved in this
action

	Parameters

	
	ret (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – output map parameter that should be filled with state
information. If None is given (default), a new map is
created an returned

	serial (bool [https://docs.python.org/dev/library/functions.html#bool]) – If False (default) perform controller HW state requests
in parallel. If True, access is serialized.

	Returns

	a map containing state information per element

	Return type

	dict<sardana.pool.poolelement.PoolElement, stateinfo>

	
get_read_value_ctrls()

	

	
read_value(ret=None, serial=False)

	Reads value information of all elements involved in this action

	Parameters

	
	ret (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – output map parameter that should be filled with value
information. If None is given (default), a new map is
created an returned

	serial (bool [https://docs.python.org/dev/library/functions.html#bool]) – If False (default) perform controller HW value requests
in parallel. If True, access is serialized.

	Returns

	a map containing value information per element

	Return type

	dict<:class:~`sardana.pool.poolelement.PoolElement`,
(value object, Exception [https://docs.python.org/dev/library/exceptions.html#Exception] or None)>

	
raw_read_value(ret=None, serial=False)

	Unsafe. Reads value information of all elements involved in this
action

	Parameters

	
	ret (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – output map parameter that should be filled with value
information. If None is given (default), a new map is
created an returned

	serial (bool [https://docs.python.org/dev/library/functions.html#bool]) – If False (default) perform controller HW value requests
in parallel. If True, access is serialized.

	Returns

	a map containing value information per element

	Return type

	dict<:class:~`sardana.pool.poolelement.PoolElement,
sardana.sardanavalue.SardanaValue >

	
get_read_value_loop_ctrls()

	

	
read_value_loop(ret=None, serial=False)

	Reads value information of all elements involved in this action

	Parameters

	
	ret (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – output map parameter that should be filled with value
information. If None is given (default), a new map is
created an returned

	serial (bool [https://docs.python.org/dev/library/functions.html#bool]) – If False (default) perform controller HW value requests
in parallel. If True, access is serialized.

	Returns

	a map containing value information per element

	Return type

	dict<:class:~`sardana.pool.poolelement.PoolElement`,
(value object, Exception [https://docs.python.org/dev/library/exceptions.html#Exception] or None)>

	
raw_read_value_loop(ret=None, serial=False)

	Unsafe. Reads value information of all elements involved in this
action

	Parameters

	
	ret (dict [https://docs.python.org/dev/library/stdtypes.html#dict]) – output map parameter that should be filled with value
information. If None is given (default), a new map is
created an returned

	serial (bool [https://docs.python.org/dev/library/functions.html#bool]) – If False (default) perform controller HW value requests
in parallel. If True, access is serialized.

	Returns

	a map containing value information per element

	Return type

	dict<:class:~`sardana.pool.poolelement.PoolElement,
sardana.sardanavalue.SardanaValue >

OperationInfo

[image: Inheritance diagram of OperationInfo]

	
class OperationInfo

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

Stores synchronization data for a certain operation

	
init(count)

	Initializes this operation with a certain count

	
wait(timeout=None)

	waits for the operation to finish

	
finish_one()

	Notifies this operation that one step was finished

	
acquire()

	Acquires this operation lock

	
release()

	Releases this operation lock

PoolActionItem

[image: Inheritance diagram of PoolActionItem]

	
class PoolActionItem(element)

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

The base class for an atomic action item

	
get_element()

	Returns the element associated with this item

	
set_element(element)

	Sets the element for this item

	
element

	Returns the element associated with this item

ActionContext

[image: Inheritance diagram of ActionContext]

	
class ActionContext(pool_action)

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

Stores an atomic action context

	
enter()

	Enters operation

	
exit()

	Leaves operation

poolbasechannel

This module is part of the Python Pool library. It defines the base classes
for experiment channels

Classes

	
	PoolBaseChannel

	

	

PoolBaseChannel

[image: Inheritance diagram of PoolBaseChannel]

	
class PoolBaseChannel(**kwargs)

	Bases: sardana.pool.poolelement.PoolElement

	
ValueAttributeClass

	alias of Value

	
ValueBufferClass

	alias of ValueBuffer

	
AcquisitionClass

	alias of sardana.pool.poolacquisition.

	
has_pseudo_elements()

	Informs whether this channel forms part of any pseudo element
e.g. pseudo counter.

	Returns

	has pseudo elements

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
get_pseudo_elements()

	Returns list of pseudo elements e.g. pseudo counters that this
channel belongs to.

	Returns

	pseudo elements

	Return type

	seq<PoolPseudoCounter>

	
add_pseudo_element(element)

	Adds pseudo element e.g. pseudo counter that this channel
belongs to.

	Parameters

	element (PoolPseudoCounter) – pseudo element

	
remove_pseudo_element(element)

	Removes pseudo element e.g. pseudo counters that this channel
belongs to.

	Parameters

	element (PoolPseudoCounter) – pseudo element

	
get_value_attribute()

	Returns the value attribute object for this experiment channel

	Returns

	the value attribute

	Return type

	SardanaAttribute

	
get_value_buffer()

	Returns the value attribute object for this experiment channel

	Returns

	the value attribute

	Return type

	SardanaAttribute

	
on_change(evt_src, evt_type, evt_value)

	

	
get_default_attribute()

	

	
get_acquisition()

	

	
acquisition

	acquisition object

	
read_value()

	Reads the channel value from hardware.

	Returns

	a SardanaValue containing the channel
value

	Return type

	SardanaValue

	
put_value(value, propagate=1)

	Sets a value.

	Parameters

	
	value (SardanaValue) – the new value

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
get_value(cache=True, propagate=1)

	Returns the channel value.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the channel value

	Return type

	SardanaAttribute

	
set_value(value)

	Starts an acquisition on this channel

	Parameters

	value (Number [https://docs.python.org/dev/library/numbers.html#numbers.Number]) – the value to count

	
value

	channel value

	
extend_value_buffer(values, idx=None, propagate=1)

	Extend value buffer with new values assigning them consecutive
indexes starting with idx. If idx is omitted, then the new values will
be added right after the last value in the buffer. Also update the read
value of the attribute with the last element of values.

	Parameters

	
	values (SardanaValue) – values to be added to the buffer

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
append_value_buffer(value, idx=None, propagate=1)

	Extend value buffer with new values assigning them consecutive
indexes starting with idx. If idx is omitted, then the new value will
be added with right after the last value in the buffer. Also update
the read value.

	Parameters

	
	value (SardanaValue) – value to be added to the buffer

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
clear_value_buffer()

	

	
start_acquisition(value=None)

	

poolbaseobject

This module is part of the Python Pool library. It defines the base classes
for Pool object

Classes

	
	PoolBaseObject

	

	

PoolBaseObject

[image: Inheritance diagram of PoolBaseObject]

	
class PoolBaseObject(**kwargs)

	Bases: sardana.sardanabase.SardanaBaseObject

The Pool most abstract object.

	
get_pool()

	Return the sardana.pool.pool.Pool which owns this pool
object.

	Returns

	the pool which owns this pool object.

	Return type

	sardana.pool.pool.Pool

	
serialize(*args, **kwargs)

	

	
pool

	reference to the sardana.pool.pool.Pool

poolcontainer

This module is part of the Python Pool libray. It defines the base classes
for a pool container element

Classes

	
	PoolContainer

	

	

PoolContainer

[image: Inheritance diagram of PoolContainer]

	
class PoolContainer

	Bases: sardana.sardanacontainer.SardanaContainer

A container class for pool elements

	
get_controller_class(**kwargs)

	

	
get_controller_class_by_id(eid, **kwargs)

	

	
get_controller_class_by_name(name, **kwargs)

	

poolcontroller

This module is part of the Python Pool library. It defines the base classes
for

Classes

	
	PoolController

	
	PoolPseudoMotorController

	
	PoolPseudoCounterController

PoolController

[image: Inheritance diagram of PoolController]

	
class PoolController(**kwargs)

	Bases: sardana.pool.poolcontroller.PoolBaseController

Controller class mediator for sardana controller plugins

	
serialize(*args, **kwargs)

	

	
re_init()

	

	
get_ctrl_types()

	

	
is_timerable()

	

	
is_pseudo()

	

	
is_online()

	

	
get_ctrl()

	

	
set_ctrl(ctrl)

	

	
ctrl

	actual controller object

	
get_ctrl_info()

	

	
ctrl_info

	controller information object

	
set_operator(operator)

	Defines the current operator object for this controller.
For example, in acquisition, it should be a PoolMeasurementGroup
object.

	Parameters

	operator (object [https://docs.python.org/dev/library/functions.html#object]) – the new operator object

	
get_operator()

	

	
operator

	current controller operator

	
set_log_level(*args, **kwargs)

	

	
get_log_level(*args, **kwargs)

	

	
get_library_name()

	

	
get_class_name()

	

	
get_axis_attributes(*args, **kwargs)

	

	
get_ctrl_attr(*args, **kwargs)

	

	
set_ctrl_attr(*args, **kwargs)

	

	
get_axis_attr(*args, **kwargs)

	

	
set_axis_attr(*args, **kwargs)

	

	
set_ctrl_par(*args, **kwargs)

	

	
get_ctrl_par(*args, **kwargs)

	

	
set_axis_par(*args, **kwargs)

	

	
get_axis_par(*args, **kwargs)

	

	
raw_read_axis_states(axes=None, ctrl_states=None)

	Unsafe method. Reads the state for the given axes. If axes
is None, reads the state of all active axes.

	Parameters

	axes (seq<int> or None [https://docs.python.org/dev/library/constants.html#None]) – the list of axis to get the state. Default is None meaning
all active axis in this controller

	Returns

	a tuple of two elements: a map containing the controller state
information for each axis and a boolean telling if an error occured

	Return type

	dict<PoolElement, state info>, bool [https://docs.python.org/dev/library/functions.html#bool]

	
read_axis_states(*args, **kwargs)

	Reads the state for the given axes. If axes is None, reads the
state of all active axes.

	Parameters

	axes (seq<int> or None [https://docs.python.org/dev/library/constants.html#None]) – the list of axis to get the state. Default is None
meaning all active axis in this controller

	Returns

	a map containing the controller state information for each axis

	Return type

	dict<PoolElement, state info>

	
raw_read_axis_values(axes=None, ctrl_values=None)

	Unsafe method. Reads the value for the given axes. If axes
is None, reads the value of all active axes.

	Parameters

	axes (seq<int> or None [https://docs.python.org/dev/library/constants.html#None]) – the list of axis to get the value. Default is None
meaning all active axis in this controller

	Returns

	a map containing the controller value information for each axis

	Return type

	dict<PoolElement, SardanaValue>

	
read_axis_values(*args, **kwargs)

	Reads the value for the given axes. If axes is None, reads the
value of all active axes.

	Parameters

	axes (seq<int> or None [https://docs.python.org/dev/library/constants.html#None]) – the list of axis to get the value. Default is None meaning
all active axis in this controller

	Returns

	a map containing the controller value information for each axis

	Return type

	dict<PoolElement, SardanaValue>

	
stop_axes(axes)

	Stops the given axes.

	Parameters

	axes (list<axes>) – the list of axes to stopped.

	Returns

	list of axes that could not be stopped

	Return type

	list<int>

	
stop_element(*args, **kwargs)

	Stops the given element.

	Parameters

	element (PoolElement) – the list of elements to stop

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] – not able to stop element

	
stop_elements(*args, **kwargs)

	Stops the given elements. If elements is None, stops all
active elements.

	Parameters

	elements (seq<PoolElement> or None [https://docs.python.org/dev/library/constants.html#None]) – the list of elements to stop. Default is None
meaning all active elements in this controller

	Returns

	list of elements that could not be stopped

	Return type

	list<PoolElements>

	
stop(*args, **kwargs)

	Stops the given elements. If elements is None, stops all
active elements.

	Parameters

	elements (seq<PoolElement> or None [https://docs.python.org/dev/library/constants.html#None]) – the list of elements to stop. Default is None
meaning all active elements in this controller

	Returns

	list of elements that could not be stopped

	Return type

	list<PoolElements>

	
abort_axes(*args, **kwargs)

	Aborts the given axes.

	Parameters

	axes (list<axes>) – the list of axes to aborted.

	Returns

	list of axes that could not be aborted

	Return type

	list<int>

	
abort_element(*args, **kwargs)

	Aborts the given elements.

	Parameters

	element (PoolElement) – the list of elements to abort

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] – not able to abort element

	
abort_elements(*args, **kwargs)

	Abort the given elements. If elements is None, stops all
active elements.

	Parameters

	elements (seq<PoolElement> or None [https://docs.python.org/dev/library/constants.html#None]) – the list of elements to stop. Default is None
meaning all active elements in this controller

	Returns

	list of elements that could not be aborted

	Return type

	list<PoolElements>

	
abort(*args, **kwargs)

	Abort the given elements. If elements is None, stops all
active elements.

	Parameters

	elements (seq<PoolElement> or None [https://docs.python.org/dev/library/constants.html#None]) – the list of elements to stop. Default is None
meaning all active elements in this controller

	Returns

	list of elements that could not be aborted

	Return type

	list<PoolElements>

	
emergency_break(*args, **kwargs)

	Stops the given elements. If elements is None,
stops all active elements.
If stop could not be executed, an abort is attempted.

	Parameters

	elements – the list of elements to stop. Default is None
meaning all active elements in this controller

	Returns

	elements that could neither be stopped nor aborted

	Return type

	list<PoolElement>

	
send_to_controller(*args, **kwargs)

	

	
raw_move(axis_pos)

	

	
move(*args, **kwargs)

	

	
has_backlash()

	

	
wants_rounding()

	

	
define_position(*args, **kwargs)

	

	
write_one(axis, value)

	

PoolPseudoMotorController

[image: Inheritance diagram of PoolPseudoMotorController]

	
class PoolPseudoMotorController(**kwargs)

	Bases: sardana.pool.poolcontroller.PoolController

	
serialize(*args, **kwargs)

	

	
calc_all_pseudo(*args, **kwargs)

	

	
calc_all_physical(*args, **kwargs)

	

	
calc_pseudo(*args, **kwargs)

	

	
calc_physical(*args, **kwargs)

	

PoolPseudoCounterController

[image: Inheritance diagram of PoolPseudoCounterController]

	
class PoolPseudoCounterController(**kwargs)

	Bases: sardana.pool.poolcontroller.PoolController

	
serialize(*args, **kwargs)

	

	
calc(*args, **kwargs)

	

	
calc_all(values)

	

poolcontrollermanager

This module is part of the Python Pool library. It defines the class which
controls finding, loading/unloading of device pool controller plug-ins.

Classes

	
	ControllerManager

	

	

ControllerManager

[image: Inheritance diagram of ControllerManager]

	
class ControllerManager

	Bases: taurus.core.util.singleton.Singleton, taurus.core.util.log.Logger

The singleton class responsible for managing controller plug-ins.

	
DEFAULT_CONTROLLER_DIRECTORIES = ('poolcontrollers',)

	

	
init(*args, **kwargs)

	Singleton instance initialization.

	
reInit()

	Singleton re-initialization.

	
cleanUp()

	Singleton clean up.

	
set_pool(pool)

	

	
get_pool()

	

	
setControllerPath(controller_path, reload=True)

	Registers a new list of controller directories in this manager.

	Parameters

	controller_path (seq<str>) – a sequence of absolute paths where this
manager should look for controllers

Warning

as a consequence all the controller modules will be reloaded.
This means that if any reference to an old controller object was
kept it will refer to an old module (which could possibly generate
problems of type class A != class A).

	
getControllerPath()

	Returns the current sequence of absolute paths used to look for
controllers.

	Returns

	sequence of absolute paths

	Return type

	seq<str>

	
getOrCreateControllerLib(lib_name, controller_name=None)

	Gets the exiting controller lib or creates a new controller lib file.
If name is not None, a controller template code for the given controller
name is appended to the end of the file.

	Parameters

	
	lib_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – module name, python file name, or full file name
(with path)

	controller_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – an optional controller name. If given a
controller template code is appended to the
end of the file [default: None, meaning no
controller code is added)

	Returns

	a sequence with three items: full_filename, code, line number
line number is 0 if no controller is created or n representing
the first line of code for the given controller name.

	Return type

	tuple<str, str [https://docs.python.org/dev/library/stdtypes.html#str], int>

	
setControllerLib(lib_name, code)

	Creates a new controller library file with the given name and code.
The new module is imported and becomes imediately available.

	Parameters

	
	lib_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – name of the new library

	code (str [https://docs.python.org/dev/library/stdtypes.html#str]) – python code of the new library

	
createControllerLib(lib_name, path=None)

	Creates a new empty controller library (python module)

	
createController(lib_name, controller_name)

	Creates a new controller

	
reloadController(controller_name, path=None)

	Reloads the module corresponding to the given controller name

	Raises

	sardana.pool.poolexception.UnknownController
in case the controller is unknown or ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError] if
the reload process is not successfull

	Parameters

	
	controller_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – controller class name

	path (seq<str>) – a list of absolute path to search for libraries
[default: None, meaning the current ControllerPath
will be used]

	
reloadControllers(controller_names, path=None)

	Reloads the modules corresponding to the given controller names

	Raises

	sardana.pool.poolexception.UnknownController
in case the controller is unknown or ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError] if
the reload process is not successful

	Parameters

	
	controller_names (seq<str>) – a list of controller class names

	path (seq<str>) – a list of absolute path to search for libraries
[default: None, meaning the current ControllerPath
will be used]

	
reloadControllerLibs(module_names, path=None, reload=True)

	Reloads the given library(=module) names

	Raises

	sardana.pool.poolexception.UnknownController
in case the controller is unknown or ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError] if
the reload process is not successful

	Parameters

	
	module_names (seq<str>) – a list of module names

	path (seq<str>) – a list of absolute path to search for libraries
[default: None, meaning the current ControllerPath
will be used]

	
reloadControllerLib(module_name, path=None, reload=True)

	Reloads the given library(=module) names

	Raises

	sardana.pool.poolexception.UnknownController
in case the controller is unknown or ImportError [https://docs.python.org/dev/library/exceptions.html#ImportError] if
the reload process is not successful

	Parameters

	
	module_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – controller library name (=python module name)

	path (seq<str>) – a list of absolute path to search for libraries
[default: None, meaning the current ControllerPath
will be used]

	Returns

	the ControllerLib object for the reloaded controller lib

	Return type

	sardana.pool.poolmetacontroller.ControllerLibrary

	
addController(controller_lib, klass)

	Adds a new controller class

	
getControllerNames()

	

	
getControllerLibNames()

	

	
getControllerLibs(filter=None)

	

	
getControllers(filter=None)

	

	
getControllerMetaClass(controller_name)

	

	
getControllerMetaClasses(controller_names)

	

	
getControllerLib(name)

	

	
getControllerClass(controller_name)

	

	
decodeControllerParameters(in_par_list)

	

	
strControllerParamValues(par_list)

	Creates a short string representation of the parameter values list.

	Parameters

	par_list (list<str>) – list of strings representing the parameter values.

	Returns

	a list containning an abreviated version of the par_list
argument.

	Return type

	list<str>

poolcountertimer

This module is part of the Python Pool library. It defines the base classes
for CounterTimer

Classes

	
	PoolCounterTimer

	

	

PoolCounterTimer

[image: Inheritance diagram of PoolCounterTimer]

	
class PoolCounterTimer(**kwargs)

	Bases: sardana.pool.poolbasechannel.PoolBaseChannel

	
set_write_value(w_value, timestamp=None, propagate=1)

	Sets a new write value for the value.

	Parameters

	
	w_value (Number [https://docs.python.org/dev/library/numbers.html#numbers.Number]) – the new write value for value

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

pooldefs

This file contains the basic pool definitions.

Constants

	
ControllerAPI = 1.1

	A constant defining the controller API version currently supported

Classes

	
	AcqSynch

	
	SynchParam

	
	SynchDomain

AcqSynch

[image: Inheritance diagram of AcqSynch]

	
class AcqSynch(*a, **kw)

	Bases: taurus.core.util.enumeration.Enumeration

	
SoftwareTrigger = 0

	

	
HardwareTrigger = 1

	

	
SoftwareGate = 2

	

	
HardwareGate = 3

	

	
classmethod from_synch_type(software, synch_type)

	Helper obtain AcqSynch from information about software/hardware
nature of synchronization element and AcqSynchType

SynchParam

[image: Inheritance diagram of SynchParam]

	
class SynchParam(*a, **kw)

	Bases: sardana.pool.pooldefs.SynchEnum

Enumeration of synchronization’s group parameters.

	Delay - initial delay (relative to the synchronization start)

	Total - total interval

	Active - active interval (part of the total interval)

	Repeats - number of repetitions within the group

	Initial - initial point (absolute)

Note

The SynchParam class has been included in Sardana
on a provisional basis. Backwards incompatible changes
(up to and including removal of the class) may occur if
deemed necessary by the core developers.

	
Delay = 0

	

	
Total = 1

	

	
Active = 2

	

	
Repeats = 3

	

	
Initial = 4

	

SynchDomain

[image: Inheritance diagram of SynchDomain]

	
class SynchDomain(*a, **kw)

	Bases: sardana.pool.pooldefs.SynchEnum

Enumeration of synchronization domains.

	Time - describes the synchronization in time domain

	Position - describes the synchronization in position domain

	Monitor - not used at the moment but foreseen for synchronization on monitor

Note

The SynchDomain class has been included in Sardana
on a provisional basis. Backwards incompatible changes
(up to and including removal of the class) may occur if
deemed necessary by the core developers.

	
Time = 0

	

	
Position = 1

	

	
Monitor = 2

	

poolelement

This module is part of the Python Pool library. It defines the base classes
for

Classes

	
	PoolBaseElement

	
	PoolElement

	

PoolBaseElement

[image: Inheritance diagram of PoolBaseElement]

	
class PoolBaseElement(**kwargs)

	Bases: sardana.pool.poolobject.PoolObject

A Pool object that besides the name, reference to the pool, ID, full_name
and user_full_name has:

	_simulation_mode : boolean telling if in simulation mode

	_state : element state

	_status : element status

	
lock(blocking=True)

	Acquires the this element lock

	Parameters

	blocking (bool [https://docs.python.org/dev/library/functions.html#bool]) – whether or not to block if lock is already acquired [default: True]

	
unlock()

	

	
get_action_cache()

	Returns the internal action cache object

	
serialize(*args, **kwargs)

	

	
get_simulation_mode(cache=True, propagate=1)

	Returns the simulation mode for this object.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – not used [default: True]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – [default: 1]

	Returns

	the current simulation mode

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
set_simulation_mode(simulation_mode, propagate=1)

	

	
put_simulation_mode(simulation_mode)

	

	
simulation_mode

	element simulation mode

	
get_state(cache=True, propagate=1)

	Returns the state for this object. If cache is True (default) it
returns the current state stored in cache (it will force an update if
cache is empty). If propagate > 0 and if the state changed since last
read, it will propagate the state event to all listeners.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – tells if return value from local cache or update from HW read
[default: True]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – if > 0 propagates the event in case it changed since last HW read.
Values bigger that mean the event if sent should be a priority event
[default: 1]

	Returns

	the current object state

	Return type

	sardana.State

	
inspect_state()

	Looks at the current cached value of state

	Returns

	the current object state

	Return type

	sardana.State

	
set_state(state, propagate=1)

	

	
put_state(state)

	

	
state

	element state

	
inspect_status()

	Looks at the current cached value of status

	Returns

	the current object status

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_status(cache=True, propagate=1)

	Returns the status for this object. If cache is True (default) it
returns the current status stored in cache (it will force an update if
cache is empty). If propagate > 0 and if the status changed since last
read, it will propagate the status event to all listeners.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – tells if return value from local cache or update from HW read
[default: True]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – if > 0 propagates the event in case it changed since last HW read.
Values bigger that mean the event if sent should be a priority event
[default: 1]

	Returns

	the current object status

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
set_status(status, propagate=1)

	

	
put_status(status)

	

	
status

	element status

	
calculate_state_info(status_info=None)

	Transforms the given state information. This specific base
implementation transforms the given state,status tuple into a
state, new_status tuple where new_status is “self.name is state
plus the given status.
It is assumed that the given status comes directly from the controller
status information.

	Parameters

	status_info (tuple<State, str>) – given status information [default: None, meaning use current state status.

	Returns

	a transformed state information

	Return type

	tuple<State, str>

	
set_state_info(state_info, propagate=1)

	

	
read_state_info()

	

	
put_state_info(state_info)

	

	
get_default_attribute()

	

	
get_default_acquisition_channel()

	

	
stop()

	

	
was_stopped()

	

	
abort()

	

	
was_aborted()

	

	
was_interrupted()

	Tells if action ended by an abort or stop

	
is_action_running()

	Determines if the element action is running or not.

	
is_in_operation()

	Returns True if this element is involved in any operation

	
is_in_local_operation()

	

	
get_operation()

	

	
set_operation(operation)

	

	
clear_operation()

	

PoolElement

[image: Inheritance diagram of PoolElement]

	
class PoolElement(**kwargs)

	Bases: sardana.pool.poolbaseelement.PoolBaseElement

A Pool element is an Pool object which is controlled by a controller.
Therefore it contains a _ctrl_id and a _axis (the id of the element in
the controller).

	
serialize(*args, **kwargs)

	

	
get_parent()

	Returns this pool object parent.

	Returns

	this objects parent

	Return type

	SardanaBaseObject

	
get_controller()

	

	
get_controller_id()

	

	
get_axis()

	

	
set_action_cache(action_cache)

	

	
get_source()

	

	
get_instrument()

	

	
set_instrument(instrument, propagate=1)

	

	
stop()

	

	
abort()

	

	
get_par(name)

	

	
set_par(name, value)

	

	
get_extra_par(name)

	

	
set_extra_par(name, value)

	

	
axis

	element axis

	
controller

	element controller

	
controller_id

	element controller id

	
instrument

	element instrument

poolexception

This module is part of the Python Pool libray. It defines the base classes
for pool exceptions

Classes

	
	PoolException

	
	UnknownController

	
	UnknownControllerLibrary

PoolException

[image: Inheritance diagram of PoolException]

	
exception PoolException(*args, **kwargs)

	
	
args

	

	
message

	

UnknownController

[image: Inheritance diagram of UnknownController]

	
exception UnknownController(*args, **kwargs)

	
	
args

	

	
message

	

UnknownControllerLibrary

[image: Inheritance diagram of UnknownControllerLibrary]

	
exception UnknownControllerLibrary(*args, **kwargs)

	
	
args

	

	
message

	

poolexternal

This module is part of the Python Pool libray. It defines the base classes
for external objects to the pool (like tango objects)

Functions

	
	PoolExternalObject()

	

	

Classes

	
	PoolBaseExternalObject

	
	PoolTangoObject

	

	
PoolExternalObject(**kwargs)

	

PoolBaseExternalObject

[image: Inheritance diagram of PoolBaseExternalObject]

	
class PoolBaseExternalObject(**kwargs)

	Bases: sardana.pool.poolbaseobject.PoolBaseObject

TODO

	
get_source()

	

	
get_config()

	

PoolTangoObject

[image: Inheritance diagram of PoolTangoObject]

	
class PoolTangoObject(**kwargs)

	Bases: sardana.pool.poolexternal.PoolBaseExternalObject

TODO

	
get_device_name()

	

	
get_attribute_name()

	

	
get_device()

	

	
get_config()

	

	
device_name

	

	
attribute_name

	

poolgroupelement

This module is part of the Python Pool library. It defines the base classes
for

Classes

	
	PoolBaseGroup

	
	PoolGroupElement

	

PoolBaseGroup

[image: Inheritance diagram of PoolBaseGroup]

	
class PoolBaseGroup(**kwargs)

	Bases: sardana.pool.poolcontainer.PoolContainer

	
on_element_changed(evt_src, evt_type, evt_value)

	

	
set_user_element_ids(new_element_ids)

	

	
get_user_element_ids()

	Returns the sequence of user element IDs

	Returns

	the sequence of user element IDs

	Return type

	sequence< int [https://docs.python.org/dev/library/functions.html#int]>

	
user_element_ids

	Returns the sequence of user element IDs

	Returns

	the sequence of user element IDs

	Return type

	sequence< int [https://docs.python.org/dev/library/functions.html#int]>

	
get_user_elements()

	Returns the sequence of user elements

	Returns

	the sequence of user elements

	Return type

	sequence< PoolElement>

	
get_user_elements_attribute_iterator()

	Returns an iterator over the main attribute of each user element.

	Returns

	an iterator over the main attribute of each user element.

	Return type

	iter< SardanaAttribute >

	
get_user_elements_attribute()

	Returns an iterator over the main attribute of each user element.

	Returns

	an iterator over the main attribute of each user element.

	Return type

	iter< SardanaAttribute >

	
get_user_elements_attribute_sequence()

	Returns a sequence of main attribute of each user element.

In loops use preferably get_user_elements_attribute_iterator() for
performance and memory reasons.

	Returns

	a sequence of main attribute of each user element.

	Return type

	sequence< SardanaAttribute >

	
get_user_elements_attribute_map()

	Returns a dictionary of main attribute of each user element.

	Returns

	a dictionary of main attribute of each user element.

	Return type

	dict< PoolElement,
SardanaAttribute >

	
get_physical_elements()

	Returns a dictionary or physical elements where key is a controller
object and value is a sequence of pool elements

	Returns

	a dictionary of physical elements

	Return type

	dict< PoolElement>

	
get_physical_elements_iterator()

	Returns an iterator over the physical elements.

Warning

The order is non deterministic.

	Returns

	an iterator over the physical elements.

	Return type

	iter<PoolElement >

	
get_physical_elements_attribute_iterator()

	Returns an iterator over the main attribute of each physical element.

Warning

The order is non deterministic.

	Returns

	an iterator over the main attribute of each physical element.

	Return type

	iter< SardanaAttribute >

	
get_physical_elements_set()

	

	
add_user_element(element, index=None)

	

	
clear_user_elements()

	

	
stop()

	

	
abort()

	

	
get_operation()

	

PoolGroupElement

[image: Inheritance diagram of PoolGroupElement]

	
class PoolGroupElement(**kwargs)

	Bases: sardana.pool.poolbaseelement.PoolBaseElement, sardana.pool.poolbasegroup.PoolBaseGroup

	
serialize(*args, **kwargs)

	

	
get_action_cache()

	Returns the internal action cache object

	
set_action_cache(action_cache)

	

	
read_state_info()

	

	
stop()

	

	
abort()

	

	
get_operation()

	

poolinstrument

This module is part of the Python Pool library. It defines the base classes
for instrument

Classes

	
	PoolInstrument

	

	

PoolInstrument

[image: Inheritance diagram of PoolInstrument]

	
class PoolInstrument(**kwargs)

	Bases: sardana.pool.poolobject.PoolObject

	
get_parent()

	Returns this pool object parent.

	Returns

	this objects parent

	Return type

	SardanaBaseObject

	
serialize(*args, **kwargs)

	

	
get_instrument_class()

	

	
add_instrument(instrument)

	

	
remove_instrument(instrument)

	

	
get_instruments()

	

	
set_parent_instrument(instrument)

	

	
get_parent_instrument()

	

	
has_parent_instrument()

	

	
add_element(element)

	

	
remove_element(element)

	

	
get_elements()

	

	
has_instruments()

	

	
has_elements()

	

	
instruments

	

	
elements

	

	
instrument_class

	

	
parent_instrument

	

poolioregister

This module is part of the Python Pool libray. It defines the base classes
for

Classes

	
	PoolIORegister

	

	

PoolIORegister

[image: Inheritance diagram of PoolIORegister]

	
class PoolIORegister(**kwargs)

	Bases: sardana.pool.poolelement.PoolElement

	
get_value_attribute()

	Returns the value attribute object for this IO register

	Returns

	the value attribute

	Return type

	SardanaAttribute

	
on_change(evt_src, evt_type, evt_value)

	

	
get_default_attribute()

	

	
read_value()

	Reads the IO register value from hardware.

	Returns

	a SardanaValue containing the IO
register value

	Return type

	SardanaValue

	
put_value(value, propagate=1)

	Sets a value.

	Parameters

	
	value (SardanaValue) – the new value

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
get_value(cache=True, propagate=1)

	

	
set_value(value, timestamp=None)

	

	
set_write_value(w_value, timestamp=None, propagate=1)

	Sets a new write value for the IO registere

	Parameters

	
	w_value (Number [https://docs.python.org/dev/library/numbers.html#numbers.Number]) – the new write value for IO register

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
value

	ioregister value

	
write_register(value, timestamp=None)

	

poolmeasurementgroup

This module is part of the Python Pool library. It defines the base classes
for

Classes

	
	PoolMeasurementGroup

	

	

PoolInstrument

[image: Inheritance diagram of PoolMeasurementGroup]

	
class PoolMeasurementGroup(**kwargs)

	Bases: sardana.pool.poolgroupelement.PoolGroupElement

	
DFT_DESC = 'General purpose measurement group'

	

	
on_element_changed(evt_src, evt_type, evt_value)

	

	
get_pool_controllers()

	

	
get_pool_controller_by_name(name)

	

	
add_user_element(element, index=None)

	Override the base behavior, so the TriggerGate elements are silently
skipped if used multiple times in the group

	
set_configuration(config=None, propagate=1, to_fqdn=True)

	

	
set_configuration_from_user(cfg, propagate=1, to_fqdn=True)

	

	
get_configuration()

	

	
get_user_configuration()

	

	
load_configuration(force=False)

	Loads the current configuration to all involved controllers

	
get_timer()

	

	
timer

	

	
get_integration_time()

	

	
set_integration_time(integration_time, propagate=1)

	

	
integration_time

	the current integration time

	
get_monitor_count()

	

	
set_monitor_count(monitor_count, propagate=1)

	

	
monitor_count

	the current monitor count

	
get_acquisition_mode()

	

	
set_acquisition_mode(acquisition_mode, propagate=1)

	

	
acquisition_mode

	the current acquisition mode

	
get_synchronization()

	

	
set_synchronization(synchronization, propagate=1)

	

	
synchronization

	the current acquisition mode

	
get_moveable()

	

	
set_moveable(moveable, propagate=1, to_fqdn=True)

	

	
moveable

	moveable source used in synchronization

	
get_latency_time()

	

	
latency_time

	latency time between two consecutive acquisitions

	
start_acquisition(value=None, multiple=1)

	

	
set_acquisition(acq_cache)

	

	
get_acquisition()

	

	
acquisition

	acquisition object

	
stop()

	

poolmetacontroller

This module is part of the Python Pool libray. It defines the base classes
for

Classes

	
	DataInfo

	TypeData

	
	ControllerLibrary

	
	ControllerClass

DataInfo

[image: Inheritance diagram of DataInfo]

	
class DataInfo(name, dtype, dformat=<_mock._Mock object>, access=<_mock._Mock object>, description='', default_value=None, memorized='true', fget=None, fset=None, maxdimsize=None)

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

	
copy()

	

	
classmethod toDataInfo(name, info)

	

	
toDict()

	

	
serialize(*args, **kwargs)

	

TypeData

[image: Inheritance diagram of TypeData]

	
class TypeData(**kwargs)

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

Information for a specific Element type

ControllerLib

[image: Inheritance diagram of ControllerLibrary]

	
class ControllerLibrary(**kwargs)

	Bases: sardana.sardanameta.SardanaLibrary

Object representing a python module containning controller classes.
Public members:

	module - reference to python module

	f_path - complete (absolute) path and filename

	f_name - filename (including file extension)

	path - complete (absolute) path

	name - module name (without file extension)

	controller_list - list<ControllerClass>

	
	exc_info - exception information if an error occured when loading

	the module

	
add_controller(meta_class)

	Adds a new :class:~`sardana.sardanameta.SardanaClass` to this
library.

	Parameters

	meta_class (:class:~`sardana.sardanameta.SardanaClass`) – the meta class to be added to this library

	
get_controller(meta_class_name)

	Returns a :class:~`sardana.sardanameta.SardanaClass` for the
given meta class name or None if the meta class does not exist in this
library.

	Parameters

	meta_class_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta class name

	Returns

	a meta class or None

	Return type

	:class:~`sardana.sardanameta.SardanaClass`

	
get_controllers()

	Returns a sequence of the meta classes that belong to this library.

	Returns

	a sequence of meta classes that belong to this library

	Return type

	seq<:class:~`sardana.sardanameta.SardanaClass`>

	
has_controller(meta_class_name)

	Returns True if the given meta class name belongs to this library
or False otherwise.

	Parameters

	meta_class_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta class name

	Returns

	True if the given meta class name belongs to this library
or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
serialize(*args, **kwargs)

	Returns a serializable object describing this object.

	Returns

	a serializable dict

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
controllers

	

ControllerClass

[image: Inheritance diagram of ControllerClass]

	
class ControllerClass(**kwargs)

	Bases: sardana.sardanameta.SardanaClass

Object representing a python controller class.
Public members:

	name - class name

	klass - python class object

	lib - ControllerLibrary object representing the module where the
controller is.

	
serialize(*args, **kwargs)

	Returns a serializable object describing this object.

	Returns

	a serializable dict

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
controller_class

	

	
gender

	

	
model

	

	
organization

	

Constants

	
CONTROLLER_TEMPLATE = 'class @controller_name@(@controller_type@):\n """@controller_name@ description."""\n\n'

	String containing template code for a controller class

	
CTRL_TYPE_MAP = {<_mock._Mock object at 0x7fbf587aeed0>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf58e43050>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf58e43410>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf58e43bd0>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf58e43cd0>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf58e43f50>: <class 'sardana.pool.poolcontroller.PoolPseudoMotorController'>, <_mock._Mock object at 0x7fbf590e7a50>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf590e7a90>: <class 'sardana.pool.poolcontroller.PoolPseudoCounterController'>}

	a dictionary dict<ElementType, class>
mapping element type enumeration with the corresponding controller pool class
(PoolController or sub-class of it).

	
TYPE_MAP = {<_mock._Mock object at 0x7fbf590e7050>: ('MotorGroup', 'MotorGroup', <class 'sardana.pool.poolmotorgroup.PoolMotorGroup'>, 'mg/{pool_name}/{name}', None), <_mock._Mock object at 0x7fbf590e7090>: ('PseudoCounter', 'ExpChannel', <class 'sardana.pool.poolpseudocounter.PoolPseudoCounter'>, 'pc/{ctrl_name}/{axis}', <class 'sardana.pool.controller.PseudoCounterController'>), <_mock._Mock object at 0x7fbf590e70d0>: ('IORegister', 'IORegister', <class 'sardana.pool.poolioregister.PoolIORegister'>, 'ioregister/{ctrl_name}/{axis}', <class 'sardana.pool.controller.IORegisterController'>), <_mock._Mock object at 0x7fbf590e7110>: ('MeasurementGroup', 'MeasurementGroup', <class 'sardana.pool.poolmeasurementgroup.PoolMeasurementGroup'>, 'mntgrp/{pool_name}/{name}', None), <_mock._Mock object at 0x7fbf590e76d0>: ('TriggerGate', 'TriggerGate', <class 'sardana.pool.pooltriggergate.PoolTriggerGate'>, 'triggergate/{ctrl_name}/{axis}', <class 'sardana.pool.controller.TriggerGateController'>), <_mock._Mock object at 0x7fbf590e7850>: ('CTExpChannel', 'ExpChannel', <class 'sardana.pool.poolcountertimer.PoolCounterTimer'>, 'expchan/{ctrl_name}/{axis}', <class 'sardana.pool.controller.CounterTimerController'>), <_mock._Mock object at 0x7fbf590e7910>: ('TwoDExpChannel', 'ExpChannel', <class 'sardana.pool.pooltwodexpchannel.Pool2DExpChannel'>, 'expchan/{ctrl_name}/{axis}', <class 'sardana.pool.controller.TwoDController'>), <_mock._Mock object at 0x7fbf590e7e50>: ('PseudoMotor', 'Motor', <class 'sardana.pool.poolpseudomotor.PoolPseudoMotor'>, 'pm/{ctrl_name}/{axis}', <class 'sardana.pool.controller.PseudoMotorController'>), <_mock._Mock object at 0x7fbf590e7ed0>: ('Instrument', 'Instrument', <class 'sardana.pool.poolinstrument.PoolInstrument'>, '{full_name}', None), <_mock._Mock object at 0x7fbf590e7f10>: ('ZeroDExpChannel', 'ExpChannel', <class 'sardana.pool.poolzerodexpchannel.Pool0DExpChannel'>, 'expchan/{ctrl_name}/{axis}', <class 'sardana.pool.controller.ZeroDController'>), <_mock._Mock object at 0x7fbf590e7f50>: ('Controller', 'Controller', {<_mock._Mock object at 0x7fbf58e43410>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf58e43050>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf590e7a50>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf590e7a90>: <class 'sardana.pool.poolcontroller.PoolPseudoCounterController'>, <_mock._Mock object at 0x7fbf58e43cd0>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf58e43f50>: <class 'sardana.pool.poolcontroller.PoolPseudoMotorController'>, <_mock._Mock object at 0x7fbf587aeed0>: <class 'sardana.pool.poolcontroller.PoolController'>, <_mock._Mock object at 0x7fbf58e43bd0>: <class 'sardana.pool.poolcontroller.PoolController'>}, 'controller/{klass}/{name}', <class 'sardana.pool.controller.Controller'>), <_mock._Mock object at 0x7fbf590e7f90>: ('Motor', 'Motor', <class 'sardana.pool.poolmotor.PoolMotor'>, 'motor/{ctrl_name}/{axis}', <class 'sardana.pool.controller.MotorController'>), <_mock._Mock object at 0x7fbf590e7fd0>: ('OneDExpChannel', 'ExpChannel', <class 'sardana.pool.poolonedexpchannel.Pool1DExpChannel'>, 'expchan/{ctrl_name}/{axis}', <class 'sardana.pool.controller.OneDController'>)}

	dictionary dict<ElementType, tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]>
where tuple is a sequence:

	type string representation

	family

	internal pool class

	automatic full name

	controller class

	
TYPE_MAP_OBJ = {<_mock._Mock object at 0x7fbf590e7050>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7150>, <_mock._Mock object at 0x7fbf590e7090>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7250>, <_mock._Mock object at 0x7fbf590e70d0>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7190>, <_mock._Mock object at 0x7fbf590e7110>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7390>, <_mock._Mock object at 0x7fbf590e76d0>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7350>, <_mock._Mock object at 0x7fbf590e7850>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7310>, <_mock._Mock object at 0x7fbf590e7910>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7210>, <_mock._Mock object at 0x7fbf590e7e50>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e72d0>, <_mock._Mock object at 0x7fbf590e7ed0>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7290>, <_mock._Mock object at 0x7fbf590e7f10>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7450>, <_mock._Mock object at 0x7fbf590e7f50>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e73d0>, <_mock._Mock object at 0x7fbf590e7f90>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7e90>, <_mock._Mock object at 0x7fbf590e7fd0>: <sardana.pool.poolmetacontroller.TypeData object at 0x7fbf590e7510>}

	dictionary
dict<ElementType, TypeData>

poolmonitor

This file contains the pool monitor class

Classes

	
	PoolMonitor

	

	

PoolMonitor

[image: Inheritance diagram of PoolMonitor]

	
class PoolMonitor(pool, name='PoolMonitor', period=5.0, min_sleep=1.0, auto_start=True)

	Bases: taurus.core.util.log.Logger, threading.Thread [https://docs.python.org/dev/library/threading.html#threading.Thread]

	
MIN_THREADS = 1

	

	
MAX_THREADS = 10

	

	
on_pool_changed(evt_src, evt_type, evt_value)

	

	
update_state_info()

	Update state information of every element.

	
stop()

	

	
pause()

	

	
resume()

	

	
monitor()

	

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

poolmotion

This module is part of the Python Pool libray. It defines the class for a
motion

Classes

	
	PoolMotionItem

	
	PoolMotion

	

PoolMotionItem

[image: Inheritance diagram of PoolMotionItem]

	
class PoolMotionItem(moveable, position, dial_position, do_backlash, backlash, instability_time=None)

	Bases: sardana.pool.poolaction.PoolActionItem

An item involved in the motion. Maps directly to a motor object

	
has_instability_time()

	

	
in_motion()

	

	
get_moveable()

	

	
moveable

	

	
get_state_info()

	

	
start(new_state)

	

	
stopped(timestamp)

	

	
handle_instability(timestamp)

	

	
on_state_switch(state_info, timestamp=None)

	

PoolMotion

[image: Inheritance diagram of PoolMotion]

	
class PoolMotion(main_element, name='GlobalMotion')

	Bases: sardana.pool.poolaction.PoolAction

This class manages motion actions

	
pre_start_all(pool_ctrls)

	

	
pre_start_one(moveables, items)

	

	
start_one(moveables, motion_info)

	

	
start_all(pool_ctrls, moveables, motion_info)

	

	
start_action(*args, **kwargs)

	kwargs[‘items’] is a dict<moveable, (pos, dial, do_backlash, backlash)

	
backlash_item(motion_item)

	

	
action_loop

	

	
read_dial_position(ret=None, serial=False)

	

	
raw_read_dial_position(ret=None, serial=False)

	

Enumerations

	
MotionState = <taurus.core.util.enumeration.Enumeration object>

	

poolmotor

This module is part of the Python Pool libray. It defines the base classes
for

Classes

	
	PoolMotor

	

	

PoolMotor

[image: Inheritance diagram of PoolMotor]

	
class PoolMotor(**kwargs)

	Bases: sardana.pool.poolelement.PoolElement

An internal Motor object. NOT part of the official API. Accessing
this object from a controller plug-in may lead to undetermined behavior
like infinite recursion.

	
on_change(evt_src, evt_type, evt_value)

	

	
calculate_state_info(state_info=None)

	Transforms the given state information. This specific base
implementation transforms the given state,status tuple into a
state, new_status tuple where new_status is “self.name is state
plus the given status.
It is assumed that the given status comes directly from the controller
status information.

	Parameters

	status_info (tuple<State, str>) – given status information [default: None, meaning use current state status.

	Returns

	a transformed state information

	Return type

	tuple<State, str>

	
inspect_limit_switches()

	returns the current (cached value of the limit switches

	Returns

	the current limit switches flags

	
get_limit_switches(cache=True, propagate=1)

	Returns the motor limit switches state.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the motor limit switches state

	Return type

	SardanaAttribute

	
set_limit_switches(ls, propagate=1)

	

	
put_limit_switches(ls, propagate=1)

	

	
limit_switches

	motor limit switches

	
has_instability_time(cache=True)

	

	
get_instability_time(cache=True)

	

	
set_instability_time(instability_time, propagate=1)

	

	
instability_time

	motor instability time

	
has_backlash(cache=True)

	

	
is_backlash_positive(cache=True)

	

	
is_backlash_negative(cache=True)

	

	
get_backlash(cache=True)

	

	
set_backlash(backlash, propagate=1)

	

	
backlash

	motor backlash

	
get_offset_attribute()

	

	
get_offset(cache=True)

	

	
set_offset(offset, propagate=1)

	

	
offset

	motor offset

	
get_sign_attribute()

	

	
get_sign(cache=True)

	

	
set_sign(sign, propagate=1)

	

	
sign

	motor sign

	
get_step_per_unit(cache=True, propagate=1)

	

	
set_step_per_unit(step_per_unit, propagate=1)

	

	
read_step_per_unit()

	

	
step_per_unit

	motor steps per unit

	
get_acceleration(cache=True, propagate=1)

	

	
set_acceleration(acceleration, propagate=1)

	

	
read_acceleration()

	

	
acceleration

	motor acceleration

	
get_deceleration(cache=True, propagate=1)

	

	
set_deceleration(deceleration, propagate=1)

	

	
read_deceleration()

	

	
deceleration

	motor deceleration

	
get_base_rate(cache=True, propagate=1)

	

	
set_base_rate(base_rate, propagate=1)

	

	
read_base_rate()

	

	
base_rate

	motor base rate

	
get_velocity(cache=True, propagate=1)

	

	
set_velocity(velocity, propagate=1)

	

	
read_velocity()

	

	
velocity

	motor velocity

	
define_position(position)

	

	
get_position_attribute()

	Returns the position attribute object for this motor

	Returns

	the position attribute

	Return type

	SardanaAttribute

	
get_position(cache=True, propagate=1)

	Returns the user position.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the user position

	Return type

	SardanaAttribute

	
set_position(position)

	Moves the motor to the specified user position

	Parameters

	position (Number [https://docs.python.org/dev/library/numbers.html#numbers.Number]) – the user position to move to

	
set_write_position(w_position, timestamp=None, propagate=1)

	Sets a new write value for the user position.

	Parameters

	
	w_position (Number [https://docs.python.org/dev/library/numbers.html#numbers.Number]) – the new write value for user position

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
read_dial_position()

	Reads the dial position from hardware.

	Returns

	a SardanaValue containing the dial
position

	Return type

	SardanaValue

	
put_dial_position(dial_position_value, propagate=1)

	Sets a new dial position.

	Parameters

	
	dial_position_value (SardanaValue) – the new dial position value

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
get_dial_position_attribute()

	Returns the dial position attribute object for this motor

	Returns

	the dial position attribute

	Return type

	SardanaAttribute

	
get_dial_position(cache=True, propagate=1)

	Returns the dial position.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the dial position

	Return type

	SardanaAttribute

	
position

	motor user position

	
dial_position

	motor dial position

	
get_default_attribute()

	

	
get_motion()

	

	
motion

	motion object

	
calculate_motion(new_position, items=None, calculated=None)

	Calculate the motor position, dial position, backlash for the
given final position. Items specifies the where to put the calculated
values, calculated is not used by physical motors

	
start_move(new_position)

	

poolmotorgroup

This module is part of the Python Pool library. It defines the base classes
for

Classes

	
	PoolMotorGroup

	

	

PoolMotorGroup

[image: Inheritance diagram of PoolMotorGroup]

	
class PoolMotorGroup(**kwargs)

	Bases: sardana.pool.poolgroupelement.PoolGroupElement

	
on_change(evt_src, evt_type, evt_value)

	

	
on_element_changed(evt_src, evt_type, evt_value)

	

	
add_user_element(element, index=None)

	

	
get_position_attribute()

	

	
get_low_level_physical_position_attribute_iterator()

	

	
get_physical_position_attribute_iterator()

	

	
get_physical_positions_attribute_sequence()

	

	
get_physical_positions_attribute_map()

	

	
get_position(cache=True, propagate=1)

	Returns the user position.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the user position

	Return type

	SardanaAttribute

	
set_position(positions)

	Moves the motor group to the specified user positions

	Parameters

	positions (sequence< Number [https://docs.python.org/dev/library/numbers.html#numbers.Number] >) – the user positions to move to

	
set_write_position(w_position, timestamp=None, propagate=1)

	Sets a new write value for the user position.

	Parameters

	
	w_position (sequence< Number [https://docs.python.org/dev/library/numbers.html#numbers.Number] >) – the new write value for user position

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
position

	motor group positions

	
get_default_attribute()

	

	
get_motion()

	

	
motion

	motion object

	
calculate_motion(new_positions, items=None)

	

	
start_move(new_position)

	

poolmoveable

This module is part of the Python Pool libray. It defines the base classes
for moveable elements

Classes

	
	PoolMoveable

	

	

PoolMoveable

[image: Inheritance diagram of PoolMoveable]

	
class PoolMoveable

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

	
get_size()

	

	
calc_move(positions, ctrl_map, trust=False)

	

	
set_value(v, propagate=True)

	

	
get_value(cache=True)

	

poolobject

This module is part of the Python Pool library. It defines the base classes
for Pool object

Classes

	
	PoolObject

	

	

PoolObject

[image: Inheritance diagram of PoolObject]

	
class PoolObject(**kwargs)

	Bases: sardana.sardanabase.SardanaObjectID, sardana.pool.poolbaseobject.PoolBaseObject

A Pool object that besides the name and reference to the pool has:

	_id : the internal identifier

	
serialize(*args, **kwargs)

	

poolonedexpchannel

This module is part of the Python Pool library. It defines the base classes
for OneDExpChannel

Classes

	
	Pool1DExpChannel

	

	

Pool1DExpChannel

[image: Inheritance diagram of Pool1DExpChannel]

	
class Pool1DExpChannel(**kwargs)

	Bases: sardana.pool.poolbasechannel.PoolBaseChannel

	
get_data_source(cache=True, propagate=1)

	

	
read_data_source()

	

	
data_source

	source identifier for the 1D data

poolpseudocounter

This module is part of the Python Pool library. It defines the
PoolPseudoCounter class

Classes

	
	PoolPseudoCounter

	

	

PoolPseudoCounter

[image: Inheritance diagram of PoolPseudoCounter]

	
class PoolPseudoCounter(**kwargs)

	Bases: sardana.pool.poolbasegroup.PoolBaseGroup, sardana.pool.poolbasechannel.PoolBaseChannel

A class representing a Pseudo Counter in the Sardana Device Pool

	
ValueAttributeClass

	alias of Value

	
ValueBufferClass

	alias of ValueBuffer

	
AcquisitionClass = None

	

	
serialize(*args, **kwargs)

	

	
add_user_element(element, index=None)

	

	
on_element_changed(evt_src, evt_type, evt_value)

	

	
get_action_cache()

	Returns the internal action cache object

	
set_action_cache(action_cache)

	

	
get_siblings()

	

	
siblings

	the siblings for this pseudo counter

	
calc(physical_values=None)

	

	
calc_all(physical_values=None)

	

	
get_low_level_physical_value_attribute_iterator()

	

	
get_physical_value_attribute_iterator()

	

	
get_physical_values_attribute_sequence()

	

	
get_physical_values_attribute_map()

	

	
get_physical_value_buffer_iterator()

	Returns an iterator over the value buffer of each user element.

	Returns

	an iterator over the value buffer of each user element.

	Return type

	iter< SardanaBuffer >

	
get_physical_values(cache=True, propagate=1)

	Get value for underlying elements.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the physical value

	Return type

	dict <PoolElement, SardanaAttribute >

	
get_siblings_values(use=None)

	Get the last values for all siblings.

	Parameters

	use (dict <PoolElement, SardanaValue >) – the already calculated values. If a sibling is in this
dictionary, the value stored here is used instead

	Returns

	a dictionary with siblings values

	Return type

	dict <PoolElement, value(float?) >

	
get_value(cache=True, propagate=1)

	Returns the pseudo counter value.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the pseudo counter value

	Return type

	SardanaAttribute

	
set_value(value, propagate=1)

	Starts an acquisition on this channel

	Parameters

	value (Number [https://docs.python.org/dev/library/numbers.html#numbers.Number]) – the value to count

	
value

	pseudo counter value

	
calculate_state_info(status_info=None)

	Transforms the given state information. This specific base
implementation transforms the given state,status tuple into a
state, new_status tuple where new_status is “self.name is state
plus the given status.
It is assumed that the given status comes directly from the controller
status information.

	Parameters

	status_info (tuple<State, str>) – given status information [default: None, meaning use current state status.

	Returns

	a transformed state information

	Return type

	tuple<State, str>

	
read_state_info(state_info=None)

	

poolpseudomotor

This module is part of the Python Pool library. It defines the
PoolPseudoMotor class

Classes

	
	PoolPseudoMotor

	

	

PoolPseudoMotor

[image: Inheritance diagram of PoolPseudoMotor]

	
class PoolPseudoMotor(**kwargs)

	Bases: sardana.pool.poolbasegroup.PoolBaseGroup, sardana.pool.poolelement.PoolElement

A class representing a Pseudo Motor in the Sardana Device Pool

	
on_change(evt_src, evt_type, evt_value)

	

	
serialize(*args, **kwargs)

	

	
set_drift_correction(drift_correction)

	

	
get_drift_correction()

	

	
drift_correction

	drift correction

	
get_action_cache()

	Returns the internal action cache object

	
set_action_cache(action_cache)

	

	
get_siblings()

	

	
siblings

	the siblings for this pseudo motor

	
on_element_changed(evt_src, evt_type, evt_value)

	

	
add_user_element(element, index=None)

	

	
calc_pseudo(physical_positions=None)

	

	
calc_physical(new_position)

	

	
calc_all_pseudo(physical_positions=None)

	

	
get_position_attribute()

	

	
get_low_level_physical_position_attribute_iterator()

	

	
get_physical_position_attribute_iterator()

	

	
get_physical_positions_attribute_sequence()

	

	
get_physical_positions_attribute_map()

	

	
get_physical_positions(cache=True, propagate=1)

	Get positions for underlying elements.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the physical positions

	Return type

	dict <PoolElement, SardanaAttribute >

	
get_siblings_positions(use=None, write_pos=True)

	Get the last positions for all siblings.
If write_pos is True and a sibling has already been moved before,
it’s last write position is used. Otherwise its read position is used
instead.

	Parameters

	
	use (dict <PoolElement, SardanaValue >) – the already calculated positions. If a sibling is in this
dictionary, the position stored here is used instead

	write_pos (bool [https://docs.python.org/dev/library/functions.html#bool]) – determines if should try to use the last set point
[default: True]

	Returns

	a dictionary with siblings write positions

	Return type

	dict <PoolElement, position(float?) >

	
get_position(cache=True, propagate=1)

	Returns the user position.

	Parameters

	
	cache (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True (default) return value in cache, otherwise read value
from hardware

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	Returns

	the user position

	Return type

	SardanaAttribute

	
set_position(position)

	Moves the motor to the specified user position

	Parameters

	position (Number [https://docs.python.org/dev/library/numbers.html#numbers.Number]) – the user position to move to

	
set_write_position(w_position, timestamp=None, propagate=1)

	Sets a new write value for the user position.

	Parameters

	
	w_position (Number [https://docs.python.org/dev/library/numbers.html#numbers.Number]) – the new write value for user position

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
position

	pseudo motor position

	
calculate_state_info(status_info=None)

	Transforms the given state information. This specific base
implementation transforms the given state,status tuple into a
state, new_status tuple where new_status is “self.name is state
plus the given status.
It is assumed that the given status comes directly from the controller
status information.

	Parameters

	status_info (tuple<State, str>) – given status information [default: None, meaning use current state status.

	Returns

	a transformed state information

	Return type

	tuple<State, str>

	
read_state_info(state_info=None)

	

	
get_default_attribute()

	

	
get_motion()

	

	
motion

	motion object

	
calculate_motion(new_position, items=None, calculated=None)

	

	
start_move(new_position)

	

	
stop()

	

	
abort()

	

	
get_operation()

	

pooltwodexpchannel

This module is part of the Python Pool library. It defines the base classes
for TwoDExpChannel

Classes

	
	Pool2DExpChannel

	

	

Pool2DExpChannel

[image: Inheritance diagram of Pool2DExpChannel]

	
class Pool2DExpChannel(**kwargs)

	Bases: sardana.pool.poolbasechannel.PoolBaseChannel

	
get_data_source(cache=True, propagate=1)

	

	
read_data_source()

	

	
data_source

	source identifier for the 2D data

poolutil

Pool utils

Classes

poolzerodexpchannel

This module is part of the Python Pool library. It defines the base classes
for ZeroDExpChannel

Classes

	
	Pool0DExpChannel

	

	

Pool0DExpChannel

[image: Inheritance diagram of Pool0DExpChannel]

	
class Pool0DExpChannel(**kwargs)

	Bases: sardana.pool.poolbasechannel.PoolBaseChannel

	
ValueAttributeClass

	alias of Value

	
AcquisitionClass

	alias of sardana.pool.poolacquisition.

	
get_accumulation_type()

	

	
get_accumulation()

	

	
set_accumulation_type(ctype)

	

	
accumulation

	

	
get_accumulated_value_attribute()

	Returns the accumulated value attribute object for this 0D.

	Returns

	the accumulated value attribute

	Return type

	SardanaAttribute

	
get_current_value_attribute()

	Returns the current value attribute object for this 0D.

	Returns

	the current value attribute

	Return type

	SardanaAttribute

	
get_accumulated_value()

	Gets the accumulated value for this 0D.

	Returns

	a SardanaValue containing the 0D
value

	Return type

	SardanaAttribute

	Raises

	Exception if no acquisition has been done yet on this 0D

	
read_current_value()

	Reads the 0D value from hardware.

	Returns

	a SardanaValue containing the counter
value

	Return type

	SardanaValue

	
put_current_value(value, propagate=1)

	Put a current value.

	Parameters

	
	value (SardanaValue) – the new value

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
get_current_value(cache=True, propagate=1)

	Returns the counter value.

	Returns

	the 0D accumulated value

	Return type

	SardanaAttribute

	
current_value

	0D value

	
accumulated_value

	0D value

	
clear_buffer()

	

	
get_accumulation_buffer()

	

	
accumulation_buffer

	

	
get_time_buffer()

	

	
time_buffer

	

	
start_acquisition(value=None)

	

macroserver

This is the main macro server module

Modules

	macros

	macroserver

	msbase

	mscontainer

	msdoor

	msenvmanager

	msexception

	msmacromanager

	msmanager

	msmetamacro

	msparameter

	mstypemanager

macros

	
class scan.a2scan

	two-motor scan.
a2scan scans two motors, as specified by motor1 and motor2.
Each motor moves the same number of intervals with starting and ending
positions given by start_pos1 and final_pos1, start_pos2 and final_pos2,
respectively. The step size for each motor is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1.
Count time is given by time which if positive, specifies seconds and
if negative, specifies monitor counts.

	
class scan.a2scanc

	two-motor continuous scan

	
class scan.a2scanct

	two-motor continuous scan (introduced with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

	
class scan.a3scan

	three-motor scan .
a3scan scans three motors, as specified by motor1, motor2 and motor3.
Each motor moves the same number of intervals with starting and ending
positions given by start_pos1 and final_pos1, start_pos2 and final_pos2,
start_pos3 and final_pos3, respectively.
The step size for each motor is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1.
Count time is given by time which if positive, specifies seconds and
if negative, specifies monitor counts.

	
class scan.a3scanc

	three-motor continuous scan

	
class scan.a3scanct

	three-motor continuous scan (introduced with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

	
class scan.a4scan

	four-motor scan .
a4scan scans four motors, as specified by motor1, motor2, motor3 and motor4.
Each motor moves the same number of intervals with starting and ending
positions given by start_posN and final_posN (for N=1,2,3,4).
The step size for each motor is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1.
Count time is given by time which if positive, specifies seconds and
if negative, specifies monitor counts.

	
class scan.a4scanc

	four-motor continuous scan

	
class scan.a4scanct

	four-motor continuous scan (introduced with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

	
class hkl.addreflection

	Add reflection at the botton of reflections list.

	
class expert.addctrllib

	Adds the given controller library code to the pool server filesystem.

	
class expert.addmaclib

	Loads a new macro library.

Warning

Keep in mind that macros from the new library can override
macros already present in the system.

	
class hkl.affine

	Affine current crystal.
Fine tunning of lattice parameters and UB matrix based on
current crystal reflections. Reflections with affinement
set to 0 are not used. A new crystal with the post fix
(affine) is created and set as current crystal.

	
class scan.amultiscan

	Multiple motor scan.
amultiscan scans N motors, as specified by motor1, motor2,…,motorN.
Each motor moves the same number of intervals with starting and ending
positions given by start_posN and final_posN (for N=1,2,…).
The step size for each motor is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1.
Count time is given by time which if positive, specifies seconds and
if negative, specifies monitor counts.

	
class scan.ascan

	Do an absolute scan of the specified motor.
ascan scans one motor, as specified by motor. The motor starts at the
position given by start_pos and ends at the position given by final_pos.
The step size is (start_pos-final_pos)/nr_interv. The number of data points collected
will be nr_interv+1. Count time is given by time which if positive,
specifies seconds and if negative, specifies monitor counts.

	
class scan.ascanc

	Do an absolute continuous scan of the specified motor.
ascanc scans one motor, as specified by motor.

	
class scan.ascanct

	Do an absolute continuous scan of the specified motor.
ascanc scans one motor, as specified by motor. (introduced with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

	
class scan.ascanh

	Do an absolute scan of the specified motor.
ascan scans one motor, as specified by motor. The motor starts at the
position given by start_pos and ends at the position given by final_pos.
The step size is (start_pos-final_pos)/nr_interv. The number of data points collected
will be nr_interv+1. Count time is given by time which if positive,
specifies seconds and if negative, specifies monitor counts.

	
class hkl.br

	Move the diffractometer to the reciprocal space
coordinates given by H, K and L. If a fourth parameter is given, the combination
of angles to be set is the correspondig to the given index. The index of the
angles combinations are then changed.

	
class hkl.ca

	Calculate motor positions for given H K L according to the current
operation mode (trajectory 0).

	
class hkl.caa

	Calculate motor positions for given H K L according to the current
operation mode (all trajectories).

	
class hkl.ci

	Calculate hkl for given angle values.

	
class demo.clear_sar_demo

	Undoes changes done with sar_demo

	
class expert.commit_ctrllib

	Puts the contents of the given data in a file inside the pool

	
class hkl.computeub

	Compute UB matrix with reflections 0 and 1.

	
class standard.ct

	Count for the specified time on the active measurement group

	
class scan.d2scan

	two-motor scan relative to the starting position.
d2scan scans two motors, as specified by motor1 and motor2.
Each motor moves the same number of intervals. If each motor is at a
position X before the scan begins, it will be scanned from X+start_posN
to X+final_posN (where N is one of 1,2).
The step size for each motor is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1.
Count time is given by time which if positive, specifies seconds and
if negative, specifies monitor counts.

	
class scan.d2scanc

	continuous two-motor scan relative to the starting positions

	
class scan.d2scanct

	continuous two-motor scan relative to the starting positions
(introduced with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

	
class scan.d3scan

	three-motor scan .
d3scan scans three motors, as specified by motor1, motor2 and motor3.
Each motor moves the same number of intervals. If each motor is at a
position X before the scan begins, it will be scanned from X+start_posN
to X+final_posN (where N is one of 1,2,3)
The step size for each motor is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1.
Count time is given by time which if positive, specifies seconds and
if negative, specifies monitor counts.

	
class scan.d3scanc

	continuous three-motor scan

	
class scan.d3scanct

	continuous three-motor scan (introduced with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

	
class scan.d4scan

	four-motor scan relative to the starting positions
a4scan scans four motors, as specified by motor1, motor2, motor3 and motor4.
Each motor moves the same number of intervals. If each motor is at a
position X before the scan begins, it will be scanned from X+start_posN
to X+final_posN (where N is one of 1,2,3,4).
The step size for each motor is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1.
Count time is given by time which if positive, specifies seconds and
if negative, specifies monitor counts.
Upon termination, the motors are returned to their starting positions.

	
class scan.d4scanc

	continuous four-motor scan relative to the starting positions

	
class scan.d4scanct

	continuous four-motor scan relative to the starting positions
(introduced with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

	
class expert.defctrl

	Creates a new controller
‘role_prop’ is a sequence of roles and/or properties.
- A role is defined as <role name>=<role value> (only applicable to pseudo controllers)
- A property is defined as <property name> <property value>

If both roles and properties are supplied, all roles must come before properties.
All controller properties that don’t have default values must be given.

Example of creating a motor controller (with a host and port properties):

[1]: defctrl SuperMotorController myctrl host homer.springfield.com port 5000

Example of creating a Slit pseudo motor (sl2t and sl2b motor roles, Gap and
Offset pseudo motor roles):

[1]: defctrl Slit myslit sl2t=mot01 sl2b=mot02 Gap=gap01 Offset=offset01

	
class expert.defelem

	Creates an element on a controller with an axis

	
class expert.defm

	Creates a new motor in the active pool

	
class expert.defmeas

	Create a new measurement group. First channel in channel_list MUST
be an internal sardana channel. At least one channel MUST be a
Counter/Timer (by default, the first Counter/Timer in the list will
become the master).

	
class scan.dmultiscan

	Multiple motor scan relative to the starting positions.
dmultiscan scans N motors, as specified by motor1, motor2,…,motorN.
Each motor moves the same number of intervals If each motor is at a
position X before the scan begins, it will be scanned from X+start_posN
to X+final_posN (where N is one of 1,2,…)
The step size for each motor is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1.
Count time is given by time which if positive, specifies seconds and
if negative, specifies monitor counts.

	
class scan.dscan

	motor scan relative to the starting position.
dscan scans one motor, as specified by motor. If motor motor is at a
position X before the scan begins, it will be scanned from X+start_pos
to X+final_pos. The step size is (start_pos-final_pos)/nr_interv.
The number of data points collected will be nr_interv+1. Count time is
given by time which if positive, specifies seconds and if negative,
specifies monitor counts.

	
class scan.dscanc

	continuous motor scan relative to the starting position.

	
class scan.dscanct

	continuous motor scan relative to the starting position
(introduced with SEP6 [http://www.sardana-controls.org/sep/?SEP6.md])

	
class env.dumpenv

	Dumps the complete environment

	
class expert.edctrl

	Returns the contents of the library file which contains the given
controller code.

	
class expert.edctrllib

	Returns the contents of the given library file

	
class hkl.freeze

	Set psi value for psi constant modes.

	
class scan.fscan

	N-dimensional scan along user defined paths.
The motion path for each motor is defined through the evaluation of a
user-supplied function that is evaluated as a function of the independent
variables.
-independent variables are supplied through the indepvar string.
The syntax for indepvar is “x=expresion1,y=expresion2,…”
-If no indep vars need to be defined, write “!” or “*” or “None”
-motion path for motor is generated by evaluating the corresponding
function ‘func’
-Count time is given by integ_time. If integ_time is a scalar, then
the same integ_time is used for all points. If it evaluates as an array
(with same length as the paths), fscan will assign a different integration
time to each acquisition point.
-If integ_time is positive, it specifies seconds and if negative, specifies
monitor counts.

IMPORTANT Notes:
-no spaces are allowed in the indepvar string.
-all funcs must evaluate to the same number of points

EXAMPLE: fscan x=[1,3,5,7,9],y=arange(5) motor1 x**2 motor2 sqrt(y*x-3) 0.1

	
class communication.get

	Reads and outputs the data from the communication channel

	
class hkl.getmode

	Get operation mode.

	
class hkl.hklscan

	Scan h k l axes.

	
class hkl.hscan

	Scan h axis.

	
class hkl.kscan

	Scan k axis.

	
class hkl.latticecal

	Calibrate lattice parameters a, b or c to current 2theta value.

	
class hkl.loadcrystal

	Load crystal information from file

	
class env.load_env

	Read environment variables from config_env.xml file

	
class lists.ls0d

	Lists all 0D experiment channels

	
class lists.ls1d

	Lists all 1D experiment channels

	
class lists.ls2d

	Lists all 2D experiment channels

	
class lists.lsa

	Lists all existing objects

	
class hkl.lscan

	Scan l axis.

	
class lists.lscom

	Lists all communication channels

	
class lists.lsct

	Lists all Counter/Timers

	
class lists.lsctrl

	Lists all existing controllers

	
class lists.lsctrllib

	Lists all existing controller classes

	
class lists.lsdef

	List all macro definitions

	
class env.lsenv

	Lists the environment

	
class lists.lsexp

	Lists all experiment channels

	
class lists.lsi

	Lists all existing instruments

	
class lists.lsior

	Lists all IORegisters

	
class lists.lsm

	Lists all motors

	
class lists.lsmac

	Lists existing macros

	
class lists.lsmaclib

	Lists existing macro libraries.

	
class lists.lsmeas

	List existing measurement groups

	
class lists.lspc

	Lists all pseudo counters

	
class lists.lspm

	Lists all existing motors

	
class env.lsvo

	Lists the view options

	
class mca.mca_start

	Starts an mca

	
class mca.mca_stop

	Stops an mca

	
class scan.mesh

	2d grid scan .
The mesh scan traces out a grid using motor1 and motor2.
The first motor scans from m1_start_pos to m1_final_pos using the specified
number of intervals. The second motor similarly scans from m2_start_pos
to m2_final_pos. Each point is counted for for integ_time seconds
(or monitor counts, if integ_time is negative).
The scan of motor1 is done at each point scanned by motor2. That is, the
first motor scan is nested within the second motor scan.

	
class scan.meshc

	2d grid scan. scans continuous

	
class standard.mstate

	Prints the state of a motor

	
class standard.mv

	Move motor(s) to the specified position(s)

	
class standard.mvr

	Move motor(s) relative to the current position(s)

	
class hkl.newcrystal

	Create a new crystal (if it does not exist) and select it.

	
class hkl.or0

	Set primary orientation reflection.

	
class hkl.or1

	Set secondary orientation reflection.

	
class hkl.orswap

	Swap values for primary and secondary vectors.

	
class hkl.pa

	Prints information about the active diffractometer.

	
class expert.prdef

	Returns the the macro code for the given macro name.

	
class communication.put

	Sends a string to the communication channel

	
class standard.pwa

	Show all motor positions in a pretty table

	
class standard.pwm

	Show the position of the specified motors in a pretty table

	
class ioregister.read_ioreg

	Reads an output register

	
class expert.relctrlcls

	Reloads the given controller class code from the pool server filesystem.

	
class expert.relctrllib

	Reloads the given controller library code from the pool server filesystem.

	
class expert.rellib

	Reloads the given python library code from the macro server filesystem.

Warning

use with extreme care! Accidentally reloading a system
module or an installed python module may lead to unpredictable
behavior

Warning

Prior to the Sardana version 1.6.0 this macro was successfully
reloading python libraries located in the MacroPath.
The MacroPath is not a correct place to locate your python
libraries. They may be successfully loaded on the MacroServer
startup, but this can not be guaranteed.
In order to use python libraries within your macro code,
locate them in either of valid system PYTHONPATH or
MacroServer’s PythonPath property (of the host where
MacroServer runs).
In order to achieve the previous behavior, just configure the
the same directory in both system PYTHONPATH (or MacroServer’s
PythonPath) and MacroPath.

Note

if python module is used by any macro, don’t forget to reload
the corresponding macros afterward so the changes take effect.

	
class expert.relmac

	Reloads the given macro code from the macro server filesystem.
Attention: All macros inside the same file will also be reloaded.

	
class expert.relmaclib

	Reloads the given macro library code from the macro server filesystem.

	
class standard.report

	Logs a new record into the message report system (if active)

… class:: expert.renameelem

Renames any type of Pool elements apart of Pools

	
class demo.sar_demo

	Sets up a demo environment. It creates many elements for testing

	
class expert.sar_info

	Prints details about the given sardana object

	
class hkl.savecrystal

	Save crystal information to file.

	
class scan.scanhist

	Shows scan history information. Give optional parameter scan number to
display details about a specific scan

	
class expert.send2ctrl

	Sends the given data directly to the controller

	
class env.senv

	Sets the given environment variable to the given value

	
class sequence.sequence

	This macro executes a sequence of macros. As a parameter
it receives a string which is a xml structure. These macros which allow
hooks can nest another sequence (xml structure). In such a case,
this macro is executed recursively.

	
class standard.set_lim

	Sets the software limits on the specified motor hello

	
class standard.set_lm

	Sets the dial limits on the specified motor

	
class standard.set_pos

	Sets the position of the motor to the specified value

	
class standard.set_user_pos

	Sets the USER position of the motor to the specified value (by changing OFFSET and keeping DIAL)

	
class hkl.setaz

	Set hkl values of the psi reference vector.

	
class hkl.setlat

	Set the crystal lattice parameters a, b, c, alpha, beta and gamma
for the currently active diffraction pseudo motor controller.

	
class hkl.setmode

	Set operation mode.

	
class hkl.setor0

	Set primary orientation reflection choosing hkl and angle values.

	
class hkl.setor1

	Set secondary orientation reflection choosing hkl and angle values.

	
class hkl.setorn

	Set orientation reflection indicated by the index.

	
class standard.settimer

	Defines the timer channel for the active measurement group

	
class env.setvo

	Sets the given view option to the given value

	
class hkl.th2th

	Relative scan around current position in del and th with d_th=2*d_delta.

	
class hkl.ubr

	Move the diffractometer to the reciprocal space coordinates given by H, K and L und update.

	
class standard.uct

	Count on the active measurement group and update

	
class expert.udefctrl

	Deletes an existing controller

	
class expert.udefelem

	Deletes an existing element

	
class expert.udefmeas

	Deletes an existing measurement group

	
class standard.umv

	Move motor(s) to the specified position(s) and update

	
class standard.umvr

	Move motor(s) relative to the current position(s) and update

	
class standard.tw

	Tweak motor by variable delta

	
class env.usenv

	Unsets the given environment variable

	
class env.usetvo

	Resets the value of the given view option

	
class standard.wa

	Show all motor positions

	
class hkl.wh

	Show principal axes and reciprocal space positions.

Prints the current reciprocal space coordinates (H K L) and the user
positions of the principal motors. Depending on the diffractometer geometry,
other parameters such as the angles of incidence and reflection (ALPHA and
BETA) and the incident wavelength (LAMBDA) may be displayed.

	
class standard.wm

	Show the position of the specified motors.

	
class ioregister.write_ioreg

	Writes a value to an input register

	
class standard.wu

	Show all user motor positions

	
class standard.wum

	Show the user position of the specified motors.

macroserver

Functions

Classes

	
	MacroServer

	

	

MacroServer

[image: Inheritance diagram of MacroServer]

	
class MacroServer(full_name, name=None, macro_path=None, environment_db=None, recorder_path=None)

	Bases: sardana.macroserver.mscontainer.MSContainer, sardana.macroserver.msbase.MSObject, sardana.sardanamanager.SardanaElementManager, sardana.sardanamanager.SardanaIDManager

msbase

This module is part of the Python MacroServer libray. It defines the base
classes for MacroServer object

Functions

Classes

	
	MSBaseObject

	
	MSObject

	

MSBaseObject

[image: Inheritance diagram of MSBaseObject]

	
class MSBaseObject(**kwargs)

	Bases: sardana.sardanabase.SardanaBaseObject

The MacroServer most abstract object.

MSObject

[image: Inheritance diagram of MSObject]

	
class MSObject(**kwargs)

	Bases: sardana.sardanabase.SardanaObjectID, sardana.macroserver.msbase.MSBaseObject

A macro server object that besides the name and reference to the
macro server base object has:

	_id : the internal identifier

mscontainer

This module is part of the Python Macro Server libray. It defines the base
classes for a macro server container element

Functions

Classes

	
	MSContainer

	

	

MacroServer

[image: Inheritance diagram of MSContainer]

	
class MSContainer

	Bases: sardana.sardanacontainer.SardanaContainer

msdoor

This module contains the class definition for the macro server door

Functions

Classes

	
	MSDoor

	

	

MSDoor

[image: Inheritance diagram of MSDoor]

	
class MSDoor(**kwargs)

	Bases: sardana.macroserver.msbase.MSObject

Sardana door object

msenvmanager

This module contains the class definition for the MacroServer environment
manager

Functions

Classes

	
	EnvironmentManager

	

	

EnvironmentManager

[image: Inheritance diagram of EnvironmentManager]

	
class EnvironmentManager(macro_server, environment_db=None)

	Bases: sardana.macroserver.msmanager.MacroServerManager

The MacroServer environment manager class. It is designed to be a
singleton for the entire application.

msexception

This module contains the class definition for the MacroServer environment
manager

Functions

Classes

	
	MacroServerException

	

	

MacroServerException

	
class MacroServerException(*args, **kwargs)

	Bases: sardana.sardanaexception.SardanaException

msmacromanager

This module contains the class definition for the MacroServer macro
manager

Functions

Classes

	
	MacroManager

	
	MacroExecutor

	

MacroManager

	
class MacroManager(macro_server, macro_path=None)

	Bases: sardana.macroserver.msmanager.MacroServerManager

MacroExecutor

	
class MacroExecutor(door)

	Bases: taurus.core.util.log.Logger

msmanager

Functions

Classes

	
	MacroServerManager

	

	

MacroServerManager

[image: Inheritance diagram of MacroServerManager]

	
class MacroServerManager(macro_server)

	Bases: taurus.core.util.log.Logger

Base Class for macro server managers

msmetamacro

This module contains the class definition for the MacroServer meta macro
information

Functions

Classes

	
	MacroLibrary

	
	MacroClass

	
	MacroFunction

MacroLibrary

	
class MacroLibrary(**kwargs)

	Bases: sardana.sardanameta.SardanaLibrary

Object representing a python module containing macro classes and/or
macro functions. Public members:

	module - reference to python module

	file_path - complete (absolute) path (with file name at the end)

	file_name - file name (including file extension)

	path - complete (absolute) path

	name - (=module name) module name (without file extension)

	macros - dict<str, MacroClass>

	
	exc_info - exception information if an error occurred when loading

	the module

	
serialize(*args, **kwargs)

	Returns a serializable object describing this object.

	Returns

	a serializable dict

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
get_macro(meta_name)

	Returns a :class:~`sardana.sardanameta.SardanaCode` for the
given meta name or None if the meta does not exist in this library.

	Parameters

	meta_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta name (class, function)

	Returns

	a meta or None

	Return type

	:class:~`sardana.sardanameta.SardanaCode`

	
get_macros()

	Returns a sequence of the meta (class and functions) that belong to
this library.

	Returns

	a sequence of meta (class and functions) that belong to this library

	Return type

	seq<:class:~`sardana.sardanameta.SardanaCode`>

	
has_macro(meta_name)

	Returns True if the given meta name belongs to this library
or False otherwise.

	Parameters

	meta_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta name

	Returns

	True if the given meta (class or function) name belongs to this
library or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
has_macros()

	Returns True if any meta object exists in the library
or False otherwise.

	Returns

	True if any meta object (class or function) exists
in the library or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
add_macro_class(meta_class)

	Adds a new :class:~`sardana.sardanameta.SardanaClass` to this
library.

	Parameters

	meta_class (:class:~`sardana.sardanameta.SardanaClass`) – the meta class to be added to this library

	
get_macro_class(meta_class_name)

	Returns a :class:~`sardana.sardanameta.SardanaClass` for the
given meta class name or None if the meta class does not exist in this
library.

	Parameters

	meta_class_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta class name

	Returns

	a meta class or None

	Return type

	:class:~`sardana.sardanameta.SardanaClass`

	
get_macro_classes()

	Returns a sequence of the meta classes that belong to this library.

	Returns

	a sequence of meta classes that belong to this library

	Return type

	seq<:class:~`sardana.sardanameta.SardanaClass`>

	
has_macro_class(meta_class_name)

	Returns True if the given meta class name belongs to this library
or False otherwise.

	Parameters

	meta_class_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta class name

	Returns

	True if the given meta class name belongs to this library
or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
add_macro_function(meta_function)

	Adds a new :class:~`sardana.sardanameta.SardanaFunction` to this
library.

	Parameters

	meta_function (:class:~`sardana.sardanameta.SardanaFunction`) – the meta function to be added to this library

	
get_macro_function(meta_function_name)

	Returns a :class:~`sardana.sardanameta.SardanaFunction` for the
given meta function name or None if the meta function does not exist in
this library.

	Parameters

	meta_function_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta function name

	Returns

	a meta function or None

	Return type

	:class:~`sardana.sardanameta.SardanaFunction`

	
get_macro_functions()

	Returns a sequence of the meta functions that belong to this library.

	Returns

	a sequence of meta functions that belong to this library

	Return type

	seq<:class:~`sardana.sardanameta.SardanaFunction`>

	
has_macro_function(meta_function_name)

	Returns True if the given meta function name belongs to this library
or False otherwise.

	Parameters

	meta_function_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta function name

	Returns

	True if the given meta function name belongs to this library
or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

Parameterizable

	
class Parameterizable

	Bases: object [https://docs.python.org/dev/library/functions.html#object]

Helper class to handle parameter and result definition for a
MacroClass or a
MacroFunction

MacroClass

	
class MacroClass(**kwargs)

	Bases: sardana.sardanameta.SardanaClass, sardana.macroserver.msmetamacro.Parameterizable

	
serialize(*args, **kwargs)

	Returns a serializable object describing this object.

	Returns

	a serializable dict

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

MacroFunction

	
class MacroFunction(**kwargs)

	Bases: sardana.sardanameta.SardanaFunction, sardana.macroserver.msmetamacro.Parameterizable

	
serialize(*args, **kwargs)

	Returns a serializable object describing this object.

	Returns

	a serializable dict

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

msparameter

This module contains the definition of the macroserver parameters for
macros

Functions

Classes

	
	ParamType

	

	

ParamType

	
class ParamType(macro_server, name)

	Bases: sardana.macroserver.msbase.MSBaseObject

mstypemanager

This module contains the definition of the macroserver data type manager

Functions

Classes

	
	TypeManager

	

	

TypeManager

	
class TypeManager(macro_server)

	Bases: sardana.macroserver.msmanager.MacroServerManager

tango

Modules

	core

	pool

	macroserver

core

Modules

	SardanaDevice

SardanaDevice

Generic Sardana Tango device module

Classes

	
	SardanaDevice

	
	SardanaDeviceClass

	

SardanaDevice

[image: Inheritance diagram of SardanaDevice]

	
class SardanaDevice(dclass, name)

	Bases: PyTango.Device_4Impl, taurus.core.util.log.Logger

SardanaDevice represents the base class for all Sardana
PyTango.DeviceImpl classes

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_alias()

	Returns this device alias name

	Returns

	this device alias

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
alias

	the device alias name

	
get_full_name()

	Compose full name from the TANGO_HOST information and device name.

In case Sardana is used with Taurus 3 the full name is of format
“dbhost:dbport/<domain>/<family>/<member>” where dbhost may be either
FQDN or PQDN, depending on the TANGO_HOST configuration.

In case Sardana is used with Taurus 4 the full name is of format
“tango://dbhost:dbport/<domain>/<family>/<member>” where dbhost is
always FQDN.

	Returns

	this device full name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
init_device()

	Initialize the device. Called during startup after init() and
every time the tango Init command is executed.
Override when necessary but always call the method from your super
class

	
init_device_nodb()

	Internal method. Initialize the device when tango database is not
being used (example: in demos)

	
delete_device()

	Clean the device. Called during shutdown and every time the tango
Init command is executed.
Override when necessary but always call the method from your super
class

	
set_change_events(evts_checked, evts_not_checked)

	Helper method to set change events on attributes

	Parameters

	
	evts_checked (seq<str [https://docs.python.org/dev/library/stdtypes.html#str]>) – list of attribute names to activate change events programatically
with tango filter active

	evts_not_checked (seq<str [https://docs.python.org/dev/library/stdtypes.html#str]>) – list of attribute names to activate change events programatically
with tango filter inactive. Use this with care! Attributes
configured with no change event filter may potentially generated a
lot of events!

	
initialize_dynamic_attributes()

	Initialize dynamic attributes. Default implementation does nothing.
Override when necessary.

	
get_event_thread_pool()

	Return the ThreadPool [http://taurus-scada.org/devel/api/taurus/core/util/_ThreadPool.html#taurus.core.util.ThreadPool] used by sardana to
send tango events.

	Returns

	the sardana ThreadPool [http://taurus-scada.org/devel/api/taurus/core/util/_ThreadPool.html#taurus.core.util.ThreadPool]

	Return type

	ThreadPool [http://taurus-scada.org/devel/api/taurus/core/util/_ThreadPool.html#taurus.core.util.ThreadPool]

	
get_attribute_by_name(attr_name)

	Gets the attribute for the given name.

	Parameters

	attr_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – attribute name

	Returns

	the attribute object

	Return type

	Attribute

	
get_wattribute_by_name(attr_name)

	Gets the writable attribute for the given name.

	Parameters

	attr_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – attribute name

	Returns

	the attribute object

	Return type

	WAttribute

	
get_database()

	Helper method to return a reference to the current tango database

	Returns

	the Tango database

	Return type

	Database

	
set_write_attribute(attr, w_value)

	

	
set_attribute(attr, value=None, w_value=None, timestamp=None, quality=None, error=None, priority=1, synch=True)

	Sets the given attribute value. If timestamp is not given, now is
used as timestamp. If quality is not given VALID is assigned. If error
is given an error event is sent (with no value and quality INVALID).
If priority is > 1, the event filter is temporarily disabled so the event
is sent for sure. If synch is set to True, wait for fire event to finish

	Parameters

	
	attr (PyTango.Attribute) – the tango attribute

	value (object [https://docs.python.org/dev/library/functions.html#object]) – the value to be set (not mandatory if setting an error)
[default: None]

	w_value – the write value to be set (not mandatory)
[default: None, meaning maintain current write value]

	timestamp (float or PyTango.TimeVal) – the timestamp associated with the operation [default: None, meaning
use now as timestamp]

	quality (PyTango.AttrQuality) – attribute quality [default: None, meaning VALID]

	error (PyTango.DevFailed) – a tango DevFailed error or None if not an error [default: None]

	priority (int [https://docs.python.org/dev/library/functions.html#int]) – event priority [default: 1, meaning normal priority]. If
priority is > 1, the event filter is temporarily disabled so the
event is sent for sure. The event filter is restored to the
previous value

	synch – If synch is set to True, wait for fire event to finish.
If False, a job is sent to the sardana thread pool and the method
returns immediately [default: True]

	
set_attribute_push(attr, value=None, w_value=None, timestamp=None, quality=None, error=None, priority=1, synch=True)

	Synchronous internal implementation of set_attribute() (synch
is passed to this method because it might need to know if it is being
executed in a synchronous or asynchronous context).

	
calculate_tango_state(ctrl_state, update=False)

	Calculate tango state based on the controller state.

	Parameters

	
	ctrl_state (State) – the state returned by the controller

	update (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True, set the state of this device with the calculated tango
state [default: False:

	Returns

	the corresponding tango state

	Return type

	PyTango.DevState

	
calculate_tango_status(ctrl_status, update=False)

	Calculate tango status based on the controller status.

	Parameters

	
	ctrl_status (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the status returned by the controller

	update (bool [https://docs.python.org/dev/library/functions.html#bool]) – if True, set the state of this device with the calculated tango
state [default: False:

	Returns

	the corresponding tango state

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

SardanaDeviceClass

[image: Inheritance diagram of SardanaDeviceClass]

	
class SardanaDeviceClass(name)

	Bases: PyTango.DeviceClass

SardanaDeviceClass represents the base class for all Sardana
PyTango.DeviceClass classes

	
class_property_list = {}

	Sardana device class properties definition

See also

server

	
device_property_list = {}

	Sardana device properties definition

See also

server

	
cmd_list = {}

	Sardana device command definition

See also

server

	
attr_list = {}

	Sardana device attribute definition

See also

server

	
write_class_property()

	Write class properties ProjectTitle, Description,
doc_url, InheritedFrom and __icon

	
dyn_attr(dev_list)

	Invoked to create dynamic attributes for the given devices.
Default implementation calls
SardanaDevice.initialize_dynamic_attributes() for each device

	Parameters

	dev_list (PyTango.DeviceImpl) – list of devices

	
device_name_factory(dev_name_list)

	Builds list of device names to use when no Database is being used

	Parameters

	dev_name_list (seq<obj:list>) – list to be filled with device names

pool

Modules

	Pool

	PoolDevice

	Controller

	Motor

	I/O register

	Counter/Timer

	0D experiment channel

	1D experiment channel

	2D experiment channel

	PseudoMotor

	PseudoCounter

Pool

Classes

	
	Pool

	
	PoolClass

	

Pool

[image: Inheritance diagram of Pool]

	
class Pool(cl, name)

	Bases: PyTango.Device_4Impl, taurus.core.util.log.Logger

	
ElementsCache = None

	

	
init(full_name)

	

	
get_full_name()

	Compose full name from the TANGO_HOST information and device name.

In case Sardana is used with Taurus 3 the full name is of format
“dbhost:dbport/<domain>/<family>/<member>” where dbhost may be either
FQDN or PQDN, depending on the TANGO_HOST configuration.

In case Sardana is used with Taurus 4 the full name is of format
“tango://dbhost:dbport/<domain>/<family>/<member>” where dbhost is
always FQDN.

	Returns

	this device full name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
pool

	

	
delete_device

	

	
init_device

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
read_ControllerLibList(attr)

	

	
read_ControllerClassList(attr)

	

	
read_ControllerList(attr)

	

	
read_InstrumentList(attr)

	

	
read_ExpChannelList(attr)

	

	
read_AcqChannelList(attr)

	

	
read_MotorGroupList(attr)

	

	
read_MotorList(attr)

	

	
read_TriggerGateList(attr)

	

	
read_MeasurementGroupList(attr)

	

	
read_IORegisterList(attr)

	

	
read_ComChannelList(attr)

	

	
getElements(cache=True)

	

	
read_Elements(attr)

	

	
is_Elements_allowed(req_type)

	

	
is_ControllerLibList_allowed(req_type)

	

	
is_ControllerClassList_allowed(req_type)

	

	
is_ControllerList_allowed(req_type)

	

	
is_InstrumentList_allowed(req_type)

	

	
is_ExpChannelList_allowed(req_type)

	

	
is_TriggerGateList_allowed(req_type)

	

	
is_AcqChannelList_allowed(req_type)

	

	
is_MotorGroupList_allowed(req_type)

	

	
is_MotorList_allowed(req_type)

	

	
is_MeasurementGroupList_allowed(req_type)

	

	
is_IORegisterList_allowed(req_type)

	

	
is_ComChannelList_allowed(req_type)

	

	
CreateController(argin)

	Tango command to create controller.

	Parameters

	argin (list<str>) – Must give either:

	
	A JSON encoded dict as first string with:

	
	mandatory keys: ‘type’, ‘library’, ‘klass’ and ‘name’ (values are
strings).

	
	optional keys:

	
	’properties’: a dict with keys being property names and values
the property values

	’roles’: a dict with keys being controller roles and values being
element names. (example: { ‘gap’ : ‘motor21’, ‘offset’ : ‘motor55’ }).
Only applicable of pseudo controllers

	a sequence of strings: <type>, <library>, <class>, <name>
[, <role_name>’=’<element name>] [, <property name>, <property value>]

Examples:

data = dict(type='Motor', library='DummyMotorController',
 klass='DummyMotorController',
 name='my_motor_ctrl_1')
pool.CreateController([json.dumps(data)])

pool.CreateController(['Motor', 'DummyMotorController', 'DummyMotorController',
 'my_motor_ctrl_2'])

	Returns

	None

	
CreateInstrument(argin)

	Tango command to create instrument.

	Parameters

	argin (list<str>) – Must give either:

	
	A JSON encoded dict as first string with:

	
	mandatory keys: ‘full_name’, ‘klass’ (values are strings).

	a sequence of strings: <full_name>, <class>

Examples:

pool.CreateInstrument(['/OH', 'NXhutch'])
pool.CreateInstrument(['/OH/Mono', 'NXmonochromator'])
pool.CreateInstrument(['/EH', 'NXhutch'])
pool.CreateInstrument(['/EH/Pilatus', 'NXdetector'])

	Returns

	None

	
CreateElement(argin)

	Tango command to create element (motor, counter/timer, 0D, 1D, 2D, IORegister).

	Parameters

	argin (list<str>) – Must give either:

	
	A JSON encoded dict as first string with:

	
	mandatory keys: ‘type’, ‘ctrl_name’, ‘axis’, ‘name’ (values are
strings).

	
	optional keys:

	
	’full_name’ : a string representing the full tango device name

	a sequence of strings: <type>, <ctrl_name>, <axis>, <name> [, <full_name>]

Examples:

data = dict(type='Motor', ctrl_name='my_motor_ctrl_1', axis='4', name='theta',
 full_name='BL99/EH/THETA')
pool.CreateElement([json.dumps(data)])

pool.CreateElement(['Motor', 'my_motor_ctrl_1', '1', 'phi', 'BL99/EH/PHI'])

	Returns

	None

	
RenameElement(argin)

	Tango command to rename the element (rename Pool element and put new alias in
the Tango Database).

	Parameters

	argin –

Two elements sequence of strings: <old element name>, <new element name>

	Returns

	None

	
CreateMotorGroup(argin)

	Tango command to create motor group.

	Parameters

	argin (list<str>) – Must give either:

	
	A JSON encoded dict as first string with:

	
	mandatory keys: ‘name’, ‘elements’ (with value being a list of moveables)

	
	optional keys:

	
	’full_name’: with value being a full tango device name

	a sequence of strings: <motor group name> [, <element>]”

Examples:

data = dict(name='diffrac_motor_group', elements=['theta', 'theta2', 'phi'])
pool.CreateMotorGroup([json.dumps(data)])

pool.CreateMotorGroup(['diffrac_mg', 'theta', 'theta2'])

	Returns

	None

	
CreateMeasurementGroup(argin)

	Tango command to create measurement group.

	Parameters

	argin (list<str>) – Must give either:

	
	A JSON encoded dict as first string with:

	
	mandatory keys: ‘name’, ‘elements’ (with value being a list of acquirables)”

	
	optional keys:

	
	’full_name’: with value being a full tango device name

	a sequence of strings: <motor group name> [, <element>]”

An acquirable is either a sardana element (counter/timer, 0D, 1D, 2D, motor) or
a tango attribute (ex: sys/tg_test/1/short_spectrum_ro)

Examples:

data = dict(name='my_exp_01', elements=['timer', 'C1', 'sys/tg_test/1/double_scalar'])
pool.CreateMeasurementGroup([json.dumps(data)])

pool.CreateMeasurementGroup(['my_exp_02', 'timer', 'CCD1', 'sys/tg_test/1/short_spectrum_ro'])

	Returns

	None

	
on_pool_changed(evt_src, evt_type, evt_value)

	

	
DeleteElement(name)

	Tango command to delete element.

	Parameters

	argin (str [https://docs.python.org/dev/library/stdtypes.html#str]) – name of element to be deleted

	Returns

	None

	
GetControllerClassInfo(names)

	Tango command to get detailed information about a controller class.

	Parameters

	argin (str [https://docs.python.org/dev/library/stdtypes.html#str]) – Must give either:

	A JSON encoded list of controller class names

	a controller class name

Examples:

data = "DummyMotorController", "DummyCounterTimerController"
pool.GetControllerClassInfo(json.dumps(data))
pool.GetControllerClassInfo("DummyMotorController")

	Returns

	

a JSON encoded string describing the controller class

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
ReloadControllerLib(lib_name)

	Tango command to reload the controller library code.

	Parameters

	argin (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the controller library name (without extension)

	Returns

	None

	
ReloadControllerClass(class_name)

	Tango command to reload the controller class code (reloads the entire library
where the class is described).

	Parameters

	argin (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the controller class name

	Returns

	None

	
Stop()

	Stops all elements managed by this Pool

	Parameters

	argin – None

	Returns

	None

	
Abort()

	Aborts all elements managed by this Pool

	Parameters

	argin – None

	Returns

	None

	
SendToController(stream)

	

	
GetFile(name)

	

	
PutFile(file_data)

	

	
GetControllerCode(argin)

	

	
SetControllerCode(argin)

	

PoolClass

[image: Inheritance diagram of PoolClass]

	
class PoolClass(name)

	Bases: PyTango.DeviceClass

PoolDevice

Generic Tango Pool Device base classes

Classes

	
	PoolDevice

	PoolDeviceClass

	
	PoolElementDevice

	PoolElementDeviceClass

	
	PoolGroupDevice

	PoolGroupDeviceClass

PoolDevice

[image: Inheritance diagram of PoolDevice]

	
class PoolDevice(dclass, name)

	Bases: sardana.tango.core.SardanaDevice.SardanaDevice

Base Tango Pool device class

	
ExtremeErrorStates = (<_mock._Mock object>, <_mock._Mock object>)

	list of extreme error states

	
BusyStates = (<_mock._Mock object>, <_mock._Mock object>)

	list of busy states

	
BusyRetries = 3

	Maximum number of retries in a busy state

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
pool_device

	The tango pool device

	
pool

	The sardana pool object

	
get_element()

	Returns the underlying pool element object

	Returns

	the underlying pool element object

	Return type

	PoolElement

	
set_element(element)

	Associates this device with the sardana element

	Parameters

	element (PoolElement) – the sardana element

	
element

	The underlying sardana element

	
init_device()

	Initialize the device. Called during startup after init() and
every time the tango Init command is executed.
Override when necessary but always call the method from your super
class

	
delete_device()

	Clean the device. Called during shutdown and every time the tango
Init command is executed.
Override when necessary but always call the method from your super
class

	
Abort()

	The tango abort command. Aborts the active operation

	
is_Abort_allowed()

	Returns True if it is allowed to execute the tango abort command

	Returns

	True if it is allowed to execute the tango abort command or
False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
Stop()

	The tango stop command. Stops the active operation

	
is_Stop_allowed()

	Returns True if it is allowed to execute the tango stop command

	Returns

	True if it is allowed to execute the tango stop command or
False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
get_dynamic_attributes()

	Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
initialize_dynamic_attributes()

	Initializes this device dynamic attributes

	
remove_unwanted_dynamic_attributes(new_std_attrs, new_dyn_attrs)

	Removes unwanted dynamic attributes from previous device creation

	
add_dynamic_attribute(attr_name, data_info, attr_info, read, write, is_allowed)

	Adds a single dynamic attribute

	Parameters

	
	attr_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the attribute name

	data_info (seq< CmdArgType, AttrDataFormat, AttrWriteType >) – tango attribute information

	attr_info – attribute information

	read – read method for the attribute

	write – write method for the attribute

	is_allowed – is allowed method

	
add_standard_attribute(attr_name, data_info, attr_info, read, write, is_allowed)

	Adds a single standard dynamic attribute

	Parameters

	
	attr_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the attribute name

	data_info (seq< CmdArgType, AttrDataFormat, AttrWriteType >) – tango attribute information

	attr_info – attribute information

	read – read method for the attribute

	write – write method for the attribute

	is_allowed – is allowed method

	
read_DynamicAttribute(attr)

	Generic read dynamic attribute.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	Parameters

	attr (Attribute) – attribute to be read

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	
write_DynamicAttribute(attr)

	Generic write dynamic attribute.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	Parameters

	attr (Attribute) – attribute to be written

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	
is_DynamicAttribute_allowed(req_type)

	Generic is dynamic attribute allowed.
Default implementation calls _is_allowed()

	Parameters

	req_type – request type

	
dev_state()

	Calculates and returns the device state. Called by Tango on a read
state request.

	Returns

	the device state

	Return type

	DevState

	
dev_status()

	Calculates and returns the device status. Called by Tango on a read
status request.

	Returns

	the device status

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
wait_for_operation()

	Waits for an operation to finish. It uses the maxumum number of
retries. Sleeps 0.01s between retries.

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] in case of a timeout

	
Restore()

	Restore tango command. Restores the attributes to their former glory.
This applies to memorized writable attributes which have a set point
stored in the database

	
get_restore_data()

	

	
get_attributes_to_restore()

	

	
restore_attribute(attribute, write_meth, db_value)

	

PoolDeviceClass

[image: Inheritance diagram of PoolDeviceClass]

	
class PoolDeviceClass(name)

	Bases: sardana.tango.core.SardanaDevice.SardanaDeviceClass

Base Tango Pool Device Class class

	
class_property_list = {}

	Sardana device class properties definition

See also

server

	
device_property_list = {'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0]}

	Sardana device properties definition

See also

server

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	Sardana device command definition

See also

server

	
attr_list = {}

	Sardana device attribute definition

See also

server

	
standard_attr_list = {}

	

PoolElementDevice

[image: Inheritance diagram of PoolElementDevice]

	
class PoolElementDevice(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolDevice

Base Tango Pool Element Device class

	
init_device()

	Initialize the device. Called during startup after init() and
every time the tango Init command is executed.
Override when necessary but always call the method from your super
class

	
read_Instrument(attr)

	Read the value of the Instrument tango attribute.
Returns the instrument full name or empty string if this element doesn’t
belong to any instrument

	Parameters

	attr (Attribute) – tango instrument attribute

	
write_Instrument(attr)

	Write the value of the Instrument tango attribute.
Sets a new instrument full name or empty string if this element doesn’t
belong to any instrument.
The instrument must have been previously created.

	Parameters

	attr (Attribute) – tango instrument attribute

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
read_DynamicAttribute(attr)

	Read a generic dynamic attribute. Calls the controller of this
element to get the dynamic attribute value

	Parameters

	attr (Attribute) – tango attribute

	
write_DynamicAttribute(attr)

	Write a generic dynamic attribute. Calls the controller of this
element to get the dynamic attribute value

	Parameters

	attr (Attribute) – tango attribute

	
read_SimulationMode(attr)

	Read the current simulation mode.

	Parameters

	attr (Attribute) – tango attribute

	
write_SimulationMode(attr)

	Sets the simulation mode.

	Parameters

	attr (Attribute) – tango attribute

PoolElementDeviceClass

[image: Inheritance diagram of PoolElementDeviceClass]

	
class PoolElementDeviceClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolDeviceClass

Base Tango Pool Element Device Class class

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]]}

	Sardana device properties definition

See also

server

	
attr_list = {'Instrument': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf59221490>, 'label': 'Instrument'}], 'SimulationMode': [[<_mock._Mock object at 0x7fbf5ce64fd0>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Simulation mode'}]}

	Sardana device attribute definition

See also

server

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
get_standard_attr_info(attr)

	Returns information about the standard attribute

	Parameters

	attr (str [https://docs.python.org/dev/library/stdtypes.html#str]) – attribute name

	Returns

	a sequence of tango data_type, data format

PoolGroupDevice

[image: Inheritance diagram of PoolGroupDevice]

	
class PoolGroupDevice(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolDevice

Base Tango Pool Group Device class

	
read_ElementList(attr)

	Read the element list.

	Parameters

	attr (Attribute) – tango attribute

	
get_element_names()

	Returns the list of element names.

	Returns

	a list of attribute names

	
elements_changed(evt_src, evt_type, evt_value)

	Callback for when the elements of this group changed

PoolGroupDeviceClass

[image: Inheritance diagram of PoolGroupDeviceClass]

	
class PoolGroupDeviceClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolDeviceClass

Base Tango Pool Group Device Class class

	
device_property_list = {'Elements': [<_mock._Mock object at 0x7fbf5ce65590>, 'elements in the group', []], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0]}

	Sardana device properties definition

See also

server

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	Sardana device command definition

See also

server

	
attr_list = {'ElementList': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65850>, <_mock._Mock object at 0x7fbf5ce65750>, 4096]]}

	Sardana device attribute definition

See also

server

Controller

Classes

	
	Controller

	
	ControllerClass

	

Controller

[image: Inheritance diagram of Controller]

	
class Controller(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolDevice

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_ctrl()

	

	
set_ctrl(ctrl)

	

	
ctrl

	

	
delete_device

	

	
init_device

	

	
get_role_ids()

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
dev_state()

	Calculates and returns the device state. Called by Tango on a read
state request.

	Returns

	the device state

	Return type

	DevState

	
dev_status()

	Calculates and returns the device status. Called by Tango on a read
status request.

	Returns

	the device status

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
read_ElementList(attr)

	

	
CreateElement(argin)

	

	
DeleteElement(argin)

	

	
get_element_names()

	

	
on_controller_changed(event_src, event_type, event_value)

	

	
get_dynamic_attributes()

	Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
read_DynamicAttribute(attr)

	Generic read dynamic attribute.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	Parameters

	attr (Attribute) – attribute to be read

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	
write_DynamicAttribute(attr)

	Generic write dynamic attribute.
Default implementation raises NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	Parameters

	attr (Attribute) – attribute to be written

	Raises

	NotImplementedError [https://docs.python.org/dev/library/exceptions.html#NotImplementedError]

	
read_LogLevel(attr)

	

	
write_LogLevel(attr)

	

ControllerClass

[image: Inheritance diagram of ControllerClass]

	
class ControllerClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Klass': [<_mock._Mock object at 0x7fbf5ce65210>, '', None], 'Library': [<_mock._Mock object at 0x7fbf5ce65210>, '', None], 'Role_ids': [<_mock._Mock object at 0x7fbf5ce654d0>, '', []], 'Type': [<_mock._Mock object at 0x7fbf5ce65210>, '', None]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'CreateElement': [[<_mock._Mock object at 0x7fbf5ce65590>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'DeleteElement': [[<_mock._Mock object at 0x7fbf5ce65210>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
attr_list = {'ElementList': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65850>, <_mock._Mock object at 0x7fbf5ce65750>, 4096]], 'LogLevel': [[<_mock._Mock object at 0x7fbf5ce65150>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Log level', 'Display level': <_mock._Mock object at 0x7fbf583256d0>, 'Memorized': 'true'}]}

	

Motor

The sardana tango motor module

Classes

	
	Motor

	
	MotorClass

	

Motor

[image: Inheritance diagram of Motor]

	
class Motor(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolElementDevice

The tango motor device class. This class exposes through a tango device
the sardana motor (PoolMotor).

The states

The motor interface knows five states which are ON, MOVING, ALARM,
FAULT and UNKNOWN. A motor device is in MOVING state when it is
moving! It is in ALARM state when it has reached one of the limit
switches and is in FAULT if its controller software is not available
(impossible to load it) or if a fault is reported from the hardware
controller. The motor is in the UNKNOWN state if an exception occurs
during the communication between the pool and the hardware controller.
When the motor is in ALARM state, its status will indicate which limit
switches is active.

The commands

The motor interface supports 3 commands on top of the Tango classical
Init, State and Status commands. These commands are summarized in the
following table:

	Command name

	Input data type

	Output data type

	Stop

	void

	void

	Abort

	void

	void

	DefinePosition

	Tango::DevDouble

	void

	SaveConfig

	void

	void

	MoveRelative

	Tango::DevDouble

	void

	Stop : It stops a running motion. This command does not have input or
output argument.

	Abort : It aborts a running motion. This command does not have input or
output argument.

	DefinePosition : Loads a position into controller. It has one input
argument which is the new position value (a double). It is allowed only in
the ON or ALARM states. The unit used for the command input value is the
physical unit: millimeters or milli-radians. It is always an absolute
position.

	SaveConfig : Write some of the motor parameters in database. Today, it
writes the motor acceleration, deceleration, base_rate and velocity into
database as motor device properties. It is allowed only in the ON or ALARM
states

	MoveRelative : Moves the motor by a relative to the current position
distance. It has one input argument which is the relative distance
(a double). It is allowed only in the ON or ALARM states. The unit used for
the command input value is the physical unit: millimeters or milli-radians.

The classical Tango Init command destroys the motor and re-create it.

The attributes

The motor interface supports several attributes which are summarized
in the following table:

	Name

	Data type

	Data format

	Writable

	Memorized

	Operator/Expert

	Position

	Tango::DevDouble

	Scalar

	R/W

	No *

	Operator

	DialPosition

	Tango::DevDouble

	Scalar

	R

	No

	Expert

	Offset

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Expert

	Acceleration

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Expert

	Base_rate

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Expert

	Deceleration

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Expert

	Velocity

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Expert

	Limit_switches

	Tango::DevBoolean

	Spectrum

	R

	No

	Expert

	SimulationMode

	Tango::DevBoolean

	Scalar

	R

	No

	Expert

	Step_per_unit

	Tango::DevDouble

	Scalar

	R/W

	Yes

	Expert

	Backlash

	Tango::DevLong

	Scalar

	R/W

	Yes

	Expert

	Position : This is read-write scalar double attribute. With the classical
Tango min_value and max_value attribute properties, it is easy to define
authorized limit for this attribute. See the definition of the
DialPosition and Offset attributes to get a precise definition of the
meaning of this attribute. It is not allowed to read or write this
attribute when the motor is in FAULT or UNKNOWN state. It is also not
possible to write this attribute when the motor is already MOVING.
The unit used for this attribute is the physical unit e.g. millimeters or
milli-radian. It is always an absolute position .

	DialPosition : This attribute is the motor dial position. The following
formula links together the Position, DialPosition, Sign and Offset attributes:

Position = Sign * DialPosition + Offset

This allows to have the motor position centered around any position
defined by the Offset attribute (classically the X ray beam position).
It is a read only attribute. To set the motor position, the user has
to use the Position attribute. It is not allowed to read this
attribute when the motor is in FAULT or UNKNOWN mode. The unit used
for this attribute is the physical unit: millimeters or milli-radian.
It is also always an absolute position.

	Offset : The offset to be applied in the motor position computation. By
default set to 0. It is a memorized attribute. It is not allowed to
read or write this attribute when the motor is in FAULT, MOVING or
UNKNOWN mode.

	Acceleration : This is an expert read-write scalar double attribute.
This parameter value is written in database when the SaveConfig command is
executed. It is not allowed to read or write this attribute when the motor is
in FAULT or UNKNOWN state.

	Deceleration : This is an expert read-write scalar double attribute.
This parameter value is written in database when the SaveConfig command is
executed. It is not allowed to read or write this attribute when the motor is
in FAULT or UNKNOWN state.

	Base_rate : This is an expert read-write scalar double attribute. This
parameter value is written in database when the SaveConfig command is executed.
It is not allowed to read or write this attribute when the motor is in
FAULT or UNKNOWN state.

	Velocity : This is an expert read-write scalar double attribute.
This parameter value is written in database when the SaveConfig command is
executed. It is not allowed to read or write this attribute when the motor is
in FAULT or UNKNOWN state.

	Limit_switches : Three limit switches are managed by this attribute.
Each of the switch are represented by a boolean value: False means inactive
while True means active. It is a read only attribute. It is not possible to
read this attribute when the motor is in UNKNOWN mode. It is a
spectrum attribute with 3 values which are:

	Data[0] : The Home switch value

	Data[1] : The Upper switch value

	Data[2] : The Lower switch value

	SimulationMode : This is a read only scalar boolean attribute. When set,
all motion requests are not forwarded to the software controller and then to
the hardware. When set, the motor position is simulated and is immediately
set to the value written by the user. To set this attribute, the user
has to used the pool device Tango interface. The value of the
position, acceleration, deceleration, base_rate, velocity and offset
attributes are memorized at the moment this attribute is set. When
this mode is turned off, if the value of any of the previously
memorized attributes has changed, it is reapplied to the memorized
value. It is not allowed to read this attribute when the motor is in
FAULT or UNKNOWN states.

	Step_per_unit : This is the number of motor step per millimeter or per
degree. It is a memorized attribute. It is not allowed to read or write this
attribute when the motor is in FAULT or UNKNOWN mode. It is also not
allowed to write this attribute when the motor is MOVING. The default
value is 1.

	Backlash : If this attribute is defined to something different than 0,
the motor will always stop the motion coming from the same mechanical
direction. This means that it could be possible to ask the motor to go
a little bit after the desired position and then to return to the
desired position. The attribute value is the number of steps the motor
will pass the desired position if it arrives from the “wrong”
direction. This is a signed value. If the sign is positive, this means
that the authorized direction to stop the motion is the increasing
motor position direction. If the sign is negative, this means that the
authorized direction to stop the motion is the decreasing motor
position direction. It is a memorized attribute. It is not allowed to
read or write this attribute when the motor is in FAULT or UNKNOWN
mode. It is also not allowed to write this attribute when the motor is
MOVING. Some hardware motor controllers are able to manage this
backlash feature. If it is not the case, the motor interface will
implement this behavior.

All the motor devices will have the already described attributes but
some hardware motor controller supports other features which are not
covered by this list of pre-defined attributes. Using Tango dynamic
attribute creation, a motor device may have extra attributes used to
get/set the motor hardware controller specific features. These are the
attributes specified on the controller with
axis_attribues.

The properties

	Sleep_bef_last_read : This property exposes the motor
instability time. It defines the time in milli-second that the software
managing a motor movement will wait between it detects the end of the
motion and the last motor position reading.

Getting motor state and limit switches using event

The simplest way to know if a motor is moving is to survey its state.
If the motor is moving, its state will be MOVING. When the motion is
over, its state will be back to ON (or ALARM if a limit switch has
been reached). The pool motor interface allows client interested by
motor state or motor limit switches value to use the Tango event
system subscribing to motor state change event. As soon as a motor
starts a motion, its state is changed to MOVING and an event is sent.
As soon as the motion is over, the motor state is updated and another
event is sent. In the same way, as soon as a change in the limit
switches value is detected, a change event is sent to client(s) which
have subscribed to change event on the Limit_Switches attribute.

Reading the motor position attribute

For each motor, the key attribute is its position. Special care has
been taken on this attribute management. When the motor is not moving,
reading the Position attribute will generate calls to the controller
and therefore hardware access. When the motor is moving, its position
is automatically read every 100 milli-seconds and stored in the cache.
This means that a client reading motor Position
attribute while the motor is moving will get the position from the
cache and will not generate extra controller calls. It
is also possible to get a motor position using the Tango event system.
When the motor is moving, an event is sent to the registered clients
when the change event criterion is true. By default, this change event
criterion is set to be a difference in position of 1. It is tunable on
a motor basis using the classical motor Position attribute abs_change
property or at the pool device basis using its DefaultMotPos_AbsChange
property. Anyway, not more than 10 events could be sent by second.
Once the motion is over, the motor position is made unavailable from
the Tango polling buffer and is read a last time after a tunable
waiting time (Sleep_bef_last_read property). A forced change event
with this value is sent to clients using events.

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_motor()

	

	
set_motor(motor)

	

	
motor

	

	
set_write_dial_position_to_db()

	

	
get_write_dial_position_from_db()

	

	
delete_device

	

	
init_device

	

	
on_motor_changed(event_source, event_type, event_value)

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
initialize_dynamic_attributes()

	Initializes this device dynamic attributes

	
read_Position(attr)

	

	
write_Position(attr)

	

	
read_Acceleration(attr)

	

	
write_Acceleration(attribute)

	

	
read_Deceleration(attr)

	

	
write_Deceleration(attribute)

	

	
read_Base_rate(attr)

	

	
write_Base_rate(attribute)

	

	
read_Velocity(attr)

	

	
write_Velocity(attribute)

	

	
read_Offset(attr)

	

	
write_Offset(attribute)

	

	
read_DialPosition(attr)

	

	
read_Step_per_unit(attr)

	

	
write_Step_per_unit(attribute)

	

	
read_Backlash(attr)

	

	
write_Backlash(attribute)

	

	
read_Sign(attr)

	

	
write_Sign(attribute)

	

	
read_Limit_switches(attr)

	

	
DefinePosition(argin)

	

	
is_DefinePosition_allowed()

	

	
SaveConfig()

	

	
is_SaveConfig_allowed()

	

	
MoveRelative(argin)

	

	
is_MoveRelative_allowed()

	

	
get_attributes_to_restore()

	Make sure position is the last attribute to restore

	
is_Position_allowed(req_type)

	Generic is_allowed

	
is_Acceleration_allowed(req_type)

	Generic is_allowed

	
is_Deceleration_allowed(req_type)

	Generic is_allowed

	
is_Base_rate_allowed(req_type)

	Generic is_allowed

	
is_Velocity_allowed(req_type)

	Generic is_allowed

	
is_Offset_allowed(req_type)

	Generic is_allowed

	
is_DialPosition_allowed(req_type)

	Generic is_allowed

	
is_Step_per_unit_allowed(req_type)

	Generic is_allowed

	
is_Backlash_allowed(req_type)

	Generic is_allowed

	
is_Sign_allowed(req_type)

	Generic is_allowed

	
is_Limit_switches_allowed(req_type)

	Generic is_allowed

MotorClass

[image: Inheritance diagram of MotorClass]

	
class MotorClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolElementDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Sleep_bef_last_read': [<_mock._Mock object at 0x7fbf5ce65150>, 'Number of mS to sleep before the last read during a motor movement', 0], '_Acceleration': [<_mock._Mock object at 0x7fbf5ce65050>, '', -1], '_Base_rate': [<_mock._Mock object at 0x7fbf5ce65050>, '', -1], '_Deceleration': [<_mock._Mock object at 0x7fbf5ce65050>, '', -1], '_Velocity': [<_mock._Mock object at 0x7fbf5ce65050>, '', -1]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'DefinePosition': [[<_mock._Mock object at 0x7fbf5ce65050>, 'New position'], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'MoveRelative': [[<_mock._Mock object at 0x7fbf5ce65050>, 'amount to move'], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'SaveConfig': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
attr_list = {'Instrument': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf59221490>, 'label': 'Instrument'}], 'SimulationMode': [[<_mock._Mock object at 0x7fbf5ce64fd0>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Simulation mode'}]}

	

	
standard_attr_list = {'Acceleration': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Memorized': 'true'}], 'Backlash': [[<_mock._Mock object at 0x7fbf5ce65150>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf5845df90>, 'Memorized': 'true'}], 'Base_rate': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Base rate', 'Memorized': 'true'}], 'Deceleration': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Memorized': 'true'}], 'DialPosition': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>], {'Display level': <_mock._Mock object at 0x7fbf5845df10>, 'label': 'Dial position'}], 'Limit_switches': [[<_mock._Mock object at 0x7fbf5ce64fd0>, <_mock._Mock object at 0x7fbf5ce65850>, <_mock._Mock object at 0x7fbf5ce65750>, 3], {'description': "This attribute is the motor limit switches state. It's an array with 3 \nelements which are:\n0 - The home switch\n1 - The upper limit switch\n2 - The lower limit switch\nFalse means not active. True means active", 'label': 'Limit switches (H,U,L)'}], 'Offset': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf5845db10>, 'Memorized': 'true'}], 'Position': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'abs_change': '1.0'}], 'Sign': [[<_mock._Mock object at 0x7fbf5ce651d0>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf5845dfd0>, 'Memorized': 'true'}], 'Step_per_unit': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Steps p/ unit', 'Display level': <_mock._Mock object at 0x7fbf5845df50>, 'Memorized': 'true'}], 'Velocity': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Memorized': 'true'}]}

	

IORegister

Classes

	
	IORegister

	
	IORegisterClass

	

IORegister

[image: Inheritance diagram of IORegister]

	
class IORegister(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolElementDevice

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_ior()

	

	
set_ior(ior)

	

	
ior

	

	
set_write_value_to_db()

	

	
get_write_value_from_db()

	

	
delete_device

	

	
init_device

	

	
on_ior_changed(event_source, event_type, event_value)

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
initialize_dynamic_attributes()

	Initializes this device dynamic attributes

	
read_Value(attr)

	

	
write_Value(attr)

	

	
is_Value_allowed(req_type)

	

	
Start()

	

IORegisterClass

[image: Inheritance diagram of IORegisterClass]

	
class IORegisterClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolElementDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Start': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
attr_list = {'Instrument': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf59221490>, 'label': 'Instrument'}], 'SimulationMode': [[<_mock._Mock object at 0x7fbf5ce64fd0>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Simulation mode'}]}

	

	
standard_attr_list = {'Value': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Memorized': 'true_without_hard_applied'}]}

	

CTExpChannel

Classes

	
	CTExpChannel

	
	CTExpChannelClass

	

CTExpChannel

[image: Inheritance diagram of CTExpChannel]

	
class CTExpChannel(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolExpChannelDevice

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_ct()

	

	
set_ct(ct)

	

	
ct

	

	
delete_device

	

	
init_device

	

	
on_ct_changed(event_source, event_type, event_value)

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
initialize_dynamic_attributes()

	Initializes this device dynamic attributes

	
read_Value(attr)

	

	
is_Value_allowed(req_type)

	

	
Start()

	

CTExpChannelClass

[image: Inheritance diagram of CTExpChannelClass]

	
class CTExpChannelClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolExpChannelDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Start': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
attr_list = {'Instrument': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf59221490>, 'label': 'Instrument'}], 'SimulationMode': [[<_mock._Mock object at 0x7fbf5ce64fd0>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Simulation mode'}]}

	

	
standard_attr_list = {'Data': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>]], 'Value': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>], {'abs_change': '1.0'}]}

	

ZeroDExpChannel

Classes

	
	ZeroDExpChannel

	
	ZeroDExpChannelClass

	

ZeroDExpChannel

[image: Inheritance diagram of ZeroDExpChannel]

	
class ZeroDExpChannel(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolExpChannelDevice

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_zerod()

	

	
set_zerod(zerod)

	

	
zerod

	

	
delete_device

	

	
init_device

	

	
on_zerod_changed(event_source, event_type, event_value)

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
initialize_dynamic_attributes()

	Initializes this device dynamic attributes

	
read_Value(attr)

	

	
read_CurrentValue(attr)

	

	
Start()

	

	
read_ValueBuffer(attr)

	

	
read_AccumulationBuffer(attr)

	

	
read_TimeBuffer(attr)

	

	
read_AccumulationType(attr)

	

	
write_AccumulationType(attr)

	

	
is_Value_allowed(req_type)

	Generic is_allowed

	
is_CurrentValue_allowed(req_type)

	Generic is_allowed

	
is_AccumulationType_allowed(req_type)

	Generic is_allowed

	
is_ValueBuffer_allowed(req_type)

	Generic is_allowed

	
is_AccumulationBuffer_allowed(req_type)

	Generic is_allowed

	
is_TimeBuffer_allowed(req_type)

	Generic is_allowed

ZeroDExpChannelClass

[image: Inheritance diagram of ZeroDExpChannelClass]

	
class ZeroDExpChannelClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolExpChannelDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Start': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
attr_list = {'AccumulationBuffer': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65850>, <_mock._Mock object at 0x7fbf5ce65750>, 16384]], 'AccumulationType': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Accumulation Type', 'Display level': <_mock._Mock object at 0x7fbf58cbe690>, 'Memorized': 'true'}], 'Instrument': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf59221490>, 'label': 'Instrument'}], 'SimulationMode': [[<_mock._Mock object at 0x7fbf5ce64fd0>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Simulation mode'}], 'TimeBuffer': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65850>, <_mock._Mock object at 0x7fbf5ce65750>, 16384]], 'ValueBuffer': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65850>, <_mock._Mock object at 0x7fbf5ce65750>, 16384]]}

	

	
standard_attr_list = {'Data': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>]], 'Value': [[<_mock._Mock object at 0x7fbf5ce65690>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>], {'abs_change': '1.0'}]}

	

OneDExpChannel

Classes

	
	OneDExpChannel

	
	OneDExpChannelClass

	

OneDExpChannel

[image: Inheritance diagram of OneDExpChannel]

	
class OneDExpChannel(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolExpChannelDevice

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_oned()

	

	
set_oned(oned)

	

	
oned

	

	
delete_device

	

	
init_device

	

	
on_oned_changed(event_source, event_type, event_value)

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
initialize_dynamic_attributes()

	Initializes this device dynamic attributes

	
read_Value(attr)

	

	
is_Value_allowed(req_type)

	

	
read_DataSource(attr)

	

	
Start()

	

OneDExpChannelClass

[image: Inheritance diagram of OneDExpChannelClass]

	
class OneDExpChannelClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolExpChannelDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Start': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
attr_list = {'DataSource': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>]], 'Instrument': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf59221490>, 'label': 'Instrument'}], 'SimulationMode': [[<_mock._Mock object at 0x7fbf5ce64fd0>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Simulation mode'}]}

	

	
standard_attr_list = {'Data': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>]], 'Value': [[<_mock._Mock object at 0x7fbf5ce65690>, <_mock._Mock object at 0x7fbf5ce656d0>, <_mock._Mock object at 0x7fbf5ce65750>, 16384], {'abs_change': '1.0'}]}

	

TwoDExpChannel

Classes

	
	TwoDExpChannel

	
	TwoDExpChannelClass

	

TwoDExpChannel

[image: Inheritance diagram of TwoDExpChannel]

	
class TwoDExpChannel(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolElementDevice

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_twod()

	

	
set_twod(twod)

	

	
twod

	

	
delete_device

	

	
init_device

	

	
on_twod_changed(event_source, event_type, event_value)

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
read_Value(attr)

	

	
is_Value_allowed(req_type)

	

	
read_DataSource(attr)

	

	
Start()

	

TwoDExpChannelClass

[image: Inheritance diagram of TwoDExpChannelClass]

	
class TwoDExpChannelClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolElementDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Start': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
attr_list = {'DataSource': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>]], 'Instrument': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'Display level': <_mock._Mock object at 0x7fbf59221490>, 'label': 'Instrument'}], 'SimulationMode': [[<_mock._Mock object at 0x7fbf5ce64fd0>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'label': 'Simulation mode'}]}

	

	
standard_attr_list = {'Value': [[<_mock._Mock object at 0x7fbf5ce65690>, <_mock._Mock object at 0x7fbf5ce656d0>, <_mock._Mock object at 0x7fbf5ce65750>, 4096, 4096], {'abs_change': '1.0'}]}

	

PseudoMotor

Classes

	
	PseudoMotor

	
	PseudoMotorClass

	

PseudoMotor

[image: Inheritance diagram of PseudoMotor]

	
class PseudoMotor(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolElementDevice

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_pseudo_motor()

	

	
set_pseudo_motor(pseudo_motor)

	

	
pseudo_motor

	

	
delete_device

	

	
init_device

	

	
on_pseudo_motor_changed(event_source, event_type, event_value)

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
initialize_dynamic_attributes()

	Initializes this device dynamic attributes

	
read_Position(attr)

	

	
write_Position(attr)

	

	
CalcPseudo(physical_positions)

	Returns the pseudo motor position for the given physical positions

	
CalcPhysical(pseudo_position)

	Returns the physical motor positions for the given pseudo motor
position assuming the current pseudo motor write positions for all the
other sibling pseudo motors

	
CalcAllPhysical(pseudo_positions)

	Returns the physical motor positions for the given pseudo motor
position(s)

	
CalcAllPseudo(physical_positions)

	Returns the pseudo motor position(s) for the given physical positions

	
MoveRelative(argin)

	

	
is_MoveRelative_allowed()

	

	
is_Position_allowed(req_type)

	Generic is_allowed

PseudoMotorClass

[image: Inheritance diagram of PseudoMotorClass]

	
class PseudoMotorClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolElementDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'DriftCorrection': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Locally apply drift correction on pseudo motors. Default is the current global drift correction in the Pool Device', None], 'Elements': [<_mock._Mock object at 0x7fbf5ce65590>, 'elements used by the pseudo', []], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'CalcAllPhysical': [[<_mock._Mock object at 0x7fbf5ce653d0>, 'pseudo positions'], [<_mock._Mock object at 0x7fbf5ce653d0>, 'physical positions']], 'CalcAllPseudo': [[<_mock._Mock object at 0x7fbf5ce653d0>, 'physical positions'], [<_mock._Mock object at 0x7fbf5ce653d0>, 'pseudo positions']], 'CalcPhysical': [[<_mock._Mock object at 0x7fbf5ce65050>, 'pseudo position'], [<_mock._Mock object at 0x7fbf5ce653d0>, 'physical positions']], 'CalcPseudo': [[<_mock._Mock object at 0x7fbf5ce653d0>, 'physical positions'], [<_mock._Mock object at 0x7fbf5ce65050>, 'pseudo position']], 'MoveRelative': [[<_mock._Mock object at 0x7fbf5ce65050>, 'amount to move'], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
standard_attr_list = {'Position': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce657d0>], {'abs_change': '1.0', 'label': 'Position'}]}

	

PseudoCounter

Classes

	
	PseudoCounter

	
	PseudoCounterClass

	

PseudoCounter

[image: Inheritance diagram of PseudoCounter]

	
class PseudoCounter(dclass, name)

	Bases: sardana.tango.pool.PoolDevice.PoolExpChannelDevice

	
init(name)

	initialize the device once in the object lifetime. Override when
necessary but always call the method from your super class

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – device name

	
get_pseudo_counter()

	

	
set_pseudo_counter(pseudo_counter)

	

	
pseudo_counter

	

	
delete_device

	

	
init_device

	

	
on_pseudo_counter_changed(event_source, event_type, event_value)

	

	
always_executed_hook()

	

	
read_attr_hardware(data)

	

	
get_dynamic_attributes()

	Override of PoolDevice.get_dynamic_attributes.
Returns the standard dynamic and fully dynamic attributes for this
device. The return is a tuple of two dictionaries:

	standard attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	dynamic attributes: caseless dictionary with key being the attribute
name and value is a tuple of attribute name(str), tango information,
attribute information

	tango information

	seq< CmdArgType, AttrDataFormat, AttrWriteType >

	attribute information

	attribute information as returned by the sardana controller

	Returns

	the standard dynamic and fully dynamic attributes

	Return type

	seq< CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict], CaselessDict [http://taurus-scada.org/devel/api/taurus/core/util/_CaselessDict.html#taurus.core.util.CaselessDict]>

	
initialize_dynamic_attributes()

	Initializes this device dynamic attributes

	
read_Value(attr)

	

	
is_Value_allowed(req_type)

	Generic is_allowed

	
CalcPseudo(physical_values)

	Returns the pseudo counter value for the given physical counters

	
CalcAllPseudo(physical_values)

	Returns the pseudo counter values for the given physical counters

PseudoCounterClass

[image: Inheritance diagram of PseudoCounterClass]

	
class PseudoCounterClass(name)

	Bases: sardana.tango.pool.PoolDevice.PoolExpChannelDeviceClass

	
class_property_list = {}

	

	
device_property_list = {'Axis': [<_mock._Mock object at 0x7fbf5ce65190>, 'Axis in the controller', [0]], 'Ctrl_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]], 'Elements': [<_mock._Mock object at 0x7fbf5ce65590>, 'elements used by the pseudo', []], 'Force_HW_Read': [<_mock._Mock object at 0x7fbf5ce64fd0>, 'Force a hardware read of value even when in operation (motion/acquisition', False], 'Id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Internal ID', 0], 'Instrument_id': [<_mock._Mock object at 0x7fbf5ce65190>, 'Controller ID', [0]]}

	

	
cmd_list = {'Abort': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'CalcAllPseudo': [[<_mock._Mock object at 0x7fbf5ce653d0>, 'physical positions'], [<_mock._Mock object at 0x7fbf5ce653d0>, 'pseudo counter values']], 'CalcPseudo': [[<_mock._Mock object at 0x7fbf5ce653d0>, 'physical values'], [<_mock._Mock object at 0x7fbf5ce65050>, 'pseudo counter']], 'Restore': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']], 'Stop': [[<_mock._Mock object at 0x7fbf5ce65690>, ''], [<_mock._Mock object at 0x7fbf5ce65690>, '']]}

	

	
standard_attr_list = {'Data': [[<_mock._Mock object at 0x7fbf5ce65210>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>]], 'Value': [[<_mock._Mock object at 0x7fbf5ce65050>, <_mock._Mock object at 0x7fbf5ce65810>, <_mock._Mock object at 0x7fbf5ce65750>]]}

	

macroserver

Modules

	MacroExecutor

macroexecutor

Functions

Classes

	
	BaseMacroExecutor

	
	MacroExecutorFactory

	

TangoAttrCb

[image: Inheritance diagram of TangoAttrCb]

	
class TangoAttrCb(tango_macro_executor)

	An abstract callback class for Tango events

TangoResultCb

[image: Inheritance diagram of TangoResultCb]

	
class TangoResultCb(tango_macro_executor)

	Callback class for Tango events of the Result attribute

	
push_event(*args, **kwargs)

	callback method receiving the event

TangoLogCb

[image: Inheritance diagram of TangoLogCb]

	
class TangoLogCb(tango_macro_executor, log_name)

	Callback class for Tango events of the log attributes
e.g. Output, Error, Critical

	
push_event(*args, **kwargs)

	callback method receiving the event

TangoStatusCb

[image: Inheritance diagram of TangoStatusCb]

	
class TangoStatusCb(tango_macro_executor)

	Callback class for Tango events of the MacroStatus attribute

	
START_STATES = ['start']

	

	
DONE_STATES = ['finish', 'stop', 'exception']

	

	
push_event(*args, **kwargs)

	callback method receiving the event

TangoMacroExecutor

[image: Inheritance diagram of TangoMacroExecutor]

	
class TangoMacroExecutor(door_name=None)

	Macro executor implemented using Tango communication with the Door device

	
getData()

	Returns the data object for the last executed macro

	Returns

	(obj)

	
createCommonBuffer()

	Create a common buffer, where all the registered logs will be stored.

	
getCommonBuffer()

	
	Get common buffer.

	Method getCommonBuffer can only be used if at least one buffer exists.

	Returns

	(seq<str>) list of strings with messages from all log levels

See also

createCommonBuffer()

	
getExceptionStr()

	Get macro exception type representation (None if the macro state
is not exception).

	Returns

	(str)

	
getLog(log_level)

	Get log messages.

	Parameters

	log_level – (str) string indicating the log level

	Returns

	(seq<str>) list of strings with log messages

	
getResult()

	Get macro result.

	Returns

	(seq<str>) list of strings with Result messages

	
getState()

	Get macro execution state.

	Returns

	(str)

	
getStateBuffer()

	Get buffer (history) of macro execution states.

	Returns

	(seq<str>)

	
log_levels = ['debug', 'output', 'info', 'warning', 'critical', 'error']

	

	
registerAll()

	Register for macro result, all log levels and common buffer.

	
registerLog(log_level)

	Start registering log messages.

	Parameters

	log_level – (str) string indicating the log level

	
registerResult()

	Register for macro result

	
run(macro_name, macro_params=None, sync=True, timeout=inf)

	Execute macro.

	Parameters

	
	macro_name – (string) name of macro to be executed

	macro_params – (list<string>) macro parameters
(default is macro_params=None for macros without
parameters or with the default values)

	sync – (bool) whether synchronous or asynchronous call
(default is sync=True)

	timeout –
	(float) timeout (in s) that will be passed to the wait

	method, in case of synchronous execution

In asyncrhonous execution method wait() has to be explicitly
called.

	
stop(started_event_timeout=3.0)

	Stop macro execution. Execute macro in synchronous way before using
this method.

	Parameters

	started_event_timeout – (float) waiting timeout for started event

	
unregisterAll()

	Unregister macro result, all log levels and common buffer.

	
unregisterLog(log_level)

	Stop registering log messages.

	Parameters

	log_level – (str) string indicating the log level

	
unregisterResult()

	Unregister macro result.

	
wait(timeout=inf)

	Wait until macro is done. Use it in asynchronous executions.

	Parameters

	timeout – (float) waiting timeout (in s)

sardanadefs

This module contains the most generic sardana constants and enumerations

Constants

	
EpsilonError = 1e-16

	maximum difference between two floats so that they are considered equal

	
InvalidId = 0

	A constant representing an invalid ID

	
InvalidAxis = 0

	A constant representing an invalid axis

	
TYPE_ELEMENTS = set([<_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>])

	a set containning all “controllable” element types.
Constant values belong to ElementType

	
TYPE_GROUP_ELEMENTS = set([<_mock._Mock object>, <_mock._Mock object>])

	a set containing all group element types.
Constant values belong to ElementType

	
TYPE_MOVEABLE_ELEMENTS = set([<_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>])

	a set containing the type of elements which are moveable.
Constant values belong to ElementType

	
TYPE_PHYSICAL_ELEMENTS = set([<_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>])

	a set containing the possible types of physical elements.
Constant values belong to ElementType

	
TYPE_ACQUIRABLE_ELEMENTS = set([<_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>, <_mock._Mock object>])

	a set containing the possible types of acquirable elements.
Constant values belong to ElementType

	
TYPE_PSEUDO_ELEMENTS = set([<_mock._Mock object>, <_mock._Mock object>])

	a set containing the possible types of pseudo elements.
Constant values belong to ElementType

	
SardanaServer = SardanaServer()

	the global object containing the SardanaServer information

Enumerations

	
ServerRunMode = <taurus.core.util.enumeration.Enumeration object>

	

	
State = <taurus.core.util.enumeration.Enumeration object>

	

	
DataType = <taurus.core.util.enumeration.Enumeration object>

	

	
DataFormat = <taurus.core.util.enumeration.Enumeration object>

	

	
DataAccess = <taurus.core.util.enumeration.Enumeration object>

	

	
ElementType = <taurus.core.util.enumeration.Enumeration object>

	

	
Interface = <taurus.core.util.enumeration.Enumeration object>

	

	
Interfaces = {<_mock._Mock object at 0x7fbf5c9f1590>: set([<_mock._Mock object at 0x7fbf5c9f1610>]), <_mock._Mock object at 0x7fbf5c9f15d0>: set([<_mock._Mock object at 0x7fbf5c9f1710>, <_mock._Mock object at 0x7fbf5c9f1750>]), <_mock._Mock object at 0x7fbf5c9f16d0>: set([<_mock._Mock object at 0x7fbf5c9f19d0>]), <_mock._Mock object at 0x7fbf5c9f1990>: set([<_mock._Mock object at 0x7fbf5c9f1c10>]), <_mock._Mock object at 0x7fbf5c9f1bd0>: set([<_mock._Mock object at 0x7fbf5c9f1dd0>]), <_mock._Mock object at 0x7fbf5c9f1d90>: set([<_mock._Mock object at 0x7fbf5c9f1f10>]), <_mock._Mock object at 0x7fbf5c9f1ed0>: set([<_mock._Mock object at 0x7fbf5c9fa110>]), <_mock._Mock object at 0x7fbf5c9fa0d0>: set([<_mock._Mock object at 0x7fbf5c9fa390>, <_mock._Mock object at 0x7fbf5c9fa350>]), <_mock._Mock object at 0x7fbf5c9fa310>: set([<_mock._Mock object at 0x7fbf5c9fa510>]), <_mock._Mock object at 0x7fbf5c9fa4d0>: set([<_mock._Mock object at 0x7fbf5c9fa710>]), <_mock._Mock object at 0x7fbf5c9fa6d0>: set([<_mock._Mock object at 0x7fbf5c9fa810>]), <_mock._Mock object at 0x7fbf5c9fa7d0>: set([<_mock._Mock object at 0x7fbf5c9faa10>]), <_mock._Mock object at 0x7fbf5c9fa9d0>: set([<_mock._Mock object at 0x7fbf5c9fabd0>]), <_mock._Mock object at 0x7fbf5c9fab90>: set([<_mock._Mock object at 0x7fbf5c9fad10>]), <_mock._Mock object at 0x7fbf5c9facd0>: set([<_mock._Mock object at 0x7fbf5c9faf50>]), <_mock._Mock object at 0x7fbf5c9faf10>: set([<_mock._Mock object at 0x7fbf5c9fc090>, <_mock._Mock object at 0x7fbf5c9fc0d0>]), <_mock._Mock object at 0x7fbf5c9fc050>: set([<_mock._Mock object at 0x7fbf5c9fc290>]), <_mock._Mock object at 0x7fbf5c9fc250>: set([<_mock._Mock object at 0x7fbf5c9fc510>, <_mock._Mock object at 0x7fbf5c9fc4d0>]), <_mock._Mock object at 0x7fbf5c9fc490>: set([<_mock._Mock object at 0x7fbf5c9fc690>]), <_mock._Mock object at 0x7fbf5c9fc650>: set([<_mock._Mock object at 0x7fbf5c9fc890>, <_mock._Mock object at 0x7fbf5c9fc850>]), <_mock._Mock object at 0x7fbf5c9fc810>: set([<_mock._Mock object at 0x7fbf5c9fcad0>]), <_mock._Mock object at 0x7fbf5c9fca90>: set([<_mock._Mock object at 0x7fbf5c9fcc10>, <_mock._Mock object at 0x7fbf5c9fcbd0>]), <_mock._Mock object at 0x7fbf5c9fcb90>: set([<_mock._Mock object at 0x7fbf5c9fcd90>]), <_mock._Mock object at 0x7fbf5c9fcd50>: set([<_mock._Mock object at 0x7fbf5c9fcf50>]), <_mock._Mock object at 0x7fbf5c9fcf10>: set([<_mock._Mock object at 0x7fbf5c9fe150>]), <_mock._Mock object at 0x7fbf5c9fe110>: set([]), <_mock._Mock object at 0x7fbf5c9fe2d0>: set([<_mock._Mock object at 0x7fbf5c9fe390>]), <_mock._Mock object at 0x7fbf5c9fe350>: set([<_mock._Mock object at 0x7fbf5c9fe490>]), <_mock._Mock object at 0x7fbf5c9fe450>: set([<_mock._Mock object at 0x7fbf5c9fe590>, <_mock._Mock object at 0x7fbf5c9fe5d0>]), <_mock._Mock object at 0x7fbf5c9fe550>: set([<_mock._Mock object at 0x7fbf5c9fe750>]), <_mock._Mock object at 0x7fbf5c9fe710>: set([<_mock._Mock object at 0x7fbf5c9fe850>]), <_mock._Mock object at 0x7fbf5c9fe810>: set([]), <_mock._Mock object at 0x7fbf5c9fe9d0>: set([<_mock._Mock object at 0x7fbf5c9fea90>]), <_mock._Mock object at 0x7fbf5c9fea50>: set([<_mock._Mock object at 0x7fbf5c9fec90>, <_mock._Mock object at 0x7fbf5c9fec50>]), <_mock._Mock object at 0x7fbf5c9fec10>: set([<_mock._Mock object at 0x7fbf5c9feed0>]), <_mock._Mock object at 0x7fbf5c9fee90>: set([<_mock._Mock object at 0x7fbf5ca00110>, <_mock._Mock object at 0x7fbf5ca000d0>]), <_mock._Mock object at 0x7fbf5ca00090>: set([<_mock._Mock object at 0x7fbf5ca00310>, <_mock._Mock object at 0x7fbf5ca002d0>]), <_mock._Mock object at 0x7fbf5ca00290>: set([<_mock._Mock object at 0x7fbf5ca00490>]), <_mock._Mock object at 0x7fbf5ca00450>: set([<_mock._Mock object at 0x7fbf5ca00590>]), <_mock._Mock object at 0x7fbf5ca00550>: set([<_mock._Mock object at 0x7fbf5ca00750>])}

	a dictionary containing the direct interfaces supported by each type
(dict [https://docs.python.org/dev/library/stdtypes.html#dict] <sardana.sardanadefs.Interface, set [https://docs.python.org/dev/library/stdtypes.html#set] < sardana.sardanadefs.Interface> >)

	
InterfacesExpanded = {<_mock._Mock object at 0x7fbf5c9f1590>: set([<_mock._Mock object at 0x7fbf5c9f1690>, <_mock._Mock object at 0x7fbf5c9f1650>]), <_mock._Mock object at 0x7fbf5c9f15d0>: set([<_mock._Mock object at 0x7fbf5c9f1810>, <_mock._Mock object at 0x7fbf5c9f1850>, <_mock._Mock object at 0x7fbf5c9f1890>, <_mock._Mock object at 0x7fbf5c9f18d0>, <_mock._Mock object at 0x7fbf5c9f1910>, <_mock._Mock object at 0x7fbf5c9f1950>, <_mock._Mock object at 0x7fbf5c9f1790>, <_mock._Mock object at 0x7fbf5c9f17d0>]), <_mock._Mock object at 0x7fbf5c9f16d0>: set([<_mock._Mock object at 0x7fbf5c9f1a10>, <_mock._Mock object at 0x7fbf5c9f1a50>, <_mock._Mock object at 0x7fbf5c9f1a90>, <_mock._Mock object at 0x7fbf5c9f1ad0>, <_mock._Mock object at 0x7fbf5c9f1b10>, <_mock._Mock object at 0x7fbf5c9f1b50>, <_mock._Mock object at 0x7fbf5c9f1b90>]), <_mock._Mock object at 0x7fbf5c9f1990>: set([<_mock._Mock object at 0x7fbf5c9f1d50>, <_mock._Mock object at 0x7fbf5c9f1c90>, <_mock._Mock object at 0x7fbf5c9f1d10>, <_mock._Mock object at 0x7fbf5c9f1c50>, <_mock._Mock object at 0x7fbf5c9f1cd0>]), <_mock._Mock object at 0x7fbf5c9f1bd0>: set([<_mock._Mock object at 0x7fbf5c9f1e10>, <_mock._Mock object at 0x7fbf5c9f1e50>, <_mock._Mock object at 0x7fbf5c9f1e90>]), <_mock._Mock object at 0x7fbf5c9f1d90>: set([<_mock._Mock object at 0x7fbf5c9f1f90>, <_mock._Mock object at 0x7fbf5c9fa090>, <_mock._Mock object at 0x7fbf5c9fa050>, <_mock._Mock object at 0x7fbf5c9f1f50>, <_mock._Mock object at 0x7fbf5c9f1fd0>]), <_mock._Mock object at 0x7fbf5c9f1ed0>: set([<_mock._Mock object at 0x7fbf5c9fa210>, <_mock._Mock object at 0x7fbf5c9fa250>, <_mock._Mock object at 0x7fbf5c9fa290>, <_mock._Mock object at 0x7fbf5c9fa2d0>, <_mock._Mock object at 0x7fbf5c9fa150>, <_mock._Mock object at 0x7fbf5c9fa190>, <_mock._Mock object at 0x7fbf5c9fa1d0>]), <_mock._Mock object at 0x7fbf5c9fa0d0>: set([<_mock._Mock object at 0x7fbf5c9fa410>, <_mock._Mock object at 0x7fbf5c9fa3d0>, <_mock._Mock object at 0x7fbf5c9fa490>, <_mock._Mock object at 0x7fbf5c9fa450>]), <_mock._Mock object at 0x7fbf5c9fa310>: set([<_mock._Mock object at 0x7fbf5c9fa610>, <_mock._Mock object at 0x7fbf5c9fa650>, <_mock._Mock object at 0x7fbf5c9fa690>, <_mock._Mock object at 0x7fbf5c9fa550>, <_mock._Mock object at 0x7fbf5c9fa590>, <_mock._Mock object at 0x7fbf5c9fa5d0>]), <_mock._Mock object at 0x7fbf5c9fa4d0>: set([<_mock._Mock object at 0x7fbf5c9fa790>, <_mock._Mock object at 0x7fbf5c9fa750>]), <_mock._Mock object at 0x7fbf5c9fa6d0>: set([<_mock._Mock object at 0x7fbf5c9fa850>, <_mock._Mock object at 0x7fbf5c9fa890>, <_mock._Mock object at 0x7fbf5c9fa8d0>, <_mock._Mock object at 0x7fbf5c9fa910>, <_mock._Mock object at 0x7fbf5c9fa950>, <_mock._Mock object at 0x7fbf5c9fa990>]), <_mock._Mock object at 0x7fbf5c9fa7d0>: set([<_mock._Mock object at 0x7fbf5c9fab50>, <_mock._Mock object at 0x7fbf5c9faa90>, <_mock._Mock object at 0x7fbf5c9fab10>, <_mock._Mock object at 0x7fbf5c9faa50>, <_mock._Mock object at 0x7fbf5c9faad0>]), <_mock._Mock object at 0x7fbf5c9fa9d0>: set([<_mock._Mock object at 0x7fbf5c9fac10>, <_mock._Mock object at 0x7fbf5c9fac50>, <_mock._Mock object at 0x7fbf5c9fac90>]), <_mock._Mock object at 0x7fbf5c9fab90>: set([<_mock._Mock object at 0x7fbf5c9fae10>, <_mock._Mock object at 0x7fbf5c9fae50>, <_mock._Mock object at 0x7fbf5c9fae90>, <_mock._Mock object at 0x7fbf5c9faed0>, <_mock._Mock object at 0x7fbf5c9fad50>, <_mock._Mock object at 0x7fbf5c9fad90>, <_mock._Mock object at 0x7fbf5c9fadd0>]), <_mock._Mock object at 0x7fbf5c9facd0>: set([<_mock._Mock object at 0x7fbf5c9faf90>, <_mock._Mock object at 0x7fbf5c9fafd0>]), <_mock._Mock object at 0x7fbf5c9faf10>: set([<_mock._Mock object at 0x7fbf5c9fc110>, <_mock._Mock object at 0x7fbf5c9fc210>, <_mock._Mock object at 0x7fbf5c9fc1d0>, <_mock._Mock object at 0x7fbf5c9fc150>, <_mock._Mock object at 0x7fbf5c9fc190>]), <_mock._Mock object at 0x7fbf5c9fc050>: set([<_mock._Mock object at 0x7fbf5c9fc410>, <_mock._Mock object at 0x7fbf5c9fc450>, <_mock._Mock object at 0x7fbf5c9fc2d0>, <_mock._Mock object at 0x7fbf5c9fc310>, <_mock._Mock object at 0x7fbf5c9fc350>, <_mock._Mock object at 0x7fbf5c9fc390>, <_mock._Mock object at 0x7fbf5c9fc3d0>]), <_mock._Mock object at 0x7fbf5c9fc250>: set([<_mock._Mock object at 0x7fbf5c9fc590>, <_mock._Mock object at 0x7fbf5c9fc610>, <_mock._Mock object at 0x7fbf5c9fc550>, <_mock._Mock object at 0x7fbf5c9fc5d0>]), <_mock._Mock object at 0x7fbf5c9fc490>: set([<_mock._Mock object at 0x7fbf5c9fc710>, <_mock._Mock object at 0x7fbf5c9fc790>, <_mock._Mock object at 0x7fbf5c9fc7d0>, <_mock._Mock object at 0x7fbf5c9fc6d0>, <_mock._Mock object at 0x7fbf5c9fc750>]), <_mock._Mock object at 0x7fbf5c9fc650>: set([<_mock._Mock object at 0x7fbf5c9fca10>, <_mock._Mock object at 0x7fbf5c9fca50>, <_mock._Mock object at 0x7fbf5c9fc8d0>, <_mock._Mock object at 0x7fbf5c9fc910>, <_mock._Mock object at 0x7fbf5c9fc950>, <_mock._Mock object at 0x7fbf5c9fc990>, <_mock._Mock object at 0x7fbf5c9fc9d0>]), <_mock._Mock object at 0x7fbf5c9fc810>: set([<_mock._Mock object at 0x7fbf5c9fcb10>, <_mock._Mock object at 0x7fbf5c9fcb50>]), <_mock._Mock object at 0x7fbf5c9fca90>: set([<_mock._Mock object at 0x7fbf5c9fcc90>, <_mock._Mock object at 0x7fbf5c9fcd10>, <_mock._Mock object at 0x7fbf5c9fcc50>, <_mock._Mock object at 0x7fbf5c9fccd0>]), <_mock._Mock object at 0x7fbf5c9fcb90>: set([<_mock._Mock object at 0x7fbf5c9fced0>, <_mock._Mock object at 0x7fbf5c9fce10>, <_mock._Mock object at 0x7fbf5c9fce90>, <_mock._Mock object at 0x7fbf5c9fcdd0>, <_mock._Mock object at 0x7fbf5c9fce50>]), <_mock._Mock object at 0x7fbf5c9fcd50>: set([<_mock._Mock object at 0x7fbf5c9fe0d0>, <_mock._Mock object at 0x7fbf5c9fcf90>, <_mock._Mock object at 0x7fbf5c9fe090>, <_mock._Mock object at 0x7fbf5c9fcfd0>, <_mock._Mock object at 0x7fbf5c9fe050>]), <_mock._Mock object at 0x7fbf5c9fcf10>: set([<_mock._Mock object at 0x7fbf5c9fe190>, <_mock._Mock object at 0x7fbf5c9fe250>, <_mock._Mock object at 0x7fbf5c9fe1d0>, <_mock._Mock object at 0x7fbf5c9fe290>, <_mock._Mock object at 0x7fbf5c9fe210>]), <_mock._Mock object at 0x7fbf5c9fe110>: set([<_mock._Mock object at 0x7fbf5c9fe310>]), <_mock._Mock object at 0x7fbf5c9fe2d0>: set([<_mock._Mock object at 0x7fbf5c9fe410>, <_mock._Mock object at 0x7fbf5c9fe3d0>]), <_mock._Mock object at 0x7fbf5c9fe350>: set([<_mock._Mock object at 0x7fbf5c9fe510>, <_mock._Mock object at 0x7fbf5c9fe4d0>]), <_mock._Mock object at 0x7fbf5c9fe450>: set([<_mock._Mock object at 0x7fbf5c9fe610>, <_mock._Mock object at 0x7fbf5c9fe6d0>, <_mock._Mock object at 0x7fbf5c9fe650>, <_mock._Mock object at 0x7fbf5c9fe690>]), <_mock._Mock object at 0x7fbf5c9fe550>: set([<_mock._Mock object at 0x7fbf5c9fe790>, <_mock._Mock object at 0x7fbf5c9fe7d0>]), <_mock._Mock object at 0x7fbf5c9fe710>: set([<_mock._Mock object at 0x7fbf5c9fe950>, <_mock._Mock object at 0x7fbf5c9fe890>, <_mock._Mock object at 0x7fbf5c9fe990>, <_mock._Mock object at 0x7fbf5c9fe8d0>, <_mock._Mock object at 0x7fbf5c9fe910>]), <_mock._Mock object at 0x7fbf5c9fe810>: set([<_mock._Mock object at 0x7fbf5c9fea10>]), <_mock._Mock object at 0x7fbf5c9fe9d0>: set([<_mock._Mock object at 0x7fbf5c9feb10>, <_mock._Mock object at 0x7fbf5c9febd0>, <_mock._Mock object at 0x7fbf5c9fead0>, <_mock._Mock object at 0x7fbf5c9feb90>, <_mock._Mock object at 0x7fbf5c9feb50>]), <_mock._Mock object at 0x7fbf5c9fea50>: set([<_mock._Mock object at 0x7fbf5c9fee10>, <_mock._Mock object at 0x7fbf5c9fee50>, <_mock._Mock object at 0x7fbf5c9fecd0>, <_mock._Mock object at 0x7fbf5c9fed10>, <_mock._Mock object at 0x7fbf5c9fed50>, <_mock._Mock object at 0x7fbf5c9fed90>, <_mock._Mock object at 0x7fbf5c9fedd0>]), <_mock._Mock object at 0x7fbf5c9fec10>: set([<_mock._Mock object at 0x7fbf5c9fef10>, <_mock._Mock object at 0x7fbf5c9fefd0>, <_mock._Mock object at 0x7fbf5ca00050>, <_mock._Mock object at 0x7fbf5c9fef50>, <_mock._Mock object at 0x7fbf5c9fef90>]), <_mock._Mock object at 0x7fbf5c9fee90>: set([<_mock._Mock object at 0x7fbf5ca00250>, <_mock._Mock object at 0x7fbf5ca00190>, <_mock._Mock object at 0x7fbf5ca00210>, <_mock._Mock object at 0x7fbf5ca00150>, <_mock._Mock object at 0x7fbf5ca001d0>]), <_mock._Mock object at 0x7fbf5ca00090>: set([<_mock._Mock object at 0x7fbf5ca00390>, <_mock._Mock object at 0x7fbf5ca00350>, <_mock._Mock object at 0x7fbf5ca00410>, <_mock._Mock object at 0x7fbf5ca003d0>]), <_mock._Mock object at 0x7fbf5ca00290>: set([<_mock._Mock object at 0x7fbf5ca00510>, <_mock._Mock object at 0x7fbf5ca004d0>]), <_mock._Mock object at 0x7fbf5ca00450>: set([<_mock._Mock object at 0x7fbf5ca00610>, <_mock._Mock object at 0x7fbf5ca006d0>, <_mock._Mock object at 0x7fbf5ca00690>, <_mock._Mock object at 0x7fbf5ca005d0>, <_mock._Mock object at 0x7fbf5ca00650>]), <_mock._Mock object at 0x7fbf5ca00550>: set([<_mock._Mock object at 0x7fbf5ca00810>, <_mock._Mock object at 0x7fbf5ca00850>, <_mock._Mock object at 0x7fbf5ca00890>, <_mock._Mock object at 0x7fbf5ca008d0>, <_mock._Mock object at 0x7fbf5ca00910>, <_mock._Mock object at 0x7fbf5ca00790>, <_mock._Mock object at 0x7fbf5ca007d0>])}

	a dictionary containing the all interfaces supported by each type.
(dict [https://docs.python.org/dev/library/stdtypes.html#dict] <sardana.sardanadefs.Interface, set [https://docs.python.org/dev/library/stdtypes.html#set] < sardana.sardanadefs.Interface> >)

	
INTERFACES = {'Acquirable': (set(['PoolElement']), 'An acquirable element'), 'CTExpChannel': (set(['ExpChannel']), 'A counter/timer experimental channel'), 'Class': (set(['Object']), 'A generic sardana class'), 'ComChannel': (set(['PoolElement']), 'A communication channel'), 'Constraint': (set(['PoolObject']), 'A constraint'), 'Controller': (set(['PoolElement']), 'A controller'), 'ControllerClass': (set(['Class', 'PoolObject']), 'A controller class'), 'ControllerLibrary': (set(['PoolObject', 'Library']), 'A controller library'), 'Door': (set(['MacroServerElement']), 'A macro server door'), 'Element': (set(['Object']), 'A generic sardana element'), 'ExpChannel': (set(['Acquirable']), 'A generic experimental channel'), 'External': (set(['Object']), 'An external object'), 'Function': (set(['Object']), 'A generic sardana function'), 'IORegister': (set(['Acquirable']), 'An IO register'), 'Instrument': (set(['PoolElement']), 'An instrument'), 'Library': (set(['Object']), 'A generic sardana library'), 'Macro': (set(['MacroFunction', 'MacroClass']), 'A macro server macro'), 'MacroClass': (set(['MacroCode', 'Class']), 'A macro server macro class'), 'MacroCode': (set(['MacroServerObject']), 'A macro server macro code'), 'MacroFunction': (set(['Function', 'MacroCode']), 'A macro server macro function'), 'MacroLibrary': (set(['MacroServerObject', 'Library']), 'A macro server library'), 'MacroServer': (set(['MacroServerElement']), 'A MacroServer'), 'MacroServerElement': (set(['MacroServerObject', 'Element']), 'A generic macro server element'), 'MacroServerObject': (set(['Object']), 'A generic macro server object'), 'MeasurementGroup': (set(['PoolElement']), 'A measurement group'), 'Meta': (set([]), 'A generic sardana meta object'), 'Motor': (set(['Acquirable', 'Moveable']), 'a motor'), 'MotorGroup': (set(['PoolElement']), 'A motor group'), 'Moveable': (set(['PoolElement']), 'A moveable element'), 'Object': (set([]), 'A generic sardana object'), 'OneDExpChannel': (set(['ExpChannel']), 'A 1D experimental channel'), 'ParameterType': (set(['Meta']), 'A generic macro server parameter type'), 'Pool': (set(['PoolElement']), 'A Pool'), 'PoolElement': (set(['PoolObject', 'Element']), 'A Pool element'), 'PoolObject': (set(['Object']), 'A Pool object'), 'PseudoCounter': (set(['ExpChannel']), 'A pseudo counter'), 'PseudoMotor': (set(['Acquirable', 'Moveable']), 'A pseudo motor'), 'TriggerGate': (set(['PoolElement']), 'A trigger/gate'), 'TwoDExpChannel': (set(['ExpChannel']), 'A 2D experimental channel'), 'ZeroDExpChannel': (set(['ExpChannel']), 'A 0D experimental channel')}

	a dictionary containing the direct interfaces supported by each type
(dict [https://docs.python.org/dev/library/stdtypes.html#dict]<str [https://docs.python.org/dev/library/stdtypes.html#str], tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]<set [https://docs.python.org/dev/library/stdtypes.html#set]<str [https://docs.python.org/dev/library/stdtypes.html#str], str [https://docs.python.org/dev/library/stdtypes.html#str]>>>)

	
INTERFACES_EXPANDED = {'Acquirable': (set(['PoolElement', 'Object', 'Acquirable', 'PoolObject', 'Element']), 'An acquirable element'), 'CTExpChannel': (set(['ExpChannel', 'PoolObject', 'CTExpChannel', 'Acquirable', 'PoolElement', 'Object', 'Element']), 'A counter/timer experimental channel'), 'Class': (set(['Object', 'Class']), 'A generic sardana class'), 'ComChannel': (set(['PoolElement', 'Object', 'PoolObject', 'ComChannel', 'Element']), 'A communication channel'), 'Constraint': (set(['Object', 'PoolObject', 'Constraint']), 'A constraint'), 'Controller': (set(['PoolElement', 'Controller', 'Object', 'PoolObject', 'Element']), 'A controller'), 'ControllerClass': (set(['ControllerClass', 'Object', 'Class', 'PoolObject']), 'A controller class'), 'ControllerLibrary': (set(['ControllerLibrary', 'Object', 'PoolObject', 'Library']), 'A controller library'), 'Door': (set(['MacroServerElement', 'Object', 'Door', 'MacroServerObject', 'Element']), 'A macro server door'), 'Element': (set(['Object', 'Element']), 'A generic sardana element'), 'ExpChannel': (set(['ExpChannel', 'PoolObject', 'PoolElement', 'Acquirable', 'Object', 'Element']), 'A generic experimental channel'), 'External': (set(['Object', 'External']), 'An external object'), 'Function': (set(['Function', 'Object']), 'A generic sardana function'), 'IORegister': (set(['PoolObject', 'PoolElement', 'Acquirable', 'Object', 'IORegister', 'Element']), 'An IO register'), 'Instrument': (set(['Instrument', 'PoolElement', 'Object', 'PoolObject', 'Element']), 'An instrument'), 'Library': (set(['Object', 'Library']), 'A generic sardana library'), 'Macro': (set(['Function', 'Macro', 'Object', 'Class', 'MacroCode', 'MacroFunction', 'MacroServerObject', 'MacroClass']), 'A macro server macro'), 'MacroClass': (set(['MacroCode', 'Object', 'Class', 'MacroClass', 'MacroServerObject']), 'A macro server macro class'), 'MacroCode': (set(['MacroCode', 'Object', 'MacroServerObject']), 'A macro server macro code'), 'MacroFunction': (set(['Function', 'MacroCode', 'MacroFunction', 'Object', 'MacroServerObject']), 'A macro server macro function'), 'MacroLibrary': (set(['MacroLibrary', 'Object', 'MacroServerObject', 'Library']), 'A macro server library'), 'MacroServer': (set(['MacroServerElement', 'Object', 'MacroServerObject', 'MacroServer', 'Element']), 'A MacroServer'), 'MacroServerElement': (set(['MacroServerElement', 'Object', 'MacroServerObject', 'Element']), 'A generic macro server element'), 'MacroServerObject': (set(['Object', 'MacroServerObject']), 'A generic macro server object'), 'MeasurementGroup': (set(['PoolElement', 'Object', 'PoolObject', 'MeasurementGroup', 'Element']), 'A measurement group'), 'Meta': (set(['Meta']), 'A generic sardana meta object'), 'Motor': (set(['Acquirable', 'Object', 'Element', 'PoolObject', 'Motor', 'Moveable', 'PoolElement']), 'a motor'), 'MotorGroup': (set(['PoolElement', 'MotorGroup', 'Object', 'PoolObject', 'Element']), 'A motor group'), 'Moveable': (set(['PoolElement', 'Object', 'Moveable', 'PoolObject', 'Element']), 'A moveable element'), 'Object': (set(['Object']), 'A generic sardana object'), 'OneDExpChannel': (set(['ExpChannel', 'OneDExpChannel', 'PoolObject', 'Acquirable', 'PoolElement', 'Object', 'Element']), 'A 1D experimental channel'), 'ParameterType': (set(['ParameterType', 'Meta']), 'A generic macro server parameter type'), 'Pool': (set(['PoolElement', 'Object', 'PoolObject', 'Pool', 'Element']), 'A Pool'), 'PoolElement': (set(['PoolElement', 'Object', 'PoolObject', 'Element']), 'A Pool element'), 'PoolObject': (set(['Object', 'PoolObject']), 'A Pool object'), 'PseudoCounter': (set(['ExpChannel', 'PoolObject', 'PseudoCounter', 'Acquirable', 'PoolElement', 'Object', 'Element']), 'A pseudo counter'), 'PseudoMotor': (set(['Acquirable', 'Object', 'Element', 'PoolObject', 'Moveable', 'PoolElement', 'PseudoMotor']), 'A pseudo motor'), 'TriggerGate': (set(['PoolElement', 'TriggerGate', 'Object', 'PoolObject', 'Element']), 'A trigger/gate'), 'TwoDExpChannel': (set(['ExpChannel', 'PoolObject', 'Acquirable', 'PoolElement', 'TwoDExpChannel', 'Object', 'Element']), 'A 2D experimental channel'), 'ZeroDExpChannel': (set(['ExpChannel', 'ZeroDExpChannel', 'PoolObject', 'Acquirable', 'PoolElement', 'Object', 'Element']), 'A 0D experimental channel')}

	a dictionary containing the all interfaces supported by each type
(dict [https://docs.python.org/dev/library/stdtypes.html#dict] <str [https://docs.python.org/dev/library/stdtypes.html#str], set [https://docs.python.org/dev/library/stdtypes.html#set] < str [https://docs.python.org/dev/library/stdtypes.html#str]> >)

Functions

	
from_dtype_str(dtype)

	Transforms the given dtype parameter (string/DataType or None)
into a tuple of two elements (str, DataFormat) where the first
element is a string with a simplified data type.

	If None is given, it returns
(‘float’, DataFormat.Scalar)

	If DataType is given, it returns
(DataType, DataFormat.Scalar)

	Parameters

	dtype (str or None or DataType) – the data type to be transformed

	Returns

	a tuple <str, DataFormat> for the given dtype

	Return type

	tuple<str, DataFormat>

	
from_access_str(access)

	Transforms the given access parameter (string or DataAccess) into
a simplified data access string.

	Parameters

	dtype (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the access to be transformed

	Returns

	a simple string for the given access

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
to_dtype_dformat(data)

	Transforms the given data parameter (string/ or sequence of string or
sequence of sequence of string/DataType) into a tuple of two
elements (DataType, DataFormat).

	Parameters

	data (str [https://docs.python.org/dev/library/stdtypes.html#str] or seq<str> or seq<seq<str>>) – the data information to be transformed

	Returns

	a tuple <DataType, DataFormat> for the given data

	Return type

	tuple<DataType, DataFormat>

	
to_daccess(daccess)

	Transforms the given access parameter (string or None) into a
DataAccess. If None is given returns DataAccess.ReadWrite

	Parameters

	dtype (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the access to be transformed

	Returns

	a DataAccess for the given access

	Return type

	DataAccess

sardanabase

This module is part of the Python Sardana library. It defines the base
classes for Sardana object

Classes

	
	SardanaBaseObject

	
	SardanaObjectID

	

SardanaBaseObject

[image: Inheritance diagram of SardanaBaseObject]

	
class SardanaBaseObject(**kwargs)

	The Sardana most abstract object. It contains only two members:

	_manager : a weak reference to the manager (pool or ms) where it
belongs

	_name : the name

	_full_name : the name (usually a tango device name, but can be
anything else.)

	
get_manager()

	Return the sardana.Manager which owns this sardana
object.

	Returns

	the manager which owns this pool object.

	Return type

	sardana.Manager

	
get_name()

	Returns this sardana object name

	Returns

	this sardana object name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
set_name(name)

	Sets sardana object name

	Param

	sardana object name

	Type

	str

	
get_full_name()

	Returns this sardana object full name

	Returns

	this sardana object full name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_type()

	Returns this sardana object type.

	Returns

	this sardana object type

	Return type

	ElementType

	
get_parent()

	Returns this pool object parent.

	Returns

	this objects parent

	Return type

	SardanaBaseObject

	
get_parent_name()

	Returns this sardana object parent’s name.

	Returns

	this objects parent

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_frontend()

	Returns this sardana frontend object or None if no frontend is
registered

	Returns

	this objects frontend

	Return type

	object [https://docs.python.org/dev/library/functions.html#object]

	
fire_event(event_type, event_value, listeners=None, protected=True)

	

	
get_interfaces()

	Returns the set of interfaces this object implements.

	Returns

	The set of interfaces this object implements.

	Return type

	class:set <sardana.sardanadefs.Interface>

	
get_interface()

	Returns the interface this object implements.

	Returns

	The interface this object implements.

	Return type

	sardana.sardanadefs.Interface

	
get_interface_names()

	Returns a sequence of interface names this object implements.

	Returns

	The sequence of interfaces this object implements.

	Return type

	sequence<str>

	
serialize(*args, **kwargs)

	

	
serialized(*args, **kwargs)

	

	
str(*args, **kwargs)

	

	
manager

	reference to the sardana.Manager

	
name

	object name

	
full_name

	object full name

	
frontend

	the object frontend

	
Critical = 50

	

	
Debug = 10

	

	
DftLogLevel = 20

	

	
DftLogMessageFormat = '%(threadName)-14s %(levelname)-8s %(asctime)s %(name)s: %(message)s'

	

	
Error = 40

	

	
Fatal = 50

	

	
Info = 20

	

	
Trace = 5

	

	
Warning = 30

	

	
add_listener(listener)

	Adds a new listener for this object.

	Parameters

	listener – a listener

	
are_events_blocked()

	

	
block_events()

	

	
flush_queue()

	

	
has_listeners()

	Returns True if anybody is listening to events from this object

	Returns

	True is at least one listener is listening or False otherwise

	
log_level = 20

	

	
queue_event(event_type, event_value, listeners=None)

	

	
remove_listener(listener)

	Removes an existing listener for this object.

	Parameters

	listener – the listener to be removed

	Returns

	True is succeeded or False otherwise

	
root_inited = True

	

	
unblock_events()

	

SardanaObjectID

[image: Inheritance diagram of SardanaObjectID]

	
class SardanaObjectID(id=0)

	To be used by sardana objects which have an ID associated to them.

	
get_id()

	Returns this sardana object ID

	Returns

	this sardana object ID

	Return type

	int [https://docs.python.org/dev/library/functions.html#int]

	
serialize(*args, **kwargs)

	

	
id

	object ID

sardanacontainer

This module is part of the Python Pool libray. It defines the base classes
for a pool container element

Classes

	
	SardanaContainer

	

	

SardanaContainer

[image: Inheritance diagram of SardanaContainer]

	
class SardanaContainer

	A container class for sardana elements

	
add_element(e)

	Adds a new pool.PoolObject to this container

	Parameters

	e (pool.PoolObject) – the pool element to be added

	
remove_element(e)

	Removes the pool.PoolObject from this container

	Parameters

	e (pool.PoolObject) – the pool object to be removed

	Throw

	KeyError

	
get_element_id_map()

	Returns a reference to the internal pool object ID map

	Returns

	the internal pool object ID map

	Return type

	dict<id, pool.PoolObject>

	
get_element_name_map()

	Returns a reference to the internal pool object name map

	Returns

	the internal pool object name map

	Return type

	dict<str, pool.PoolObject>

	
get_element_type_map()

	Returns a reference to the internal pool object type map

	Returns

	the internal pool object type map

	Return type

	dict<pool.ElementType, dict<id, pool.PoolObject>>

	
get_element(**kwargs)

	Returns a reference to the requested pool object

	Parameters

	kwargs – if key ‘id’ given: search by ID
else if key ‘full_name’ given: search by full name
else if key ‘name’ given: search by name

	Returns

	the pool object

	Return type

	pool.PoolObject

	Throw

	KeyError

	
get_element_by_name(name, **kwargs)

	Returns a reference to the requested pool object

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – pool object name

	Returns

	the pool object

	Return type

	pool.PoolObject

	Throw

	KeyError

	
get_element_by_full_name(full_name, **kwargs)

	Returns a reference to the requested pool object

	Parameters

	name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – pool object full name

	Returns

	the pool object

	Return type

	pool.PoolObject

	Throw

	KeyError

	
get_element_by_id(id, **kwargs)

	Returns a reference to the requested pool object

	Parameters

	id (int [https://docs.python.org/dev/library/functions.html#int]) – pool object ID

	Returns

	the pool object

	Return type

	pool.PoolObject

	Throw

	KeyError

	
get_elements_by_type(t)

	Returns a list of all pool objects of the given type

	Parameters

	t (pool.ElementType) – element type

	Returns

	list of pool objects

	Return type

	seq<pool.PoolObject>

	
get_element_names_by_type(t)

	Returns a list of all pool object names of the given type

	Parameters

	t (pool.ElementType) – element type

	Returns

	list of pool object names

	Return type

	seq<str>

	
rename_element(old_name, new_name)

	Rename an object

	Parameters

	
	old_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – old object name

	new_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – new object name

	
check_element(name, full_name)

	

sardanaevent

This module is part of the Python Pool libray. It defines the base classes
for pool event mechanism

Classes

	
	EventGenerator

	
	EventReceiver

	
	EventType

EventGenerator

[image: Inheritance diagram of EventGenerator]

	
class EventGenerator(max_queue_len=10, listeners=None)

	A class capable of generating events to their listeners

	
add_listener(listener)

	Adds a new listener for this object.

	Parameters

	listener – a listener

	
remove_listener(listener)

	Removes an existing listener for this object.

	Parameters

	listener – the listener to be removed

	Returns

	True is succeeded or False otherwise

	
has_listeners()

	Returns True if anybody is listening to events from this object

	Returns

	True is at least one listener is listening or False otherwise

	
fire_event(event_type, event_value, listeners=None)

	

	
queue_event(event_type, event_value, listeners=None)

	

	
flush_queue()

	

EventReceiver

[image: Inheritance diagram of EventReceiver]

	
class EventReceiver

	A simple class that implements useful features for a class which is
an event receiver. The actual class may inherit from this EventReceiver class
and may choose to use just a part of the API provided by this class, the
whole API or none of the API.

	
block_events()

	

	
unblock_events()

	

	
are_events_blocked()

	

EventType

[image: Inheritance diagram of EventType]

	
class EventType(name, priority=0)

	Definition of an event type

	
get_name()

	Returns this event name

	Returns

	this event name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_priority()

	Returns this event priority

	Returns

	this event priority

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

sardanamodulemanager

This module is part of the Python Sardana library. It defines the base
classes for module manager

Classes

	
	ModuleManager

	

	

ModuleManager

[image: Inheritance diagram of ModuleManager]

	
class ModuleManager

	This class handles python module loading/reloading and unloading.

	
init(*args, **kwargs)

	Singleton instance initialization.

	
reInit()

	

	
cleanUp()

	

	
reset_python_path()

	

	
remove_python_path(path_id)

	

	
add_python_path(path)

	

	
findFullModuleName(module_name, path=None)

	

	
isValidModule(module_name, path=None)

	Method to verify is a module is loadable.

	
reloadModule(module_name, path=None, reload=True)

	Loads/reloads the given module name

	
deep_reload_module(module_name, path=None, exclude=None)

	

	
loadModule(module_name, path=None)

	Loads the given module name. If the module has been already loaded
into this python interpreter, nothing is done.

	Parameters

	
	module_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the module to be loaded.

	path (seq<str> or None [https://docs.python.org/dev/library/constants.html#None]) – list of paths to look for modules [default: None]

	Returns

	python module

	Raises

	ImportError

	
unloadModule(module_name)

	Unloads the given module name

	
unloadModules(module_list=None)

	Unloads the given module name

	
getModule(module_name)

	Returns the module object for the given module name

	
getModuleNames()

	

	
Critical = 50

	

	
Debug = 10

	

	
DftLogLevel = 20

	

	
DftLogMessageFormat = '%(threadName)-14s %(levelname)-8s %(asctime)s %(name)s: %(message)s'

	

	
Error = 40

	

	
Fatal = 50

	

	
Info = 20

	

	
Trace = 5

	

	
Warning = 30

	

	
log_level = 20

	

	
root_inited = True

	

sardanameta

This module is part of the Python Sardana libray. It defines the base
classes for MetaLibrary and MetaClass

Classes

	
	SardanaLibrary

	
	SardanaClass

	

SardanaLibrary

[image: Inheritance diagram of SardanaLibrary]

	
class SardanaLibrary(**kwargs)

	Object representing a python module containing sardana classes.
Public members:

	module - reference to python module

	file_path - complete (absolute) path (with file name at the end)

	file_name - file name (including file extension)

	path - complete (absolute) path

	name - (=module name) module name (without file extension)

	meta_classes - dict<str, SardanMetaClass>

	
	exc_info - exception information if an error occurred when loading

	the module

	
description = '<Undocumented>'

	

	
module_name

	Returns the module name for this library.

	Returns

	the module name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
code

	Returns a sequence of sourcelines corresponding to the module code.

	Returns

	list of source code lines

	Return type

	list<str>

	
add_meta_class(meta_class)

	Adds a new :class:~`sardana.sardanameta.SardanaClass` to this
library.

	Parameters

	meta_class (:class:~`sardana.sardanameta.SardanaClass`) – the meta class to be added to this library

	
get_meta_class(meta_class_name)

	Returns a :class:~`sardana.sardanameta.SardanaClass` for the
given meta class name or None if the meta class does not exist in this
library.

	Parameters

	meta_class_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta class name

	Returns

	a meta class or None

	Return type

	:class:~`sardana.sardanameta.SardanaClass`

	
get_meta_classes()

	Returns a sequence of the meta classes that belong to this library.

	Returns

	a sequence of meta classes that belong to this library

	Return type

	seq<:class:~`sardana.sardanameta.SardanaClass`>

	
has_meta_class(meta_class_name)

	Returns True if the given meta class name belongs to this library
or False otherwise.

	Parameters

	meta_class_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta class name

	Returns

	True if the given meta class name belongs to this library
or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
add_meta_function(meta_function)

	Adds a new :class:~`sardana.sardanameta.SardanaFunction` to this
library.

	Parameters

	meta_function (:class:~`sardana.sardanameta.SardanaFunction`) – the meta function to be added to this library

	
get_meta_function(meta_function_name)

	Returns a :class:~`sardana.sardanameta.SardanaFunction` for the
given meta function name or None if the meta function does not exist in
this library.

	Parameters

	meta_function_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta function name

	Returns

	a meta function or None

	Return type

	:class:~`sardana.sardanameta.SardanaFunction`

	
get_meta_functions()

	Returns a sequence of the meta functions that belong to this library.

	Returns

	a sequence of meta functions that belong to this library

	Return type

	seq<:class:~`sardana.sardanameta.SardanaFunction`>

	
has_meta_function(meta_function_name)

	Returns True if the given meta function name belongs to this library
or False otherwise.

	Parameters

	meta_function_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta function name

	Returns

	True if the given meta function name belongs to this library
or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
get_meta(meta_name)

	Returns a :class:~`sardana.sardanameta.SardanaCode` for the
given meta name or None if the meta does not exist in this library.

	Parameters

	meta_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta name (class, function)

	Returns

	a meta or None

	Return type

	:class:~`sardana.sardanameta.SardanaCode`

	
has_meta(meta_name)

	Returns True if the given meta name belongs to this library
or False otherwise.

	Parameters

	meta_name (str [https://docs.python.org/dev/library/stdtypes.html#str]) – the meta name

	Returns

	True if the given meta (class or function) name belongs to this
library or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
has_metas()

	Returns True if any meta object exists in the library
or False otherwise.

	Returns

	True if any meta object (class or function) exists
in the library or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
get_metas()

	Returns a sequence of the meta (class and functions) that belong to
this library.

	Returns

	a sequence of meta (class and functions) that belong to this library

	Return type

	seq<:class:~`sardana.sardanameta.SardanaCode`>

	
get_name()

	Returns the module name for this library (same as
:meth:~sardana.sardanameta.SardanaLibrary.get_module_name).

	Returns

	the module name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_module_name()

	Returns the module name for this library (same as
:meth:~sardana.sardanameta.SardanaLibrary.get_name).

	Returns

	the module name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_module()

	Returns the python module for this library.

	Returns

	the python module

	Return type

	object [https://docs.python.org/dev/library/functions.html#object]

	
get_description()

	Returns the this library documentation or “<Undocumented>” if no
documentation exists.

	Returns

	this library documentation or None

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_code()

	Returns a sequence of sourcelines corresponding to the module code.

	Returns

	list of source code lines

	Return type

	list<str>

	
get_file_path()

	Returns the file path for this library. On posix systems is something
like: /abs/path/filename.py

	Returns

	this library file path

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_file_name()

	Returns the file name for this library. On posix systems is something
like: filename.py

	Returns

	this library file name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
has_errors()

	Returns True if this library has syntax errors or False otherwise.

	Returns

	True if this library has syntax errors or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
set_error(exc_info)

	Sets the error information for this library

	Parameters

	exc_info (tuple<type, value, traceback>) – error information. It must be an object similar to the
one returned by sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info]

	
get_error()

	Gets the error information for this library or None if no error
exists

	Returns

	error information. An object similar to the one returned by
sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info]

	Return type

	tuple<type, value, traceback>

	
serialize(*args, **kwargs)

	Returns a serializable object describing this object.

	Returns

	a serializable dict

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
Critical = 50

	

	
Debug = 10

	

	
DftLogLevel = 20

	

	
DftLogMessageFormat = '%(threadName)-14s %(levelname)-8s %(asctime)s %(name)s: %(message)s'

	

	
Error = 40

	

	
Fatal = 50

	

	
Info = 20

	

	
Trace = 5

	

	
Warning = 30

	

	
add_listener(listener)

	Adds a new listener for this object.

	Parameters

	listener – a listener

	
are_events_blocked()

	

	
block_events()

	

	
fire_event(event_type, event_value, listeners=None, protected=True)

	

	
flush_queue()

	

	
frontend

	the object frontend

	
full_name

	object full name

	
get_frontend()

	Returns this sardana frontend object or None if no frontend is
registered

	Returns

	this objects frontend

	Return type

	object [https://docs.python.org/dev/library/functions.html#object]

	
get_full_name()

	Returns this sardana object full name

	Returns

	this sardana object full name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_interface()

	Returns the interface this object implements.

	Returns

	The interface this object implements.

	Return type

	sardana.sardanadefs.Interface

	
get_interface_names()

	Returns a sequence of interface names this object implements.

	Returns

	The sequence of interfaces this object implements.

	Return type

	sequence<str>

	
get_interfaces()

	Returns the set of interfaces this object implements.

	Returns

	The set of interfaces this object implements.

	Return type

	class:set <sardana.sardanadefs.Interface>

	
get_manager()

	Return the sardana.Manager which owns this sardana
object.

	Returns

	the manager which owns this pool object.

	Return type

	sardana.Manager

	
get_parent()

	Returns this pool object parent.

	Returns

	this objects parent

	Return type

	SardanaBaseObject

	
get_parent_name()

	Returns this sardana object parent’s name.

	Returns

	this objects parent

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_type()

	Returns this sardana object type.

	Returns

	this sardana object type

	Return type

	ElementType

	
has_listeners()

	Returns True if anybody is listening to events from this object

	Returns

	True is at least one listener is listening or False otherwise

	
log_level = 20

	

	
manager

	reference to the sardana.Manager

	
name

	object name

	
queue_event(event_type, event_value, listeners=None)

	

	
remove_listener(listener)

	Removes an existing listener for this object.

	Parameters

	listener – the listener to be removed

	Returns

	True is succeeded or False otherwise

	
root_inited = True

	

	
serialized(*args, **kwargs)

	

	
set_name(name)

	Sets sardana object name

	Param

	sardana object name

	Type

	str

	
str(*args, **kwargs)

	

	
unblock_events()

	

SardanaClass

[image: Inheritance diagram of SardanaClass]

	
class SardanaClass(**kwargs)

	Object representing a python class.

	
Critical = 50

	

	
Debug = 10

	

	
DftLogLevel = 20

	

	
DftLogMessageFormat = '%(threadName)-14s %(levelname)-8s %(asctime)s %(name)s: %(message)s'

	

	
Error = 40

	

	
Fatal = 50

	

	
Info = 20

	

	
Trace = 5

	

	
Warning = 30

	

	
add_listener(listener)

	Adds a new listener for this object.

	Parameters

	listener – a listener

	
are_events_blocked()

	

	
block_events()

	

	
code

	Returns a tuple (sourcelines, firstline) corresponding to the
definition of this code object. sourcelines is a list of source code
lines. firstline is the line number of the first source code line.

	
code_object

	

	
description = '<Undocumented>'

	

	
file_name

	Returns the file name for the library where this class is. On posix
systems is something like: filename.py

	Returns

	the file name for the library where this class is

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
file_path

	Returns the file path for for the library where this class is. On
posix systems is something like: /abs/path/filename.py

	Returns

	the file path for for the library where this class is

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
fire_event(event_type, event_value, listeners=None, protected=True)

	

	
flush_queue()

	

	
frontend

	the object frontend

	
full_name

	object full name

	
get_brief_description(max_chars=60)

	

	
get_code()

	Returns a tuple (sourcelines, firstline) corresponding to the
definition of the controller class. sourcelines is a list of source code
lines. firstline is the line number of the first source code line.

	
get_frontend()

	Returns this sardana frontend object or None if no frontend is
registered

	Returns

	this objects frontend

	Return type

	object [https://docs.python.org/dev/library/functions.html#object]

	
get_full_name()

	Returns this sardana object full name

	Returns

	this sardana object full name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_interface()

	Returns the interface this object implements.

	Returns

	The interface this object implements.

	Return type

	sardana.sardanadefs.Interface

	
get_interface_names()

	Returns a sequence of interface names this object implements.

	Returns

	The sequence of interfaces this object implements.

	Return type

	sequence<str>

	
get_interfaces()

	Returns the set of interfaces this object implements.

	Returns

	The set of interfaces this object implements.

	Return type

	class:set <sardana.sardanadefs.Interface>

	
get_manager()

	Return the sardana.Manager which owns this sardana
object.

	Returns

	the manager which owns this pool object.

	Return type

	sardana.Manager

	
get_name()

	Returns this sardana object name

	Returns

	this sardana object name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_parent()

	Returns this pool object parent.

	Returns

	this objects parent

	Return type

	SardanaBaseObject

	
get_parent_name()

	Returns this sardana object parent’s name.

	Returns

	this objects parent

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
get_type()

	Returns this sardana object type.

	Returns

	this sardana object type

	Return type

	ElementType

	
has_listeners()

	Returns True if anybody is listening to events from this object

	Returns

	True is at least one listener is listening or False otherwise

	
lib

	Returns the library :class:~`sardana.sardanameta.SardanaLibrary`
for this class.

	Returns

	a reference to the library where this class is located

	Return type

	:class:~`sardana.sardanameta.SardanaLibrary`

	
log_level = 20

	

	
manager

	reference to the sardana.Manager

	
module

	Returns the python module for this class.

	Returns

	the python module

	Return type

	object [https://docs.python.org/dev/library/functions.html#object]

	
module_name

	Returns the module name for this class.

	Returns

	the module name

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
name

	object name

	
path

	Returns the absolute path for the library where this class is. On
posix systems is something like: /abs/path

	Returns

	the absolute path for the library where this class is

	Return type

	str [https://docs.python.org/dev/library/stdtypes.html#str]

	
queue_event(event_type, event_value, listeners=None)

	

	
remove_listener(listener)

	Removes an existing listener for this object.

	Parameters

	listener – the listener to be removed

	Returns

	True is succeeded or False otherwise

	
root_inited = True

	

	
serialize(*args, **kwargs)

	Returns a serializable object describing this object.

	Returns

	a serializable dict

	Return type

	dict [https://docs.python.org/dev/library/stdtypes.html#dict]

	
serialized(*args, **kwargs)

	

	
set_name(name)

	Sets sardana object name

	Param

	sardana object name

	Type

	str

	
str(*args, **kwargs)

	

	
unblock_events()

	

	
klass

	

sardanamanager

This module is part of the Python Sardana libray. It defines the base class
for Sardana manager

Classes

	
	SardanaElementManager

	

	

SardanaElementManager

[image: Inheritance diagram of SardanaElementManager]

	
class SardanaElementManager

	A class capable of manage elements

	
SerializationProtocol = 'json'

	

	
get_serialization_protocol()

	

	
set_serialization_protocol(protocol)

	

	
serialization_protocol

	the serialization protocol

	
serialize_element(element, *args, **kwargs)

	

	
serialize_object(obj, *args, **kwargs)

	

	
str_element(element, *args, **kwargs)

	

	
str_object(obj, *args, **kwargs)

	

sardanaattribute

This module is part of the Python Sardana libray. It defines the base classes
for Sardana attributes

Classes

	
	SardanaAttribute

	SardanaSoftwareAttribute

	
	ScalarNumberAttribute

	
	SardanaAttributeConfiguration

SardanaAttribute

[image: Inheritance diagram of SardanaAttribute]

	
class SardanaAttribute(obj, name=None, initial_value=None, **kwargs)

	Class representing an atomic attribute like position of a motor or a
counter value

	
has_value()

	Determines if the attribute’s read value has been read at least once
in the lifetime of the attribute.

	Returns

	True if the attribute has a read value stored or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
has_write_value()

	Determines if the attribute’s write value has been read at least once
in the lifetime of the attribute.

	Returns

	True if the attribute has a write value stored or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
get_obj()

	Returns the object which owns this attribute

	Returns

	the object which owns this attribute

	Return type

	obj

	
in_error()

	Determines if this attribute is in error state.

	Returns

	True if the attribute is in error state or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
set_value(value, exc_info=None, timestamp=None, propagate=1)

	Sets the current read value and propagates the event (if
propagate > 0).

	Parameters

	
	value (obj or SardanaValue) – the new read value for this attribute. If a SardanaValue
is given, exc_info and timestamp are ignored (if given)

	exc_info (tuple<3> or None [https://docs.python.org/dev/library/constants.html#None]) – exception information as returned by
sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info] [default: None, meaning no
exception]

	timestamp (float [https://docs.python.org/dev/library/functions.html#float] or None [https://docs.python.org/dev/library/constants.html#None]) – timestamp of attribute readout [default: None, meaning
create a ‘now’ timestamp]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
get_value()

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	obj

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
get_value_obj()

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	SardanaValue

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
set_write_value(w_value, timestamp=None, propagate=1)

	Sets the current write value.

	Parameters

	
	value (obj or SardanaValue) – the new write value for this attribute. If a SardanaValue
is given, timestamp is ignored (if given)

	timestamp (float [https://docs.python.org/dev/library/functions.html#float] or None [https://docs.python.org/dev/library/constants.html#None]) – timestamp of attribute write [default: None, meaning
create a ‘now’ timestamp]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
get_write_value()

	Returns the last write value for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	obj

	
get_write_value_obj()

	Returns the last write value object for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	SardanaValue

	
get_exc_info()

	Returns the exception information (like sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info]) about
last attribute readout or None if last read did not generate an
exception.

	Returns

	exception information or None

	Return type

	tuple<3> or None

	
accepts(propagate)

	

	
get_timestamp()

	Returns the timestamp of the last readout or None if the attribute
has never been read before

	Returns

	timestamp of the last readout or None

	Return type

	float [https://docs.python.org/dev/library/functions.html#float] or None

	
get_write_timestamp()

	Returns the timestamp of the last write or None if the attribute
has never been written before

	Returns

	timestamp of the last write or None

	Return type

	float [https://docs.python.org/dev/library/functions.html#float] or None

	
fire_write_event(propagate=1)

	Fires an event to the listeners of the object which owns this
attribute.

	Parameters

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
fire_read_event(propagate=1)

	Fires an event to the listeners of the object which owns this
attribute.

	Parameters

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
obj

	Returns the object which owns this attribute

	Returns

	the object which owns this attribute

	Return type

	obj

	
value_obj

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	SardanaValue

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
write_value_obj

	Returns the last write value object for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	SardanaValue

	
value

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	obj

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
w_value

	Returns the last write value for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	obj

	
timestamp

	the read timestamp

	
w_timestamp

	the write timestamp

	
error

	Determines if this attribute is in error state.

	Returns

	True if the attribute is in error state or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
exc_info

	Returns the exception information (like sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info]) about
last attribute readout or None if last read did not generate an
exception.

	Returns

	exception information or None

	Return type

	tuple<3> or None

	
add_listener(listener)

	Adds a new listener for this object.

	Parameters

	listener – a listener

	
fire_event(event_type, event_value, listeners=None)

	

	
flush_queue()

	

	
has_listeners()

	Returns True if anybody is listening to events from this object

	Returns

	True is at least one listener is listening or False otherwise

	
queue_event(event_type, event_value, listeners=None)

	

	
remove_listener(listener)

	Removes an existing listener for this object.

	Parameters

	listener – the listener to be removed

	Returns

	True is succeeded or False otherwise

SardanaSoftwareAttribute

[image: Inheritance diagram of SardanaSoftwareAttribute]

	
class SardanaSoftwareAttribute(obj, name=None, initial_value=None, **kwargs)

	Class representing a software attribute. The difference between this and
SardanaAttribute is that, because it is a pure software attribute,
there is no difference ever between the read and write values.

	
get_value()

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	obj

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
set_value(value, exc_info=None, timestamp=None, propagate=1)

	Sets the current read value and propagates the event (if
propagate > 0).

	Parameters

	
	value (obj) – the new read value for this attribute

	exc_info (tuple<3> or None [https://docs.python.org/dev/library/constants.html#None]) – exception information as returned by
sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info] [default: None, meaning no
exception]

	timestamp (float [https://docs.python.org/dev/library/functions.html#float] or None [https://docs.python.org/dev/library/constants.html#None]) – timestamp of attribute readout [default: None, meaning
create a ‘now’ timestamp]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
value

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	obj

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
accepts(propagate)

	

	
add_listener(listener)

	Adds a new listener for this object.

	Parameters

	listener – a listener

	
error

	Determines if this attribute is in error state.

	Returns

	True if the attribute is in error state or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
exc_info

	Returns the exception information (like sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info]) about
last attribute readout or None if last read did not generate an
exception.

	Returns

	exception information or None

	Return type

	tuple<3> or None

	
fire_event(event_type, event_value, listeners=None)

	

	
fire_read_event(propagate=1)

	Fires an event to the listeners of the object which owns this
attribute.

	Parameters

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
fire_write_event(propagate=1)

	Fires an event to the listeners of the object which owns this
attribute.

	Parameters

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
flush_queue()

	

	
get_exc_info()

	Returns the exception information (like sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info]) about
last attribute readout or None if last read did not generate an
exception.

	Returns

	exception information or None

	Return type

	tuple<3> or None

	
get_obj()

	Returns the object which owns this attribute

	Returns

	the object which owns this attribute

	Return type

	obj

	
get_timestamp()

	Returns the timestamp of the last readout or None if the attribute
has never been read before

	Returns

	timestamp of the last readout or None

	Return type

	float [https://docs.python.org/dev/library/functions.html#float] or None

	
get_value_obj()

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	SardanaValue

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
get_write_timestamp()

	Returns the timestamp of the last write or None if the attribute
has never been written before

	Returns

	timestamp of the last write or None

	Return type

	float [https://docs.python.org/dev/library/functions.html#float] or None

	
get_write_value()

	Returns the last write value for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	obj

	
get_write_value_obj()

	Returns the last write value object for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	SardanaValue

	
has_listeners()

	Returns True if anybody is listening to events from this object

	Returns

	True is at least one listener is listening or False otherwise

	
has_value()

	Determines if the attribute’s read value has been read at least once
in the lifetime of the attribute.

	Returns

	True if the attribute has a read value stored or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
has_write_value()

	Determines if the attribute’s write value has been read at least once
in the lifetime of the attribute.

	Returns

	True if the attribute has a write value stored or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
in_error()

	Determines if this attribute is in error state.

	Returns

	True if the attribute is in error state or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
obj

	Returns the object which owns this attribute

	Returns

	the object which owns this attribute

	Return type

	obj

	
queue_event(event_type, event_value, listeners=None)

	

	
remove_listener(listener)

	Removes an existing listener for this object.

	Parameters

	listener – the listener to be removed

	Returns

	True is succeeded or False otherwise

	
set_write_value(w_value, timestamp=None, propagate=1)

	Sets the current write value.

	Parameters

	
	value (obj or SardanaValue) – the new write value for this attribute. If a SardanaValue
is given, timestamp is ignored (if given)

	timestamp (float [https://docs.python.org/dev/library/functions.html#float] or None [https://docs.python.org/dev/library/constants.html#None]) – timestamp of attribute write [default: None, meaning
create a ‘now’ timestamp]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
timestamp

	the read timestamp

	
value_obj

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	SardanaValue

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
w_timestamp

	the write timestamp

	
w_value

	Returns the last write value for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	obj

	
write_value_obj

	Returns the last write value object for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	SardanaValue

ScalarNumberAttribute

[image: Inheritance diagram of ScalarNumberAttribute]

	
class ScalarNumberAttribute(*args, **kwargs)

	A SardanaAttribute specialized for numbers

	
accepts(propagate)

	

	
add_listener(listener)

	Adds a new listener for this object.

	Parameters

	listener – a listener

	
error

	Determines if this attribute is in error state.

	Returns

	True if the attribute is in error state or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
exc_info

	Returns the exception information (like sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info]) about
last attribute readout or None if last read did not generate an
exception.

	Returns

	exception information or None

	Return type

	tuple<3> or None

	
fire_event(event_type, event_value, listeners=None)

	

	
fire_read_event(propagate=1)

	Fires an event to the listeners of the object which owns this
attribute.

	Parameters

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
fire_write_event(propagate=1)

	Fires an event to the listeners of the object which owns this
attribute.

	Parameters

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
flush_queue()

	

	
get_exc_info()

	Returns the exception information (like sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info]) about
last attribute readout or None if last read did not generate an
exception.

	Returns

	exception information or None

	Return type

	tuple<3> or None

	
get_obj()

	Returns the object which owns this attribute

	Returns

	the object which owns this attribute

	Return type

	obj

	
get_timestamp()

	Returns the timestamp of the last readout or None if the attribute
has never been read before

	Returns

	timestamp of the last readout or None

	Return type

	float [https://docs.python.org/dev/library/functions.html#float] or None

	
get_value()

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	obj

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
get_value_obj()

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	SardanaValue

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
get_write_timestamp()

	Returns the timestamp of the last write or None if the attribute
has never been written before

	Returns

	timestamp of the last write or None

	Return type

	float [https://docs.python.org/dev/library/functions.html#float] or None

	
get_write_value()

	Returns the last write value for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	obj

	
get_write_value_obj()

	Returns the last write value object for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	SardanaValue

	
has_listeners()

	Returns True if anybody is listening to events from this object

	Returns

	True is at least one listener is listening or False otherwise

	
has_value()

	Determines if the attribute’s read value has been read at least once
in the lifetime of the attribute.

	Returns

	True if the attribute has a read value stored or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
has_write_value()

	Determines if the attribute’s write value has been read at least once
in the lifetime of the attribute.

	Returns

	True if the attribute has a write value stored or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
in_error()

	Determines if this attribute is in error state.

	Returns

	True if the attribute is in error state or False otherwise

	Return type

	bool [https://docs.python.org/dev/library/functions.html#bool]

	
obj

	Returns the object which owns this attribute

	Returns

	the object which owns this attribute

	Return type

	obj

	
queue_event(event_type, event_value, listeners=None)

	

	
remove_listener(listener)

	Removes an existing listener for this object.

	Parameters

	listener – the listener to be removed

	Returns

	True is succeeded or False otherwise

	
set_value(value, exc_info=None, timestamp=None, propagate=1)

	Sets the current read value and propagates the event (if
propagate > 0).

	Parameters

	
	value (obj or SardanaValue) – the new read value for this attribute. If a SardanaValue
is given, exc_info and timestamp are ignored (if given)

	exc_info (tuple<3> or None [https://docs.python.org/dev/library/constants.html#None]) – exception information as returned by
sys.exc_info() [https://docs.python.org/dev/library/sys.html#sys.exc_info] [default: None, meaning no
exception]

	timestamp (float [https://docs.python.org/dev/library/functions.html#float] or None [https://docs.python.org/dev/library/constants.html#None]) – timestamp of attribute readout [default: None, meaning
create a ‘now’ timestamp]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
set_write_value(w_value, timestamp=None, propagate=1)

	Sets the current write value.

	Parameters

	
	value (obj or SardanaValue) – the new write value for this attribute. If a SardanaValue
is given, timestamp is ignored (if given)

	timestamp (float [https://docs.python.org/dev/library/functions.html#float] or None [https://docs.python.org/dev/library/constants.html#None]) – timestamp of attribute write [default: None, meaning
create a ‘now’ timestamp]

	propagate (int [https://docs.python.org/dev/library/functions.html#int]) – 0 for not propagating, 1 to propagate, 2 propagate with priority

	
timestamp

	the read timestamp

	
value

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	obj

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
value_obj

	Returns the last read value for this attribute.

	Returns

	the last read value for this attribute

	Return type

	SardanaValue

	Raises

	Exception [https://docs.python.org/dev/library/exceptions.html#Exception] if no read value has been set yet

	
w_timestamp

	the write timestamp

	
w_value

	Returns the last write value for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	obj

	
write_value_obj

	Returns the last write value object for this attribute.

	Returns

	the last write value for this attribute or None if value has
not been written yet

	Return type

	SardanaValue

SardanaAttributeConfiguration

[image: Inheritance diagram of SardanaAttributeConfiguration]

	
class SardanaAttributeConfiguration

	Storage class for SardanaAttribute information (like ranges)

	
NoRange = (-inf, inf)

	

sardanavalue

This module is part of the Python Sardana libray. It defines the base
classes for Sardana values

Classes

	
	SardanaValue

	

	

SardanaValue

[image: Inheritance diagram of SardanaValue]

	
class SardanaValue(value=None, exc_info=None, timestamp=None, dtype=None, dformat=None)

	

Sardana test API

Macro test API

Classes

	
	BaseMacroExecutor

	MacroExecutorFactory

	
	BaseMacroTestCase

	RunMacroTestCase

	
	RunStopMacroTestCase

	SarDemoEnv

Decorator

	
@macroTest

	
	
macroTest(klass=None, helper_name=None, test_method_name=None, test_method_doc=None, **helper_kwargs)

	This decorator is an specialization of :function::taurus.test.insertTest
for macro testing. It inserts test methods from a helper method that may
accept arguments.

macroTest provides a very economic API for creating new tests for a given
macro based on a helper method.

macroTest accepts the following arguments:

	
	helper_name (str): the name of the helper method. macroTest will

	insert a test method which calls the helper with
any the helper_kwargs (see below).

	
	test_method_name (str): Optional. Name of the test method to be used.

	If None given, one will be generated from the
macro and helper names.

	
	test_method_doc (str): The docstring for the inserted test method

	(this shows in the unit test output). If None
given, a default one is generated which
includes the input parameters and the helper
name.

	
	**helper_kwargs: All remaining keyword arguments are passed to the

	helper.

macroTest can work with the macro_name class member

This decorator can be considered a “base” decorator. It is often used to
create other decorators in which the helper method is pre-set. Some
of them are already provided in this module:

	testRun() is equivalent to macroTest with helper_name=’macro_runs’

	testStop() is equivalent to macroTest with helper_name=’macro_stops’

	testFail() is equivalent to macroTest with helper_name=’macro_fails’

The advantage of using the decorators compared to writing the test methods
directly is that the helper method can get keyword arguments and therefore
avoid duplication of code for very similar tests (think, e.g. on writing
similar tests for various sets of macro input parameters):

Consider the following code written using the
RunMacroTestCase.macro_runs() helper:

class FooTest(RunMacroTestCase, unittest.TestCase)
 macro_name = twice

 def test_foo_runs_with_input_2(self):
 '''test that twice(2) runs'''
 self.macro_runs(macro_params=['2'])

 def test_foo_runs_with_input_minus_1(self):
 '''test that twice(2) runs'''
 self.macro_runs(macro_params=['-1'])

The equivalent code could be written as:

@macroTest(helper_name='macro_runs', macro_params=['2'])
@macroTest(helper_name='macro_runs', macro_params=['-1'])
class FooTest(RunMacroTestCase, unittest.TestCase):
 macro_name = 'twice'

Or, even better, using the specialized testRun decorator:

@testRun(macro_params=['2'])
@testRun(macro_params=['-1'])
class FooTest(RunMacroTestCase, unittest.TestCase):
 macro_name = 'twice'

See also

:function::taurus.test.insertTest

BaseMacroExecutor

[image: Inheritance diagram of BaseMacroExecutor]

	
class BaseMacroExecutor

	Abstract MacroExecutor class. Inherit from it if you want to create your
own macro executor.

	
log_levels = ['debug', 'output', 'info', 'warning', 'critical', 'error']

	

	
run(macro_name, macro_params=None, sync=True, timeout=inf)

	Execute macro.

	Parameters

	
	macro_name – (string) name of macro to be executed

	macro_params – (list<string>) macro parameters
(default is macro_params=None for macros without
parameters or with the default values)

	sync – (bool) whether synchronous or asynchronous call
(default is sync=True)

	timeout –
	(float) timeout (in s) that will be passed to the wait

	method, in case of synchronous execution

In asyncrhonous execution method wait() has to be explicitly
called.

	
wait(timeout=inf)

	Wait until macro is done. Use it in asynchronous executions.

	Parameters

	timeout – (float) waiting timeout (in s)

	
stop(started_event_timeout=3.0)

	Stop macro execution. Execute macro in synchronous way before using
this method.

	Parameters

	started_event_timeout – (float) waiting timeout for started event

	
registerLog(log_level)

	Start registering log messages.

	Parameters

	log_level – (str) string indicating the log level

	
unregisterLog(log_level)

	Stop registering log messages.

	Parameters

	log_level – (str) string indicating the log level

	
getLog(log_level)

	Get log messages.

	Parameters

	log_level – (str) string indicating the log level

	Returns

	(seq<str>) list of strings with log messages

	
registerAll()

	Register for macro result, all log levels and common buffer.

	
unregisterAll()

	Unregister macro result, all log levels and common buffer.

	
registerResult()

	Register for macro result

	
unregisterResult()

	Unregister macro result.

	
getResult()

	Get macro result.

	Returns

	(seq<str>) list of strings with Result messages

	
createCommonBuffer()

	Create a common buffer, where all the registered logs will be stored.

	
getCommonBuffer()

	
	Get common buffer.

	Method getCommonBuffer can only be used if at least one buffer exists.

	Returns

	(seq<str>) list of strings with messages from all log levels

See also

createCommonBuffer()

	
getState()

	Get macro execution state.

	Returns

	(str)

	
getStateBuffer()

	Get buffer (history) of macro execution states.

	Returns

	(seq<str>)

	
getExceptionStr()

	Get macro exception type representation (None if the macro state
is not exception).

	Returns

	(str)

MacroExecutorFactory

[image: Inheritance diagram of MacroExecutorFactory]

	
class MacroExecutorFactory(*a, **kw)

	A scheme-agnostic factory for MacroExecutor instances

Example:

f = MacroExecutorFactory()
f.getMacroExecutor('tango://my/door/name') #returns a TangoMacroExecutor

Note: For the moment, only TangoMacroExecutor is supported

	
getMacroExecutor(door_name=None)

	Returns a macro executor instance (a subclass of
BaseMacroExecutor) depending on the door being used.

BaseMacroTestCase

[image: Inheritance diagram of BaseMacroTestCase]

	
class BaseMacroTestCase

	An abstract class for macro testing.
BaseMacroTestCase will provide a macro_executor member which is an
instance of BaseMacroExecutor and which can be used to run a macro.

To use it, simply inherit from BaseMacroTestCase and unittest.TestCase
and provide the following class members:

	macro_name (string) name of the macro to be tested

	
	door_name (string) name of the door where the macro will be executed.

	This is optional. If not set,
sardanacustomsettings.UNITTEST_DOOR_NAME is used

Then you may define test methods.

	
macro_name = None

	

	
door_name = 'door/demo1/1'

	

	
setUp()

	A macro_executor instance must be created

	
tearDown()

	The macro_executor instance must be removed

RunMacroTestCase

[image: Inheritance diagram of RunMacroTestCase]

	
class RunMacroTestCase

	A base class for testing execution of arbitrary Sardana macros.
See BaseMacroTestCase for requirements.

	It provides the following helper methods:

	
	macro_runs()

	macro_fails()

	
assertFinished(msg)

	Asserts that macro has finished.

	
setUp()

	Preconditions:
- Those from BaseMacroTestCase
- the macro executor registers to all the log levels

	
macro_runs(macro_name=None, macro_params=None, wait_timeout=inf, data=0)

	A helper method to create tests that check if the macro can be
successfully executed for the given input parameters. It may also
optionally perform checks on the outputs from the execution.

	Parameters

	
	macro_name – (str) macro name (takes precedence over macro_name
class member)

	macro_params – (seq<str>): parameters for running the macro.
If passed, they must be given as a sequence of
their string representations.

	wait_timeout – (float) maximum allowed time (in s) for the macro
to finish. By default infinite timeout is used.

	data – (obj) Optional. If passed, the macro data after the
execution is tested to be equal to this.

	
macro_fails(macro_name=None, macro_params=None, wait_timeout=inf, exception=None)

	Check that the macro fails to run for the given input parameters

	Parameters

	
	macro_name – (str) macro name (takes precedence over macro_name
class member)

	macro_params – (seq<str>) input parameters for the macro

	wait_timeout – maximum allowed time for the macro to fail. By
default infinite timeout is used.

	exception – (str or Exception) if given, an additional check of
the type of the exception is done.
(IMPORTANT: this is just a comparison of str
representations of exception objects)

	
door_name = 'door/demo1/1'

	

	
macro_name = None

	

	
tearDown()

	The macro_executor instance must be removed

RunStopMacroTestCase

[image: Inheritance diagram of RunStopMacroTestCase]

	
class RunStopMacroTestCase

	This is an extension of RunMacroTestCase to include helpers for
testing the abort process of a macro. Useful for Runnable and Stopable
macros.

It provides the macro_stops() helper

	
assertStopped(msg)

	Asserts that macro was stopped

	
macro_stops(macro_name=None, macro_params=None, stop_delay=0.1, wait_timeout=inf)

	A helper method to create tests that check if the macro can be
successfully stoped (a.k.a. aborted) after it has been launched.

	Parameters

	
	macro_name – (str) macro name (takes precedence over macro_name
class member)

	macro_params – (seq<str>): parameters for running the macro.
If passed, they must be given as a sequence of
their string representations.

	stop_delay – (float) Time (in s) to wait between launching the
macro and sending the stop command. default=0.1

	wait_timeout – (float) maximum allowed time (in s) for the macro
to finish. By default infinite timeout is used.

	
assertFinished(msg)

	Asserts that macro has finished.

	
door_name = 'door/demo1/1'

	

	
macro_fails(macro_name=None, macro_params=None, wait_timeout=inf, exception=None)

	Check that the macro fails to run for the given input parameters

	Parameters

	
	macro_name – (str) macro name (takes precedence over macro_name
class member)

	macro_params – (seq<str>) input parameters for the macro

	wait_timeout – maximum allowed time for the macro to fail. By
default infinite timeout is used.

	exception – (str or Exception) if given, an additional check of
the type of the exception is done.
(IMPORTANT: this is just a comparison of str
representations of exception objects)

	
macro_name = None

	

	
macro_runs(macro_name=None, macro_params=None, wait_timeout=inf, data=0)

	A helper method to create tests that check if the macro can be
successfully executed for the given input parameters. It may also
optionally perform checks on the outputs from the execution.

	Parameters

	
	macro_name – (str) macro name (takes precedence over macro_name
class member)

	macro_params – (seq<str>): parameters for running the macro.
If passed, they must be given as a sequence of
their string representations.

	wait_timeout – (float) maximum allowed time (in s) for the macro
to finish. By default infinite timeout is used.

	data – (obj) Optional. If passed, the macro data after the
execution is tested to be equal to this.

	
setUp()

	Preconditions:
- Those from BaseMacroTestCase
- the macro executor registers to all the log levels

	
tearDown()

	The macro_executor instance must be removed

SarDemoEnv

[image: Inheritance diagram of SarDemoEnv]

	
class SarDemoEnv(*a, **kw)

	Class to get _SAR_DEMO environment variable with cross checking with
the MacroServer (given by UNITTEST_DOOR_NAME)

	
ready = False

	

	
init(door_name=None)

	

	
getElements(elem_type='all')

	Return the name of sardemo element(s) of given elem type

	Parameters

	elem_type – (str) type of elemnts to return (all by default)

	Returns

	(list<str>)

	
getMoveables()

	Return the name of moveable(s) defined by SarDemo

	Returns

	(list<str>)

	
getControllers()

	Return the name of controllers(s) defined by SarDemo

	Returns

	(list<str>)

	
getCTs()

	Return the name of counter timer exp channel(s) defined by SarDemo

	Returns

	(list<str>)

	
getMotors()

	Return the name of motor(s) defined by SarDemo

	Returns

	(list<str>)

	
getPseudoMotors()

	Return the name of pseudomotor(s) defined by SarDemo

	Returns

	(list<str>)

	
getZerods()

	Return the name of zerod exp channel(s) defined by SarDemo

	Returns

	(list<str>)

	
getOneds()

	Return the name of one exp channel(s) defined by SarDemo

	Returns

	(list<str>)

	
getTwods()

	Return the name of two exp channel(s) defined by SarDemo

	Returns

	(list<str>)

	
changeDoor(door_name)

	Change the door name and reset all lists

Sardana migration guide

This chapter describes how to migrate different sardana components between the
different API versions.

How to migrate your macro code

API v0 -> v1

This chapter describes the necessary steps to fully migrate your macros
from API v0 (sardana 0.x) to API v1 (sardana 1.x)

Mandatory changes

The following are the 2 necessary changes to make your macros work in
sardana API v1:

	from:

from macro import Macro, Type, Table, List

to:

from sardana.macroserver.macro import Macro, Type, Table, List

	Parameter type Type.Motor should be changed Type.Moveable.
In v0 the Motor meant any motor (including physical motor, pseudo
motor). In v1, for consistency, Motor means only physical motor
and Moveable means all moveable elements (including physical motor, pseudo
motor).

New features in API v1

This chapter is a summary of all new features in API v1.

	Macros can now be functions(see Writing macros).

How to migrate your controller code

API v0 -> v1

This chapter describes the necessary steps to fully migrate your controller
from API v0 (sardana 0.x) to API v1 (sardana 1.x)

Mandatory changes

The following are the 2 necessary changes to make your controller work in
sardana API v1:

	from:

import pool
from pool import <ControllerClass>/PoolUtil

to:

from sardana import pool
from sardana.pool import PoolUtil
from sardana.pool.controller import <ControllerClass>

	change contructor from:

def __init__(self, inst, props):
 code

to:

def __init__(self, inst, props, *args, **kwargs):
 MotorController.__init__(self, inst, props, *args, **kwargs)
 code

(and don’t forget to call the super class constructor also with args
and kwargs).

The following change is not mandatory but is necessary in order for your
controller to be recognized by the pool to be a API v1 controller:

	_log member changed from logging.Logger [https://docs.python.org/dev/library/logging.html#logging.Logger] to
taurus.core.util.Logger [http://taurus-scada.org/devel/api/taurus/core/util/_Logger.html#taurus.core.util.Logger]. This means that you need to change code
from:

self._log.setLevel(logging.INFO)

to:

self._log.setLogLevel(logging.INFO)

or:

self._log.setLogLevel(taurus.Info)

since taurus.Info == logging.INFO.

Optional changes

The following changes are not necessary to make your controller work. The
API v1 supports the API v0 on these matters.

	class members:

	from: class_prop to: ctrl_properties

	from: ctrl_extra_attributes to: axis_attributes

	new feature in API v1: ctrl_attributes

	data types:

	StateOne() return type: Previously
StateOne() had to return a member of
PyTango.DevState. Now it can instead return a member of
State. This eliminates the need to import
PyTango.

	In API v0 class member (like ctrl_extra_attributes)
value for key type had to be a string (like ‘PyTango.DevString’ or
‘PyTango.DevDouble’). Now they can be a python type (like str or float).
Please check Data Type definition for more information.

	generic controller method names:

	from: GetPar() to: GetAxisPar()

	from: SetPar() to: SetAxisPar()

	from: GetExtraAttributePar() to: GetAxisExtraPar()

	from: SetExtraAttributePar() to: SetAxisExtraPar()

	new feature in API v1: GetCtrlPar(), SetCtrlPar()

	new feature in API v1: AbortAll() (has default
implementation which calls AbortOne() for each axis)

	pseudo motor controller method names:

	from: calc_pseudo() to: CalcPseudo()

	from: calc_physical() to: CalcPhysical()

	from: calc_all_pseudo() to: CalcAllPseudo()

	from: calc_all_physical() to: CalcAllPhysical()

	new feature in API v1: GetMotor()

	new feature in API v1: GetPseudoMotor()

New features in API v1

This chapter is a summary of all new features in API v1.

New controller features:

	All Controllers now have a ctrl_attributes class member
to define extra controller attributes (and new methods:
GetCtrlPar(), SetCtrlPar())

	For ctrl_properties, axis_attributes
and ctrl_extra_attributes:

	
	new (more pythonic) syntax. Old syntax is still supported:

	
	can replace data type strings for python type (‘PyTango.DevDouble’ -> float)

	Default behavior. Example: before data access needed to be described explicitly.
Now it is read-write by default.

	support for 2D

	new keys ‘fget’ and ‘fset’ override default method calls

	no need to import PyTango (StateOne() can return
sardana.State.On instead of PyTango.DevState.ON)

	PseudoMotorController has new GetMotor() and
GetPseudoMotor()

	new AbortAll() (with default implementation which calls
AbortOne() for each axis)

	new StopOne() (with default implementation which calls
AbortOne())

	new StopAll() (with default implementation which calls
StoptOne() for each axis)

	
	new GetAxisAttributes() allows features like:

	
	per axis customized dynamic attributes

	Basic interface (example: motor without velocity or acceleration)

	Discrete motor (declare position has an integer instead of a float).
No need for IORegisters anymore

	
	New MotorController constants:

	
	HomeLimitSwitch;

	UpperLimitSwitch;

	LowerLimitSwitch

New acquisition features:

	Measurement group has a new Configuration attribute which contains the full
description of the experiment in JSON format

New Tango API features:

	Controllers are now Tango devices

	Pool has a default PoolPath (points to <pool install dir>/poolcontrollers)

	Create* commands can receive JSON object or an old style list of parameters

	new CreateElement command (can replace CreateMotor, CreateExpChannel, etc)

	Pool Abort command: aborts all elements (non pseudo elements)

	Pool Stop command: stops all elements (non pseudo elements)

	Controller Abort command: aborts all controller elements

	Controller Stop command: stops all controller elements

	Controllers have a LogLevel attribute which allows remote python logging
management

Others:

	Pool device is a python device :-)

	many command line parameters help logging, debugging

Examples

	Macro examples
	Specifying macro parameters

	Calling sub-macros

	Plotting

	Asking user input

	Controller examples

Macro examples

	Specifying macro parameters

	Calling sub-macros

	Plotting

	Asking user input

Macro parameter examples

This chapter consists of a series of examples demonstrating how to declare
macros which receive parameter(s).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

	##
##
This file is part of Sardana
##
http://www.sardana-controls.org/
##
Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain
##
Sardana is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
##
Sardana is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
##
You should have received a copy of the GNU Lesser General Public License
along with Sardana. If not, see <http://www.gnu.org/licenses/>.
##
##

"""This module contains macros that demonstrate the usage of macro parameters"""

from sardana.macroserver.macro import *

__all__ = ["pt0", "pt1", "pt2", "pt3", "pt3d", "pt4", "pt5", "pt6", "pt7",
 "pt7d1", "pt7d2", "pt8", "pt9", "pt10", "pt11", "pt12", "pt13",
 "pt14", "pt14d", "twice"]

class pt0(Macro):
 """Macro without parameters. Pretty dull.
 Usage from Spock, ex.:
 pt0
 """

 param_def = []

 def run(self):
 pass

class pt1(Macro):
 """Macro with one float parameter: Each parameter is described in the
 param_def sequence as being a sequence of four elements: name, type,
 default value and description.
 Usage from Spock, ex.:
 pt1 1
 """

 param_def = [['value', Type.Float, None, 'some bloody float']]

 def run(self, f):
 pass

class pt2(Macro):
 """Macro with one Motor parameter: Each parameter is described in the
 param_def sequence as being a sequence of four elements: name, type,
 default value and description.
 Usage from Spock, ex.
 pt2 mot1
 """

 param_def = [['motor', Type.Motor, None, 'some bloody motor']]

 def run(self, m):
 pass

class pt3(Macro):
 """Macro with a list of numbers as parameter: the type is a sequence of
 parameter types which is repeated. In this case it is a repetition of a
 float so only one parameter is defined.
 By default the repetition as a semantics of 'at least one'
 Usages from Spock, ex.:
 pt3 [1 34 15]
 pt3 1 34 15
 """

 param_def = [
 ['numb_list', [['pos', Type.Float, None, 'value']], None, 'List of values'],
]

 def run(self, *args, **kwargs):
 pass

class pt3d(Macro):
 """Macro with a list of numbers as parameter: the type is a sequence of
 parameter types which is repeated. In this case it is a repetition of a
 float so only one parameter is defined. The parameter has a default value.
 By default the repetition as a semantics of 'at least one'
 Usages from Spock, ex.:
 pt3d [1 34 15]
 pt3d 1 34 15
 Usage taken the default value, ex.:
 pt3d [1 [] 15]
 """

 param_def = [
 ['numb_list', [['pos', Type.Float, 21, 'value']], None, 'List of values'],
]

 def run(self, *args, **kwargs):
 pass

class pt4(Macro):
 """Macro with a list of motors as parameter: the type is a sequence of
 parameter types which is repeated. In this case it is a repetition of a
 motor so only one parameter is defined.
 By default the repetition as a semantics of 'at least one'.
 Usages from Spock, ex.:
 pt4 [mot1 mot2 mot3]
 pt4 mot1 mot2 mot3
 """

 param_def = [
 ['motor_list', [['motor', Type.Motor, None, 'motor name']],
 None, 'List of motors'],
]

 def run(self, *args, **kwargs):
 pass

class pt5(Macro):
 """Macro with a motor parameter followed by a list of numbers.
 Usages from Spock, ex.:
 pt5 mot1 [1 3]
 pt5 mot1 1 3
 """

 param_def = [
 ['motor', Type.Motor, None, 'Motor to move'],
 ['numb_list', [['pos', Type.Float, None, 'value']], None, 'List of values'],
]

 def run(self, *args, **kwargs):
 pass

class pt6(Macro):
 """Macro with a motor parameter followed by a list of numbers. The list as
 explicitly stated an optional last element which is a dictionary that defines the
 min and max values for repetitions.
 Usages from Spock, ex.:
 pt6 mot1 [1 34 1]
 pt6 mot1 1 34 1
 """

 param_def = [
 ['motor', Type.Motor, None, 'Motor to move'],
 ['numb_list', [['pos', Type.Float, None, 'value'], {
 'min': 1, 'max': None}], None, 'List of values'],
]

 def run(self, *args, **kwargs):
 pass

class pt7(Macro):
 """Macro with a list of pair Motor,Float.
 Usages from Spock, ex.:
 pt7 [[mot1 1] [mot2 3]]
 pt7 mot1 1 mot2 3
 """

 param_def = [
 ['m_p_pair', [['motor', Type.Motor, None, 'Motor to move'],
 ['pos', Type.Float, None, 'Position to move to']],
 None, 'List of motor/position pairs']
]

 def run(self, *args, **kwargs):
 pass

class pt7d1(Macro):
 """Macro with a list of pair Motor,Float. Default value for last ParamRepeat element.
 Usages from Spock, ex.:
 pt7d1 [[mot1 1] [mot2 3]]
 pt7d1 mot1 1 mot2 3
 Using default value, ex.:
 pt7d1 [[mot1] [mot2 3]] # at any repetition

 """

 param_def = [
 ['m_p_pair', [['motor', Type.Motor, None, 'Motor to move'],
 ['pos', Type.Float, 2, 'Position to move to']],
 None, 'List of motor/position pairs']
]

 def run(self, *args, **kwargs):
 pass

class pt7d2(Macro):
 """Macro with a list of pair Motor,Float. Default value for both ParamRepeat elements.
 Usages from Spock, ex.:
 pt7d2 [[mot1 1] [mot2 3]]
 pt7d2 mot1 1 mot2 3
 Using both default values, ex.:
 pt7d2 [[] [mot2 3] []] # at any repetition
 """

 param_def = [
 ['m_p_pair', [['motor', Type.Motor, 'mot1', 'Motor to move'],
 ['pos', Type.Float, 2, 'Position to move to']],
 None, 'List of motor/position pairs']
]

 def run(self, *args, **kwargs):
 pass

class pt8(Macro):
 """Macro with a list of pair Motor,Float. The min and max elements have been
 explicitly stated.
 Usages from Spock, ex.:
 pt8 [[mot1 1] [mot2 3]]
 pt8 mot1 1 mot2 3
 """

 param_def = [
 ['m_p_pair', [['motor', Type.Motor, None, 'Motor to move'],
 ['pos', Type.Float, None, 'Position to move to'],
 {'min': 1, 'max': 2}],
 None, 'List of motor/position pairs']
]

 def run(self, *args, **kwargs):
 pass

class pt9(Macro):
 """Same as macro pt7 but with old style ParamRepeat. If you are writing
 a macro with variable number of parameters for the first time don't even
 bother to look at this example since it is DEPRECATED.
 Usages from Spock, ex.:
 pt9 [[mot1 1][mot2 3]]
 pt9 mot1 1 mot2 3
 """

 param_def = [
 ['m_p_pair',
 ParamRepeat(['motor', Type.Motor, None, 'Motor to move'],
 ['pos', Type.Float, None, 'Position to move to'], min=1, max=2),
 None, 'List of motor/position pairs'],
]

 def run(self, *args, **kwargs):
 pass

class pt10(Macro):
 """Macro with list of numbers followed by a motor parameter. The repeat
 parameter may be defined as first one.
 Usage from Spock, ex.:
 pt10 [1 3] mot1
 """

 param_def = [
 ['numb_list', [['pos', Type.Float, None, 'value']], None, 'List of values'],
 ['motor', Type.Motor, None, 'Motor to move']
]

 def run(self, *args, **kwargs):
 pass

class pt11(Macro):
 """Macro with counter parameter followed by a list of numbers, followed by
 a motor parameter. The repeat parameter may be defined in between other
 parameters.
 Usages from Spock, ex.:
 pt11 ct1 [1 3] mot1
 """

 param_def = [
 ['counter', Type.ExpChannel, None, 'Counter to count'],
 ['numb_list', [['pos', Type.Float, None, 'value']], None, 'List of values'],
 ['motor', Type.Motor, None, 'Motor to move']
]

 def run(self, *args, **kwargs):
 pass

class pt12(Macro):
 """Macro with list of motors followed by list of numbers. Two repeat
 parameters may defined.
 Usage from Spock, ex.:
 pt12 [1 3 4] [mot1 mot2]
 """

 param_def = [
 ['numb_list', [['pos', Type.Float, None, 'value']], None, 'List of values'],
 ['motor_list', [['motor', Type.Motor, None, 'Motor to move']],
 None, 'List of motors']
]

 def run(self, *args, **kwargs):
 pass

class pt13(Macro):
 """Macro with list of motors groups, where each motor group is a list of
 motors. Repeat parameters may be defined as nested.
 Usage from Spock, ex.:
 pt13 [[mot1 mot2] [mot3 mot4]]
"""

 param_def = [
 ['motor_group_list',
 [['motor_list', [['motor', Type.Motor, None, 'Motor to move']],
 None, 'List of motors']],
 None, 'Motor groups']
]

 def run(self, *args, **kwargs):
 pass

class pt14(Macro):
 """Macro with list of motors groups, where each motor group is a list of
 motors and a float. Repeat parameters may be defined as nested.
 Usage from Spock, ex.:
 pt14 [[[mot1 mot2] 3] [[mot3] 5]]
 """

 param_def = [
 ['motor_group_list',
 [['motor_list', [['motor', Type.Motor, None, 'Motor to move']], None, 'List of motors'],
 ['float', Type.Float, None, 'Number']],
 None, 'Motor groups']
]

 def run(self, *args, **kwargs):
 pass

class pt14d(Macro):
 """Macro with list of motors groups, where each motor group is a list of
 motors and a float. Repeat parameters may be defined as nested.
 Default values can be used.
 Usages taken default values, ex.:
 pt14d [[[mot1 mot2] 3] [[mot3] []]]
 pt14d [[[mot1 []] 3] [[mot3] []]]
 pt14d [[[[]] 3] [[mot3] []]]
 """

 param_def = [
 ['motor_group_list',
 [['motor_list', [['motor', Type.Motor, 'mot1', 'Motor to move']], None, 'List of motors'],
 ['float', Type.Float, 33, 'Number']],
 None, 'Motor groups']
]

 def run(self, *args, **kwargs):
 pass

class twice(Macro):
 """A macro that returns a float that is twice its input. It also sets its
 data to be a dictionary with 'in','out' as keys and value,result
 as values, respectively"""

 # uncomment the following lines as necessary. Otherwise you may delete them
 param_def = [["value", Type.Float, 23, "value to be doubled"]]
 result_def = [["result", Type.Float, None,
 "the double of the given value"]]
 #hints = {}
 # env = (,)

 # uncomment the following lines if need prepare. Otherwise you may delete them
 # def prepare(self):
 # pass

 def run(self, n):
 ret = 2 * n
 self.setData({'in': n, 'out': ret})
 return ret

Macro call examples

This chapter consists of a series of examples demonstrating how to call macros
from inside a macro

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

	##
##
This file is part of Sardana
##
http://www.sardana-controls.org/
##
Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain
##
Sardana is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
##
Sardana is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
##
You should have received a copy of the GNU Lesser General Public License
along with Sardana. If not, see <http://www.gnu.org/licenses/>.
##
##

"""
A macro package to show examples on how to run a macro from inside another macro
"""

__all__ = ["call_wa", "call_wm", "subsubm", "subm", "mainmacro", "runsubs"]

__docformat__ = 'restructuredtext'

from sardana.macroserver.macro import Macro, Type, ParamRepeat

#-~-
First example:
A 'mainmacro' that executes a 'subm' that in turn executes a 'subsubm'.
The 'subsubm' macro itself calls a short ascan macro
#-~--~-~-

class call_wa(Macro):

 def run(self):
 self.macros.wa()

class call_wm(Macro):

 param_def = [
 ['motor_list',
 ParamRepeat(['motor', Type.Motor, None, 'Motor to move']),
 None, 'List of motor to show'],
]

 def run(self, m):
 self.macros.wm(m)

class subsubm(Macro):
 """this macro just calls the 'subm' macro
 This macro is part of the examples package. It was written for demonstration purposes"""

 def run(self):
 self.output("Starting %s" % self.getName())
 m = self.macros
 motors = self.getObjs('.*', type_class=Type.Motor)
 m.ascan(motors[0], 0, 100, 10, 0.2)
 self.output("Finished %s" % self.getName())

class subm(Macro):
 """this macro just calls the 'subsubm' macro
 This macro is part of the examples package. It was written for demonstration purposes"""

 def run(self):
 self.output("Starting %s" % self.getName())
 self.macros.subsubm()
 self.output("Finished %s" % self.getName())

class mainmacro(Macro):
 """this macro just calls the 'subm' macro
 This macro is part of the examples package. It was written for demonstration purposes"""

 def run(self):
 self.output("Starting %s" % self.getName())
 self.macros.subm()
 self.output("Finished %s" % self.getName())

#-~-
Second example:
a 'runsubs' macro that shows the different ways to call a macro from inside
another macro
#-~--~-~-

class runsubs(Macro):
 """ A macro that calls a ascan macro using the motor given as first parameter.

 This macro is part of the examples package. It was written for demonstration purposes

 Call type will allow to choose to format in which the ascan macro is called
 from this macro:
 1 - m.ascan(motor.getName(), '0', '10', '4', '0.2')
 2 - m.ascan(motor, 0, 10, 4, 0.2)
 3 - self.execMacro('ascan', motor.getName(), '0', '10', '4', '0.2')
 4 - self.execMacro(['ascan', motor, 0, 10, 4, 0.2])
 5 - params = 'ascan', motor, 0, 10, 4, 0.2
 self.execMacro(params)
 6 - self.execMacro("ascan %s 0 10 4 0.2" % motor.getName())
 7 - macro, prep = self.createMacro("ascan %s 0 10 4 0.2" % motor.getName())
 macro.hooks = [self.hook]
 self.runMacro(macro)
 8 - macro, prep = self.createMacro('ascan', motor, 0, 10, 4, 0.2)
 macro.hooks = [self.hook]
 self.runMacro(macro)
 9 - params = 'ascan', motor, 0, 10, 4, 0.2
 macro, prep = self.createMacro(params)
 macro.hooks = [self.hook]
 self.runMacro(macro)

 Options 7,8 and 9 use the lower level macro API in order to be able to
 attach hooks to the ascan macro."""
 param_def = [
 ['motor', Type.Motor, None, 'Motor to move'],
 ['call_type', Type.Integer, 2, 'type of run to execute internally'],
]

 def hook(self):
 self.info("executing hook in a step of a scan...")

 def run(self, motor, call_type):
 m = self.macros
 self.output("Using type %d" % call_type)
 if call_type == 1:
 m.ascan(motor.getName(), '0', '10', '4', '0.2')
 elif call_type == 2:
 m.ascan(motor, 0, 10, 4, 0.2)
 elif call_type == 3:
 self.execMacro('ascan', motor.getName(), '0', '10', '4', '0.2')
 elif call_type == 4:
 self.execMacro('ascan', motor, 0, 10, 4, 0.2)
 elif call_type == 5:
 params = 'ascan', motor, 0, 10, 4, 0.2
 self.execMacro(params)
 elif call_type == 6:
 self.execMacro("ascan %s 0 10 4 0.2" % motor.getName())
 elif call_type == 7:
 macro, prep = self.createMacro("ascan %s 0 10 4 0.2" %
 motor.getName())
 macro.hooks = [self.hook]
 self.runMacro(macro)
 elif call_type == 8:
 macro, prep = self.createMacro('ascan', motor, 0, 10, 4, 0.2)
 macro.hooks = [self.hook]
 self.runMacro(macro)
 elif call_type == 9:
 params = 'ascan', motor, 0, 10, 4, 0.2
 macro, prep = self.createMacro(params)
 macro.hooks = [self.hook]
 self.runMacro(macro)

class get_data(Macro):
 """A macro that executes another macro from within it, get its data,
 and calculates a result using this data.

 This macro is part of the examples package. It was written for
 demonstration purposes"""

 param_def = [["mot", Type.Moveable, None, "moveable to be moved"]]
 result_def = [["middle", Type.Float, None,
 "the middle motor position"]]

 def run(self, mot):
 start = 0
 end = 2
 intervals = 2
 integtime = 0.1
 positions = []
 dscan, _ = self.createMacro('dscan',
 mot, start, end, intervals, integtime)
 self.runMacro(dscan)

 data = dscan.data
 len_data = len(data)
 for point_nb in xrange(len_data):
 position = data[point_nb].data[mot.getName()]
 positions.append(position)

 middle_pos = max(positions) - min(positions) / len_data
 return middle_pos

Macro plotting examples

This chapter consists of a series of examples demonstrating how to plot graphics
from inside a macro.

The complete set of pyplot [https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot] examples can be found
here [https://matplotlib.org/gallery/index.html#examples-index]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

	import math
from numpy import linspace
from scipy.integrate import quad
from scipy.special import j0

from sardana.macroserver.macro import macro, Type

def j0i(x):
 """Integral form of J_0(x)"""
 def integrand(phi):
 return math.cos(x * math.sin(phi))
 return (1.0 / math.pi) * quad(integrand, 0, math.pi)[0]

@macro()
def J0_plot(self):
 """Sample J0 at linspace(0, 20, 200)"""
 x = linspace(0, 20, 200)
 y = j0(x)
 x1 = x[::10]
 y1 = map(j0i, x1)
 self.pyplot.plot(x, y, label=r'$J_0(x)$')
 self.pyplot.plot(x1, y1, 'ro', label=r'$J_0^{integ}(x)$')
 self.pyplot.title(
 r'Verify $J_0(x)=\frac{1}{\pi}\int_0^{\pi}\cos(x \sin\phi)\,d\phi$')
 self.pyplot.xlabel('x')
 self.pyplot.legend()

from numpy import random

@macro()
def random_image(self):
 """Shows a random image 32x32"""
 img = random.random((32, 32))
 self.pyplot.matshow(img)

import numpy

@macro([["interactions", Type.Integer, None, ""],
 ["density", Type.Integer, None, ""]])
def mandelbrot(self, interactions, density):

 x_min, x_max = -2, 1
 y_min, y_max = -1.5, 1.5

 x, y = numpy.meshgrid(numpy.linspace(x_min, x_max, density),
 numpy.linspace(y_min, y_max, density))

 c = x + 1j * y
 z = c.copy()

 fractal = numpy.zeros(z.shape, dtype=numpy.uint8) + 255

 finteractions = float(interactions)
 for n in range(interactions):
 z *= z
 z += c
 mask = (fractal == 255) & (abs(z) > 10)
 fractal[mask] = 254 * n / finteractions
 self.pyplot.imshow(fractal)

Macro input examples

This chapter consists of a series of examples demonstrating how to ask for user
input inside macros.

A tutorial on macro input parameter can be found here.
The API documentation: input()

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

	
from sardana.macroserver.macro import imacro, Type

@imacro()
def ask_number_of_points(self):
 """asks user for the number of points"""

 nb_points = self.input("How many points?", data_type=Type.Integer)

@imacro()
def ask_for_moveable(self):
 """asks user for a motor"""

 moveable = self.input("Which moveable?", data_type=Type.Moveable)
 self.output("You selected %s which is at %f",
 moveable, moveable.getPosition())

@imacro()
def ask_for_car_brand(self):
 """asks user for a car brand"""

 car_brands = "Mazda", "Citroen", "Renault"
 car_brand = self.input("Which car brand?", data_type=car_brands)
 self.output("You selected %s", car_brand)

@imacro()
def ask_for_multiple_car_brands(self):
 """asks user for several car brands"""

 car_brands = "Mazda", "Citroen", "Renault", "Ferrari", "Porche", "Skoda"
 car_brands = self.input("Which car brand(s)?", data_type=car_brands,
 allow_multiple=True, title="Favorites")
 self.output("You selected %s", ", ".join(car_brands))

@imacro()
def ask_peak(self):
 """asks user for peak current of points with a custom title"""

 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection")
 self.output("You selected a peak of %f A", peak)

@imacro()
def ask_peak_v2(self):
 """asks user for peak current of points with a custom title,
 default value, label and units"""

 label, unit = "peak", "mA"
 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection", key=label, unit=unit,
 default_value=123.4)
 self.output("You selected a %s of %f %s", label, peak, unit)

@imacro()
def ask_peak_v3(self):
 """asks user for peak current of points with a custom title,
 default value, label, units and ranges"""

 label, unit = "peak", "mA"
 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection", key=label, unit=unit,
 default_value=123.4, minimum=0.0, maximum=200.0)
 self.output("You selected a %s of %f %s", label, peak, unit)

@imacro()
def ask_peak_v4(self):
 """asks user for peak current of points with a custom title,
 default value, label, units, ranges and step size"""

 label, unit = "peak", "mA"
 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection", key=label, unit=unit,
 default_value=123.4, minimum=0.0, maximum=200.0,
 step=5)
 self.output("You selected a %s of %f %s", label, peak, unit)

@imacro()
def ask_peak_v5(self):
 """asks user for peak current of points with a custom title,
 default value, label, units, ranges, step size and decimal places"""

 label, unit = "peak", "mA"
 peak = self.input("What is the peak current?", data_type=Type.Float,
 title="Peak selection", key=label, unit=unit,
 default_value=123.4, minimum=0.0, maximum=200.0,
 step=5, decimals=2)
 self.output("You selected a %s of %f %s", label, peak, unit)

Controller examples

This code let you create a basic template of a controller.

(Source code)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

	#!/usr/bin/env python
import sys

"""
ControllerTemplate.py: Create a basic controller's template.
Its parameters are the file name plus .py,
 the class inherited if it had (optional)
 and "yes" if you want to use the obsolete convention.
The necessary "defs" are marked as #TODO

python ControllerTemplate.py ExampleClass.py InheritedClass NoCT
"""
__author__ = "Carlos Falcon - cfalcon@cells.es"

class ControllerTemplate():

 def __init__(self, f, e=""):
 self.filename = f
 self.end = e
 self.ind = 'ind'
 # pass

 def addHead(self):
 f = open(self.filename, "w")
 f.write('##\n' +
 '##\n' +
 '## This file is part of Sardana\n' +
 '##\n' +
 '## http://www.sardana-controls.org/\n' +
 '##\n' +
 '## Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain\n' +
 '##\n' +
 '## Sardana is free software: you can redistribute it and/or modify\n' +
 '## it under the terms of the GNU Lesser General Public License as published by\n' +
 '## the Free Software Foundation, either version 3 of the License, or\n' +
 '## (at your option) any later version.\n' +
 '##\n' +
 '## Sardana is distributed in the hope that it will be useful,\n' +
 '## but WITHOUT ANY WARRANTY; without even the implied warranty of\n' +
 '## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n' +
 '## GNU Lesser General Public License for more details.\n' +
 '##\n' +
 '## You should have received a copy of the GNU Lesser General Public License\n' +
 '## along with Sardana. If not, see <http://www.gnu.org/licenses/>.\n' +
 '##\\n' +
 '##\n\n')\

 def addIncludes(self, inherit, others=None):
 f = open(self.filename, "a")
 text = "from sardana import State\n"
 if inherit != "":
 text = text + "from sardana.pool.controller import " + inherit + "\n"
 if inherit.find("Motor") >= 0:
 self.ind = 'axis'
 if others is not None:
 text = text + others
 text = text + "#ADD others includes\n\n"
 f.write(text)
 # f.close()

 def createBasicClass(self):
 f = open(self.filename, "a")
 text = "#TODO - Delete it if you don't need\n"
 text = text + 'class BasicClass():\n' +\
 '\tpass\n\n'
 f.write(text)

 def createMainClass(self, inherit):
 f = open(self.filename, "a")
 text = "class " + self.filename[0:len(self.filename) - 3] + "(" + inherit + "):\n" +\
 '\t"""Description""" #TODO\n' +\
 '\tgender = "Simulation"\n' +\
 '\tmodel = "Basic"\n' +\
 '\torganization = "CELLS - ALBA"\n' +\
 '\timage = "IMAGE.png"\n' +\
 '\tlogo = "ALBA_logo.png"\n\n' +\
 '\t#TODO - Delete it if you don\'t need\n' +\
 '\tctrl_properties= { \'AAA\' : { \'Type\' : \'DevString\', \'Description\' : \'AAA\' } }\n' +\
 '\taxis_attributes = { \'AAA\' : { \'type\' : str, \'Description\' : \'AAA\' }}\n\n' +\
 '\tMaxDevice = 1024 #TODO Standar value\n\n'

 fun = '# --\n' +\
 '# Init()\n' +\
 '# --\n' +\
 '\tdef __init__(self, inst, props, *args, **kwargs):\n'
 if inherit != "":
 fun = fun + '\t\t' + inherit + \
 '.__init__(self, inst, props, *args, **kwargs)\n'
 fun = fun + '\t\t#TODO\n'
 text = text + fun

 fun = '# --\n' +\
 '# AddDevice/DelDevice()\n' +\
 '# --\n' +\
 '\tdef AddDevice(self,' + self.ind + '):\n'
 fun = fun + '\t\t#TODO\n'
 fun = fun + '\tdef DeleteDevice(self, ' + self.ind + '):\n'
 fun = fun + '\t\t#TODO\n'
 text = text + fun

 fun = '# --\n' +\
 '# State()\n' +\
 '# --\n' +\
 '\tdef PreStateOne' + self.end + \
 '(self, ' + self.ind + '):\n' + '\t\tpass\n'
 fun = fun + '\tdef StateOne(self, ' + self.ind + '):\n'
 fun = fun + '\t\tstate = State.On\n'
 fun = fun + '\t\tstatus = "Undefined"\n'
 if inherit.find("Motor") >= 0:
 fun = fun + '\t\tswitchstate = 0"\n'
 fun = fun + '\t\t#TODO\n'
 fun = fun + '\t\treturn state, status, switchstate"\n'
 else:
 fun = fun + '\t\t#TODO\n'
 fun = fun + '\t\treturn state, status\n'

 fun = fun + '\tdef PreStateAll' + self.end + '(self):\n'
 fun = fun + '\t\tpass\n'

 fun = fun + '\tdef StateAll' + self.end + '(self):\n'
 fun = fun + '\t\tpass\n'
 text = text + fun

 fun = '# --\n' +\
 '# Read()\n' +\
 '# --\n' +\
 '\tdef PreReadOne' + self.end + \
 '(self, ' + self.ind + '):\n' + '\t\tpass\n'
 fun = fun + '\tdef ReadOne(self, ' + self.ind + '):\n'
 fun = fun + '\t\t#TODO\n'
 fun = fun + '\tdef PreReadAll' + self.end + '(self):\n'
 fun = fun + '\t\tpass\n'
 fun = fun + '\tdef ReadAll' + self.end + '(self):\n'
 fun = fun + '\t\tpass\n'

 text = text + fun

 fun = '# --\n' +\
 '# Start/Stop()\n' +\
 '# --\n' +\
 '\tdef PreStartOne' + self.end
 if inherit.find("Motor") >= 0:
 fun = fun + '(self, ' + self.ind + ', pos):\n'
 else:
 fun = fun + '(self, ' + self.ind + '):\n'
 fun = fun + '\t\tpass\n'
 fun = fun + '\tdef StartOne' + self.end + \
 '(self, ' + self.ind + ', pos):\n'
 fun = fun + '\t\t#TODO\n'

 fun = fun + '\tdef AbortOne(self, ' + self.ind + '):\n'
 fun = fun + '\t\t#TODO\n'

 fun = fun + '\tdef StopOne(self, ' + self.ind + '):\n'
 fun = fun + '\t\tself.AbortOne(' + self.ind + ')\n'

 fun = fun + '\tdef PreStartAll' + self.end + '(self):\n'
 fun = fun + '\t\tpass\n'

 fun = fun + '\tdef StartAll' + self.end + '(self):\n'
 fun = fun + '\t\tpass\n'

 fun = fun + '\tdef AbortAll(self):\n'
 fun = fun + '\t\tpass\n'
 text = text + fun

 fun = '# --\n' +\
 '# SetAxisPar/GetAxisPar()\n' +\
 '# --\n' +\
 '\tdef SetAxisPar(self, ' + self.ind + ', name, value):\n'
 fun = fun + '\t\t#TODO - Delete it if you don\'t need\n'

 fun = fun + '\tdef GetAxisPar(self, ' + self.ind + ', name):\n'
 fun = fun + '\t\t#TODO - Delete it if you don\'t need\n'
 text = text + fun

 fun = '# --\n' +\
 '# SetAxisExtraPar/GetAxisExtraPar()\n' +\
 '# --\n' +\
 '\tdef SetAxisExtraPar(self, ' + self.ind + ', name, value):\n'
 fun = fun + '\t\t#TODO - Delete it if you don\'t need\n'

 fun = fun + '\tdef GetAxisExtraPar(self, ' + self.ind + ', name):\n'
 fun = fun + '\t\t#TODO - Delete it if you don\'t need - \n'
 text = text + fun
 f.write(text)

def main():
 # Add MACRO_PATH
 filename = ""
 end = ""
 inherit = ""
 if(len(sys.argv) > 1):
 print "Creating " + sys.argv[1]
 filename = sys.argv[1]
 if(len(sys.argv) > 2):
 inherit = sys.argv[2]
 if(len(sys.argv) > 3):
 end = "CT"
 s = ControllerTemplate(filename, end)
 s.addHead()
 s.addIncludes(inherit)
 s.createBasicClass()
 s.createMainClass(inherit)
 else:
 print "Please introduce filename"

if __name__ == "__main__":
 main()

Sardana development guidelines

Overview

This document describes sardana from the perspective of developers. Most
importantly, it gives information for people who want to contribute code to the
development of sardana. So if you want to help out, read on!

How to contribute to sardana

Sardana development is managed with the Sardana github project [https://github.com/sardana-org/sardana].

Apart from directly contributing code, you can contribute to sardana in many
ways, such as reporting bugs or proposing new features. In all cases you will
probably need a github account and you are strongly encouragedto subscribe to the
sardana-devel and sardana-users mailing lists [https://sourceforge.net/p/sardana/mailman/].

The rest of this document will focus on how to contribute code.

Cloning and forking sardana from Git

You are welcome to clone the Sardana code from our main Git repository:

git clone https://github.com/sardana-org/sardana.git sardana

Code contributions (bug patches, new features) are welcome,
but the review process/workflow for accepting new code is yet to be discussed. For the
moment, use the sardana-devel mailing list for proposing patches.

Note that you can also fork the git repository in github to get your own
github-hosted clone of the sardana repository to which you will have full
access. This will create a new git repository associated to your personal account in
github, so that your changes can be easily shared and eventually merged
into the official repository.

The old code repositories

With acceptance of SEP1 [http://www.sardana-controls.org/sep?SEP1.md] the
code repository was migrated from SVN to Git within the SourceForge platform.
The old SVN repository is still accessible for reference [https://sourceforge.net/p/sardana/code/],
but writing has been disabled and its contents are frozen as of 2013-07-31.

Then, with acceptance of SEP15 [http://www.sardana-controls.org/sep?SEP15.md] the
code repository was migrated from SourceForge Git to Github Git.
The old SourceForge Git repository is still accessible for reference [https://sourceforge.net/p/sardana/sardana.git],
but writing has been disabled and its contents are frozen as of 2016-12-02.

For development, see the instructions above on cloning from Git

Documentation

All standalone documentation should be written in plain text (.rst) files
using reStructuredText [http://docutils.sourceforge.net/rst.html] for markup and formatting. All such
documentation should be placed in directory docs/source of the sardana
source tree. The documentation in this location will serve as the main source
for sardana documentation and all existing documentation should be converted
to this format.

Coding conventions

	In general, we try to follow the standard Python style conventions as
described in
Style Guide for Python Code [http://www.python.org/peps/pep-0008.html]

	Code must be python 2.6 compatible

	Use 4 spaces for indentation

	In the same file, different classes should be separated by 2 lines

	use lowercase for module names. If possible prefix module names with the
word sardana (like sardanautil.py) to avoid import mistakes.

	use CamelCase for class names

	python module first line should be:

#!/usr/bin/env python

	python module should contain license information (see template below)

	avoid poluting namespace by making private definitions private (__ prefix)
or/and implementing __all__ (see template below)

	whenever a python module can be executed from the command line, it should
contain a main function and a call to it in a if __name__ == "__main__"
like statement (see template below)

	document all code using Sphinx [http://sphinx.pocoo.org/] extension to reStructuredText [http://docutils.sourceforge.net/rst.html]

The following code can serve as a template for writing new python modules to
sardana:

#!/usr/bin/env python
-*- coding: utf-8 -*-

##
##
This file is part of Sardana
##
http://www.tango-controls.org/static/sardana/latest/doc/html/index.html
##
Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain
##
Sardana is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
##
Sardana is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
##
You should have received a copy of the GNU Lesser General Public License
along with Sardana. If not, see <http://www.gnu.org/licenses/>.
##
##

"""A :mod:`sardana` module written for template purposes only"""

__all__ = ["SardanaDemo"]

__docformat__ = "restructuredtext"

class SardanaDemo(object):
 """This class is written for template purposes only"""

def main():
 print "SardanaDemo"s

if __name__ == "__main__":
 main()

Sardana Enhancement Proposals

Glossary

	...

	The default Python prompt of the interactive shell when entering code for
an indented code block or within a pair of matching left and right
delimiters (parentheses, square brackets or curly braces).

	>>>

	The default Python prompt of the interactive shell. Often seen for code
examples which can be executed interactively in the interpreter.

	ADC

	In electronics, an analog-to-digital converter (ADC) is a system that
converts an analog signal e.g. voltage into its digital representation.

	API

	An application programming interface (API) is a particular set of rules
and specifications that software programs can follow to communicate with
each other. It serves as an interface between different software
programs and facilitates their interaction, similar to the way the user
interface facilitates interaction between humans and computers.
An API can be created for applications, libraries, operating systems,
etc., as a way of defining their “vocabularies” and resources request
conventions (e.g. function-calling conventions). It may include
specifications for routines, data structures, object classes, and
protocols used to communicate between the consumer program and the
implementer program of the API.

	argument

	A value passed to a function or method, assigned to a named local
variable in the function body. A function or method may have both
positional arguments and keyword arguments in its definition.
Positional and keyword arguments may be variable-length: * accepts
or passes (if in the function definition or call) several positional
arguments in a list, while ** does the same for keyword arguments
in a dictionary.

Any expression may be used within the argument list, and the evaluated
value is passed to the local variable.

	attribute

	A value associated with an object which is referenced by name using
dotted expressions. For example, if an object o has an attribute
a it would be referenced as o.a.

dictionary
An associative array, where arbitrary keys are mapped to values. The
keys can be any object with __hash__() and __eq__() methods.
Called a hash in Perl.

	CCD

	A charge-coupled device (CCD) is a device for the movement of electrical
charge, usually from within the device to an area where the charge can
be manipulated, for example conversion into a digital value. This is
achieved by “shifting” the signals between stages within the device one
at a time. CCDs move charge between capacitive bins in the device, with
the shift allowing for the transfer of charge between bins.

	class

	A template for creating user-defined objects. Class definitions
normally contain method definitions which operate on instances of the
class.

	CLI

	A command-line interface (CLI) is a mechanism for interacting with a
computer operating system or software by typing commands to perform
specific tasks. This text-only interface contrasts with the use of a
mouse pointer with a graphical user interface (GUI) to click on
options, or menus on a text user interface (TUI) to select options.
This method of instructing a computer to perform a given task is
referred to as “entering” a command: the system waits for the user
to conclude the submitting of the text command by pressing the “Enter”
key (a descendant of the “carriage return” key of a typewriter keyboard).
A command-line interpreter then receives, parses, and executes the
requested user command. The command-line interpreter may be run in a
text terminal or in a terminal emulator window as a remote shell client
such as PuTTY. Upon completion, the command usually returns output to
the user in the form of text lines on the CLI. This output may be an
answer if the command was a question, or otherwise a summary of the
operation.

	client-server model

	The client-server model of computing is a distributed application
structure that partitions tasks or workloads between the providers of a
resource or service, called servers, and service requesters, called
clients. Often clients and servers communicate over a computer network
on separate hardware, but both client and server may reside in the same
system. A server machine is a host that is running one or more server
programs which share their resources with clients. A client does not
share any of its resources, but requests a server’s content or service
function. Clients therefore initiate communication sessions with servers
which await incoming requests.

	closed loop

	A.k.a feedback loop, occurs when outputs of a system are routed back
as inputs as part of a chain of cause-and-effect that forms a circuit
or loop. In case of motion systems, closed loop positioning uses the
position sensors e.g. encoders to measure the system’s output. The
measured signal is looped back to the control unit as input and is used
to correct the moveable’s position.

	daemon

	In Unix and other computer multitasking operating systems, a daemon is a
computer program that runs in the background, rather than under the
direct control of a user. They are usually initiated as background
processes. Typically daemons have names that end with the letter “d”: for
example, syslogd, the daemon that handles the system log, or sshd,
which handles incoming SSH connections.

	dial

	See dial position

	dial position

	Position in controller units (See also user position).

	expression

	A piece of syntax which can be evaluated to some value. In other words,
an expression is an accumulation of expression elements like literals,
names, attribute access, operators or function calls which all return a
value. In contrast to many other languages, not all language constructs
are expressions. There are also statements which cannot be used
as expressions, such as print() [https://docs.python.org/dev/library/functions.html#print] or if [https://docs.python.org/dev/reference/compound_stmts.html#if]. Assignments
are also statements, not expressions.

	function

	A series of statements which returns some value to a caller. It can also
be passed zero or more arguments which may be used in the execution of
the body. See also argument and method.

	generator

	A function which returns an iterator. It looks like a normal function
except that it contains yield [https://docs.python.org/dev/reference/simple_stmts.html#yield] statements for producing a series
a values usable in a for-loop or that can be retrieved one at a time with
the next() [https://docs.python.org/dev/library/functions.html#next] function. Each yield [https://docs.python.org/dev/reference/simple_stmts.html#yield] temporarily suspends
processing, remembering the location execution state (including local
variables and pending try-statements). When the generator resumes, it
picks-up where it left-off (in contrast to functions which start fresh on
every invocation).

	generator expression

	An expression that returns an iterator. It looks like a normal expression
followed by a for [https://docs.python.org/dev/reference/compound_stmts.html#for] expression defining a loop variable, range,
and an optional if [https://docs.python.org/dev/reference/compound_stmts.html#if] expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

	GUI

	A graphical user interface (GUI) is a type of user interface that
allows users to interact with electronic devices with images rather
than text commands. GUIs can be used in computers, hand-held devices
such as MP3 players, portable media players or gaming devices,
household appliances and office equipment. A GUI represents the
information and actions available to a user through graphical icons and
visual indicators such as secondary notation, as opposed to text-based
interfaces (CLI), typed command labels or text navigation.
The actions are usually performed through direct manipulation of the
graphical elements.

	interactive

	Python has an interactive interpreter which means you can enter
statements and expressions at the interpreter prompt, immediately
execute them and see their results. Just launch python with no
arguments (possibly by selecting it from your computer’s main
menu). It is a very powerful way to test out new ideas or inspect
modules and packages (remember help(x)).

	interpreted

	Python is an interpreted language, as opposed to a compiled one,
though the distinction can be blurry because of the presence of the
bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run.
Interpreted languages typically have a shorter development/debug cycle
than compiled ones, though their programs generally also run more
slowly. See also interactive.

	iterable

	An object capable of returning its members one at a
time. Examples of iterables include all sequence types (such as
list [https://docs.python.org/dev/library/stdtypes.html#list], str [https://docs.python.org/dev/library/stdtypes.html#str], and tuple [https://docs.python.org/dev/library/stdtypes.html#tuple]) and some non-sequence
types like dict [https://docs.python.org/dev/library/stdtypes.html#dict] and file and objects of any classes you
define with an __iter__() or __getitem__() method. Iterables
can be used in a for [https://docs.python.org/dev/reference/compound_stmts.html#for] loop and in many other places where a
sequence is needed (zip() [https://docs.python.org/dev/library/functions.html#zip], map() [https://docs.python.org/dev/library/functions.html#map], …). When an iterable
object is passed as an argument to the built-in function iter() [https://docs.python.org/dev/library/functions.html#iter], it
returns an iterator for the object. This iterator is good for one pass
over the set of values. When using iterables, it is usually not necessary
to call iter() [https://docs.python.org/dev/library/functions.html#iter] or deal with iterator objects yourself. The for
statement does that automatically for you, creating a temporary unnamed
variable to hold the iterator for the duration of the loop. See also
iterator, sequence, and generator.

	iterator

	An object representing a stream of data. Repeated calls to the iterator’s
next() method return successive items in the stream. When no more
data are available a StopIteration [https://docs.python.org/dev/library/exceptions.html#StopIteration] exception is raised instead. At
this point, the iterator object is exhausted and any further calls to its
next() method just raise StopIteration [https://docs.python.org/dev/library/exceptions.html#StopIteration] again. Iterators are
required to have an __iter__() method that returns the iterator
object itself so every iterator is also iterable and may be used in most
places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a
list [https://docs.python.org/dev/library/stdtypes.html#list]) produces a fresh new iterator each time you pass it to the
iter() [https://docs.python.org/dev/library/functions.html#iter] function or use it in a for [https://docs.python.org/dev/reference/compound_stmts.html#for] loop. Attempting this
with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in Iterator Types [https://docs.python.org/dev/library/stdtypes.html#typeiter].

	key function

	A key function or collation function is a callable that returns a value
used for sorting or ordering. For example, locale.strxfrm() [https://docs.python.org/dev/library/locale.html#locale.strxfrm] is
used to produce a sort key that is aware of locale specific sort
conventions.

A number of tools in Python accept key functions to control how elements
are ordered or grouped. They include min() [https://docs.python.org/dev/library/functions.html#min], max() [https://docs.python.org/dev/library/functions.html#max],
sorted() [https://docs.python.org/dev/library/functions.html#sorted], list.sort() [https://docs.python.org/dev/library/stdtypes.html#list.sort], heapq.nsmallest() [https://docs.python.org/dev/library/heapq.html#heapq.nsmallest],
heapq.nlargest() [https://docs.python.org/dev/library/heapq.html#heapq.nlargest], and itertools.groupby() [https://docs.python.org/dev/library/itertools.html#itertools.groupby].

There are several ways to create a key function. For example. the
str.lower() [https://docs.python.org/dev/library/stdtypes.html#str.lower] method can serve as a key function for case insensitive
sorts. Alternatively, an ad-hoc key function can be built from a
lambda [https://docs.python.org/dev/reference/expressions.html#lambda] expression such as lambda r: (r[0], r[2]). Also,
the operator [https://docs.python.org/dev/library/operator.html#module-operator] module provides three key function constructors:
attrgetter() [https://docs.python.org/dev/library/operator.html#operator.attrgetter], itemgetter() [https://docs.python.org/dev/library/operator.html#operator.itemgetter], and
methodcaller() [https://docs.python.org/dev/library/operator.html#operator.methodcaller]. See the Sorting HOW TO [https://docs.python.org/dev/howto/sorting.html#sortinghowto] for examples of how to create and use key functions.

	keyword argument

	Arguments which are preceded with a variable_name= in the call.
The variable name designates the local name in the function to which the
value is assigned. ** is used to accept or pass a dictionary of
keyword arguments. See argument.

	lambda

	An anonymous inline function consisting of a single expression
which is evaluated when the function is called. The syntax to create
a lambda function is lambda [arguments]: expression

	list

	A built-in Python sequence. Despite its name it is more akin
to an array in other languages than to a linked list since access to
elements are O(1).

	list comprehension

	A compact way to process all or part of the elements in a sequence and
return a list with the results. result = ["0x%02x" % x for x in
range(256) if x % 2 == 0] generates a list of strings containing
even hex numbers (0x..) in the range from 0 to 255. The if [https://docs.python.org/dev/reference/compound_stmts.html#if]
clause is optional. If omitted, all elements in range(256) are
processed.

	MCA

	Multichannel Analyzer (MCA) is a device for …

	method

	A function which is defined inside a class body. If called as an attribute
of an instance of that class, the method will get the instance object as
its first argument (which is usually called self).
See function and nested scope.

	namespace

	The place where a variable is stored. Namespaces are implemented as
dictionaries. There are the local, global and built-in namespaces as well
as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions
__builtin__.open() and os.open() [https://docs.python.org/dev/library/os.html#os.open] are distinguished by their
namespaces. Namespaces also aid readability and maintainability by making
it clear which module implements a function. For instance, writing
random.seed() [https://docs.python.org/dev/library/random.html#random.seed] or itertools.izip() makes it clear that those
functions are implemented by the random [https://docs.python.org/dev/library/random.html#module-random] and itertools [https://docs.python.org/dev/library/itertools.html#module-itertools]
modules, respectively.

	nested scope

	The ability to refer to a variable in an enclosing definition. For
instance, a function defined inside another function can refer to
variables in the outer function. Note that nested scopes work only for
reference and not for assignment which will always write to the innermost
scope. In contrast, local variables both read and write in the innermost
scope. Likewise, global variables read and write to the global namespace.

	new-style class

	Any class which inherits from object [https://docs.python.org/dev/library/functions.html#object]. This includes all built-in
types like list [https://docs.python.org/dev/library/stdtypes.html#list] and dict [https://docs.python.org/dev/library/stdtypes.html#dict]. Only new-style classes can
use Python’s newer, versatile features like __slots__,
descriptors, properties, and __getattribute__().

	object

	Any data with state (attributes or value) and defined behavior
(methods). Also the ultimate base class of any new-style
class.

	OS

	An operating system (OS) is software, consisting of programs and data,
that runs on computers, manages computer hardware resources, and
provides common services for execution of various application software.
Operating system is the most important type of system software in a
computer system. Without an operating system, a user cannot run an
application program on their computer, unless the application program
is self booting.

	PLC

	A programmable logic controller (PLC) is an industrial digital computer
which has been ruggedised and adapted for the control of manufacturing
processes, such as assembly lines, or robotic devices, or any activity
that requires high reliability control e.g. equipment or personal
protection.

	plug-in

	a plug-in (or plugin) is a set of software components that adds
specific abilities to a larger software application. If supported,
plug-ins enable customizing the functionality of an application. For
example, plug-ins are commonly used in web browsers to play video,
scan for viruses, and display new file types.

	plugin

	See plug-in.

	positional argument

	The arguments assigned to local names inside a function or method,
determined by the order in which they were given in the call. * is
used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a function. See
argument.

	Python 3000

	Nickname for the Python 3.x release line (coined long ago when the release
of version 3 was something in the distant future.) This is also
abbreviated “Py3k”.

	Pythonic

	An idea or piece of code which closely follows the most common idioms
of the Python language, rather than implementing code using concepts
common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for [https://docs.python.org/dev/reference/compound_stmts.html#for]
statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
 print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
 print piece

	SCADA

	supervisory control and data acquisition (SCADA) generally refers to
industrial control systems: computer systems that monitor and control
industrial, infrastructure, or facility-based processes.

	SDS

	Sardana Device server (SDS) is the sardana tango device server
daemon.

	sequence

	An iterable which supports efficient element access using integer
indices via the __getitem__() special method and defines a
len() method that returns the length of the sequence.
Some built-in sequence types are list [https://docs.python.org/dev/library/stdtypes.html#list], str [https://docs.python.org/dev/library/stdtypes.html#str],
tuple [https://docs.python.org/dev/library/stdtypes.html#tuple], and unicode. Note that dict [https://docs.python.org/dev/library/stdtypes.html#dict] also
supports __getitem__() and __len__(), but is considered a
mapping rather than a sequence because the lookups use arbitrary
immutable [https://docs.scipy.org/doc/numpy/glossary.html#term-immutable] keys rather than integers.

	slice

	An object usually containing a portion of a sequence. A slice is
created using the subscript notation, [] with colons between numbers
when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice [https://docs.python.org/dev/library/functions.html#slice] objects internally (or in older
versions, __getslice__() and __setslice__()).

	statement

	A statement is part of a suite (a “block” of code). A statement is either
an expression or a one of several constructs with a keyword, such
as if [https://docs.python.org/dev/reference/compound_stmts.html#if], while [https://docs.python.org/dev/reference/compound_stmts.html#while] or for [https://docs.python.org/dev/reference/compound_stmts.html#for].

	stepper

	A stepper motor (or step motor) is a brushless DC electric motor that
divides a full rotation into a number of equal steps. The motor’s
position can then be commanded to move and hold at one of these steps
without any feedback sensor (an open-loop controller), as long as the
motor is carefully sized to the application.

	triple-quoted string

	A string which is bound by three instances of either a quotation mark
(“) or an apostrophe (‘). While they don’t provide any functionality
not available with single-quoted strings, they are useful for a number
of reasons. They allow you to include unescaped single and double
quotes within a string and they can span multiple lines without the
use of the continuation character, making them especially useful when
writing docstrings.

	type

	The type of a Python object determines what kind of object it is; every
object has a type. An object’s type is accessible as its
__class__ attribute or can be retrieved with type(obj).

	user

	See user position

	user position

	Moveable position in user units (See also dial position).
Dial and user units are related by the following expressions:

user = sign x dial + offset
dial = controller_position / steps_per_unit

where sign is -1 or 1. offset can be any number and steps_per_unit
must be non zero.

Documentation to be done

Todo

Device Pool chapter is out of date. Need to update it and distribute chapters logically around the sardana documentation

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/api/tango_device_pool.rst, line 6.)

Todo

document this chapter

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/api/tango_macroserver.rst, line 6.)

Todo

complete 0D controller howto

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/howto_controllers/howto_0dcontroller.rst, line 9.)

Todo

document 1D controller howto

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/howto_controllers/howto_1dcontroller.rst, line 12.)

Todo

document 2D controller howto

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/howto_controllers/howto_2dcontroller.rst, line 12.)

Todo

document how to skip the readouts while acquiring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/howto_controllers/howto_countertimercontroller.rst, line 486.)

Todo

document IORegister controller howto

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/howto_controllers/howto_ioregistercontroller.rst, line 12.)

Todo

document pseudo motor controller howto

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/howto_controllers/howto_pseudomotorcontroller.rst, line 12.)

Todo

document how to write custom recorders

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/devel/howto_recorders.rst, line 51.)

Todo

The FAQ is work-in-progress. Many answers need polishing and mostly
links need to be added

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/users/faq.rst, line 5.)

Todo

This chapter is not ready… Sorry for inconvenience.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/users/taurus/macroexecutor.rst, line 62.)

Todo

This chapter is not ready… Sorry for inconvenience.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/users/taurus/macroexecutor.rst, line 67.)

Todo

This chapter is not ready… Sorry for inconvenince.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/users/taurus/macroexecutor.rst, line 127.)

Todo

Sardana Editor documentation to be written

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/users/taurus/sardanaeditor.rst, line 12.)

Todo

This chapter in not ready… Sorry for inconvenience.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/users/taurus/sequencer.rst, line 61.)

Todo

This chapter in not ready… Sorry for inconvenience.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/sardana/checkouts/stable/doc/source/users/taurus/sequencer.rst, line 66.)

Revision

	Contributers

	T. Coutinho

	Last Update

	Jun 02, 2018

History of modifications

	Date

	Revision

	Description

	Author

	17/06/11

	1.0

	Initial Version

	T. Coutinho

Version history

	version

	Changes

	1.0

	First official release

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sardana	

 	
 	
 sardana.macroserver	

 	
 	
 sardana.macroserver.macros.test	

 	
 	
 sardana.macroserver.macros.test.test_ct	

 	
 	
 sardana.macroserver.macros.test.test_list	

 	
 	
 sardana.macroserver.macros.test.test_scan	

 	
 	
 sardana.macroserver.macros.test.test_wm	

 	
 	
 sardana.macroserver.macroserver	

 	
 	
 sardana.macroserver.msbase	

 	
 	
 sardana.macroserver.mscontainer	

 	
 	
 sardana.macroserver.msdoor	

 	
 	
 sardana.macroserver.msenvmanager	

 	
 	
 sardana.macroserver.msexception	

 	
 	
 sardana.macroserver.msmacromanager	

 	
 	
 sardana.macroserver.msmanager	

 	
 	
 sardana.macroserver.msmetamacro	

 	
 	
 sardana.macroserver.msparameter	

 	
 	
 sardana.macroserver.mstypemanager	

 	
 	
 sardana.pool	

 	
 	
 sardana.pool.controller	

 	
 	
 sardana.pool.pool	

 	
 	
 sardana.pool.poolacquisition	

 	
 	
 sardana.pool.poolaction	

 	
 	
 sardana.pool.poolbasechannel	

 	
 	
 sardana.pool.poolbaseobject	

 	
 	
 sardana.pool.poolcontainer	

 	
 	
 sardana.pool.poolcontroller	

 	
 	
 sardana.pool.poolcontrollermanager	

 	
 	
 sardana.pool.poolcountertimer	

 	
 	
 sardana.pool.pooldefs	

 	
 	
 sardana.pool.poolelement	

 	
 	
 sardana.pool.poolexception	

 	
 	
 sardana.pool.poolexternal	

 	
 	
 sardana.pool.poolgroupelement	

 	
 	
 sardana.pool.poolinstrument	

 	
 	
 sardana.pool.poolioregister	

 	
 	
 sardana.pool.poolmeasurementgroup	

 	
 	
 sardana.pool.poolmetacontroller	

 	
 	
 sardana.pool.poolmonitor	

 	
 	
 sardana.pool.poolmotion	

 	
 	
 sardana.pool.poolmotor	

 	
 	
 sardana.pool.poolmotorgroup	

 	
 	
 sardana.pool.poolmoveable	

 	
 	
 sardana.pool.poolobject	

 	
 	
 sardana.pool.poolonedexpchannel	

 	
 	
 sardana.pool.poolpseudocounter	

 	
 	
 sardana.pool.poolpseudomotor	

 	
 	
 sardana.pool.pooltwodexpchannel	

 	
 	
 sardana.pool.poolutil	

 	
 	
 sardana.pool.poolzerodexpchannel	

 	
 	
 sardana.sardanaattribute	

 	
 	
 sardana.sardanabase	

 	
 	
 sardana.sardanacontainer	

 	
 	
 sardana.sardanadefs	

 	
 	
 sardana.sardanaevent	

 	
 	
 sardana.sardanamanager	

 	
 	
 sardana.sardanameta	

 	
 	
 sardana.sardanamodulemanager	

 	
 	
 sardana.sardanavalue	

 	
 	
 sardana.spock.test.test_parameter	

 	
 	
 sardana.tango	

 	
 	
 sardana.tango.core	

 	
 	
 sardana.tango.core.SardanaDevice	

 	
 	
 sardana.tango.macroserver	

 	
 	
 sardana.tango.macroserver.test.macroexecutor	

 	
 	
 sardana.tango.pool	

 	
 	
 sardana.tango.pool.Controller	

 	
 	
 sardana.tango.pool.CTExpChannel	

 	
 	
 sardana.tango.pool.IORegister	

 	
 	
 sardana.tango.pool.Motor	

 	
 	
 sardana.tango.pool.OneDExpChannel	

 	
 	
 sardana.tango.pool.Pool	

 	
 	
 sardana.tango.pool.PoolDevice	

 	
 	
 sardana.tango.pool.PseudoCounter	

 	
 	
 sardana.tango.pool.PseudoMotor	

 	
 	
 sardana.tango.pool.TwoDExpChannel	

 	
 	
 sardana.tango.pool.ZeroDExpChannel	

 	
 	
 sardana.test.test_sardanavalue	

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

Symbols

 	
 	...

 	
 	>>>

_

 	
 	_findAPIVersion() (Controller method)

 	
 	_getPoolController() (Controller method)

A

 	
 	Abort (Macro attribute)

 	abort() (Macro method)

 	Abort() (Pool method)

 	abort() (Pool method)

 	(PoolBaseElement method)

 	(PoolBaseGroup method)

 	(PoolController method)

 	Abort() (PoolDevice method)

 	abort() (PoolElement method)

 	(PoolGroupElement method)

 	(PoolPseudoMotor method)

 	abort_action() (PoolAction method)

 	abort_axes() (PoolController method)

 	abort_element() (PoolController method)

 	abort_elements() (PoolController method)

 	AbortAll() (Stopable method)

 	AbortOne() (Stopable method)

 	(ZeroDController method)

 	acceleration (PoolMotor attribute)

 	accepts() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	Access (in module sardana.pool.controller)

 	accumulated_value (Pool0DExpChannel attribute)

 	accumulation (Pool0DExpChannel attribute)

 	accumulation_buffer (Pool0DExpChannel attribute)

 	acq_loop_sleep_time (Pool attribute)

 	acq_loop_states_per_value (Pool attribute)

 	AcqSynch (class in sardana.pool.pooldefs)

 	acquire() (OperationInfo method)

 	acquisition (PoolBaseChannel attribute)

 	(PoolMeasurementGroup attribute)

 	acquisition_mode (PoolMeasurementGroup attribute)

 	AcquisitionClass (Pool0DExpChannel attribute)

 	(PoolBaseChannel attribute)

 	(PoolPseudoCounter attribute)

 	action_loop (PoolCTAcquisition attribute)

 	(PoolMotion attribute)

 	action_loop() (PoolAction method)

 	ActionContext (class in sardana.pool.poolaction)

 	Active (SynchParam attribute)

 	ADC

 	add_controller() (ControllerLibrary method)

 	add_dynamic_attribute() (PoolDevice method)

 	add_element() (PoolAction method)

 	(PoolInstrument method)

 	(SardanaContainer method)

 	add_finish_hook() (PoolAction method)

 	add_instrument() (PoolInstrument method)

 	add_listener() (EventGenerator method)

 	(SardanaAttribute method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	add_macro_class() (MacroLibrary method)

 	
 	add_macro_function() (MacroLibrary method)

 	add_meta_class() (SardanaLibrary method)

 	add_meta_function() (SardanaLibrary method)

 	add_pseudo_element() (PoolBaseChannel method)

 	add_python_path() (ModuleManager method)

 	add_standard_attribute() (PoolDevice method)

 	add_user_element() (PoolBaseGroup method)

 	(PoolMeasurementGroup method)

 	(PoolMotorGroup method)

 	(PoolPseudoCounter method)

 	(PoolPseudoMotor method)

 	addController() (ControllerManager method)

 	AddDevice() (Controller method)

 	addObj() (Macro method)

 	addObjs() (Macro method)

 	alias (SardanaDevice attribute)

 	All (Macro attribute)

 	always_executed_hook() (Controller method)

 	(CTExpChannel method)

 	(IORegister method)

 	(Motor method)

 	(OneDExpChannel method)

 	(Pool method)

 	(PseudoCounter method)

 	(PseudoMotor method)

 	(TwoDExpChannel method)

 	(ZeroDExpChannel method)

 	ANscanTest (class in sardana.macroserver.macros.test.test_scan)

 	API

 	append_value_buffer() (PoolBaseChannel method)

 	are_events_blocked() (EventReceiver method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	args (PoolException attribute)

 	(UnknownController attribute)

 	(UnknownControllerLibrary attribute)

 	argument

 	AscanTest (class in sardana.macroserver.macros.test.test_scan)

 	assertFinished() (LsTest method)

 	(RunMacroTestCase method)

 	(RunStopMacroTestCase method)

 	assertStopped() (RunStopMacroTestCase method)

 	attr_list (ControllerClass attribute)

 	(CTExpChannelClass attribute)

 	(IORegisterClass attribute)

 	(MotorClass attribute)

 	(OneDExpChannelClass attribute)

 	(PoolDeviceClass attribute)

 	(PoolElementDeviceClass attribute)

 	(PoolGroupDeviceClass attribute)

 	(SardanaDeviceClass attribute)

 	(TwoDExpChannelClass attribute)

 	(ZeroDExpChannelClass attribute)

 	attribute

 	attribute_name (PoolTangoObject attribute)

 	axis (PoolElement attribute)

 	axis_attributes (Controller attribute)

B

 	
 	backlash (PoolMotor attribute)

 	backlash_item() (PoolMotion method)

 	base_rate (PoolMotor attribute)

 	BaseMacroExecutor (class in sardana.macroserver.macros.test)

 	BaseMacroTestCase (class in sardana.macroserver.macros.test)

 	block_events() (EventReceiver method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	
 	BlockFinish (Macro attribute)

 	BlockStart (Macro attribute)

 	BusyRetries (PoolDevice attribute)

 	BusyStates (PoolDevice attribute)

C

 	
 	calc() (PoolPseudoCounter method)

 	(PoolPseudoCounterController method)

 	Calc() (PseudoCounterController method)

 	calc() (PseudoCounterController method)

 	calc_all() (PoolPseudoCounter method)

 	(PoolPseudoCounterController method)

 	calc_all_physical() (PoolPseudoMotorController method)

 	(PseudoMotorController method)

 	calc_all_pseudo() (PoolPseudoMotor method)

 	(PoolPseudoMotorController method)

 	(PseudoMotorController method)

 	calc_move() (PoolMoveable method)

 	calc_physical() (PoolPseudoMotor method)

 	(PoolPseudoMotorController method)

 	(PseudoMotorController method)

 	calc_pseudo() (PoolPseudoMotor method)

 	(PoolPseudoMotorController method)

 	(PseudoMotorController method)

 	CalcAll() (PseudoCounterController method)

 	CalcAllPhysical() (PseudoMotor method)

 	(PseudoMotorController method)

 	CalcAllPseudo() (PseudoCounter method)

 	(PseudoMotor method)

 	(PseudoMotorController method)

 	CalcPhysical() (PseudoMotor method)

 	(PseudoMotorController method)

 	CalcPseudo() (PseudoCounter method)

 	(PseudoMotor method)

 	(PseudoMotorController method)

 	calculate_motion() (PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	calculate_state_info() (PoolBaseElement method)

 	(PoolMotor method)

 	(PoolPseudoCounter method)

 	(PoolPseudoMotor method)

 	calculate_tango_state() (SardanaDevice method)

 	calculate_tango_status() (SardanaDevice method)

 	CCD

 	changeDoor() (SarDemoEnv method)

 	check_element() (SardanaContainer method)

 	check_elements() (LsTest method)

 	checkPoint() (Macro method)

 	class

 	class_prop (Controller attribute)

 	class_property_list (ControllerClass attribute)

 	(CTExpChannelClass attribute)

 	(IORegisterClass attribute)

 	(MotorClass attribute)

 	(OneDExpChannelClass attribute)

 	(PoolDeviceClass attribute)

 	(PseudoCounterClass attribute)

 	(PseudoMotorClass attribute)

 	(SardanaDeviceClass attribute)

 	(TwoDExpChannelClass attribute)

 	(ZeroDExpChannelClass attribute)

 	cleanUp() (ControllerManager method)

 	(ModuleManager method)

 	clear_buffer() (Pool0DExpChannel method)

 	clear_elements() (PoolAction method)

 	clear_operation() (PoolBaseElement method)

 	clear_remote_logging() (Pool method)

 	clear_user_elements() (PoolBaseGroup method)

 	clear_value_buffer() (PoolBaseChannel method)

 	CLI

 	client-server model

 	closed loop

 	cmd_list (ControllerClass attribute)

 	(CTExpChannelClass attribute)

 	(IORegisterClass attribute)

 	(MotorClass attribute)

 	(OneDExpChannelClass attribute)

 	(PoolDeviceClass attribute)

 	(PoolElementDeviceClass attribute)

 	(PoolGroupDeviceClass attribute)

 	(PseudoCounterClass attribute)

 	(PseudoMotorClass attribute)

 	(SardanaDeviceClass attribute)

 	(TwoDExpChannelClass attribute)

 	(ZeroDExpChannelClass attribute)

 	
 	code (SardanaClass attribute)

 	(SardanaLibrary attribute)

 	code_object (SardanaClass attribute)

 	communication.get (class in sardana.macroserver.macros)

 	communication.put (class in sardana.macroserver.macros)

 	Controller (class in sardana.pool.controller)

 	(class in sardana.tango.pool.Controller)

 	controller (PoolElement attribute)

 	controller_class (ControllerClass attribute)

 	controller_id (PoolElement attribute)

 	CONTROLLER_TEMPLATE (in module sardana.pool.poolmetacontroller)

 	ControllerAPI (in module sardana.pool.pooldefs)

 	ControllerClass (class in sardana.pool.poolmetacontroller)

 	(class in sardana.tango.pool.Controller)

 	ControllerLibrary (class in sardana.pool.poolmetacontroller)

 	ControllerManager (class in sardana.pool.poolcontrollermanager)

 	controllers (ControllerLibrary attribute)

 	copy() (DataInfo method)

 	counter_roles (PseudoCounterController attribute)

 	CounterTimerController (class in sardana.pool.controller)

 	create_controller() (Pool method)

 	create_element() (Pool method)

 	create_instrument() (Pool method)

 	create_measurement_group() (Pool method)

 	create_motor_group() (Pool method)

 	createCommonBuffer() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	createController() (ControllerManager method)

 	CreateController() (Pool method)

 	createControllerLib() (ControllerManager method)

 	CreateElement() (Controller method)

 	(Pool method)

 	createExecMacroHook() (Macro method)

 	CreateInstrument() (Pool method)

 	createMacro() (Macro method)

 	CreateMeasurementGroup() (Pool method)

 	CreateMotorGroup() (Pool method)

 	Critical (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	critical() (Macro method)

 	ct (CTExpChannel attribute)

 	CTExpChannel (class in sardana.tango.pool.CTExpChannel)

 	CTExpChannelClass (class in sardana.tango.pool.CTExpChannel)

 	ctrl (Controller attribute)

 	(PoolController attribute)

 	ctrl_attributes (Controller attribute)

 	ctrl_extra_attributes (Controller attribute)

 	ctrl_features (Controller attribute)

 	ctrl_info (PoolController attribute)

 	ctrl_manager (Pool attribute)

 	ctrl_properties (Controller attribute)

 	CTRL_TYPE_MAP (in module sardana.pool.poolmetacontroller)

 	CtTest (class in sardana.macroserver.macros.test.test_ct)

 	current_value (Pool0DExpChannel attribute)

D

 	
 	daemon

 	data (Macro attribute)

 	data_source (Pool1DExpChannel attribute)

 	(Pool2DExpChannel attribute)

 	DataAccess (in module sardana.sardanadefs)

 	DataFormat (in module sardana.sardanadefs)

 	DataInfo (class in sardana.pool.poolmetacontroller)

 	DataType (in module sardana.sardanadefs)

 	Debug (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	debug() (Macro method)

 	deceleration (PoolMotor attribute)

 	decodeControllerParameters() (ControllerManager method)

 	deep_reload_module() (ModuleManager method)

 	Default_AcqLoop_SleepTime (Pool attribute)

 	Default_AcqLoop_StatesPerValue (Pool attribute)

 	DEFAULT_CONTROLLER_DIRECTORIES (ControllerManager attribute)

 	Default_DriftCorrection (Pool attribute)

 	Default_MotionLoop_SleepTime (Pool attribute)

 	Default_MotionLoop_StatesPerPosition (Pool attribute)

 	DefaultValue (in module sardana.pool.controller)

 	define_position() (PoolController method)

 	(PoolMotor method)

 	DefinePosition() (Motor method)

 	(MotorController method)

 	Delay (SynchParam attribute)

 	delete_device (Controller attribute)

 	(CTExpChannel attribute)

 	(IORegister attribute)

 	(Motor attribute)

 	(OneDExpChannel attribute)

 	(Pool attribute)

 	(PseudoCounter attribute)

 	(PseudoMotor attribute)

 	(TwoDExpChannel attribute)

 	(ZeroDExpChannel attribute)

 	delete_device() (PoolDevice method)

 	(SardanaDevice method)

 	delete_element() (Pool method)

 	DeleteDevice() (Controller method)

 	DeleteElement() (Controller method)

 	(Pool method)

 	demo.clear_sar_demo (class in sardana.macroserver.macros)

 	demo.sar_demo (class in sardana.macroserver.macros)

 	
 	Description (in module sardana.pool.controller)

 	description (Macro attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	dev_state() (Controller method)

 	(PoolDevice method)

 	dev_status() (Controller method)

 	(PoolDevice method)

 	device_name (PoolTangoObject attribute)

 	device_name_factory() (SardanaDeviceClass method)

 	device_property_list (ControllerClass attribute)

 	(CTExpChannelClass attribute)

 	(IORegisterClass attribute)

 	(MotorClass attribute)

 	(OneDExpChannelClass attribute)

 	(PoolDeviceClass attribute)

 	(PoolElementDeviceClass attribute)

 	(PoolGroupDeviceClass attribute)

 	(PseudoCounterClass attribute)

 	(PseudoMotorClass attribute)

 	(SardanaDeviceClass attribute)

 	(TwoDExpChannelClass attribute)

 	(ZeroDExpChannelClass attribute)

 	DFT_DESC (PoolMeasurementGroup attribute)

 	DftLogLevel (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	DftLogMessageFormat (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	dial

 	dial position

 	dial_position (PoolMotor attribute)

 	DNscancTest (class in sardana.macroserver.macros.test.test_scan)

 	DNscanTest (class in sardana.macroserver.macros.test.test_scan)

 	DONE_STATES (TangoStatusCb attribute)

 	door (Macro attribute)

 	door_name (BaseMacroTestCase attribute)

 	(LsTest attribute)

 	(RunMacroTestCase attribute)

 	(RunStopMacroTestCase attribute)

 	drift_correction (Pool attribute)

 	(PoolPseudoMotor attribute)

 	DscanTest (class in sardana.macroserver.macros.test.test_scan)

 	dyn_attr() (SardanaDeviceClass method)

E

 	
 	EDITOR, [1]

 	elem_type (Ls0dTest attribute)

 	(Ls1dTest attribute)

 	(Ls2dTest attribute)

 	(LsTest attribute)

 	(LsctTest attribute)

 	(LsctrlTest attribute)

 	(LsmTest attribute)

 	(LspmTest attribute)

 	element (PoolActionItem attribute)

 	(PoolDevice attribute)

 	elements (PoolInstrument attribute)

 	elements_changed() (PoolGroupDevice method)

 	ElementsCache (Pool attribute)

 	ElementType (in module sardana.sardanadefs)

 	emergency_break() (PoolAction method)

 	(PoolController method)

 	enter() (ActionContext method)

 	env (Macro attribute)

 	env.dumpenv (class in sardana.macroserver.macros)

 	env.load_env (class in sardana.macroserver.macros)

 	env.lsenv (class in sardana.macroserver.macros)

 	env.lsvo (class in sardana.macroserver.macros)

 	env.senv (class in sardana.macroserver.macros)

 	env.setvo (class in sardana.macroserver.macros)

 	env.usenv (class in sardana.macroserver.macros)

 	env.usetvo (class in sardana.macroserver.macros)

 	
 environment variable

 	EDITOR, [1]

 	EnvironmentManager (class in sardana.macroserver.msenvmanager)

 	EpsilonError (in module sardana.sardanadefs)

 	Error (ModuleManager attribute)

 	error (SardanaAttribute attribute)

 	Error (SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	error (SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	
 	error() (Macro method)

 	EventGenerator (class in sardana.sardanaevent)

 	EventReceiver (class in sardana.sardanaevent)

 	EventType (class in sardana.sardanaevent)

 	exc_info (SardanaAttribute attribute)

 	(SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	Exception (Macro attribute)

 	exec_() (Macro method)

 	execMacro() (Macro method)

 	execMacroObj() (Macro method)

 	executor (Macro attribute)

 	exit() (ActionContext method)

 	expert.addctrllib (class in sardana.macroserver.macros)

 	expert.addmaclib (class in sardana.macroserver.macros)

 	expert.commit_ctrllib (class in sardana.macroserver.macros)

 	expert.defctrl (class in sardana.macroserver.macros)

 	expert.defelem (class in sardana.macroserver.macros)

 	expert.defm (class in sardana.macroserver.macros)

 	expert.defmeas (class in sardana.macroserver.macros)

 	expert.edctrl (class in sardana.macroserver.macros)

 	expert.edctrllib (class in sardana.macroserver.macros)

 	expert.prdef (class in sardana.macroserver.macros)

 	expert.relctrlcls (class in sardana.macroserver.macros)

 	expert.relctrllib (class in sardana.macroserver.macros)

 	expert.rellib (class in sardana.macroserver.macros)

 	expert.relmac (class in sardana.macroserver.macros)

 	expert.relmaclib (class in sardana.macroserver.macros)

 	expert.sar_info (class in sardana.macroserver.macros)

 	expert.send2ctrl (class in sardana.macroserver.macros)

 	expert.udefctrl (class in sardana.macroserver.macros)

 	expert.udefelem (class in sardana.macroserver.macros)

 	expert.udefmeas (class in sardana.macroserver.macros)

 	expression

 	extend_value_buffer() (PoolBaseChannel method)

 	ExtremeErrorStates (PoolDevice attribute)

F

 	
 	Fatal (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	Fault (Macro attribute)

 	FGet (in module sardana.pool.controller)

 	file_name (SardanaClass attribute)

 	file_path (SardanaClass attribute)

 	findFullModuleName() (ModuleManager method)

 	findObjs() (Macro method)

 	finish_action() (PoolAction method)

 	finish_one() (OperationInfo method)

 	Finished (Macro attribute)

 	fire_event() (EventGenerator method)

 	(SardanaAttribute method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	fire_read_event() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	
 	fire_write_event() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	flush_queue() (EventGenerator method)

 	(SardanaAttribute method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	flushOutput() (Macro method)

 	from_access_str() (in module sardana.sardanadefs)

 	from_dtype_str() (in module sardana.sardanadefs)

 	from_synch_type() (sardana.pool.pooldefs.AcqSynch class method)

 	frontend (SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	FSet (in module sardana.pool.controller)

 	full_name (SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	function

G

 	
 	gender (Controller attribute)

 	(ControllerClass attribute)

 	(CounterTimerController attribute)

 	(IORegisterController attribute)

 	(MotorController attribute)

 	(OneDController attribute)

 	(PseudoCounterController attribute)

 	(PseudoMotorController attribute)

 	(TwoDController attribute)

 	(ZeroDController attribute)

 	generator

 	generator expression, [1]

 	get0DExpChannel() (Macro method)

 	get0DExpChannels() (Macro method)

 	get1DExpChannel() (Macro method)

 	get1DExpChannels() (Macro method)

 	get2DExpChannel() (Macro method)

 	get2DExpChannels() (Macro method)

 	get_acceleration() (PoolMotor method)

 	get_accumulated_value() (Pool0DExpChannel method)

 	get_accumulated_value_attribute() (Pool0DExpChannel method)

 	get_accumulation() (Pool0DExpChannel method)

 	get_accumulation_buffer() (Pool0DExpChannel method)

 	get_accumulation_type() (Pool0DExpChannel method)

 	get_acq_loop_sleep_time() (Pool method)

 	get_acq_loop_states_per_value() (Pool method)

 	get_acquisition() (PoolBaseChannel method)

 	(PoolMeasurementGroup method)

 	get_acquisition_elements_info() (Pool method)

 	get_acquisition_elements_str_info() (Pool method)

 	get_acquisition_mode() (PoolMeasurementGroup method)

 	get_action_cache() (PoolBaseElement method)

 	(PoolGroupElement method)

 	(PoolPseudoCounter method)

 	(PoolPseudoMotor method)

 	get_alias() (SardanaDevice method)

 	get_attribute_by_name() (SardanaDevice method)

 	get_attribute_name() (PoolTangoObject method)

 	get_attributes_to_restore() (Motor method)

 	(PoolDevice method)

 	get_axis() (PoolElement method)

 	get_axis_attr() (PoolController method)

 	get_axis_attributes() (PoolController method)

 	get_axis_par() (PoolController method)

 	get_backlash() (PoolMotor method)

 	get_base_rate() (PoolMotor method)

 	get_brief_description() (SardanaClass method)

 	get_class_name() (PoolController method)

 	get_code() (SardanaClass method)

 	(SardanaLibrary method)

 	get_config() (PoolBaseExternalObject method)

 	(PoolTangoObject method)

 	get_configuration() (PoolMeasurementGroup method)

 	get_controller() (ControllerLibrary method)

 	(PoolElement method)

 	get_controller_class() (PoolContainer method)

 	get_controller_class_by_id() (PoolContainer method)

 	get_controller_class_by_name() (PoolContainer method)

 	get_controller_class_info() (Pool method)

 	get_controller_class_names() (Pool method)

 	get_controller_classes() (Pool method)

 	get_controller_classes_info() (Pool method)

 	get_controller_classes_summary_info() (Pool method)

 	get_controller_id() (PoolElement method)

 	get_controller_lib_names() (Pool method)

 	get_controller_libs() (Pool method)

 	get_controller_libs_summary_info() (Pool method)

 	get_controllers() (ControllerLibrary method)

 	get_ct() (CTExpChannel method)

 	get_ctrl() (Controller method)

 	(PoolController method)

 	get_ctrl_attr() (PoolController method)

 	get_ctrl_info() (PoolController method)

 	get_ctrl_par() (PoolController method)

 	get_ctrl_types() (PoolController method)

 	get_current_value() (Pool0DExpChannel method)

 	get_current_value_attribute() (Pool0DExpChannel method)

 	get_data_source() (Pool1DExpChannel method)

 	(Pool2DExpChannel method)

 	get_database() (SardanaDevice method)

 	get_deceleration() (PoolMotor method)

 	get_default_acquisition_channel() (PoolBaseElement method)

 	get_default_attribute() (PoolBaseChannel method)

 	(PoolBaseElement method)

 	(PoolIORegister method)

 	(PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	get_description() (SardanaLibrary method)

 	get_device() (PoolTangoObject method)

 	get_device_name() (PoolTangoObject method)

 	get_dial_position() (PoolMotor method)

 	get_dial_position_attribute() (PoolMotor method)

 	get_drift_correction() (Pool method)

 	(PoolPseudoMotor method)

 	get_dynamic_attributes() (Controller method)

 	(CTExpChannel method)

 	(IORegister method)

 	(Motor method)

 	(OneDExpChannel method)

 	(PoolDevice method)

 	(PoolElementDevice method)

 	(PseudoCounter method)

 	(PseudoMotor method)

 	(TwoDExpChannel method)

 	(ZeroDExpChannel method)

 	get_element() (PoolActionItem method)

 	(PoolDevice method)

 	(SardanaContainer method)

 	get_element_by_full_name() (SardanaContainer method)

 	get_element_by_id() (SardanaContainer method)

 	get_element_by_name() (SardanaContainer method)

 	get_element_id_graph() (Pool method)

 	get_element_id_map() (SardanaContainer method)

 	get_element_name_map() (SardanaContainer method)

 	get_element_names() (Controller method)

 	(PoolGroupDevice method)

 	get_element_names_by_type() (SardanaContainer method)

 	get_element_type_map() (SardanaContainer method)

 	get_elements() (PoolAction method)

 	(PoolInstrument method)

 	get_elements_by_type() (SardanaContainer method)

 	get_elements_info() (Pool method)

 	get_elements_str_info() (Pool method)

 	get_error() (SardanaLibrary method)

 	get_event_thread_pool() (SardanaDevice method)

 	get_exc_info() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	get_extra_par() (PoolElement method)

 	get_file_name() (SardanaLibrary method)

 	get_file_path() (SardanaLibrary method)

 	get_frontend() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_full_name() (Pool method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaDevice method)

 	(SardanaLibrary method)

 	get_id() (SardanaObjectID method)

 	get_instability_time() (PoolMotor method)

 	get_instrument() (PoolElement method)

 	get_instrument_class() (PoolInstrument method)

 	get_instruments() (PoolInstrument method)

 	get_integration_time() (PoolMeasurementGroup method)

 	get_interface() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_interface_names() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_interfaces() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_ior() (IORegister method)

 	get_latency_time() (PoolMeasurementGroup method)

 	get_library_name() (PoolController method)

 	get_limit_switches() (PoolMotor method)

 	get_log_level() (PoolController method)

 	get_low_level_physical_position_attribute_iterator() (PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	get_low_level_physical_value_attribute_iterator() (PoolPseudoCounter method)

 	get_macro() (MacroLibrary method)

 	get_macro_class() (MacroLibrary method)

 	get_macro_classes() (MacroLibrary method)

 	get_macro_function() (MacroLibrary method)

 	get_macro_functions() (MacroLibrary method)

 	get_macros() (MacroLibrary method)

 	get_main_element() (PoolAction method)

 	get_manager() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_meta() (SardanaLibrary method)

 	get_meta_class() (SardanaLibrary method)

 	get_meta_classes() (SardanaLibrary method)

 	get_meta_function() (SardanaLibrary method)

 	get_meta_functions() (SardanaLibrary method)

 	get_metas() (SardanaLibrary method)

 	get_module() (SardanaLibrary method)

 	get_module_name() (SardanaLibrary method)

 	get_monitor_count() (PoolMeasurementGroup method)

 	get_motion() (PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	get_motion_loop_sleep_time() (Pool method)

 	get_motion_loop_states_per_position() (Pool method)

 	get_motor() (Motor method)

 	get_moveable() (PoolMeasurementGroup method)

 	(PoolMotionItem method)

 	get_moveable_graph() (Pool method)

 	get_moveable_id_graph() (Pool method)

 	get_name() (EventType method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_obj() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	get_offset() (PoolMotor method)

 	get_offset_attribute() (PoolMotor method)

 	get_oned() (OneDExpChannel method)

 	get_operation() (PoolBaseElement method)

 	(PoolBaseGroup method)

 	(PoolGroupElement method)

 	(PoolPseudoMotor method)

 	get_operator() (PoolController method)

 	get_par() (PoolElement method)

 	get_parent() (PoolElement method)

 	(PoolInstrument method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_parent_instrument() (PoolInstrument method)

 	
 	get_parent_name() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_physical_elements() (PoolBaseGroup method)

 	get_physical_elements_attribute_iterator() (PoolBaseGroup method)

 	get_physical_elements_iterator() (PoolBaseGroup method)

 	get_physical_elements_set() (PoolBaseGroup method)

 	get_physical_position_attribute_iterator() (PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	get_physical_positions() (PoolPseudoMotor method)

 	get_physical_positions_attribute_map() (PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	get_physical_positions_attribute_sequence() (PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	get_physical_value_attribute_iterator() (PoolPseudoCounter method)

 	get_physical_value_buffer_iterator() (PoolPseudoCounter method)

 	get_physical_values() (PoolPseudoCounter method)

 	get_physical_values_attribute_map() (PoolPseudoCounter method)

 	get_physical_values_attribute_sequence() (PoolPseudoCounter method)

 	get_pool() (ControllerManager method)

 	(PoolAction method)

 	(PoolBaseObject method)

 	get_pool_controller_by_name() (PoolMeasurementGroup method)

 	get_pool_controller_list() (PoolAction method)

 	get_pool_controllers() (PoolAction method)

 	(PoolMeasurementGroup method)

 	get_position() (PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	get_position_attribute() (PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	get_priority() (EventType method)

 	get_pseudo_counter() (PseudoCounter method)

 	get_pseudo_elements() (PoolBaseChannel method)

 	get_pseudo_motor() (PseudoMotor method)

 	get_read_value_ctrls() (PoolAction method)

 	get_read_value_loop_ctrls() (PoolAction method)

 	(PoolCTAcquisition method)

 	get_restore_data() (PoolDevice method)

 	get_role_ids() (Controller method)

 	get_serialization_protocol() (SardanaElementManager method)

 	get_siblings() (PoolPseudoCounter method)

 	(PoolPseudoMotor method)

 	get_siblings_positions() (PoolPseudoMotor method)

 	get_siblings_values() (PoolPseudoCounter method)

 	get_sign() (PoolMotor method)

 	get_sign_attribute() (PoolMotor method)

 	get_simulation_mode() (PoolBaseElement method)

 	get_size() (PoolMoveable method)

 	get_source() (PoolBaseExternalObject method)

 	(PoolElement method)

 	get_standard_attr_info() (PoolElementDeviceClass method)

 	get_state() (PoolBaseElement method)

 	get_state_info() (PoolMotionItem method)

 	get_status() (PoolBaseElement method)

 	get_step_per_unit() (PoolMotor method)

 	get_synchronization() (PoolMeasurementGroup method)

 	get_thread_pool() (in module sardana.pool.poolaction)

 	get_time_buffer() (Pool0DExpChannel method)

 	get_timer() (PoolMeasurementGroup method)

 	get_timestamp() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	get_trigger_type() (CounterTimerController method)

 	get_twod() (TwoDExpChannel method)

 	get_type() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	get_user_configuration() (PoolMeasurementGroup method)

 	get_user_element_ids() (PoolBaseGroup method)

 	get_user_elements() (PoolBaseGroup method)

 	get_user_elements_attribute() (PoolBaseGroup method)

 	get_user_elements_attribute_iterator() (PoolBaseGroup method)

 	get_user_elements_attribute_map() (PoolBaseGroup method)

 	get_user_elements_attribute_sequence() (PoolBaseGroup method)

 	get_value() (PoolBaseChannel method)

 	(PoolIORegister method)

 	(PoolMoveable method)

 	(PoolPseudoCounter method)

 	(SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	get_value_attribute() (PoolBaseChannel method)

 	(PoolIORegister method)

 	get_value_buffer() (PoolBaseChannel method)

 	get_value_obj() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	get_velocity() (PoolMotor method)

 	get_wattribute_by_name() (SardanaDevice method)

 	get_write_dial_position_from_db() (Motor method)

 	get_write_timestamp() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	get_write_value() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	get_write_value_from_db() (IORegister method)

 	get_write_value_obj() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	get_zerod() (ZeroDExpChannel method)

 	getAllDoorEnv() (Macro method)

 	getAllEnv() (Macro method)

 	GetAxisAttributes() (Controller method)

 	(MotorController method)

 	GetAxisExtraPar() (Controller method)

 	GetAxisName() (Controller method)

 	GetAxisPar() (Controller method)

 	(OneDController method)

 	(TwoDController method)

 	getCommand() (Macro method)

 	getCommonBuffer() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	getController() (Macro method)

 	getControllerClass() (ControllerManager method)

 	GetControllerClassInfo() (Pool method)

 	GetControllerCode() (Pool method)

 	getControllerLib() (ControllerManager method)

 	getControllerLibNames() (ControllerManager method)

 	getControllerLibs() (ControllerManager method)

 	getControllerMetaClass() (ControllerManager method)

 	getControllerMetaClasses() (ControllerManager method)

 	getControllerNames() (ControllerManager method)

 	getControllerPath() (ControllerManager method)

 	getControllers() (ControllerManager method)

 	(Macro method)

 	(SarDemoEnv method)

 	getCounterTimer() (Macro method)

 	getCounterTimers() (Macro method)

 	GetCtrlPar() (Controller method)

 	getCTs() (SarDemoEnv method)

 	getData() (Macro method)

 	(TangoMacroExecutor method)

 	getDateString() (Macro method)

 	getDescription() (Macro method)

 	getDevice() (Macro method)

 	getDoorName() (Macro method)

 	getDoorObj() (Macro method)

 	getElements() (Pool method)

 	(SarDemoEnv method)

 	getElementsWithInterface() (Macro method)

 	getElementWithInterface() (Macro method)

 	getEnv() (Macro method)

 	getExceptionStr() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	getExecutor() (Macro method)

 	getExpChannel() (Macro method)

 	getExpChannels() (Macro method)

 	GetExtraAttributePar() (Controller method)

 	GetFile() (Pool method)

 	getGlobalEnv() (Macro method)

 	getID() (Macro method)

 	getInstrument() (Macro method)

 	getInstruments() (Macro method)

 	getIORegister() (Macro method)

 	getIORegisters() (Macro method)

 	getLog() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	getMacroExecutor() (MacroExecutorFactory method)

 	getMacroInfo() (Macro method)

 	getMacroLib() (Macro method)

 	getMacroLibraries() (Macro method)

 	getMacroLibrary() (Macro method)

 	getMacroLibs() (Macro method)

 	getMacroNames() (Macro method)

 	getMacros() (Macro method)

 	getMacroServer() (Macro method)

 	getMacroStatus() (Macro method)

 	getMacroThread() (Macro method)

 	getMacroThreadID() (Macro method)

 	getManager() (Macro method)

 	getMeasurementGroup() (Macro method)

 	getMeasurementGroups() (Macro method)

 	getModule() (ModuleManager method)

 	getModuleNames() (ModuleManager method)

 	getMotion() (Macro method)

 	getMotor() (Macro method)

 	GetMotor() (PseudoMotorController method)

 	getMotors() (Macro method)

 	(SarDemoEnv method)

 	getMoveable() (Macro method)

 	getMoveables() (Macro method)

 	(SarDemoEnv method)

 	GetName() (Controller method)

 	getName() (Macro method)

 	getObj() (Macro method)

 	getObjs() (Macro method)

 	getOneds() (SarDemoEnv method)

 	getOrCreateControllerLib() (ControllerManager method)

 	GetPar() (Controller method)

 	getParameters() (Macro method)

 	getParentMacro() (Macro method)

 	getPools() (Macro method)

 	getPseudoCounter() (Macro method)

 	getPseudoCounters() (Macro method)

 	getPseudoMotor() (Macro method)

 	GetPseudoMotor() (PseudoMotorController method)

 	getPseudoMotors() (Macro method)

 	(SarDemoEnv method)

 	getResult() (BaseMacroExecutor method)

 	(Macro method)

 	(TangoMacroExecutor method)

 	getState() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	getStateBuffer() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	getTangoFactory() (Macro method)

 	getTwods() (SarDemoEnv method)

 	getViewOption() (Macro method)

 	getViewOptions() (Macro method)

 	getZerods() (SarDemoEnv method)

 	GUI

H

 	
 	handle_instability() (PoolMotionItem method)

 	HardwareGate (AcqSynch attribute)

 	HardwareTrigger (AcqSynch attribute)

 	has_backlash() (PoolController method)

 	(PoolMotor method)

 	has_controller() (ControllerLibrary method)

 	has_elements() (PoolInstrument method)

 	has_errors() (SardanaLibrary method)

 	has_instability_time() (PoolMotionItem method)

 	(PoolMotor method)

 	has_instruments() (PoolInstrument method)

 	has_listeners() (EventGenerator method)

 	(SardanaAttribute method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	has_macro() (MacroLibrary method)

 	has_macro_class() (MacroLibrary method)

 	has_macro_function() (MacroLibrary method)

 	has_macros() (MacroLibrary method)

 	has_meta() (SardanaLibrary method)

 	has_meta_class() (SardanaLibrary method)

 	has_meta_function() (SardanaLibrary method)

 	has_metas() (SardanaLibrary method)

 	has_parent_instrument() (PoolInstrument method)

 	has_pseudo_elements() (PoolBaseChannel method)

 	has_value() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	has_write_value() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	
 	hasResult() (sardana.macroserver.macro.Macro class method)

 	hints (Macro attribute)

 	hkl.addreflection (class in sardana.macroserver.macros)

 	hkl.affine (class in sardana.macroserver.macros)

 	hkl.br (class in sardana.macroserver.macros)

 	hkl.ca (class in sardana.macroserver.macros)

 	hkl.caa (class in sardana.macroserver.macros)

 	hkl.ci (class in sardana.macroserver.macros)

 	hkl.computeub (class in sardana.macroserver.macros)

 	hkl.freeze (class in sardana.macroserver.macros)

 	hkl.getmode (class in sardana.macroserver.macros)

 	hkl.hklscan (class in sardana.macroserver.macros)

 	hkl.hscan (class in sardana.macroserver.macros)

 	hkl.kscan (class in sardana.macroserver.macros)

 	hkl.latticecal (class in sardana.macroserver.macros)

 	hkl.loadcrystal (class in sardana.macroserver.macros)

 	hkl.lscan (class in sardana.macroserver.macros)

 	hkl.newcrystal (class in sardana.macroserver.macros)

 	hkl.or0 (class in sardana.macroserver.macros)

 	hkl.or1 (class in sardana.macroserver.macros)

 	hkl.orswap (class in sardana.macroserver.macros)

 	hkl.pa (class in sardana.macroserver.macros)

 	hkl.savecrystal (class in sardana.macroserver.macros)

 	hkl.setaz (class in sardana.macroserver.macros)

 	hkl.setlat (class in sardana.macroserver.macros)

 	hkl.setmode (class in sardana.macroserver.macros)

 	hkl.setor0 (class in sardana.macroserver.macros)

 	hkl.setor1 (class in sardana.macroserver.macros)

 	hkl.setorn (class in sardana.macroserver.macros)

 	hkl.th2th (class in sardana.macroserver.macros)

 	hkl.ubr (class in sardana.macroserver.macros)

 	hkl.wh (class in sardana.macroserver.macros)

 	HomeLimitSwitch (MotorController attribute)

I

 	
 	id (SardanaObjectID attribute)

 	iMacro (class in sardana.macroserver.macro)

 	imacro (in module sardana.macroserver.macro)

 	image (Controller attribute)

 	in_acquisition() (PoolCTAcquisition method)

 	in_error() (SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	in_motion() (PoolMotionItem method)

 	Info (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	info() (Macro method)

 	Init (Macro attribute)

 	init() (Controller method)

 	(CTExpChannel method)

 	(ControllerManager method)

 	(IORegister method)

 	(ModuleManager method)

 	(Motor method)

 	(OneDExpChannel method)

 	(OperationInfo method)

 	(Pool method)

 	(PoolDevice method)

 	(PseudoCounter method)

 	(PseudoMotor method)

 	(SarDemoEnv method)

 	(SardanaDevice method)

 	(TwoDExpChannel method)

 	(ZeroDExpChannel method)

 	init_device (Controller attribute)

 	(CTExpChannel attribute)

 	(IORegister attribute)

 	(Motor attribute)

 	(OneDExpChannel attribute)

 	(Pool attribute)

 	(PseudoCounter attribute)

 	(PseudoMotor attribute)

 	(TwoDExpChannel attribute)

 	(ZeroDExpChannel attribute)

 	init_device() (PoolDevice method)

 	(PoolElementDevice method)

 	(SardanaDevice method)

 	init_device_nodb() (SardanaDevice method)

 	init_local_logging() (Pool method)

 	init_remote_logging() (Pool method)

 	Initial (SynchParam attribute)

 	initialize_dynamic_attributes() (CTExpChannel method)

 	(IORegister method)

 	(Motor method)

 	(OneDExpChannel method)

 	(PoolDevice method)

 	(PseudoCounter method)

 	(PseudoMotor method)

 	(SardanaDevice method)

 	(ZeroDExpChannel method)

 	input() (Macro method)

 	inspect_limit_switches() (PoolMotor method)

 	inspect_state() (PoolBaseElement method)

 	inspect_status() (PoolBaseElement method)

 	inst_name (Controller attribute)

 	instability_time (PoolMotor attribute)

 	instrument (PoolElement attribute)

 	instrument_class (PoolInstrument attribute)

 	instruments (PoolInstrument attribute)

 	integration_time (PoolMeasurementGroup attribute)

 	interactive

 	(Macro attribute)

 	(iMacro attribute)

 	Interface (in module sardana.sardanadefs)

 	
 	INTERFACES (in module sardana.sardanadefs)

 	Interfaces (in module sardana.sardanadefs)

 	INTERFACES_EXPANDED (in module sardana.sardanadefs)

 	InterfacesExpanded (in module sardana.sardanadefs)

 	interpreted

 	InvalidAxis (in module sardana.sardanadefs)

 	InvalidId (in module sardana.sardanadefs)

 	ior (IORegister attribute)

 	IORegister (class in sardana.tango.pool.IORegister)

 	ioregister.read_ioreg (class in sardana.macroserver.macros)

 	ioregister.write_ioreg (class in sardana.macroserver.macros)

 	IORegisterClass (class in sardana.tango.pool.IORegister)

 	IORegisterController (class in sardana.pool.controller)

 	is_Abort_allowed() (PoolDevice method)

 	is_Acceleration_allowed() (Motor method)

 	is_AccumulationBuffer_allowed() (ZeroDExpChannel method)

 	is_AccumulationType_allowed() (ZeroDExpChannel method)

 	is_AcqChannelList_allowed() (Pool method)

 	is_action_running() (PoolBaseElement method)

 	is_Backlash_allowed() (Motor method)

 	is_backlash_negative() (PoolMotor method)

 	is_backlash_positive() (PoolMotor method)

 	is_Base_rate_allowed() (Motor method)

 	is_ComChannelList_allowed() (Pool method)

 	is_ControllerClassList_allowed() (Pool method)

 	is_ControllerLibList_allowed() (Pool method)

 	is_ControllerList_allowed() (Pool method)

 	is_CurrentValue_allowed() (ZeroDExpChannel method)

 	is_Deceleration_allowed() (Motor method)

 	is_DefinePosition_allowed() (Motor method)

 	is_DialPosition_allowed() (Motor method)

 	is_DynamicAttribute_allowed() (PoolDevice method)

 	is_Elements_allowed() (Pool method)

 	is_ExpChannelList_allowed() (Pool method)

 	is_in_local_operation() (PoolBaseElement method)

 	is_in_operation() (PoolBaseElement method)

 	is_InstrumentList_allowed() (Pool method)

 	is_IORegisterList_allowed() (Pool method)

 	is_Limit_switches_allowed() (Motor method)

 	is_MeasurementGroupList_allowed() (Pool method)

 	is_MotorGroupList_allowed() (Pool method)

 	is_MotorList_allowed() (Pool method)

 	is_MoveRelative_allowed() (Motor method)

 	(PseudoMotor method)

 	is_Offset_allowed() (Motor method)

 	is_online() (PoolController method)

 	is_Position_allowed() (Motor method)

 	(PseudoMotor method)

 	is_pseudo() (PoolController method)

 	is_running() (PoolAction method)

 	is_SaveConfig_allowed() (Motor method)

 	is_Sign_allowed() (Motor method)

 	is_Step_per_unit_allowed() (Motor method)

 	is_Stop_allowed() (PoolDevice method)

 	is_TimeBuffer_allowed() (ZeroDExpChannel method)

 	is_timerable() (PoolController method)

 	is_TriggerGateList_allowed() (Pool method)

 	is_Value_allowed() (CTExpChannel method)

 	(IORegister method)

 	(OneDExpChannel method)

 	(PseudoCounter method)

 	(TwoDExpChannel method)

 	(ZeroDExpChannel method)

 	is_ValueBuffer_allowed() (ZeroDExpChannel method)

 	is_Velocity_allowed() (Motor method)

 	isAborted() (Macro method)

 	isPaused() (Macro method)

 	isProcessingStop() (Macro method)

 	isStopped() (Macro method)

 	isValidModule() (ModuleManager method)

 	iterable

 	iterator

K

 	
 	key function

 	
 	keyword argument

 	klass (SardanaClass attribute)

L

 	
 	lambda

 	latency_time (PoolMeasurementGroup attribute)

 	lib (SardanaClass attribute)

 	limit_switches (PoolMotor attribute)

 	list

 	list comprehension

 	lists.ls0d (class in sardana.macroserver.macros)

 	lists.ls1d (class in sardana.macroserver.macros)

 	lists.ls2d (class in sardana.macroserver.macros)

 	lists.lsa (class in sardana.macroserver.macros)

 	lists.lscom (class in sardana.macroserver.macros)

 	lists.lsct (class in sardana.macroserver.macros)

 	lists.lsctrl (class in sardana.macroserver.macros)

 	lists.lsctrllib (class in sardana.macroserver.macros)

 	lists.lsdef (class in sardana.macroserver.macros)

 	lists.lsexp (class in sardana.macroserver.macros)

 	lists.lsi (class in sardana.macroserver.macros)

 	lists.lsior (class in sardana.macroserver.macros)

 	lists.lsm (class in sardana.macroserver.macros)

 	lists.lsmac (class in sardana.macroserver.macros)

 	lists.lsmaclib (class in sardana.macroserver.macros)

 	lists.lsmeas (class in sardana.macroserver.macros)

 	lists.lspc (class in sardana.macroserver.macros)

 	
 	lists.lspm (class in sardana.macroserver.macros)

 	load_configuration() (PoolMeasurementGroup method)

 	Loadable (class in sardana.pool.controller)

 	LoadAll() (Loadable method)

 	loadModule() (ModuleManager method)

 	LoadOne() (Loadable method)

 	lock() (PoolBaseElement method)

 	log() (Macro method)

 	log_level (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	log_levels (BaseMacroExecutor attribute)

 	(TangoMacroExecutor attribute)

 	logo (Controller attribute)

 	LowerLimitSwitch (MotorController attribute)

 	Ls0dTest (class in sardana.macroserver.macros.test.test_list)

 	Ls1dTest (class in sardana.macroserver.macros.test.test_list)

 	Ls2dTest (class in sardana.macroserver.macros.test.test_list)

 	LsctrlTest (class in sardana.macroserver.macros.test.test_list)

 	LsctTest (class in sardana.macroserver.macros.test.test_list)

 	LsmTest (class in sardana.macroserver.macros.test.test_list)

 	LspmTest (class in sardana.macroserver.macros.test.test_list)

 	LsTest (class in sardana.macroserver.macros.test.test_list)

M

 	
 	Macro (class in sardana.macroserver.macro)

 	macro (class in sardana.macroserver.macro)

 	macro_fails() (LsTest method)

 	(RunMacroTestCase method)

 	(RunStopMacroTestCase method)

 	macro_name (AscanTest attribute)

 	(BaseMacroTestCase attribute)

 	(DscanTest attribute)

 	(Ls0dTest attribute)

 	(Ls1dTest attribute)

 	(Ls2dTest attribute)

 	(LsTest attribute)

 	(LsctTest attribute)

 	(LsctrlTest attribute)

 	(LsmTest attribute)

 	(LspmTest attribute)

 	(MeshTest attribute)

 	(RunMacroTestCase attribute)

 	(RunStopMacroTestCase attribute)

 	(WmTest attribute)

 	macro_runs() (AscanTest method)

 	(LsTest method)

 	(RunMacroTestCase method)

 	(RunStopMacroTestCase method)

 	(WBase method)

 	macro_server (Macro attribute)

 	macro_stops() (RunStopMacroTestCase method)

 	MacroClass (class in sardana.macroserver.msmetamacro)

 	MacroExecutor (class in sardana.macroserver.msmacromanager)

 	MacroExecutorFactory (class in sardana.macroserver.macros.test)

 	MacroFunction (class in sardana.macroserver.msmetamacro)

 	MacroLibrary (class in sardana.macroserver.msmetamacro)

 	MacroManager (class in sardana.macroserver.msmacromanager)

 	macros (Macro attribute)

 	MacroServer (class in sardana.macroserver.macroserver)

 	MacroServerException (class in sardana.macroserver.msexception)

 	MacroServerManager (class in sardana.macroserver.msmanager)

 	macroTest() (in module sardana.macroserver.macros.test), [1]

 	main_element (PoolAction attribute)

 	manager (Macro attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	
 	MAX_THREADS (PoolMonitor attribute)

 	MaxDimSize (in module sardana.pool.controller)

 	MCA

 	mca.mca_start (class in sardana.macroserver.macros)

 	mca.mca_stop (class in sardana.macroserver.macros)

 	Memorize (in module sardana.pool.controller)

 	Memorized (in module sardana.pool.controller)

 	MemorizedNoInit (in module sardana.pool.controller)

 	MeshTest (class in sardana.macroserver.macros.test.test_scan)

 	message (PoolException attribute)

 	(UnknownController attribute)

 	(UnknownControllerLibrary attribute)

 	method

 	MIN_THREADS (PoolMonitor attribute)

 	model (Controller attribute)

 	(ControllerClass attribute)

 	module (SardanaClass attribute)

 	module_name (SardanaClass attribute)

 	(SardanaLibrary attribute)

 	ModuleManager (class in sardana.sardanamodulemanager)

 	monitor (Pool attribute)

 	Monitor (SynchDomain attribute)

 	monitor() (PoolMonitor method)

 	monitor_count (PoolMeasurementGroup attribute)

 	motion (PoolMotor attribute)

 	(PoolMotorGroup attribute)

 	(PoolPseudoMotor attribute)

 	motion_loop_sleep_time (Pool attribute)

 	motion_loop_states_per_position (Pool attribute)

 	MotionState (in module sardana.pool.poolmotion)

 	Motor (class in sardana.tango.pool.Motor)

 	motor (Motor attribute)

 	motor_roles (PseudoMotorController attribute)

 	MotorClass (class in sardana.tango.pool.Motor)

 	MotorController (class in sardana.pool.controller)

 	move() (PoolController method)

 	moveable (PoolMeasurementGroup attribute)

 	(PoolMotionItem attribute)

 	MoveRelative() (Motor method)

 	(PseudoMotor method)

 	MSBaseObject (class in sardana.macroserver.msbase)

 	MSContainer (class in sardana.macroserver.mscontainer)

 	MSDoor (class in sardana.macroserver.msdoor)

 	MSObject (class in sardana.macroserver.msbase)

N

 	
 	name (SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	namespace

 	
 	nested scope

 	new-style class

 	NoLimitSwitch (MotorController attribute)

 	NoRange (SardanaAttributeConfiguration attribute)

 	NotMemorized (in module sardana.pool.controller)

O

 	
 	obj (SardanaAttribute attribute)

 	(SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	object

 	offset (PoolMotor attribute)

 	on_abort() (Macro method)

 	on_change() (PoolBaseChannel method)

 	(PoolIORegister method)

 	(PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	on_controller_changed() (Controller method)

 	on_ct_changed() (CTExpChannel method)

 	on_element_changed() (PoolBaseGroup method)

 	(PoolMeasurementGroup method)

 	(PoolMotorGroup method)

 	(PoolPseudoCounter method)

 	(PoolPseudoMotor method)

 	on_ior_changed() (IORegister method)

 	on_motor_changed() (Motor method)

 	on_oned_changed() (OneDExpChannel method)

 	
 	on_pause() (Macro method)

 	on_pool_changed() (Pool method)

 	(PoolMonitor method)

 	on_pseudo_counter_changed() (PseudoCounter method)

 	on_pseudo_motor_changed() (PseudoMotor method)

 	on_state_switch() (PoolMotionItem method)

 	on_stop() (Macro method)

 	on_twod_changed() (TwoDExpChannel method)

 	on_zerod_changed() (ZeroDExpChannel method)

 	oned (OneDExpChannel attribute)

 	OneDController (class in sardana.pool.controller)

 	OneDExpChannel (class in sardana.tango.pool.OneDExpChannel)

 	OneDExpChannelClass (class in sardana.tango.pool.OneDExpChannel)

 	OperationInfo (class in sardana.pool.poolaction)

 	operator (PoolController attribute)

 	organization (Controller attribute)

 	(ControllerClass attribute)

 	OS

 	output() (Macro method)

 	outputBlock() (Macro method)

 	outputDate() (Macro method)

P

 	
 	param_def (Macro attribute)

 	Parameterizable (class in sardana.macroserver.msmetamacro)

 	ParamTestCase (class in sardana.spock.test.test_parameter)

 	ParamType (class in sardana.macroserver.msparameter)

 	parent_instrument (PoolInstrument attribute)

 	parent_macro (Macro attribute)

 	parsing_log_output() (in module sardana.macroserver.macros.test.test_scan)

 	path (SardanaClass attribute)

 	Pause (Macro attribute)

 	pause() (Macro method)

 	(PoolMonitor method)

 	pausePoint() (Macro method)

 	PLC

 	plot() (Macro method)

 	plug-in

 	plugin

 	Pool (class in sardana.pool.pool)

 	(class in sardana.tango.pool.Pool)

 	pool (Pool attribute)

 	(PoolAction attribute)

 	(PoolBaseObject attribute)

 	(PoolDevice attribute)

 	Pool0DExpChannel (class in sardana.pool.poolzerodexpchannel)

 	Pool1DExpChannel (class in sardana.pool.poolonedexpchannel)

 	Pool2DExpChannel (class in sardana.pool.pooltwodexpchannel)

 	pool_device (PoolDevice attribute)

 	PoolAction (class in sardana.pool.poolaction)

 	PoolActionItem (class in sardana.pool.poolaction)

 	PoolBaseChannel (class in sardana.pool.poolbasechannel)

 	PoolBaseElement (class in sardana.pool.poolelement)

 	PoolBaseExternalObject (class in sardana.pool.poolexternal)

 	PoolBaseGroup (class in sardana.pool.poolgroupelement)

 	PoolBaseObject (class in sardana.pool.poolbaseobject)

 	PoolClass (class in sardana.tango.pool.Pool)

 	PoolContainer (class in sardana.pool.poolcontainer)

 	PoolController (class in sardana.pool.poolcontroller)

 	PoolCounterTimer (class in sardana.pool.poolcountertimer)

 	PoolCTAcquisition (class in sardana.pool.poolacquisition)

 	PoolDevice (class in sardana.tango.pool.PoolDevice)

 	PoolDeviceClass (class in sardana.tango.pool.PoolDevice)

 	PoolElement (class in sardana.pool.poolelement)

 	PoolElementDevice (class in sardana.tango.pool.PoolDevice)

 	PoolElementDeviceClass (class in sardana.tango.pool.PoolDevice)

 	PoolException

 	PoolExternalObject() (in module sardana.pool.poolexternal)

 	PoolGroupDevice (class in sardana.tango.pool.PoolDevice)

 	PoolGroupDeviceClass (class in sardana.tango.pool.PoolDevice)

 	PoolGroupElement (class in sardana.pool.poolgroupelement)

 	PoolInstrument (class in sardana.pool.poolinstrument)

 	PoolIORegister (class in sardana.pool.poolioregister)

 	PoolMeasurementGroup (class in sardana.pool.poolmeasurementgroup)

 	PoolMonitor (class in sardana.pool.poolmonitor)

 	PoolMotion (class in sardana.pool.poolmotion)

 	PoolMotionItem (class in sardana.pool.poolmotion)

 	PoolMotor (class in sardana.pool.poolmotor)

 	PoolMotorGroup (class in sardana.pool.poolmotorgroup)

 	PoolMoveable (class in sardana.pool.poolmoveable)

 	PoolObject (class in sardana.pool.poolobject)

 	PoolPseudoCounter (class in sardana.pool.poolpseudocounter)

 	PoolPseudoCounterController (class in sardana.pool.poolcontroller)

 	
 	PoolPseudoMotor (class in sardana.pool.poolpseudomotor)

 	PoolPseudoMotorController (class in sardana.pool.poolcontroller)

 	PoolTangoObject (class in sardana.pool.poolexternal)

 	position (PoolMotor attribute)

 	(PoolMotorGroup attribute)

 	(PoolPseudoMotor attribute)

 	Position (SynchDomain attribute)

 	positional argument

 	pre_start_all() (PoolMotion method)

 	pre_start_one() (PoolMotion method)

 	PreAbortAll() (Stopable method)

 	PreAbortOne() (Stopable method)

 	predefined_values (IORegisterController attribute)

 	PreLoadAll() (Loadable method)

 	PreLoadOne() (Loadable method)

 	prepare() (Macro method)

 	prepareMacro() (Macro method)

 	prepareMacroObj() (Macro method)

 	PreReadAll() (Readable method)

 	PreReadOne() (Readable method)

 	PreStartAll() (CounterTimerController method)

 	(Startable method)

 	PreStartAllCT() (CounterTimerController method)

 	PreStartOne() (CounterTimerController method)

 	(Startable method)

 	PreStartOneCT() (CounterTimerController method)

 	PreStateAll() (Controller method)

 	PreStateOne() (Controller method)

 	PreStopAll() (Stopable method)

 	PreStopOne() (Stopable method)

 	PreSynchAll() (Synchronizer method)

 	PreSynchOne() (Synchronizer method)

 	print() (Macro method)

 	pseudo_counter (PseudoCounter attribute)

 	pseudo_counter_roles (PseudoCounterController attribute)

 	pseudo_motor (PseudoMotor attribute)

 	pseudo_motor_roles (PseudoMotorController attribute)

 	PseudoController (class in sardana.pool.controller)

 	PseudoCounter (class in sardana.tango.pool.PseudoCounter)

 	PseudoCounterClass (class in sardana.tango.pool.PseudoCounter)

 	PseudoCounterController (class in sardana.pool.controller)

 	PseudoMotor (class in sardana.tango.pool.PseudoMotor)

 	PseudoMotorClass (class in sardana.tango.pool.PseudoMotor)

 	PseudoMotorController (class in sardana.pool.controller)

 	push_event() (TangoLogCb method)

 	(TangoResultCb method)

 	(TangoStatusCb method)

 	put_current_value() (Pool0DExpChannel method)

 	put_dial_position() (PoolMotor method)

 	put_limit_switches() (PoolMotor method)

 	put_simulation_mode() (PoolBaseElement method)

 	put_state() (PoolBaseElement method)

 	put_state_info() (PoolBaseElement method)

 	put_status() (PoolBaseElement method)

 	put_value() (PoolBaseChannel method)

 	(PoolIORegister method)

 	PutFile() (Pool method)

 	pylab (Macro attribute)

 	pyplot (Macro attribute)

 	Python 3000

 	Pythonic

Q

 	
 	queue_event() (EventGenerator method)

 	(SardanaAttribute method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

R

 	
 	raw_move() (PoolController method)

 	raw_read_axis_states() (PoolController method)

 	raw_read_axis_values() (PoolController method)

 	raw_read_dial_position() (PoolMotion method)

 	raw_read_state_info() (PoolAction method)

 	raw_read_value() (PoolAction method)

 	raw_read_value_loop() (PoolAction method)

 	re_init() (PoolController method)

 	read_Acceleration() (Motor method)

 	read_acceleration() (PoolMotor method)

 	read_AccumulationBuffer() (ZeroDExpChannel method)

 	read_AccumulationType() (ZeroDExpChannel method)

 	read_AcqChannelList() (Pool method)

 	read_attr_hardware() (Controller method)

 	(CTExpChannel method)

 	(IORegister method)

 	(Motor method)

 	(OneDExpChannel method)

 	(Pool method)

 	(PseudoCounter method)

 	(PseudoMotor method)

 	(TwoDExpChannel method)

 	(ZeroDExpChannel method)

 	read_axis_states() (PoolController method)

 	read_axis_values() (PoolController method)

 	read_Backlash() (Motor method)

 	read_Base_rate() (Motor method)

 	read_base_rate() (PoolMotor method)

 	read_ComChannelList() (Pool method)

 	read_ControllerClassList() (Pool method)

 	read_ControllerLibList() (Pool method)

 	read_ControllerList() (Pool method)

 	read_current_value() (Pool0DExpChannel method)

 	read_CurrentValue() (ZeroDExpChannel method)

 	read_data_source() (Pool1DExpChannel method)

 	(Pool2DExpChannel method)

 	read_DataSource() (OneDExpChannel method)

 	(TwoDExpChannel method)

 	read_Deceleration() (Motor method)

 	read_deceleration() (PoolMotor method)

 	read_dial_position() (PoolMotion method)

 	(PoolMotor method)

 	read_DialPosition() (Motor method)

 	read_DynamicAttribute() (Controller method)

 	(PoolDevice method)

 	(PoolElementDevice method)

 	read_ElementList() (Controller method)

 	(PoolGroupDevice method)

 	read_Elements() (Pool method)

 	read_ExpChannelList() (Pool method)

 	read_Instrument() (PoolElementDevice method)

 	read_InstrumentList() (Pool method)

 	read_IORegisterList() (Pool method)

 	read_Limit_switches() (Motor method)

 	read_LogLevel() (Controller method)

 	read_MeasurementGroupList() (Pool method)

 	read_MotorGroupList() (Pool method)

 	read_MotorList() (Pool method)

 	read_Offset() (Motor method)

 	read_Position() (Motor method)

 	(PseudoMotor method)

 	read_Sign() (Motor method)

 	read_SimulationMode() (PoolElementDevice method)

 	read_state_info() (PoolAction method)

 	(PoolBaseElement method)

 	(PoolGroupElement method)

 	(PoolPseudoCounter method)

 	(PoolPseudoMotor method)

 	read_Step_per_unit() (Motor method)

 	read_step_per_unit() (PoolMotor method)

 	read_TimeBuffer() (ZeroDExpChannel method)

 	read_TriggerGateList() (Pool method)

 	read_Value() (CTExpChannel method)

 	(IORegister method)

 	(OneDExpChannel method)

 	read_value() (PoolAction method)

 	(PoolBaseChannel method)

 	(PoolIORegister method)

 	
 	read_Value() (PseudoCounter method)

 	(TwoDExpChannel method)

 	(ZeroDExpChannel method)

 	read_value_loop() (PoolAction method)

 	read_ValueBuffer() (ZeroDExpChannel method)

 	read_Velocity() (Motor method)

 	read_velocity() (PoolMotor method)

 	Readable (class in sardana.pool.controller)

 	ReadAll() (Readable method)

 	ReadOne() (Readable method)

 	Ready (Macro attribute)

 	ready (SarDemoEnv attribute)

 	registerAll() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	registerLog() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	registerResult() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	reInit() (ControllerManager method)

 	(ModuleManager method)

 	release() (OperationInfo method)

 	reload_controller_class() (Pool method)

 	reload_controller_lib() (Pool method)

 	reloadController() (ControllerManager method)

 	ReloadControllerClass() (Pool method)

 	reloadControllerLib() (ControllerManager method)

 	ReloadControllerLib() (Pool method)

 	reloadControllerLibs() (ControllerManager method)

 	reloadControllers() (ControllerManager method)

 	reloadLibrary() (Macro method)

 	reloadMacro() (Macro method)

 	reloadMacroLib() (Macro method)

 	reloadMacroLibraries() (Macro method)

 	reloadMacroLibrary() (Macro method)

 	reloadMacroLibs() (Macro method)

 	reloadMacros() (Macro method)

 	reloadModule() (ModuleManager method)

 	remove_element() (PoolAction method)

 	(PoolInstrument method)

 	(SardanaContainer method)

 	remove_finish_hook() (PoolAction method)

 	remove_instrument() (PoolInstrument method)

 	remove_listener() (EventGenerator method)

 	(SardanaAttribute method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	remove_pseudo_element() (PoolBaseChannel method)

 	remove_python_path() (ModuleManager method)

 	remove_unwanted_dynamic_attributes() (PoolDevice method)

 	rename_element() (Pool method)

 	(SardanaContainer method)

 	RenameElement() (Pool method)

 	Repeats (SynchParam attribute)

 	report() (Macro method)

 	reset_python_path() (ModuleManager method)

 	resetViewOption() (Macro method)

 	Restore() (PoolDevice method)

 	restore_attribute() (PoolDevice method)

 	result_def (Macro attribute)

 	resume() (Macro method)

 	(PoolMonitor method)

 	returnObj() (Macro method)

 	root_inited (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	run() (BaseMacroExecutor method)

 	(Macro method)

 	(PoolAction method)

 	(PoolMonitor method)

 	(TangoMacroExecutor method)

 	runMacro() (Macro method)

 	RunMacroTestCase (class in sardana.macroserver.macros.test)

 	Running (Macro attribute)

 	RunStopMacroTestCase (class in sardana.macroserver.macros.test)

S

 	
 	sardana (module)

 	sardana.macroserver (module)

 	sardana.macroserver.macros.test (module)

 	sardana.macroserver.macros.test.test_ct (module)

 	sardana.macroserver.macros.test.test_list (module)

 	sardana.macroserver.macros.test.test_scan (module)

 	sardana.macroserver.macros.test.test_wm (module)

 	sardana.macroserver.macroserver (module)

 	sardana.macroserver.msbase (module)

 	sardana.macroserver.mscontainer (module)

 	sardana.macroserver.msdoor (module)

 	sardana.macroserver.msenvmanager (module)

 	sardana.macroserver.msexception (module)

 	sardana.macroserver.msmacromanager (module)

 	sardana.macroserver.msmanager (module)

 	sardana.macroserver.msmetamacro (module)

 	sardana.macroserver.msparameter (module)

 	sardana.macroserver.mstypemanager (module)

 	sardana.pool (module)

 	sardana.pool.controller (module)

 	sardana.pool.pool (module)

 	sardana.pool.poolacquisition (module)

 	sardana.pool.poolaction (module)

 	sardana.pool.poolbasechannel (module)

 	sardana.pool.poolbaseobject (module)

 	sardana.pool.poolcontainer (module)

 	sardana.pool.poolcontroller (module)

 	sardana.pool.poolcontrollermanager (module)

 	sardana.pool.poolcountertimer (module)

 	sardana.pool.pooldefs (module)

 	sardana.pool.poolelement (module)

 	sardana.pool.poolexception (module)

 	sardana.pool.poolexternal (module)

 	sardana.pool.poolgroupelement (module)

 	sardana.pool.poolinstrument (module)

 	sardana.pool.poolioregister (module)

 	sardana.pool.poolmeasurementgroup (module)

 	sardana.pool.poolmetacontroller (module)

 	sardana.pool.poolmonitor (module)

 	sardana.pool.poolmotion (module)

 	sardana.pool.poolmotor (module)

 	sardana.pool.poolmotorgroup (module)

 	sardana.pool.poolmoveable (module)

 	sardana.pool.poolobject (module)

 	sardana.pool.poolonedexpchannel (module)

 	sardana.pool.poolpseudocounter (module)

 	sardana.pool.poolpseudomotor (module)

 	sardana.pool.pooltwodexpchannel (module)

 	sardana.pool.poolutil (module)

 	sardana.pool.poolzerodexpchannel (module)

 	sardana.sardanaattribute (module)

 	sardana.sardanabase (module)

 	sardana.sardanacontainer (module)

 	sardana.sardanadefs (module)

 	sardana.sardanaevent (module)

 	sardana.sardanamanager (module)

 	sardana.sardanameta (module)

 	sardana.sardanamodulemanager (module)

 	sardana.sardanavalue (module)

 	sardana.spock.test.test_parameter (module)

 	sardana.tango (module)

 	sardana.tango.core (module)

 	sardana.tango.core.SardanaDevice (module)

 	sardana.tango.macroserver (module)

 	sardana.tango.macroserver.test.macroexecutor (module)

 	sardana.tango.pool (module)

 	sardana.tango.pool.Controller (module)

 	sardana.tango.pool.CTExpChannel (module)

 	sardana.tango.pool.IORegister (module)

 	sardana.tango.pool.Motor (module)

 	sardana.tango.pool.OneDExpChannel (module)

 	sardana.tango.pool.Pool (module)

 	sardana.tango.pool.PoolDevice (module)

 	sardana.tango.pool.PseudoCounter (module)

 	sardana.tango.pool.PseudoMotor (module)

 	sardana.tango.pool.TwoDExpChannel (module)

 	sardana.tango.pool.ZeroDExpChannel (module)

 	sardana.test.test_sardanavalue (module)

 	SardanaAttribute (class in sardana.sardanaattribute)

 	SardanaAttributeConfiguration (class in sardana.sardanaattribute)

 	SardanaBaseObject (class in sardana.sardanabase)

 	SardanaClass (class in sardana.sardanameta)

 	SardanaContainer (class in sardana.sardanacontainer)

 	SardanaDevice (class in sardana.tango.core.SardanaDevice)

 	SardanaDeviceClass (class in sardana.tango.core.SardanaDevice)

 	SardanaElementManager (class in sardana.sardanamanager)

 	SardanaLibrary (class in sardana.sardanameta)

 	SardanaObjectID (class in sardana.sardanabase)

 	SardanaServer (in module sardana.sardanadefs)

 	SardanaSoftwareAttribute (class in sardana.sardanaattribute)

 	SardanaValue (class in sardana.sardanavalue)

 	SardanaValueTestCase (class in sardana.test.test_sardanavalue)

 	SarDemoEnv (class in sardana.macroserver.macros.test)

 	SaveConfig() (Motor method)

 	SCADA

 	ScalarNumberAttribute (class in sardana.sardanaattribute)

 	scan.a2scan (class in sardana.macroserver.macros)

 	scan.a2scanc (class in sardana.macroserver.macros)

 	scan.a2scanct (class in sardana.macroserver.macros)

 	scan.a3scan (class in sardana.macroserver.macros)

 	scan.a3scanc (class in sardana.macroserver.macros)

 	scan.a3scanct (class in sardana.macroserver.macros)

 	scan.a4scan (class in sardana.macroserver.macros)

 	scan.a4scanc (class in sardana.macroserver.macros)

 	scan.a4scanct (class in sardana.macroserver.macros)

 	scan.amultiscan (class in sardana.macroserver.macros)

 	scan.ascan (class in sardana.macroserver.macros)

 	scan.ascanc (class in sardana.macroserver.macros)

 	scan.ascanct (class in sardana.macroserver.macros)

 	scan.ascanh (class in sardana.macroserver.macros)

 	scan.d2scan (class in sardana.macroserver.macros)

 	scan.d2scanc (class in sardana.macroserver.macros)

 	scan.d2scanct (class in sardana.macroserver.macros)

 	scan.d3scan (class in sardana.macroserver.macros)

 	scan.d3scanc (class in sardana.macroserver.macros)

 	scan.d3scanct (class in sardana.macroserver.macros)

 	scan.d4scan (class in sardana.macroserver.macros)

 	scan.d4scanc (class in sardana.macroserver.macros)

 	scan.d4scanct (class in sardana.macroserver.macros)

 	scan.dmultiscan (class in sardana.macroserver.macros)

 	scan.dscan (class in sardana.macroserver.macros)

 	scan.dscanc (class in sardana.macroserver.macros)

 	scan.dscanct (class in sardana.macroserver.macros)

 	scan.fscan (class in sardana.macroserver.macros)

 	scan.mesh (class in sardana.macroserver.macros)

 	scan.meshc (class in sardana.macroserver.macros)

 	scan.scanhist (class in sardana.macroserver.macros)

 	SDS

 	send_to_controller() (PoolController method)

 	sendRecordData() (Macro method)

 	SendToController() (Pool method)

 	SendToCtrl() (Controller method)

 	sequence

 	sequence.sequence (class in sardana.macroserver.macros)

 	serialization_protocol (SardanaElementManager attribute)

 	SerializationProtocol (SardanaElementManager attribute)

 	serialize() (ControllerClass method)

 	(ControllerLibrary method)

 	(DataInfo method)

 	(MacroClass method)

 	(MacroFunction method)

 	(MacroLibrary method)

 	(Pool method)

 	(PoolBaseElement method)

 	(PoolBaseObject method)

 	(PoolController method)

 	(PoolElement method)

 	(PoolGroupElement method)

 	(PoolInstrument method)

 	(PoolObject method)

 	(PoolPseudoCounter method)

 	(PoolPseudoCounterController method)

 	(PoolPseudoMotor method)

 	(PoolPseudoMotorController method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	(SardanaObjectID method)

 	serialize_element() (SardanaElementManager method)

 	serialize_object() (SardanaElementManager method)

 	serialized() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	ServerRunMode (in module sardana.sardanadefs)

 	set_acceleration() (PoolMotor method)

 	set_accumulation_type() (Pool0DExpChannel method)

 	set_acq_loop_sleep_time() (Pool method)

 	set_acq_loop_states_per_value() (Pool method)

 	set_acquisition() (PoolMeasurementGroup method)

 	set_acquisition_mode() (PoolMeasurementGroup method)

 	set_action_cache() (PoolElement method)

 	(PoolGroupElement method)

 	(PoolPseudoCounter method)

 	(PoolPseudoMotor method)

 	set_attribute() (SardanaDevice method)

 	set_attribute_push() (SardanaDevice method)

 	set_axis_attr() (PoolController method)

 	set_axis_par() (PoolController method)

 	set_backlash() (PoolMotor method)

 	set_base_rate() (PoolMotor method)

 	set_change_events() (SardanaDevice method)

 	set_configuration() (PoolMeasurementGroup method)

 	set_configuration_from_user() (PoolMeasurementGroup method)

 	set_ct() (CTExpChannel method)

 	set_ctrl() (Controller method)

 	(PoolController method)

 	set_ctrl_attr() (PoolController method)

 	set_ctrl_par() (PoolController method)

 	set_deceleration() (PoolMotor method)

 	set_drift_correction() (Pool method)

 	(PoolPseudoMotor method)

 	set_element() (PoolActionItem method)

 	(PoolDevice method)

 	
 	set_error() (SardanaLibrary method)

 	set_extra_par() (PoolElement method)

 	set_finish_hooks() (PoolAction method)

 	set_instability_time() (PoolMotor method)

 	set_instrument() (PoolElement method)

 	set_integration_time() (PoolMeasurementGroup method)

 	set_ior() (IORegister method)

 	set_limit_switches() (PoolMotor method)

 	set_log_level() (PoolController method)

 	set_monitor_count() (PoolMeasurementGroup method)

 	set_motion_loop_sleep_time() (Pool method)

 	set_motion_loop_states_per_position() (Pool method)

 	set_motor() (Motor method)

 	set_moveable() (PoolMeasurementGroup method)

 	set_name() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	set_offset() (PoolMotor method)

 	set_oned() (OneDExpChannel method)

 	set_operation() (PoolBaseElement method)

 	set_operator() (PoolController method)

 	set_par() (PoolElement method)

 	set_parent_instrument() (PoolInstrument method)

 	set_path() (Pool method)

 	set_pool() (ControllerManager method)

 	set_position() (PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	set_pseudo_counter() (PseudoCounter method)

 	set_pseudo_motor() (PseudoMotor method)

 	set_python_path() (Pool method)

 	set_serialization_protocol() (SardanaElementManager method)

 	set_sign() (PoolMotor method)

 	set_simulation_mode() (PoolBaseElement method)

 	set_state() (PoolBaseElement method)

 	set_state_info() (PoolBaseElement method)

 	set_status() (PoolBaseElement method)

 	set_step_per_unit() (PoolMotor method)

 	set_synchronization() (PoolMeasurementGroup method)

 	set_twod() (TwoDExpChannel method)

 	set_user_element_ids() (PoolBaseGroup method)

 	set_value() (PoolBaseChannel method)

 	(PoolIORegister method)

 	(PoolMoveable method)

 	(PoolPseudoCounter method)

 	(SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	set_velocity() (PoolMotor method)

 	set_write_attribute() (SardanaDevice method)

 	set_write_dial_position_to_db() (Motor method)

 	set_write_position() (PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	set_write_value() (PoolCounterTimer method)

 	(PoolIORegister method)

 	(SardanaAttribute method)

 	(SardanaSoftwareAttribute method)

 	(ScalarNumberAttribute method)

 	set_write_value_to_db() (IORegister method)

 	set_zerod() (ZeroDExpChannel method)

 	SetAxisExtraPar() (Controller method)

 	SetAxisPar() (Controller method)

 	SetControllerCode() (Pool method)

 	setControllerLib() (ControllerManager method)

 	setControllerPath() (ControllerManager method)

 	SetCtrlPar() (Controller method)

 	setData() (Macro method)

 	setEnv() (Macro method)

 	SetExtraAttributePar() (Controller method)

 	setLogBlockFinish() (Macro method)

 	setLogBlockStart() (Macro method)

 	SetPar() (Controller method)

 	setProcessingStop() (Macro method)

 	setResult() (Macro method)

 	setUp() (BaseMacroTestCase method)

 	(LsTest method)

 	(RunMacroTestCase method)

 	(RunStopMacroTestCase method)

 	setViewOption() (Macro method)

 	siblings (PoolPseudoCounter attribute)

 	(PoolPseudoMotor attribute)

 	sign (PoolMotor attribute)

 	simulation_mode (PoolBaseElement attribute)

 	slice

 	SoftwareGate (AcqSynch attribute)

 	SoftwareTrigger (AcqSynch attribute)

 	stack() (Macro method)

 	standard.ct (class in sardana.macroserver.macros)

 	standard.mstate (class in sardana.macroserver.macros)

 	standard.mv (class in sardana.macroserver.macros)

 	standard.mvr (class in sardana.macroserver.macros)

 	standard.pwa (class in sardana.macroserver.macros)

 	standard.pwm (class in sardana.macroserver.macros)

 	standard.report (class in sardana.macroserver.macros)

 	standard.set_lim (class in sardana.macroserver.macros)

 	standard.set_lm (class in sardana.macroserver.macros)

 	standard.set_pos (class in sardana.macroserver.macros)

 	standard.set_user_pos (class in sardana.macroserver.macros)

 	standard.settimer (class in sardana.macroserver.macros)

 	standard.tw (class in sardana.macroserver.macros)

 	standard.uct (class in sardana.macroserver.macros)

 	standard.umv (class in sardana.macroserver.macros)

 	standard.umvr (class in sardana.macroserver.macros)

 	standard.wa (class in sardana.macroserver.macros)

 	standard.wm (class in sardana.macroserver.macros)

 	standard.wu (class in sardana.macroserver.macros)

 	standard.wum (class in sardana.macroserver.macros)

 	standard_attr_list (CTExpChannelClass attribute)

 	(IORegisterClass attribute)

 	(MotorClass attribute)

 	(OneDExpChannelClass attribute)

 	(PoolDeviceClass attribute)

 	(PseudoCounterClass attribute)

 	(PseudoMotorClass attribute)

 	(TwoDExpChannelClass attribute)

 	(ZeroDExpChannelClass attribute)

 	standard_axis_attributes (Controller attribute)

 	(CounterTimerController attribute)

 	(IORegisterController attribute)

 	(MotorController attribute)

 	(OneDController attribute)

 	(PseudoCounterController attribute)

 	(PseudoMotorController attribute)

 	(TwoDController attribute)

 	(ZeroDController attribute)

 	Start() (CTExpChannel method)

 	(IORegister method)

 	(OneDExpChannel method)

 	start() (PoolMotionItem method)

 	Start() (TwoDExpChannel method)

 	(ZeroDExpChannel method)

 	start_acquisition() (Pool0DExpChannel method)

 	(PoolBaseChannel method)

 	(PoolMeasurementGroup method)

 	start_action() (PoolAction method)

 	(PoolMotion method)

 	start_all() (PoolMotion method)

 	start_move() (PoolMotor method)

 	(PoolMotorGroup method)

 	(PoolPseudoMotor method)

 	start_one() (PoolMotion method)

 	START_STATES (TangoStatusCb attribute)

 	Startable (class in sardana.pool.controller)

 	StartAll() (CounterTimerController method)

 	(Startable method)

 	StartAllCT() (CounterTimerController method)

 	StartOne() (CounterTimerController method)

 	(Startable method)

 	StartOneCT() (CounterTimerController method)

 	State (in module sardana.sardanadefs)

 	state (PoolBaseElement attribute)

 	StateAll() (Controller method)

 	statement

 	StateOne() (Controller method)

 	status (PoolBaseElement attribute)

 	step_per_unit (PoolMotor attribute)

 	stepper

 	Stop (Macro attribute)

 	stop() (BaseMacroExecutor method)

 	(Macro method)

 	Stop() (Pool method)

 	stop() (Pool method)

 	(PoolBaseElement method)

 	(PoolBaseGroup method)

 	(PoolController method)

 	Stop() (PoolDevice method)

 	stop() (PoolElement method)

 	(PoolGroupElement method)

 	(PoolMeasurementGroup method)

 	(PoolMonitor method)

 	(PoolPseudoMotor method)

 	(TangoMacroExecutor method)

 	stop_action() (PoolAction method)

 	stop_axes() (PoolController method)

 	stop_element() (PoolController method)

 	stop_elements() (PoolController method)

 	Stopable (class in sardana.pool.controller)

 	StopAll() (Stopable method)

 	StopOne() (Stopable method)

 	stopped() (PoolMotionItem method)

 	str() (SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	str_element() (SardanaElementManager method)

 	str_object() (SardanaElementManager method)

 	strControllerParamValues() (ControllerManager method)

 	SynchAll() (Synchronizer method)

 	SynchDomain (class in sardana.pool.pooldefs)

 	SynchOne() (Synchronizer method)

 	SynchParam (class in sardana.pool.pooldefs)

 	synchronization (PoolMeasurementGroup attribute)

 	Synchronizer (class in sardana.pool.controller)

T

 	
 	TangoAttrCb (class in sardana.tango.macroserver.test.macroexecutor)

 	TangoLogCb (class in sardana.tango.macroserver.test.macroexecutor)

 	TangoMacroExecutor (class in sardana.tango.macroserver.test.macroexecutor)

 	TangoResultCb (class in sardana.tango.macroserver.test.macroexecutor)

 	TangoStatusCb (class in sardana.tango.macroserver.test.macroexecutor)

 	tearDown() (BaseMacroTestCase method)

 	(LsTest method)

 	(RunMacroTestCase method)

 	(RunStopMacroTestCase method)

 	testInstanceCreation() (ParamTestCase method)

 	(SardanaValueTestCase method)

 	testSardanaValueWithExceptionInfo() (SardanaValueTestCase method)

 	testSardanaValueWithNoExceptionInfo() (SardanaValueTestCase method)

 	Time (SynchDomain attribute)

 	time_buffer (Pool0DExpChannel attribute)

 	timer (PoolMeasurementGroup attribute)

 	timestamp (SardanaAttribute attribute)

 	(SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	to_daccess() (in module sardana.sardanadefs)

 	to_dtype_dformat() (in module sardana.sardanadefs)

 	toDataInfo() (sardana.pool.poolmetacontroller.DataInfo class method)

 	toDict() (DataInfo method)

 	
 	Total (SynchParam attribute)

 	Trace (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	trace() (Macro method)

 	traceback() (Macro method)

 	triple-quoted string

 	twod (TwoDExpChannel attribute)

 	TwoDController (class in sardana.pool.controller)

 	TwoDExpChannel (class in sardana.tango.pool.TwoDExpChannel)

 	TwoDExpChannelClass (class in sardana.tango.pool.TwoDExpChannel)

 	type

 	Type (in module sardana.pool.controller)

 	TYPE_ACQUIRABLE_ELEMENTS (in module sardana.sardanadefs)

 	TYPE_ELEMENTS (in module sardana.sardanadefs)

 	TYPE_GROUP_ELEMENTS (in module sardana.sardanadefs)

 	TYPE_MAP (in module sardana.pool.poolmetacontroller)

 	TYPE_MAP_OBJ (in module sardana.pool.poolmetacontroller)

 	TYPE_MOVEABLE_ELEMENTS (in module sardana.sardanadefs)

 	TYPE_PHYSICAL_ELEMENTS (in module sardana.sardanadefs)

 	TYPE_PSEUDO_ELEMENTS (in module sardana.sardanadefs)

 	TypeData (class in sardana.pool.poolmetacontroller)

 	TypeManager (class in sardana.macroserver.mstypemanager)

U

 	
 	unblock_events() (EventReceiver method)

 	(SardanaBaseObject method)

 	(SardanaClass method)

 	(SardanaLibrary method)

 	UnknownController

 	UnknownControllerLibrary

 	unloadModule() (ModuleManager method)

 	unloadModules() (ModuleManager method)

 	unlock() (PoolBaseElement method)

 	unregisterAll() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	
 	unregisterLog() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	unregisterResult() (BaseMacroExecutor method)

 	(TangoMacroExecutor method)

 	unsetEnv() (Macro method)

 	update_state_info() (PoolMonitor method)

 	UpperLimitSwitch (MotorController attribute)

 	user

 	user position

 	user_element_ids (PoolBaseGroup attribute)

V

 	
 	value (PoolBaseChannel attribute)

 	(PoolIORegister attribute)

 	(PoolPseudoCounter attribute)

 	(SardanaAttribute attribute)

 	(SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	value_obj (SardanaAttribute attribute)

 	(SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	
 	ValueAttributeClass (Pool0DExpChannel attribute)

 	(PoolBaseChannel attribute)

 	(PoolPseudoCounter attribute)

 	ValueBufferClass (PoolBaseChannel attribute)

 	(PoolPseudoCounter attribute)

 	velocity (PoolMotor attribute)

W

 	
 	w_timestamp (SardanaAttribute attribute)

 	(SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	w_value (SardanaAttribute attribute)

 	(SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	wait() (BaseMacroExecutor method)

 	(OperationInfo method)

 	(TangoMacroExecutor method)

 	wait_for_operation() (PoolDevice method)

 	wants_rounding() (PoolController method)

 	Warning (ModuleManager attribute)

 	(SardanaBaseObject attribute)

 	(SardanaClass attribute)

 	(SardanaLibrary attribute)

 	warning() (Macro method)

 	was_aborted() (PoolAction method)

 	(PoolBaseElement method)

 	was_action_interrupted() (PoolAction method)

 	was_interrupted() (PoolBaseElement method)

 	was_stopped() (PoolAction method)

 	(PoolBaseElement method)

 	WBase (class in sardana.macroserver.macros.test.test_wm)

 	WmTest (class in sardana.macroserver.macros.test.test_wm)

 	
 	write_Acceleration() (Motor method)

 	write_AccumulationType() (ZeroDExpChannel method)

 	write_Backlash() (Motor method)

 	write_Base_rate() (Motor method)

 	write_class_property() (SardanaDeviceClass method)

 	write_Deceleration() (Motor method)

 	write_DynamicAttribute() (Controller method)

 	(PoolDevice method)

 	(PoolElementDevice method)

 	write_Instrument() (PoolElementDevice method)

 	write_LogLevel() (Controller method)

 	write_Offset() (Motor method)

 	write_one() (PoolController method)

 	write_Position() (Motor method)

 	(PseudoMotor method)

 	write_register() (PoolIORegister method)

 	write_Sign() (Motor method)

 	write_SimulationMode() (PoolElementDevice method)

 	write_Step_per_unit() (Motor method)

 	write_Value() (IORegister method)

 	write_value_obj (SardanaAttribute attribute)

 	(SardanaSoftwareAttribute attribute)

 	(ScalarNumberAttribute attribute)

 	write_Velocity() (Motor method)

 	WriteOne() (IORegisterController method)

Z

 	
 	zerod (ZeroDExpChannel attribute)

 	ZeroDController (class in sardana.pool.controller)

 	
 	ZeroDExpChannel (class in sardana.tango.pool.ZeroDExpChannel)

 	ZeroDExpChannelClass (class in sardana.tango.pool.ZeroDExpChannel)

 _images/inheritance-70c6c14eb10690200518dbb158fe2168ab41ef75.png
BaseMacroTestCase

RunMacroTestCase

RunStopMacroTestCase

ANscanTest

AscanTest

_images/inheritance-72a0463c8565d5e0b144d5e5c4f54b74ff0f49bc.png
SardanaContainer

Poolcontainer

_images/inheritance-704b136b8caf655582f527bef0338036fd4e27f2.png

_images/inheritance-707169b1e8b692229f871a08ff53352994b936a0.png
Device_ampl

SardanaDevice

_images/inheritance-72d27fb6a45052e6092117fe8368204a208838d6.png
Singleton

SarDemoEny

_images/inheritance-73070108ce99c6f71eb22979c55368dc932b8ce7.png

_images/inheritance-6f93f05a299c5965ad0f3fc2b1018b4f9dcafde8.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

SardanaLibrary
Controlleribrary

_images/inheritance-6fadaca9eef07d8436e6118f34ace40c673fb111.png
RunMacroTestCase

BaseMacroTestCase

_images/inheritance-6cfbc4f66b31e9751d37d71e18d105e085ba5a6b.png
evemcenerator) (‘eventpacenver) (Logger

N
Poolobject
PoolBaseElement
PoolBaseController
PoolController

_images/inheritance-6e138b5cb923fb60f54ed01d9d8432f506e934db.png
SardanaContainer

MSContainer

_images/inheritance-245fd2bc91ee7fdb96e24cce53af6cbe998ba4dd.png

_images/inheritance-24ebeee3610877e4e974bf4770550b5b19e7b65f.png
EventGenerator

Sardanattribute

_images/inheritance-1f5ef872c4ed2076e0b7e524592e669256b1d96c.png
SardanaDeviceClass

PoolDeviceClass

Controllerclass

_images/inheritance-230545ead7bf61799c2b395d2def3875109950fb.png
SardanaDeviceClass

_images/inheritance-28b8e6bc152159a5500688de020eefcf6843552b.png
SardanaContainer

_images/inheritance-29ddbc405710602707f1fb96cb4fa7e26bd5f451.png
BaseMacroTestCase

RunMacroTestCase

RunStopMacroTestCase

ANscanTest

_images/inheritance-2542f5746bb5dafc62754f783c48326556cf2966.png
Logger

MacroServerManager

EnvironmentManager

_images/inheritance-282d35f13f61da550ba5a8d4b4c420dcb896c7b8.png
BaseMacroTestCase
RunMacroTestCase

Ls2dTest

_images/inheritance-2a10000f2d8ee997a0a8480cc794de8d926dbdbe.png

_images/inheritance-2adfb6ac59bf16222c5eec07c70c716bf361f985.png

_images/inheritance-31142f56de880b9ccee88e28d9e1319bb84e3f87.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

_images/inheritance-324f933a22399b563b16ce26e7bb21d04c15822d.png
evemcenerator) (‘eventpacenver) (Logger

N
Poolobject
PoolBaseElement
PoolBaseController
PoolController

_images/inheritance-2d248b6779bb4a094170e539259eb6c9924d240a.png
SardananttributeConfiguration

_images/inheritance-2f64b1e4b89b0e7fd80baaa05a226e17400c32e1.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

SardanaCode

SardanaClass

_images/inheritance-372499db3b1d752ceccc21683633da0602f2d499.png
EventGenerator
Sardanattribute
SardanaSoftwareAttribute

_images/inheritance-3a19f690fb7cbe9d8a2a493a55c248949b5da93e.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject

SardanaobjectiD

Poolobject

PoolBaseElement

SardanaContainer

Poolcontainer

PoolElement.
\ |

PoolBaseChannel

PoolaseGroup

PoolPseudoCounter

_images/inheritance-3288eaffdb81aaafc88759250facdff97a982869.png
Controller | [Readable | [startable | | Stopable | | Loadable |

'~ e

_—

CounterTimerController

_images/inheritance-350e10143db342c4e3a760153df998d8b1d50e06.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject SardanaobjectiD

Poolobject

PoolBaseElement
PoolElement

_images/inheritance-40b24d0d072d52597b0fa543293fa6abdb16dfcb.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject SardanaobjectiD

Poolobject

PoolBaseElement

_images/inheritance-2b998e7afeebccb40947c888eefa38faf18a56d3.png

_images/inheritance-4a3bfaac7a12eebd647c5185950d7d2b83cf42c1.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject

SardanaobjectiD

Poolobject

_images/inheritance-4cd5469fcbb60001e06a1edbae6d7232141a980f.png
BaseMacroTestCase
RunMacroTestCase

LsctTest

_images/inheritance-47c6c57d8a1e31b7effb862aac9e55e75aa12061.png
DeviceClass
SardanaDeviceClass
PoolDeviceClass
PoolElementDeviceClass

_images/inheritance-48eadee20339fb069126f46dd89ad0cff92b1f43.png
Device_ampl

SardanaDevice

_images/inheritance-53773a301fa54f13434aa152cedb03a027db3919.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject

SardanaobjectiD

Poolobject

Poolinstrument

_images/inheritance-547ce5f6a6b5ea5cffc47221cbc9d77a5dd714c0.png
BaseMacroTestCase

RunMacroTestCase

RunStopMacroTestCase

_images/inheritance-4d0474a5eae2400792a99da5b4c7c6b590442d84.png
SardanaContainer
Poolcontainer

_images/inheritance-4e42d844492495b6efffdd700b15bf58f2841829.png
DeviceClass
SardanaDeviceClass
PoolDeviceClass

_images/inheritance-40f42f16ceb54c5277248c462943f20c7b6d2fc9.png
SardanaDevice

PoolDevice
PoolElementDevice
PoolExpChannelDevice

_images/inheritance-4540eb19df1d0c7707939892e3796dd045b87fa0.png
SardanaDevice

PoolDevice
PoolElementDevice
PoolExpChannelDevice

_images/inheritance-60f25853a6444984b053760c1a1169bfc2a3cbb5.png
Controller

pseudoController

_images/inheritance-64bdf964ffa7eb9c073f623ff66170c77d6af1da.png
BaseMacroTestCase

RunMacroTestCase

_images/inheritance-5c4564aceac450312a749eb509192834cf01f55f.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

SardanaLibrary

_images/inheritance-5e00917d221b2fbe3c33ef4712ad2148be3412a5.png

_images/inheritance-6ce6ee39092d0e3c2fd3b3ab4f3aef00e94632f8.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject
PoolBaseObject

Poolobject
PoolBaseElement
PoolElement.

_images/inheritance-66c91b51af4d81129d32dc1d76d3f4ec9ca10be4.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject
PoolBaseObject

SardanaobjectiD

Poolobject

PoolBaseElement
PoolElement.
PoolBaseChannel

_images/inheritance-681c7016a5a314d7db2c4663b884265eb72ea486.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

MsBaseObject

SardanaobjectiD

MSObject

_images/inheritance-5a21b7947de56d38741c7bf4ef93bc64e1671848.png
BaseMacroExecutor

_images/inheritance-5c31e7777c8c266c3a17d8873fb29e183980c1a6.png
Enumeration

Acgsynch

_images/inheritance-5782bf849baa9aeb66f98b894e4f51a5fbe5b0dc.png
(evereaenerator) evertreceiver) (" Logger

SardanaBaseObject

L]

(msBaseobject | [sardanaobjectip | | SardanaContainer |

N

(Msobject | MsContainer | [SardanaElementManager | | SardanalDManager

nav.xhtml

 Table of Contents

 		
 Sardana Home Page

_images/motor.png
vser
s

convoler
o

Watepap

J—
code

Serial line

=
[

Mot mi

Mot m2

Watepap
[

Mot m3

b

Moor mi

_images/sardana_pool_server.png
Pool DS

Sardana DS

oD l
Channels

Motors ll

2D
Channels

m

Counters

_—

‘Comrollers UJ

| >-

MComrollers

m Counters

2D
Channels

_images/pool_server.png
Pool DS

.
mm)mrollers m Counters

2D
Channels

_images/sardana_server_icepap.png

_images/sardana_server.png
Sardana DS

- o
2D
m&)mrollers m Channels

Counters

_images/sardana_server_internal_motor.png

_images/sardana_server_icepap_np200.png

_images/sardana_server_internal_motor_read_state_flow.png
eag

get_state() |
‘P read state(axis)

| | ’—> PreStateAll() | |

I I I \ Prestatetne (axis), |
I I I I

| | | StateAll() g»‘
I I I]

| | | StateOne(axis) | |

state

state
| | state e | |

_images/sardana_server_internal_motor_read_position_flow.png
= -

molRad
| Sition get_position()| | | |
————————— % read position(axig
| | I PreReadhl() | |
- —
I I I |_PreReadone axis), | I

[[[N [

| | | Readhll() \\J
| | |]

| | | ReadOne(axis) | |
position
| | position i |
position

-« Dosttion

PRy | | | |
| | | | | |
| | | | | |

_images/sardana_server_internal_motor_write_position_flow.png
calculate
| | | < motion(pos) | | |

check
| | \ | | |

start_myve (dial_pos)

set_position

| | | (axis} dial pos, | |

PreStartAll()
—

! ! ! = |

| Prestartone

I I | | (axis, dial pos)y| |

| | | e True ‘

h/fi\ | StartOne | |

| __laxis, dial pos)y,
| I I f——— |

| StartAll1()

| | | R

_images/macro_progress.png
macroexecutor: MacroServer/v3/1 8%
File View Taurus Tools Help

Load perspectives- | - WS 5
%/ [nap

Parameter Value

duration 5

Favourite list | History Viewer

ascanmot010.0100.0100.1

- e o

Macro nap at 40 % of progress. [~

_images/macro_plotting1.png
OO ++ Bv@

— h(@)

oo I)

_images/macroparameterseditor01.png
Parameter Value
motort mot_mzl
start_pos1 00
final_pos1 10000
motor2 mot_mzr
start_pos2 00
final_pos2 10000
ni_intery 100
integ_time 01

_images/macroexecutor01.png
energy
50000
51000
100
01

‘senvAciveNniGrp mg_slectr
senv ScanFile energy_scan.ns
Bscan eneigy 00.0 100 0

_images/macroparameterseditor03.png
Parameter

motor mot_pitch
start 20
end 30
nr_interv 30

integ_time 01

_images/macroparameterseditor02.png
Parameter Value
motor_start_end_ist
o #
motor mot_pitch
start -30
end 30
ni_intery 30
integ_time 01

_images/macroparameterseditor05.png
Parameter Value

‘mot_pitch
30
20
motor mot_roll
start 10
end 70
nr_interv 0

integ_time 01

_images/macroparameterseditor04.png
Parameter Value

‘mot_pitch
30
20
motor mot_roll
start 10
end 70
nr_interv 0

integ_time 01

_images/macroserver_server.png
MacroServer DS ﬁ

_images/macroserver_pool_server.png
MacroServer DS

Pool DS

Coumers

m&)mrollers

2D
Channels

_images/inheritance-d2b4399f35d7382c1ffb60a086e04e8cb6d4308b.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject

SardanaobjectiD

Poolobject

PoolBaseElement

_static/macro_progress.png
macroexecutor: MacroServer/v3/1 8%
File View Taurus Tools Help

Load perspectives- | - WS 5
%/ [nap

Parameter Value

duration 5

Favourite list | History Viewer

ascanmot010.0100.0100.1

- e o

Macro nap at 40 % of progress. [~

_static/macro_plotting1.png
OO ++ Bv@

— h(@)

oo I)

_images/inheritance-d444b8c8a4090f550218e79204660b47da28dce9.png
SardanaDevice

PoolElementDevice

_static/macroserver_server.png
MacroServer DS ﬁ

_images/inheritance-d432a75302e93a3cb49cbf8b7458451f19d85944.png
PoolElementDevice
TwoDExpChannel

_static/macroserver_pool_server.png
MacroServer DS

Pool DS

Coumers

m&)mrollers

2D
Channels

_images/inheritance-daa2080ff4dfc02f010e9e639651810b89494d13.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

SardanaCode

SardanaClass

Controllerclass

_static/motor.png
vser
s

convoler
o

Watepap

J—
code

Serial line

=
[

Mot mi

Mot m2

Watepap
[

Mot m3

b

Moor mi

_images/inheritance-d8cadd590631802aebba3e17cd59cf09103bbdc8.png
BaseMacroTestCase
RunMacroTestCase

_static/minus.png

_images/inheritance-df055b6380cd2726cd83b3ed90ab4629dba78a45.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

MsBaseObject

_static/pm_pipeline.png

_images/inheritance-db67a86005a1c10240e467e035368c9a1a245db6.png
PoolElementDevice

_static/plus.png

_images/inheritance-e36f133c5fda2c7e008e2a0b110dbe2d70e6ae87.png
SardanaDevice

Poolevice

_images/inheritance-e1c492770fe3e207a9b64a3216309ee8ec714015.png
Controller

PseudoCounterController

_static/pool_server.png
Pool DS

.
mm)mrollers m Counters

2D
Channels

_images/inheritance-d28ede5cd2f7eff4da52af78b49741f4182652cb.png
DeviceClass
SardanaDeviceClass
PoolDeviceClass
PoolElementDeviceClass

_images/inheritance-d1ea25f03342a06cdc6ba3b6aa170b6ab0342981.png
SardanaDeviceClass
PoolDeviceClass

PoolElementDeviceClass
PoolExpChannelDeviceClass
PseudoCounterClass

_static/macro_input_select_radio.png
ask_Ffor_car_brand

0 Which car brand?

Mazda
Citroen

Renault

cancel

_static/logo.png

_images/inheritance-c3e3655886414b200ff9fa58f4d7e3697febe767.png

_static/macro_fractal.png
@
]

100

200

300

400
- 500

o 300

500
100

_images/inheritance-c00bd0a71c2f755b5ca286ea69588eedf4177313.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject

PoolBaseExternalobject

_static/macro_edit.png
File Edit View Tools Settings Help
[Onew (open ffsme Jgsmens Quaose e (nee

o sardana.nacroserver.macro <11 Macro, macro, Type B

@nacro()

def hello_vorld(self):
“**Macro hello_worl
self.output ("Running hello_vorld. .

Line: 1 Col: 1 INS LINE Python spock_hello_world_0dzEQN.py

_images/inheritance-c8900c8912e08d2cabc89dfd10f4a5a345fe9d37.png
SardanaException

UnknownCode

UnknownController

_static/macro_input_float_title.png

_images/inheritance-c596a06b0dac330feb249320b4a2909a432893bb.png
BaseMacroExecutor

TangoMacroExecutor

_static/macro_input.png
ask_question

_images/inheritance-ca62687254aef57c0173b0dacff2ea7176d25d6a.png

_static/macro_input_integer.png
ask_number_of_points

_images/inheritance-ca0b10a106c9492121cff33d9d72ec99e1060897.png
Controller

10RegisterController

_static/macro_input_float_title_label_unit.png
Peak selection

Current:

_images/inheritance-d15f29499105c6e9347f14f61331f3c77b52e5e3.png

_static/macro_input_select_multiple.png
ask_for_multiple_car_brands [x

0 Which car brand(s)?

Mazda
Citroen
Renault
Ferrari
Porche

_images/inheritance-cc68abd56d728536acb14af3f49bba53c23c5e04.png
EventGenerator
Sardanattribute
ScalarNumberattribute

_static/macro_input_moveable.png
ask_for_moveable

Which moveable?

A\ 4

offset01
gapo1 [

CT—

_images/inheritance-bf402468389c2784007210c803ab26bb7e9e9e91.png
DeviceClass
SardanaDeviceClass
PoolDeviceClass
PoolElementDeviceClass

_static/limit.png
Real software limit

Motor direction Backlash

Position attribute limit value

_images/inheritance-be350c4fc437318cf50bd99e0526e3f72558e57b.png
Controller | [Loadable | | Readable | [Startable | | Stopable

OneDController

_static/kwrite_config.png
Configure - KWrite (on controls02)

W] Editing Options /

Appearance

General | Cursor & Selection Indentation Auto Completion

iy G

Fonts & Colors

| Insert spaces instead of tabulators
| Highlight tabulators

Tab width: 4 characters &

Static Word ***

_images/inheritance-bf5075970385bb0541a3fc25470be566b1f4d8fa.png
IntEnum
Synchenum

_images/limit.png
Real software limit

Motor direction Backlash

Position attribute limit value

_static/sardana_server_internal_motor.png

_static/sardana_server_internal_countertimer.png
Sardana server

cT
ExpChannel

sardana kernel

_images/macro_fractal.png
@
]

100

200

300

400
- 500

o 300

500
100

_static/sardana_server_internal_motor_read_state_flow.png
eag

get_state() |
‘P read state(axis)

| | ’—> PreStateAll() | |

I I I \ Prestatetne (axis), |
I I I I

| | | StateAll() g»‘
I I I]

| | | StateOne(axis) | |

state

state
| | state e | |

_images/macro_edit.png
File Edit View Tools Settings Help
[Onew (open ffsme Jgsmens Quaose e (nee

o sardana.nacroserver.macro <11 Macro, macro, Type B

@nacro()

def hello_vorld(self):
“**Macro hello_worl
self.output ("Running hello_vorld. .

Line: 1 Col: 1 INS LINE Python spock_hello_world_0dzEQN.py

_static/sardana_server_internal_motor_read_position_flow.png
= -

molRad
| Sition get_position()| | | |
————————— % read position(axig
| | I PreReadhl() | |
- —
I I I |_PreReadone axis), | I

[[[N [

| | | Readhll() \\J
| | |]

| | | ReadOne(axis) | |
position
| | position i |
position

-« Dosttion

PRy | | | |
| | | | | |
| | | | | |

_images/macro_input_float_title.png

_static/sardana_server_internal_pseudomotor.png
Sardana server

Motor
sl2t

Motor
sl2b

PseudoMotor
gap

PseudoMotor
offset

o
Bl e

sardana kernel

_images/macro_input.png
ask_question

_static/sardana_server_internal_motor_write_position_flow.png
calculate
| | | < motion(pos) | | |

check
| | \ | | |

start_myve (dial_pos)

set_position

| | | (axis} dial pos, | |

PreStartAll()
—

! ! ! = |

| Prestartone

I I | | (axis, dial pos)y| |

| | | e True ‘

h/fi\ | StartOne | |

| __laxis, dial pos)y,
| I I f——— |

| StartAll1()

| | | R

_images/macro_input_integer.png
ask_number_of_points

_static/sardana_sketch.png
Spock
VE(N
Macro Server

_ Recorders

Device Pool

Controllers

_images/macro_input_float_title_label_unit.png
Peak selection

Current:

_static/sardana_server_np200.png

_images/macro_input_select_multiple.png
ask_for_multiple_car_brands [x

0 Which car brand(s)?

Mazda
Citroen
Renault
Ferrari
Porche

_static/snapshot01.png

_images/macro_input_moveable.png
ask_for_moveable

Which moveable?

A\ 4

offset01
gapo1 [

CT—

_static/slits.gif
il

ToP

gott©

_images/macro_input_select_radio.png
ask_Ffor_car_brand

0 Which car brand?

Mazda
Citroen

Renault

cancel

_static/sardana.png

_images/inheritance-e797f4c82734a899ef7fc64081a753367b2d14b3.png
Controller | (Startable | [Stopable | [Readable

MotorController

_static/sardana_screenshot.png
az - Wozor(¥57)
poriion 18

_images/inheritance-e5345a4d0dc42c75d6dc33b105ca67e9f8d1692d.png
PoolElementDevice

_static/sardana_pool_server.png
Pool DS

Sardana DS

oD l
Channels

Motors ll

2D
Channels

m

Counters

_—

‘Comrollers UJ

| >-

MComrollers

m Counters

2D
Channels

_images/inheritance-e9ca42b3c1959a5ae7916630b12922e8015fac69.png
SardanaDeviceClass
PoolDeviceClass

PoolElementDeviceClass
PoolExpChannelDeviceClass
ZeroDExpChannelClass

_static/sardana_server_controller.png

_images/inheritance-e99b4e1a3d505e4200548c1f68e9b45a3db92928.png
RunMacroTestCase

BaseMacroTestCase

LsprTest

_static/sardana_server.png
Sardana DS

- o
2D
m&)mrollers m Channels

Counters

_images/inheritance-ec7f453ba213cfe28a625d3e3189d9f2bb2884b9.png

_static/sardana_server_icepap.png

_images/inheritance-ec5807c68a112ca1e4304b1025deb4b47df5373e.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject
PoolBaseObject

SardanaobjectiD

Poolobject

PoolBaseElement

PoolElement

PoolBaseChannel

PoolCounterTimer

HIHEH

_static/sardana_server_empty.png
i
ql

_images/inheritance-f10d80132aae052d86c8db0d6469b7363bb9bbb1.png
SardanaDeviceClass
PoolDeviceClass

PoolElementDeviceClass
PoolExpChannelDeviceClass
CTExpChannelClass

_static/sardana_server_internal.png
Sardana server

tango
interface

®

_images/inheritance-ed45fcf8f66a0c9b49b1002689a7df40c1123994.png
SardanaDevice

PoolDevice
PoolElementDevice
PoolExpChannelDevice

_static/sardana_server_icepap_np200.png

_images/kwrite_config.png
Configure - KWrite (on controls02)

W] Editing Options /

Appearance

General | Cursor & Selection Indentation Auto Completion

iy G

Fonts & Colors

| Insert spaces instead of tabulators
| Highlight tabulators

Tab width: 4 characters &

Static Word ***

_images/inheritance-fe6ae295799a8dd67b683bf477942e0d16097edb.png
Singleton

MacroExecutorFactory

_static/sardana_server_internal_0D.png

_images/inheritance-e3feeeb7ab732b04b10a52c7a760e423a8267a3f.png
SardanaDeviceClass

PoolDeviceClass

PoolGroupDeviceClass

_images/inheritance-82ac6327597cf0936f8ceda7e000620bcb5fbefb.png
BaseMacroTestCase

RunMacroTestCase

RunStopMacroTestCase

_static/comment-bright.png

_static/codelogo01.png
import taurus
aurus.Device (”B01/D1
attr[”voltage”]
stener (myListener)
aurus .Atrribute (”1

_images/inheritance-8b6c20bdd336b3f88bb09e7da8c96b9a8c76d096.png
SardanaDeviceClass
PoolDeviceClass

PoolElementDeviceClass
PoolExpChannelDeviceClass
OneDExpChannelClass

_static/comment.png

_images/inheritance-8579d8f333e8d781e3a1b46fcf5e15461ef7aeb4.png

_static/comment-close.png

_images/inheritance-8dcbfdf27a4aa05ee78e544ea783440290fe64da.png
RunMacroTestCase

BaseMacroTestCase

RunStopMacroTestCase

Meshest

_static/down-pressed.png

_images/inheritance-8d0f96261eb5db1c4dd1ffc0201e8c8fae67b2e9.png
MacroServerManager

_images/inheritance-797a3d67fdc7c0d4c49b4d45ab8589b20baa33e7.png

_images/math/a008896ef4107f0cd38f049efc8fef5fab11f0df.png
sl2t = —of fset + IF
si2b = of fset + B2

_images/inheritance-78f2015b87438b453482aef849865b521edf0851.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject
PoolBaseObject

SardanaobjectiD

Poolobject

PoolBaseElement
PoolElement.
PoolBaseChannel

_images/math/805e6f73802e462941b2f50d3bc3cc60e64484cf.png

_images/inheritance-7bf4b5bfc4e2de40a4e8bd7997d260f1dee8a0e3.png
singleton

ControllerManager

_static/ajax-loader.gif

_images/inheritance-7b0445a34a513626f4f75f34ddac973cf26b2869.png
BaseMacroTestCase
RunMacroTestCase

LsodTest

_images/math/cb4862f68f596f293079277b7ddf5e81dd0f23ad.png
gap = sl2t + si2b
of fact = H2izsi

_images/inheritance-811e6a81baefb40b1c8613d344b80dc397d132bf.png
Logger

Poolaction

_images/inheritance-7c799d488a267f65020ea1381b8712e4d6b05050.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject SardanaobjectiD

Poolobject

PoolBaseElement
PoolElement

_images/drift_correction_disabled.png
-2 1 0 1 2 right
| ; : ‘
t ; } ‘
left ? :!_ 0 -:‘I. _%
t ; Y ‘
gap =0 &offset=0
—
move gapto 1 o
left
(0.498)
gap (0.998)
move gap to 2 offset (0.001)
left right
(0.997) (1.001)
— gap (1.998)
offset (0.002)
move gap to 3 — e TE
left
(1.496)
> gap (2.998)

Ly, ofiset(0.003)

_images/drift_correction_enabled.png
-2 1 0 1 2 right
| ; : ‘
t } } ‘
left ? :!_ 0 -:‘I. _%
t } Y ‘
gap =0 &offset=0
—
move gapto 1 o
left
(0.498)
gap (0.998)
move gap to 2 le offset (0.001)
left
(0.998)
gap (1.998)
offset (0.001)
move gapto 3 — e =
left
(1.498)
- gap (2.998)
offset (0.001)
—

_images/dyn.png
User

|

(o

ingo
ice

g0
ce

Adevice L._
Create/Délete Créare/Delete
Fiad ew | (taeo Yo g
hardware quipment deviee
core hardware !
Tango classes set loaded
Faggo class”

The pool device server

_images/spock_snapshot02.png
File/Group/Dataset Description Shape DType
¥ scans.hs File
¥ entrys Entry
definition Dataset 1 Is6
end_time Dataset 1 Is26
entry_identifier Dataset 1 Is1
v measurement. Group
Pt_No Dataset 21 int64
ctot Dataset 21 Floated
ctoz Dataset 21 Floated
cto3 Dataset 21 Floated
ctoa Dataset 21 Float64
P pre_scan_snapshot Grouj
program_name Dataset 1 Is28
start_time Dataset 1 Is26
title Dataset 1 Is27
P user User

10

_images/inheritance-766ea5af8b4c735854bd9321d2738d82e4bc2881.png
TangoAttrch

TangoResultch

_images/trend_a2scanc.png
600

500

400

300

200

1004

TaurusTrend <@controls02>

o8

o6

o4

VR

~ Acquisition
—m_cpl_t

—m_cpt 2

_images/inheritance-74e09e4077e3607e96390243d32ef4e8d37de9f0.png

_images/synchronization_description.png
Repeats

Total

Initial
Group

Active

AN

_images/inheritance-77fd4cb3b9b3d3dd84fa6b7f53f4cbfb36f2f457.png
PoolElementDevice
PseudoMotor

_images/math/021dd89032b750ae91609949e81ce3bda948bf19.png
0<1<n

_images/inheritance-77a6eb9a592740ed4fa2ff2a52f5a82aa2602d9b.png

_images/trend_ascanVSascanc.png
X o TaurusTrend <@controls02> VoW
1,200 ! —Acquisition
] —m_cpi_t
1,000 -
1 tos
800 -| L
tos
600 -|
400
o4
200 | [
1 to2
o

_images/snapshot07.png

_static/macros/sequencer01_raw.png
Sequenceeditor-py

[Faramaters

0]
[dummymotor1 6, 0.0,1000.0,
{dummymotort5, 0.0, 500.0,2,0.1]

senv [ScanFile, scan2.hs]

ToothedTriangle [dummymotort4, 0.0, 10000, 2,0.,1, 1]

Parameter Value

motor dummymotort 6
start_pos 00

final_pos 10000
ni_intery 2

integ_time 01

_images/snapshot06.png

_static/macros/sequencer01.png
UTsequence plot

a0 Parameters Progress |Pause | [—
ct 1.0 0%
) 0% 2
ascan [dummymotor15, 0.0, 500.0,2,0.1] 0% 3
senv [ScanFile, scan2.h5] 0% ‘
ToothedTriangle [dummymotort 4, 0.0,1000.0,2,04,1,1] (| 0%

Parameter | value
motor dummymotort 6

start_pos 00

fnal_pos 10000 *
ni_interv 2 s

integ_time 01

_images/snapshot09.png
\ /] \ / VA
VYWY o _
e UV V) g

_images/snapshot08.png

_images/spock_snapshot01.png
[Funning on top of Python 2.6.6, IPython 0.10 and PyTango 7.2.1dev

-> Spock’s help system.
-> Details about 'object’. 2object also works, ?? prints more

Spock' s sardana extension 0.5.0 loaded with profile: BL98 (linked to door 'Door_BLSS')

poor _BLo8 [11: ascan blog_ml 0 100 10 0.1
Extracolumns is not defined
Scanbir is not defined. This operation will not be stored persistently
sharedMemory is not defined.
sharedMemory is not defined.
[Scan started at Tue Jun 28 18:06:16 2011. It will take at least 0:00:01.100000
#Pt No BLOB M1 BLOS Timer BLOS Cl BL9B_C2 BL9B_C3
o 10309 0.206192 0.309288
10 10095 0.2019 30285
20 1102416 0.204832 0.307248
20 10509 0.210192 0.315288
20 .111601 0.223202 0.334803
s0 113532 0.227064 0.340596
60 115527 0.231054 0.346581
70 101574 0.203148 0.304723
11753 0.235072 0.352608
1101450 0.202018 0.304377
113926 0.227852 0.341778
taking 0:00:16.645132 (dead time was 93.4%)

coooo000000
—ococoooo000000

(user, dial)

BLOBML BLOB M2 BLOB_MPL
100.0000 43.0000 100.0000
100.0000 43.0000 100.0000

Door_BLos [31:]

_images/snapshot10.png
sardana

@

Flle Create

@ soroms

| tog|

L8 conrasorionno

L Tiagos Pool

tcoutinho/pool/01

Tiagos Pool

L) cnvotes

Measurement Groups

Communicatian Channeis | Catraier Classes |

74‘(utimerciril

te_simumotctril

Motors

I Motor Groups |

Experiment Channels]

< te_simucotictris

OEe @

L 4€ amcsccn
L cepnocirn
1S3 communication cha

L@

he_uxtimerctriL tc_simumotctris

Description

Name:

Type: [PseudoMotor &)
Library: [Diffractometer’a ()
Class: [Diffracsc &

[[Praperias]| Pseudo Motor Roles

direction:[1 0 0

% experimen
= Measurem.

vavelength: [2.84

beta: [50

te_simucotictril diffracacCtri

d &L m

IcePAPCIFIL

This is the C++ pseudo motor contraller for a four circle vertical diffractometer using the hikl library des|

Detals

b:[2.84

reflections

Refresh)

Organzstion: [CELLS -ALia

Family: [Diffractometer
Madel: [Four Circle

A

A~

LBA

_images/inheritance-ac63127c511226a0c7002365d3f6d5c1e6ad65b9.png
DeviceClass
SardanaDeviceClass
PoolDeviceClass
PoolElementDeviceClass

_static/gui_snapshot05.png
666 X! Tune Excitation

~Function Generator - AFG3102

outstate @ [opercn |

Runioce

Wod.Shape NS

~Horizontal Signal Settings

-Vertical Signal Settings-

ousie @ [omnen |

Runioce

Wod.Shape NS

(CAmeitude ™)

(CAmeitude ™)

[ammr=s) |

[ammr=s) |

(Fane Bxe Range) |

(Fane Bxe Range) |

EcHamone i [1]

e Hamonie il

~Digital Step Attenuator

Switch Atienuation Ramp. on

e | (0] 08
Fraat [[000] B

Ramp Enabied @

~Horizontal Ramp Setiings

~Vertical Ramp Sstings.

e | (0] 08
Fraat [[000] B

Ramp Enabied @

Reset

_static/gui_snapshot04.png
e e —

_images/inheritance-b32dab197957f88157115e0ad05a15ee953d46c0.png
DeviceClass

Poolclass

_static/gui_snapshot07.png
L j|oo0ce

_images/inheritance-b116f5b1dc86071a520880fa10d706e9b600479b.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject
PoolBaseObject

SardanaobjectiD

Poolobject

PoolBaseElement
PoolElement.
PoolBaseChannel

_static/gui_snapshot06.png
606 X Fluorescent Screens Interface

File View Tau Tools Help
State out ofr yag

s 01 @
ains02 @
its03 @
[p—— YY) @
T 000 @
o tidinsotr03 00 O__[|ver
(e—— Q009 @ ||
botifsot-01 Q000 @ ||
— e D@L [+ ven
r— Q000 @ ||
bo0srifsot-01 e D@L [+ ven
- Q000 @ ||
- e D@L [+ ven
p— Q000 @ ||
— e D@L [+ ven
N 00 @ @ [
—— 00 @ @ [
— 00 @ @ [
- 00 @ @ [
ot_aiton [[0.000] mm fim- M s |@ <) view
st_disshot | [000] mm fim- M s |@ <) view
sr_aitsn02 | [000] mm - <]T.00 M s |@ <) view

OpenAll

stopa |

_images/inheritance-b5c0ed79c2db8bad09df8b0cdf0da7da269a4305.png
BaseMacroTestCase
RunMacroTestCase

LsmiTest

_static/gui_snapshot09.png
B % BHH LR L H Y S48 B %

_images/inheritance-b449e0f43ccd7fb98bb1291427a2968459ed2d51.png
SardanaDeviceClass

PoolDeviceClass

_static/gui_snapshot08.png

_images/inheritance-bd7660dcb56da64793b1725f583c1a79b08be376.png
TestCase

ParamiTestCase

_static/hard.png
User

User

User

Pool

!

&

Cl

o

levice

The Pool device server

‘ango)
class A

ango
class C

Tango Tango
class B class D
%: ”’ :
HARDWARE
icvige) ([Jan
User Uer

User

_images/inheritance-bb53b10c05c12b3bf0cbd1db79b34013028cc794.png
PoolMotionitem

_static/gui_snapshot10.png
sardana

@

Flle Create

@ soroms

| tog|

L8 conrasorionno

L Tiagos Pool

tcoutinho/pool/01

Tiagos Pool

L) cnvotes

Measurement Groups

Communicatian Channeis | Catraier Classes |

74‘(utimerciril

te_simumotctril

Motors

I Motor Groups |

Experiment Channels]

< te_simucotictris

OEe @

L 4€ amcsccn
L cepnocirn
1S3 communication cha

L@

he_uxtimerctriL tc_simumotctris

Description

Name:

Type: [PseudoMotor &)
Library: [Diffractometer’a ()
Class: [Diffracsc &

[[Praperias]| Pseudo Motor Roles

direction:[1 0 0

% experimen
= Measurem.

vavelength: [2.84

beta: [50

te_simucotictril diffracacCtri

d &L m

IcePAPCIFIL

This is the C++ pseudo motor contraller for a four circle vertical diffractometer using the hikl library des|

Detals

b:[2.84

reflections

Refresh)

Organzstion: [CELLS -ALia

Family: [Diffractometer
Madel: [Four Circle

A

A~

LBA

_images/inheritance-a4ed8fe433c33cbe3f6a3ad06ed099190937df6f.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

]

(PoclBaseobject | [sardanaobjectin | | SardanaContainer |

Poolobject PoolContainer

PoolBaseElement PoolBaseGroup
PoolGroupElement
PoolMotorGroup

_static/gui_snapshot02.png
X LTB Beam Charge Monitor

[%/1LINAC BOM || LTo1 Bem] LTo2 BCM
) L)@ L) e =
Charge —osE o Charge — Charge o -

Bgd Subst @x Bgd Subst @@= Bgd Subst @x

Gain e || com 3 [|| can |
ouputsgnar: [imvent [|| ownsonar: (omimer [|| owutsonar [Nonmen |-
Cotbraton: (Diabla [} || canbraton Barie [|| coraton: ~ [omame——)

oty [hegme] ety Negaive ety)

Charge Selection (150

[
[

]
[r——

Charge Selection (150

&

onarge setecton (TEEL [

1oy =
Zost
£,
50
i
5003
O %3 =T~ — C

4 P S d » » W

\”’@ \”’@ \”’@ \”’@ \”’@ \”’@ \”’@

Time

(] | soc OSSN (|- I

_images/inheritance-a213232ba208cfe0862cb6960e1bc51f11a1b828.png
(evereaenerator) evertreceiver) (" Logger

SardanaBaseobject

[
‘

(PoolBaseobject | [sardanaobjectip | | SardanaContainer

(Puu\obm{ puu\cumamer(\smanag\ememManager) (sardanaiomanager

_static/gui_snapshot01.png
SECTOR a1

_images/inheritance-a7882f32762e219b73073f2f739b02b1e7a90687.png

_images/inheritance-a661388d7e29fa9790bc06df04bcd6a3179035e9.png
SardanaDevice

PoolDevice
PoolElementDevice
PoolExpChannelDevice

_static/gui_snapshot03.png
vty (T o) B30

_images/inheritance-9b0cf1f27afb1be916d6188d53259c467af8ea58.png
RunMacroTestCase

BaseMacroTestCase

_static/file.png

_images/inheritance-986ceba3ef8c2e42e55ad4c0b5f48bbf7327d2a8.png
TangoAttrch

TangoLogCh

_static/expconf01.png
Measurement Group | Snapshot Group || Storage

Active Measurement Group |mntgrp.

kD #C+=-4097

o Channel enabled ‘@output ‘w-Shape 'wDataType :=PlotType - = Plot Axes o Timer *Monitor o Synchronizer - & Synchronization -+ Conditioning ' — Normalization: b4 Nexus Path
o ctal true true 1 float64 Spectrum | <mov> ctal cta1 Software Tgger No
o oned1l true true 11024 float64 No oned11 oned11 software Tigger No
o zerodal true true 1 float64 Spectrum | <mov> ctal ctal No
o twodll true true (1024,1024] | float64 Image <idk><idk> | twod1l twodl1 software Tigger No
o ioverio true true 1 float64 Spectrum | <mov> ctal ctal No
o unit_test/short_scalar | true true i short Sspectrum | <mov> No

&) Reset < Apply

_images/inheritance-9f382ff81a3021dae39293ebd0e4e985d0e10cbc.png
TestCase

SardanavalueTestCase

_static/gap_read.png
Motor | | Motor
siee | | oy

Python
Object

s pemdo i

_images/inheritance-9c1277f4b6596d4776b60aa3e4be1366b8d80a62.png
Controller | [Loadable | | Readable | [Startable | | Stopable

TwoDController

_static/gap_offset.png
3

_images/inheritance-a098aabc6ed9bf217a2fd83d821b8af200f28062.png

_static/gedit_config.png
gedit Preferences

View Editor| Font & Colors Plugins

Tab Stops

Tabwidth: [4 |2

& Insert spaces instead of tabs

Automatic Indentation
& Enable automatic indentation

_images/inheritance-9f5defb2afc2c5e6a54c07ca1ec8ac38cd2e2ab3.png
evemcenerator) (‘eventpacenver) (Logger

N

_static/gap_write.png
Wotor | TPemde | | Fythen
‘iz | Comolld | Oren
fmotorpos; o pe |
)
_ 4 ot
| e) -

_images/inheritance-94670432a9c27d287a6ec30c9cb6353775b75bf3.png
Controller Stopable

ZeroDController

_static/drift_correction_disabled.png
-2 1 0 1 2 right
| ; : ‘
t ; } ‘
left ? :!_ 0 -:‘I. _%
t ; Y ‘
gap =0 &offset=0
—
move gapto 1 o
left
(0.498)
gap (0.998)
move gap to 2 offset (0.001)
left right
(0.997) (1.001)
— gap (1.998)
offset (0.002)
move gap to 3 — e TE
left
(1.496)
> gap (2.998)

Ly, ofiset(0.003)

_images/inheritance-93b27eb027eeb934a45fc102ab6bbf7a0f3c7a04.png
BaseMacroTestCase

_static/down.png

_images/inheritance-967e109d769358a64437e84893028325b172297b.png
IntEnum
Synchenum

_static/dyn.png
User

|

(o

ingo
ice

g0
ce

Adevice L._
Create/Délete Créare/Delete
Fiad ew | (taeo Yo g
hardware quipment deviee
core hardware !
Tango classes set loaded
Faggo class”

The pool device server

_images/inheritance-94aa3743bd8dd99be9747a56a15c34dcd7c373c2.png

_static/drift_correction_enabled.png
-2 1 0 1 2 right
| ; : ‘
t } } ‘
left ? :!_ 0 -:‘I. _%
t } Y ‘
gap =0 &offset=0
—
move gapto 1 o
left
(0.498)
gap (0.998)
move gap to 2 le offset (0.001)
left
(0.998)
gap (1.998)
offset (0.001)
move gapto 3 — e =
left
(1.498)
- gap (2.998)
offset (0.001)
—

_images/inheritance-981e717d0e82d90a21c0a87f742f9cf2307d99fe.png
BaseMacroTestCase
RunMacroTestCase

LsldTest

_images/gallery02.png
1Py

File Edit View Kerel Magic Window_Help

Spock 1.0.0 -- An interactive laboratory application.

help > Spock’s help systen.
object? -> Details about ‘object’. 7object also works, 77 prints more.

Spock [1]: wa
Positions (user, dial) on 2012-10-02 15:58:05.472332

9ap01 ice08 mOtOl mOto2 moto3 moto4 offsetol
100.0000 100020.0000 50.0000 50.0000 ©0.0000 ©.0000 ©.0000
100.0000 1000200000 50.0000 50.0000 ©0.0000 ©.0000 ©.0000

Spock [2]: ascan gapel 0 100 & 0.25
Operation will be saved in /tmp/BL9S_scans.hs (wS)

Scan #5 started at Tue Oct 2 15:58:10 2012. It will take at least 0:0¢
Moving to start positions.

2.250000

#t lo dt gapo1 ctor ctoz ctos
° 2.40239 o 0.25 0.5 1
1 347785 125 0.25 0.5 1
2 456185 25 0.25 0.5 1
3 567741 375 0.25 0.5 1
a 6.77876 50 0.25 0.5 1
s 7.88055 625 0.25 0.5 1
B 8.97808 75 0.25 0.5 1
7 10.0703 87.5 0.25 0.5 1
5 11.1666 100 0.25 0.5 1

Operation saved in /tnp/BL99 scans.hs (ws)
Scan #5 ended at Tue Oct 2 15:58:21 2012, taking 0:00:

Spock [3]: mesh

iceos
moto1
moto2
mote3
motoa
offsetol

1.451502. Dead tine 80.4% (motion dead time 77.1%)

_images/gap_offset.png
3

_images/expconf01.png
Measurement Group | Snapshot Group || Storage

Active Measurement Group |mntgrp.

kD #C+=-4097

o Channel enabled ‘@output ‘w-Shape 'wDataType :=PlotType - = Plot Axes o Timer *Monitor o Synchronizer - & Synchronization -+ Conditioning ' — Normalization: b4 Nexus Path
o ctal true true 1 float64 Spectrum | <mov> ctal cta1 Software Tgger No
o oned1l true true 11024 float64 No oned11 oned11 software Tigger No
o zerodal true true 1 float64 Spectrum | <mov> ctal ctal No
o twodll true true (1024,1024] | float64 Image <idk><idk> | twod1l twodl1 software Tigger No
o ioverio true true 1 float64 Spectrum | <mov> ctal ctal No
o unit_test/short_scalar | true true i short Sspectrum | <mov> No

&) Reset < Apply

_images/gallery01.png

_images/gedit_config.png
gedit Preferences

View Editor| Font & Colors Plugins

Tab Stops

Tabwidth: [4 |2

& Insert spaces instead of tabs

Automatic Indentation
& Enable automatic indentation

_images/graphviz-aba0ed6920fde3ffcf91942b1707c60b3525ba02.png
Moving
(Instability time)

_images/gap_read.png
Motor | | Motor
siee | | oy

Python
Object

s pemdo i

_images/gap_write.png
Wotor | TPemde | | Fythen
‘iz | Comolld | Oren
fmotorpos; o pe |
)
_ 4 ot
| e) -

_static/spock_snapshot02.png
File/Group/Dataset Description Shape DType
¥ scans.hs File
¥ entrys Entry
definition Dataset 1 Is6
end_time Dataset 1 Is26
entry_identifier Dataset 1 Is1
v measurement. Group
Pt_No Dataset 21 int64
ctot Dataset 21 Floated
ctoz Dataset 21 Floated
cto3 Dataset 21 Floated
ctoa Dataset 21 Float64
P pre_scan_snapshot Grouj
program_name Dataset 1 Is28
start_time Dataset 1 Is26
title Dataset 1 Is27
P user User

10

_images/gui_snapshot01.png
SECTOR a1

_static/trend_a2scanc.png
600

500

400

300

200

1004

TaurusTrend <@controls02>

o8

o6

o4

VR

~ Acquisition
—m_cpl_t

—m_cpt 2

_images/gui_snapshot02.png
X LTB Beam Charge Monitor

[%/1LINAC BOM || LTo1 Bem] LTo2 BCM
) L)@ L) e =
Charge —osE o Charge — Charge o -

Bgd Subst @x Bgd Subst @@= Bgd Subst @x

Gain e || com 3 [|| can |
ouputsgnar: [imvent [|| ownsonar: (omimer [|| owutsonar [Nonmen |-
Cotbraton: (Diabla [} || canbraton Barie [|| coraton: ~ [omame——)

oty [hegme] ety Negaive ety)

Charge Selection (150

[
[

]
[r——

Charge Selection (150

&

onarge setecton (TEEL [

1oy =
Zost
£,
50
i
5003
O %3 =T~ — C

4 P S d » » W

\”’@ \”’@ \”’@ \”’@ \”’@ \”’@ \”’@

Time

(] | soc OSSN (|- I

_static/synchronization_description.png
Repeats

Total

Initial
Group

Active

AN

_static/snapshot05.png
X, Fuorescant Scraens mberface for lifdiffs-01

lidits-01

S-EWE »-®-§ @ L850~ - .
Eic
L& t
P gy R gt g g g
i =
- o
ey * = * | s — o)
o — s ||| o p— s e —
oo) | | o O vow) || s o
L —) H [commer —

L]

_static/snapshot04.png

_static/snapshot07.png

_static/snapshot06.png

_static/snapshot09.png
\ /] \ / VA
VYWY o _
e UV V) g

_static/snapshot08.png

_static/spock_snapshot01.png
[Funning on top of Python 2.6.6, IPython 0.10 and PyTango 7.2.1dev

-> Spock’s help system.
-> Details about 'object’. 2object also works, ?? prints more

Spock' s sardana extension 0.5.0 loaded with profile: BL98 (linked to door 'Door_BLSS')

poor _BLo8 [11: ascan blog_ml 0 100 10 0.1
Extracolumns is not defined
Scanbir is not defined. This operation will not be stored persistently
sharedMemory is not defined.
sharedMemory is not defined.
[Scan started at Tue Jun 28 18:06:16 2011. It will take at least 0:00:01.100000
#Pt No BLOB M1 BLOS Timer BLOS Cl BL9B_C2 BL9B_C3
o 10309 0.206192 0.309288
10 10095 0.2019 30285
20 1102416 0.204832 0.307248
20 10509 0.210192 0.315288
20 .111601 0.223202 0.334803
s0 113532 0.227064 0.340596
60 115527 0.231054 0.346581
70 101574 0.203148 0.304723
11753 0.235072 0.352608
1101450 0.202018 0.304377
113926 0.227852 0.341778
taking 0:00:16.645132 (dead time was 93.4%)

coooo000000
—ococoooo000000

(user, dial)

BLOBML BLOB M2 BLOB_MPL
100.0000 43.0000 100.0000
100.0000 43.0000 100.0000

Door_BLos [31:]

_static/snapshot10.png
sardana

@

Flle Create

@ soroms

| tog|

L8 conrasorionno

L Tiagos Pool

tcoutinho/pool/01

Tiagos Pool

L) cnvotes

Measurement Groups

Communicatian Channeis | Catraier Classes |

74‘(utimerciril

te_simumotctril

Motors

I Motor Groups |

Experiment Channels]

< te_simucotictris

OEe @

L 4€ amcsccn
L cepnocirn
1S3 communication cha

L@

he_uxtimerctriL tc_simumotctris

Description

Name:

Type: [PseudoMotor &)
Library: [Diffractometer’a ()
Class: [Diffracsc &

[[Praperias]| Pseudo Motor Roles

direction:[1 0 0

% experimen
= Measurem.

vavelength: [2.84

beta: [50

te_simucotictril diffracacCtri

d &L m

IcePAPCIFIL

This is the C++ pseudo motor contraller for a four circle vertical diffractometer using the hikl library des|

Detals

b:[2.84

reflections

Refresh)

Organzstion: [CELLS -ALia

Family: [Diffractometer
Madel: [Four Circle

A

A~

LBA

_images/gui_snapshot03.png
vty (T o) B30

_images/gui_snapshot06.png
606 X Fluorescent Screens Interface

File View Tau Tools Help
State out ofr yag

s 01 @
ains02 @
its03 @
[p—— YY) @
T 000 @
o tidinsotr03 00 O__[|ver
(e—— Q009 @ ||
botifsot-01 Q000 @ ||
— e D@L [+ ven
r— Q000 @ ||
bo0srifsot-01 e D@L [+ ven
- Q000 @ ||
- e D@L [+ ven
p— Q000 @ ||
— e D@L [+ ven
N 00 @ @ [
—— 00 @ @ [
— 00 @ @ [
- 00 @ @ [
ot_aiton [[0.000] mm fim- M s |@ <) view
st_disshot | [000] mm fim- M s |@ <) view
sr_aitsn02 | [000] mm - <]T.00 M s |@ <) view

OpenAll

stopa |

_images/gui_snapshot07.png
L j|oo0ce

_images/gui_snapshot04.png
e e —

_images/gui_snapshot05.png
666 X! Tune Excitation

~Function Generator - AFG3102

outstate @ [opercn |

Runioce

Wod.Shape NS

~Horizontal Signal Settings

-Vertical Signal Settings-

ousie @ [omnen |

Runioce

Wod.Shape NS

(CAmeitude ™)

(CAmeitude ™)

[ammr=s) |

[ammr=s) |

(Fane Bxe Range) |

(Fane Bxe Range) |

EcHamone i [1]

e Hamonie il

~Digital Step Attenuator

Switch Atienuation Ramp. on

e | (0] 08
Fraat [[000] B

Ramp Enabied @

~Horizontal Ramp Setiings

~Vertical Ramp Sstings.

e | (0] 08
Fraat [[000] B

Ramp Enabied @

Reset

_images/gui_snapshot10.png
sardana

@

Flle Create

@ soroms

| tog|

L8 conrasorionno

L Tiagos Pool

tcoutinho/pool/01

Tiagos Pool

L) cnvotes

Measurement Groups

Communicatian Channeis | Catraier Classes |

74‘(utimerciril

te_simumotctril

Motors

I Motor Groups |

Experiment Channels]

< te_simucotictris

OEe @

L 4€ amcsccn
L cepnocirn
1S3 communication cha

L@

he_uxtimerctriL tc_simumotctris

Description

Name:

Type: [PseudoMotor &)
Library: [Diffractometer’a ()
Class: [Diffracsc &

[[Praperias]| Pseudo Motor Roles

direction:[1 0 0

% experimen
= Measurem.

vavelength: [2.84

beta: [50

te_simucotictril diffracacCtri

d &L m

IcePAPCIFIL

This is the C++ pseudo motor contraller for a four circle vertical diffractometer using the hikl library des|

Detals

b:[2.84

reflections

Refresh)

Organzstion: [CELLS -ALia

Family: [Diffractometer
Madel: [Four Circle

A

A~

LBA

_images/hard.png
User

User

User

Pool

!

&

Cl

o

levice

The Pool device server

‘ango)
class A

ango
class C

Tango Tango
class B class D
%: ”’ :
HARDWARE
icvige) ([Jan
User Uer

User

_images/gui_snapshot08.png

_images/gui_snapshot09.png
B % BHH LR L H Y S48 B %

_images/inheritance-027634da9041079e26118f1b09172d5f740b4779.png
PoolMonitor

_static/snapshot03.png

_static/snapshot02.png
LT T L O DO

mmmmmmm

......
4

_images/inheritance-028e9622fe9e995354a2ed2ec91cdf18f17b3a51.png
SardanatlementManager

_images/inheritance-02e21854b4ce4cb0b5ea631059805866ebafb5b1.png
BaseMacroTestCase

RunMacroTestCase

RunStopMacroTestCase

ANscanTest

DNscanfest

Dscanfest

_images/inheritance-09fa31b0109835728095acaecd94f5811ba2311c.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

]

(PoclBaseobject | [sardanaobjectin | | SardanaContainer |

Poolobject PoolContainer

PoolBaseElement PoolBaseGroup
PoolGroupElement
PoolMeasurementGroup

_images/inheritance-0a0c2662c54db89aa86128862698304969934965.png

_images/inheritance-0887baaa82627f9a6000ece679a769f2cbea6110.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject

SardanaobjectiD
SardanaContainer

Poolobject

PoolBaseElement PoolContainer
PoolaseGroup

PoolPseudoMotor

_images/inheritance-0923aab688be173695583b668981126503a38bb9.png
BaseMacroTestCase

RunMacroTestCase

RunStopMacroTestCase

ANscanTest

DNscanfest

_images/inheritance-0de2643788dec55717811ca9faac5f6dcab83330.png
RunMacroTestCase

BaseMacroTestCase

LsctriTest

_images/inheritance-0e85713a51e3249998b9614468809608c36473c9.png
Controller

pseudoController

PseudoMotorController

_images/inheritance-0a91b45da35960ce2ca427d9250138cddafe6b1d.png
Device_ampl

_static/macros/sequenceeditor02_raw.png
Macro: [ascan

[vacro [Farameters [Frogess [pause]
o () 0%
ascan {moL_mdt, 0.0,1000.0,2,0.11 0%]
ascan [moL_mc2, 0.0,500.0,2,0.1] 0%
ascan {moL_mze, 00,1000, 100,0.1] 0%
senv. [ScanFile, scan2.h5]

ToothedTriangle [mot_mzr, 0.0,1000.0,2,01,1,1] [0% |

_images/inheritance-0c47c4509eaa989f1e8ea961b2e7a1a3a6f3bc46.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject SardanaobjectiD

Poolobject

PoolBaseElement
PoolBaseController

_images/snapshot03.png

_static/macros/sequenceeditor03_raw.png
acro: [ascan -

wacro [Faramaters

ct no

[mot_mx1, 0.0,1000.0, 2, 0.1]
ascan [mot_mzc, 0.0,100.0, 100, 0.1]

senv. [ScanFile, scan2.h]

ToothedTriangle [mot_mzr, 0.0,1000.0,2,0.1,1,1]

[Frogress [pause

_images/snapshot02.png
LT T L O DO

mmmmmmm

......
4

_static/macros/sequenceeditor03.png
IMacro: [ascan

Macro Paramaters Progress
G o 0%
ascan [mot_mx1, 0.0, 1000.0,2, 01
0%
ascan [mot/mze, 0.0,100.0,100,0.1] | 0%
senv [SpnFile, scan2hs]

ToothedTriangle otz 0.0,10000,2,04,1,1] | 0%

_images/snapshot05.png
X, Fuorescant Scraens mberface for lifdiffs-01

lidits-01

S-EWE »-®-§ @ L850~ - .
Eic
L& t
P gy R gt g g g
i =
- o
ey * = * | s — o)
o — s ||| o p— s e —
oo) | | o O vow) || s o
L —) H [commer —

L]

_static/macros/sequenceeditor05_raw.png
wacro: | -

Wacra [Parameers [Frogress [pause

o o]
ascan [mot_mx1, 0.0, 10000, 2,01

ascan fmat-m N0 A0 20T

senv (Scanf e, scan2 e
ToothedTriangle ~[mot_mz, 00,10

] postmove
Cpre-aca

[postaca
[poststep
[postscan

_images/snapshot04.png

_static/macros/sequenceeditor04.png
IMacro: [ascan

Macro Parameters Progress (=
G o 0%
ascan [mot_mx1,0.0,1000.0,2.04] |
0%
ascan [mot_mze, 90, 1000,100,01] | 0%
senv [ScanFile/5can2 ns] L
ToothedTriangle [mot_m#, 0.0,10000,2,04,1,1] | 0%

_images/sequenceeditor03.png
IMacro: [ascan

Macro Paramaters Progress
G o 0%
ascan [mot_mx1, 0.0, 1000.0,2, 01
0%
ascan [mot/mze, 0.0,100.0,100,0.1] | 0%
senv [SpnFile, scan2hs]

ToothedTriangle otz 0.0,10000,2,04,1,1] | 0%

_static/macros/macroparameterseditor04.png
Parameter Value

‘mot_pitch
30
20
motor mot_roll
start 10
end 70
nr_interv 0

integ_time 01

_images/sequenceeditor02.png
ToothedTriangle [mot_mz, 0.0,1000.0,2,0.1,1,1) | 0%

acro; ascan +
= [Frr |
o] 0%
ascan {mot_md,00,10000,2,0.1] (2]
ascan {mot_me2, 00, 500.0,2,0.1] 0%
ascan [motmze,0.0,1000,100,01) | 0% (]
senv [Scanfile, scan2 hs] =

_static/macros/macroparameterseditor03_raw.png
Paramster Value (]
e 8
motor mot_pitch n
st S0
o 50]
e ®

integ_time 01

_images/sequenceeditor05_raw.png
wacro: | -

Wacra [Parameers [Frogress [pause

o o]
ascan [mot_mx1, 0.0, 10000, 2,01

ascan fmat-m N0 A0 20T

senv (Scanf e, scan2 e
ToothedTriangle ~[mot_mz, 00,10

] postmove
Cpre-aca

[postaca
[poststep
[postscan

_static/macros/macroparameterseditor05.png
Parameter Value

‘mot_pitch
30
20
motor mot_roll
start 10
end 70
nr_interv 0

integ_time 01

_images/sequenceeditor04.png
IMacro: [ascan

Macro Parameters Progress (=
G o 0%
ascan [mot_mx1,0.0,1000.0,2.04] |
0%
ascan [mot_mze, 90, 1000,100,01] | 0%
senv [ScanFile/5can2 ns] L
ToothedTriangle [mot_m#, 0.0,10000,2,04,1,1] | 0%

_static/macros/macroparameterseditor04_raw.png
mot_pitch
-30
30
motor mot_roll
start 10
end 70
ni_intery 30

integ_time 01

_images/slits.gif
il

ToP

gott©

_static/macros/sequenceeditor02.png
ToothedTriangle [mot_mz, 0.0,1000.0,2,0.1,1,1) | 0%

acro; ascan +
= [Frr |
o] 0%
ascan {mot_md,00,10000,2,0.1] (2]
ascan {mot_me2, 00, 500.0,2,0.1] 0%
ascan [motmze,0.0,1000,100,01) | 0% (]
senv [Scanfile, scan2 hs] =

_images/sequencer01.png
UTsequence plot

a0 Parameters Progress |Pause | [—
ct 1.0 0%
) 0% 2
ascan [dummymotor15, 0.0, 500.0,2,0.1] 0% 3
senv [ScanFile, scan2.h5] 0% ‘
ToothedTriangle [dummymotort 4, 0.0,1000.0,2,04,1,1] (| 0%

Parameter | value
motor dummymotort 6

start_pos 00

fnal_pos 10000 *
ni_interv 2 s

integ_time 01

_static/macros/sequenceeditor01.png
Macro: [ascan

[vacro [Farameters [Frogess [pause]
o () 0%
ascan {moL_mdt, 0.0,1000.0,2,0.11 0%]
ascan [moL_mc2, 0.0,500.0,2,0.1] 0%
ascan {moL_mze, 00,1000, 100,0.1] 0%
senv. [ScanFile, scan2.h5]

ToothedTriangle [mot_mzr, 0.0,1000.0,2,01,1,1] [0% |

_images/snapshot01.png

_images/inheritance-13a96ddd9f3e6d0243e795fe2b968037a9f9ad75.png
SardanaBxception
UnknownLibrary
UnknownControleribrary

_images/inheritance-13f9a2856e991e8feef83df0493a96e63d21283e.png
D)
PoolAction
PoolAcquisitionBase

_images/inheritance-0f0f431b9cf6d3c58ecf4f27f546a41aa593db29.png
TangoAttrch

TangoStatusCh

_images/inheritance-178b1c22325b93c4e899cd9ee4f7e352534499e1.png
RunMacroTestCase

BaseMacroTestCase

RunStopMacroTestCase

_images/inheritance-18b8f2fd8007a5dad8abd8224fdb147d09a80c74.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

MsBaseObject

SardanaobjectiD

MSObject

_images/inheritance-1418a7a719b59cb8b4932423b339f31a41ce661d.png
SardanaException

PoolException

_images/inheritance-160bcd6c7def1a6215b1bf2ee3e5b5c561505d2b.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

PoolBaseObject

_images/inheritance-1f1de7930072e2834518a2fc20e49a4bef9e76b2.png
singleton

ModuleManager

_images/inheritance-1b78f4c2e431fe604b1d731c0270c3a1a912162a.png
evemcenerator) (‘eventpacenver) (Logger

SardanaBaseobject

]

(PoclBaseobject | [sardanaobjectin | | SardanaContainer |

Poolobject PoolContainer

PoolBaseElement PoolBaseGroup
PoolGroupElement

_images/inheritance-1dbc14014e3a0379c691bb5de92445fb29de5293.png

_images/sardana_server_np200.png

_static/macros/macroparameterseditor01.png
Parameter Value
motort mot_mzl
start_pos1 00
final_pos1 10000
motor2 mot_mzr
start_pos2 00
final_pos2 10000
ni_intery 100
integ_time 01

_static/macros/macroexecutor01_raw.png
macroexecutorpy. <

[vae
enery
soes so0n
mapes #1000
e 100
meome 03

‘SenvAcivelniGrp mg_slecir
senv ScanFile energy_scan.hs
ray 5000.0 5100.0 100 01

_images/sequenceeditor01.png
Macro: [ascan

[vacro [Farameters [Frogess [pause]
o () 0%
ascan {moL_mdt, 0.0,1000.0,2,0.11 0%]
ascan [moL_mc2, 0.0,500.0,2,0.1] 0%
ascan {moL_mze, 00,1000, 100,0.1] 0%
senv. [ScanFile, scan2.h5]

ToothedTriangle [mot_mzr, 0.0,1000.0,2,01,1,1] [0% |

_static/macros/macroparameterseditor03.png
Parameter

motor mot_pitch
start 20
end 30
nr_interv 30

integ_time 01

_images/sardana_sketch.png
Spock
VE(N
Macro Server

_ Recorders

Device Pool

Controllers

_static/macros/macroparameterseditor02.png
Parameter Value
motor_start_end_ist
o #
motor mot_pitch
start -30
end 30
ni_intery 30
integ_time 01

_static/up-pressed.png

_static/trend_ascanVSascanc.png
X o TaurusTrend <@controls02> VoW
1,200 ! —Acquisition
] —m_cpi_t
1,000 -
1 tos
800 -| L
tos
600 -|
400
o4
200 | [
1 to2
o

_static/gallery/gallery01.png

_static/up.png

_static/macros/favouriteeditor01.png
amultiscan mot_roll 5.0 10.0 mot_pitch -3.0 3.0 50 0.1

‘senvActveMniGrp mg_test
defmeas mg_test counter!

fiscanx=[1,2,31y=12.2,2] 1 dummymotort1 x'2
relmac fiscan
fiscanx=[1,23]y=[2,2,2] 1 dummymotort1 x'y

ascan dummymotort1 0.0 100010 1.0

(] [»][1]

_static/gallery/gallery02.png
1Py

File Edit View Kerel Magic Window_Help

Spock 1.0.0 -- An interactive laboratory application.

help > Spock’s help systen.
object? -> Details about ‘object’. 7object also works, 77 prints more.

Spock [1]: wa
Positions (user, dial) on 2012-10-02 15:58:05.472332

9ap01 ice08 mOtOl mOto2 moto3 moto4 offsetol
100.0000 100020.0000 50.0000 50.0000 ©0.0000 ©.0000 ©.0000
100.0000 1000200000 50.0000 50.0000 ©0.0000 ©.0000 ©.0000

Spock [2]: ascan gapel 0 100 & 0.25
Operation will be saved in /tmp/BL9S_scans.hs (wS)

Scan #5 started at Tue Oct 2 15:58:10 2012. It will take at least 0:0¢
Moving to start positions.

2.250000

#t lo dt gapo1 ctor ctoz ctos
° 2.40239 o 0.25 0.5 1
1 347785 125 0.25 0.5 1
2 456185 25 0.25 0.5 1
3 567741 375 0.25 0.5 1
a 6.77876 50 0.25 0.5 1
s 7.88055 625 0.25 0.5 1
B 8.97808 75 0.25 0.5 1
7 10.0703 87.5 0.25 0.5 1
5 11.1666 100 0.25 0.5 1

Operation saved in /tnp/BL99 scans.hs (ws)
Scan #5 ended at Tue Oct 2 15:58:21 2012, taking 0:00:

Spock [3]: mesh

iceos
moto1
moto2
mote3
motoa
offsetol

1.451502. Dead tine 80.4% (motion dead time 77.1%)

_static/macros/macroexecutor01.png
energy
50000
51000
100
01

‘senvAciveNniGrp mg_slectr
senv ScanFile energy_scan.ns
Bscan eneigy 00.0 100 0

