
sandman Documentation
Release 0.9.8

Jeff Knupp

Jul 26, 2018





Contents

1 Installation 3

2 Using Sandman 5
2.1 The Simplest Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Supported Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Beyond sandmanctl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Creating Models 9
3.1 Hooking up Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Providing a custom endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Restricting allowable methods on a resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Performing custom validation on a resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Configuring a model’s behavior in the admin interface . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Model Endpoints 13
4.1 The root endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 The /meta endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Automatic Introspection 15

6 Running sandman alongside another app 17
6.1 Using existing declarative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 The sandman Admin Interface 19
7.1 Activating the sandman Admin Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Getting Richer Information for Related Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Authentication 23
8.1 Enabling Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 Token-based Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 sandman API 25
9.1 exception Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.2 model Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.3 sandman Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Indices and tables 31

i



Python Module Index 33

ii



sandman Documentation, Release 0.9.8

Contents:

Contents 1



sandman Documentation, Release 0.9.8

2 Contents



CHAPTER 1

Installation

Simply run:

pip install sandman

3



sandman Documentation, Release 0.9.8

4 Chapter 1. Installation



CHAPTER 2

Using Sandman

2.1 The Simplest Application

Here’s what’s required to create a RESTful API service from an existing database using sandman

$ sandmanctl sqlite:////tmp/my_database.db

That’s it. sandman will then do the following:

• Connect to your database and introspect it’s contents

• Create and launch a RESTful API service

• Create an HTML admin interface

• Open your browser to the admin interface

That’s right. Given a legacy database, sandman not only gives you a REST API, it gives you a beautiful admin page
and opens your browser to the admin page. It truly does everything for you.

2.2 Supported Databases

sandman , by default, supports connections to the same set of databases as SQLAlchemy (http://www.sqlalchemy.
org). As of this writing, that includes:

• MySQL (MariaDB)

• PostgreSQL

• SQLite

• Oracle

• Microsoft SQL Server

• Firebird

5

http://www.sqlalchemy.org
http://www.sqlalchemy.org


sandman Documentation, Release 0.9.8

• Drizzle

• Sybase

• IBM DB2

• SAP Sybase SQL Anywhere

• MonetDB

2.3 Beyond sandmanctl

sandmanctl is really just a simple wrapper around the following:

from ``sandman`` import app

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///chinook'

from sandman.model import activate

activate(browser=True)

app.run()

Notice you don’t even need to tell ‘‘sandman‘‘ what tables your database contains. Just point sandman at your
database and let it do all the heavy lifting.

If you put the code above into a file named runserver.py, You can start this new service and make a request.
While we’re at it, lets make use of sandman’s awesome filtering capability by specifying a filter term:

$ python runserver.py &

* Running on http://127.0.0.1:5000/

> curl GET "http://localhost:5000/artists?Name=AC/DC"

you should see the following:

{
"resources": [

{
"ArtistId": 1,
"Name": "AC/DC",
"links": [

{
"rel": "self",
"uri": "/artists/1"

}
]

}
]

}

If you were to leave off the filtering term, you would get all results from the Artist table. You can also paginate
these results by specifying ?page=2 or something similar. The number of results returned per page is controlled by
the config value RESULTS_PER_PAGE, which defaults to 20.

6 Chapter 2. Using Sandman



sandman Documentation, Release 0.9.8

2.3.1 A Quick Guide to REST APIs

Before we get into more complicated examples, we should discuss some REST API basics. The most important
concept is that of a resource. Resources are sources of information, and the API is an interface to this information.
That is, resources are the actual “objects” manipulated by the API. In sandman, each row in a database table is
considered a resource.

Groups of resources are called collections. In sandman, each table in your database is a collection. Collections can
be queried and added to using the appropriate HTTP method. sandman supports the following HTTP methods:

* GET

* POST

* PUT

* DELETE

* PATCH

(Support for the HEAD and OPTIONS methods is underway.)

2.3. Beyond sandmanctl 7



sandman Documentation, Release 0.9.8

8 Chapter 2. Using Sandman



CHAPTER 3

Creating Models

A Model represents a table in your database. You control which tables to expose in the API through the creation of
classes which inherit from sandman.model.models.Model. If you create a Model, the only attribute you must
define in your class is the __tablename__ attribute. sandman uses this to map your class to the corresponding
database table. From there, sandman is able to divine all other properties of your tables. Specifically, sandman
creates the following:

• an __endpoint__ attribute that controls resource URIs for the class

• a __methods__ attribute that determines the allowed HTTP methods for the class

• as_dict and from_dict methods that only operate on class attributes that correspond to database columns

• an update method that updates only the values specified (as opposed to from_dict, which replaces all of
the object’s values with those passed in the dictionary parameter

• links, primary_key, and resource_uri methods that provide access to various attributes of the object
derived from the underlying database model

Creating a models.py file allows you to get even more out of sandman. In the file, create a class that derives from
sandman.models.Model for each table you want to turn into a RESTful resource. Here’s a simple example using
the Chinook test database (widely available online):

from sandman.model import register, activate, Model

class Artist(Model):
__tablename__ = 'Artist'

class Album(Model):
__tablename__ = 'Album'

class Playlist(Model):
__tablename__ = 'Playlist'

class Genre(Model):
__tablename__ = 'Genre'

(continues on next page)

9



sandman Documentation, Release 0.9.8

(continued from previous page)

# register can be called with an iterable or a single class
register((Artist, Album, Playlist))
register(Genre)
# activate must be called *after* register
activate(browser=False)

3.1 Hooking up Models

The __tablename__ attribute is used to tell sandman which database table this class is modeling. It has no default
and is required for all classes.

3.2 Providing a custom endpoint

In the code above, we created four sandman.model.models.Model classes that correspond to tables in our
database. If we wanted to change the HTTP endpoint for one of the models (the default endpoint is simply the class’s
name pluralized in lowercase), we would do so by setting the __endpoint__ attribute in the definition of the class:

class Genre(Model):
__tablename__ = 'Genre'
__endpoint__ = 'styles'

Now we would point our browser (or curl) to localhost:5000/styles to retrieve the resources in the Genre
table.

3.3 Restricting allowable methods on a resource

Many times, we’d like to specify that certain actions can only be carried out against certain types of resources. If we
wanted to prevent API users from deleting any Genre resources, for example, we could specify this implicitly by
defining the __methods__ attribute and leaving out the DELETE method, like so:

class Genre(Model):
__tablename__ = 'Genre'
__endpoint__ = 'styles'
__methods__ = ('GET', 'POST', 'PATCH', 'PUT')

For each call into the API, the HTTP method used is validated against the acceptable methods for that resource.

3.4 Performing custom validation on a resource

Specifying which HTTP methods are acceptable gives rather coarse control over how a user of the API can interact
with our resources. For more granular control, custom a validation function can be specified. To do so, simply define a
static method named validate_<METHOD>, where <METHOD> is the HTTP method the validation function should
validate. To validate the POST method on Genres, we would define the method validate_POST, like so:

10 Chapter 3. Creating Models



sandman Documentation, Release 0.9.8

class Genre(Model):
__tablename__ = 'Genre'
__endpoint__ = 'styles'
__methods__ = ('GET', 'POST', 'PATCH', 'PUT')

@staticmethod
def validate_POST(self, resource=None):

if isinstance(resource, list):
return True

# No classical music!
return resource and resource.Name != 'classical'

The validate_POST method is called after the would-be resource is created, trading a bit of performance for a
simpler interface. Instead of needing to inspect the incoming HTTP request directly, you can make validation decisions
based on the resource itself.

Note that the resource parameter can be either a single resource or a collection of resources, so it’s usually necessary
to check which type you’re dealing with. This will likely change in a future version of sandman.

3.5 Configuring a model’s behavior in the admin interface

sandman uses Flask-Admin to construct the admin interface. While the default settings for individual models are
usually sufficient, you can make changes to the admin interface for a model by setting the __view__ attribute to a class
that derives from flask.ext.admin.contrib.sqla.ModelView. The Flask-Admin’s documentation should be consulted for
the full list of attributes that can be configured.

Below, we create a model and, additionally, tell sandman that we want the table’s primary key to be displayed in the
admin interface (by default, a table’s primary keys aren’t shown):

from flask.ext.admin.contrib.sqla import ModelView

class ModelViewShowPK(ModelView):

column_display_pk = True

class Artist(Model):
__tablename__ = 'Artist'
__view__ = ModelViewShowPK

Custom ‘__view__‘ classes are a powerful way to customize the admin interface. Properties exist to control which
columns are sortable or searchable, as well as as what fields are editable in the built-in editing view. If you find your
admin page isn’t working exactly as you’d like, the chances are good you can add your desired functionality through
a custom __view__ class.

3.5. Configuring a model’s behavior in the admin interface 11



sandman Documentation, Release 0.9.8

12 Chapter 3. Creating Models



CHAPTER 4

Model Endpoints

If you were to create a Model class named Resource, the following endpoints would be created:

• resources/

– GET: retrieve all resources (i.e. the collection)

– POST: create a new resource

• resources/<id>

– GET: retrieve a specific resource

– PATCH: update an existing resource

– PUT: create or update a resource with the given ID

– DELETE: delete a specific resource

• resources/meta

– GET: retrieve a description of a resource’s structure

4.1 The root endpoint

For each project, a “root” endpoint (/) is created that gives clients the information required to interact with your API.
The endpoint for each resource is listed, along with the /meta endpoint describing a resource’s structure.

The root endpoint is available as both JSON and HTML. The same information is returned by each version.

4.2 The /meta endpoint

A /meta endpoint, which lists the models attributes (i.e. the database columns) and their type. This can be used to
create client code that is decoupled from the structure of your database.

13



sandman Documentation, Release 0.9.8

A /meta endpoint is automatically generated for every Model you register. This is available both as JSON and
HTML.

14 Chapter 4. Model Endpoints



CHAPTER 5

Automatic Introspection

Of course, you don’t actually need to tell sandman about your tables; it’s perfectly capable of introspecting all of
them. To use introspection to make all of your database tables available via the admin and REST API, simply remove
all model code and call activate() without ever registering a model. To stop a browser window from automatically
popping up on sandman initialization, call activate() with browser=False.

15



sandman Documentation, Release 0.9.8

16 Chapter 5. Automatic Introspection



CHAPTER 6

Running sandman alongside another app

If you have an existing WSGI application you’d like to run in the same interpreter as sandman, follow the in-
structions described here. Essentially, you need to import both applications in your main file and use Flask’s
DispatcherMiddleware to give a unique route to each app. In the following example, sandman-related end-
points can be accessed by adding the /sandman prefix to sandman’s normally generated URIs:

from my_application import app as my_app
from sandman import app as sandman_app
from werkzeug.wsgi import DispatcherMiddleware

application = DispatcherMiddleware(my_app, {
'/sandman': sandman_app,
})

This allows both apps to coexist; my_app will be rooted at / and sandman at /sandman.

6.1 Using existing declarative models

If you have a Flask/SQLAlchemy application that already has a number of existing declarative models, you can
register these with sandman as if they were auto-generated classes. Simply add your existing classes in the call to
sandman.model.register()

17

http://flask.pocoo.org/docs/patterns/appdispatch/#app-dispatch


sandman Documentation, Release 0.9.8

18 Chapter 6. Running sandman alongside another app



CHAPTER 7

The sandman Admin Interface

7.1 Activating the sandman Admin Interface

sandman supports an admin interface, much like the Django admin interface. sandman currently uses [Flask-
Admin](https://flask-admin.readthedocs.org/en/latest/) and some SQLAlchemy, erm, alchemy to allow your resources
to be administered via the admin interface. Note, though, that the admin interface may drastically change in the future.

Here’s a look at the interface generated for the chinook database’s Track table, listing the information about various
music tracks:

19

https://flask-admin.readthedocs.org/en/latest/


sandman Documentation, Release 0.9.8

Pretty nice! From here you can directly create, edit, and delete resources. In the “create” and “edit” forms, objects
related via foreign key (e.g. a Track’s associated Album) are auto-populated in a dropdown based on available
values. This ensures that all database constraints are honored when making changes via the admin.

The admin interface (which adds an /admin endpoint to your service, accessible via a browser), is enabled by
default. To disable it, pass admin=False as an argument in your call to activate. By default, calling this
function will make _all_ Models accessible in the admin. If you’d like to prevent this, simply call register()
with use_admin=False for whichever Model/Models you don’t want to appear. Alternatively, you can control if
a model is viewable, editable, creatable, etc in the admin by setting your class’s __view__ attribute to your own
Admin class.

7.2 Getting Richer Information for Related Objects

The sharp-eyed among you may have noticed that the information presented for Album, Genre, and MediaType are
not very helpful. By default, the value that will be shown is the value returned by __str__ on the associated table.
Currently, __str__ simply returns the value of a Model’s primary_key() attribute. By overriding __str__,
however, we can display more useful information. After making the changes below:

from sandman.model import register, Model

class Track(Model):
__tablename__ = 'Track'

(continues on next page)

20 Chapter 7. The sandman Admin Interface



sandman Documentation, Release 0.9.8

(continued from previous page)

def __str__(self):
return self.Name

class Artist(Model):
__tablename__ = 'Artist'

def __str__(self):
return self.Name

class Album(Model):
__tablename__ = 'Album'

def __str__(self):
return self.Title

class Playlist(Model):
__tablename__ = 'Playlist'

def __str__(self):
return self.Id

class Genre(Model):
__tablename__ = 'Genre'

def __str__(self):
return self.Name

class MediaType(Model):
__tablename__ = 'MediaType'

def __str__(self):
return self.Name

register((Artist, Album, Playlist, Genre, Track, MediaType))

we get much more useful information in the columns mentioned, as you can see here:

7.2. Getting Richer Information for Related Objects 21



sandman Documentation, Release 0.9.8

22 Chapter 7. The sandman Admin Interface



CHAPTER 8

Authentication

sandman supports HTTP basic authentication, meaning a username and password must be passed on each request
via the Authorization header.

8.1 Enabling Authentication

Enabling authentication in your sandman installation is a straight-forward task. You’ll need to define two functions:

• get_password()

• before_request()

The former is required by Flask-HTTPAuth, which powers sandman's authentication. The latter is used to
ensure that _all_ requests are authorized.

8.1.1 get_password

The get_password function takes a username as an argument and should return the associated password for
that user. To notify Flask-HTTPAuth that this is the function responsible for returning passwords, it must be wrapped
with the @auth.get_password decorator (auth is importable from sandman, e.g. from sandman import
app, db, auth). How you implement your user management system is up to you; you simply need to implement
get_password in whatever way is most appropriate for your security setup.

As a trivial example, here’s an implementation of get_password that always returns secret, meaning secret
must be the password, regardless of the username:

@auth.get_password
def get_password(username):

"""Return the password for *username*."""
return 'secret'

23



sandman Documentation, Release 0.9.8

8.1.2 before_request

Once you’ve hooked up your password function, it’s time to tell Flask which requests should require authentication.
Rather than picking and choosing on a request by request basis, we use the @app.before_request decorator
included in Flask to make sure _all_ requests are authenticated. Here’s a sample implementation:

@app.before_request
@auth.login_required
def before_request():

pass

Notice the function just calls pass; it needn’t have any logic, since the logic is added by Flask-HTTPAuth’s @auth.
login_required decorator.

8.2 Token-based Authentication

There are plans for sandman to support token-based authentication, but this currently isn’t supported and no time
frame for implementation has been set.

24 Chapter 8. Authentication



CHAPTER 9

sandman API

9.1 exception Module

Exception specifications for Sandman

exception sandman.exception.InvalidAPIUsage(code=400, message=None, payload=None)
Bases: exceptions.Exception

Excecption which generates a flask.Response object whose data is JSON rather than HTML

abort()
Return an HTML Response representation of the exception.

to_dict()
Return a dictionary representation of the exception.

9.2 model Module

The model module is repsonsible exposes the sandman.model.Model class, from which user models should
derive. It also makes the register() function available, which maps endpoints to their associated classes.

sandman.model.register(cls, use_admin=True)
Register with the API a sandman.model.Model class and associated endpoint.

Parameters cls (sandman.model.Model or tuple) – User-defined class derived from
sandman.model.Model to be registered with the endpoint returned by endpoint()

sandman.model.activate(admin=True, browser=True, name=’admin’, reflect_all=False)
Activate each pre-registered model or generate the model classes and (possibly) register them for the admin.

Parameters

• admin (bool) – should we generate the admin interface?

• browser (bool) – should we open the browser for the user?

25



sandman Documentation, Release 0.9.8

• name – name to use for blueprint created by the admin interface. Set this to avoid naming
conflicts with other blueprints (if trying to use sandman to connect to multiple databases
simultaneously)

The Model class is meant to be the base class for user Models. It represents a table in the database that should be
modeled as a resource.

class sandman.model.models.AdminModelViewWithPK(model, session, name=None, cat-
egory=None, endpoint=None,
url=None)

Bases: flask_admin.contrib.sqla.view.ModelView

Mixin admin view class that displays primary keys on the admin form

_default_view = 'index_view'

_urls = [('/action/', 'action_view', ('POST',)), ('/ajax/lookup/', 'ajax_lookup', ('GET',)), ('/new/', 'create_view', ('GET', 'POST')), ('/delete/', 'delete_view', ('POST',)), ('/edit/', 'edit_view', ('GET', 'POST')), ('/', 'index_view', ('GET',))]

action_view(*args, **kwargs)
Mass-model action view.

ajax_lookup(*args, **kwargs)

column_display_pk = True

create_view(*args, **kwargs)
Create model view

delete_view(*args, **kwargs)
Delete model view. Only POST method is allowed.

edit_view(*args, **kwargs)
Edit model view

index_view(*args, **kwargs)
List view

class sandman.model.models.Model
Bases: object

A mixin class containing the majority of the RESTful API functionality.

sandman.model.Model is the base class of :class:‘sandman.Model, from which user models are derived.

__endpoint__ = None
override __endpoint__ if you wish to configure the sandman.model.Model’s endpoint.

Default: __tablename__ in lowercase and pluralized

__methods__ = ('GET', 'POST', 'PATCH', 'DELETE', 'PUT')
override __methods__ if you wish to change the HTTP methods this sandman.model.Model sup-
ports.

Default: ('GET', 'POST', 'PATCH', 'DELETE', 'PUT')

__table__ = None
Will be populated by SQLAlchemy with the table’s meta-information.

__tablename__ = None
The name of the database table this class should be mapped to

Default: None

as_dict(depth=0)
Return a dictionary containing only the attributes which map to an instance’s database columns.

26 Chapter 9. sandman API



sandman Documentation, Release 0.9.8

Parameters depth (int) – Maximum depth to recurse subobjects

Return type dict

classmethod endpoint()
Return the sandman.model.Model’s endpoint.

Return type string

from_dict(dictionary)
Set a set of attributes which correspond to the sandman.model.Model’s columns.

Parameters dictionary (dict) – A dictionary of attributes to set on the instance whose
keys are the column names of the sandman.model.Model’s underlying database table.

links()
Return a list of links for endpoints related to the resource.

Return type list

classmethod meta()
Return a dictionary containing meta-information about the given resource.

classmethod primary_key()
Return the name of the table’s primary key

Return type string

replace(dictionary)
Set all attributes which correspond to the sandman.model.Model’s columns to the values in dictio-
nary, inserting None if an attribute’s value is not specified.

Parameters dictionary (dict) – A dictionary of attributes to set on the instance whose
keys are the column names of the sandman.model.Model’s underlying database table.

resource_uri()
Return the URI at which the resource can be found.

Return type string

9.3 sandman Module

Sandman REST API creator for Flask and SQLAlchemy

sandman.sandman.attribute_response(resource, name, value)
Return a response for the resource of the appropriate content type.

Parameters resource (sandman.model.Model) – resource to be returned in request

Return type flask.Response

sandman.sandman.collection_response(cls, resources, start=None, stop=None)
Return a response for the resources of the appropriate content type.

Parameters resources – resources to be returned in request

Return type flask.Response

sandman.sandman.delete_resource(collection, key)
Return the appropriate Response for deleting an existing resource in collection.

Parameters

• collection (string) – a sandman.model.Model endpoint

9.3. sandman Module 27



sandman Documentation, Release 0.9.8

• key (string) – the primary key for the sandman.model.Model

Return type flask.Response

sandman.sandman.endpoint_class(collection)
Return the sandman.model.Model associated with the endpoint collection.

Parameters collection (string) – a sandman.model.Model endpoint

Return type sandman.model.Model

sandman.sandman.get_collection(*args, **kwargs)
Return the appropriate Response for retrieving a collection of resources.

Parameters

• collection (string) – a sandman.model.Model endpoint

• key (string) – the primary key for the sandman.model.Model

Return type flask.Response

sandman.sandman.get_meta(*args, **kwargs)
Return the meta-description of a given resource.

Parameters collection – The collection to get meta-info for

sandman.sandman.get_resource(*args, **kwargs)
Return the appropriate Response for retrieving a single resource.

Parameters

• collection (string) – a sandman.model.Model endpoint

• key (string) – the primary key for the sandman.model.Model

Return type flask.Response

sandman.sandman.get_resource_attribute(*args, **kwargs)
Return the appropriate Response for retrieving an attribute of a single resource.

Parameters

• collection (string) – a sandman.model.Model endpoint

• key (string) – the primary key for the sandman.model.Model

Return type flask.Response

sandman.sandman.get_resource_data(incoming_request)
Return the data from the incoming request based on the Content-type.

sandman.sandman.handle_exception(error)
Return a response with the appropriate status code, message, and content type when an InvalidAPIUsage
exception is raised.

sandman.sandman.index(*args, **kwargs)
Return information about each type of resource and how it can be accessed.

sandman.sandman.no_content_response(*args, **kwargs)
Return the appropriate Response with status code 204, signaling a completed action which does not require data
in the response body

Return type flask.Response

28 Chapter 9. sandman API



sandman Documentation, Release 0.9.8

sandman.sandman.patch_resource(collection, key)
“Upsert” a resource identified by the given key and return the appropriate Response.

If no resource currently exists at /<collection>/<key>, create it with key as its primary key and return a
resource_created_response().

If a resource does exist at /<collection>/<key>, update it with the data sent in the request and return a
no_content_response().

Note: HTTP PATCH (and, thus, patch_resource()) is idempotent

Parameters

• collection (string) – a sandman.model.Model endpoint

• key (string) – the primary key for the sandman.model.Model

Return type flask.Response

sandman.sandman.post_resource(collection)
Return the appropriate Response based on adding a new resource to collection.

Parameters collection (string) – a sandman.model.Model endpoint

Return type flask.Response

sandman.sandman.put_resource(collection, key)
Replace the resource identified by the given key and return the appropriate response.

Parameters collection (string) – a sandman.model.Model endpoint

Return type flask.Response

sandman.sandman.resource_created_response(resource)
Return HTTP response with status code 201, signaling a created resource

Parameters resource (sandman.model.Model) – resource created as a result of current re-
quest

Return type flask.Response

sandman.sandman.resource_response(resource, depth=0)
Return a response for the resource of the appropriate content type.

Parameters resource (sandman.model.Model) – resource to be returned in request

Return type flask.Response

sandman.sandman.retrieve_collection(collection, query_arguments=None)
Return the resources in collection, possibly filtered by a series of values to use in a ‘where’ clause search.

Parameters

• collection (string) – a sandman.model.Model endpoint

• query_arguments (dict) – a list of filter query arguments

Return type class:sandman.model.Model

sandman.sandman.retrieve_resource(collection, key)
Return the resource in collection identified by key key.

Parameters

• collection (string) – a sandman.model.Model endpoint

• key (string) – primary key of resource

9.3. sandman Module 29



sandman Documentation, Release 0.9.8

Return type class:sandman.model.Model

sandman.sandman.update_resource(resource, incoming_request)
Replace the contents of a resource with data and return an appropriate Response.

Parameters

• resource – sandman.model.Model to be updated

• data – New values for the fields in resource

30 Chapter 9. sandman API



CHAPTER 10

Indices and tables

• genindex

• modindex

• search

31



sandman Documentation, Release 0.9.8

32 Chapter 10. Indices and tables



Python Module Index

s
sandman.exception, 25
sandman.model, 25
sandman.model.models, 26
sandman.sandman, 27

33



sandman Documentation, Release 0.9.8

34 Python Module Index



Index

Symbols
__endpoint__ (sandman.model.models.Model attribute),

26
__methods__ (sandman.model.models.Model attribute),

26
__table__ (sandman.model.models.Model attribute), 26
__tablename__ (sandman.model.models.Model at-

tribute), 26
_default_view (sandman.model.models.AdminModelViewWithPK

attribute), 26
_urls (sandman.model.models.AdminModelViewWithPK

attribute), 26

A
abort() (sandman.exception.InvalidAPIUsage method),

25
action_view() (sandman.model.models.AdminModelViewWithPK

method), 26
activate() (in module sandman.model), 25
AdminModelViewWithPK (class in sand-

man.model.models), 26
ajax_lookup() (sandman.model.models.AdminModelViewWithPK

method), 26
as_dict() (sandman.model.models.Model method), 26
attribute_response() (in module sandman.sandman), 27

C
collection_response() (in module sandman.sandman), 27
column_display_pk (sand-

man.model.models.AdminModelViewWithPK
attribute), 26

create_view() (sandman.model.models.AdminModelViewWithPK
method), 26

D
delete_resource() (in module sandman.sandman), 27
delete_view() (sandman.model.models.AdminModelViewWithPK

method), 26

E
edit_view() (sandman.model.models.AdminModelViewWithPK

method), 26
endpoint() (sandman.model.models.Model class method),

27
endpoint_class() (in module sandman.sandman), 28

F
from_dict() (sandman.model.models.Model method), 27

G
get_collection() (in module sandman.sandman), 28
get_meta() (in module sandman.sandman), 28
get_resource() (in module sandman.sandman), 28
get_resource_attribute() (in module sandman.sandman),

28
get_resource_data() (in module sandman.sandman), 28

H
handle_exception() (in module sandman.sandman), 28

I
index() (in module sandman.sandman), 28
index_view() (sandman.model.models.AdminModelViewWithPK

method), 26
InvalidAPIUsage, 25

L
links() (sandman.model.models.Model method), 27

M
meta() (sandman.model.models.Model class method), 27
Model (class in sandman.model.models), 26

N
no_content_response() (in module sandman.sandman), 28

P
patch_resource() (in module sandman.sandman), 28

35



sandman Documentation, Release 0.9.8

post_resource() (in module sandman.sandman), 29
primary_key() (sandman.model.models.Model class

method), 27
put_resource() (in module sandman.sandman), 29

R
register() (in module sandman.model), 25
replace() (sandman.model.models.Model method), 27
resource_created_response() (in module sand-

man.sandman), 29
resource_response() (in module sandman.sandman), 29
resource_uri() (sandman.model.models.Model method),

27
retrieve_collection() (in module sandman.sandman), 29
retrieve_resource() (in module sandman.sandman), 29

S
sandman.exception (module), 25
sandman.model (module), 25
sandman.model.models (module), 26
sandman.sandman (module), 27

T
to_dict() (sandman.exception.InvalidAPIUsage method),

25

U
update_resource() (in module sandman.sandman), 30

36 Index


	Installation
	Using Sandman
	The Simplest Application
	Supported Databases
	Beyond sandmanctl

	Creating Models
	Hooking up Models
	Providing a custom endpoint
	Restricting allowable methods on a resource
	Performing custom validation on a resource
	Configuring a model’s behavior in the admin interface

	Model Endpoints
	The root endpoint
	The /meta endpoint

	Automatic Introspection
	Running sandman alongside another app
	Using existing declarative models

	The sandman Admin Interface
	Activating the sandman Admin Interface
	Getting Richer Information for Related Objects

	Authentication
	Enabling Authentication
	Token-based Authentication

	sandman API
	exception Module
	model Module
	sandman Module

	Indices and tables
	Python Module Index

