

Full Table of Contents

	Frequently Asked Questions
	Is Salt open-core?

	What ports should I open on my firewall?

	My script runs every time I run a state.highstate. Why?

	When I run test.ping, why don't the Minions that aren't responding return anything? Returning False would be helpful.

	How does Salt determine the Minion's id?

	I'm using gitfs and my custom modules/states/etc are not syncing. Why?

	Why aren't my custom modules/states/etc. available on my Minions?

	Module X isn't available, even though the shell command it uses is installed. Why?

	Introduction to Salt
	The 30 second summary

	Simplicity

	Parallel execution

	Building on proven technology

	Python client interface

	Fast, flexible, scalable

	Open

	Installation
	Quick Install

	Platform-specific installation instructions
	Arch Linux

	Debian Installation

	Fedora

	FreeBSD

	Gentoo

	OS X

	RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

	Solaris

	Ubuntu Installation

	Windows

	SUSE Installation

	Dependencies

	Optional Dependencies

	Configuring Salt
	Master Configuration

	Minion Configuration

	Running Salt

	Key Management

	Sending Commands

	What's Next?

	Developing Salt
	Sending a GitHub pull request

	Keeping Salt Forks in Sync

	Posting patches to the mailing list

	Installing Salt for development
	Running a self-contained development version

	Using easy_install to Install Salt
	Running the tests

	Editing and previewing the documentation

	Targeting
	Matching the minion id
	Globbing

	Regular Expressions

	Lists

	Grains
	Listing Grains

	Grains in the Minion Config

	Grains in /etc/salt/grains

	Grains in Top file

	Writing Grains

	Node groups

	Compound matchers

	Batch Size

	Salt tutorials
	Bootstrapping Salt on Linux EC2 with Cloud-Init
	Used With Boto

	Additional Notes

	Salt as a Cloud Controller
	Setting up Hypervisors

	Getting Virtual Machine Images Ready

	Using Salt Virt

	Using cron with Salt
	Use cron to initiate a highstate

	Automatic Updates / Frozen Deployments
	Getting Started

	Building and Freezing

	Using the Frozen Build

	Gotchas

	Opening the Firewall up for Salt
	RHEL 6 / CENTOS 6

	openSUSE

	iptables

	pf.conf

	GitFS Backend Walkthrough
	Simple Configuration

	Multiple Remotes

	Serving from a Subdirectory

	Multiple Backends

	Branches, environments and top.sls files

	GitFS Remotes over SSH

	Why aren't my custom modules/states/etc. syncing to my Minions?

	Remote execution tutorial
	Order your minions around

	Multi Master Tutorial
	Summary of Steps

	Prepping a Redundant Master

	Configure Minions

	Sharing Files Between Masters

	Pillar Walkthrough
	Setting Up Pillar

	Paramaterizing States With Pillar

	Pillar Makes Simple States Grow Easily

	More On Pillar

	Preseed Minion with Accepted Key

	Salt Masterless Quickstart
	Bootstrap Salt Minion

	Create State Tree

	Standalone Minion
	Telling Salt Call to Run Masterless

	Running States Masterless

	How Do I Use Salt States?
	It is All Just Data

	Default Data - YAML

	Adding Configs and Users

	Moving Beyond a Single SLS

	Extending Included SLS Data

	Understanding the Render System

	Next Reading

	States tutorial, part 1
	Setting up the Salt State Tree

	Preparing the Top File

	Create an sls module

	Install the package

	Next steps

	States tutorial, part 2
	Call multiple States

	Expand the SLS module

	Require other states

	Next steps

	States tutorial, part 3
	Templating SLS modules

	Using Grains in SLS modules

	Calling Salt modules from templates

	Advanced SLS module syntax

	Next steps

	States tutorial, part 4
	Salt fileserver path inheritance

	Environment configuration

	Practical Example

	Continue learning

	Salt Stack Walkthrough
	Welcome!

	Getting Started

	Salt States

	So Much More!

	Access Control System

	External Authentication System
	Tokens

	Pillar of Salt
	Declaring the Master Pillar

	Pillar namespace flattened

	Including Other Pillars

	Viewing Minion Pillar

	Pillar "get" Function

	Refreshing Pillar Data

	Targeting with Pillar

	Master Config In Pillar

	Master Tops System

	Job Management
	The Minion proc System

	Functions in the saltutil Module

	The jobs Runner
	active

	lookup_jid

	list_jobs

	Salt Scheduling
	Scheduler With Returner

	Running the Salt Master as Unprivileged User

	Troubleshooting
	Running in the Foreground

	What Ports do the Master and Minion Need Open?

	Using salt-call

	Too many open files

	Salt Master Stops Responding

	Salt and SELinux

	Red Hat Enterprise Linux 5

	Common YAML Gotchas

	Live Python Debug Output

	YAML Idiosyncrasies
	Spaces vs Tabs

	Indentation
	Nested Dicts (key=value)

	True/False, Yes/No, On/Off

	Integers are Parsed as Integers

	YAML does not like "Double Short Decs"

	YAML support only plain ASCII

	Underscores stripped in Integer Definitions

	Community
	Mailing List

	IRC
	Salt development

	Follow on Github

	The Red45 Blog

	Example Salt States

	Follow on ohloh

	Other community links

	Developing Salt
	Sending a GitHub pull request

	Keeping Salt Forks in Sync

	Posting patches to the mailing list

	Installing Salt for development

	Using easy_install to Install Salt

	Editing and previewing the documentation

	Salt Based Projects
	Salt Sandbox

	Salt Event System
	Listening for Events

	Firing Events

	Firing Events From Code

	The Salt Mine
	Mine Functions

	Mine Interval

	Salt Virt - The Salt Stack Cloud Controller
	Salt Virt Tutorial

	The Salt Virt Runner

	Based on Live State Data

	Virtual Machine Network Profiles
	Define More Profiles

	Salt SSH
	Salt SSH Roster

	Calling Salt SSH
	Raw Shell Calls

	States Via Salt SSH

	Targeting with Salt SSH

	Salt Rosters
	How Rosters Work
	Targets Data

	Running The Tests
	Writing Tests

	Integration Tests

	Unit Tests

	Integration Tests
	Integration Classes
	ModuleCase

	SyndicCase

	ShellCase

	Examples
	Module Example via ModuleCase Class

	Shell Example via ShellCase

	Reactor System
	Event System

	Mapping Events to Reactor SLS Files

	Fire an event

	Understanding the Structure of Reactor Formulas

	Salt Formulas
	Installation
	Adding a Formula as a GitFS remote

	Adding a Formula directory manually

	Usage
	Including a Formula in an existing State tree

	Including a Formula from a Top File

	Configuring Formula using Pillar

	Modifying default Formula behavior

	Reporting problems & making additions

	Writing Formulas
	Repository structure

	README.rst

	map.jinja

	SLS files

	Configuration and parameterization

	Scripting

	Versioning

	Testing Formulas

	Salt Conventions
	Salt Formulas
	Installation

	Usage

	Writing Formulas

	Salt Release Process
	Feature Release Process

	Maintenance and Bugfix Releases

	Salt Coding Style
	Strings

	Imports

	Vertical is Better

	Indenting

	Code Churn

	Salt Release Process
	Feature Release Process

	Maintenance and Bugfix Releases

	Salt Coding Style
	Strings
	Single Quotes

	Formatting Strings

	Docstring Conventions

	Imports
	Absolute Imports

	Vertical is Better

	Indenting

	Code Churn

	Salt Stack Git Policy
	New Code Entry

	Release Branching
	Feature Release Branching

	Point Releases

	Salt Development Guidelines
	Deprecating Code

	Dunder Dictionaries
	__context__

	External Pillars
	Location

	Configuration

	The Module

	Imports and Logging

	Options

	Initialization

	__virtual__

	ext_pillar

	Example configuration

	Logging Internals

	Modular Systems
	Execution Modules

	State Modules

	Auth

	Fileserver

	Grains

	Output

	Pillar

	Renderers

	Returners

	Runners

	Tops

	Wheel

	Package Providers
	Package Functions

	Package Repo Functions

	Low-Package Functions

	Logging
	Available Configuration Settings
	log_file

	log_level

	log_level_logfile

	log_datefmt

	log_datefmt_logfile

	log_fmt_console

	log_fmt_logfile

	log_granular_levels

	External Logging Handlers

	External Logging Handlers
	Logstash Logging Handler
	UDP Logging Handler

	ZeroMQ Logging Handler

	Sentry Logging Handler
	Threaded Transports

	Logstash Logging Handler
	UDP Logging Handler

	ZeroMQ Logging Handler
	Log Level

	HWM

	Sentry Logging Handler
	Threaded Transports

	Introduction to Extending Salt
	Client API

	Adding Loadable Plugins
	Minion Execution Modules

	Grains

	States

	Renderers

	Returners

	Runners

	Modules
	Modules Are Easy to Write!

	Cross Calling Modules

	Preloaded Modules Data
	Grains Data

	Module Configuration

	Printout Configuration

	Virtual Modules

	Documentation
	Adding Documentation to Salt Modules

	Add Module metadata

	How Functions are Read
	Objects Loaded Into the Salt Minion

	Objects NOT Loaded into the Salt Minion

	Useful Decorators for Modules
	Depends Decorator

	Examples of Salt Modules

	Full list of builtin execution modules
	salt.modules.pkg

	salt.modules.sys

	salt.modules.aliases

	salt.modules.alternatives

	salt.modules.apache

	salt.modules.apt

	salt.modules.archive

	salt.modules.at

	salt.modules.augeas_cfg

	salt.modules.bluez

	salt.modules.brew

	salt.modules.bridge

	salt.modules.bsd_shadow

	salt.modules.cassandra

	salt.modules.cmdmod

	salt.modules.config

	salt.modules.cp

	salt.modules.cron

	salt.modules.daemontools

	salt.modules.darwin_sysctl

	salt.modules.data

	salt.modules.ddns

	salt.modules.debconfmod

	salt.modules.debian_service

	salt.modules.dig

	salt.modules.disk

	salt.modules.djangomod

	salt.modules.dnsmasq

	salt.modules.dnsutil

	salt.modules.dpkg

	salt.modules.ebuild

	salt.modules.eix

	salt.modules.eselect

	salt.modules.event

	salt.modules.extfs

	salt.modules.file

	salt.modules.freebsd_sysctl

	salt.modules.freebsdjail

	salt.modules.freebsdkmod

	salt.modules.freebsdpkg

	salt.modules.freebsdservice

	salt.modules.gem

	salt.modules.gentoo_service

	salt.modules.gentoolkitmod

	salt.modules.git

	salt.modules.glance

	salt.modules.grains

	salt.modules.groupadd

	salt.modules.grub_legacy

	salt.modules.guestfs

	salt.modules.hg

	salt.modules.hosts

	salt.modules.img

	salt.modules.iptables

	salt.modules.key

	salt.modules.keyboard

	salt.modules.keystone

	salt.modules.kmod

	salt.modules.launchctl

	salt.modules.layman

	salt.modules.ldapmod

	salt.modules.linux_acl

	salt.modules.linux_lvm

	salt.modules.linux_sysctl

	salt.modules.localemod

	salt.modules.locate

	salt.modules.logrotate

	salt.modules.lxc

	salt.modules.makeconf

	salt.modules.match

	salt.modules.mdadm

	salt.modules.mine

	salt.modules.modjk

	salt.modules.mongodb

	salt.modules.monit

	salt.modules.moosefs

	salt.modules.mount

	salt.modules.munin

	salt.modules.mysql

	salt.modules.netbsd_sysctl

	salt.modules.netbsdservice

	salt.modules.network

	salt.modules.nfs3

	salt.modules.nginx

	salt.modules.nova

	salt.modules.npm

	salt.modules.nzbget

	salt.modules.openbsdpkg

	salt.modules.openbsdservice

	salt.modules.osxdesktop

	salt.modules.pacman

	salt.modules.pam

	salt.modules.parted

	salt.modules.pecl

	salt.modules.pillar

	salt.modules.pip

	salt.modules.pkg_resource

	salt.modules.pkgin

	salt.modules.pkgng

	salt.modules.pkgutil

	salt.modules.portage_config

	salt.modules.postgres

	salt.modules.poudriere

	salt.modules.ps

	salt.modules.publish

	salt.modules.puppet

	salt.modules.pw_group

	salt.modules.pw_user

	salt.modules.qemu_img
	Qemu-img Command Wrapper

	salt.modules.qemu_nbd
	Qemu Command Wrapper

	salt.modules.quota

	salt.modules.rabbitmq

	salt.modules.rbenv

	salt.modules.reg

	salt.modules.ret

	salt.modules.rh_ip

	salt.modules.rh_service

	salt.modules.rpm

	salt.modules.rvm

	salt.modules.s3

	salt.modules.saltutil

	salt.modules.seed

	salt.modules.selinux

	salt.modules.service

	salt.modules.shadow

	salt.modules.smartos_imgadm

	salt.modules.smartos_vmadm

	salt.modules.smf

	salt.modules.solaris_group

	salt.modules.solaris_shadow

	salt.modules.solaris_user

	salt.modules.solarispkg

	salt.modules.solr
	Apache Solr Salt Module

	salt.modules.sqlite3

	salt.modules.ssh

	salt.modules.state

	salt.modules.status

	salt.modules.supervisord

	salt.modules.svn

	salt.modules.sysbench

	salt.modules.sysmod

	salt.modules.system

	salt.modules.systemd

	salt.modules.test

	salt.modules.timezone

	salt.modules.tls

	salt.modules.tomcat

	salt.modules.upstart

	salt.modules.useradd

	salt.modules.virt

	salt.modules.virtualenv

	salt.modules.win_disk

	salt.modules.win_file

	salt.modules.win_groupadd

	salt.modules.win_network

	salt.modules.win_pkg

	salt.modules.win_service

	salt.modules.win_shadow

	salt.modules.win_status

	salt.modules.win_system

	salt.modules.win_useradd

	salt.modules.xapi

	salt.modules.yumpkg

	salt.modules.yumpkg5

	salt.modules.zfs

	salt.modules.zpool

	salt.modules.zypper

	Returners
	Using Returners

	Writing a Returner
	Examples

	Full list of builtin returner modules
	salt.returners.carbon_return

	salt.returners.cassandra_return

	salt.returners.local

	salt.returners.mongo_future_return

	salt.returners.mongo_return

	salt.returners.mysql

	salt.returners.postgres

	salt.returners.redis_return

	salt.returners.sentry_return

	salt.returners.smtp_return

	salt.returners.sqlite3

	salt.returners.syslog_return

	File State Backups
	Backed-up Files

	Interacting with Backups
	Listing

	Restoring

	Deleting

	Extending External SLS Data
	The Extend Declaration

	Extend is a Top Level Declaration

	The Requisite "in" Statement

	Rules to Extend By

	Failhard Global Option
	State Level Failhard

	Global Failhard

	Highstate data structure definitions
	The Salt State Tree
	Include declaration

	Module reference

	ID declaration

	Extend declaration

	State declaration

	Requisite declaration

	Requisite reference

	Function declaration

	Function arg declaration

	Name declaration

	Names declaration

	Large example

	Include and Exclude
	Include

	Relative Include

	Exclude

	State Enforcement
	State management

	Understanding the Salt State System Components
	Salt SLS System

	Renderer System

	Reloading Modules

	State System Layers
	Function Call

	Low Chunk

	Low State

	High Data

	SLS

	HighState

	OverState

	Remote Control States
	Creating States Trigger Remote Executions

	Calling Multiple State Runs

	Ordering States
	State Auto Ordering

	Requisite Statements
	Multiple Requisites

	The Require Requisite

	The Watch Requisite

	Watch and the mod_watch Function

	The Order Option

	OverState System
	The Over State SLS

	Adding Functions To Overstate

	Executing the Over State

	State Providers
	Setting a Provider in the Minion Config File
	Provider: pkg

	Provider: service

	Provider: user

	Provider: group

	Arbitrary Module Redirects

	Requisites
	Requisite and Requisite in types
	Require

	Require an entire sls file

	Watch

	Prereq

	Use

	Require In

	Watch In

	Prereq In

	Startup States
	Examples:

	State Testing
	Default Test

	The Top File
	Environments

	Other Ways of Targeting Minions

	How Top Files Are Compiled

	SLS Template Variable Reference
	Salt

	Opts

	Pillar

	Grains

	env

	sls

	State Modules
	States are Easy to Write!

	Using Custom State Modules

	Cross Calling Modules

	Return Data

	Test State

	Watcher Function

	Mod_init Interface

	Full list of builtin state modules
	salt.states.alias
	Configuration of email aliases.

	salt.states.alternatives
	Configuration of the alternatives system

	salt.states.apt
	Package management operations specific to APT- and DEB-based systems

	salt.states.augeas
	Configuration management using Augeas

	salt.states.cmd
	Execution of arbitrary commands

	salt.states.cron
	Management of cron, the Unix command scheduler.

	salt.states.debconfmod
	Management of debconf selections.

	salt.states.disk

	salt.states.eselect
	Management of Gentoo configuration using eselect

	salt.states.file
	Operations on regular files, special files, directories, and symlinks.

	salt.states.gem
	Installation of Ruby modules packaged as gems.

	salt.states.git
	Interaction with Git repositories.

	salt.states.grains
	Manage grains on the minion.

	salt.states.group
	Management of user groups.

	salt.states.hg
	Interaction with Mercurial repositories.

	salt.states.host
	Management of addresses and names in hosts file.

	salt.states.iptables
	Management of iptables

	salt.states.keyboard
	Management of keyboard layouts

	salt.states.kmod
	Loading and unloading of kernel modules.

	salt.states.layman
	Management of Gentoo Overlays using layman

	salt.states.libvirt

	salt.states.locale

	salt.states.lvm
	Management of Linux logical volumes

	salt.states.makeconf
	Management of Gentoo make.conf

	salt.states.mdadm
	Managing software RAID with mdadm

	salt.states.modjk_worker

	salt.states.module
	Execution of Salt modules from within states.

	salt.states.mongodb_database

	salt.states.mongodb_user
	Management of Mongodb users

	salt.states.mount
	Mounting of filesystems.

	salt.states.mysql_database
	Management of MySQL databases (schemas).

	salt.states.mysql_grants
	Management of MySQL grants (user permissions).

	salt.states.mysql_user
	Management of MySQL users.

	salt.states.network
	Configuration of network interfaces.

	salt.states.npm
	Installation of NPM Packages

	salt.states.pecl
	Installation of PHP Extensions Using pecl

	salt.states.pip
	Installation of Python Packages Using pip

	salt.states.pkg
	Installation of packages using OS package managers such as yum or apt-get

	salt.states.pkgng
	Manage package remote repo using FreeBSD pkgng

	salt.states.pkgrepo
	Management of package repos

	salt.states.portage_config
	Management of Portage package configuration on Gentoo

	salt.states.postgres_database
	Management of PostgreSQL databases.

	salt.states.postgres_group
	Management of PostgreSQL groups (roles).

	salt.states.postgres_user
	Management of PostgreSQL users (roles).

	salt.states.quota
	Management of POSIX Quotas

	salt.states.rabbitmq_user

	salt.states.rabbitmq_vhost

	salt.states.rbenv
	Managing Ruby installations with rbenv.

	salt.states.rvm
	Managing Ruby installations and gemsets with Ruby Version Manager (RVM).

	salt.states.selinux
	Management of SELinux rules.

	salt.states.service
	Starting or restarting of services and daemons.

	salt.states.ssh_auth
	Control of entries in SSH authorized_key files.

	salt.states.ssh_known_hosts
	Control of SSH known_hosts entries.

	salt.states.stateconf
	Stateconf System

	salt.states.supervisord
	Interaction with the Supervisor daemon.

	salt.states.svn
	Manage SVN repositories

	salt.states.sysctl
	Configuration of the Linux kernel using sysctrl.

	salt.states.timezone
	Management of timezones

	salt.states.tomcat

	salt.states.user
	Management of user accounts.

	salt.states.virtualenv
	Setup of Python virtualenv sandboxes.

	Renderers
	Multiple Renderers

	Composing Renderers

	Writing Renderers

	Examples

	Full list of builtin renderer modules
	salt.renderers.jinja
	Jinja in States

	Passing Variables

	Include and Import

	Variable and block Serializers

	Template Serializers

	Macros

	Template Inheritance

	Filters

	Jinja in Files

	salt.renderers.json

	salt.renderers.mako

	salt.renderers.py

	salt.renderers.pydsl
	Special integration with the cmd state

	Implicit ordering of states

	Render time state execution

	Integration with the stateconf renderer

	salt.renderers.stateconf

	salt.renderers.wempy

	salt.renderers.yaml

	Pillars

	Full list of builtin pillar modules
	salt.pillar.cmd_json

	salt.pillar.cmd_yaml

	salt.pillar.cobbler
	Cobbler Pillar

	Configuring the Cobbler ext_pillar

	Module Documentation

	salt.pillar.django_orm
	Configuring the django_orm ext_pillar

	Module Documentation

	salt.pillar.git_pillar

	salt.pillar.hiera

	salt.pillar.libvirt

	salt.pillar.mongo
	Salt Master Mongo Configuration

	Configuring the Mongo ext_pillar

	Module Documentation

	salt.pillar.pillar_ldap

	salt.pillar.puppet

	salt.pillar.reclass_adapter

	Master Tops

	Full list of builtin master tops modules
	salt.tops.cobbler
	Cobbler Tops

	Module Documentation

	salt.tops.ext_nodes
	External Nodes Classifier

	salt.tops.mongo
	Salt Master Mongo Configuration

	Configuring the Mongo Tops Subsystem

	Module Documentation

	salt.tops.reclass_adapter

	Salt Runners
	Writing Salt Runners

	Examples

	Full list of runner modules
	salt.runners.cache

	salt.runners.doc

	salt.runners.fileserver

	salt.runners.jobs

	salt.runners.launchd

	salt.runners.manage

	salt.runners.network

	salt.runners.search

	salt.runners.state

	salt.runners.virt

	salt.runners.winrepo

	Full list of builtin wheel modules
	salt.wheel.config

	salt.wheel.file_roots

	salt.wheel.key

	salt.wheel.pillar_roots

	Full list of builtin auth modules
	salt.auth.keystone

	salt.auth.ldap

	salt.auth.pam

	salt.auth.stormpath_mod

	Full list of builtin output modules
	salt.output.grains

	salt.output.highstate

	salt.output.json_out

	salt.output.key

	salt.output.nested

	salt.output.no_out

	salt.output.no_return

	salt.output.overstatestage

	salt.output.pprint_out

	salt.output.raw

	salt.output.txt

	salt.output.virt_query

	salt.output.yaml_out

	Python client API
	LocalClient

	Salt Caller

	RunnerClient

	WheelClient

	Peer Communication
	Peer Configuration

	Peer Runner Communication

	Using Peer Communication

	Client ACL system
	Permission Issues

	Salt Syndic
	Configuring the Syndic

	Running the Syndic

	File Server Backends
	Environments

	Dynamic Module Distribution
	Sync Via States

	Sync Via the saltutil Module

	File Server Configuration
	Environments

	Directory Overlay

	Local File Server

	Salt File Server
	The cp Module
	Environments

	get_file

	get_dir

	File Server Client API
	FileClient Class

	Full list of builtin fileserver modules
	salt.fileserver.gitfs

	salt.fileserver.hgfs

	salt.fileserver.roots

	salt.fileserver.s3fs

	Configuration file examples
	Example master configuration file

	Example minion configuration file

	Configuring the Salt Master
	Primary Master Configuration
	interface

	publish_port

	user

	max_open_files

	worker_threads

	ret_port

	pidfile

	root_dir

	pki_dir

	cachedir

	keep_jobs

	job_cache

	ext_job_cache

	minion_data_cache

	enforce_mine_cache

	sock_dir

	Master Security Settings
	open_mode

	auto_accept

	autosign_file

	client_acl

	client_acl_blacklist

	external_auth

	token_expire

	file_recv

	Master Module Management
	runner_dirs

	cython_enable

	Master State System Settings
	state_verbose

	state_output

	state_top

	external_nodes

	renderer

	failhard

	test

	Master File Server Settings
	file_roots

	hash_type

	file_buffer_size

	Pillar Configuration
	pillar_roots

	ext_pillar

	Syndic Server Settings
	order_masters

	syndic_master

	syndic_master_port

	syndic_log_file

	syndic_pidfile

	Peer Publish Settings
	peer

	peer_run

	Node Groups

	Master Logging Settings
	log_file

	log_level

	log_level_logfile

	log_datefmt

	log_datefmt_logfile

	log_fmt_console

	log_fmt_logfile

	log_granular_levels

	Include Configuration
	default_include

	include

	Configuring the Salt Minion
	Minion Primary Configuration
	master

	master_port

	user

	pidfile

	root_dir

	pki_dir

	id

	append_domain

	cachedir

	verify_env

	cache_jobs

	sock_dir

	backup_mode

	acceptance_wait_time

	random_reauth_delay

	acceptance_wait_time_max

	dns_check

	ipc_mode

	tcp_pub_port

	tcp_pull_port

	Minion Module Management
	disable_modules

	disable_returners

	module_dirs

	returner_dirs

	states_dirs

	render_dirs

	cython_enable

	providers

	State Management Settings
	renderer

	state_verbose

	state_output

	autoload_dynamic_modules

	environment

	File Directory Settings
	file_client

	file_roots

	hash_type

	pillar_roots

	Security Settings
	open_mode

	Thread Settings

	Minion Logging Settings
	log_file

	log_level

	log_level_logfile

	log_datefmt

	log_datefmt_logfile

	log_fmt_console

	log_fmt_logfile

	log_granular_levels

	Include Configuration
	default_include

	include

	Frozen Build Update Settings
	update_url

	update_restart_services

	Salt code and internals
	Contents
	Exceptions

	salt.exceptions

	Network Topology
	Servers

	PUB/SUB

	Return

	Windows Software Repository
	Operation

	Usage

	Generate Repo Cache File

	Install Windows Software

	Uninstall Windows Software

	Standalone Minion Salt Windows Repo Module

	Git Hosted Repo

	Troubleshooting
	Incorrect name/version

	Changes to sls files not being picked up

	Packages management under Windows 2003

	Command Line Reference
	Using the Salt Command
	Defining the Target Minions

	More Powerful Targets

	Calling the Function

	Compound Command Execution

	salt
	Synopsis

	Description

	Options
	Logging Options

	Target Selection

	Output Options

	See also

	salt-master
	Synopsis

	Description

	Options
	Logging Options

	See also

	salt-minion
	Synopsis

	Description

	Options
	Logging Options

	See also

	salt-key
	Synopsis

	Description

	Options
	Logging Options

	Output Options

	Actions

	Key Generation Options

	See also

	salt-cp
	Synopsis

	Description

	Options
	Logging Options

	Target Selection

	See also

	salt-call
	Synopsis

	Description

	Options
	Logging Options

	Output Options

	See also

	salt-run
	Synopsis

	Description

	Options
	Logging Options

	See also

	salt-ssh
	Synopsis

	Description

	Options
	Target Selection

	Logging Options

	Output Options

	See also

	salt-syndic
	Synopsis

	Description

	Options
	Logging Options

	See also

	Release notes and upgrade instructions
	Salt 0.17.0 Release Notes
	Major Features

	Salt 0.16.4 Release Notes

	Salt 0.16.3 Release Notes

	Salt 0.16.2 Release Notes
	Windows

	Grains

	Pillar

	Peer Publishing

	Minion

	User/Group Management

	File Management

	Package/Repository Management

	Service Management

	Networking

	SSH

	pip

	MySQL

	PostgreSQL

	Miscellaneous

	Salt 0.16.0 Release Notes
	Major Features

	Salt 0.15.1 Release Notes
	Security Updates

	Salt 0.15.0 Release Notes
	Major Features

	Salt 0.14.0 Release Notes
	Major Features

	Salt 0.13.0 Release Notes
	Major Features

	Noteworthy Changes

	Salt 0.12.0 Release Notes
	Major Features

	Salt 0.11.0 Release Notes
	Major Features

	Notable Changes

	Salt 0.10.5 Release Notes
	Major Features

	Noteworthy Changes

	Salt 0.10.4 Release Notes
	Major Features

	Security

	Salt 0.10.3 Release Notes
	Major Features

	Security Fix

	Salt 0.10.2 Release Notes
	Major Features

	Test Updates

	Many Fixes

	Salt 0.10.0 Release Notes
	Major Features

	State Call Data Files

	Turning Off the Job Cache

	Test Updates

	Many Fixes

	Salt 0.9.9 Release Notes
	Major Features

	New Tests

	Salt 0.9.8 Release Notes
	Upgrade Considerations

	Major Features

	In Progress Development

	Salt 0.9.7 Release Notes
	Major Features

	Salt 0.9.6 Release Notes
	New Features

	Salt 0.9.5 Release Notes
	Community

	Major Features

	Packaging Updates

	Refinement

	Salt 0.9.4 Release Notes
	Download!

	New Features

	Salt 0.9.3 Release Notes
	Download!

	New Features

	Module and State Additions

	Salt 0.9.2 Release Notes
	Download!

	New Features

	Notable Bug Fixes

	Salt 0.9.0 Release Notes
	Download!

	New Features

	New Modules

	Salt 0.8.9 Release Notes
	Download!

	New Features

	New Modules

	Salt 0.8.8 release notes

	Salt 0.8.7 release notes

	Salt 0.8.0 release notes
	Salt-cp -

	Cython minion modules -

	Dynamic Returners -

	Configurable Minion Modules -

	Advanced Minion Threading:

	Salt 0.7.0 release notes

	Salt 0.6.0 release notes

Frequently Asked Questions

Is Salt open-core?

No. Salt is 100% committed to being open-source, including all of our APIs and
the new 'Halite' web interface [https://github.com/saltstack/halite] which will be included in version 0.17.0. It
is developed under the Apache 2.0 license [http://www.apache.org/licenses/LICENSE-2.0.html], allowing it to be used in both
open and proprietary projects.

What ports should I open on my firewall?

Minions need to be able to connect to the Master on TCP ports 4505 and 4506.
Minions do not need any inbound ports open. More detailed information on
firewall settings can be found here.

My script runs every time I run a state.highstate. Why?

You are probably using cmd.run rather than
cmd.wait. A cmd.wait state will only run when there has been a change in a
state that it is watching.

A cmd.run state will run the corresponding command
every time (unless it is prevented from running by the unless or onlyif
arguments).

More details can be found in the docmentation for the cmd states.

When I run test.ping, why don't the Minions that aren't responding return anything? Returning False would be helpful.

The reason for this is because the Master tells Minions to run
commands/functions, and listens for the return data, printing it to the screen
when it is received. If it doesn't receive anything back, it doesn't have
anything to display for that Minion.

There are a couple options for getting information on Minions that are not
responding. One is to use the verbose (-v) option when you run salt
commands, as it will display "Minion did not return" for any Minions which time
out.

salt -v '*' pkg.install zsh

Another option is to use the manage.down
runner:

salt-run manage.down

How does Salt determine the Minion's id?

If the Minion id is not configured explicitly (using the id
parameter), Salt will determine the id based on the hostname. Exactly how this
is determined varies a little between operating systems and is described in
detail here.

I'm using gitfs and my custom modules/states/etc are not syncing. Why?

In versions of Salt 0.16.3 or older, there is a bug in gitfs which can affect the syncing of custom types.
Upgrading to 0.16.4 or newer will fix this.

Why aren't my custom modules/states/etc. available on my Minions?

Custom modules are only synced to Minions when state.highstate, saltutil.sync_modules, or saltutil.sync_all is run. Similarly, custom states are only
synced to Minions when state.highstate,
saltutil.sync_states, or
saltutil.sync_all is run.

Other custom types (renderers, outputters, etc.) have similar behavior, see the
documentation for the saltutil module for more
information.

Module X isn't available, even though the shell command it uses is installed. Why?

This is most likely a PATH issue. Did you custom-compile the software which the
module requires? RHEL/CentOS/etc. in particular override the root user's path
in /etc/init.d/functions, setting it to /sbin:/usr/sbin:/bin:/usr/bin,
making software installed into /usr/local/bin unavailable to Salt when the
Minion is started using the initscript. In version 0.18.0, Salt will have a
better solution for these sort of PATH-related issues, but recompiling the
software to install it into a location within the PATH should resolve the
issue in the meantime. Alternatively, you can create a symbolic link within the
PATH using a file.symlink state.

/usr/bin/foo:
 file.symlink:
 - target: /usr/local/bin/foo

Introduction to Salt

We’re not just talking about NaCl.

The 30 second summary

Salt is:

	a configuration management system, capable of maintaining remote nodes
in defined states (for example, ensuring that specific packages are installed and
specific services are running)

	a distributed remote execution system used to execute commands and
query data on remote nodes, either individually or by arbitrary
selection criteria

It was developed in order to bring the best solutions found in the
world of remote execution together and make them better, faster, and more
malleable. Salt accomplishes this through its ability to handle large loads of
information, and not just dozens but hundreds and even thousands of individual
servers quickly through a simple and manageable interface.

Simplicity

Providing versatility between massive scale deployments and smaller systems may seem
daunting, but Salt is very simple to set up and maintain, regardless of the
size of the project. The architecture of Salt is designed to work with any
number of servers, from a handful of local network systems to international
deployments across different datacenters. The topology is a simple
server/client model with the needed functionality built into a single set of
daemons. While the default configuration will work with little to no
modification, Salt can be fine tuned to meet specific needs.

Parallel execution

The core functions of Salt:

	enable commands to remote systems to be called in parallel rather than serially

	use a secure and encrypted protocol

	use the smallest and fastest network payloads possible

	provide a simple programming interface

Salt also introduces more granular controls to the realm of remote
execution, allowing systems to be targeted not just by hostname, but
also by system properties.

Building on proven technology

Salt takes advantage of a number of technologies and techniques. The
networking layer is built with the excellent ZeroMQ [http://www.zeromq.org/] networking
library, so the Salt daemon includes a viable and transparent AMQ
broker. Salt uses public keys for authentication with the master
daemon, then uses faster AES [https://en.wikipedia.org/wiki/Advanced_Encryption_Standard] encryption for payload communication;
authentication and encryption are integral to Salt. Salt takes
advantage of communication via msgpack [http://msgpack.org/], enabling fast and light
network traffic.

Python client interface

In order to allow for simple expansion, Salt execution routines can be written
as plain Python modules. The data collected from Salt executions can be sent
back to the master server, or to any arbitrary program. Salt can be called from
a simple Python API, or from the command line, so that Salt can be used to
execute one-off commands as well as operate as an integral part of a larger
application.

Fast, flexible, scalable

The result is a system that can execute commands at high speed on
target server groups ranging from one to very many servers. Salt is
very fast, easy to set up, amazingly malleable and provides a single
remote execution architecture that can manage the diverse
requirements of any number of servers. The Salt infrastructure
brings together the best of the remote execution world, amplifies its
capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

Open

Salt is developed under the Apache 2.0 license [http://www.apache.org/licenses/LICENSE-2.0.html], and can be used for
open and proprietary projects. Please submit your expansions back to
the Salt project so that we can all benefit together as Salt grows.
Please feel free to sprinkle Salt around your systems and let the
deliciousness come forth.

Installation

The Salt system setup is amazingly simple, as this is one of the central design
goals of Salt.

See also

Installing Salt for development and contributing
to the project.

Quick Install

Many popular distributions will be able to install the salt minion by executing
the bootstrap script:

wget -O - http://bootstrap.saltstack.org | sudo sh

Run the following script to install just the Salt Master:

curl -L http://bootstrap.saltstack.org | sudo sh -s -- -M -N

The script should also make it simple to install a salt master, if desired.

Currently the install script has been tested to work on:

	Ubuntu 10.x/11.x/12.x

	Debian 6.x

	CentOS 6.3

	Fedora

	Arch

	FreeBSD 9.0

See Salt Bootstrap [https://github.com/saltstack/salt-bootstrap] for more information.

Platform-specific installation instructions

These guides go into detail how to install salt on a given platform.

	Arch Linux

	Debian Installation

	Fedora

	FreeBSD

	Gentoo

	OS X

	RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

	Solaris

	Ubuntu Installation

	Windows

	SUSE Installation

Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.

	Python 2.6 [http://python.org/download/] >= 2.6 <3.0

	ZeroMQ [http://www.zeromq.org/] >= 2.1.9

	pyzmq [https://github.com/zeromq/pyzmq] >= 2.1.9 - ZeroMQ Python bindings

	PyCrypto [http://www.dlitz.net/software/pycrypto/] - The Python cryptography toolkit

	msgpack-python [http://pypi.python.org/pypi/msgpack-python/0.1.12] - High-performance message interchange format

	YAML [http://pyyaml.org/] - Python YAML bindings

	Jinja2 [http://jinja.pocoo.org/] - parsing Salt States (configurable in the master settings)

Optional Dependencies

	mako [http://www.makotemplates.org/] - an optional parser for Salt States (configurable in the master
settings)

	gcc - dynamic Cython [http://cython.org/] module compiling

Arch Linux

Installation

Salt is currently available via the Arch User Repository (AUR). There are
currently stable and -git packages available.

Stable Release

Install Salt stable releases from the Arch Linux AUR as follows:

wget https://aur.archlinux.org/packages/sa/salt/salt.tar.gz
tar xf salt.tar.gz
cd salt/
makepkg -is

A few of Salt's dependencies are currently only found within the AUR, so it is
necessary to download and run makepkg -is on these as well. As a reference, Salt
currently relies on the following packages which are only available via the AUR:

	https://aur.archlinux.org/packages/py/python2-msgpack/python2-msgpack.tar.gz

	https://aur.archlinux.org/packages/py/python2-psutil/python2-psutil.tar.gz

Note

yaourt

If a tool such as Yaourt [https://aur.archlinux.org/packages.php?ID=5863] is used, the dependencies will be
gathered and built automatically.

The command to install salt using the yaourt tool is:

yaourt salt

Tracking develop

To install the bleeding edge version of Salt (may include bugs!),
use the -git package. Installing the -git package as follows:

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz
cd salt-git/
makepkg -is

See the note above about Salt's dependencies.

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemctl as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you've completed all of these steps you're ready to start your Salt
Master. You should be able to start your Salt Master now using the command
seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

Debian Installation

Currently the latest packages for Debian Old Stable, Stable and
Unstable (Squeeze, Wheezy and Sid) are published in our
(saltstack.com) debian repository.

Configure Apt

Squeeze (Old Stable)

For squeeze, you will need to enable the debian backports repository
as well as the debian.saltstack.com repository. To do so, add the
following to /etc/apt/sources.list or a file in
/etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian squeeze-saltstack main
deb http://backports.debian.org/debian-backports squeeze-backports main contrib non-free

Wheezy (Stable)

For wheezy, the following line is needed in either
/etc/apt/sources.list or a file in /etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian wheezy-saltstack main

Sid (Unstable)

For sid, the following line is needed in either
/etc/apt/sources.list or a file in /etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian unstable main

Import the repository key.

You will need to import the key used for signing.

wget -q -O- "http://debian.saltstack.com/debian-salt-team-joehealy.gpg.key" | apt-key add -

Note

You can optionally verify the key integrity with sha512sum using the
public key signature shown here. E.g:

echo "b702969447140d5553e31e9701be13ca11cc0a7ed5fe2b30acb8491567560ee62f834772b5095d735dfcecb2384a5c1a20045f52861c417f50b68dd5ff4660e6 debian-salt-team-joehealy.gpg.key" | sha512sum -c

Update the package database

apt-get update

Install packages

Install the Salt master, minion, or syndic from the repository with the apt-get
command. These examples each install one daemon, but more than one package name
may be given at a time:

apt-get install salt-master

apt-get install salt-minion

apt-get install salt-syndic

Post-installation tasks

Now, go to the Configuring Salt page.

Notes

1. These packages will be backported from the packages intended to be
uploaded into debian unstable. This means that the packages will be
built for unstable first and then backported over the next day or so.

2. These packages will be tracking the released versions of salt
rather than maintaining a stable fixed feature set. If a fixed version
is what you desire, then either pinning or manual installation may be
more appropriate for you.

3. The version numbering and backporting process should provide clean
upgrade paths between debian versions.

If you have any questions regarding these, please email the mailing
list or look for joehh on irc.

Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora
repositories and EPEL [http://fedoraproject.org/wiki/EPEL]. It is installable using yum. Fedora will have more
up to date versions of Salt than other members of the Red Hat family, which
makes it a great place to help improve Salt!

Installation

Salt can be installed using yum and is available in the standard Fedora
repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to
install the appropriate package for the role the machine will play. Typically, there
will be one master and multiple minions.

yum install salt-master
yum install salt-minion

Post-installation tasks

Master

To have the Master start automatically at boot time:

systemctl enable salt-master.service

To start the Master:

systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

systemctl enable salt-minion.service

To start the Minion:

systemctl start salt-minion.service

Now go to the Configuring Salt page.

FreeBSD

Salt was added to the FreeBSD ports tree Dec 26th, 2011 by Christer Edwards
<christer.edwards@gmail.com>. It has been tested on FreeBSD 7.4, 8.2, 9.0 and 9.1
releases.

Salt is dependent on the following additional ports. These will be installed as
dependencies of the sysutils/py-salt port.

/devel/py-yaml
/devel/py-pyzmq
/devel/py-Jinja2
/devel/py-msgpack
/security/py-pycrypto
/security/py-m2crypto

Installation

To install Salt from the FreeBSD ports tree, use the command:

make -C /usr/ports/sysutils/py-salt install clean

Post-installation tasks

Master

Copy the sample configuration file:

cp /usr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf or /etc/rc.conf.local and add:

+ salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

service salt_master start

Minion

Copy the sample configuration file:

cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.conf or /etc/rc.conf.local and add:

+ salt_minion_enable="YES"
+ salt_minion_paths="/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin"

Start the Minion

Start the Salt Minion as follows:

service salt_minion start

Now go to the Configuring Salt page.

Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

OS X

Dependency Installation

ZeroMQ and swig need to be installed first.

For installs using python installed via homebrew [https://github.com/mxcl/homebrew/wiki/Homebrew-and-Python], sudo should be unnecessary:

	Using homebrew with

	XCode Command Line Tool (XCode: Preferences: Downloads: Command Line Tools: Install) [https://developer.apple.com/xcode/] pre-installed:

brew install python
brew install swig
brew install zmq
pip install salt

	This should pip install salt and its dependencies, such as:

	Jinja2 M2Crypto msgpack-python pycrypto PyYAML pyzmq markupsafe

Whereas when using macports, zmq, swig, and pip may need to be installed this way:

sudo port install py-zmq
sudo port install py27-m2crypto
sudo port install py27-crypto
sudo port install py27-msgpack
sudo port install swig-python
sudo port install py-pip

For installs using the OS X system python, pip install needs to use 'sudo':

sudo pip install salt

Salt-Master Customizations

To run salt-master on OS X, the root user maxfiles limit must be increased:

sudo launchctl limit maxfiles 4096 8192

And sudo add this configuration option to the /etc/salt/master file:

max_open_files: 8192

Now the salt-master should run without errors:

sudo /usr/local/share/python/salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

Beginning with version 0.9.4, Salt has been available in EPEL [http://fedoraproject.org/wiki/EPEL]. It is installable using yum. Salt should work properly with all mainstream derivatives
of RHEL, including CentOS, Scientific Linux, Oracle Linux and Amazon Linux. Report any bugs or issues to the salt GitHub project.

Installation

Salt and all dependencies have been accepted into the yum repositories for
EPEL5 and EPEL6. The latest salt version can be found in epel-testing, while an
older but more tested version can be found in regular epel.

Example showing how to install salt from epel-testing:

yum --enablerepo=epel-testing install salt-minion

On RHEL6, the proper Jinja package 'python-jinja2' was moved from EPEL to the
"RHEL Server Optional Channel". Verify this repository is enabled before
installing salt on RHEL6.

Salt can be installed using yum and is available in the standard Fedora
repositories.

Enabling EPEL on RHEL

If EPEL is not enabled on your system, you can use the following commands to
enable it.

For RHEL 5:

rpm -Uvh http://mirror.pnl.gov/epel/5/i386/epel-release-5-4.noarch.rpm

For RHEL 6:

rpm -Uvh http://ftp.linux.ncsu.edu/pub/epel/6/i386/epel-release-6-8.noarch.rpm

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for the role the machine will play. Typically, there will be one master and multiple minions.

On the salt-master, run this:

yum install salt-master

On each salt-minion, run this:

yum install salt-minion

Post-installation tasks

Master

To have the Master start automatically at boot time:

chkconfig salt-master on

To start the Master:

service salt-master start

Minion

To have the Minion start automatically at boot time:

chkconfig salt-minion on

To start the Minion:

service salt-minion start

Now go to the Configuring Salt page.

Solaris

Salt was added to the OpenCSW package repository in September of 2012 by Romeo
Theriault <romeot@hawaii.edu> at version 0.10.2 of Salt. It has mainly been
tested on Solaris 10 (sparc), though it is built for and has been tested
minimally on Solaris 10 (x86), Solaris 9 (sparc/x86) and 11 (sparc/x86).
(Please let me know if you're using it on these platforms!) Most of the testing
has also just focused on the minion, though it has verified that the master
starts up successfully on Solaris 10.

Comments and patches for better support on these platforms is very welcome.

As of version 0.10.4, Solaris is well supported under salt, with all of the
following working well:

	remote execution

	grain detection

	service control with SMF

	'pkg' states with 'pkgadd' and 'pkgutil' modules

	cron modules/states

	user and group modules/states

	shadow password management modules/states

Salt is dependent on the following additional packages. These will
automatically be installed as dependencies of the py_salt package.:

py_yaml
py_pyzmq
py_jinja2
py_msgpack_python
py_m2crypto
py_crypto
python

Installation

To install Salt from the OpenCSW package repository you first need to install
pkgutil [http://www.opencsw.org/manual/for-administrators/getting-started.html] assuming you don't already have it installed:

On Solaris 10:

pkgadd -d http://get.opencsw.org/now

On Solaris 9:

wget http://mirror.opencsw.org/opencsw/pkgutil.pkg
pkgadd -d pkgutil.pkg all

Once pkgutil is installed you'll need to edit it's config file
/etc/opt/csw/pkgutil.conf to point it at the unstable catalog:

- #mirror=http://mirror.opencsw.org/opencsw/testing
+ mirror=http://mirror.opencsw.org/opencsw/unstable

OK, time to install salt.

Update the catalog
root> /opt/csw/bin/pkgutil -U
Install salt
root> /opt/csw/bin/pkgutil -i -y py_salt

Minion Configuration

Now that salt is installed you can find it's configuration files in
/etc/opt/csw/salt/.

You'll want to edit the minion config file to set the name of your salt master
server:

- #master: salt
+ master: your-salt-server

If you would like to use pkgutil [http://www.opencsw.org/manual/for-administrators/getting-started.html] as the default package provider for your
Solaris minions, you can do so using the providers option in the
minion config file.

You can now start the salt minion like so:

On Solaris 10:

svcadm enable salt-minion

On Solaris 9:

/etc/init.d/salt-minion start

You should now be able to log onto the salt master and check to see if the
salt-minion key is awaiting acceptance:

salt-key -l un

Accept the key:

salt-key -a <your-salt-minion>

Run a simple test against the minion:

salt '<your-salt-minion>' test.ping

Troubleshooting

Logs are in /var/log/salt

Ubuntu Installation

Add repository

The latest packages for Ubuntu are published in the saltstack PPA. If you have
the add-apt-repository utility, you can add the repository and import the
key in one step:

sudo add-apt-repository ppa:saltstack/salt

add-apt-repository: command not found?

The add-apt-repository command is not always present on Ubuntu systems.
This can be fixed by installing python-software-properties:

sudo apt-get install python-software-properties

Note that since Ubuntu 12.10 (Raring Ringtail), add-apt-repository is
found in the software-properties-common package, and is part of the base
install. Thus, add-apt-repository should be able to be used
out-of-the-box to add the PPA.

Alternately, manually add the repository and import the PPA key with these
commands:

echo deb http://ppa.launchpad.net/saltstack/salt/ubuntu `lsb_release -sc` main | sudo tee /etc/apt/sources.list.d/saltstack.list
wget -q -O- "http://keyserver.ubuntu.com:11371/pks/lookup?op=get&search=0x4759FA960E27C0A6" | sudo apt-key add -

After adding the repository, update the package management database:

sudo apt-get update

Install packages

Install the Salt master, minion, or syndic from the repository with the apt-get
command. These examples each install one daemon, but more than one package name
may be given at a time:

sudo apt-get install salt-master

sudo apt-get install salt-minion

sudo apt-get install salt-syndic

Post-installation tasks

Now go to the Configuring Salt page.

Windows

Salt has full support for running the Salt Minion on Windows.

There are no plans for the foreseeable future to develop a Salt
Master on Windows. For now you must run your Salt Master on a
supported operating system to control your Salt Minions on Windows.

Many of the standard Salt modules have been ported to work on Windows
and many of the Salt States currently work on Windows, as well.

Windows Installer

A Salt Minion Windows installer can be found here:

Download here

	0.16.3

	http://saltstack.com/downloads/Salt-Minion-0.16.3-win32-Setup.exe

	http://saltstack.com/downloads/Salt-Minion-0.16.3-AMD64-Setup.exe

	0.16.2

	http://saltstack.com/downloads/Salt-Minion-0.16.2-win32-Setup.exe

	http://saltstack.com/downloads/Salt-Minion-0.16.2-AMD64-Setup.exe

	0.16.0

	http://saltstack.com/downloads/Salt-Minion-0.16.0-win32-Setup.exe

	http://saltstack.com/downloads/Salt-Minion-0.16.0-AMD64-Setup.exe

	0.15.3

	http://saltstack.com/downloads/Salt-Minion-0.15.3-win32-Setup.exe

	http://saltstack.com/downloads/Salt-Minion-0.15.3-AMD64-Setup.exe

	0.14.1

	http://saltstack.com/downloads/Salt-Minion-0.14.1-win32-Setup.exe

	http://saltstack.com/downloads/Salt-Minion-0.14.1-AMD64-Setup.exe

	0.14.0

	http://saltstack.com/downloads/Salt-Minion-0.14.0-win32-Setup.exe

	http://saltstack.com/downloads/Salt-Minion-0.14.0-AMD64-Setup.exe

The 64bit installer has been tested on Windows 7 64bit and Windows Server
2008R2 64bit. The 32bit installer has been tested on Windows 2003 Server 32bit.
Please file a bug report on our GitHub repo if issues for other platforms are
found.

The installer asks for 2 bits of information; the master hostname and the
minion name. The installer will update the minion config with these options and
then start the minion.

The salt-minion service will appear in the Windows Service Manager and can be
started and stopped there or with the command line program sc like any other
Windows service.

If the minion won't start, try installing the Microsoft Visual C++ 2008 x64 SP1
redistributable. Allow all Windows updates to run salt-minion smoothly.

Make sure that the minion config file has the line ipc_mode: tcp

Silent Installer option

The installer can be run silently by providing the /S option at the command
line. The options /master and /minion-name allow for configuring the master
hostname and minion name, respectively. Here's an example of using the silent
installer:

Salt-Minion-0.15.3-Setup-amd64.exe /S /master=yoursaltmaster /minion-name=yourminionname

Installer Source

The Salt Windows installer is built with the open-source NSIS compiler. The
source for the installer is found in the pkg directory of the Salt repo here:
https://github.com/saltstack/salt/blob/develop/pkg/windows/installer/Salt-Minion-Setup.nsi.
To create the installer run python setup.py bdist_esky, extract the
frozen archive from dist/ into pkg/windows/buildenv/ and run NSIS.

The NSIS installer can be found here: http://nsis.sourceforge.net/Main_Page

Installation from source

To install Salt from source one must install each dependency separately and
configure Salt to run on your Windows host.

Rather than send you on a wild goose chase across the Internet, we've collected
some of the more difficult to find installers in our GitHub repo for you.

Install on Windows XP 32bit

	Install msysgit [http://code.google.com/p/msysgit/downloads/list?can=3]
	Clone the Salt git repository from GitHub

git clone git://github.com/saltstack/salt.git

	Install Microsoft Visual Studio 2008 Express.
You must use Visual Studio 2008 Express, not Visual Studio 2010 Express.

	Install Python 2.7.x [http://www.python.org]

	Add c:\Python27 to your system path

	Install the Microsoft Visual C++ 2008 SP1 Redistributable, vcredist_x86 [http://www.microsoft.com/download/en/details.aspx?id=5582].

	Install Win32OpenSSL-1_0_0e.exe [http://www.slproweb.com/products/Win32OpenSSL.html]
	Choose first option to install in Windows system directory

	Install pyzmq-2.1.11.win32-py2.7.msi [https://github.com/zeromq/pyzmq/downloads]

	Install pycrypto-2.3.win32-py2.7.msi [http://www.voidspace.org.uk/python/modules.shtml#pycrypto]

	Install M2Crypto [http://chandlerproject.org/pub/Projects/MeTooCrypto/M2Crypto-0.21.1.win32-py2.7.exe]

	Install pywin32 [http://sourceforge.net/projects/pywin32/files/]

	Install PyYAML-3.10.win32-py2.7.msi [http://pyyaml.org/wiki/PyYAML]

	Install Cython-0.15.1.win32-py2.79.exe [http://www.lfd.uci.edu/~gohlke/pythonlibs/#cython]

	Download and run distribute_setup.py [http://python-distribute.org/distribute_setup.py]

python distribute_setup.py

	Download and run pip [https://raw.github.com/pypa/pip/master/contrib/get-pip.py]

python get-pip.py

	Add c:\python27\scripts to your path

	Close terminal window and open a new terminal window (cmd)

	Install jinja2

pip install jinja2

	Install wmi

pip install wmi

	Install Messagepack

pip install msgpack-python

	Install Salt

cd ./salt
python setup.py install

	Edit c:\etc\salt\minion

master: ipaddress or hostname of your salt-master
master_port: 4506
ipc_mode: tcp
root_dir: c:\
pki_dir: /etc/salt/pki
cachedir: /var/cache/salt
renderer: yaml_jinja
open_mode: False
multiprocessing: False

	Start the salt-minion

cd c:\python27\scripts
python salt-minion

	On the salt-master accept the new minion's key

sudo salt-key -A

(This accepts all unaccepted keys. If you're concerned about security just accept the key for this specific minion)

	Test that your minion is responding

	On the salt-master run:

sudo salt '*' test.ping

You should get the following response: {'your minion hostname': True}

Single command bootstrap script

On a 64 bit Windows host the following script makes an unattended install of salt, including all dependencies:

Not up to date.

This script is not up to date. Please use the installer found above

"PowerShell (New-Object System.Net.WebClient).DownloadFile('http://csa-net.dk/salt/bootstrap64.bat','C:\bootstrap.bat');(New-Object -com Shell.Application).ShellExecute('C:\bootstrap.bat');"

(All in one line.)

You can execute the above command remotely from a Linux host using winexe:

winexe -U "administrator" //fqdn "PowerShell (New-Object);"

For more info check http://csa-net.dk/salt

Packages management under Windows 2003

On windows server 2003, you need to install optional component "wmi windows installer provider" to have full list of installed packages. If you don't have this, salt-minion can't report some installed softwares.

SUSE Installation

With openSUSE 13.1, Salt 0.16.4 has been available in the primary repositories.
The devel:language:python repo will have more up to date versions of salt,
all package development will be done there.

Installation

Salt can be installed using zypper and is available in the standard openSUSE 13.1
repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to
install the appropriate package for the role the machine will play. Typically, there
will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

systemctl enable salt-master.service

To start the Master:

systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

systemctl enable salt-minion.service

To start the Minion:

systemctl start salt-minion.service

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

chkconfig salt-master on

To start the Master:

rcsalt-master start

Minion

To have the Minion start automatically at boot time:

chkconfig salt-minion on

To start the Minion:

rcsalt-minion start

Unstable Release

openSUSE

For openSUSE Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_Factory/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 13.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_13.1/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_12.3/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_12.2/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 12.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_12.1/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For bleeding edge python Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/bleeding_edge_python_Factory/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

Suse Linux Enterprise

For SLE 11 SP3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_SP3/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

For SLE 11 SP2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_SP2/devel:languages:python.repo
zypper refresh
zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

Configuring Salt

Salt configuration is very simple. The default configuration for the
master will work for most installations and the only requirement for
setting up a minion is to set the location of the master in the minion
configuration file.

	master

	The Salt master is the central server that all minions connect to.
Commands are run on the minions through the master, and minions send data
back to the master (unless otherwise redirected with a returner). It is started with the
salt-master program.

	minion

	Salt minions are the potentially hundreds or thousands of servers that
may be queried and controlled from the master.

The configuration files will be installed to /etc/salt and are named
after the respective components, /etc/salt/master and
/etc/salt/minion.

Master Configuration

By default the Salt master listens on ports 4505 and 4506 on all
interfaces (0.0.0.0). To bind Salt to a specific IP, redefine the
"interface" directive in the master configuration file, typically
/etc/salt/master, as follows:

- #interface: 0.0.0.0
+ interface: 10.0.0.1

After updating the configuration file, restart the Salt master.
See the master configuration reference
for more details about other configurable options.

Minion Configuration

Although there are many Salt Minion configuration options, configuring
a Salt Minion is very simple. By default a Salt Minion will
try to connect to the DNS name "salt"; if the Minion is able to
resolve that name correctly, no configuration is needed.

If the DNS name "salt" does not resolve to point to the correct
location of the Master, redefine the "master" directive in the minion
configuration file, typically /etc/salt/minion, as follows:

- #master: salt
+ master: 10.0.0.1

After updating the configuration file, restart the Salt minion.
See the minion configuration reference
for more details about other configurable options.

Running Salt

	Start the master in the foreground (to daemonize the process, pass the
-d flag):

salt-master

	Start the minion in the foreground (to daemonize the process, pass the
-d flag):

salt-minion

Having trouble?

The simplest way to troubleshoot Salt is to run the master and minion in
the foreground with log level set to debug:

salt-master --log-level=debug

For information on salt's logging system please see the logging
document.

Run as an unprivileged (non-root) user

To run Salt as another user, specify --user in the command
line or assign user in the
configuration file.

There is also a full troubleshooting guide
available.

Key Management

Salt uses AES encryption for all communication between the Master and
the Minion. This ensures that the commands sent to the Minions cannot
be tampered with, and that communication between Master and Minion is
authenticated through trusted, accepted keys.

Before commands can be sent to a Minion, its key must be accepted on
the Master. Run the salt-key command to list the keys known to
the Salt Master:

[root@master ~]# salt-key -L
Unaccepted Keys:
alpha
bravo
charlie
delta
Accepted Keys:

This example shows that the Salt Master is aware of four Minions, but none of
the keys has been accepted. To accept the keys and allow the Minions to be
controlled by the Master, again use the salt-key command:

[root@master ~]# salt-key -A
[root@master ~]# salt-key -L
Unaccepted Keys:
Accepted Keys:
alpha
bravo
charlie
delta

The salt-key command allows for signing keys individually or in bulk. The
example above, using -A bulk-accepts all pending keys. To accept keys
individually use the lowercase of the same option, -a keyname.

See also

salt-key manpage

Sending Commands

Communication between the Master and a Minion may be verified by running
the test.ping command:

[root@master ~]# salt alpha test.ping
alpha:
 True

Communication between the Master and all Minions may be tested in a
similar way:

[root@master ~]# salt '*' test.ping
alpha:
 True
bravo:
 True
charlie:
 True
delta:
 True

Each of the Minions should send a True response as shown above.

What's Next?

Understanding targeting is important. From there,
depending on the way you wish to use Salt, you should also proceed to learn
about States and Execution Modules.

Developing Salt

There is a great need for contributions to salt and patches are welcome! The goal
here is to make contributions clear, make sure there is a trail for where the code
has come from, and most importantly, to give credit where credit is due!

There are a number of ways to contribute to salt development.

Sending a GitHub pull request

This is the preferred method for contributions. Simply create a GitHub
fork, commit changes to the fork, and then open up a pull request.

The following is an example (from Open Comparison Contributing Docs [http://opencomparison.readthedocs.org/en/latest/contributing.html])
of an efficient workflow for forking, cloning, branching, committing, and
sending a pull request for a GitHub repository.

First, make a local clone of your GitHub fork of the salt GitHub repo and make
edits and changes locally.

Then, create a new branch on your clone by entering the following commands:

git checkout -b fixed-broken-thing

Switched to a new branch 'fixed-broken-thing'

Choose a name for your branch that describes its purpose.

Now commit your changes to this new branch with the following command:

git commit -am 'description of my fixes for the broken thing'

Note

Using git commit -am, followed by a quoted string, both stages and
commits all modified files in a single command. Depending on the nature of
your changes, you may wish to stage and commit them separately. Also, note
that if you wish to add newly-tracked files as part of your commit, they
will not be caught using git commit -am and will need to be added using
git add before committing.

Push your locally-committed changes back up to GitHub:

git push --set-upstream origin fixed-broken-thing

Now go look at your fork of the salt repo on the GitHub website. The new
branch will now be listed under the "Source" tab where it says "Switch Branches".
Select the new branch from this list, and then click the "Pull request" button.

Put in a descriptive comment, and include links to any project issues related
to the pull request.

The repo managers will be notified of your pull request and it will be
reviewed. If a reviewer asks for changes, just make the changes locally in the
same local feature branch, push them to GitHub, then add a comment to the
discussion section of the pull request.

Note

Travis-CI

To make reviewing pull requests easier for the maintainers, please enable
Travis-CI on your fork. Salt is already configured, so simply follow the
first 2 steps on the Travis-CI Getting Started Doc [http://about.travis-ci.org/docs/user/getting-started].

Keeping Salt Forks in Sync

Salt is advancing quickly. It is therefore critical to pull upstream changes
from master into forks on a regular basis. Nothing is worse than putting in a
days of hard work into a pull request only to have it rejected because it has
diverged too far from master.

To pull in upstream changes:

For ssh github
git remote add upstream git@github.com:saltstack/salt.git
git fetch upstream

For https github
git remote add upstream https://github.com/saltstack/salt.git
git fetch upstream

To check the log to be sure that you actually want the changes, run the
following before merging:

git log upstream/develop

Then to accept the changes and merge into the current branch:

git merge upstream/develop

For more info, see GitHub Fork a Repo Guide [http://help.github.com/fork-a-repo/] or Open Comparison Contributing
Docs [http://opencomparison.readthedocs.org/en/latest/contributing.html]

Posting patches to the mailing list

Patches will also be accepted by email. Format patches using git
format-patch [http://www.kernel.org/pub/software/scm/git/docs/git-format-patch.html] and send them to the Salt users mailing list. The contributor
will then get credit for the patch, and the Salt community will have an archive
of the patch and a place for discussion.

Installing Salt for development

Clone the repository using:

git clone https://github.com/saltstack/salt

Note

tags

Just cloning the repository is enough to work with Salt and make
contributions. However, fetching additional tags from git is required to
have Salt report the correct version for itself. To do this, first
add the git repository as an upstream source:

git remote add upstream http://github.com/saltstack/salt

Fetching tags is done with the git 'fetch' utility:

git fetch --tags upstream

Create a new virtualenv [http://pypi.python.org/pypi/virtualenv]:

virtualenv /path/to/your/virtualenv

On Arch Linux, where Python 3 is the default installation of Python, use the
virtualenv2 command instead of virtualenv.

Note

Using system Python modules in the virtualenv

To use already-installed python modules in virtualenv (instead of having pip
download and compile new ones), run virtualenv --system-site-packages
Using this method eliminates the requirement to install the salt dependencies
again, although it does assume that the listed modules are all installed in the
system PYTHONPATH at the time of virtualenv creation.

Activate the virtualenv:

source /path/to/your/virtualenv/bin/activate

Install Salt (and dependencies) into the virtualenv:

pip install M2Crypto # Don't install on Debian/Ubuntu (see below)
pip install pyzmq PyYAML pycrypto msgpack-python jinja2 psutil
pip install -e ./salt # the path to the salt git clone from above

Note

Installing M2Crypto

swig and libssl-dev are required to build M2Crypto. To fix
the error command 'swig' failed with exit status 1 while installing M2Crypto,
try installing it with the following command:

env SWIG_FEATURES="-cpperraswarn -includeall -D__`uname -m`__ -I/usr/include/openssl" pip install M2Crypto

Debian and Ubuntu systems have modified openssl libraries and mandate that
a patched version of M2Crypto be installed. This means that M2Crypto
needs to be installed via apt:

apt-get install python-m2crypto

This also means that pulling in the M2Crypto installed using apt requires using
--system-site-packages when creating the virtualenv.

Note

Installing psutil

Python header files are required to build this module, otherwise the pip
install will fail. If your distribution separates binaries and headers into
separate packages, make sure that you have the headers installed. In most
Linux distributions which split the headers into their own package, this
can be done by installing the python-dev or python-devel package.
For other platforms, the package will likely be similarly named.

Note

Important note for those developing using RedHat variants

For developers using a RedHat variant, be advised that the package
provider for newer Redhat-based systems (yumpkg.py) relies on RedHat's python
interface for yum. The variants that use this module to provide package
support include the following:

	RHEL [https://www.redhat.com/products/enterprise-linux/] and CentOS [http://centos.org/] releases 6 and later

	Fedora Linux [http://fedoraproject.org/] releases 11 and later

	Amazon Linux [https://aws.amazon.com/amazon-linux-ami/]

Developers using one of these systems should create the salt virtualenv using the
--system-site-packages option to ensure that the correct modules are available.

Note

Installing dependencies on OS X.

You can install needed dependencies on OS X using homebrew or macports.
See OS X Installation

Running a self-contained development version

During development it is easiest to be able to run the Salt master and minion
that are installed in the virtualenv you created above, and also to have all
the configuration, log, and cache files contained in the virtualenv as well.

Copy the master and minion config files into your virtualenv:

mkdir -p /path/to/your/virtualenv/etc/salt
cp ./salt/conf/master /path/to/your/virtualenv/etc/salt/master
cp ./salt/conf/minion /path/to/your/virtualenv/etc/salt/minion

Edit the master config file:

	Uncomment and change the user: root value to your own user.

	Uncomment and change the root_dir: / value to point to
/path/to/your/virtualenv.

	If you are running version 0.11.1 or older, uncomment and change the
pidfile: /var/run/salt-master.pid value to point to
/path/to/your/virtualenv/salt-master.pid.

	If you are also running a non-development version of Salt you will have to
change the publish_port and ret_port values as well.

Edit the minion config file:

	Repeat the edits you made in the master config for the user and
root_dir values as well as any port changes.

	If you are running version 0.11.1 or older, uncomment and change the
pidfile: /var/run/salt-minion.pid value to point to
/path/to/your/virtualenv/salt-minion.pid.

	Uncomment and change the master: salt value to point at localhost.

	Uncomment and change the id: value to something descriptive like
"saltdev". This isn't strictly necessary but it will serve as a reminder of
which Salt installation you are working with.

Note

Using salt-call with a Standalone Minion

If you plan to run salt-call with this self-contained development
environment in a masterless setup, you should invoke salt-call with
-c /path/to/your/virtualenv/etc/salt so that salt can find the minion
config file. Without the -c option, Salt finds its config files in
/etc/salt.

Start the master and minion, accept the minion's key, and verify your local Salt
installation is working:

cd /path/to/your/virtualenv
salt-master -c ./etc/salt -d
salt-minion -c ./etc/salt -d
salt-key -c ./etc/salt -L
salt-key -c ./etc/salt -A
salt -c ./etc/salt '*' test.ping

Running the master and minion in debug mode can be helpful when developing. To
do this, add -l debug to the calls to salt-master and salt-minion.
If you would like to log to the console instead of to the log file, remove the
-d.

Once the minion starts, you may see an error like the following:

zmq.core.error.ZMQError: ipc path "/path/to/your/virtualenv/var/run/salt/minion/minion_event_7824dcbcfd7a8f6755939af70b96249f_pub.ipc" is longer than 107 characters (sizeof(sockaddr_un.sun_path)).

This means the the path to the socket the minion is using is too long. This is
a system limitation, so the only workaround is to reduce the length of this
path. This can be done in a couple different ways:

	Create your virtualenv in a path that is short enough.

	Edit the sock_dir minion config variable and reduce its
length. Remember that this path is relative to the value you set in
root_dir.

NOTE: The socket path is limited to 107 characters on Solaris and Linux,
and 103 characters on BSD-based systems.

Note

File descriptor limits

Ensure that the system open file limit is raised to at least 2047:

check your current limit
ulimit -n

raise the limit. persists only until reboot
use 'limit descriptors 2047' for c-shell
ulimit -n 2047

To set file descriptors on OSX, refer to the OS X Installation instructions.

Using easy_install to Install Salt

If you are installing using easy_install, you will need to define a
USE_SETUPTOOLS environment variable, otherwise dependencies will not
be installed:

USE_SETUPTOOLS=1 easy_install salt

Running the tests

You will need mock to run the tests:

pip install mock

If you are on Python < 2.7 then you will also need unittest2:

pip install unittest2

Finally you use setup.py to run the tests with the following command:

./setup.py test

For greater control while running the tests, please try:

./tests/runtests.py -h

Editing and previewing the documentation

You need sphinx-build command to build the docs. In Debian/Ubuntu this is
provided in the python-sphinx package. Sphinx can also be installed
to a virtualenv using pip:

pip install Sphinx

Change to salt documentation directory, then:

cd doc; make html

	This will build the HTML docs. Run make without any arguments to see the
available make targets, which include html, man, and
text.

	The docs then are built within the docs/_build/ folder. To update
the docs after making changes, run make again.

	The docs use reStructuredText [http://sphinx-doc.org/rest.html] for markup.
See a live demo at http://rst.ninjs.org/.

	The help information on each module or state is culled from the python code
that runs for that piece. Find them in salt/modules/ or salt/states/.

	To build the docs on Arch Linux, the python2-sphinx package is
required. Additionally, it is necessary to tell make where to find
the proper sphinx-build binary, like so:

make SPHINXBUILD=sphinx-build2 html

	To build the docs on RHEL/CentOS 6, the python-sphinx10 package
must be installed from EPEL, and the following make command must be used:

make SPHINXBUILD=sphinx-1.0-build html

Targeting

	Targeting

	Specifying which minions should run a command or execute a state by
matching against hostnames, or system information, or defined groups,
or even combinations thereof.

For example the command salt web1 apache.signal restart to restart the
Apache httpd server specifies the machine web1 as the target and the
command will only be run on that one minion.

Similarly when using States, the following top file specifies that only
the web1 minion should execute the contents of webserver.sls:

base:
 'web1':
 - webserver

There are many ways to target individual minions or groups of minions in Salt:

	Matching the minion id
	Globbing

	Regular Expressions

	Lists

	Grains
	Listing Grains

	Grains in the Minion Config

	Grains in /etc/salt/grains

	Grains in Top file

	Writing Grains

	Node groups

	Compound matchers

	Batch Size

Matching the minion id

	minion id

	A unique identifier for a given minion. By default the minion id is the
FQDN of that host but this can be overridden.

Each minion needs a unique identifier. By default when a minion starts for the
first time it chooses its FQDN as that
identifier. The minion id can be overridden via the minion's id
configuration setting.

Tip

minion id and minion keys

The minion id is used to generate the minion's public/private keys
and if it ever changes the master must then accept the new key as though
the minion was a new host.

Globbing

The default matching that Salt utilizes is shell-style globbing [https://docs.python.org/2/library/fnmatch.html#module-fnmatch] around the minion id. This also works for states
in the top file.

Note

You must wrap salt calls that use globbing in single-quotes to
prevent the shell from expanding the globs before Salt is invoked.

Match all minions:

salt '*' test.ping

Match all minions in the example.net domain or any of the example domains:

salt '*.example.net' test.ping
salt '*.example.*' test.ping

Match all the webN minions in the example.net domain (web1.example.net,
web2.example.net … webN.example.net):

salt 'web?.example.net' test.ping

Match the web1 through web5 minions:

salt 'web[1-5]' test.ping

Match the web-x, web-y, and web-z minions:

salt 'web-[x-z]' test.ping

Regular Expressions

Minions can be matched using Perl-compatible regular expressions [https://docs.python.org/2/library/re.html#module-re] (which is globbing on steroids and a ton of caffeine).

Match both web1-prod and web1-devel minions:

salt -E 'web1-(prod|devel)' test.ping

When using regular expressions in a State's top file, you must specify
the matcher as the first option. The following example executes the contents of
webserver.sls on the above-mentioned minions.

base:
 'web1-(prod|devel)':
 - match: pcre
 - webserver

Lists

At the most basic level, you can specify a flat list of minion IDs:

salt -L 'web1,web2,web3' test.ping

Grains

Salt comes with an interface to derive information about the underlying system.
This is called the grains interface, because it presents salt with grains of
information.

	Grains

	Static bits of information that a minion collects about the system when
the minion first starts.

The grains interface is made available to Salt modules and components so that
the right salt minion commands are automatically available on the right
systems.

It is important to remember that grains are bits of information loaded when
the salt minion starts, so this information is static. This means that the
information in grains is unchanging, therefore the nature of the data is
static. So grains information are things like the running kernel, or the
operating system.

Match all CentOS minions:

salt -G 'os:CentOS' test.ping

Match all minions with 64-bit CPUs, and return number of CPU cores for each
matching minion:

salt -G 'cpuarch:x86_64' grains.item num_cpus

Additionally, globs can be used in grain matches, and grains that are nested in
a dictionary [https://docs.python.org/2/library/stdtypes.html#typesmapping] can be matched by adding a colon for
each level that is traversed. For example, the following will match hosts that
have a grain called ec2_tags, which itself is a
dict [https://docs.python.org/2/library/stdtypes.html#typesmapping] with a key named environment, which
has a value that contains the word production:

salt -G 'ec2_tags:environment:*production*'

Listing Grains

Available grains can be listed by using the 'grains.ls' module:

salt '*' grains.ls

Grains data can be listed by using the 'grains.items' module:

salt '*' grains.items

Grains in the Minion Config

Grains can also be statically assigned within the minion configuration file.
Just add the option grains and pass options to it:

grains:
 roles:
 - webserver
 - memcache
 deployment: datacenter4
 cabinet: 13
 cab_u: 14-15

Then status data specific to your servers can be retrieved via Salt, or used
inside of the State system for matching. It also makes targeting, in the case
of the example above, simply based on specific data about your deployment.

Grains in /etc/salt/grains

If you do not want to place your custom static grains in the minion config
file, you can also put them in /etc/salt/grains. They are configured in the
same way as in the above example, only without a top-level grains: key:

roles:
 - webserver
 - memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

Precedece of Custom Static Grains

Be careful when defining grains both in /etc/salt/grains and within the
minion config file. If a grain is defined in both places, the value in the
minion config file takes precedence, and will always be used over its
counterpart in /etc/salt/grains.

Grains in Top file

With correctly setup grains on the Minion, the Top file used in Pillar or during Highstate can be made really efficient. Like for example, you could do:

'node_type:web':
 - match: grain
 - webserver

'node_type:postgres':
 - match: grain
 - database

'node_type:redis':
 - match: grain
 - redis

'node_type:lb':
 - match: grain
 - lb

For this example to work, you would need the grain node_type and the correct value to match on. This simple example is nice, but too much of the code is similar. To go one step further, we can place some Jinja template code into the Top file.

{% set self = grains['node_type'] %}

 'node_type:{{ self }}':
 - match: grain
 - {{ self }}

The Jinja code simplified the Top file, and allowed SaltStack to work its magic.

Writing Grains

Grains are easy to write. The grains interface is derived by executing
all of the "public" functions found in the modules located in the grains
package or the custom grains directory. The functions in the modules of
the grains must return a Python dict [https://docs.python.org/2/library/stdtypes.html#typesmapping], where the
keys in the dict [https://docs.python.org/2/library/stdtypes.html#typesmapping] are the names of the grains and
the values are the values.

Custom grains should be placed in a _grains directory located under the
file_roots specified by the master config file. They will be
distributed to the minions when state.highstate is run, or by executing the
saltutil.sync_grains or
saltutil.sync_all functions.

Before adding a grain to Salt, consider what the grain is and remember that
grains need to be static data. If the data is something that is likely to
change, consider using Pillar instead.

Examples of Grains

The core module in the grains package is where the main grains are loaded by
the Salt minion and provides the principal example of how to write grains:

https://github.com/saltstack/salt/blob/develop/salt/grains/core.py

Syncing Grains

Syncing grains can be done a number of ways, they are automatically synced when
state.highstate is called, or (as noted
above) the grains can be manually synced and reloaded by calling the
saltutil.sync_grains or
saltutil.sync_all functions.

Node groups

	Node group

	A predefined group of minions declared in the master configuration file
nodegroups setting as a compound target.

Nodegroups are declared using a compound target specification. The compound
target documentation can be found here.

The nodegroups master config file parameter is used to define
nodegroups. Here's an example nodegroup configuration:

nodegroups:
 group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
 group2: 'G@os:Debian and foo.domain.com'

To match a nodegroup on the CLI, use the -N command-line option:

salt -N group1 test.ping

To match in your top file, make sure to put - match: nodegroup on
the line directly following the nodegroup name.

base:
 group1:
 - match: nodegroup
 - webserver

Compound matchers

	Compound matcher

	A combination of many target definitions that can be combined with
boolean operators.

Compound matchers allow very granular minion targeting using any of Salt's
matchers. The default matcher is a glob [https://docs.python.org/2/library/fnmatch.html#module-fnmatch] match, just as
with CLI and top file matching. To match using anything other than a
glob, prefix the match string with the appropriate letter from the table below,
followed by an @ sign.

	Letter
	Match Type
	Example

	G
	Grains glob
	G@os:Ubuntu

	E
	PCRE Minion ID
	E@web\d+\.(dev|qa|prod)\.loc

	P
	Grains PCRE
	P@os:(RedHat|Fedora|CentOS)

	L
	List of minions
	L@minion1.example.com,minion3.domain.com or bl*.domain.com

	I
	Pillar glob
	I@pdata:foobar

	S
	Subnet/IP address
	S@192.168.1.0/24 or S@192.168.1.100

	R
	Range cluster
	R@%foo.bar

Matchers can be joined using boolean and, or, and not operators.

For example, the following string matches all Debian minions with a hostname
that begins with webserv, as well as any minions that have a hostname which
matches the regular expression [https://docs.python.org/2/library/re.html#module-re] web-dc1-srv.*:

salt -C 'webserv* and G@os:Debian or E@web-dc1-srv.*' test.ping

That same example expressed in a top file looks like the following:

base:
 'webserv* and G@os:Debian or E@web-dc1-srv.*':
 - match: compound
 - webserver

Note that a leading not is not supported in compound matches. Instead,
something like the following must be done:

salt -C '* and not G@kernel:Darwin' test.ping

Batch Size

The -b (or --batch-size) option allows commands to be executed on only
a specified number of minions at a time. Both percentages and finite numbers are
supported.

salt '*' -b 10 test.ping

salt -G 'os:RedHat' --batch-size 25% apache.signal restart

This will only run test.ping on 10 of the targeted minions at a time and then
restart apache on 25% of the minions matching os:RedHat at a time and work
through them all until the task is complete. This makes jobs like rolling web
server restarts behind a load balancer or doing maintenance on BSD firewalls
using carp much easier with salt.

The batch system maintains a window of running minions, so, if there are a
total of 150 minions targeted and the batch size is 10, then the command is
sent to 10 minions, when one minion returns then the command is sent to one
additional minion, so that the job is constantly running on 10 minions.

Salt tutorials

	Bootstrapping Salt on Linux EC2 with Cloud-Init

	Salt as a Cloud Controller

	Using cron with Salt

	Automatic Updates / Frozen Deployments

	Opening the Firewall up for Salt

	GitFS Backend Walkthrough

	Remote execution tutorial

	Multi Master Tutorial

	Pillar Walkthrough

	Preseed Minion with Accepted Key

	Salt Masterless Quickstart

	Standalone Minion

	How Do I Use Salt States?

	States tutorial, part 1

	States tutorial, part 2

	States tutorial, part 3

	States tutorial, part 4

	Salt Stack Walkthrough

Bootstrapping Salt on Linux EC2 with Cloud-Init

Salt [http://saltstack.org] is a great tool for remote execution and
configuration management, however you will still need to bootstrap the
daemon when spinning up a new node. One option is to create and save a
custom AMI [https://en.wikipedia.org/wiki/Amazon_Machine_Image], but this creates another resource to maintain and document.

A better method for Linux machines uses Canonical's CloudInit [https://help.ubuntu.com/community/CloudInit] to run a bootstrap script
during an EC2 Instance [http://aws.amazon.com/ec2/instance-types/] initialization. Cloud-init takes the user_data
string passed into a new AWS instance and runs it in a manner similar to
rc.local. The bootstrap script needs to:

	Install Salt [http://saltstack.org] with dependencies

	Point the minion to the master

Here is a sample script:

#!/bin/bash

Install saltstack
add-apt-repository ppa:saltstack/salt -y
apt-get update -y
apt-get install salt-minion -y
apt-get install salt-master -y
apt-get upgrade -y

Set salt master location and start minion
sed -i 's/#master: salt/master: [salt_master_fqdn]/' /etc/salt/minion
salt-minion -d

First the script adds the saltstack ppa and installs the package. Then
we copy over the minion config template and tell it where to find the
master. You will have to replace [salt_master_fqdn] with something
that resolves to your Salt master.

Used With Boto

Boto [https://github.com/boto/boto] will accept a string for user data
which can be used to pass our bootstrap script. If the script is saved to
a file, you can read it into a string:

import boto

user_data = open('salt_bootstrap.sh')

conn = boto.connect_ec2(<AWS_ACCESS_ID>, <AWS_SECRET_KEY>)

reservation = conn.run_instances(image_id=<ami_id>,
 key_name=<key_name>,
 user_data=user_data.read())

Additional Notes

Sometime in the future the ppa will include and install an upstart file. In the
meantime, you can use the bootstrap to build one [https://gist.github.com/1617054].

It may also be useful to set the node's role during this phase. One option
would be saving the node's role to a file and then using a custom Grain to
select it.

Salt as a Cloud Controller

In Salt 0.14.0 advanced cloud control systems were introduced, allowing for
private cloud vms to be managed directly with Salt. This system is generally
referred to as Salt Virt.

The Salt Virt system already exists and is installed within Salt itself, this
means that beyond setting up Salt no additional salt code needs to be deployed.

Setting up Hypervisors

The first step to set up the hypervisors involves getting the correct software
installed and setting up the hypervisor network interfaces.

Installing Hypervisor Software

Salt Virt is made to be hypervisor agnostic, but currently the only
implemented hypervisor is KVM via libvirt.

The required software for a hypervisor is libvirt and kvm. For advanced
features install libguestfs or qemu-nbd.

Note

Libguestfs and qemu-nbd allow for virtual machine images to be mounted
before startup and get pre-seeded with configurations and a salt minion

A simple sls formula to deploy the required software and service:

Note

Package names used are Red Hat specific, different package names will be
required for different platforms

libguestfs:
 pkg.installed

qemu-kvm:
 pkg.installed

libvirt:
 pkg.installed

libvirtd:
 service.running:
 - enable: True
 - watch:
 - pkg: libvirt

Network Setup

Salt virt comes with a system to model the network interfaces used by the
deployed virtual machines, by default a single interface is created for the
deployed virtual machine and is bridged to br0. To get going with the
default networking setup ensure that the bridge interface named br0 exists
on the hypervisor and is bridged to an active network device.

Note

To use more advanced networking in Salt Virt read the Salt Virt
Networking document:

Salt Virt Networking

Libvirt State

One of the challenges of deploying a libvirt based cloud is the distribution
of libvirt certificates. These certificates allow for virtual machine
migration. Salt comes with a system used to auto deploy these certificates.
Salt manages the signing authority key and generates keys for libvirt clients
on the master, signs them with the certificate authority and uses pillar to
distribute them. This is managed via the libvirt state. Simply execute this
formula on the minion to ensure that the certificate is in place and up to
date:

libvirt_keys:
 libvirt.keys

Getting Virtual Machine Images Ready

Salt Virt, requires that virtual machine images be provided as these are not
generated on the fly. Generating these virtual machine images differs greatly
based on the underlying platform.

Virtual machine images can be manually created using KVM and running through
the installer, but this process is not recommended since it is very manual and
prone to errors.

Virtual Machine generation applications are avilable for many platforms:

	vm-builder:

	http://wiki.debian.org/VMBuilder

Using Salt Virt

With hypervisors set up and virtual machine images ready, Salt can start
issuing cloud commands.

Start by deploying

Using cron with Salt

The Salt Minion can initiate its own highstate using the salt-call command.

$ salt-call state.highstate

This will cause the minion to check in with the master and ensure it is in the
correct 'state'.

Use cron to initiate a highstate

If you would like the Salt Minion to regularly check in with the master you can
use the venerable cron to run the salt-call command.

PATH=/bin:/sbin:/usr/bin:/usr/sbin

00 00 * * * salt-call state.highstate

The above cron entry will run a highstate every day at midnight.

Note

Be aware that you may need to ensure the PATH for cron includes any
scripts or commands that need to be executed.

Automatic Updates / Frozen Deployments

New in version 0.10.3.d.

Salt has support for the
Esky [https://github.com/cloudmatrix/esky] application freezing and update
tool. This tool allows one to build a complete zipfile out of the salt scripts
and all their dependencies - including shared objects / DLLs.

Getting Started

To build frozen applications, you'll need a suitable build environment for each
of your platforms. You should probably set up a virtualenv in order to limit
the scope of Q/A.

This process does work on Windows. Follow the directions at
https://github.com/saltstack/salt-windows-install for details on
installing Salt in Windows. Only the 32-bit Python and dependencies have been
tested, but they have been tested on 64-bit Windows.

You will need to install esky and bbfreeze from Pypi in order to enable
the bdist_esky command in setup.py.

Building and Freezing

Once you have your tools installed and the environment configured, you can then
python setup.py bdist to get the eggs prepared. After that is done, run
python setup.py bdist_esky to have Esky traverse the module tree and pack
all the scripts up into a redistributable. There will be an appropriately
versioned salt-VERSION.zip in dist/ if everything went smoothly.

Windows

You will need to add C:\Python27\lib\site-packages\zmq to your PATH
variable. This helps bbfreeze find the zmq dll so it can pack it up.

Using the Frozen Build

Unpack the zip file in your desired install location. Scripts like
salt-minion and salt-call will be in the root of the zip file. The
associated libraries and bootstrapping will be in the directories at the same
level. (Check the Esky [https://github.com/cloudmatrix/esky] documentation
for more information)

To support updating your minions in the wild, put your builds on a web server
that your minions can reach. salt.modules.saltutil.update() will
trigger an update and (optionally) a restart of the minion service under the
new version.

Gotchas

My Windows minion isn't responding

The process dispatch on Windows is slower than it is on *nix. You may need to
add '-t 15' to your salt calls to give them plenty of time to return.

Windows and the Visual Studio Redist

You will need to install the Visual C++ 2008 32-bit redistributable on all
Windows minions. Esky has an option to pack the library into the zipfile,
but OpenSSL does not seem to acknowledge the new location. If you get a
no OPENSSL_Applink error on the console when trying to start your
frozen minion, you have forgotten to install the redistributable.

Mixed Linux environments and Yum

The Yum Python module doesn't appear to be available on any of the standard
Python package mirrors. If you need to support RHEL/CentOS systems, you
should build on that platform to support all your Linux nodes. Also remember
to build your virtualenv with --system-site-packages so that the
yum module is included.

Automatic (Python) module discovery

Automatic (Python) module discovery does not work with the late-loaded scheme that
Salt uses for (Salt) modules. You will need to explicitly add any
misbehaving modules to the freezer_includes in Salt's setup.py.
Always check the zipped application to make sure that the necessary modules
were included.

Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ
connection. These communications are done over TCP ports 4505 and 4506, which need
to be accessible on the master only. This document outlines suggested firewall
rules for allowing these incoming connections to the master.

Note

No firewall configuration needs to be done on Salt minions. These changes
refer to the master only.

RHEL 6 / CENTOS 6

The lokkit command packaged with some Linux distributions makes opening
iptables firewall ports very simple via the command line. Just be careful
to not lock out access to the server by neglecting to open the ssh
port.

lokkit example:

lokkit -p 22:tcp -p 4505:tcp -p 4506:tcp

The system-config-firewall-tui command provides a text-based interface to modifying
the firewall.

system-config-firewall-tui:

system-config-firewall-tui

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt [https://github.com/saltstack/salt/blob/develop/pkg/suse/salt.SuSEfirewall2].
Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

If you have an older package of Salt where the above configuration file is not included, the SuSEfirewall2 command makes opening iptables firewall ports
very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the firewall.

YaST2:

yast2 firewall

iptables

Different Linux distributions store their iptables [http://www.netfilter.org/] rules in different places,
which makes it difficult to standardize firewall documentation. Included are
some of the more common locations, but your mileage may vary.

Fedora / RHEL / CentOS:

/etc/sysconfig/iptables

Arch Linux:

/etc/iptables/iptables.rules

Debian

Follow these instructions: http://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the two lines below
to allow traffic on tcp/4505 and tcp/4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT
-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw [https://github.com/saltstack/salt/blob/develop/pkg/salt.ufw]. Enable with:

ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf) [http://openbsd.org/faq/pf/]. The following
example describes the additions to pf.conf needed to access the Salt
master.

pass in on $int_if proto tcp from any to $int_if port 4505
pass in on $int_if proto tcp from any to $int_if port 4506

Once these additions have been made to the pf.conf the rules will need to
be reloaded. This can be done using the pfctl command.

pfctl -vf /etc/pf.conf

GitFS Backend Walkthrough

While the default location of the salt state tree is on the Salt master,
in /srv/salt, the master can create a bridge to external resources for files.
One of these resources is the ability for the master to directly pull files
from a git repository and serve them to minions.

Note

This walkthrough assumes basic knowledge of Salt. To get up to speed, check
out the walkthrough.

The gitfs backend hooks into any number of remote git repositories and caches
the data from the repository on the master. This makes distributing a state
tree to multiple masters seamless and automated.

Salt's file server also has a concept of environments, when using the gitfs
backend, Salt translates git branches and tags into environments, making
environment management very simple. Just merging a QA or staging branch up
to a production branch can be all that is required to make those file changes
available to Salt.

Simple Configuration

To use the gitfs backend only two configuration changes are required on the
master. The fileserver_backend option needs to be set with a value of
git:

fileserver_backend:
 - git

To configure what fileserver backends will be searched for requested files.

Now the gitfs system needs to be configured with a remote:

gitfs_remotes:
 - git://github.com/saltstack/salt-states.git

Note

The salt-states repo is not currently updated with the latest versions
of the available states. Please review
https://github.com/saltstack-formulas for the latest versions.

These changes require a restart of the master, then the git repo will be cached
on the master and new requests for the salt:// protocol will send files
found in the remote git repository via the master.

Note

The master caches the files from the git server and serves them out,
minions do not connect directly to the git server meaning that only
requested files are delivered to minions.

Multiple Remotes

The gitfs_remotes option can accept a list of git remotes, the remotes are
then searched in order for the requested file. A simple scenario can illustrate
this behavior.

Assuming that the gitfs_remotes option specifies three remotes:

gitfs_remotes:
 - git://github.com/example/first.git
 - git://github.com/example/second.git
 - file:///root/third

Note

This example is purposefully contrived to illustrate the behavior of the
gitfs backend. This example should not be read as a recommended way to lay
out files and git repos.

Note

The file:// prefix denotes a git repository in a local directory.
However, it will still use the given file:// URL as a remote,
rather than copying the git repo to the salt cache. This means that any
refs you want accessible must exist as local refs in the specified repo.

Assume that each repository contains some files:

first.git:
 top.sls
 edit/vim.sls
 edit/vimrc
 nginx/init.sls

second.git:
 edit/dev_vimrc
 haproxy/init.sls

third:
 haproxy/haproxy.conf
 edit/dev_vimrc

The repositories will be searched for files by the master in the order in which
they are defined in the configuration, Therefore the remote
git://github.com/example/first.git will be searched first, if the
requested file is found then it is served and no further searching is executed.
This means that if the file salt://haproxy/init.sls is requested then
it will be pulled from the git://github.com/example/second.git git
repo. If salt://haproxy/haproxy.conf is requested then it will be
pulled from the third repo.

Serving from a Subdirectory

The gitfs_root option gives the ability to serve files from a subdirectory
within the repository. The path is defined relative to the root of the
repository.

With this repository structure:

repository.git:
 somefolder
 otherfolder
 top.sls
 edit/vim.sls
 edit/vimrc
 nginx/init.sls

Configuration and files can be accessed normally with:

gitfs_root: somefolder/otherfolder

Multiple Backends

Sometimes it may make sense to use multiple backends. For instance, if sls
files are stored in git, but larger files need to be stored directly on the
master.

The logic used for multiple remotes is also used for multiple backends. If
the fileserver_backend option contains multiple backends:

fileserver_backend:
 - roots
 - git

Then the roots backend (the default backend of files in /srv/salt) will
be searched first for the requested file, then if it is not found on the master
the git remotes will be searched.

Branches, environments and top.sls files

As stated above, when using the gitfs backend, branches will be mapped
to environments using the branch name as identifier.
There is an exception to this rule thought: the master branch is implicitly
mapped to the base environment.
Therefore, for a typical base, qa, dev setup, you'll have to
create the following branches:

master
qa
dev

Also, top.sls files from different branches will be merged into one big
file at runtime. Since this could lead to hardly manageable configurations,
the recommended setup is to have the top.sls file only in your master branch,
and use environment-specific branches for states definitions.

GitFS Remotes over SSH

In order to configure a gitfs_remotes repository over SSH transport the
git+ssh URL form must be used.

gitfs_remotes:
 - git+ssh://git@github.com/example/salt-states.git

The private key used to connect to the repository must be located in ~/.ssh/id_rsa
for the user running the salt-master.

Note

GitFS requires the Python module GitPython, version 0.3.0 or newer.

Why aren't my custom modules/states/etc. syncing to my Minions?

In versions 0.16.3 and older, when using the git fileserver backend, certain versions of GitPython may generate errors
when fetching, which Salt fails to catch. While not fatal to the fetch process,
these interrupt the fileserver update that takes place before custom types are
synced, and thus interrupt the sync itself. Try disabling the git fileserver
backend in the master config, restarting the master, and attempting the sync
again.

This issue will be worked around in Salt 0.16.4 and newer.

Remote execution tutorial

Before continuing make sure you have a working Salt installation by
following the installation and the configuration instructions.

Stuck?

There are many ways to get help from the Salt community including our
mailing list [https://groups.google.com/forum/#!forum/salt-users]
and our IRC channel [http://webchat.freenode.net/?channels=salt] #salt.

Order your minions around

Now that you have a master and at least one minion
communicating with each other you can perform commands on the minion via the
salt command. Salt calls are comprised of three main components:

salt '<target>' <function> [arguments]

See also

salt manpage

target

The target component allows you to filter which minions should run the
following function. The default filter is a glob on the minion id. For example:

salt '*' test.ping
salt '*.example.org' test.ping

Targets can be based on minion system information using the Grains system:

salt -G 'os:Ubuntu' test.ping

See also

Grains system

Targets can be filtered by regular expression:

salt -E 'virtmach[0-9]' test.ping

Targets can be explicitly specified in a list:

salt -L 'foo,bar,baz,quo' test.ping

Or Multiple target types can be combined in one command:

salt -C 'G@os:Ubuntu and webser* or E@database.*' test.ping

function

A function is some functionality provided by a module. Salt ships with a large
collection of available functions. List all available functions on your
minions:

salt '*' sys.doc

Here are some examples:

Show all currently available minions:

salt '*' test.ping

Run an arbitrary shell command:

salt '*' cmd.run 'uname -a'

See also

the full list of modules

arguments

Space-delimited arguments to the function:

salt '*' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

salt '*' pip.install salt timeout=5 upgrade=True

They are always in the form of kwarg=argument.

Multi Master Tutorial

As of Salt 0.16.0, the ability to connect minions to multiple masters has been
made available. The multi-master system allows for redundancy of Salt
masters and facilitates multiple points of communication out to minions. When
using a multi-master setup, all masters are running hot, and any active master
can be used to send commands out to the minions.

In 0.16.0, the masters do not share any information, keys need to be accepted
on both masters, and shared files need to be shared manually or use tools like
the git fileserver backend to ensure that the file_roots are
kept consistent.

Summary of Steps

	Create a redundant master server

	Copy primary master key to redundant master

	Start redundant master

	Configure minions to connect to redundant master

	Restart minions

	Accept keys on redundant master

Prepping a Redundant Master

The first task is to prepare the redundant master. There is only one
requirement when preparing a redundant master, which is that masters share the
same private key. When the first master was created, the master's identifying
key was generated and placed in the master's pki_dir. The default location
of the key is /etc/salt/pki/master/master.pem. Take this key and copy it to
the same location on the redundant master. Assuming that no minions have yet
been connected to the new redundant master, it is safe to delete any existing
key in this location and replace it.

Note

There is no logical limit to the number of redundant masters that can be
used.

Once the new key is in place, the redundant master can be safely started.

Configure Minions

Since minions need to be master-aware, the new master needs to be added to the
minion configurations. Simply update the minion configurations to list all
connected masters:

master:
 - saltmaster1.example.com
 - saltmaster2.example.com

Now the minion can be safely restarted.

Now the minions will check into the original master and also check into the new
redundant master. Both masters are first-class and have rights to the minions.

Sharing Files Between Masters

Salt does not automatically share files between multiple masters. A number of
files should be shared or sharing of these files should be strongly considered.

Minion Keys

Minion keys can be accepted the normal way using salt-key on both
masters. Keys accepted, deleted, or rejected on one master will NOT be
automatically managed on redundant masters; this needs to be taken care of by
running salt-key on both masters or sharing the
/etc/salt/pki/master/{minions,minions_pre,minions_rejected} directories
between masters.

Note

While sharing the /etc/salt/pki/master directory will work, it is
strongly discouraged, since allowing access to the master.pem key
outside of Salt creates a SERIOUS security risk.

File_Roots

The file_roots contents should be kept consistent between
masters. Otherwise state runs will not always be consistent on minions since
instructions managed by one master will not agree with other masters.

The recommended way to sync these is to use a fileserver backend like gitfs or
to keep these files on shared storage.

Pillar_Roots

Pillar roots should be given the same considerations as
file_roots.

Master Configurations

While reasons may exist to maintain separate master configurations, it is wise
to remember that each master maintains independent control over minions.
Therefore, access controls should be in sync between masters unless a valid
reason otherwise exists to keep them inconsistent.

These access control options include but are not limited to:

	external_auth

	client_acl

	peer

	peer_run

Pillar Walkthrough

Note

This walkthrough assumes that the reader has already completed the initial
Salt Stack walkthrough.

The pillar interface inside of Salt is one of the most important components
of a Salt deployment. Pillar is the interface used to generate arbitrary data
for specific minions. The data generated in pillar is made available to almost
every component of Salt and is used for a number of purposes:

	Highly Sensitive Data:

	Information transferred via pillar is guaranteed to only be presented to the
minions that are targeted, this makes pillar the engine to use in Salt for
managing security information, such as cryptographic keys and passwords.

	Minion Configuration:

	Minion modules such as the execution modules, states, and returners can
often be configured via data stored in pillar.

	Variables:

	Variables which need to be assigned to specific minions or groups of
minions can be defined in pillar and then accessed inside sls formulas
and template files.

	Arbitrary Data:

	Pillar can contain any basic data structure, so a list of values, or a
key/value store can be defined making it easy to iterate over a group
of values in sls formulas

Pillar is therefore one of the most important systems when using Salt, this
walkthrough is designed to get a simple pillar up and running in a few minutes
and then to dive into the capabilities of pillar and where the data is
available.

Setting Up Pillar

The pillar is already running in Salt by default. The data in the minion's
pillars can be seen via the following command:

salt '*' pillar.items

Note

Prior to version 0.16.2, this function is named pillar.data. This
function name is still supported for backwards compatibility.

By default the contents of the master configuration file are loaded into
pillar for all minions, this is to enable the master configuration file to
be used for global configuration of minions.

The pillar is built in a similar fashion as the state tree, it is comprised
of sls files and has a top file, just like the state tree. The pillar is stored
in a different location on the Salt master than the state tree. The default
location for the pillar is in /srv/pillar.

Note

The pillar location can be configured via the pillar_roots option inside
the master configuration file.

To start setting up the pillar, the /srv/pillar directory needs to be present:

mkdir /srv/pillar

Now a simple top file, following the same format as the top file used for
states needs to be created:

/srv/pillar/top.sls:

base:
 '*':
 - data

This top file associates the data.sls file to all minions. Now the
/srv/pillar/data.sls file needs to be populated:

/srv/pillar/data.sls:

info: some data

Now that the file has been saved the minions' pillars will be updated:

salt '*' pillar.items

The key info should now appear in the returned pillar data.

More Complex Data

Pillar files are sls files, just like states, but unlike states they do not
need to define formulas, the data can be arbitrary, this example for
instance sets up user data with a UID:

/srv/pillar/users/init.sls:

users:
 thatch: 1000
 shouse: 1001
 utahdave: 1002
 redbeard: 1003

Note

The same directory lookups that exist in states exist in pillar, so the
file users/init.sls can be referenced with users in the top
file.

The top file will need to be updated to include this sls file:

/srv/pillar/top.sls:

base:
 '*':
 - data
 - users

Now the data will be available to the minions. To use the pillar data in a
state just access the pillar via Jinja:

/srv/salt/users/init.sls

{% for user, uid in pillar.get('users', {}).items() %}
{{user}}:
 user.present:
 - uid: {{uid}}
{% endfor %}

This approach allows for users to be safely defined in a pillar and then the
user data is applied in an sls file.

Paramaterizing States With Pillar

One of the most powerful abstractions in pillar is the ability to parameterize
states. Instead of defining macros or functions within the state context the
entire state tree can be freely parameterized relative to the minion's pillar.

This approach allows for Salt to be very flexible while staying very
straightforward. It also means that simple sls formulas used in the state tree
can be directly parameterized without needing to refactor the state tree.

A simple example is to set up a mapping of package names in pillar for
separate Linux distributions:

/srv/pillar/pkg/init.sls:

pkgs:
 {% if grains['os_family'] == 'RedHat' %}
 apache: httpd
 vim: vim-enhanced
 {% elif grains['os_family'] == 'Debian' %}
 apache: apache2
 vim: vim
 {% elif grains['os'] == 'Arch' %}
 apache: apache
 vim: vim
 {% endif %}

The new pkg sls needs to be added to the top file:

/srv/pillar/top.sls:

base:
 '*':
 - data
 - users
 - pkg

Now the minions will auto map values based on respective operating systems
inside of the pillar, so sls files can be safely parameterized:

/srv/salt/apache/init.sls:

apache:
 pkg.installed:
 - name: {{ pillar['pkgs']['apache'] }}

Or, if no pillar is available a default can be set as well:

Note

The function pillar.get used in this example was added to Salt in
version 0.14.0

/srv/salt/apache/init.sls:

apache:
 pkg.installed:
 - name: {{ salt['pillar.get']('pkgs:apache', 'httpd') }}

In the above example, if the pillar value pillar['pkgs']['apache'] is not
set in the minion's pillar, then the default of httpd will be used.

Note

Under the hood, pillar is just a python dict, so python dict methods such
as get and items can be used.

Pillar Makes Simple States Grow Easily

One of the design goals of pillar is to make simple sls formulas easily grow
into more flexible formulas without refactoring or complicating the states.

A simple formula:

/srv/salt/edit/vim.sls:

vim:
 pkg:
 - installed

/etc/vimrc:
 file.managed:
 - source: salt://edit/vimrc
 - mode: 644
 - user: root
 - group: root
 - require:
 - pkg: vim

Can be easily transformed into a powerful, parameterized formula:

/srv/salt/edit/vim.sls:

vim:
 pkg:
 - installed
 - name: {{ pillar['pkgs']['vim'] }}

/etc/vimrc:
 file.managed:
 - source: {{ pillar['vimrc'] }}
 - mode: 644
 - user: root
 - group: root
 - require:
 - pkg: vim

Where the vimrc source location can now be changed via pillar:

/srv/pillar/edit/vim.sls:

{% if grain['id'].startswith('dev') %}
vimrc: salt://edit/dev_vimrc
{% elif grain['id'].startswith('qa') %}
vimrc: salt://edit/qa_vimrc
{% else %}
vimrc: salt://edit/vimrc
{% endif %}

Ensuring that the right vimrc is sent out to the correct minions.

More On Pillar

The pillar data is generated on the Salt master and securely distributed to
minions. Salt is not restricted to the pillar sls files when defining the
pillar but can retrieve data from external sources. This can be useful when
information about an infrastructure is stored in a separate location.

Reference information on pillar and the external pillar interface can be found
in the Salt Stack documentation:

Pillar

Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before
accepting its key on the master. For instance, you may want the minion to
bootstrap itself as soon as it comes online. You may also want to to let your
developers provision new development machines on the fly.

There is a general four step process to do this:

	Generate the keys on the master:

root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion's id.

	Add the public key to the accepted minion folder:

root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_id]

It is necessary that the public key file has the same name as your minion id.
This is how Salt matches minions with their keys. Also note that the pki folder
could be in a different location, depending on your OS or if specified in the
master config file.

	Distribute the minion keys.

There is no single method to get the keypair to your minion. If you are
spooling up minions on EC2, you could pass them in using user_data or a
cloud-init script. If you are handing them off to a team of developers for
provisioning dev machines, you will need a secure file transfer.

Security Warning

Since the minion key is already accepted on the master, distributing
the private key poses a potential security risk. A malicious party
will have access to your entire state tree and other sensitive data.

	Preseed the Minion with the keys

You will want to place the minion keys before starting the salt-minion daemon:

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run
salt-call state.highstate or any other salt commands that require master
authentication.

Salt Masterless Quickstart

Running a masterless salt-minion lets you use salt's configuration management
for a single machine. It is also useful for testing out state trees before
deploying to a production setup.

The only real difference in using a standalone minion is that instead of issuing
commands with salt, we use the salt-call command, like this:

salt-call --local state.highstate

Bootstrap Salt Minion

First we need to install the salt minion. The salt-bootstrap [https://github.com/saltstack/salt-bootstrap] script makes
this incredibly easy for any OS with a Bourne shell. You can use it like this:

wget -O - http://bootstrap.saltstack.org | sudo sh

Or see the salt-bootstrap [https://github.com/saltstack/salt-bootstrap] documentation for other one liners. Additionally,
if you are using Vagrant [http://www.vagrantup.com/] to test out salt, the salty-vagrant [https://github.com/saltstack/salty-vagrant] tool will
provision the VM for you.

Create State Tree

Now we build an example state tree. This is where the configuration is defined.
For more in depth directions, see the tutorial [http://docs.saltstack.org/en/latest/topics/tutorials/states_pt1.html].

	Create the top.sls file:

/srv/salt/top.sls:

base:
 '*':
 - webserver

	Create our webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
 pkg: # state declaration
 - installed # function declaration

The only thing left is to provision our minion using the highstate command.
Salt-call also gives us an easy way to give us verbose output:

salt-call --local state.highstate -l debug

The --local flag tells the salt-minion to look for the state tree in the
local file system. Normally the minion copies the state tree from the master
and executes it from there.

That's it, good luck!

Standalone Minion

Since the Salt minion contains such extensive functionality it can be useful
to run it standalone. A standalone minion can be used to do a number of
things:

	Stand up a master server via States (Salting a Salt Master)

	Use salt-call commands on a system without connectivity to a master

	Masterless States, run states entirely from files local to the minion

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion
instead of executing them from the master. Normally the salt-call command
checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for
this data. To instruct the minion to not look for a master when running
salt-call the file_client configuration option needs to be set.
By default the file_client is set to remote so that the
minion knows that file server and pillar data are to be gathered from the
master. When setting the file_client option to local the
minion is configured to not gather this data from the master.

file_client: local

Now the salt-call command will not look for a master and will assume that the
local system has all of the file ad pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files
local to the minion. To do this the minion configuration file needs to be set
up to know how to return file_roots information like the master. The file_roots
setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
 base:
 - /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that
they would be set up on a master. Now, with the file_client
option set to local and an available state tree then calls to functions in
the state module will use the information in the file_roots on the minion
instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or
path changes needed, SLS modules written to be used from a master do not need
to be modified in any way to work with a minion.

This makes it easy to "script" deployments with Salt states without having to
set up a master, and allows for these SLS modules to be easily moved into a
Salt master as the deployment grows.

Now the declared state can now be executed with:

salt-call state.highstate

Or the salt-call command can be executed with the --local flag, this makes
it unnecessary to change the configuration file:

salt-call state.highstate --local

How Do I Use Salt States?

Simplicity, Simplicity, Simplicity

Many of the most powerful and useful engineering solutions are founded on
simple principles. The Salt SLS system strives to do just that. K.I.S.S.
(Keep It Stupidly Simple)

The core of the Salt State system is the SLS, or SaLt
State file. The SLS is a representation of the state in which
a system should be in, and is set up to contain this data in a simple format.
This is often called configuration management.

Note

This is just the beginning of using states, make sure to read up on pillar
Pillar next.

It is All Just Data

Before delving into the particulars, it will help to understand that the SLS
file is just a data structure under the hood. While understanding that the SLS
is just a data structure isn't critical for understanding and making use of
Salt States, it should help bolster knowledge of where the real power is.

SLS files are therefore, in reality, just dictionaries [https://docs.python.org/2/library/stdtypes.html#typesmapping], lists [https://docs.python.org/2/library/stdtypes.html#typesseq], strings [https://docs.python.org/2/library/stdtypes.html#typesseq], and numbers [https://docs.python.org/2/library/stdtypes.html#typesnumeric].
By using this approach Salt can be much more flexible. As one writes more state
files, it becomes clearer exactly what is being written. The result is a system
that is easy to understand, yet grows with the needs of the admin or developer.

In the section titled "State Data Structures" a reference exists, explaining
in depth how the data is laid out.

Default Data - YAML

By default Salt represents the SLS data in what is one of the simplest
serialization formats available - YAML [http://yaml.org/spec/1.1/].

A typical SLS file will often look like this in YAML:

Note

These demos use some generic service and package names, different
distributions often use different names for packages and services. For
instance apache should be replaced with httpd on a Red Hat system.
Salt uses the name of the init script, systemd name, upstart name etc.
based on what the underlying service management for the platform. To
get a list of the available service names on a platform execute the
service.get_all salt function.

Information on how to make states work with multiple distributions
is later in the tutorial.

apache:
 pkg:
 - installed
 service:
 - running
 - require:
 - pkg: apache

This SLS data will ensure that the package named apache is installed, and
that the apache service is running. The components can be explained in a
simple way.

The first line is the ID for a set of data, and it is called the ID
Declaration. This ID sets the name of the thing that needs to be manipulated.

The second and fourth lines are the start of the State Declarations, so they
are using the pkg and service states respectively. The pkg state manages a
software package to be installed via the system's native package manager,
and the service state manages a system daemon.

The third and fifth lines are the function to run. This function defines what
state the named package and service should be in. Here, the package is to be
installed, and the service should be running.

Finally, on line six, is the word require. This is called a Requisite
Statement, and it makes sure that the Apache service is only started after
a successful installation of the apache package.

Adding Configs and Users

When setting up a service like an Apache web server, many more components may
need to be added. The Apache configuration file will most likely be managed,
and a user and group may need to be set up.

apache:
 pkg:
 - installed
 service:
 - running
 - watch:
 - pkg: apache
 - file: /etc/httpd/conf/httpd.conf
 - user: apache
 user.present:
 - uid: 87
 - gid: 87
 - home: /var/www/html
 - shell: /bin/nologin
 - require:
 - group: apache
 group.present:
 - gid: 87
 - require:
 - pkg: apache

/etc/httpd/conf/httpd.conf:
 file.managed:
 - source: salt://apache/httpd.conf
 - user: root
 - group: root
 - mode: 644

This SLS data greatly extends the first example, and includes a config file,
a user, a group and new requisite statement: watch.

Adding more states is easy, since the new user and group states are under
the Apache ID, the user and group will be the Apache user and group. The
require statements will make sure that the user will only be made after
the group, and that the group will be made only after the Apache package is
installed.

Next,the require statement under service was changed to watch, and is
now watching 3 states instead of just one. The watch statement does the same
thing as require, making sure that the other states run before running the
state with a watch, but it adds an extra component. The watch statement
will run the state's watcher function for any changes to the watched states.
So if the package was updated, the config file changed, or the user
uid modified, then the service state's watcher will be run. The service
state's watcher just restarts the service, so in this case, a change in the
config file will also trigger a restart of the respective service.

Moving Beyond a Single SLS

When setting up Salt States in a scalable manner, more than one SLS will need
to be used. The above examples were in a single SLS file, but two or more
SLS files can be combined to build out a State Tree. The above example also
references a file with a strange source - salt://apache/httpd.conf. That
file will need to be available as well.

The SLS files are laid out in a directory structure on the Salt master; an
SLS is just a file and files to download are just files.

The Apache example would be laid out in the root of the Salt file server like
this:

apache/init.sls
apache/httpd.conf

So the httpd.conf is just a file in the apache directory, and is referenced
directly.

But when using more than one single SLS file, more components can be added to
the toolkit. Consider this SSH example:

ssh/init.sls:

openssh-client:
 pkg.installed

/etc/ssh/ssh_config:
 file.managed:
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/ssh_config
 - require:
 - pkg: openssh-client

ssh/server.sls:

include:
 - ssh

openssh-server:
 pkg.installed

sshd:
 service.running:
 - require:
 - pkg: openssh-client
 - pkg: openssh-server
 - file: /etc/ssh/banner
 - file: /etc/ssh/sshd_config

/etc/ssh/sshd_config:
 file.managed:
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/sshd_config
 - require:
 - pkg: openssh-server

/etc/ssh/banner:
 file:
 - managed
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/banner
 - require:
 - pkg: openssh-server

Note

Notice that we use two similar ways of denoting that a file
is managed by Salt. In the /etc/ssh/sshd_config state section above,
we use the file.managed state declaration whereas with the
/etc/ssh/banner state section, we use the file state declaration
and add a managed attribute to that state declaration. Both ways
produce an identical result; the first way -- using file.managed --
is merely a shortcut.

Now our State Tree looks like this:

apache/init.sls
apache/httpd.conf
ssh/init.sls
ssh/server.sls
ssh/banner
ssh/ssh_config
ssh/sshd_config

This example now introduces the include statement. The include statement
includes another SLS file so that components found in it can be required,
watched or as will soon be demonstrated - extended.

The include statement allows for states to be cross linked. When an SLS
has an include statement it is literally extended to include the contents of
the included SLS files.

Note that some of the SLS files are called init.sls, while others are not. More
info on what this means can be found in the States Tutorial.

Extending Included SLS Data

Sometimes SLS data needs to be extended. Perhaps the apache service needs to
watch additional resources, or under certain circumstances a different file
needs to be placed.

In these examples, the first will add a custom banner to ssh and the second will
add more watchers to apache to include mod_python.

ssh/custom-server.sls:

include:
 - ssh.server

extend:
 /etc/ssh/banner:
 file:
 - source: salt://ssh/custom-banner

python/mod_python.sls:

include:
 - apache

extend:
 apache:
 service:
 - watch:
 - pkg: mod_python

mod_python:
 pkg.installed

The custom-server.sls file uses the extend statement to overwrite where the
banner is being downloaded from, and therefore changing what file is being used
to configure the banner.

In the new mod_python SLS the mod_python package is added, but more importantly
the apache service was extended to also watch the mod_python package.

Using extend with require or watch

The extend statement works differently for require or watch.
It appends to, rather than replacing the requisite component.

Understanding the Render System

Since SLS data is simply that (data), it does not need to be represented
with YAML. Salt defaults to YAML because it is very straightforward and easy
to learn and use. But the SLS files can be rendered from almost any imaginable
medium, so long as a renderer module is provided.

The default rendering system is the yaml_jinja renderer. The
yaml_jinja renderer will first pass the template through the Jinja2 [http://jinja.pocoo.org/]
templating system, and then through the YAML parser. The benefit here is that
full programming constructs are available when creating SLS files.

Other renderers available are yaml_mako and yaml_wempy which each use
the Mako [http://www.makotemplates.org/] or Wempy [http://www.wempy.org/] templating system respectively rather than the jinja
templating system, and more notably, the pure Python or py and pydsl
renderers.
The py renderer allows for SLS files to be written in pure Python,
allowing for the utmost level of flexibility and power when preparing SLS
data; while the pydsl renderer
provides a flexible, domain-specific language for authoring SLS data in Python.

Note

The templating engines described above aren't just available in SLS files.
They can also be used in file.managed
states, making file management much more dynamic and flexible. Some
examples for using templates in managed files can be found in the
documentation for the file states, as well as the MooseFS
example below.

Getting to Know the Default - yaml_jinja

The default renderer - yaml_jinja, allows for use of the jinja
templating system. A guide to the Jinja templating system can be found here:
http://jinja.pocoo.org/docs

When working with renderers a few very useful bits of data are passed in. In
the case of templating engine based renderers, three critical components are
available, salt, grains, and pillar. The salt object allows for
any Salt function to be called from within the template, and grains allows
for the Grains to be accessed from within the template. A few examples:

apache/init.sls:

apache:
 pkg.installed:
 {% if grains['os'] == 'RedHat'%}
 - name: httpd
 {% endif %}
 service.running:
 {% if grains['os'] == 'RedHat'%}
 - name: httpd
 {% endif %}
 - watch:
 - pkg: apache
 - file: /etc/httpd/conf/httpd.conf
 - user: apache
 user.present:
 - uid: 87
 - gid: 87
 - home: /var/www/html
 - shell: /bin/nologin
 - require:
 - group: apache
 group.present:
 - gid: 87
 - require:
 - pkg: apache

/etc/httpd/conf/httpd.conf:
 file.managed:
 - source: salt://apache/httpd.conf
 - user: root
 - group: root
 - mode: 644

This example is simple. If the os grain states that the operating system is
Red Hat, then the name of the Apache package and service needs to be httpd.

A more aggressive way to use Jinja can be found here, in a module to set up
a MooseFS distributed filesystem chunkserver:

moosefs/chunk.sls:

include:
 - moosefs

{% for mnt in salt['cmd.run']('ls /dev/data/moose*').split() %}
/mnt/moose{{ mnt[-1] }}:
 mount.mounted:
 - device: {{ mnt }}
 - fstype: xfs
 - mkmnt: True
 file.directory:
 - user: mfs
 - group: mfs
 - require:
 - user: mfs
 - group: mfs
{% endfor %}

/etc/mfshdd.cfg:
 file.managed:
 - source: salt://moosefs/mfshdd.cfg
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - require:
 - pkg: mfs-chunkserver

/etc/mfschunkserver.cfg:
 file.managed:
 - source: salt://moosefs/mfschunkserver.cfg
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - require:
 - pkg: mfs-chunkserver

mfs-chunkserver:
 pkg:
 - installed
mfschunkserver:
 service:
 - running
 - require:
{% for mnt in salt['cmd.run']('ls /dev/data/moose*') %}
 - mount: /mnt/moose{{ mnt[-1] }}
 - file: /mnt/moose{{ mnt[-1] }}
{% endfor %}
 - file: /etc/mfschunkserver.cfg
 - file: /etc/mfshdd.cfg
 - file: /var/lib/mfs

This example shows much more of the available power of Jinja.
Multiple for loops are used to dynamically detect available hard drives
and set them up to be mounted, and the salt object is used multiple
times to call shell commands to gather data.

Introducing the Python and the PyDSL Renderers

Sometimes the chosen default renderer might not have enough logical power to
accomplish the needed task. When this happens, the Python renderer can be
used. Normally a YAML renderer should be used for the majority of SLS files,
but an SLS file set to use another renderer can be easily added to the tree.

This example shows a very basic Python SLS file:

python/django.sls:

#!py

def run():
 '''
 Install the django package
 '''
 return {'include': ['python'],
 'django': {'pkg': ['installed']}}

This is a very simple example; the first line has an SLS shebang that
tells Salt to not use the default renderer, but to use the py renderer.
Then the run function is defined, the return value from the run function
must be a Salt friendly data structure, or better known as a Salt
HighState data structure.

Alternatively, using the pydsl
renderer, the above example can be written more succinctly as:

python/django.sls:

#!pydsl

include('python', delayed=True)
state('django').pkg.installed()

This Python examples would look like this if they were written in YAML:

include:
 - python

django:
 pkg.installed

This example clearly illustrates that; one, using the YAML renderer by default
is a wise decision and two, unbridled power can be obtained where needed by
using a pure Python SLS.

Running and debugging salt states.

Once the rules in an SLS are ready, they should be tested to ensure they
work properly. To invoke these rules, simply execute
salt '*' state.highstate on the command line. If you get back only
hostnames with a : after, but no return, chances are there is a problem with
one or more of the sls files. On the minion, use the salt-call command:
salt-call state.highstate -l debug to examine the output for errors.
This should help troubleshoot the issue. The minions can also be started in
the foreground in debug mode: salt-minion -l debug.

Next Reading

With an understanding of states, the next recommendation is to become familiar
with Salt's pillar interface:

Pillar Walkthrough

States tutorial, part 1

The purpose of this tutorial is to demonstrate how quickly you can configure a
system to be managed by Salt States. For detailed information about the state
system please refer to the full states reference.

This tutorial will walk you through using Salt to configure a minion to run the
Apache HTTP server and to ensure the server is running.

Before continuing make sure you have a working Salt installation by
following the installation and the configuration instructions.

Stuck?

There are many ways to get help from the Salt community including our
mailing list [https://groups.google.com/forum/#!forum/salt-users]
and our IRC channel [http://webchat.freenode.net/?channels=salt] #salt.

Setting up the Salt State Tree

States are stored in text files on the master and transferred to the minions on
demand via the master's File Server. The collection of state files make up the
State Tree.

To start using a central state system in Salt, the Salt File Server must first
be set up. Edit the master config file (file_roots) and
uncomment the following lines:

file_roots:
 base:
 - /srv/salt

Note

If you are deploying on FreeBSD via ports, the file_roots path defaults
to /usr/local/etc/salt/states.

Restart the Salt master in order to pick up this change:

pkill salt-master
salt-master -d

Preparing the Top File

On the master, in the directory uncommented in the previous step,
(/srv/salt by default), create a new file called
top.sls and add the following:

base:
 '*':
 - webserver

The top file is separated into environments (discussed later). The
default environment is base. Under the base environment a collection of
minion matches is defined; for now simply specify all hosts (*).

Targeting minions

The expressions can use any of the targeting mechanisms used by Salt —
minions can be matched by glob, PCRE regular expression, or by grains. For example:

base:
 'os:Fedora':
 - match: grain
 - webserver

Create an sls module

In the same directory as the top file, create an empty file named
webserver.sls, containing the following:

apache: # ID declaration
 pkg: # state declaration
 - installed # function declaration

The first line, called the ID declaration, is an arbitrary identifier.
In this case it defines the name of the package to be installed. NOTE: the
package name for the Apache httpd web server may differ depending on OS or
distro — for example, on Fedora it is httpd but on Debian/Ubuntu it
is apache2.

The second line, called the state declaration, defines which of the
Salt States we are using. In this example, we are using the pkg state to ensure that a given package is installed.

The third line, called the function declaration, defines which function
in the pkg state module to call.

Renderers

States sls files can be written in many formats. Salt requires only
a simple data structure and is not concerned with how that data structure
is built. Templating languages and DSLs [http://en.wikipedia.org/wiki/Domain-specific_language] are a dime-a-dozen and everyone
has a favorite.

Building the expected data structure is the job of Salt renderers and they are dead-simple to write.

In this tutorial we will be using YAML in Jinja2 templates, which is the
default format. The default can be changed by editing
renderer in the master configuration file.

Install the package

Next, let's run the state we created. Open a terminal on the master and run:

% salt '*' state.highstate

Our master is instructing all targeted minions to run state.highstate. When a minion executes a highstate call it
will download the top file and attempt to match the expressions. When
it does match an expression the modules listed for it will be downloaded,
compiled, and executed.

Once completed, the minion will report back with a summary of all actions taken
and all changes made.

SLS File Namespace

Note that in the example above, the SLS file
webserver.sls was referred to simply as webserver. The namespace
for SLS files follows a few simple rules:

	The .sls is discarded (i.e. webserver.sls becomes
webserver).

	
	Subdirectories can be used for better organization.

	
	Each subdirectory is represented by a dot.

	webserver/dev.sls is referred to as webserver.dev.

	A file called init.sls in a subdirectory is referred to by the path
of the directory. So, webserver/init.sls is referred to as
webserver.

	If both webserver.sls and webserver/init.sls happen to exist,
webserver/init.sls will be ignored and webserver.sls will be the
file referred to as webserver.

Troubleshooting Salt

If the expected output isn't seen, the following tips can help to
narrow down the problem.

	Turn up logging

	Salt can be quite chatty when you change the logging setting to
debug:

salt-minion -l debug

	Run the minion in the foreground

	By not starting the minion in daemon mode (-d) one can view any output from the minion as it works:

salt-minion &

Increase the default timeout value when running salt. For
example, to change the default timeout to 60 seconds:

salt -t 60

For best results, combine all three:

salt-minion -l debug & # On the minion
salt '*' state.highstate -t 60 # On the master

Next steps

This tutorial focused on getting a simple Salt States configuration working.
Part 2 will build on this example to cover more advanced
sls syntax and will explore more of the states that ship with Salt.

States tutorial, part 2

Note

This tutorial builds on topics covered in part 1. It is
recommended that you begin there.

In the last part of the Salt States tutorial we covered
the basics of installing a package. We will now modify our webserver.sls
file to have requirements, and use even more Salt States.

Call multiple States

You can specify multiple state declarations under
an ID declaration. For example, a quick modification to our
webserver.sls to also start Apache if it is not running:

	1
2
3
4
5
6
7

	apache:
 pkg:
 - installed
 service:
 - running
 - require:
 - pkg: apache

Try stopping Apache before running state.highstate once again and observe
the output.

Expand the SLS module

As you have seen, SLS modules are appended with the file extension .sls and
are referenced by name starting at the root of the state tree. An SLS module
can be also defined as a directory. Demonstrate that now by creating a
directory named webserver and moving and renaming webserver.sls to
webserver/init.sls. Your state directory should now look like this:

|- top.sls
`- webserver/
 `- init.sls

Organizing SLS modules

You can place additional .sls files in a state file directory. This
affords much cleaner organization of your state tree on the filesystem. For
example, if we created a webserver/django.sls file that module would be
referenced as webserver.django.

In addition, States provide powerful includes and extending functionality
which we will cover in Part 3.

Require other states

We now have a working installation of Apache so let's add an HTML file to
customize our website. It isn't exactly useful to have a website without a
webserver so we don't want Salt to install our HTML file until Apache is
installed and running. Include the following at the bottom of your
webserver/init.sls file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	apache:
 pkg:
 - installed
 service:
 - running
 - require:
 - pkg: apache

/var/www/index.html: # ID declaration
 file: # state declaration
 - managed # function
 - source: salt://webserver/index.html # function arg
 - require: # requisite declaration
 - pkg: apache # requisite reference

line 9 is the ID declaration. In this example it is the
location we want to install our custom HTML file. (Note: the default
location that Apache serves may differ from the above on your OS or distro.
/srv/www could also be a likely place to look.)

Line 10 the state declaration. This example uses the Salt file
state.

Line 11 is the function declaration. The managed function will download a file from the master and install it
in the location specified.

Line 12 is a function arg declaration which, in this example, passes
the source argument to the managed function.

Line 13 is a requisite declaration.

Line 14 is a requisite reference which refers to a state and an ID.
In this example, it is referring to the ID declaration from our example in
part 1. This declaration tells Salt not to install the HTML
file until Apache is installed.

Next, create the index.html file and save it in the webserver
directory:

<html>
 <head><title>Salt rocks</title></head>
 <body>
 <h1>This file brought to you by Salt</h1>
 </body>
</html>

Last, call state.highstate again and the
minion will fetch and execute the highstate as well as our HTML file from the
master using Salt's File Server:

salt '*' state.highstate

Verify that Apache is now serving your custom HTML.

require vs. watch

There are two requisite declarations,
“require” and “watch”. Not every state supports “watch”. The service
state does support “watch” and will restart a
service based on the watch condition.

For example, if you use Salt to install an Apache virtual host
configuration file and want to restart Apache whenever that file is changed
you could modify our Apache example from earlier as follows:

/etc/httpd/extra/httpd-vhosts.conf:
 file:
 - managed
 - source: salt://webserver/httpd-vhosts.conf

apache:
 pkg:
 - installed
 service:
 - running
 - watch:
 - file: /etc/httpd/extra/httpd-vhosts.conf
 - require:
 - pkg: apache

If the pkg and service names differ on your OS or distro of choice you can
specify each one separately using a name declaration which
explained in Part 3.

Next steps

In part 3 we will discuss how to use includes, extends and
templating to make a more complete State Tree configuration.

States tutorial, part 3

Note

This tutorial builds on topics covered in part 1 and
part 2. It is recommended that you begin there.

This part of the tutorial will cover more advanced templating and
configuration techniques for sls files.

Templating SLS modules

SLS modules may require programming logic or inline execution. This is
accomplished with module templating. The default module templating system used
is Jinja2 [http://jinja.pocoo.org/] and may be configured by changing the renderer
value in the master config.

All states are passed through a templating system when they are initially read.
To make use of the templating system, simply add some templating markup.
An example of an sls module with templating markup may look like this:

{% for usr in 'moe','larry','curly' %}
{{ usr }}:
 user.present
{% endfor %}

This templated sls file once generated will look like this:

moe:
 user.present
larry:
 user.present
curly:
 user.present

Here's a more complex example:

{% for usr in 'moe','larry','curly' %}
{{ usr }}:
 group:
 - present
 user:
 - present
 - gid_from_name: True
 - require:
 - group: {{ usr }}
{% endfor %}

Using Grains in SLS modules

Often times a state will need to behave differently on different systems.
Salt grains objects are made available
in the template context. The grains can be used from within sls modules:

apache:
 pkg.installed:
 {% if grains['os'] == 'RedHat' %}
 - name: httpd
 {% elif grains['os'] == 'Ubuntu' %}
 - name: apache2
 {% endif %}

Calling Salt modules from templates

All of the Salt modules loaded by the minion are available within the
templating system. This allows data to be gathered in real time on the target
system. It also allows for shell commands to be run easily from within the sls
modules.

The Salt module functions are also made available in the template context as
salt:

moe:
 user:
 - present
 - gid: {{ salt['file.group_to_gid']('some_group_that_exists') }}

Note that for the above example to work, some_group_that_exists must exist
before the state file is processed by the templating engine.

Below is an example that uses the network.hw_addr function to retrieve the
MAC address for eth0:

salt['network.hw_addr']('eth0')

Advanced SLS module syntax

Lastly, we will cover some incredibly useful techniques for more complex State
trees.

Include declaration

A previous example showed how to spread a Salt tree across several files.
Similarly, requisites span multiple files by
using an include declaration. For example:

python/python-libs.sls:

python-dateutil:
 pkg.installed

python/django.sls:

include:
 - python.python-libs

django:
 pkg.installed:
 - require:
 - pkg: python-dateutil

Extend declaration

You can modify previous declarations by using an extend declaration. For
example the following modifies the Apache tree to also restart Apache when the
vhosts file is changed:

apache/apache.sls:

apache:
 pkg.installed

apache/mywebsite.sls:

include:
 - apache.apache

extend:
 apache:
 service:
 - running
 - watch:
 - file: /etc/httpd/extra/httpd-vhosts.conf

/etc/httpd/extra/httpd-vhosts.conf:
 file.managed:
 - source: salt://apache/httpd-vhosts.conf

Using extend with require or watch

The extend statement works differently for require or watch.
It appends to, rather than replacing the requisite component.

Name declaration

You can override the ID declaration by using a name
declaration. For example, the previous example is a bit more maintainable if
rewritten as follows:

apache/mywebsite.sls:

include:
 - apache.apache

extend:
 apache:
 service:
 - running
 - watch:
 - file: mywebsite

mywebsite:
 file.managed:
 - name: /etc/httpd/extra/httpd-vhosts.conf
 - source: salt://apache/httpd-vhosts.conf

Names declaration

Even more powerful is using a names declaration to override the
ID declaration for multiple states at once. This often can remove the
need for looping in a template. For example, the first example in this tutorial
can be rewritten without the loop:

stooges:
 user.present:
 - names:
 - moe
 - larry
 - curly

Next steps

In part 4 we will discuss how to use salt's
file_roots to set up a workflow in which states can be
"promoted" from dev, to QA, to production.

States tutorial, part 4

Note

This tutorial builds on topics covered in part 1,
part 2 and part 3. It is recommended
that you begin there.

This part of the tutorial will show how to use salt's file_roots
to set up a workflow in which states can be "promoted" from dev, to QA, to
production.

Salt fileserver path inheritance

Salt's fileserver allows for more than one root directory per environment, like
in the below example, which uses both a local directory and a secondary
location shared to the salt master via NFS:

In the master config file (/etc/salt/master)
file_roots:
 base:
 - /srv/salt
 - /mnt/salt-nfs/base

Salt's fileserver collapses the list of root directories into a single virtual
environment containing all files from each root. If the same file exists at the
same relative path in more than one root, then the top-most match "wins". For
example, if /srv/salt/foo.txt and /mnt/salt-nfs/base/foo.txt both
exist, then salt://foo.txt will point to /srv/salt/foo.txt.

Environment configuration

Configure a multiple-environment setup like so:

file_roots:
 base:
 - /srv/salt/prod
 qa:
 - /srv/salt/qa
 - /srv/salt/prod
 dev:
 - /srv/salt/dev
 - /srv/salt/qa
 - /srv/salt/prod

Given the path inheritance described above, files within /srv/salt/prod
would be available in all environments. Files within /srv/salt/qa would be
available in both qa, and dev. Finally, the files within
/srv/salt/dev would only be available within the dev environment.

Based on the order in which the roots are defined, new files/states can be
placed within /srv/salt/dev, and pushed out to the dev hosts for testing.

Those files/states can then be moved to the same relative path within
/srv/salt/qa, and they are now available only in the dev and qa
environments, allowing them to be pushed to QA hosts and tested.

Finally, if moved to the same relative path within /srv/salt/prod, the
files are now available in all three environments.

Practical Example

As an example, consider a simple website, installed to /var/www/foobarcom.
Below is a top.sls that can be used to deploy the website:

/srv/salt/prod/top.sls:

base:
 'web*prod*':
 - webserver.foobarcom
qa:
 'web*qa*':
 - webserver.foobarcom
dev:
 'web*dev*':
 - webserver.foobarcom

Using pillar, roles can be assigned to the hosts:

/srv/pillar/top.sls:

base:
 'web*prod*':
 - webserver.prod
 'web*qa*':
 - webserver.qa
 'web*dev*':
 - webserver.dev

/srv/pillar/webserver/prod.sls:

webserver_role: prod

/srv/pillar/webserver/qa.sls:

webserver_role: qa

/srv/pillar/webserver/dev.sls:

webserver_role: dev

And finally, the SLS to deploy the website:

/srv/salt/prod/webserver/foobarcom.sls:

{% if pillar.get('webserver_role', '') %}
/var/www/foobarcom:
 file.recurse:
 - source: salt://webserver/src/foobarcom
 - env: {{ pillar['webserver_role'] }}
 - user: www
 - group: www
 - dir_mode: 755
 - file_mode: 644
{% endif %}

Given the above SLS, the source for the website should initially be placed in
/srv/salt/dev/webserver/src/foobarcom.

First, let's deploy to dev. Given the configuration in the top file, this can
be done using state.highstate:

salt --pillar 'webserver_role:dev' state.highstate

However, in the event that it is not desirable to apply all states configured
in the top file (which could be likely in more complex setups), it is possible
to apply just the states for the foobarcom website, using state.sls:

salt --pillar 'webserver_role:dev' state.sls webserver.foobarcom

Once the site has been tested in dev, then the files can be moved from
/srv/salt/dev/webserver/src/foobarcom to
/srv/salt/qa/webserver/src/foobarcom, and deployed using the following:

salt --pillar 'webserver_role:qa' state.sls webserver.foobarcom

Finally, once the site has been tested in qa, then the files can be moved from
/srv/salt/qa/webserver/src/foobarcom to
/srv/salt/prod/webserver/src/foobarcom, and deployed using the following:

salt --pillar 'webserver_role:prod' state.sls webserver.foobarcom

Thanks to Salt's fileserver inheritance, even though the files have been moved
to within /srv/salt/prod, they are still available from the same
salt:// URI in both the qa and dev environments.

Continue learning

The best way to continue learning about Salt States is to read through the
reference documentation and to look through examples
of existing state trees. Many pre-configured state trees
can be found on Github in the saltstack-formulas [https://github.com/saltstack-formulas] collection of repositories.

If you have any questions, suggestions, or just want to chat with other people
who are using Salt, we have a very active community
and we'd love to hear from you.

Salt Stack Walkthrough

Welcome!

Welcome to Salt Stack! I am excited that you are interested in Salt and
starting down the path to better infrastructure management. I developed
(and am continuing to develop) Salt with the goal of making the best
software available to manage computers of almost any kind. I hope you enjoy
working with Salt and that the software can solve your real world needs!

	Thomas S Hatch

	Salt creator and chief developer

	CTO of Salt Stack, Inc.

Note

This is the first of a series of walkthroughs and serves as the best entry
point for people new to Salt, after this be sure to read up on pillar and
more on states:

Starting States

Pillar Walkthrough

Getting Started

What is Salt?

Salt is a different approach to infrastructure management, it is founded on
the idea that high speed communication with large numbers of systems can open
up new capabilities. This approach makes Salt a powerful multitasking system
that can solve many specific problems in an infrastructure. The backbone of
Salt is the remote execution engine, which creates a high speed, secure and
bi-directional communication net for groups of systems. On top of this
communication system Salt provides an extremely fast, flexible and easy to use
configuration management system called Salt States.

This unique approach to management makes for a transparent control system that
is not only amazingly easy to set up and use, but also capable of solving very
complex problems in infrastructures; as will be explored in this walk through.

Salt is being used today by some of the largest infrastructures in the world
and has a proven ability to scale to astounding proportions without
modification. With the proven ability to scale out well beyond many tens of
thousands of servers, Salt has also proven to be an excellent choice for small
deployments as well, lowering compute and management overhead for
infrastructures as small as just a few systems.

Installing Salt

Salt Stack has been made to be very easy to install and get started. Setting up
Salt should be as easy as installing Salt via distribution packages on Linux or
via the Windows installer. The installation documents cover specific platform installation in depth.

Starting Salt

Salt functions on a master/minion topology. A master server acts as a
central control bus for the clients (called minions), and the minions connect
back to the master.

Setting Up the Salt Master

Turning on the Salt Master is easy, just turn it on! The default configuration
is suitable for the vast majority of installations. The Salt master can be
controlled by the local Linux/Unix service manager:

On Systemd based platforms (OpenSuse, Fedora):

systemctl start salt-master

On Upstart based systems (Ubuntu, older Fedora/RHEL):

service salt-master start

On SysV Init systems (Debian, Gentoo etc.):

/etc/init.d/salt-master start

Or the master can be started directly on the command line:

salt-master -d

The Salt Master can also be started in the foreground in debug mode, thus
greatly increasing the command output:

salt-master -l debug

The Salt Master needs to bind to 2 TCP network ports on the system, these ports
are 4505 and 4506. For more in depth information on firewalling these ports,
the firewall tutorial is available here.

Setting up a Salt Minion

Note

The Salt Minion can operate with or without a Salt Master. This walkthrough
assumes that the minion will be connected to the master, for information on
how to run a master-less minion please see the masterless quickstart guide:

Masterless Minion Quickstart

The Salt Minion only needs to be aware of one piece of information to run, the
network location of the master. By default the minion will look for the DNS
name salt for the master, making the easiest approach to set internal DNS
to resolve the name salt back to the Salt Master IP. Otherwise the minion
configuration file will need to be edited, edit the configuration option
master to point to the DNS name or the IP of the Salt Master:

Note

The default location of the configuration files is /etc/salt. Most
platforms adhere to this convention, but platforms such as FreeBSD and
Microsoft Windows place this file in different locations.

/etc/salt/minion:

master: saltmaster.example.com

Now that the master can be found, start the minion in the same way as the
master; with the platform init system, or via the command line directly:

As a daemon:

salt-minion -d

In the foreground in debug mode:

salt-minion -l debug

Now that the minion is started it will generate cryptographic keys and attempt
to connect to the master. The next step is to venture back to the master server
and accept the new minion's public key.

When the minion is started, it will generate an id value. This is the name
by which the minion will attempt to authenticate to the master. The following
steps are attempted, in order to try to find a value that is not localhost:

	/etc/hostname is checked (non-Windows only) Note: Not used currently,
will be as of version 0.17.0.

	The Python function socket.getfqdn() is run

	/etc/hosts (%WINDIR%\system32\drivers\etc\hosts on Windows hosts) is
checked for hostnames that map to anything within 127.0.0.0/8.

If none of the above are able to produce an id which is not localhost, then
a sorted list of IP addresses on the minion (excluding any within
127.0.0.0/8) is inspected. The first publicly-routable IP address is
used, if there is one. Otherwise, the first privately-routable IP address is
used.

If all else fails, then localhost is used as a fallback.

Note

Overriding the id

The minion id can be manually specified using the id
parameter in the minion config file.

Using salt-key

Salt authenticates minions using public key encryption and authentication. For
a minion to start accepting commands from the master the minion keys need to be
accepted. The salt-key command is used to manage all of the keys on the
master. To list the keys that are on the master run a salt-key list command:

salt-key -L

The keys that have been rejected, accepted and pending acceptance are listed.
The easiest way to accept the minion key is to accept all pending keys:

salt-key -A

Note

Keys should be verified! The secure thing to do before accepting a key is
to run salt-key -p minion-id to print the public key for the minion.
This can then be compared against the minion's public key file, which is
located (on the minion, of course) at /etc/salt/pki/minion/minion.pub.

On the master:

salt-key -p foo.domain.com
Accepted Keys:
foo.domain.com: -----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEA0JcA0IEp/yqghK5V2VLM
jbG7FWV6qtw/ubTDBnpDGQgrvSNOtd0QcJsAzAtDcHwrudQgyxTZGVJqPY7gLc7P
5b4EFWt5E1w3+KZ+XXy4YtW5oOzVN5BvsJ85g7c0TUnmjL7p3MUUXE4049Ue/zgX
jtbFJ0aa1HB8bnlQdWWOeflYRNEQL8482ZCmXXATFP1l5uJA9Pr6/ltdWtQTsXUA
bEseUGEpmq83vAkwtZIyJRG2cJh8ZRlJ6whSMg6wr7lFvStHQQzKHt9pRPml3lLK
ba2X07myAEJq/lpJNXJm5bkKV0+o8hqYQZ1ndh9HblHb2EoDBNbuIlhYft1uv8Tp
8beaEbq8ZST082sS/NjeL7W1T9JS6w2rw4GlUFuQlbqW8FSl1VDo+Alxu0VAr4GZ
gZpl2DgVoL59YDEVrlB464goly2c+eY4XkNT+JdwQ9LwMr83/yAAG6EGNpjT3pZg
Wey7WRnNTIF7H7ISwEzvik1GrhyBkn6K1RX3uAf760ZsQdhxwHmop+krgVcC0S93
xFjbBFF3+53mNv7BNPPgl0iwgA9/WuPE3aoE0A8Cm+Q6asZjf8P/h7KS67rIBEKV
zrQtgf3aZBbW38CT4fTzyWAP138yrU7VSGhPMm5KfTLywNsmXeaR5DnZl6GGNdL1
fZDM+J9FIGb/50Ee77saAlUCAwEAAQ==
-----END PUBLIC KEY-----

On the minion:

cat /etc/salt/pki/minion/minion.pub
-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEA0JcA0IEp/yqghK5V2VLM
jbG7FWV6qtw/ubTDBnpDGQgrvSNOtd0QcJsAzAtDcHwrudQgyxTZGVJqPY7gLc7P
5b4EFWt5E1w3+KZ+XXy4YtW5oOzVN5BvsJ85g7c0TUnmjL7p3MUUXE4049Ue/zgX
jtbFJ0aa1HB8bnlQdWWOeflYRNEQL8482ZCmXXATFP1l5uJA9Pr6/ltdWtQTsXUA
bEseUGEpmq83vAkwtZIyJRG2cJh8ZRlJ6whSMg6wr7lFvStHQQzKHt9pRPml3lLK
ba2X07myAEJq/lpJNXJm5bkKV0+o8hqYQZ1ndh9HblHb2EoDBNbuIlhYft1uv8Tp
8beaEbq8ZST082sS/NjeL7W1T9JS6w2rw4GlUFuQlbqW8FSl1VDo+Alxu0VAr4GZ
gZpl2DgVoL59YDEVrlB464goly2c+eY4XkNT+JdwQ9LwMr83/yAAG6EGNpjT3pZg
Wey7WRnNTIF7H7ISwEzvik1GrhyBkn6K1RX3uAf760ZsQdhxwHmop+krgVcC0S93
xFjbBFF3+53mNv7BNPPgl0iwgA9/WuPE3aoE0A8Cm+Q6asZjf8P/h7KS67rIBEKV
zrQtgf3aZBbW38CT4fTzyWAP138yrU7VSGhPMm5KfTLywNsmXeaR5DnZl6GGNdL1
fZDM+J9FIGb/50Ee77saAlUCAwEAAQ==
-----END PUBLIC KEY-----

Sending the First Commands

Now that the minion is connected to the master and authenticated, the master
can start to command the minion. Salt commands allow for a vast set of
functions to be executed and for specific minions and groups of minions to be
targeted for execution. This makes the salt command very powerful, but
the command is also very usable, and easy to understand.

The salt command is comprised of command options, target specification,
the function to execute, and arguments to the function. A simple command to
start with looks like this:

salt '*' test.ping

The * is the target, which specifies all minions, and test.ping tells
the minion to run the test.ping function.
The result of running this command will be the master instructing all of the
minions to execute test.ping in parallel
and return the result. This is not an actual ICMP ping, but rather a simple
function which returns True. Using test.ping is a good way of confirming that a minion is
connected.

Note

Each minion registers itself with a unique minion id. This id defaults to
the minion's hostname, but can be explicitly defined in the minion config as
well by using the id parameter.

Getting to Know the Functions

Salt comes with a vast library of functions available for execution, and Salt
functions are self documenting. To see what functions are available on the
minions execute the sys.doc function:

salt '*' sys.doc

This will display a very large list of available functions and documentation on
them, this documentation is also available here.

These functions cover everything from shelling out to package management to
manipulating database servers. They comprise a powerful system management API
which is the backbone to Salt configuration management and many other aspects
of Salt.

Note

Salt comes with many plugin systems. The functions that are available via
the salt command are called Execution Modules.

Helpful Functions to Know

The cmd module contains
functions to shell out on minions, such as cmd.run and cmd.run_all:

salt '*' cmd.run 'ls -l /etc'

The pkg functions automatically map local system package managers to the
same salt functions. This means that pkg.install will install packages via
yum on Red Hat based systems, apt on Debian systems, etc.:

salt '*' pkg.install vim

Note

Some custom Linux spins and derivatives of other distros are not properly
detected by Salt. If the above command returns an error message saying that
pkg.install is not available, then you may need to override the pkg
provider. This process is explained here.

The network.interfaces function will
list all interfaces on a minion, along with their IP addresses, netmasks, MAC
addresses, etc:

salt '*' network.interfaces

salt-call

The examples so far have described running commands from the Master using the
salt command, but when troubleshooting it can be more beneficial to login
to the minion directly and use salt-call. Doing so allows you to see the
minion log messages specific to the command you are running (which are not
part of the return data you see when running the command from the Master using
salt), making it unnecessary to tail the minion log. More information on
salt-call and how to use it can be found here.

Grains

Salt uses a system called Grains to build up
static data about minions. This data includes information about the operating
system that is running, CPU architecture and much more. The grains system is
used throughout Salt to deliver platform data to many components and to users.

Grains can also be statically set, this makes it easy to assign values to
minions for grouping and managing. A common practice is to assign grains to
minions to specify what the role or roles a minion might be. These static
grains can be set in the minion configuration file or via the
grains.setval function.

Targeting

Salt allows for minions to be targeted based on a wide range of criteria. The
default targeting system uses globular expressions to match minions, hence if
there are minions named larry1, larry2, curly1 and curly2, a
glob of larry* will match larry1 and larry2, and a glob of *1
will match larry1 and curly1.

Many other targeting systems can be used other than globs, these systems
include:

	Regular Expressions

	Target using PCRE compliant regular expressions

	Grains

	Target based on grains data:
Targeting with Grains

	Pillar

	Target based on pillar data:
Targeting with Pillar

	IP

	Target based on IP addr/subnet/range

	Compound

	Create logic to target based on multiple targets:
Targeting with Compound

	Nodegroup

	Target with nodegroups:
Targeting with Nodegroup

The concepts of targets are used on the command line with salt, but also
function in many other areas as well, including the state system and the
systems used for ACLs and user permissions.

Passing in Arguments

Many of the functions available accept arguments, these arguments can be
passed in on the command line:

salt '*' pkg.install vim

This example passes the argument vim to the pkg.install function, since
many functions can accept more complex input then just a string the arguments
are parsed through YAML, allowing for more complex data to be sent on the
command line:

salt '*' test.echo 'foo: bar'

In this case Salt translates the string 'foo: bar' into the dictionary
"{'foo': 'bar'}"

Note

Any line that contains a newline will not be parsed by yaml.

Salt States

Now that the basics are covered the time has come to evaluate States. Salt
States, or the State System is the component of Salt made for
configuration management. The State system is a fully functional configuration
management system which has been designed to be exceptionally powerful while
still being simple to use, fast, lightweight, deterministic and with salty
levels of flexibility.

The state system is already available with a basic salt setup, no additional
configuration is required, states can be set up immediately.

Note

Before diving into the state system, a brief overview of how states are
constructed will make many of the concepts clearer. Salt states are based
on data modeling, and build on a low level data structure that is used to
execute each state function. Then more logical layers are built on top of
each other. The high layers of the state system which this tutorial will
cover consists of everything that needs to be known to use states, the two
high layers covered here are the sls layer and the highest layer
highstate.

Again, knowing that there are many layers of data management, will help with
understanding states, but they never need to be used. Just as understanding
how a compiler functions when learning a programming language,
understanding what is going on under the hood of a configuration management
system will also prove to be a valuable asset.

The First SLS Formula

The state system is built on sls formulas, these formulas are built out in
files on Salt's file server. To make a very basic sls formula open up a file
under /srv/salt named vim.sls and get vim installed:

/srv/salt/vim.sls:

vim:
 pkg.installed

Now install vim on the minions by calling the sls directly:

salt '*' state.sls vim

This command will invoke the state system and run the named sls which was just
created, vim.

Now, to beef up the vim sls formula, a vimrc can be added:

/srv/salt/vim.sls:

vim:
 pkg.installed

/etc/vimrc:
 file.managed:
 - source: salt://vimrc
 - mode: 644
 - user: root
 - group: root

Now the desired vimrc needs to be copied into the Salt file server to
/srv/salt/vimrc, in Salt everything is a file, so no path redirection needs
to be accounted for. The vimrc file is placed right next to the vim.sls file.
The same command as above can be executed to all the vim sls formulas and now
include managing the file.

Note

Salt does not need to be restarted/reloaded or have the master manipulated
in any way when changing sls formulas, they are instantly available.

Adding Some Depth

Obviously maintaining sls formulas right in the root of the file server will
not scale out to reasonably sized deployments. This is why more depth is
required. Start by making an nginx formula a better way, make an nginx
subdirectory and add an init.sls file:

/srv/salt/nginx/init.sls:

nginx:
 pkg:
 - installed
 service:
 - running
 - require:
 - pkg: nginx

A few things are introduced in this sls formula, first is the service statement
which ensures that the nginx service is running, but the nginx service can't be
started unless the package is installed, hence the require. The require
statement makes sure that the required component is executed before and that it
results in success.

Note

The require option belongs to a family of options called requisites.
Requisites are a powerful component of Salt States, for more information
on how requisites work and what is available see:
Requisites
Also evaluation ordering is available in Salt as well:
Ordering States

Now this new sls formula has a special name, init.sls, when an sls formula is
named init.sls it inherits the name of the directory path that contains it,
so this formula can be referenced via the following command:

salt '*' state.sls nginx

Now that subdirectories can be used the vim.sls formula can be cleaned up, but
to make things more flexible (and to illustrate another point of course), move
the vim.sls and vimrc into a new subdirectory called edit and change the
vim.sls file to reflect the change:

/srv/salt/edit/vim.sls:

vim:
 pkg.installed

/etc/vimrc:
 file.managed:
 - source: salt://edit/vimrc
 - mode: 644
 - user: root
 - group: root

The only change in the file is fixing the source path for the vimrc file. Now
the formula is referenced as edit.vim because it resides in the edit
subdirectory. Now the edit subdirectory can contain formulas for emacs, nano,
joe or any other editor that may need to be deployed.

Next Reading

Two walkthroughs are specifically recommended at this point. First, a deeper
run through States, followed by an explanation of Pillar.

	Starting States

	Pillar Walkthrough

An understanding of Pillar is extremely helpful in using States.

Getting Deeper Into States

Two more in-depth States tutorials exist, which delve much more deeply into States
functionality.

	Thomas' original states tutorial, How Do I Use Salt
States?, covers much more to get off the
ground with States.

	The States Tutorial also provides a
fantastic introduction.

These tutorials include much more in depth information including templating
sls formulas etc.

So Much More!

This concludes the initial Salt walkthrough, but there are many more things to
learn still! These documents will cover important core aspects of Salt:

	Pillar

	Job Management

A few more tutorials are also available:

	Remote Execution Tutorial

	Standalone Minion

This still is only scratching the surface, many components such as the reactor
and event systems, extending Salt, modular components and more are not covered
here. For an overview of all Salt features and documentation, look at the
Table of Contents.

Access Control System

New in version 0.10.4.

Salt maintains a standard system used to open granular control to non
administrative users to execute Salt commands. The access control system
has been applied to all systems used to configure access to non administrative
control interfaces in Salt.These interfaces include, the peer system, the
external auth system and the client acl system.

The access control system mandated a standard configuration syntax used in
all of the three aforementioned systems. While this adds functionality to the
configuration in 0.10.4, it does not negate the old configuration.

Now specific functions can be opened up to specific minions from specific users
in the case of external auth and client ACLs, and for specific minions in the
case of the peer system.

The access controls are manifested using matchers in these configurations:

client_acl:
 fred:
 - web*:
 - pkg.list_pkgs
 - test.*
 - apache.*

In the above example, fred is able to send commands only to minions which match
the specified glob target. This can be expanded to include other functions for
other minions based on standard targets.

external_auth:
 pam:
 dave:
 - test.ping
 - mongo*:
 - network.*
 - log*:
 - network.*
 - pkg.*
 - 'G@os:RedHat':
 - kmod.*
 steve:
 - .*

The above allows for all minions to be hit by test.ping by dave, and adds a
few functions that dave can execute on other minions. It also allows steve
unrestricted access to salt commands.

External Authentication System

Salt 0.10.4 comes with a fantastic new way to open up running Salt commands
to users. This system allows for Salt itself to pass through authentication to
any authentication system (The Unix PAM system was the first) to determine
if a user has permission to execute a Salt command.

The external authentication system allows for specific users to be granted
access to execute specific functions on specific minions. Access is configured
in the master configuration file, and uses the new access control system:

external_auth:
 pam:
 thatch:
 - 'web*':
 - test.*
 - network.*
 steve:
 - .*

So, the above allows the user thatch to execute functions in the test and
network modules on the minions that match the web* target. User steve is
given unrestricted access to minion commands.

The external authentication system can then be used from the command line by
any user on the same system as the master with the -a option:

$ salt -a pam web* test.ping

The system will ask the user for the credentials required by the
authentication system and then publish the command.

Tokens

With external authentication alone the authentication credentials will be
required with every call to Salt. This can be alleviated with Salt tokens.

The tokens are short term authorizations and can be easily created by just
adding a -T option when authenticating:

$ salt -T -a pam web* test.ping

Now a token will be created that has a expiration of, by default, 12 hours.
This token is stored in a file named .salt_token in the active user's home
directory. Once the token is created, it is sent with all subsequent communications.
The user authentication does not need to be entered again until the token expires. The
token expiration time can be set in the Salt master config file.

Pillar of Salt

Pillar is an interface for Salt designed to offer global values that can be
distributed to all minions. Pillar data is managed in a similar way as
the Salt State Tree.

Pillar was added to Salt in version 0.9.8

Note

Storing sensitive data

Unlike state tree, pillar data is only available for the targeted
minion specified by the matcher type. This makes it useful for
storing sensitive data specific to a particular minion.

Declaring the Master Pillar

The Salt Master server maintains a pillar_roots setup that matches the
structure of the file_roots used in the Salt file server. Like the
Salt file server the pillar_roots option in the master config is based
on environments mapping to directories. The pillar data is then mapped to
minions based on matchers in a top file which is laid out in the same way
as the state top file. Salt pillars can use the same matcher types as the
standard top file.

The configuration for the pillar_roots in the master config file
is identical in behavior and function as file_roots:

pillar_roots:
 base:
 - /srv/pillar

This example configuration declares that the base environment will be located
in the /srv/pillar directory. The top file used matches the name of the top
file used for States, and has the same structure:

/srv/pillar/top.sls

base:
 '*':
 - packages

This further example shows how to use other standard top matching types (grain
matching is used in this example) to deliver specific salt pillar data to
minions with different os grains:

dev:
 'os:Debian':
 - match: grain
 - servers

/srv/pillar/packages.sls

{% if grains['os'] == 'RedHat' %}
apache: httpd
git: git
{% elif grains['os'] == 'Debian' %}
apache: apache2
git: git-core
{% endif %}

Now this data can be used from within modules, renderers, State SLS files, and
more via the shared pillar dict [https://docs.python.org/2/library/stdtypes.html#typesmapping]:

apache:
 pkg:
 - installed
 - name: {{ pillar['apache'] }}

git:
 pkg:
 - installed
 - name: {{ pillar['git'] }}

Note that you cannot just list key/value-information in top.sls.

Pillar namespace flattened

The separate pillar files all share the same namespace. Given
a top.sls of:

base:
 '*':
 - packages
 - services

a packages.sls file of:

bind: bind9

and a services.sls file of:

bind: named

Then a request for the bind pillar will only return 'named'; the 'bind9'
value is not available. It is better to structure your pillar files with more
hierarchy. For example your package.sls file could look like:

packages:
 bind: bind9

Including Other Pillars

New in version 0.16.0.

Pillar SLS files may include other pillar files, similar to State files.
Two syntaxes are available for this purpose. The simple form simply includes
the additional pillar as if it were part of the same file:

include:
 - users

The full include form allows two additional options -- passing default values
to the templating engine for the included pillar file as well as an optional
key under which to nest the results of the included pillar:

include:
 - users:
 defaults:
 - sudo: ['bob', 'paul']
 key: users

With this form, the included file (users.sls) will be nested within the 'users'
key of the compiled pillar. Additionally, the 'sudo' value will be available
as a template variable to users.sls.

Viewing Minion Pillar

Once the pillar is set up the data can be viewed on the minion via the
pillar module, the pillar module comes with two functions,
pillar.items and and pillar.raw. pillar.items
will return a freshly reloaded pillar and pillar.raw will return the current pillar without a refresh:

salt '*' pillar.items

Note

Prior to version 0.16.2, this function is named pillar.data. This
function name is still supported for backwards compatibility.

Pillar "get" Function

New in version 0.14.0.

The pillar.get function works much in the same
way as the get method in a python dict, but with an enhancement: nested
dict components can be extracted using a : delimiter.

If a structure like this is in pillar:

foo:
 bar:
 baz: qux

Extracting it from the raw pillar in an sls formula or file template is done
this way:

{{ pillar['foo']['bar']['baz'] }}

Now, with the new pillar.get function the data
can be safely gathered and a default can be set, allowing the template to fall
back if the value is not available:

{{ salt['pillar.get']('foo:bar:baz', 'qux') }}

This makes handling nested structures much easier.

Refreshing Pillar Data

When pillar data is changed on the master the minions need to refresh the data
locally. This is done with the saltutil.refresh_pillar function.

salt '*' saltutil.refresh_pillar

This function triggers the minion to asynchronously refresh the pillar and will
always return None.

Targeting with Pillar

Pillar data can be used when targeting minions. This allows for ultimate
control and flexibility when targeting minions.

salt -I 'somekey:specialvalue' test.ping

Like with Grains, it is possible to use globbing
as well as match nested values in Pillar, by adding colons for each level that
is being traversed. The below example would match minions with a pillar named
foo, which is a dict containing a key bar, with a value beginning with
baz:

salt -I 'foo:bar:baz*' test.ping

Master Config In Pillar

For convenience the data stored in the master configuration file is made
available in all minion's pillars. This makes global configuration of services
and systems very easy but may not be desired if sensitive data is stored in the
master configuration.

To disable the master config from being added to the pillar set pillar_opts
to False:

pillar_opts: False

Master Tops System

In 0.10.4 the external_nodes system was upgraded to allow for modular
subsystems to be used to generate the top file data for a highstate run on
the master.

The old external_nodes option still works, but will be removed in the
future in favor of the new master_tops option which uses the modular
system instead. The master tops system contains a number of subsystems that
are loaded via the Salt loader interfaces like modules, states, returners,
runners, etc.

Using the new master_tops option is simple:

master_tops:
 ext_nodes: cobbler-external-nodes

for Cobbler or:

master_tops:
 reclass:
 inventory_base_uri: /etc/reclass
 classes_uri: roles

for Reclass.

Job Management

New in version 0.9.7.

Since Salt executes jobs running on many systems, Salt needs to be able to
manage jobs running on many systems. As of Salt 0.9.7, the capability was
added for more advanced job management.

The Minion proc System

The Salt Minions now maintain a proc directory in the Salt cachedir, the proc
directory maintains files named after the executed job ID. These files contain
the information about the current running jobs on the minion and allow for
jobs to be looked up. This is located in the proc directory under the
cachedir, with a default configuration it is under /var/cache/salt/proc.

Functions in the saltutil Module

Salt 0.9.7 introduced a few new functions to the
saltutil module for managing
jobs. These functions are:

	running
Returns the data of all running jobs that are found in the proc directory.

	find_job
Returns specific data about a certain job based on job id.

	signal_job
Allows for a given jid to be sent a signal.

	term_job
Sends a termination signal (SIGTERM, 15) to the process controlling the
specified job.

	kill_job
Sends a kill signal (SIGKILL, 9) to the process controlling the
specified job.

These functions make up the core of the back end used to manage jobs at the
minion level.

The jobs Runner

A convenience runner front end and reporting system has been added as well.
The jobs runner contains functions to make viewing data easier and cleaner.

The jobs runner contains a number of functions...

active

The active function runs saltutil.running on all minions and formats the
return data about all running jobs in a much more usable and compact format.
The active function will also compare jobs that have returned and jobs that
are still running, making it easier to see what systems have completed a job
and what systems are still being waited on.

salt-run jobs.active

lookup_jid

When jobs are executed the return data is sent back to the master and cached.
By default is is cached for 24 hours, but this can be configured via the
keep_jobs option in the master configuration.
Using the lookup_jid runner will display the same return data that the initial
job invocation with the salt command would display.

salt-run jobs.lookup_jid <job id number>

list_jobs

Before finding a historic job, it may be required to find the job id. list_jobs
will parse the cached execution data and display all of the job data for jobs
that have already, or partially returned.

salt-run jobs.list_jobs

Salt Scheduling

In Salt versions greater than 0.12.0, the scheduling system allows incremental
executions on minions or the master. The schedule system exposes the execution
of any execution function on minions or any runner on the master.

To set up the scheduler on the master add the schedule option to the master
config file.

To set up the scheduler on the minion add the schedule option to
the minion config file or to the minion's pillar.

Note

The scheduler executes different functions on the master and minions. When
running on the master the functions reference runner functions, when
running on the minion the functions specify execution functions.

The schedule option defines jobs which execute at certain intervals. To set up a highstate
to run on a minion every 60 minutes set this in the minion config or pillar:

schedule:
 highstate:
 function: state.highstate
 minutes: 60

Time intervals can be specified as seconds, minutes, hours, or days. Runner
executions can also be specified on the master within the master configuration
file:

schedule:
 overstate:
 function: state.over
 seconds: 35
 minutes: 30
 hours: 3

The above configuration will execute the state.over runner every 3 hours,
30 minutes and 35 seconds, or every 12,635 seconds.

Scheduler With Returner

The scheduler is also useful for tasks like gathering monitoring data about
a minion, this schedule option will gather status data and send it to a mysql
returner database:

schedule:
 uptime:
 function: status.uptime
 seconds: 60
 returner: mysql
 meminfo:
 function: status.meminfo
 minutes: 5
 returner: mysql

Since specifying the returner repeatedly can be tiresome, the
schedule_returner option is available to specify one or a list of global
returners to be used by the minions when scheduling.

Running the Salt Master as Unprivileged User

While the default setup runs the Salt Master as the root user, it is generally
wise to run servers as an unprivileged user. In Salt 0.9.10 the management
of the running user was greatly improved, the only change needed is to alter
the option user in the master configuration file and all salt system
components will be updated to function under the new user when the master
is started.

If running a version older that 0.9.10 then a number of files need to be
owned by the user intended to run the master:

chown -R <user> /var/cache/salt
chown -R <user> /var/log/salt
chown -R <user> /etc/salt/pki

Troubleshooting

The intent of the troubleshooting section is to introduce solutions to a
number of common issues encountered by users and the tools that are available
to aid in developing States and Salt code.

Running in the Foreground

A great deal of information is available via the debug logging system, if you
are having issues with minions connecting or not starting run the minion and/or
master in the foreground:

salt-master -l debug
salt-minion -l debug

Anyone wanting to run Salt daemons via a process supervisor such as monit [http://mmonit.com/monit/],
runit [http://smarden.org/runit/], or supervisord [http://supervisord.org/], should omit the -d argument to the daemons and
run them in the foreground.

What Ports do the Master and Minion Need Open?

No ports need to be opened up on each minion. For the master, TCP ports 4505
and 4506 need to be open. If you've put both your Salt master and minion in
debug mode and don't see an acknowledgment that your minion has connected,
it could very well be a firewall.

You can check port connectivity from the minion with the nc command:

nc -v -z salt.master.ip 4505
nc -v -z salt.master.ip 4506

There is also a firewall configuration
document that might help as well.

If you've enabled the right TCP ports on your operating system or Linux
distribution's firewall and still aren't seeing connections, check that no
additional access control system such as SELinux [https://en.wikipedia.org/wiki/Security-Enhanced_Linux] or AppArmor [http://wiki.apparmor.net/index.php/Main_Page] is blocking
Salt.

Using salt-call

The salt-call command was originally developed for aiding in the development
of new Salt modules. Since then, many applications have been developed for
running any Salt module locally on a minion. These range from the original
intent of salt-call, development assistance, to gathering more verbose output
from calls like state.highstate.

When creating your state tree, it is generally recommended to invoke
state.highstate with salt-call. This
displays far more information about the highstate execution than calling it
remotely. For even more verbosity, increase the loglevel with the same argument
as salt-minion:

salt-call -l debug state.highstate

The main difference between using salt and using salt-call is that
salt-call is run from the minion, and it only runs the selected function on
that minion. By contrast, salt is run from the master, and requires you to
specify the minions on which to run the command using salt's targeting
system.

Too many open files

The salt-master needs at least 2 sockets per host that connects to it, one for
the Publisher and one for response port. Thus, large installations may, upon
scaling up the number of minions accessing a given master, encounter:

12:45:29,289 [salt.master][INFO] Starting Salt worker process 38
Too many open files
sock != -1 (tcp_listener.cpp:335)

The solution to this would be to check the number of files allowed to be
opened by the user running salt-master (root by default):

[root@salt-master ~]# ulimit -n
1024

And modify that value to be at least equal to the number of minions x 2.
This setting can be changed in limits.conf as the nofile value(s),
and activated upon new a login of the specified user.

So, an environment with 1800 minions, would need 1800 x 2 = 3600 as a minimum.

Salt Master Stops Responding

There are known bugs with ZeroMQ versions less than 2.1.11 which can cause the
Salt master to not respond properly. If you're running a ZeroMQ version greater
than or equal to 2.1.9, you can work around the bug by setting the sysctls
net.core.rmem_max and net.core.wmem_max to 16777216. Next, set the third
field in net.ipv4.tcp_rmem and net.ipv4.tcp_wmem to at least 16777216.

You can do it manually with something like:

echo 16777216 > /proc/sys/net/core/rmem_max
echo 16777216 > /proc/sys/net/core/wmem_max
echo "4096 87380 16777216" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 87380 16777216" > /proc/sys/net/ipv4/tcp_wmem

Or with the following Salt state:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	net.core.rmem_max:
 sysctl:
 - present
 - value: 16777216

net.core.wmem_max:
 sysctl:
 - present
 - value: 16777216

net.ipv4.tcp_rmem:
 sysctl:
 - present
 - value: 4096 87380 16777216

net.ipv4.tcp_wmem:
 sysctl:
 - present
 - value: 4096 87380 16777216

Salt and SELinux

Currently there are no SELinux policies for Salt. For the most part Salt runs
without issue when SELinux is running in Enforcing mode. This is because when
the minion executes as a daemon the type context is changed to initrc_t.
The problem with SELinux arises when using salt-call or running the minion in
the foreground, since the type context stays unconfined_t.

This problem is generally manifest in the rpm install scripts when using the
pkg module. Until a full SELinux Policy is available for Salt the solution
to this issue is to set the execution context of salt-call and
salt-minion to rpm_exec_t:

CentOS 5 and RHEL 5:
chcon -t system_u:system_r:rpm_exec_t:s0 /usr/bin/salt-minion
chcon -t system_u:system_r:rpm_exec_t:s0 /usr/bin/salt-call

CentOS 6 and RHEL 6:
chcon system_u:object_r:rpm_exec_t:s0 /usr/bin/salt-minion
chcon system_u:object_r:rpm_exec_t:s0 /usr/bin/salt-call

This works well, because the rpm_exec_t context has very broad control over
other types.

Red Hat Enterprise Linux 5

Salt requires Python 2.6 or 2.7. Red Hat Enterprise Linux 5 and its variants
come with Python 2.4 installed by default. When installing on RHEL 5 from the
EPEL repository [http://fedoraproject.org/wiki/EPEL] this is handled for you. But, if you run Salt from git, be
advised that its dependencies need to be installed from EPEL and that Salt
needs to be run with the python26 executable.

Common YAML Gotchas

An extensive list of YAML idiosyncrasies has been compiled.

Live Python Debug Output

If the minion or master seems to be unresponsive, a SIGUSR1 can be passed to
the processes to display where in the code they are running. If encountering a
situation like this, this debug information can be invaluable. First make
sure the master of minion are running in the foreground:

salt-master -l debug
salt-minion -l debug

The pass the signal to the master or minion when it seems to be unresponsive:

killall -SIGUSR1 salt-master
killall -SIGUSR1 salt-minion

When filing an issue or sending questions to the mailing list for a problem
with an unresponsive daemon this information can be invaluable.

YAML Idiosyncrasies

One of Salt's strengths, the use of existing serialization systems for
representing SLS data, can also backfire. YAML [http://yaml.org/spec/1.1/] is a general purpose system
and there are a number of things that would seem to make sense in an sls
file that cause YAML issues. It is wise to be aware of these issues. While
reports or running into them are generally rare they can still crop up at
unexpected times.

Spaces vs Tabs

YAML uses spaces [http://yaml.org/spec/1.1/#id871998], period. Do not use tabs in your SLS files! If strange
errors are coming up in rendering SLS files, make sure to check that
no tabs have crept in! In Vim, after enabling search highlighting
with: :set hlsearch, you can check with the following key sequence in
normal mode(you can hit ESC twice to be sure): /, Ctrl-v, Tab, then
hit Enter. Also, you can convert tabs to 2 spaces by these commands in Vim:
:set tabstop=2 expandtab and then :retab.

Indentation

The suggested syntax for YAML files is to use 2 spaces for indentation,
but YAML will follow whatever indentation system that the individual file
uses. Indentation of two spaces works very well for SLS files given the
fact that the data is uniform and not deeply nested.

Nested Dicts (key=value)

When dicts [https://docs.python.org/2/library/stdtypes.html#typesmapping] are more deeply nested, they no
longer follow the same indentation logic. This is rarely something that
comes up in Salt, since deeply nested options like these are discouraged
when making State modules, but some do exist. A good example is the context
and default options in the file.managed
state:

/etc/http/conf/http.conf:
 file:
 - managed
 - source: salt://apache/http.conf
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - context:
 custom_var: "override"
 - defaults:
 custom_var: "default value"
 other_var: 123

Notice that the spacing used is 2 spaces, and that when defining the context
and defaults options there is a 4 space indent. If only a 2 space indent is
used then the information will not be loaded correctly. If using double spacing
is not desirable, then a deeply nested dict can be declared with curly braces:

/etc/http/conf/http.conf:
 file:
 - managed
 - source: salt://apache/http.conf
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - context: {
 custom_var: "override" }
 - defaults: {
 custom_var: "default value",
 other_var: 123 }

True/False, Yes/No, On/Off

PyYAML will load these values as boolean True or False. Un-capitalized
versions will also be loaded as booleans (true, false, yes, no,
on, and off). This can be especially problematic when constructing
Pillar data. Make sure that your Pillars which need to use the string versions
of these values are enclosed in quotes.

Integers are Parsed as Integers

NOTE: This has been fixed in salt 0.10.0, as of this release passing an
integer that is preceded by a 0 will be correctly parsed

When passing integers into an SLS file, they are
passed as integers. This means that if a state accepts a string value
and an integer is passed, that an integer will be sent. The solution here
is to send the integer as a string.

This is best explained when setting the mode for a file:

/etc/vimrc:
 file:
 - managed
 - source: salt://edit/vimrc
 - user: root
 - group: root
 - mode: 644

Salt manages this well, since the mode is passed as 644, but if the mode is
zero padded as 0644, then it is read by YAML as an integer and evaluated as
an octal value, 0644 becomes 420. Therefore, if the file mode is
preceded by a 0 then it needs to be passed as a string:

/etc/vimrc:
 file:
 - managed
 - source: salt://edit/vimrc
 - user: root
 - group: root
 - mode: '0644'

YAML does not like "Double Short Decs"

If I can find a way to make YAML accept "Double Short Decs" then I will, since
I think that double short decs would be awesome. So what is a "Double Short
Dec"? It is when you declare a multiple short decs in one ID. Here is a
standard short dec, it works great:

vim:
 pkg.installed

The short dec means that there are no arguments to pass, so it is not required
to add any arguments, and it can save space.

YAML though, gets upset when declaring multiple short decs, for the record...

THIS DOES NOT WORK:

vim:
 pkg.installed
 user.present

Similarly declaring a short dec in the same ID dec as a standard dec does not
work either...

ALSO DOES NOT WORK:

fred:
 user.present
 ssh_auth.present:
 - name: AAAAB3NzaC...
 - user: fred
 - enc: ssh-dss
 - require:
 - user: fred

The correct way is to define them like this:

vim:
 pkg.installed: []
 user.present: []

fred:
 user.present: []
 ssh_auth.present:
 - name: AAAAB3NzaC...
 - user: fred
 - enc: ssh-dss
 - require:
 - user: fred

Alternatively, they can be defined the "old way", or with multiple
"full decs":

vim:
 pkg:
 - installed
 user:
 - present

fred:
 user:
 - present
 ssh_auth:
 - present
 - name: AAAAB3NzaC...
 - user: fred
 - enc: ssh-dss
 - require:
 - user: fred

YAML support only plain ASCII

According to YAML specification, only ASCII characters can be used.

Within double-quotes, special characters may be represented with C-style
escape sequences starting with a backslash (\).

Examples:

- micro: "\u00b5"
- copyright: "\u00A9"
- A: "\x41"
- alpha: "\u0251"
- Alef: "\u05d0"

List of usable Unicode characters [http://en.wikipedia.org/wiki/List_of_Unicode_characters] will help you to identify correct numbers.

Python can also be used to discover the Unicode number for a character:

repr(u"Text with wrong characters i need to figure out")

This shell command can find wrong characters in your SLS files:

find . -name '*.sls' -exec grep --color='auto' -P -n '[^\x00-\x7F]' \{} \;

Underscores stripped in Integer Definitions

If a definition only includes numbers and underscores, it is parsed by YAML as
an integer and all underscores are stripped. To ensure the object becomes a
string, it should be surrounded by quotes. More information here [http://stackoverflow.com/questions/2723321/snakeyaml-how-to-disable-underscore-stripping-when-parsing].

Here's an example:

>>> import yaml
>>> yaml.safe_load('2013_05_10')
20130510
>>> yaml.safe_load('"2013_05_10"')
'2013_05_10'

Community

Join the Salt!

There are many ways to participate in and communicate with the Salt community.

Salt has an active IRC channel and a mailing list.

Mailing List

Join the salt-users mailing list [https://groups.google.com/forum/#!forum/salt-users]. It is the best place to ask questions
about Salt and see whats going on with Salt development! The Salt mailing list
is hosted by Google Groups. It is open to new members.

https://groups.google.com/forum/#!forum/salt-users

IRC

The #salt IRC channel is hosted on the popular Freenode [http://freenode.net/irc_servers.shtml] network. You
can use the Freenode webchat client [http://webchat.freenode.net/?channels=salt&uio=Mj10cnVlJjk9dHJ1ZSYxMD10cnVl83] right from your browser.

Logs of the IRC channel activity [http://irclog.perlgeek.de/salt/] are being collected courtesy of Moritz Lenz.

Salt development

If you wish to discuss the development of Salt itself join us in
#salt-devel.

Follow on Github

The Salt code is developed via Github. Follow Salt for constant updates on what
is happening in Salt development:

https://github.com/saltstack/salt

The Red45 Blog

News and thoughts on Salt and related projects is often posted on Thomas' blog
The Red45 [http://red45.wordpress.com/]:

http://red45.wordpress.com/

Example Salt States

The official salt-states repository is:
https://github.com/saltstack/salt-states

A few examples of salt states from the community:

	https://github.com/blast-hardcheese/blast-salt-states

	https://github.com/kevingranade/kevingranade-salt-state

	https://github.com/uggedal/states

	https://github.com/mattmcclean/salt-openstack/tree/master/salt

	https://github.com/rentalita/ubuntu-setup/

	https://github.com/brutasse/states

	https://github.com/bclermont/states

	https://github.com/pcrews/salt-data

Follow on ohloh

https://www.ohloh.net/p/salt

Other community links

	Salt Stack Inc. [http://saltstack.com]

	Subreddit [http://www.reddit.com/r/saltstack]

	Google+ [https://plus.google.com/114449193225626631691/posts]

	YouTube [http://www.youtube.com/user/SaltStack]

	Facebook [https://www.facebook.com/SaltStack]

	Twitter [https://twitter.com/SaltStackInc]

	Wikipedia page [http://en.wikipedia.org/wiki/Salt_(software)]

Developing Salt

There is a great need for contributions to salt and patches are welcome! The goal
here is to make contributions clear, make sure there is a trail for where the code
has come from, and most importantly, to give credit where credit is due!

There are a number of ways to contribute to salt development.

Sending a GitHub pull request

This is the preferred method for contributions. Simply create a GitHub
fork, commit changes to the fork, and then open up a pull request.

The following is an example (from Open Comparison Contributing Docs [http://opencomparison.readthedocs.org/en/latest/contributing.html])
of an efficient workflow for forking, cloning, branching, committing, and
sending a pull request for a GitHub repository.

First, make a local clone of your GitHub fork of the salt GitHub repo and make
edits and changes locally.

Then, create a new branch on your clone by entering the following commands:

git checkout -b fixed-broken-thing

Switched to a new branch 'fixed-broken-thing'

Choose a name for your branch that describes its purpose.

Now commit your changes to this new branch with the following command:

git commit -am 'description of my fixes for the broken thing'

Note

Using git commit -am, followed by a quoted string, both stages and
commits all modified files in a single command. Depending on the nature of
your changes, you may wish to stage and commit them separately. Also, note
that if you wish to add newly-tracked files as part of your commit, they
will not be caught using git commit -am and will need to be added using
git add before committing.

Push your locally-committed changes back up to GitHub:

git push --set-upstream origin fixed-broken-thing

Now go look at your fork of the salt repo on the GitHub website. The new
branch will now be listed under the "Source" tab where it says "Switch Branches".
Select the new branch from this list, and then click the "Pull request" button.

Put in a descriptive comment, and include links to any project issues related
to the pull request.

The repo managers will be notified of your pull request and it will be
reviewed. If a reviewer asks for changes, just make the changes locally in the
same local feature branch, push them to GitHub, then add a comment to the
discussion section of the pull request.

Note

Travis-CI

To make reviewing pull requests easier for the maintainers, please enable
Travis-CI on your fork. Salt is already configured, so simply follow the
first 2 steps on the Travis-CI Getting Started Doc [http://about.travis-ci.org/docs/user/getting-started].

Keeping Salt Forks in Sync

Salt is advancing quickly. It is therefore critical to pull upstream changes
from master into forks on a regular basis. Nothing is worse than putting in a
days of hard work into a pull request only to have it rejected because it has
diverged too far from master.

To pull in upstream changes:

For ssh github
git remote add upstream git@github.com:saltstack/salt.git
git fetch upstream

For https github
git remote add upstream https://github.com/saltstack/salt.git
git fetch upstream

To check the log to be sure that you actually want the changes, run the
following before merging:

git log upstream/develop

Then to accept the changes and merge into the current branch:

git merge upstream/develop

For more info, see GitHub Fork a Repo Guide [http://help.github.com/fork-a-repo/] or Open Comparison Contributing
Docs [http://opencomparison.readthedocs.org/en/latest/contributing.html]

Posting patches to the mailing list

Patches will also be accepted by email. Format patches using git
format-patch [http://www.kernel.org/pub/software/scm/git/docs/git-format-patch.html] and send them to the Salt users mailing list. The contributor
will then get credit for the patch, and the Salt community will have an archive
of the patch and a place for discussion.

Installing Salt for development

Clone the repository using:

git clone https://github.com/saltstack/salt

Note

tags

Just cloning the repository is enough to work with Salt and make
contributions. However, fetching additional tags from git is required to
have Salt report the correct version for itself. To do this, first
add the git repository as an upstream source:

git remote add upstream http://github.com/saltstack/salt

Fetching tags is done with the git 'fetch' utility:

git fetch --tags upstream

Create a new virtualenv [http://pypi.python.org/pypi/virtualenv]:

virtualenv /path/to/your/virtualenv

On Arch Linux, where Python 3 is the default installation of Python, use the
virtualenv2 command instead of virtualenv.

Note

Using system Python modules in the virtualenv

To use already-installed python modules in virtualenv (instead of having pip
download and compile new ones), run virtualenv --system-site-packages
Using this method eliminates the requirement to install the salt dependencies
again, although it does assume that the listed modules are all installed in the
system PYTHONPATH at the time of virtualenv creation.

Activate the virtualenv:

source /path/to/your/virtualenv/bin/activate

Install Salt (and dependencies) into the virtualenv:

pip install M2Crypto # Don't install on Debian/Ubuntu (see below)
pip install pyzmq PyYAML pycrypto msgpack-python jinja2 psutil
pip install -e ./salt # the path to the salt git clone from above

Note

Installing M2Crypto

swig and libssl-dev are required to build M2Crypto. To fix
the error command 'swig' failed with exit status 1 while installing M2Crypto,
try installing it with the following command:

env SWIG_FEATURES="-cpperraswarn -includeall -D__`uname -m`__ -I/usr/include/openssl" pip install M2Crypto

Debian and Ubuntu systems have modified openssl libraries and mandate that
a patched version of M2Crypto be installed. This means that M2Crypto
needs to be installed via apt:

apt-get install python-m2crypto

This also means that pulling in the M2Crypto installed using apt requires using
--system-site-packages when creating the virtualenv.

Note

Installing psutil

Python header files are required to build this module, otherwise the pip
install will fail. If your distribution separates binaries and headers into
separate packages, make sure that you have the headers installed. In most
Linux distributions which split the headers into their own package, this
can be done by installing the python-dev or python-devel package.
For other platforms, the package will likely be similarly named.

Note

Important note for those developing using RedHat variants

For developers using a RedHat variant, be advised that the package
provider for newer Redhat-based systems (yumpkg.py) relies on RedHat's python
interface for yum. The variants that use this module to provide package
support include the following:

	RHEL [https://www.redhat.com/products/enterprise-linux/] and CentOS [http://centos.org/] releases 6 and later

	Fedora Linux [http://fedoraproject.org/] releases 11 and later

	Amazon Linux [https://aws.amazon.com/amazon-linux-ami/]

Developers using one of these systems should create the salt virtualenv using the
--system-site-packages option to ensure that the correct modules are available.

Note

Installing dependencies on OS X.

You can install needed dependencies on OS X using homebrew or macports.
See OS X Installation

Running a self-contained development version

During development it is easiest to be able to run the Salt master and minion
that are installed in the virtualenv you created above, and also to have all
the configuration, log, and cache files contained in the virtualenv as well.

Copy the master and minion config files into your virtualenv:

mkdir -p /path/to/your/virtualenv/etc/salt
cp ./salt/conf/master /path/to/your/virtualenv/etc/salt/master
cp ./salt/conf/minion /path/to/your/virtualenv/etc/salt/minion

Edit the master config file:

	Uncomment and change the user: root value to your own user.

	Uncomment and change the root_dir: / value to point to
/path/to/your/virtualenv.

	If you are running version 0.11.1 or older, uncomment and change the
pidfile: /var/run/salt-master.pid value to point to
/path/to/your/virtualenv/salt-master.pid.

	If you are also running a non-development version of Salt you will have to
change the publish_port and ret_port values as well.

Edit the minion config file:

	Repeat the edits you made in the master config for the user and
root_dir values as well as any port changes.

	If you are running version 0.11.1 or older, uncomment and change the
pidfile: /var/run/salt-minion.pid value to point to
/path/to/your/virtualenv/salt-minion.pid.

	Uncomment and change the master: salt value to point at localhost.

	Uncomment and change the id: value to something descriptive like
"saltdev". This isn't strictly necessary but it will serve as a reminder of
which Salt installation you are working with.

Note

Using salt-call with a Standalone Minion

If you plan to run salt-call with this self-contained development
environment in a masterless setup, you should invoke salt-call with
-c /path/to/your/virtualenv/etc/salt so that salt can find the minion
config file. Without the -c option, Salt finds its config files in
/etc/salt.

Start the master and minion, accept the minion's key, and verify your local Salt
installation is working:

cd /path/to/your/virtualenv
salt-master -c ./etc/salt -d
salt-minion -c ./etc/salt -d
salt-key -c ./etc/salt -L
salt-key -c ./etc/salt -A
salt -c ./etc/salt '*' test.ping

Running the master and minion in debug mode can be helpful when developing. To
do this, add -l debug to the calls to salt-master and salt-minion.
If you would like to log to the console instead of to the log file, remove the
-d.

Once the minion starts, you may see an error like the following:

zmq.core.error.ZMQError: ipc path "/path/to/your/virtualenv/var/run/salt/minion/minion_event_7824dcbcfd7a8f6755939af70b96249f_pub.ipc" is longer than 107 characters (sizeof(sockaddr_un.sun_path)).

This means the the path to the socket the minion is using is too long. This is
a system limitation, so the only workaround is to reduce the length of this
path. This can be done in a couple different ways:

	Create your virtualenv in a path that is short enough.

	Edit the sock_dir minion config variable and reduce its
length. Remember that this path is relative to the value you set in
root_dir.

NOTE: The socket path is limited to 107 characters on Solaris and Linux,
and 103 characters on BSD-based systems.

Note

File descriptor limits

Ensure that the system open file limit is raised to at least 2047:

check your current limit
ulimit -n

raise the limit. persists only until reboot
use 'limit descriptors 2047' for c-shell
ulimit -n 2047

To set file descriptors on OSX, refer to the OS X Installation instructions.

Using easy_install to Install Salt

If you are installing using easy_install, you will need to define a
USE_SETUPTOOLS environment variable, otherwise dependencies will not
be installed:

USE_SETUPTOOLS=1 easy_install salt

Running the tests

You will need mock to run the tests:

pip install mock

If you are on Python < 2.7 then you will also need unittest2:

pip install unittest2

Finally you use setup.py to run the tests with the following command:

./setup.py test

For greater control while running the tests, please try:

./tests/runtests.py -h

Editing and previewing the documentation

You need sphinx-build command to build the docs. In Debian/Ubuntu this is
provided in the python-sphinx package. Sphinx can also be installed
to a virtualenv using pip:

pip install Sphinx

Change to salt documentation directory, then:

cd doc; make html

	This will build the HTML docs. Run make without any arguments to see the
available make targets, which include html, man, and
text.

	The docs then are built within the docs/_build/ folder. To update
the docs after making changes, run make again.

	The docs use reStructuredText [http://sphinx-doc.org/rest.html] for markup.
See a live demo at http://rst.ninjs.org/.

	The help information on each module or state is culled from the python code
that runs for that piece. Find them in salt/modules/ or salt/states/.

	To build the docs on Arch Linux, the python2-sphinx package is
required. Additionally, it is necessary to tell make where to find
the proper sphinx-build binary, like so:

make SPHINXBUILD=sphinx-build2 html

	To build the docs on RHEL/CentOS 6, the python-sphinx10 package
must be installed from EPEL, and the following make command must be used:

make SPHINXBUILD=sphinx-1.0-build html

Salt Based Projects

A number of unofficial open source projects, based on Salt, or written to
enhance Salt have been created.

Salt Sandbox

Created by Aaron Bull Schaefer, aka "elasticdog".

https://github.com/elasticdog/salt-sandbox

Salt Sandbox is a multi-VM Vagrant-based Salt development environment used
for creating and testing new Salt state modules outside of your production
environment. It's also a great way to learn firsthand about Salt and its
remote execution capabilities.

Salt Sandbox will set up three separate virtual machines:

	salt.example.com - the Salt master server

	minion1.example.com - the first Salt minion machine

	minion2.example.com - the second Salt minion machine

These VMs can be used in conjunction to segregate and test your modules based
on node groups, top file environments, grain values, etc. You can even test
modules on different Linux distributions or release versions to better match
your production infrastructure.

Salt Event System

Salt 0.9.10 introduced the Salt Event System. This system is used to fire
off events enabling third party applications or external processes to react
to behavior within Salt.

The event system is comprised of a few components, the event sockets which
publish events, and the event library which can listen to events and send
events into the salt system.

Listening for Events

The event system is accessed via the event library and can only be accessed
by the same system user that Salt is running as. To listen to events a
SaltEvent object needs to be created and then the get_event function needs to
be run. The SaltEvent object needs to know the location that the Salt Unix
sockets are kept. In the configuration this is the sock_dir option. The
sock_dir option defaults to "/var/run/salt/master" on most systems.

The following code will check for a single event:

import salt.utils.event

event = salt.utils.event.MasterEvent('/var/run/salt/master')

data = event.get_event()

Events will also use a "tag". A "tag" allows for events to be filtered. By
default all events will be returned, but if only authentication events are
desired, then pass the tag "auth". Also, the get_event method has a default
poll time assigned of 5 seconds, to change this time set the "wait" option.
This example will only listen for auth events and will wait for 10 seconds
instead of the default 5.

import salt.utils.event

event = salt.utils.event.MasterEvent('/var/run/salt/master')

data = event.get_event(wait=10, tag='auth')

Instead of looking for a single event, the iter_events method can be used to
make a generator which will continually yield salt events. The iter_events
method also accepts a tag, but not a wait time:

import salt.utils.event

event = salt.utils.event.MasterEvent('/var/run/salt/master')

for data in event.iter_events(tag='auth'):
 print(data)

Firing Events

It is possible to fire events on either the minion's local bus, or to fire
events intended for the master. To fire a local event from the minion, on the
command line:

salt-call event.fire 'message to be sent in the event' 'tag'

To fire an event to be sent to the master, from the minion:

salt-call event.fire_master 'message for the master' 'tag'

If a process is listening on the minion, it may be useful for a user on the
master to fire an event to it:

salt minionname event.fire 'message for the minion' 'tag'

Firing Events From Code

Events can be very useful when writing execution modules, in order to inform
various processes on the master when a certain task has taken place. In Salt
versions previous to 0.17.0, the basic code looks like:

Import the proper library
import salt.utils.event
Fire deploy action
sock_dir = '/var/run/salt/minion'
event = salt.utils.event.SaltEvent('master', sock_dir)
event.fire_event('Message to be sent', 'tag')

In Salt version 0.17.0, the ability to send a payload with a more complex data
structure than a string was added. When using this interface, a Python
dictionary should be sent instead.

Import the proper library
import salt.utils.event
Fire deploy action
sock_dir = '/var/run/salt/minion'
payload = {'sample-msg': 'this is a test',
 'example': 'this is the same test'}
event = salt.utils.event.SaltEvent('master', sock_dir)
event.fire_event(payload, 'tag')

It should be noted that this code can be used in 3rd party applications as well.
So long as the salt-minion process is running, the minion socket can be used:

sock_dir = '/var/run/salt/minion'

So long as the salt-master process is running, the master socket can be used:

sock_dir = '/var/run/salt/master'

This allows 3rd party applications to harness the power of the Salt event bus
programmatically, without having to make other calls to Salt. A 3rd party
process can listen to the event bus on the master, and another 3rd party
process can fire events to the process on the master, which Salt will happily
pass along.

The Salt Mine

Granted, it took a while for this name to be used in Salt, but version 0.15.0
introduces a new system to Salt called the Salt Mine.

The Salt Mine is used to bridge the gap between setting static variables and
gathering live data. The Salt mine is used to collect arbitrary data from
minions and store it on the master. This data is then made available to
all minions via the mine module.

The data is gathered on the minion and sent back to the master where only
the most recent data is maintained (if long term data is required use
returners or the external job cache).

Mine Functions

To enable the Salt Mine the mine_functions option needs to be applied to a
minion. This option can be applied via the minion's configuration file, or the
minion's pillar. The mine_functions option dictates what functions are being
executed and allows for arguments to be passed in:

mine_functions:
 network.interfaces: []
 test.ping: []

Mine Interval

The Salt Mine functions are executed when the minion starts and at a given
interval by the scheduler. The default interval is every 60 minutes and can
be adjusted for the minion via the mine_interval option:

mine_interval: 60

Salt Virt - The Salt Stack Cloud Controller

The Salt Virt cloud controller capability was initial added to Salt in version
0.14.0 as an alpha technology.

The initial Salt Virt system supports core cloud operations:

	Virtual machine deployment

	Inspection of deployed VMs

	Virtual machine migration

	Network profiling

	Automatic VM integration with all aspects of Salt

	Image Pre-seeding

Many features are currently under development to enhance the capabilities of
the Salt Virt systems.

Note

It is noteworthy that Salt was originally developed with the intent of
using the Salt communication system as the backbone to a cloud controller.
This means that the Salt Virt system is not an afterthought, simply a
system that took the back seat to other development. The original attempt
to develop the cloud control aspects of Salt was a project called butter.
This project never took off, but was functional and proves the early
viability of Salt to be a cloud controller.

Salt Virt Tutorial

A tutorial about how to get Salt Virt up and running has been added to the
tutorial section:

Cloud Controller Tutorial

The Salt Virt Runner

The point of interaction with the cloud controller is the virt
runner. The virt runner comes with routines to execute specific
virtual machine routines.

Reference documentation for the virt runner is available with the runner
module documentation:

Virt Runner Reference

Based on Live State Data

The Salt Virt system is based on using Salt to query live data about
hypervisors and then using the data gathered to make decisions about cloud
operations. This means that no external resources are required to run Salt
Virt, and that the information gathered about the cloud is live and accurate.

Virtual Machine Network Profiles

Salt Virt allows for the network devices created for deployed virtual machines
to be finely configured. The configuration is a simple data structure which is
read from the config.option function, meaning that the configuration can be
stored in the minion config file, the master config file, or the minion's
pillar.

This configuration option is called virt.nic. By default the virt.nic
option is empty but defaults to a data structure which looks like this:

virt.nic:
 default:
 eth0:
 bridge: br0
 model: virtio

Note

The model does not need to be defined, Salt will default to the optimal
model used by the underlying hypervisor, in the case of kvm this model
is virtio

This configuration sets up a network profile called default. The default
profile creates a single Ethernet device on the virtual machine that is bridged
to the hypervisor's br0 interface. This default setup does not
require setting up the virt.nic configuration, and is the reason why a
default install only requires setting up the br0 bridge device on the
hypervisor.

Define More Profiles

Many environments will require more complex network profiles and may require
more than one profile, this can be easily accomplished:

virt.nic:
 dual:
 eth0:
 bridge: service_br
 eth1:
 bridge: storage_br
 single:
 eth0:
 bridge: service_br
 triple:
 eth0:
 bridge: service_br
 eth1:
 bridge: storage_br
 eth2:
 bridge: dmz_br
 all:
 eth0:
 bridge: service_br
 eth1:
 bridge: storage_br
 eth2:
 bridge: dmz_br
 eth3:
 bridge: database_br
 dmz:
 eth0:
 bridge: service_br
 eth1:
 bridge: dmz_br
 database:
 eth0:
 bridge: service_br
 eth1:
 bridge: database_br

This configuration allows for one of six profiles to be selected, allowing
virtual machines to be created which attach to different network depending
on the needs of the deployed vm.

Salt SSH

In version 0.17.0 of Salt a new transport system was introduced, the ability
to use SSH for Salt communication. This addition allows for Salt routines to
be executed on remote systems entirely through ssh, bypassing the need for
a Salt Minion to be running on the remote systems and the need for a Salt
Master.

Note

The Salt SSH system does not supercede the standard Salt communication
systems, it simply offers an SSH based alternative that does not require
ZeroMQ and a remote agent. Be aware that since all communication with Salt SSH is
executed via SSH it is substantially slower than standard Salt with ZeroMQ.

Salt SSH is very easy to use, simply set up a basic roster file of the
systems to connect to and run salt-ssh commands in a similar way as
standard salt commands.

Salt SSH Roster

The roster system in Salt allows for remote minions to be easily defined.

Note

See the Roster documentation for more details.

Simply create the roster file, the default location is /etc/salt/roster:

web1: 192.168.42.1

This is a very basic roster file where a Salt ID is being assigned to an IP
address. A more elaborate roster can be created:

web1:
 host: 192.168.42.1 # The IP addr or DNS hostname
 user: fred # Remote executions will be executed as user fred
 passwd: foobarbaz # The password to use for login, if omitted, keys are used
 sudo: True # Whether to sudo to root, not enabled by default
web2:
 host: 192.168.42.2

Calling Salt SSH

The salt-ssh command can be easily executed in the same was as a salt
command:

salt-ssh '*' test.ping

Commands with salt-ssh follow the same syntax as the salt command.

The standard salt functions are available! The output is the same as salt
and many of the same flags are available.

Raw Shell Calls

By default salt-ssh runs Salt execution modules on the remote system,
but salt-ssh can also execute raw shell commands:

salt-ssh '*' -r 'ifconfig'

States Via Salt SSH

The Salt State system can also be used with salt-ssh. The state system
abstracts the same interface to the user in salt-ssh as it does when using
standard salt. The intent is that Salt Formulas defined for standard
salt will work seamlessly with salt-ssh as vis-versa.

The standard Salt States walkthroughs function by simply replacing salt
commands with salt-ssh.

Targeting with Salt SSH

Due to the fact that the targeting approach differs in salt-ssh, only glob
and regex targets are supported as of this writing, the remaining target
systems still need to be implemented.

Salt Rosters

Salt rosters are plugable systems added in Salt 0.17.0 to facilitate the
salt-ssh system.
The roster system was created because salt-ssh needs a means to
identify which systems need to be targeted for execution.

Note

The Roster System is not needed or used in standard Salt because the
master does not need to be initially aware of target systems, since the
Salt Minion checks itself into the master.

Since the roster system is pluggable, it can be easily augmented to attach to
any existing systems to gather information about what servers are presently
available and should be attached to by salt-ssh.

How Rosters Work

The roster system compiles a data structure internally refered to as
targets. The targets is a list of target systems and attributes about how
to connect to said systems. The only requirement for a roster module in Salt
is to return the targets data structure.

Targets Data

The information which can be stored in a roster target is the following:

<Salt ID>: # The id to reference the target system with
 host: # The IP address or DNS name of the remote host
 user: # The user to log in as
 passwd: # The password to log in with

Running The Tests

To run the tests, use tests/runtests.py, see --help for more info.

Examples:

	To run all tests: sudo ./tests/runtests.py

	Run unit tests only: sudo ./tests/runtests.py --unit-tests

You will need 'mock' (https://pypi.python.org/pypi/mock) in addition to salt requirements in order to run the tests.

Writing Tests

Salt uses a test platform to verify functionality of components in a simple
way. Two testing systems exist to enable testing salt functions in somewhat
real environments. The two subsystems available are integration tests and
unit tests.

Salt uses the python standard library unittest2 system for testing.

Integration Tests

The integration tests start up a number of salt daemons to test functionality
in a live environment. These daemons include 2 salt masters, 1 syndic and 2
minions. This allows for the syndic interface to be tested and master/minion
communication to be verified. All of the integration tests are executed as
live salt commands sent through the started daemons.

	Writing integration tests

Integration tests are particularly good at testing modules, states and shell
commands.

Unit Tests

Direct unit tests are also available, these tests are good for internal
functions.

Integration Tests

The Salt integration tests come with a number of classes and methods which
allow for components to be easily tested. These classes are generally inherited
from and provide specific methods for hooking into the running integration test
environment created by the integration tests.

It is noteworthy that since integration tests validate against a running
environment that they are generally the preferred means to write tests.

The integration system is all located under tests/integration in the Salt
source tree.

Integration Classes

The integration classes are located in tests/integration/__init__.py and
can be extended therein. There are three classes available to extend:

ModuleCase

Used to define executions run via the master to minions and to call
single modules and states.

The available methods are as follows:

	run_function:

	Run a single salt function and condition the return down to match the
behavior of the raw function call. This will run the command and only
return the results from a single minion to verify.

	state_result:

	Return the result data from a single state return

	run_state:

	Run the state.single command and return the state return structure

SyndicCase

Used to execute remote commands via a syndic, only used to verify the
capabilities of the Syndic.

The available methods are as follows:

	run_function:

	Run a single salt function and condition the return down to match the
behavior of the raw function call. This will run the command and only
return the results from a single minion to verify.

ShellCase

Shell out to the scripts which ship with Salt.

The available methods are as follows:

	run_script:

	Execute a salt script with the given argument string

	run_salt:

	Execute the salt command, pass in the argument string as it would be
passed on the command line.

	run_run:

	Execute the salt-run command, pass in the argument string as it would be
passed on the command line.

	run_run_plus:

	Execute Salt run and the salt run function and return the data from
each in a dict

	run_key:

	Execute the salt-key command, pass in the argument string as it would be
passed on the command line.

	run_cp:

	Execute salt-cp, pass in the argument string as it would be
passed on the command line.

	run_call:

	Execute salt-call, pass in the argument string as it would be
passed on the command line.

Examples

Module Example via ModuleCase Class

Import the integration module, this module is already added to the python path
by the test execution. Inherit from the integration.ModuleCase class. The
tests that execute against salt modules should be placed in the
tests/integration/modules directory so that they will be detected by the test
system.

Now the workhorse method run_function can be used to test a module:

import os
import integration

class TestModuleTest(integration.ModuleCase):
 '''
 Validate the test module
 '''
 def test_ping(self):
 '''
 test.ping
 '''
 self.assertTrue(self.run_function('test.ping'))

 def test_echo(self):
 '''
 test.echo
 '''
 self.assertEqual(self.run_function('test.echo', ['text']), 'text')

ModuleCase can also be used to test states, when testing states place the test
module in the tests/integration/states directory. The state_result and
the run_state methods are the workhorse here:

import os
import shutil
import integration

HFILE = os.path.join(integration.TMP, 'hosts')

class HostTest(integration.ModuleCase):
 '''
 Validate the host state
 '''

 def setUp(self):
 shutil.copyfile(os.path.join(integration.FILES, 'hosts'), HFILE)
 super(HostTest, self).setUp()

 def tearDown(self):
 if os.path.exists(HFILE):
 os.remove(HFILE)
 super(HostTest, self).tearDown()

 def test_present(self):
 '''
 host.present
 '''
 name = 'spam.bacon'
 ip = '10.10.10.10'
 ret = self.run_state('host.present', name=name, ip=ip)
 result = self.state_result(ret)
 self.assertTrue(result)
 with open(HFILE) as fp_:
 output = fp_.read()
 self.assertIn('{0}\t\t{1}'.format(ip, name), output)

The above example also demonstrates using the integration files and the
integration state tree. The variable integration.FILES will point to the
directory used to store files that can be used or added to to help enable tests
that require files. The location integration.TMP can also be used to store
temporary files that the test system will clean up when the execution finishes.

The integration state tree can be found at tests/integration/files/file/base.
This is where the referenced host.present sls file resides.

Shell Example via ShellCase

Validating the shell commands can be done via shell tests. Here are some
examples:

import sys
import shutil
import tempfile

import integration

class KeyTest(integration.ShellCase):
 '''
 Test salt-key script
 '''

 _call_binary_ = 'salt-key'

 def test_list(self):
 '''
 test salt-key -L
 '''
 data = self.run_key('-L')
 expect = [
 'Unaccepted Keys:',
 'Accepted Keys:',
 'minion',
 'sub_minion',
 'Rejected:', '']
 self.assertEqual(data, expect)

This example verifies that the salt-key command executes and returns as
expected by making use of the run_key method.

All shell tests should be placed in the tests/integraion/shell directory.

Reactor System

Salt version 0.11.0 introduced the reactor system. The premise behind the
reactor system is that with Salt's events and the ability to execute commands,
a logic engine could be put in place to allow events to trigger actions, or
more accurately, reactions.

This system binds sls files to event tags on the master. These sls files then
define reactions. This means that the reactor system has two parts. First, the
reactor option needs to be set in the master configuration file. The reactor
option allows for event tags to be associated with sls reaction files. Second,
these reaction files use highdata (like the state system) to define reactions
to be executed.

Event System

A basic understanding of the event system is required to understand reactors.
The event system is a local ZeroMQ PUB interface which fires salt events. This
event bus is an open system used for sending information notifying Salt and
other systems about operations.

The event system fires events with a very specific criteria. Every event has a
tag which is comprised of a maximum of 20 characters. Event tags
allow for fast top level filtering of events. In addition to the tag, each
event has a data structure. This data structure is a dict, which contains
information about the event.

Mapping Events to Reactor SLS Files

The event tag and data are both critical when working with the reactor system.
In the master configuration file under the reactor option, tags are associated
with lists of reactor sls formulas (globs can be used for matching):

reactor:
 - 'auth':
 - /srv/reactor/authreact1.sls
 - /srv/reactor/authreact2.sls
 - 'minion_start':
 - /srv/reactor/start.sls

When an event with a tag of auth is fired, the reactor will catch the event
and render the two listed files. The rendered files are standard sls files, so
by default they are yaml + Jinja. The Jinja is packed with a few data
structures similar to state and pillar sls files. The data available is in
tag and data variables. The tag variable is just the tag in the
fired event and the data variable is the event's data dict. Here is a
simple reactor sls:

{% if data['id'] == 'mysql1' %}
highstate_run:
 cmd.state.highstate:
 - tgt: mysql1
{% endif %}

This simple reactor file uses Jinja to further refine the reaction to be made.
If the id in the event data is mysql1 (in other words, if the name of
the minion is mysql1) then the following reaction is defined. The same
data structure and compiler used for the state system is used for the reactor
system. The only difference is that the data is matched up to the salt command
API and the runner system. In this example, a command is published to the
mysql1 minion with a function of state.highstate. Similarly, a runner
can be called:

{% if data['data']['overstate'] == 'refresh' %}
overstate_run:
 runner.state.over
{% endif %}

This example will execute the state.overstate runner and initiate an overstate
execution.

Fire an event

From a minion, run bellow command

salt-call event.fire_master '{"overstate": "refresh"}' 'foo'

In reactor fomular files that are associated with tag foo, data can be
accessed via data['data']. Above command passed a dictionary as data, its
overstate key can be accessed via data['data']['overstate']. See
salt.modules.event for more information.

Understanding the Structure of Reactor Formulas

While the reactor system uses the same data structure as the state system, this
data does not translate the same way to operations. In state, formulas
information is mapped to the state functions, but in the reactor system,
information is mapped to a number of available subsystems on the master. These
systems are the LocalClient and the Runners. The
state declaration field takes a reference to the function to call in
each interface. So to trigger a salt-run call the state declaration
field will start with runner, followed by the runner function to
call. This means that a call to what would be on the command line
salt-run manage.up will be runner.manage.up. An example of
this in a reactor formula would look like this:

manage_up:
 runner.manage.up

If the runner takes arguments then they can be specified as well:

overstate_dev_env:
 runner.state.over:
 - env: dev

Executing remote commands maps to the LocalClient interface which is
used by the salt command. This interface more specifically maps to
the cmd_async method inside of the LocalClient class. This
means that the arguments passed are being passed to the cmd_async
method, not the remote method. A field starts with cmd to use the
LocalClient subsystem. The result is, to execute a remote command,
a reactor fomular would look like this:

clean_tmp:
 cmd.cmd.run:
 - tgt: '*'
 - arg:
 - rm -rf /tmp/*

The arg option takes a list of arguments as they would be presented on the
command line, so the above declaration is the same as running this salt
command:

salt '*' cmd.run 'rm -rf /tmp/*'

Use the expr_form argument to specify a matcher:

clean_tmp:
 cmd.cmd.run:
 - tgt: 'os:Ubuntu'
 - expr_form: grain
 - arg:
 - rm -rf /tmp/*

clean_tmp:
 cmd.cmd.run:
 - tgt: 'G@roles:hbase_master'
 - expr_form: compound
 - arg:
 - rm -rf /tmp/*

Salt Formulas

Formulas are pre-written Salt States. They are as open-ended as Salt States
themselves and can be used for tasks such as installing a package, configuring
and starting a service, setting up users or permissions, and many other common
tasks.

Note

Formulas require Salt 0.17 or later.

More accurately, Formulas are not tested on earlier versions of Salt so
your mileage may vary.

All Formulas require the grains execution module that shipped with Salt
0.16.4. Earlier Salt versions may copy https://github.com/saltstack/salt/blob/develop/salt/modules/grains.py
into the /srv/salt/_modules directory and it will be automatically
distributed to all minions.

Some Formula utilize features added in Salt 0.17 and will not work on
earlier Salt versions.

All official Salt Formulas are found as separate Git repositories in the
"saltstack-formulas" organization on GitHub:

https://github.com/saltstack-formulas

As an example, quickly install and configure the popular memcached server using
sane defaults simply by including the memcached-formula [https://github.com/saltstack-formulas/memcached-formula] repository
into an existing Salt States tree.

Installation

Each Salt Formula is an individual Git repository designed as a drop-in
addition to an existing Salt State tree. Formulas can be installed in the
following ways.

Adding a Formula as a GitFS remote

One design goal of Salt's GitFS fileserver backend was to facilitate reusable
States so this is a quick and natural way to use Formulas.

See also

Setting up GitFS

	Add one or more Formula repository URLs as remotes in the
gitfs_remotes list in the Salt Master configuration file.

	Restart the Salt master.

Adding a Formula directory manually

Since Formulas are simply directories they can be copied onto the local file
system by using Git to clone the repository or by downloading and expanding a
tarball or zip file of the directory.

	Clone the repository manually and add a new entry to
file_roots pointing to the clone's directory.

	Clone the repository manually and then copy or link the Formula directory
into file_roots.

Usage

Each Formula is intended to be immediately usable with sane defaults without
any additional configuration. Many formulas are also configurable by including
data in Pillar; see the pillar.example file in each Formula repository
for available options.

Including a Formula in an existing State tree

Formula may be included in an existing sls file. This is often useful when
a state you are writing needs to require or extend a state defined in
the formula.

Here is an example of a state that uses the epel-formula [https://github.com/saltstack-formulas/epel-formula] in a
require declaration which directs Salt to not install the python26
package until after the EPEL repository has also been installed:

include:
 - epel

python26:
 pkg:
 - installed
 - require:
 - pkg: epel

Including a Formula from a Top File

Some Formula perform completely standalone installations that are not
referenced from other state files. It is usually cleanest to include these
Formula directly from a Top File.

For example the easiest way to set up an OpenStack deployment on a single
machine is to include the openstack-standalone-formula [https://github.com/saltstack-formulas/openstack-standalone-formula] directly from
a top.sls file:

base:
 'myopenstackmaster':
 - openstack

Quickly deploying OpenStack across several dedicated machines could also be
done directly from a Top File and may look something like this:

base:
 'controller':
 - openstack.horizon
 - openstack.keystone
 'hyper-*':
 - openstack.nova
 - openstack.glance
 'storage-*':
 - openstack.swift

Configuring Formula using Pillar

Salt Formulas are designed to work out of the box with no additional
configuration. However, many Formula support additional configuration and
customization through Pillar. Examples of available options can
be found in a file named pillar.example in the root directory of each
Formula repository.

Modifying default Formula behavior

Remember that Formula are regular Salt States and can be used with all Salt's
normal mechanisms for determining execution order. Formula can be required from
other States with require declarations, they can be modified using
extend, they can made to watch other states with watch_in, they can be
used as templates for other States with use. Don't be shy to read through
the source for each Formula!

Reporting problems & making additions

Each Formula is a separate repository on GitHub. If you encounter a bug with a
Formula please file an issue in the respective repository! Send fixes and
additions as a pull request. Add tips and tricks to the repository wiki.

Writing Formulas

Each Formula is a separate repository in the saltstack-formulas [https://github.com/saltstack-formulas] organization
on GitHub.

Note

Get involved creating new Formulas

The best way to create new Formula repositories for now is to create a
repository in your own account on GitHub and notify a SaltStack employee
when it is ready. We will add you as a collaborator on the
saltstack-formulas [https://github.com/saltstack-formulas] organization and help you transfer the repository
over. Ping a SaltStack employee on IRC (#salt on Freenode) or send an
email to the Salt mailing list.

Repository structure

A basic Formula repository should have the following layout:

foo-formula
|-- foo/
| |-- map.jinja
| |-- init.sls
| `-- bar.sls
|-- LICENSE
|-- pillar.example
`-- README.rst

README.rst

The README should detail each available .sls file by explaining what it
does, whether it has any dependencies on other formulas, whether it has a
target platform, and any other installation or usage instructions or tips.

A sample skeleton for the README.rst file:

foo
===

Install and configure the FOO service.

.. note::

 See the full `Salt Formulas installation and usage instructions
 <http://docs.saltstack.com/topics/conventions/formulas.html>`_.

Available states

``foo``
 Install the ``foo`` package and enable the service.
``foo.bar``
 Install the ``bar`` package.

map.jinja

It is useful to have a single source for platform-specific or other
parameterized information that can be reused throughout a Formula. See
"Configuration and parameterization" below for more information. Such
a file should be named map.jinja and live alongside the state
files.

The following is an example from the MySQL Formula.

map.jinja:

{% set mysql = salt['grains.filter_by']({
 'Debian': {
 'server': 'mysql-server',
 'client': 'mysql-client',
 'service': 'mysql',
 'config': '/etc/mysql/my.cnf',
 },
 'RedHat': {
 'server': 'mysql-server',
 'client': 'mysql',
 'service': 'mysqld',
 'config': '/etc/my.cnf',
 },
 'Gentoo': {
 'server': 'dev-db/mysql',
 'mysql-client': 'dev-db/mysql',
 'service': 'mysql',
 'config': '/etc/mysql/my.cnf',
 },
}, merge=salt['pillar.get']('mysql:lookup')) %}

Any of the values defined above can be fetched for the current platform in any
state file using the following syntax:

{% from "mysql/map.jinja" import mysql with context %}

mysql-server:
 pkg:
 - installed
 - name: {{ mysql.server }}
 service:
 - running
 - name: {{ mysql.service }}
 - require:
 - pkg: mysql-server

mysql-config:
 file:
 - managed
 - name: {{ mysql.config }}
 - source: salt://mysql/conf/my.cnf
 - watch:
 - service: mysql-server

SLS files

Each state in a Formula should use sane defaults (as much as is possible) and
use Pillar to allow for customization.

The root state, in particular, and most states in general, should strive to do
no more than the basic expected thing and advanced configuration should be put
in child states build on top of the basic states.

For example, the root Apache should only install the Apache httpd server and
make sure the httpd service is running. It can then be used by more advanced
states:

apache/init.sls
httpd:
 pkg:
 - installed
 service:
 - running

apache/mod_wsgi.sls
include:
 - apache

mod_wsgi:
 pkg:
 - installed
 - require:
 - pkg: apache

apache/debian/vhost_setup.sls
{% if grains['os_family'] == 'Debian' %}
a2dissite 000-default:
 cmd.run:
 - onlyif: test -L /etc/apache2/sites-enabled/000-default
 - require:
 - pkg: apache
{% endif %}

Platform agnostic

Each Salt Formula must be able to be run without error on any platform. If the
formula is not applicable to a platform it should do nothing. See the
epel-formula [https://github.com/saltstack-formulas/epel-formula] for an example.

Any platform-specific states must be wrapped in conditional statements:

{% if grains['os_family'] == 'Debian' %}
...
{% endif %}

A handy method for using platform-specific values is to create a lookup table
using the filter_by() function:

{% set apache = salt['grains.filter_by']({
 'Debian': {'conf': '/etc/apache2/conf.d'},
 'RedHat': {'conf': '/etc/httpd/conf.d'},
}) %}

myconf:
 file:
 - managed
 - name: {{ apache.conf }}/myconf.conf

Configuration and parameterization

Each Formula should strive for sane defaults that can then be customized using
Pillar. Pillar lookups must use the safe get()
and must provide a default value:

{% if salt['pillar.get']('horizon:use_ssl', False) %}
ssl_crt: {{ salt['pillar.get']('horizon:ssl_crt', '/etc/ssl/certs/horizon.crt') }}
ssl_key: {{ salt['pillar.get']('horizon:ssl_key', '/etc/ssl/certs/horizon.key') }}
{% endif %}

Any default values used in the Formula must also be documented in the
pillar.example file in the root of the repository. Comments should be
used liberally to explain the intent of each configuration value. In addition,
users should be able copy-and-paste the contents of this file into their own
Pillar to make any desired changes.

Scripting

Remember that both State files and Pillar files can easily call out to Salt
execution modules and have access to all the system
grains as well.

{% if '/storage' in salt['mount.active']() %}
/usr/local/etc/myfile.conf:
 file:
 - symlink
 - target: /storage/myfile.conf
{% endif %}

Jinja macros are generally discouraged in favor of adding functions to existing
Salt modules or adding new modules. An example of this is the
filter_by() function.

Versioning

Formula versions are tracked using Git tags.

Testing Formulas

Salt Formulas are tested by running each .sls file via state.sls and checking the output for success or failure. This
is done for each supported platform.

Salt Conventions

	Salt Formulas

	Salt Release Process

	Salt Coding Style

Salt Formulas

Formulas are pre-written Salt States. They are as open-ended as Salt States
themselves and can be used for tasks such as installing a package, configuring
and starting a service, setting up users or permissions, and many other common
tasks.

Note

Formulas require Salt 0.17 or later.

More accurately, Formulas are not tested on earlier versions of Salt so
your mileage may vary.

All Formulas require the grains execution module that shipped with Salt
0.16.4. Earlier Salt versions may copy https://github.com/saltstack/salt/blob/develop/salt/modules/grains.py
into the /srv/salt/_modules directory and it will be automatically
distributed to all minions.

Some Formula utilize features added in Salt 0.17 and will not work on
earlier Salt versions.

All official Salt Formulas are found as separate Git repositories in the
"saltstack-formulas" organization on GitHub:

https://github.com/saltstack-formulas

As an example, quickly install and configure the popular memcached server using
sane defaults simply by including the memcached-formula [https://github.com/saltstack-formulas/memcached-formula] repository
into an existing Salt States tree.

Installation

Each Salt Formula is an individual Git repository designed as a drop-in
addition to an existing Salt State tree. Formulas can be installed in the
following ways.

Adding a Formula as a GitFS remote

One design goal of Salt's GitFS fileserver backend was to facilitate reusable
States so this is a quick and natural way to use Formulas.

See also

Setting up GitFS

	Add one or more Formula repository URLs as remotes in the
gitfs_remotes list in the Salt Master configuration file.

	Restart the Salt master.

Adding a Formula directory manually

Since Formulas are simply directories they can be copied onto the local file
system by using Git to clone the repository or by downloading and expanding a
tarball or zip file of the directory.

	Clone the repository manually and add a new entry to
file_roots pointing to the clone's directory.

	Clone the repository manually and then copy or link the Formula directory
into file_roots.

Usage

Each Formula is intended to be immediately usable with sane defaults without
any additional configuration. Many formulas are also configurable by including
data in Pillar; see the pillar.example file in each Formula repository
for available options.

Including a Formula in an existing State tree

Formula may be included in an existing sls file. This is often useful when
a state you are writing needs to require or extend a state defined in
the formula.

Here is an example of a state that uses the epel-formula [https://github.com/saltstack-formulas/epel-formula] in a
require declaration which directs Salt to not install the python26
package until after the EPEL repository has also been installed:

include:
 - epel

python26:
 pkg:
 - installed
 - require:
 - pkg: epel

Including a Formula from a Top File

Some Formula perform completely standalone installations that are not
referenced from other state files. It is usually cleanest to include these
Formula directly from a Top File.

For example the easiest way to set up an OpenStack deployment on a single
machine is to include the openstack-standalone-formula [https://github.com/saltstack-formulas/openstack-standalone-formula] directly from
a top.sls file:

base:
 'myopenstackmaster':
 - openstack

Quickly deploying OpenStack across several dedicated machines could also be
done directly from a Top File and may look something like this:

base:
 'controller':
 - openstack.horizon
 - openstack.keystone
 'hyper-*':
 - openstack.nova
 - openstack.glance
 'storage-*':
 - openstack.swift

Configuring Formula using Pillar

Salt Formulas are designed to work out of the box with no additional
configuration. However, many Formula support additional configuration and
customization through Pillar. Examples of available options can
be found in a file named pillar.example in the root directory of each
Formula repository.

Modifying default Formula behavior

Remember that Formula are regular Salt States and can be used with all Salt's
normal mechanisms for determining execution order. Formula can be required from
other States with require declarations, they can be modified using
extend, they can made to watch other states with watch_in, they can be
used as templates for other States with use. Don't be shy to read through
the source for each Formula!

Reporting problems & making additions

Each Formula is a separate repository on GitHub. If you encounter a bug with a
Formula please file an issue in the respective repository! Send fixes and
additions as a pull request. Add tips and tricks to the repository wiki.

Writing Formulas

Each Formula is a separate repository in the saltstack-formulas [https://github.com/saltstack-formulas] organization
on GitHub.

Note

Get involved creating new Formulas

The best way to create new Formula repositories for now is to create a
repository in your own account on GitHub and notify a SaltStack employee
when it is ready. We will add you as a collaborator on the
saltstack-formulas [https://github.com/saltstack-formulas] organization and help you transfer the repository
over. Ping a SaltStack employee on IRC (#salt on Freenode) or send an
email to the Salt mailing list.

Repository structure

A basic Formula repository should have the following layout:

foo-formula
|-- foo/
| |-- map.jinja
| |-- init.sls
| `-- bar.sls
|-- LICENSE
|-- pillar.example
`-- README.rst

README.rst

The README should detail each available .sls file by explaining what it
does, whether it has any dependencies on other formulas, whether it has a
target platform, and any other installation or usage instructions or tips.

A sample skeleton for the README.rst file:

foo
===

Install and configure the FOO service.

.. note::

 See the full `Salt Formulas installation and usage instructions
 <http://docs.saltstack.com/topics/conventions/formulas.html>`_.

Available states

``foo``
 Install the ``foo`` package and enable the service.
``foo.bar``
 Install the ``bar`` package.

map.jinja

It is useful to have a single source for platform-specific or other
parameterized information that can be reused throughout a Formula. See
"Configuration and parameterization" below for more information. Such
a file should be named map.jinja and live alongside the state
files.

The following is an example from the MySQL Formula.

map.jinja:

{% set mysql = salt['grains.filter_by']({
 'Debian': {
 'server': 'mysql-server',
 'client': 'mysql-client',
 'service': 'mysql',
 'config': '/etc/mysql/my.cnf',
 },
 'RedHat': {
 'server': 'mysql-server',
 'client': 'mysql',
 'service': 'mysqld',
 'config': '/etc/my.cnf',
 },
 'Gentoo': {
 'server': 'dev-db/mysql',
 'mysql-client': 'dev-db/mysql',
 'service': 'mysql',
 'config': '/etc/mysql/my.cnf',
 },
}, merge=salt['pillar.get']('mysql:lookup')) %}

Any of the values defined above can be fetched for the current platform in any
state file using the following syntax:

{% from "mysql/map.jinja" import mysql with context %}

mysql-server:
 pkg:
 - installed
 - name: {{ mysql.server }}
 service:
 - running
 - name: {{ mysql.service }}
 - require:
 - pkg: mysql-server

mysql-config:
 file:
 - managed
 - name: {{ mysql.config }}
 - source: salt://mysql/conf/my.cnf
 - watch:
 - service: mysql-server

SLS files

Each state in a Formula should use sane defaults (as much as is possible) and
use Pillar to allow for customization.

The root state, in particular, and most states in general, should strive to do
no more than the basic expected thing and advanced configuration should be put
in child states build on top of the basic states.

For example, the root Apache should only install the Apache httpd server and
make sure the httpd service is running. It can then be used by more advanced
states:

apache/init.sls
httpd:
 pkg:
 - installed
 service:
 - running

apache/mod_wsgi.sls
include:
 - apache

mod_wsgi:
 pkg:
 - installed
 - require:
 - pkg: apache

apache/debian/vhost_setup.sls
{% if grains['os_family'] == 'Debian' %}
a2dissite 000-default:
 cmd.run:
 - onlyif: test -L /etc/apache2/sites-enabled/000-default
 - require:
 - pkg: apache
{% endif %}

Platform agnostic

Each Salt Formula must be able to be run without error on any platform. If the
formula is not applicable to a platform it should do nothing. See the
epel-formula [https://github.com/saltstack-formulas/epel-formula] for an example.

Any platform-specific states must be wrapped in conditional statements:

{% if grains['os_family'] == 'Debian' %}
...
{% endif %}

A handy method for using platform-specific values is to create a lookup table
using the filter_by() function:

{% set apache = salt['grains.filter_by']({
 'Debian': {'conf': '/etc/apache2/conf.d'},
 'RedHat': {'conf': '/etc/httpd/conf.d'},
}) %}

myconf:
 file:
 - managed
 - name: {{ apache.conf }}/myconf.conf

Configuration and parameterization

Each Formula should strive for sane defaults that can then be customized using
Pillar. Pillar lookups must use the safe get()
and must provide a default value:

{% if salt['pillar.get']('horizon:use_ssl', False) %}
ssl_crt: {{ salt['pillar.get']('horizon:ssl_crt', '/etc/ssl/certs/horizon.crt') }}
ssl_key: {{ salt['pillar.get']('horizon:ssl_key', '/etc/ssl/certs/horizon.key') }}
{% endif %}

Any default values used in the Formula must also be documented in the
pillar.example file in the root of the repository. Comments should be
used liberally to explain the intent of each configuration value. In addition,
users should be able copy-and-paste the contents of this file into their own
Pillar to make any desired changes.

Scripting

Remember that both State files and Pillar files can easily call out to Salt
execution modules and have access to all the system
grains as well.

{% if '/storage' in salt['mount.active']() %}
/usr/local/etc/myfile.conf:
 file:
 - symlink
 - target: /storage/myfile.conf
{% endif %}

Jinja macros are generally discouraged in favor of adding functions to existing
Salt modules or adding new modules. An example of this is the
filter_by() function.

Versioning

Formula versions are tracked using Git tags.

Testing Formulas

Salt Formulas are tested by running each .sls file via state.sls and checking the output for success or failure. This
is done for each supported platform.

Salt Release Process

The goal for Salt projects is to cut a new feature release every four to six
weeks. This document outlines the process for these releases, and the
subsequent bug fix releases which follow.

Feature Release Process

When a new release is ready to be cut, the person responsible for cutting the
release will follow the following steps (written using the 0.16 release as an
example):

	All open issues on the release milestone should be moved to the next release
milestone. (e.g. from the 0.16 milestone to the 0.17 milestone)

	Release notes should be created documenting the major new features and
bugfixes in the release.

	Create an annotated tag with only the major and minor version numbers,
preceded by the letter v. (e.g. v0.16) This tag will reside on the
develop branch.

	Create a branch for the new release, using only the major and minor version
numbers. (e.g. 0.16)

	On this new branch, create an annotated tag for the first revision release,
which is generally a release candidate. It should be preceded by the letter
v. (e.g. v0.16.0RC)

	The release should be packaged from this annotated tag and uploaded to PyPI.

	The packagers should be notified on the salt-packagers mailing list so
they can create packages for all the major operating systems. (note that
release candidates should go in the testing repositories)

	After the packagers have been given a few days to compile the packages, the
release is announced on the salt-users mailing list.

	Log into RTD and add the new release there. (Have to do it manually)

Maintenance and Bugfix Releases

Once a release has been cut, regular cherry-picking sessions should begin to
cherry-pick any bugfixes from the develop branch to the release branch
(e.g. 0.16). Once major bugs have been fixes and cherry-picked, a bugfix
release can be cut:

	On the release branch (i.e. 0.16), create an annotated tag for the
revision release. It should be preceded by the letter v. (e.g.
v0.16.2) Release candidates are unnecessary for bugfix releases.

	The release should be packaged from this annotated tag and uploaded to PyPI.

	The packagers should be notified on the salt-packagers mailing list so
they can create packages for all the major operating systems.

	After the packagers have been given a few days to compile the packages, the
release is announced on the salt-users mailing list.

Salt Coding Style

Salt is developed with a certain coding style, while the style is dominantly
PEP 8 it is not completely PEP 8. It is also noteworthy that a few
development techniques are also employed which should be adhered to. In the
end, the code is made to be "Salty".

Most importantly though, we will accept code that violates the coding style and
KINDLY ask the contributor to fix it, or go ahead and fix the code on behalf of
the contributor. Coding style is NEVER grounds to reject code contributions,
and is never grounds to talk down to another member of the community (There are
no grounds to treat others without respect, especially people working to
improve Salt)!!

Strings

Salt follows a few rules when formatting strings:

Single Quotes

In Salt, all strings use single quotes unless there is a good reason not to.
This means that docstrings use single quotes, standard strings use single
quotes etc.:

def foo():
 '''
 A function that does things
 '''
 name = 'A name'
 return name

Formatting Strings

All strings which require formatting should use the .format string method:

data = 'some text'
more = '{0} and then some'.format(data)

Make sure to use indices or identifiers in the format brackets, since empty
brackets are not supported by python 2.6.

Please do NOT use printf formatting.

Docstring Conventions

Docstrings should always add a newline, docutils takes care of the new line and
it makes the code cleaner and more vertical:

GOOD:

def bar():
 '''
 Here lies a docstring with a newline after the quotes and is the salty
 way to handle it! Vertical code is the way to go!
 '''
 return

BAD:

def baz():
 '''This is not ok!'''
 return

Imports

Salt code prefers importing modules and not explicit functions. This is both a
style and functional preference. The functional preference originates around
the fact that the module import system used by pluggable modules will include
callable objects (functions) that exist in the direct module namespace. This
is not only messy, but may unintentionally expose code python libs to the Salt
interface and pose a security problem.

To say this more directly with an example, this is GOOD:

import os

def minion_path():
 path = os.path.join(self.opts['cachedir'], 'minions')
 return path

This on the other hand is DISCOURAGED:

from os.path import join

def minion_path():
 path = join(self.opts['cachedir'], 'minions')
 return path

The time when this is changed is for importing exceptions, generally directly
importing exceptions is preferred:

This is a good way to import exceptions:

from salt.exceptions import CommandExecutionError

Absolute Imports

Although absolute imports [http://www.python.org/dev/peps/pep-0328/#rationale-for-absolute-imports] seems like an awesome idea, please do not use it.
Extra care would be necessary all over salt's code in order for absolute
imports to work as supposed. Believe it, it has been tried before and, as a
tried example, by renaming salt.modules.sysmod to salt.modules.sys, all
other salt modules which needed to import sys [https://docs.python.org/2/library/sys.html#module-sys] would have to
also import absolute_import [https://docs.python.org/2/library/__future__.html#module-__future__], which should be
avoided.

Vertical is Better

When writing Salt code, vertical code is generally preferred. This is not a hard
rule but more of a guideline. As PEP 8 specifies, Salt code should not exceed 79
characters on a line, but it is preferred to separate code out into more
newlines in some cases for better readability:

import os

os.chmod(
 os.path.join(self.opts['sock_dir'],
 'minion_event_pub.ipc'),
 448
)

Where there are more line breaks, this is also apparent when constructing a
function with many arguments, something very common in state functions for
instance:

def managed(name,
 source=None,
 source_hash='',
 user=None,
 group=None,
 mode=None,
 template=None,
 makedirs=False,
 context=None,
 replace=True,
 defaults=None,
 env=None,
 backup='',
 **kwargs):

Note

Making function and class definitions vertical is only required if the
arguments are longer then 80 characters. Otherwise, the formatting is
optional and both are acceptable.

Indenting

Some confusion exists in the python world about indenting things like function
calls, the above examples use 8 spaces when indenting comma-delimited
constructs.

The confusion arises because the pep8 program INCORRECTLY flags this as wrong,
where PEP 8, the document, cites only using 4 spaces here as wrong, as it
doesn't differentiate from a new indent level.

Right:

def managed(name,
 source=None,
 source_hash='',
 user=None)

WRONG:

def managed(name,
 source=None,
 source_hash='',
 user=None)

Lining up the indent is also correct:

def managed(name,
 source=None,
 source_hash='',
 user=None)

This also applies to function calls and other hanging indents.

pep8 and Flake8 (and, by extension, the vim plugin Syntastic) will complain
about the double indent for hanging indents. This is a known conflict [https://github.com/jcrocholl/pep8/issues/167#issuecomment-15936564] between
pep8 (the script) and the actual PEP 8 standard. It is recommended that this
particular warning be ignored with the following lines in
~/.config/flake8:

[flake8]
ignore = E226,E241,E242,E126

Make sure your Flake8/pep8 are up to date. The first three errors are ignored
by default and are present here to keep the behavior the same. This will also
work for pep8 without the Flake8 wrapper -- just replace all instances of
'flake8' with 'pep8', including the filename.

Code Churn

Many pull requests have been submitted that only churn code in the name of
PEP 8. Code churn is a leading source of bugs and is strongly discouraged.
While style fixes are encouraged they should be isolated to a single file per
commit, and the changes should be legitimate, if there are any questions about
whether a style change is legitimate please reference this document and the
official PEP 8 (http://www.python.org/dev/peps/pep-0008/) document before
changing code. Many claims that a change is PEP 8 have been invalid, please
double check before committing fixes.

Salt Release Process

The goal for Salt projects is to cut a new feature release every four to six
weeks. This document outlines the process for these releases, and the
subsequent bug fix releases which follow.

Feature Release Process

When a new release is ready to be cut, the person responsible for cutting the
release will follow the following steps (written using the 0.16 release as an
example):

	All open issues on the release milestone should be moved to the next release
milestone. (e.g. from the 0.16 milestone to the 0.17 milestone)

	Release notes should be created documenting the major new features and
bugfixes in the release.

	Create an annotated tag with only the major and minor version numbers,
preceded by the letter v. (e.g. v0.16) This tag will reside on the
develop branch.

	Create a branch for the new release, using only the major and minor version
numbers. (e.g. 0.16)

	On this new branch, create an annotated tag for the first revision release,
which is generally a release candidate. It should be preceded by the letter
v. (e.g. v0.16.0RC)

	The release should be packaged from this annotated tag and uploaded to PyPI.

	The packagers should be notified on the salt-packagers mailing list so
they can create packages for all the major operating systems. (note that
release candidates should go in the testing repositories)

	After the packagers have been given a few days to compile the packages, the
release is announced on the salt-users mailing list.

	Log into RTD and add the new release there. (Have to do it manually)

Maintenance and Bugfix Releases

Once a release has been cut, regular cherry-picking sessions should begin to
cherry-pick any bugfixes from the develop branch to the release branch
(e.g. 0.16). Once major bugs have been fixes and cherry-picked, a bugfix
release can be cut:

	On the release branch (i.e. 0.16), create an annotated tag for the
revision release. It should be preceded by the letter v. (e.g.
v0.16.2) Release candidates are unnecessary for bugfix releases.

	The release should be packaged from this annotated tag and uploaded to PyPI.

	The packagers should be notified on the salt-packagers mailing list so
they can create packages for all the major operating systems.

	After the packagers have been given a few days to compile the packages, the
release is announced on the salt-users mailing list.

Salt Coding Style

Salt is developed with a certain coding style, while the style is dominantly
PEP 8 it is not completely PEP 8. It is also noteworthy that a few
development techniques are also employed which should be adhered to. In the
end, the code is made to be "Salty".

Most importantly though, we will accept code that violates the coding style and
KINDLY ask the contributor to fix it, or go ahead and fix the code on behalf of
the contributor. Coding style is NEVER grounds to reject code contributions,
and is never grounds to talk down to another member of the community (There are
no grounds to treat others without respect, especially people working to
improve Salt)!!

Strings

Salt follows a few rules when formatting strings:

Single Quotes

In Salt, all strings use single quotes unless there is a good reason not to.
This means that docstrings use single quotes, standard strings use single
quotes etc.:

def foo():
 '''
 A function that does things
 '''
 name = 'A name'
 return name

Formatting Strings

All strings which require formatting should use the .format string method:

data = 'some text'
more = '{0} and then some'.format(data)

Make sure to use indices or identifiers in the format brackets, since empty
brackets are not supported by python 2.6.

Please do NOT use printf formatting.

Docstring Conventions

Docstrings should always add a newline, docutils takes care of the new line and
it makes the code cleaner and more vertical:

GOOD:

def bar():
 '''
 Here lies a docstring with a newline after the quotes and is the salty
 way to handle it! Vertical code is the way to go!
 '''
 return

BAD:

def baz():
 '''This is not ok!'''
 return

Imports

Salt code prefers importing modules and not explicit functions. This is both a
style and functional preference. The functional preference originates around
the fact that the module import system used by pluggable modules will include
callable objects (functions) that exist in the direct module namespace. This
is not only messy, but may unintentionally expose code python libs to the Salt
interface and pose a security problem.

To say this more directly with an example, this is GOOD:

import os

def minion_path():
 path = os.path.join(self.opts['cachedir'], 'minions')
 return path

This on the other hand is DISCOURAGED:

from os.path import join

def minion_path():
 path = join(self.opts['cachedir'], 'minions')
 return path

The time when this is changed is for importing exceptions, generally directly
importing exceptions is preferred:

This is a good way to import exceptions:

from salt.exceptions import CommandExecutionError

Absolute Imports

Although absolute imports [http://www.python.org/dev/peps/pep-0328/#rationale-for-absolute-imports] seems like an awesome idea, please do not use it.
Extra care would be necessary all over salt's code in order for absolute
imports to work as supposed. Believe it, it has been tried before and, as a
tried example, by renaming salt.modules.sysmod to salt.modules.sys, all
other salt modules which needed to import sys [https://docs.python.org/2/library/sys.html#module-sys] would have to
also import absolute_import [https://docs.python.org/2/library/__future__.html#module-__future__], which should be
avoided.

Vertical is Better

When writing Salt code, vertical code is generally preferred. This is not a hard
rule but more of a guideline. As PEP 8 specifies, Salt code should not exceed 79
characters on a line, but it is preferred to separate code out into more
newlines in some cases for better readability:

import os

os.chmod(
 os.path.join(self.opts['sock_dir'],
 'minion_event_pub.ipc'),
 448
)

Where there are more line breaks, this is also apparent when constructing a
function with many arguments, something very common in state functions for
instance:

def managed(name,
 source=None,
 source_hash='',
 user=None,
 group=None,
 mode=None,
 template=None,
 makedirs=False,
 context=None,
 replace=True,
 defaults=None,
 env=None,
 backup='',
 **kwargs):

Note

Making function and class definitions vertical is only required if the
arguments are longer then 80 characters. Otherwise, the formatting is
optional and both are acceptable.

Indenting

Some confusion exists in the python world about indenting things like function
calls, the above examples use 8 spaces when indenting comma-delimited
constructs.

The confusion arises because the pep8 program INCORRECTLY flags this as wrong,
where PEP 8, the document, cites only using 4 spaces here as wrong, as it
doesn't differentiate from a new indent level.

Right:

def managed(name,
 source=None,
 source_hash='',
 user=None)

WRONG:

def managed(name,
 source=None,
 source_hash='',
 user=None)

Lining up the indent is also correct:

def managed(name,
 source=None,
 source_hash='',
 user=None)

This also applies to function calls and other hanging indents.

pep8 and Flake8 (and, by extension, the vim plugin Syntastic) will complain
about the double indent for hanging indents. This is a known conflict [https://github.com/jcrocholl/pep8/issues/167#issuecomment-15936564] between
pep8 (the script) and the actual PEP 8 standard. It is recommended that this
particular warning be ignored with the following lines in
~/.config/flake8:

[flake8]
ignore = E226,E241,E242,E126

Make sure your Flake8/pep8 are up to date. The first three errors are ignored
by default and are present here to keep the behavior the same. This will also
work for pep8 without the Flake8 wrapper -- just replace all instances of
'flake8' with 'pep8', including the filename.

Code Churn

Many pull requests have been submitted that only churn code in the name of
PEP 8. Code churn is a leading source of bugs and is strongly discouraged.
While style fixes are encouraged they should be isolated to a single file per
commit, and the changes should be legitimate, if there are any questions about
whether a style change is legitimate please reference this document and the
official PEP 8 (http://www.python.org/dev/peps/pep-0008/) document before
changing code. Many claims that a change is PEP 8 have been invalid, please
double check before committing fixes.

Salt Stack Git Policy

The Salt Stack team follows a git policy to maintain stability and consistency
with the repository. The git policy has been developed to encourage
contributions and make contributing to Salt as easy as possible. Code
contributors to Salt Stack projects DO NOT NEED TO READ THIS DOCUMENT, because
all contributions come into Salt Stack via a single gateway to make it as
easy as possible for contributors to give us code.

The primary rule of git management in Salt Stack is to make life easy on
contributors and developers to send in code. Simplicity is always a goal!

New Code Entry

All new Salt Stack code is posted to the develop branch, this is the single
point of entry. The only exception here is when a bugfix to develop cannot be
cleanly merged into a release branch and the bugfix needs to be rewritten for
the release branch.

Release Branching

Salt Stack maintains two types of releases, Feature Releases and
Point Releases. A feature release is managed by incrementing the first or
second release point number, so 0.10.5 -> 0.11.0 signifies a feature release
and 0.11.0 -> 0.11.1 signifies a point release, also a hypothetical
0.42.7 -> 1.0.0 would also signify a feature release.

Feature Release Branching

Each feature release is maintained in a dedicated git branch derived from the
last applicable release commit on develop. All file changes relevant to the
feature release will be completed in the develop branch prior to the creation
of the feature release branch. The feature release branch will be named after
the relevant numbers to the feature release, which constitute the first two
numbers. This means that the release branch for the 0.11.0 series is named
0.11.

A feature release branch is created with the following command:

git checkout -b 0.11 # From the develop branch
git push origin 0.11

Point Releases

Each point release is derived from its parent release branch. Constructing point
releases is a critical aspect of Salt development and is managed by members of
the core development team. Point releases comprise bug and security fixes which
are cherry picked from develop onto the aforementioned release branch. At the
time when a core developer accepts a pull request a determination needs to be
made if the commits in the pull request need to be backported to the release
branch. Some simple criteria are used to make this determination:

	Is this commit fixing a bug?
Backport

	Does this commit change or add new features in any way?
Don't backport

	Is this a PEP8 or code cleanup commit?
Don't backport

	Does this commit fix a security issue?
Backport

Determining when a point release is going to be made is up to the project
leader (Thomas Hatch). Generally point releases are made every 1-2 weeks or
if there is a security fix they can be made sooner.

The point release is only designated by tagging the commit on the release
branch with release number using the existing convention (version 0.11.1 is
tagged with v0.11.1). From the tag point a new source tarball is generated
and published to PyPI, and a release announcement is made.

Salt Development Guidelines

	Deprecating Code

	Dunder Dictionaries

	External Pillars

	Logging Internals

	Modular Systems

	Package Providers

Deprecating Code

Salt should remain backwards compatible, though sometimes, this backwards
compatibility needs to be broken because a specific feature and/or solution is
no longer necessary or required. At first one might think, let me change this
code, it seems that it's not used anywhere else so it should be safe to remove.
Then, once there's a new release, users complain about functionality which was
removed and they where using it, etc. This should, at all costs, be avoided,
and, in these cases, that specific code should be deprecated.

Depending on the complexity and usage of a specific piece of code, the
deprecation time frame should be properly evaluated. As an example, a
deprecation warning which is shown for 2 major releases, for example 0.17.0
and 0.18.0, gives users enough time to stop using the deprecated code and
adapt to the new one.

For example, if you're deprecating the usage of a keyword argument to a
function, that specific keyword argument should remain in place for the full
deprecation time frame and if that keyword argument is used, a deprecation
warning should be shown to the user.

To help in this deprecation task, salt provides salt.utils.warn_until. The idea behind this helper function is to show the
deprecation warning until salt reaches the provided version. Once that provided
version is equaled salt.utils.warn_until will
raise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] making salt stop its execution. This stoppage
is unpleasant and will remind the developer that the deprecation limit has been
reached and that the code can then be safely removed.

Consider the following example:

def some_function(bar=False, foo=None):
 if foo is not None:
 salt.utils.warn_until(
 (0, 18),
 'The \'foo\' argument has been deprecated and its '
 'functionality removed, as such, its usage is no longer '
 'required.'
)

Consider that the current salt release is 0.16.0. Whenever foo is
passed a value different from None that warning will be shown to the user.
This will happen in versions 0.16.2 to 0.18.0, after which a
RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] will be raised making us aware that the deprecated code
should now be removed.

Dunder Dictionaries

Salt provides several special "dunder" dictionaries as a convenience for Salt
development. These include __opts__, __context__, __salt__, and
others. This document will describe each dictionary and detail where they exist
and what information and/or functionality they provide.

__context__

__context__ exists in state modules and execution modules.

During a state run the __context__ dictionary persists across all states
that are run and then is destroyed when the state ends.

When running an execution module __context__ persists across all module
executions until the modules are refreshed; such as when saltutils.sync_all
or state.highstate are executed.

A great place to see how to use __context__ is in the cp.py module in
salt/modules/cp.py. The fileclient authenticates with the master when it is
instantiated and then is used to copy files to the minion. Rather than create a
new fileclient for each file that is to be copied down, one instance of the
fileclient is instantiated in the __context__ dictionary and is reused for
each file. Here is an example from salt/modules/cp.py:

if not 'cp.fileclient' in __context__:
 __context__['cp.fileclient'] = salt.fileclient.get_file_client(__opts__)

Note

Because __context__ may or may not have been destroyed, always be
sure to check for the existence of the key in __context__ and
generate the key before using it.

External Pillars

Salt provides a mechanism for generating pillar data by calling external
pillar interfaces. This document will describe an outline of an ext_pillar
module.

Location

Salt expects to find your ext_pillar module in the same location where it
looks for other python modules. If the extension_modules option in your
Salt master configuration is set, Salt will look for a pillar directory
under there and load all the modules it finds. Otherwise, it will look in
your Python site-packages salt/pillar directory.

Configuration

The external pillars that are called when a minion refreshes its pillars is
controlled by the ext_pillar option in the Salt master configuration. You
can pass a single argument, a list of arguments or a dictionary of arguments
to your pillar:

ext_pillar:
 - example_a: some argument
 - example_b:
 - argumentA
 - argumentB
 - example_c:
 keyA: valueA
 keyB: valueB

The Module

Imports and Logging

Import modules your external pillar module needs. You should first include
generic modules that come with stock Python:

import logging

And then start logging. This is an idiomatic way of setting up logging in Salt:

log = logging.getLogger(__name__)

Finally, load modules that are specific to what you are doing. You should catch
import errors and set a flag that the the __virtual__ function can use later.

try:
 import weird_thing
 example_a_loaded = True
except ImportError:
 example_a_loaded = False

Options

If you define an __opts__ dictionary, it will be merged into the
__opts__ dictionary handed to the ext_pillar function later. This is a
good place to put default configuration items. The convention is to name
things modulename.option.

__opts__ = { 'example_a.someconfig': 137 }

Initialization

If you define an __init__ function, it will be called with the following
signature:

def __init__(__opts__):
 # Do init work here

Note: The __init__ function is ran every time a particular minion causes
the external pillar to be called, so don't put heavy initialization code here.
The __init__ functionality is a side-effect of the Salt loader, so it may
not be as useful in pillars as it is in other Salt items.

__virtual__

If you define a __virtual__ function, you can control whether or not this
module is visible. If it returns False then Salt ignores this module. If
it returns a string, then that string will be how Salt identifies this external
pillar in its ext_pillar configuration. If this function does not exist,
then the name Salt's ext_pillar will use to identify this module is its
conventional name in Python.

This is useful to write modules that can be installed on all Salt masters, but
will only be visible if a particular piece of software your module requires is
installed.

This external pillar will be known as `example_a`
def __virtual__():
 if example_a_loaded:
 return 'example_a'
 else:
 return False

This external pillar will be known as `something_else`
def __virtual__():
 if example_a_loaded:
 return 'something_else'
 else:
 return False

ext_pillar

This is where the real work of an external pillar is done. If this module is
active and has a function called ext_pillar, whenever a minion updates its
pillar this function is called.

How it is called depends on how it is configured in the Salt master
configuration. The first argument is always the current pillar dictionary, this
contains pillar items that have already been added, starting with the data from
pillar_roots, and then from any already-ran external pillars.

Using our example above:

ext_pillar(pillar, 'some argument') # example_a
ext_pillar(pillar, 'argumentA', 'argumentB') # example_b
ext_pillar(pillar, keyA='valueA', keyB='valueB' }) # example_c

In the example_a case, pillar will contain the items from the
pillar_roots, in example_b pillar will contain that plus the items
added by example_a, and in example_c pillar will contain that plus
the items added by example_b.

This function should return a dictionary, the contents of which are merged in
with all of the other pillars and returned to the minion. Note: this function
is called once for each minion that fetches its pillar data.

def ext_pillar(pillar, *args, **kwargs):

 my_pillar = {}

 # Do stuff

 return my_pillar

You shouldn't just add items to pillar and return that, since that will
cause Salt to merge data that already exists. Rather, just return the items
you are adding or changing. You could, however, use pillar in your module
to make some decision based on pillar data that already exists.

This function has access to some useful globals:

	__opts__:	A dictionary of mostly Salt configuration options. If you had an
__opts__ dictionary defined in your module, those values will be
included. Also included and most useful is __opts__['id'], which
is the minion id of the minion asking for pillar data.

	__salt__:	A dictionary of Salt module functions, useful so you don't have to
duplicate functions that already exist. E.g.
__salt__['cmd.run']('ls -l') Note, runs on the master

	__grains__:	A dictionary of the grains of the minion making this pillar call.

Example configuration

As an example, if you wanted to add external pillar via the cmd_json
external pillar, add something like this to your master config:

ext_pillar:
 - cmd_json: "echo {'arg':'value'}"

Logging Internals

TODO

Modular Systems

When first working with Salt, it is not always clear where all of the modular
components are and what they do. Salt comes loaded with more modular systems
than many users are aware of, making Salt very easy to extend in many places.

The most commonly used modular systems are execution modules and states. But
the modular systems extend well beyond the more easily exposed components
and are often added to Salt to make the complete system more flexible.

Execution Modules

Execution modules make up the core of the functionality used by Salt to
interact with client systems. The execution modules create the core system
management library used by all Salt systems, including states, which
interact with minion systems.

Execution modules are completely open ended in their execution. They can
be used to do anything required on a minion, from installing packages to
detecting information about the system. The only restraint in execution
modules is that the defined functions always return a JSON serializable
object.

For a list of all built in execution modules, click here

For information on writing execution modules, see this page.

State Modules

State modules are used to define the state interfaces used by Salt States.
These modules are restrictive in that they must follow a number of rules to
function properly.

Note

State modules define the available routines in sls files. If calling
an execution module directly is desired, take a look at the module
state.

Auth

The auth module system allows for external authentication routines to be easily
added into Salt. The auth function needs to be implemented to satisfy the
requirements of an auth module. Use the pam module as an example.

Fileserver

The fileserver module system is used to create fileserver backends used by the
Salt Master. These modules need to implement the functions used in the
fileserver subsystem. Use the gitfs module as an example.

Grains

Grain modules define extra routines to populate grains data. All defined
public functions will be executed and MUST return a Python dict object. The
dict keys will be added to the grains made available to the minion.

Output

The output modules supply the outputter system with routines to display data
in the terminal. These modules are very simple and only require the output
function to execute. The default system outputter is the nested module.

Pillar

Used to define optional external pillar systems. The pillar generated via
the filesystem pillar is passed into external pillars. This is commonly used
as a bridge to database data for pillar, but is also the backend to the libvirt
state used to generate and sign libvirt certificates on the fly.

Renderers

Renderers are the system used to render sls files into salt highdata for the
state compiler. They can be as simple as the py renderer and as complex as
stateconf and pydsl.

Returners

Returners are used to send data from minions to external sources, commonly
databases. A full returner will implement all routines to be supported as an
external job cache. Use the redis returner as an example.

Runners

Runners are purely master-side execution sequences. These range from simple
reporting to orchestration engines like the overstate.

Tops

Tops modules are used to convert external data sources into top file data for
the state system.

Wheel

The wheel system is used to manage master side management routines. These
routines are primarily intended for the API to enable master configuration.

Package Providers

This page contains guidelines for writing package providers.

Package Functions

One of the most important features of Salt is package management. There is no
shortage of package managers, so in the interest of providing a consistent
experience in pkg states, there are certain functions
that should be present in a package provider. Note that these are subject to
change as new features are added or existing features are enhanced.

list_pkgs

This function should declare an empty dict, and then add packages to it by
calling pkg_resource.add_pkg, like
so:

__salt__['pkg_resource.add_pkg'](ret, name, version)

The last thing that should be done before returning is to execute
pkg_resource.sort_pkglist. This
function does not presently do anything to the return dict, but will be used in
future versions of Salt.

__salt__['pkg_resource.sort_pkglist'](ret)

list_pkgs returns a dictionary of installed packages, with the keys being
the package names and the values being the version installed. Example return
data:

{'foo': '1.2.3-4',
 'bar': '5.6.7-8'}

latest_version

Accepts an arbitrary number of arguments. Each argument is a package name. The
return value for a package will be an empty string if the package is not found
or if the package is up-to-date. The only case in which a non-empty string is
returned is if the package is available for new installation (i.e. not already
installed) or if there is an upgrade available.

If only one argument was passed, this function return a string, otherwise a
dict of name/version pairs is returned.

This function must also accept **kwargs, in order to receive the
fromrepo and repo keyword arguments from pkg states. Where supported,
these arguments should be used to find the install/upgrade candidate in the
specified repository. The fromrepo kwarg takes precedence over repo, so
if both of those kwargs are present, the repository specified in fromrepo
should be used. However, if repo is used instead of fromrepo, it should
still work, to preserve backwards compatibility with older versions of Salt.

version

Like latest_version, accepts an arbitrary number of arguments and
returns a string if a single package name was passed, or a dict of name/value
pairs if more than one was passed. The only difference is that the return
values are the currently-installed versions of whatever packages are passed. If
the package is not installed, an empty string is returned for that package.

upgrade_available

Deprecated and destined to be removed. For now, should just do the following:

return __salt__['pkg.latest_version'](name) != ''

install

The following arguments are required and should default to None:

	name (for single-package pkg states)

	pkgs (for multiple-package pkg states)

	sources (for binary package file installation)

The first thing that this function should do is call
pkg_resource.parse_targets
(see below). This function will convert the SLS input into a more easily parsed
data structure.
pkg_resource.parse_targets may
need to be modified to support your new package provider, as it does things
like parsing package metadata which cannot be done for every package management
system.

pkg_params, pkg_type = __salt__['pkg_resource.parse_targets'](name,
 pkgs,
 sources)

Two values will be returned to the install function. The first of
them will be a dictionary. The keys of this dictionary will be package names,
though the values will differ depending on what kind of installation is being
done:

	If name was provided (and pkgs was not), then there will
be a single key in the dictionary, and its value will be None. Once the
data has been returned, if the version keyword argument was
provided, then it should replace the None value in the dictionary.

	If pkgs was provided, then name is ignored, and the
dictionary will contain one entry for each package in the pkgs
list. The values in the dictionary will be None if a version was not
specified for the package, and the desired version if specified. See the
Multiple Package Installation Options section of the
pkg.installed state for more info.

	If sources was provided, then name is ignored, and the
dictionary values will be the path/URI for the package.

The second return value will be a string with two possible values:
repository or file. The install function can use this value
(if necessary) to build the proper command to install the targeted package(s).

Both before and after the installing the target(s), you should run
list_pkgs to obtain a list of the installed packages. You should then
return the output of
pkg_resource.find_changes:

return __salt__['pkg_resource.find_changes'](old, new)

remove

Removes the passed package and return a list of the packages removed.

Package Repo Functions

There are some functions provided by pkg which are specific to package
repositories, and not to packages themselves. When writing modules for new
package managers, these functions should be made available as stated below, in
order to provide compatibility with the pkgrepo state.

All repo functions should accept a basedir option, which defines which
directory repository configuration should be found in. The default for this
is dictated by the repo manager that is being used, and rarely needs to be
changed.

basedir = '/etc/yum.repos.d'
__salt__['pkg.list_repos'](basedir)

list_repos

Lists the repositories that are currently configured on this system.

__salt__['pkg.list_repos']()

Returns a dictionary, in the following format:

{'reponame': 'config_key_1': 'config value 1',
 'config_key_2': 'config value 2',
 'config_key_3': ['list item 1 (when appropriate)',
 'list item 2 (when appropriate)]}

get_repo

Displays all local configuration for a specific repository.

__salt__['pkg.get_repo'](repo='myrepo')

The information is formatted in much the same way as list_repos, but is
specific to only one repo.

{'config_key_1': 'config value 1',
 'config_key_2': 'config value 2',
 'config_key_3': ['list item 1 (when appropriate)',
 'list item 2 (when appropriate)]}

del_repo

Removes the local configuration for a specific repository. Requires a repo
argument, which must match the locally configured name. This function returns
a string, which informs the user as to whether or not the operation was a
success.

__salt__['pkg.del_repo'](repo='myrepo')

mod_repo

Modify the local configuration for one or more option for a configured repo.
This is also the way to create new repository configuration on the local
system; if a repo is specified which does not yet exist, it will be created.

The options specified for this function are specific to the system; please
refer to the documentation for your specific repo manager for specifics.

__salt__['pkg.mod_repo'](repo='myrepo', url='http://myurl.com/repo')

Low-Package Functions

In general, the standard package functions as describes above will meet your
needs. These functions use the system's native repo manager (for instance,
yum or the apt tools). In most cases, the repo manager is actually separate
from the package manager. For instance, yum is usually a front-end for rpm, and
apt is usually a front-end for dpkg. When possible, the package functions that
use those package managers directly should do so through the low package
functions.

It is normal and sane for pkg to make calls to lowpkgs, but lowpkg
must never make calls to pkg. This is affects functions which are required
by both pkg and lowpkg, but the technique in pkg is more performant
than what is available to lowpkg. When this is the case, the lowpkg
function that requires that technique must still use the lowpkg version.

list_pkgs

Returns a dict of packages installed, including the package name and version.
Can accept a list of packages; if none are specified, then all installed
packages will be listed.

installed = __salt__['lowpkg.list_pkgs']('foo', 'bar')

Example output:

{'foo': '1.2.3-4',
 'bar': '5.6.7-8'}

verify

Many (but not all) package management systems provide a way to verify that the
files installed by the package manager have or have not changed. This function
accepts a list of packages; if none are specified, all packages will be
included.

installed = __salt__['lowpkg.verify']('httpd')

Example output:

{'/etc/httpd/conf/httpd.conf': {'mismatch': ['size', 'md5sum', 'mtime'],
 'type': 'config'}}

file_list

Lists all of the files installed by all packages specified. If not packages are
specified, then all files for all known packages are returned.

installed = __salt__['lowpkg.file_list']('httpd', 'apache')

This function does not return which files belong to which packages; all files
are returned as one giant list (hence the file_list function name. However,
This information is still returned inside of a dict, so that it can provide
any errors to the user in a sane manner.

{'errors': ['package apache is not installed'],
 'files': ['/etc/httpd',
 '/etc/httpd/conf',
 '/etc/httpd/conf.d',
 '...SNIP...']}

file_dict

Lists all of the files installed by all packages specified. If not packages are
specified, then all files for all known packages are returned.

installed = __salt__['lowpkg.file_dict']('httpd', 'apache', 'kernel')

Unlike file_list, this function will break down which files belong to which
packages. It will also return errors in the same manner as file_list.

{'errors': ['package apache is not installed'],
 'packages': {'httpd': ['/etc/httpd',
 '/etc/httpd/conf',
 '...SNIP...'],
 'kernel': ['/boot/.vmlinuz-2.6.32-279.el6.x86_64.hmac',
 '/boot/System.map-2.6.32-279.el6.x86_64',
 '...SNIP...']}}

Logging

The salt project tries to get the logging to work for you and help us solve any
issues you might find along the way.

If you want to get some more information on the nitty-gritty of salt's logging
system, please head over to the logging development
document, if all you're after is salt's logging
configurations, please continue reading.

Available Configuration Settings

log_file

The log records can be sent to a regular file, local path name, or network location.
Remote logging works best when configured to use rsyslogd(8) (e.g.: file:///dev/log),
with rsyslogd(8) configured for network logging. The format for remote addresses is:
<file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>.

Default: Dependent of the binary being executed, for example, for salt-master,
/var/log/salt/master.

Examples:

log_file: /var/log/salt/master

log_file: /var/log/salt/minion

log_file: file:///dev/log

log_file: udp://loghost:10514

log_level

Default: warning

The level of log record messages to send to the console.
One of all, garbage, trace, debug, info, warning,
error, critical, quiet.

log_level: warning

log_level_logfile

Default: warning

The level of messages to send to the log file.
One of all, garbage, trace, debug, info, warning,
error, critical, quiet.

log_level_logfile: warning

log_datefmt

Default: %H:%M:%S

The date and time format used in console log messages. Allowed date/time
formatting can be seen on time.strftime [https://docs.python.org/2/library/time.html#time.strftime].

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. Allowed date/time
formatting can be seen on time.strftime [https://docs.python.org/2/library/time.html#time.strftime].

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. Allowed formatting options can
be seen on the LogRecord attributes [https://docs.python.org/2/library/logging.html#logrecord-attributes].

log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. Allowed formatting options can
be seen on the LogRecord attributes [https://docs.python.org/2/library/logging.html#logrecord-attributes].

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. The example sets
the main salt library at the 'warning' level, but sets salt.modules to log
at the debug level:

log_granular_levels:
 'salt': 'warning',
 'salt.modules': 'debug'

External Logging Handlers

Besides the internal logging handlers used by salt, there are some external
which can be used, see the external logging handlers
document.

External Logging Handlers

	logstash_mod
	

	codeauthor:	Pedro Algarvio (pedro@algarvio.me)

	sentry_mod
	

	codeauthor:	Pedro Algarvio (pedro@algarvio.me)

Logstash Logging Handler

New in version 0.17.0.

This module provides some Logstash [http://logstash.net] logging handlers.

UDP Logging Handler

In order to setup the datagram handler for Logstash [http://logstash.net], please define on
the salt configuration file:

logstash_udp_handler:
 host: 127.0.0.1
 port = 9999

On the Logstash [http://logstash.net] configuration file you need something like:

input {
 udp {
 type => "udp-type"
 format => "json_event"
 }
}

Please read the UDP input [http://logstash.net/docs/latest/inputs/udp] configuration page for additional information.

ZeroMQ Logging Handler

In order to setup the ZMQ handler for Logstash [http://logstash.net], please define on the
salt configuration file:

logstash_zmq_handler:
 address: tcp://127.0.0.1:2021

On the Logstash [http://logstash.net] configuration file you need something like:

input {
 zeromq {
 type => "zeromq-type"
 mode => "server"
 topology => "pubsub"
 address => "tcp://0.0.0.0:2021"
 charset => "UTF-8"
 format => "json_event"
 }
}

Please read the ZeroMQ input [http://logstash.net/docs/latest/inputs/zeromq] configuration page for additional
information.

Important Logstash Setting

One of the most important settings that you should not forget on your
Logstash [http://logstash.net] configuration file regarding these logging handlers is
format.
Both the UDP and ZeroMQ inputs need to have format as
json_event which is what we send over the wire.

Log Level

Both the logstash_udp_handler and the logstash_zmq_handler
configuration sections accept an additional setting log_level. If not
set, the logging level used will be the one defined for log_level in
the global configuration file section.

HWM

The high water mark [http://api.zeromq.org/3-2:zmq-setsockopt] for the ZMQ socket setting. Only applicable for the
logstash_zmq_handler.

Inspiration

This work was inspired in pylogstash [https://github.com/turtlebender/pylogstash], python-logstash [https://github.com/vklochan/python-logstash], canary [https://github.com/ryanpetrello/canary]
and the PyZMQ logging handler [https://github.com/zeromq/pyzmq/blob/master/zmq/log/handlers.py].

Sentry Logging Handler

New in version 0.17.0.

Configuring the python Sentry [http://getsentry.com] client, Raven [http://raven.readthedocs.org], should be done under the
sentry_handler configuration key.
At the bare minimum, you need to define the DSN [http://raven.readthedocs.org/en/latest/config/index.html#the-sentry-dsn]. As an example:

sentry_handler:
 dsn: https://pub-key:secret-key@app.getsentry.com/app-id

More complex configurations can be achieved, for example:

sentry_handler:
 servers:
 - https://sentry.example.com
 - http://192.168.1.1
 project: app-id
 public_key: deadbeefdeadbeefdeadbeefdeadbeef
 secret_key: beefdeadbeefdeadbeefdeadbeefdead

All the client configuration keys are supported, please see the
Raven client documentation [http://raven.readthedocs.org/en/latest/config/index.html#client-arguments].

The default logging level for the sentry handler is ERROR. If you wish
to define a different one, define log_level under the
sentry_handler configuration key:

sentry_handler:
 dsn: https://pub-key:secret-key@app.getsentry.com/app-id
 log_level: warning

The available log levels are those also available for the salt cli
tools and configuration; salt --help should give you the required
information.

Threaded Transports

Raven's documents rightly suggest using its threaded transport for
critical applications. However, don't forget that if you start having
troubles with Salt after enabling the threaded transport, please try
switching to a non-threaded transport to see if that fixes your problem.

Logstash Logging Handler

New in version 0.17.0.

This module provides some Logstash [http://logstash.net] logging handlers.

UDP Logging Handler

In order to setup the datagram handler for Logstash [http://logstash.net], please define on
the salt configuration file:

logstash_udp_handler:
 host: 127.0.0.1
 port = 9999

On the Logstash [http://logstash.net] configuration file you need something like:

input {
 udp {
 type => "udp-type"
 format => "json_event"
 }
}

Please read the UDP input [http://logstash.net/docs/latest/inputs/udp] configuration page for additional information.

ZeroMQ Logging Handler

In order to setup the ZMQ handler for Logstash [http://logstash.net], please define on the
salt configuration file:

logstash_zmq_handler:
 address: tcp://127.0.0.1:2021

On the Logstash [http://logstash.net] configuration file you need something like:

input {
 zeromq {
 type => "zeromq-type"
 mode => "server"
 topology => "pubsub"
 address => "tcp://0.0.0.0:2021"
 charset => "UTF-8"
 format => "json_event"
 }
}

Please read the ZeroMQ input [http://logstash.net/docs/latest/inputs/zeromq] configuration page for additional
information.

Important Logstash Setting

One of the most important settings that you should not forget on your
Logstash [http://logstash.net] configuration file regarding these logging handlers is
format.
Both the UDP and ZeroMQ inputs need to have format as
json_event which is what we send over the wire.

Log Level

Both the logstash_udp_handler and the logstash_zmq_handler
configuration sections accept an additional setting log_level. If not
set, the logging level used will be the one defined for log_level in
the global configuration file section.

HWM

The high water mark [http://api.zeromq.org/3-2:zmq-setsockopt] for the ZMQ socket setting. Only applicable for the
logstash_zmq_handler.

Inspiration

This work was inspired in pylogstash [https://github.com/turtlebender/pylogstash], python-logstash [https://github.com/vklochan/python-logstash], canary [https://github.com/ryanpetrello/canary]
and the PyZMQ logging handler [https://github.com/zeromq/pyzmq/blob/master/zmq/log/handlers.py].

Sentry Logging Handler

New in version 0.17.0.

Configuring the python Sentry [http://getsentry.com] client, Raven [http://raven.readthedocs.org], should be done under the
sentry_handler configuration key.
At the bare minimum, you need to define the DSN [http://raven.readthedocs.org/en/latest/config/index.html#the-sentry-dsn]. As an example:

sentry_handler:
 dsn: https://pub-key:secret-key@app.getsentry.com/app-id

More complex configurations can be achieved, for example:

sentry_handler:
 servers:
 - https://sentry.example.com
 - http://192.168.1.1
 project: app-id
 public_key: deadbeefdeadbeefdeadbeefdeadbeef
 secret_key: beefdeadbeefdeadbeefdeadbeefdead

All the client configuration keys are supported, please see the
Raven client documentation [http://raven.readthedocs.org/en/latest/config/index.html#client-arguments].

The default logging level for the sentry handler is ERROR. If you wish
to define a different one, define log_level under the
sentry_handler configuration key:

sentry_handler:
 dsn: https://pub-key:secret-key@app.getsentry.com/app-id
 log_level: warning

The available log levels are those also available for the salt cli
tools and configuration; salt --help should give you the required
information.

Threaded Transports

Raven's documents rightly suggest using its threaded transport for
critical applications. However, don't forget that if you start having
troubles with Salt after enabling the threaded transport, please try
switching to a non-threaded transport to see if that fixes your problem.

Introduction to Extending Salt

Salt is made to be used, and made to be extended. The primary goal of Salt is
to provide a foundation which can be used to solve problems. And the goal of
Salt is to not assume what those problems might be.

One of the greatest benefit of developing Salt has been the vast array of ways
in which people have wanted to use it, while the original intention was as a
communication layer for a cloud controller Salt has been extended to facilitate
so much more.

Client API

The primary interface used to extend Salt, is to simply use it. Salt executions
can be called via the Salt client API, making programming master side solutions
with Salt is easy.

See also

Python client API

Adding Loadable Plugins

Salt is comprised of a core platform that loads many types of easy to write
plugins. The idea is to enable all of the breaking points in the Salt processes
to have a point of pluggable interaction. This means that all of the main
features of Salt can be extended, modified or used.

The breaking points and helping interfaces span from convenience master side
executions to manipulating the flow of how data is handled by Salt.

Minion Execution Modules

The minion execution modules or just modules are the core to what Salt is
and does. These modules are found in:

https://github.com/saltstack/salt/blob/develop/salt/modules

These modules are what is called by the Salt command line and the salt client
API. Adding modules is done by simply adding additional Python modules to the
modules directory and restarting the minion.

Grains

Salt grains, or "grains of truth" are bits of static information that are
generated when the minion starts. This information is useful when determining
what package manager to default to, or where certain configuration files are
stored on the minion.

The Salt grains are the interface used for auto detection and dynamic assignment
of execution modules and types to specific Salt minions.

The code used to generate the Salt grains can be found here:

https://github.com/saltstack/salt/blob/develop/salt/grains

States

Salt supports state enforcement, this makes Salt a high speed and very efficient
solution for system configuration management.

States can be easily added to Salt by dropping a new state module in:

https://github.com/saltstack/salt/blob/develop/salt/states

Renderers

Salt states are controlled by simple data structures, these structures can be
abstracted in a number of ways. While the default is to be in a YAML file
wrapped in a jinja template, any abstraction can be used. This means that any
format that can be dreamed is possible, so long as a renderer is written for
it.

The existing renderers can be found here:

https://github.com/saltstack/salt/blob/develop/salt/renderers

Returners

The Salt commands all produce a return value, that return value is sent to the
Salt master by default, but it can be sent anywhere. The returner interface
makes it programmatically possible for the information to be sent to anything
from an SQL or NoSQL database, to a custom application made to use Salt.

The existing returners can be found here:

https://github.com/saltstack/salt/blob/develop/salt/returners

Runners

Sometimes a certain application can be made to execute and run from the
existing Salt command line. This is where the Salt runners come into play.
The Salt Runners what is called by the Salt-run command and are meant to
act as a generic interface for encapsulating master side executions.

Existing Salt runners are located here:

https://github.com/saltstack/salt/blob/develop/salt/runners

Modules

Salt modules are the functions called by the salt command.

See also

Full list of builtin modules

Salt ships with many modules that cover a wide variety of tasks.

Modules Are Easy to Write!

Salt modules are amazingly simple to write. Just write a regular Python module
or a regular Cython [http://cython.org/] module and place it a directory called _modules/
within the file_roots specified by the master config file, and
they will be synced to the minions when state.highstate is run, or by executing the
saltutil.sync_modules or
saltutil.sync_all functions.

Any custom modules which have been synced to a minion, that are named the
same as one of Salt's default set of modules, will take the place of the default
module with the same name. Note that a module's default name is its filename
(i.e. foo.py becomes module foo), but that its name can be overridden
by using a __virtual__ function.

Since Salt modules are just Python/Cython modules, there are no restraints on
what you can put inside of a Salt module. If a Salt module has errors and
cannot be imported, the Salt minion will continue to load without issue and the
module with errors will simply be omitted.

If adding a Cython module the file must be named <modulename>.pyx so that
the loader knows that the module needs to be imported as a Cython module. The
compilation of the Cython module is automatic and happens when the minion
starts, so only the *.pyx file is required.

Cross Calling Modules

All of the Salt modules are available to each other, and can be "cross called".
This means that, when creating a module, functions in modules that already exist
can be called.

The variable __salt__ is packed into the modules after they are loaded into
the Salt minion. This variable is a Python dictionary [https://docs.python.org/2/library/stdtypes.html#typesmapping]
of all of the Salt functions, laid out in the same way that they are made available
to the Salt command.

Salt modules can be cross called by accessing the value in the __salt__ dict:

def foo(bar):
 return __salt__['cmd.run'](bar)

This code will call the Salt cmd module's run function and pass the argument
bar.

Preloaded Modules Data

When interacting with modules often it is nice to be able to read information
dynamically about the minion, or load in configuration parameters for a module.
Salt allows for different types of data to be loaded into the modules by the
minion, as of this writing Salt loads information gathered from the Salt Grains
system and from the minion configuration file.

Grains Data

The Salt minion detects information about the system when started. This allows
for modules to be written dynamically with respect to the underlying hardware
and operating system. This information is referred to as Salt Grains, or
"grains of salt". The Grains system was introduced to replace Facter, since
relying on a Ruby application from a Python application was both slow and
inefficient. Grains support replaces Facter in all Salt releases after 0.8

The values detected by the Salt Grains on the minion are available in a
dict [https://docs.python.org/2/library/stdtypes.html#typesmapping] named __grains__ and can be accessed
from within callable objects in the Python modules.

To see the contents of the grains dict for a given system in your deployment
run the grains.items() function:

salt 'hostname' grains.items

To use the __grains__ dict simply call it as a Python dict from within your
code, an excellent example is available in the Grains module:
salt.modules.grains.

Module Configuration

Since parameters for configuring a module may be desired, Salt allows for
configuration information stored in the main minion config file to be passed to
the modules.

Since the minion configuration file is a YAML document, arbitrary configuration
data can be passed in the minion config that is read by the modules. It is
strongly recommended that the values passed in the configuration file match
the module. This means that a value intended for the test module should be
named test.<value>.

Configuration also requires that default configuration parameters need to be
loaded as well. This can be done simply by adding the __opts__ dict to the
top level of the module.

The test module contains usage of the module configuration, and the default
configuration file for the minion contains the information and format used to
pass data to the modules. salt.modules.test, conf/minion.

Printout Configuration

Since module functions can return different data, and the way the data is
printed can greatly change the presentation, Salt has a printout
configuration.

When writing a module the __outputter__ dict can be declared in the module.
The __outputter__ dict contains a mapping of function name to Salt
Outputter.

__outputter__ = {
 'run': 'txt'
 }

This will ensure that the text outputter is used.

Virtual Modules

Sometimes a module should be presented in a generic way. A good example of this
can be found in the package manager modules. The package manager changes from
one operating system to another, but the Salt module that interfaces with the
package manager can be presented in a generic way.

The Salt modules for package managers all contain a __virtual__ function
which is called to define what systems the module should be loaded on.

The __virtual__ function is used to return either a
string [https://docs.python.org/2/library/stdtypes.html#typesseq] or False [https://docs.python.org/3/library/constants.html#False]. If
False is returned then the module is not loaded, if a string is returned then
the module is loaded with the name of the string.

This means that the package manager modules can be presented as the pkg module
regardless of what the actual module is named.

The package manager modules are the best example of using the __virtual__
function:
https://github.com/saltstack/salt/blob/develop/salt/modules/pacman.py
https://github.com/saltstack/salt/blob/develop/salt/modules/yumpkg.py
https://github.com/saltstack/salt/blob/develop/salt/modules/apt.py

Documentation

Salt modules are self documenting, the sys.doc() function will return the
documentation for all available modules:

salt '*' sys.doc

This function simply prints out the docstrings found in the modules; when
writing Salt modules, please follow the formatting conventions for docstrings as
they appear in the other modules.

Adding Documentation to Salt Modules

Since life is much better with documentation, it is strongly suggested that
all Salt modules have documentation added. Any Salt modules submitted for
inclusion in the main distribution of Salt will be required to have
documentation.

Documenting Salt modules is easy! Just add a Python docstring [http://docs.python.org/2/glossary.html#term-docstring] to the function.

def spam(eggs):
 '''
 A function to make some spam with eggs!

 CLI Example::

 salt '*' test.spam eggs
 '''
 return eggs

Now when the sys.doc call is executed the docstring will be cleanly returned
to the calling terminal.

Add Module metadata

Add information about the module using the following field lists:

:maintainer: Thomas Hatch <thatch@saltstack.com, Seth House <shouse@saltstack.com>
:maturity: new
:depends: python-mysqldb
:platform: all

The maintainer field is a comma-delimited list of developers who help maintain
this module.

The maturity field indicates the level of quality and testing for this module.
Standard labels will be determined.

The depends field is a comma-delimited list of modules that this module depends
on.

The platform field is a comma-delimited list of platforms that this module is
known to run on.

How Functions are Read

In Salt, Python callable objects contained within a module are made available
to the Salt minion for use. The only exception to this rule is a callable
object with a name starting with an underscore _.

Objects Loaded Into the Salt Minion

def foo(bar):
 return bar

class baz:
 def __init__(self, quo):
 pass

Objects NOT Loaded into the Salt Minion

def _foobar(baz): # Preceded with an _
 return baz

cheese = {} # Not a callable Python object

Useful Decorators for Modules

Sometimes when writing modules for large scale deployments you run into some small
things that end up severely complicating the code. To alleviate some of this pain
Salt has some useful decorators for use within modules!

Depends Decorator

When writing custom modules there are many times where some of the module will
work on all hosts, but some functions require (for example) a service to be installed.
Instead of trying to wrap much of the code in large try/except blocks you can use
a simple decorator to do this. If the dependencies passed to the decorator don't
exist, then the salt minion will remove those functions from the module on that host.
If a "fallback_funcion" is defined, it will replace the function instead of removing it

from salt.utils.decorators import depends
try:
 import dependency_that_sometimes_exists
except ImportError:
 pass

@depends('dependency_that_sometimes_exists')
def foo():
 '''
 Function with a dependency on the "dependency_that_sometimes_exists" module,
 if the "dependency_that_sometimes_exists" is missing this function will not exist
 '''
 return True

def _fallback():
 '''
 Fallback function for the depends decorator to replace a function with
 '''
 return '"dependency_that_sometimes_exists" needs to be installed for this function to exist'

@depends('dependency_that_sometimes_exists', fallback_funcion=_fallback)
def foo():
 '''
 Function with a dependency on the "dependency_that_sometimes_exists" module.
 If the "dependency_that_sometimes_exists" is missing this function will be
 replaced with "_fallback"
 '''
 return True

Examples of Salt Modules

The existing Salt modules should be fairly easy to read and understand, the
goal of the main distribution's Salt modules is not only to build a set of
functions for Salt, but to stand as examples for building out more Salt
modules.

The existing modules can be found here:
https://github.com/saltstack/salt/blob/develop/salt/modules

The most simple module is the test module, it contains the simplest Salt
function, test.ping:

def ping():
 '''
 Just used to make sure the minion is up and responding
 Return True

 CLI Example::

 salt '*' test.ping
 '''
 return True

Full list of builtin execution modules

Virtual modules

	salt.modules.pkg

	salt.modules.sys

	aliases
	Manage the information in the aliases file

	alternatives
	Support for Alternatives system

	apache
	Support for Apache

	apt
	Support for APT (Advanced Packaging Tool)

	archive
	A module to wrap archive calls

	at
	Wrapper module for at(1)

	augeas_cfg
	Manages configuration files via augeas

	bluez
	Support for Bluetooth (using BlueZ in Linux).

	brew
	Homebrew for Mac OS X

	bridge
	Module for gathering and managing bridging information

	bsd_shadow
	Manage the password database on BSD systems

	cassandra
	Cassandra NoSQL Database Module

	cmdmod
	A module for shelling out

	config
	Return config information

	cp
	Minion side functions for salt-cp

	cron
	Work with cron

	daemontools
	daemontools service module. This module will create daemontools type

	darwin_sysctl
	Module for viewing and modifying sysctl parameters

	data
	Manage a local persistent data structure that can hold any arbitrary data

	ddns
	Support for RFC 2136 dynamic DNS updates.

	debconfmod
	Support for Debconf

	debian_service
	Service support for Debian systems (uses update-rc.d and /sbin/service)

	dig
	Compendium of generic DNS utilities

	disk
	Module for gathering disk information

	djangomod
	Manage Django sites

	dnsmasq
	Module for managing dnqmasq

	dnsutil
	Compendium of generic DNS utilities

	dpkg
	Support for DEB packages

	ebuild
	Support for Portage

	eix
	Support for Eix

	eselect
	Support for eselect, Gentoo's configuration and management tool.

	event
	Use the Salt Event System to fire events from the master to the minion and vice-versa.

	extfs
	Module for managing ext2/3/4 file systems

	file
	Manage information about regular files, directories,

	freebsd_sysctl
	Module for viewing and modifying sysctl parameters

	freebsdjail
	The jail module for FreeBSD

	freebsdkmod
	Module to manage FreeBSD kernel modules

	freebsdpkg
	Package support for FreeBSD

	freebsdservice
	The service module for FreeBSD

	gem
	Manage ruby gems.

	gentoo_service
	Top level package command wrapper, used to translate the os detected by grains to the correct service manager

	gentoolkitmod
	Support for Gentoolkit

	git
	Support for the Git SCM

	glance
	Module for handling openstack glance calls.

	grains
	Return/control aspects of the grains data

	groupadd
	Manage groups on Linux and OpenBSD

	grub_legacy
	Support for GRUB Legacy

	guestfs
	Interact with virtual machine images via libguestfs

	hg
	Support for the Mercurial SCM

	hosts
	Manage the information in the hosts file

	img
	Virtual machine image management tools

	iptables
	Support for iptables

	key
	Functions to view the minion's public key information

	keyboard
	Module for managing keyboards on POSIX-like systems.

	keystone
	Module for handling openstack keystone calls.

	kmod
	Module to manage Linux kernel modules

	launchctl
	Module for the management of MacOS systems that use launchd/launchctl

	layman
	Support for Layman

	ldapmod
	Salt interface to LDAP commands

	linux_acl
	Support for Linux File Access Control Lists

	linux_lvm
	Support for Linux LVM2

	linux_sysctl
	Module for viewing and modifying sysctl parameters

	localemod
	Module for managing locales on POSIX-like systems.

	locate
	Module for using the locate utilities

	logrotate
	Module for managing logrotate.

	lxc
	Work with linux containers

	makeconf
	Support for modifying make.conf under Gentoo

	match
	The match module allows for match routines to be run and determine target specs

	mdadm
	Salt module to manage RAID arrays with mdadm

	mine
	The function cache system allows for data to be stored on the master so it can be easily read by other minions

	modjk
	Control Modjk via the Apache Tomcat "Status" worker

	mongodb
	Module to provide MongoDB functionality to Salt

	monit
	Monit service module.

	moosefs
	Module for gathering and managing information about MooseFS

	mount
	Salt module to manage unix mounts and the fstab file

	munin
	Run munin plugins/checks from salt and format the output as data.

	mysql
	Module to provide MySQL compatibility to salt.

	netbsd_sysctl
	Module for viewing and modifying sysctl parameters

	netbsdservice
	The service module for NetBSD

	network
	Module for gathering and managing network information

	nfs3
	Module for managing NFS version 3.

	nginx
	Support for nginx

	nova
	Module for handling openstack nova calls.

	npm
	Manage and query NPM packages.

	nzbget
	Support for nzbget

	openbsdpkg
	Package support for OpenBSD

	openbsdservice
	The service module for OpenBSD

	osxdesktop
	Mac OS X implementations of various commands in the "desktop" interface

	pacman
	A module to wrap pacman calls, since Arch is the best

	pam
	Support for pam

	parted
	Module for managing partitions on POSIX-like systems.

	pecl
	Manage PHP pecl extensions.

	pillar
	Extract the pillar data for this minion

	pip
	Install Python packages with pip to either the system or a virtualenv

	pkg_resource
	Resources needed by pkg providers

	pkgin
	Package support for pkgin based systems, inspired from freebsdpkg module

	pkgng
	Support for pkgng

	pkgutil
	Pkgutil support for Solaris

	portage_config
	Configure portage(5)

	postgres
	Module to provide Postgres compatibility to salt.

	poudriere
	Support for poudriere

	ps
	A salt interface to psutil, a system and process library.

	publish
	Publish a command from a minion to a target

	puppet
	Execute puppet routines

	pw_group
	Manage groups on FreeBSD

	pw_user
	Manage users with the useradd command

	qemu_img
	Qemu-img Command Wrapper

	qemu_nbd
	Qemu Command Wrapper

	quota
	Module for managing quotas on POSIX-like systems.

	rabbitmq
	Module to provide RabbitMQ compatibility to Salt.

	rbenv
	Manage ruby installations with rbenv.

	reg
	Manage the registry on Windows

	ret
	Module to integrate with the returner system and retrieve data sent to a salt returner

	rh_ip
	The networking module for RHEL/Fedora based distros

	rh_service
	Service support for RHEL-based systems, including support for both upstart and sysvinit

	rpm
	Support for rpm

	rvm
	Manage ruby installations and gemsets with RVM, the Ruby Version Manager.

	s3
	Connection module for Amazon S3

	saltutil
	The Saltutil module is used to manage the state of the salt minion itself.

	seed
	Virtual machine image management tools

	selinux
	Execute calls on selinux

	service
	The default service module, if not otherwise specified salt will fall back

	shadow
	Manage the shadow file

	smartos_imgadm
	Module for running imgadm command on SmartOS

	smartos_vmadm
	Module for managing VMs on SmartOS

	smf
	Service support for Solaris 10 and 11, should work with other systems that use SMF also.

	solaris_group
	Manage groups on Solaris

	solaris_shadow
	Manage the password database on Solaris systems

	solaris_user
	Manage users with the useradd command

	solarispkg
	Package support for Solaris

	solr
	Apache Solr Salt Module

	sqlite3
	Support for SQLite3

	ssh
	Manage client ssh components

	state
	Control the state system on the minion

	status
	Module for returning various status data about a minion.

	supervisord
	Provide the service module for system supervisord or supervisord in a virtualenv

	svn
	Subversion SCM

	sysbench
	The 'sysbench' module is used to analyse the performance of the minions, right from the master! It measures various system parameters such as CPU, Memory, FileI/O, Threads and Mutex.

	sysmod
	The sys module provides information about the available functions on the minion

	system
	Support for reboot, shutdown, etc

	systemd
	Provide the service module for systemd

	test
	Module for running arbitrary tests

	timezone
	Module for managing timezone on POSIX-like systems.

	tls
	A salt module for SSL/TLS.

	tomcat
	Support for Tomcat

	upstart
	Module for the management of upstart systems.

	useradd
	Manage users with the useradd command

	virt
	Work with virtual machines managed by libvirt

	virtualenv_mod
	Create virtualenv environments

	win_disk
	Module for gathering disk information on Windows

	win_file
	Manage information about files on the minion, set/read user, group

	win_groupadd
	Manage groups on Windows

	win_network
	Module for gathering and managing network information

	win_pkg
	A module to manage software on Windows

	win_service
	Windows Service module.

	win_shadow
	Manage the shadow file

	win_status
	Module for returning various status data about a minion.

	win_system
	Support for reboot, shutdown, etc

	win_useradd
	Manage Windows users with the net user command

	xapi
	This module (mostly) uses the XenAPI to manage Xen virtual machines.

	yumpkg
	Support for YUM

	yumpkg5
	Support for YUM

	zfs
	Module for running ZFS command

	zpool
	Module for running ZFS zpool command

	zypper
	Package support for openSUSE via the zypper package manager

salt.modules.pkg

pkg is a virtual module that is fulfilled by one of the following modules:

	salt.modules.apt

	salt.modules.ebuild

	salt.modules.freebsdpkg

	salt.modules.pacman

	salt.modules.yumpkg

	salt.modules.yumpkg5

	salt.modules.zypper

	salt.modules.brew

	salt.modules.win_pkg

salt.modules.sys

The regular salt modules execute in a separate context from the salt minion
and manipulating the actual salt modules needs to happen in a higher level
context within the minion process. This is where the sys pseudo module is
used.

The sys pseudo module comes with a few functions that return data about the
available functions on the minion or allows for the minion modules to be
refreshed. These functions are as follows:

	
salt.modules.sys.doc([module[, module.function]])

	Display the inline documentation for all available modules, or for the
specified module or function.

	
salt.modules.sys.reload_modules()

	Instruct the minion to reload all available modules in memory. This
function can be called if the modules need to be re-evaluated for
availability or new modules have been made available to the minion.

	
salt.modules.sys.list_modules()

	List all available (loaded) modules.

	
salt.modules.sys.list_functions()

	List all known functions that are in available (loaded) modules.

salt.modules.aliases

Manage the information in the aliases file

	
salt.modules.aliases.get_target(alias)

	Return the target associated with an alias

CLI Example:

salt '*' aliases.get_target alias

	
salt.modules.aliases.has_target(alias, target)

	Return true if the alias/target is set

CLI Example:

salt '*' aliases.has_target alias target

	
salt.modules.aliases.list_aliases()

	Return the aliases found in the aliases file in this format:

{'alias': 'target'}

CLI Example:

salt '*' aliases.list_aliases

	
salt.modules.aliases.rm_alias(alias)

	Remove an entry from the aliases file

CLI Example:

salt '*' aliases.rm_alias alias

	
salt.modules.aliases.set_target(alias, target)

	Set the entry in the aliases file for the given alias, this will overwrite
any previous entry for the given alias or create a new one if it does not
exist.

CLI Example:

salt '*' aliases.set_target alias target

salt.modules.alternatives

Support for Alternatives system

	codeauthor:	Radek Rada <radek.rada@gmail.com>

	copyright:	© 2012 by the SaltStack Team, see AUTHORS for more details.

	license:	Apache 2.0, see LICENSE for more details.

	
salt.modules.alternatives.auto(name)

	Trigger alternatives to set the path for <name> as
specified by priority.

CLI Example:

salt '*' alternatives.auto name

	
salt.modules.alternatives.check_installed(name, path)

	Check if the current highest-priority match for a given alternatives link
is set to the desired path

CLI Example:

salt '*' alternatives.check_installed name path

	
salt.modules.alternatives.display(name)

	Display alternatives settings for defined command name

CLI Example:

salt '*' alternatives.display editor

	
salt.modules.alternatives.install(name, link, path, priority)

	Install symbolic links determining default commands

CLI Example:

salt '*' alternatives.install editor /usr/bin/editor /usr/bin/emacs23 50

	
salt.modules.alternatives.remove(name, path)

	Remove symbolic links determining the default commands.

CLI Example:

salt '*' alternatives.remove name path

	
salt.modules.alternatives.set_(name, path)

	Manually set the alternative <path> for <name>.

CLI Example:

salt '*' alternatives.set name path

	
salt.modules.alternatives.show_current(name)

	Display the current highest-priority alternative for a given alternatives
link

CLI Example:

salt '*' alternatives.show_current editor

salt.modules.apache

Support for Apache

	
salt.modules.apache.a2dissite(site)

	Runs a2dissite for the given site.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.a2dissite example.com

	
salt.modules.apache.a2ensite(site)

	Runs a2ensite for the given site.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.a2ensite example.com

	
salt.modules.apache.check_site_enabled(site)

	Checks to see if the specific Site symlink is in /etc/apache2/sites-enabled.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.check_site_enabled example.com

	
salt.modules.apache.directives()

	Return list of directives together with expected arguments
and places where the directive is valid (apachectl -L)

CLI Example:

salt '*' apache.directives

	
salt.modules.apache.fullversion()

	Return server version from apachectl -V

CLI Example:

salt '*' apache.fullversion

	
salt.modules.apache.modules()

	Return list of static and shared modules from apachectl -M

CLI Example:

salt '*' apache.modules

	
salt.modules.apache.server_status(profile='default')

	Get Information from the Apache server-status handler

NOTE:
the server-status handler is disabled by default.
in order for this function to work it needs to be enabled.
http://httpd.apache.org/docs/2.2/mod/mod_status.html

The following configuration needs to exists in pillar/grains
each entry nested in apache.server-status is a profile of a vhost/server
this would give support for multiple apache servers/vhosts

	apache.server-status:

	
	'default':

	'url': http://localhost/server-status
'user': someuser
'pass': password
'realm': 'authentication realm for digest passwords'
'timeout': 5

CLI Examples:

salt '*' apache.server_status
salt '*' apache.server_status other-profile

	
salt.modules.apache.servermods()

	Return list of modules compiled into the server (apachectl -l)

CLI Example:

salt '*' apache.servermods

	
salt.modules.apache.signal(signal=None)

	Signals httpd to start, restart, or stop.

CLI Example:

salt '*' apache.signal restart

	
salt.modules.apache.useradd(pwfile, user, password, opts='')

	Add an HTTP user using the htpasswd command. If the htpasswd file does not
exist, it will be created. Valid options that can be passed are:

n Don't update file; display results on stdout.
m Force MD5 encryption of the password (default).
d Force CRYPT encryption of the password.
p Do not encrypt the password (plaintext).
s Force SHA encryption of the password.

CLI Examples:

salt '*' apache.useradd /etc/httpd/htpasswd larry badpassword
salt '*' apache.useradd /etc/httpd/htpasswd larry badpass opts=ns

	
salt.modules.apache.userdel(pwfile, user)

	Delete an HTTP user from the specified htpasswd file.

CLI Examples:

salt '*' apache.userdel /etc/httpd/htpasswd larry

	
salt.modules.apache.version()

	Return server version from apachectl -v

CLI Example:

salt '*' apache.version

	
salt.modules.apache.vhosts()

	Show the settings as parsed from the config file (currently
only shows the virtualhost settings). (apachectl -S)
Because each additional virtual host adds to the execution
time, this command may require a long timeout be specified.

CLI Example:

salt -t 10 '*' apache.vhosts

salt.modules.apt

Support for APT (Advanced Packaging Tool)

	
salt.modules.apt.del_repo(repo, **kwargs)

	Delete a repo from the sources.list / sources.list.d

If the .list file is in the sources.list.d directory
and the file that the repo exists in does not contain any other
repo configuration, the file itself will be deleted.

The repo passed in must be a fully formed repository definition
string.

CLI Examples:

salt '*' pkg.del_repo "myrepo definition"

	
salt.modules.apt.expand_repo_def(repokwargs)

	Take a repository definition and expand it to the full pkg repository dict
that can be used for comparison. This is a helper function to make
the Debian/Ubuntu apt sources sane for comparison in the pkgrepo states.

There is no use to calling this function via the CLI.

	
salt.modules.apt.file_dict(*packages)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.apt.file_list(*packages)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.apt.get_repo(repo, **kwargs)

	Display a repo from the sources.list / sources.list.d

The repo passwd in needs to be a complete repo entry.

CLI Examples:

salt '*' pkg.get_repo "myrepo definition"

	
salt.modules.apt.get_selections(pattern=None, state=None)

	View package state from the dpkg database.

Returns a dict of dicts containing the state, and package names:

{'<host>':
 {'<state>': ['pkg1',
 ...
]
 },
 ...
}

CLI Example:

salt '*' pkg.get_selections
salt '*' pkg.get_selections 'python-*'
salt '*' pkg.get_selections state=hold
salt '*' pkg.get_selections 'openssh*' state=hold

	
salt.modules.apt.install(name=None, refresh=False, fromrepo=None, skip_verify=False, debconf=None, pkgs=None, sources=None, **kwargs)

	Install the passed package, add refresh=True to update the dpkg database.

	name

	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

32-bit packages can be installed on 64-bit systems by appending the
architecture designation (:i386, etc.) to the end of the package
name.

CLI Example:

salt '*' pkg.install <package name>

	refresh

	Whether or not to refresh the package database before installing.

	fromrepo

	Specify a package repository to install from
(e.g., apt-get -t unstable install somepackage)

	skip_verify

	Skip the GPG verification check (e.g., --allow-unauthenticated, or
--force-bad-verify for install from package file).

	debconf

	Provide the path to a debconf answers file, processed before
installation.

	version

	Install a specific version of the package, e.g. 1.2.3~0ubuntu0. Ignored
if "pkgs" or "sources" is passed.

Multiple Package Installation Options:

	pkgs

	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-0ubuntu0"}]'

	sources

	A list of DEB packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

32-bit packages can be installed on 64-bit systems by appending the
architecture designation (:i386, etc.) to the end of the package
name.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.apt.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=unstable
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.apt.list_pkgs(versions_as_list=False, removed=False)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

If removed is True, then only packages which have been removed (but not
purged) will be returned.

External dependencies:

Virtual package resolution requires dctrl-tools.
Without dctrl-tools virtual packages will be reported as not installed.

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

	
salt.modules.apt.list_repos()

	Lists all repos in the sources.list (and sources.lists.d) files

CLI Example:

salt '*' pkg.list_repos
salt '*' pkg.list_repos disabled=True

	
salt.modules.apt.list_upgrades(refresh=True)

	List all available package upgrades.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.apt.mod_repo(repo, **kwargs)

	Modify one or more values for a repo. If the repo does not exist, it will
be created, so long as the definition is well formed. For Ubuntu the
"ppa:<project>/repo" format is acceptable. "ppa:" format can only be
used to create a new repository.

The following options are available to modify a repo definition:

comps (a comma separated list of components for the repo, e.g. "main")
file (a file name to be used)
keyserver (keyserver to get gpg key from)
keyid (key id to load with the keyserver argument)
key_url (URL to a gpg key to add to the apt gpg keyring)
consolidate (if true, will attempt to de-dup and consolidate sources)

* Note: Due to the way keys are stored for apt, there is a known issue
 where the key wont be updated unless another change is made
 at the same time. Keys should be properly added on initial
 configuration.

CLI Examples:

salt '*' pkg.mod_repo 'myrepo definition' uri=http://new/uri
salt '*' pkg.mod_repo 'myrepo definition' comps=main,universe

	
salt.modules.apt.purge(name=None, pkgs=None, **kwargs)

	Remove packages via apt-get purge along with all configuration files
and unused dependencies.

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.apt.refresh_db()

	Updates the APT database to latest packages based upon repositories

Returns a dict, with the keys being package databases and the values being
the result of the update attempt. Values can be one of the following:

	True: Database updated successfully

	False: Problem updating database

	None: Database already up-to-date

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.apt.remove(name=None, pkgs=None, **kwargs)

	Remove packages using apt-get remove.

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.apt.set_selections(path=None, selection=None, clear=False)

	Change package state in the dpkg database.

The state can be any one of, documented in dpkg(1):

	install

	hold

	deinstall

	purge

This command is commonly used to mark specific packages to be held from
being upgraded, that is, to be kept at a certain version. When a state is
changed to anything but being held, then it is typically followed by
apt-get -u dselect-upgrade.

Note: Be careful with the clear argument, since it will start
with setting all packages to deinstall state.

Returns a dict of dicts containing the package names, and the new and old
versions:

{'<host>':
 {'<package>': {'new': '<new-state>',
 'old': '<old-state>'}
 },
 ...
}

CLI Example:

salt '*' pkg.set_selections selection='{"install": ["netcat"]}'
salt '*' pkg.set_selections selection='{"hold": ["openssh-server", "openssh-client"]}'
salt '*' pkg.set_selections salt://path/to/file
salt '*' pkg.set_selections salt://path/to/file clear=True

	
salt.modules.apt.upgrade(refresh=True, **kwargs)

	Upgrades all packages via apt-get dist-upgrade

Returns a dict containing the changes.

	{'<package>': {'old': '<old-version>',

	'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.apt.upgrade_available(name)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.apt.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.apt.version_cmp(pkg1, pkg2)

	Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if
pkg1 == pkg2, and 1 if pkg1 > pkg2. Return None if there was a problem
making the comparison.

CLI Example:

salt '*' pkg.version_cmp '0.2.4-0ubuntu1' '0.2.4.1-0ubuntu1'

salt.modules.archive

A module to wrap archive calls

	
salt.modules.archive.gunzip(gzipfile, template=None)

	Uses the gunzip command to unpack gzip files

CLI Example to create /tmp/sourcefile.txt:

salt '*' archive.gunzip /tmp/sourcefile.txt.gz

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.

CLI Example:

salt '*' archive.gunzip template=jinja /tmp/{{grains.id}}.txt.gz

	
salt.modules.archive.gzip(sourcefile, template=None)

	Uses the gzip command to create gzip files

CLI Example to create /tmp/sourcefile.txt.gz:

salt '*' archive.gzip /tmp/sourcefile.txt

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.

CLI Example:

salt '*' archive.gzip template=jinja /tmp/{{grains.id}}.txt

	
salt.modules.archive.rar(rarfile, sources, template=None)

	Uses the rar command to create rar files
Uses rar for Linux from http://www.rarlab.com/

CLI Example:

salt '*' archive.rar /tmp/rarfile.rar /tmp/sourcefile1,/tmp/sourcefile2

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.

For example:

salt '*' archive.rar template=jinja /tmp/rarfile.rar /tmp/sourcefile1,/tmp/{{grains.id}}.txt

	
salt.modules.archive.tar(options, tarfile, sources, cwd=None, template=None)

	
Note

This function has changed for version 0.17.0. In prior versions, the
cwd and template arguments must be specified, with the source
directories/files coming as a space-separated list at the end of the
command. Beginning with 0.17.0, sources must be a comma-separated
list, and the cwd and template arguments are optional.

Uses the tar command to pack, unpack, etc tar files

CLI Example:

salt '*' archive.tar cjvf /tmp/tarfile.tar.bz2 /tmp/file_1,/tmp/file_2

The template arg can be set to jinja or another supported template
engine to render the command arguments before execution. For example:

salt '*' archive.tar template=jinja cjvf /tmp/salt.tar.bz2 {{grains.saltpath}}

	
salt.modules.archive.unrar(rarfile, dest, excludes=None, template=None)

	Uses the unrar command to unpack rar files
Uses rar for Linux from http://www.rarlab.com/

CLI Example:

salt '*' archive.unrar /tmp/rarfile.rar /home/strongbad/ excludes=file_1,file_2

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.

For example:

salt '*' archive.unrar template=jinja /tmp/rarfile.rar /tmp/{{grains.id}}/ excludes=file_1,file_2

	
salt.modules.archive.unzip(zipfile, dest, excludes=None, template=None)

	Uses the unzip command to unpack zip files

CLI Example:

salt '*' archive.unzip /tmp/zipfile.zip /home/strongbad/ excludes=file_1,file_2

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.

For example:

salt '*' archive.unzip template=jinja /tmp/zipfile.zip /tmp/{{grains.id}}/ excludes=file_1,file_2

	
salt.modules.archive.zip_(zipfile, sources, template=None)

	Uses the zip command to create zip files

CLI Example:

salt '*' archive.zip /tmp/zipfile.zip /tmp/sourcefile1,/tmp/sourcefile2

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.

For example:

salt '*' archive.zip template=jinja /tmp/zipfile.zip /tmp/sourcefile1,/tmp/{{grains.id}}.txt

salt.modules.at

Wrapper module for at(1)

Also, a 'tag' feature has been added to more
easily tag jobs.

	
salt.modules.at.at(*args, **kwargs)

	Add a job to the queue.

The 'timespec' follows the format documented in the
at(1) manpage.

CLI Example:

salt '*' at.at <timespec> <cmd> [tag=<tag>] [runas=<user>]
salt '*' at.at 12:05am '/sbin/reboot' tag=reboot
salt '*' at.at '3:05am +3 days' 'bin/myscript' tag=nightly runas=jim

	
salt.modules.at.atc(jobid)

	Print the at(1) script that will run for the passed job
id. This is mostly for debugging so the output will
just be text.

CLI Example:

salt '*' at.atc <jobid>

	
salt.modules.at.atq(tag=None)

	List all queued and running jobs or only those with
an optional 'tag'.

CLI Example:

salt '*' at.atq
salt '*' at.atq [tag]
salt '*' at.atq [job number]

	
salt.modules.at.atrm(*args)

	Remove jobs from the queue.

CLI Example:

salt '*' at.atrm <jobid> <jobid> .. <jobid>
salt '*' at.atrm all
salt '*' at.atrm all [tag]

salt.modules.augeas_cfg

Manages configuration files via augeas

NOTE: This state requires the augeas Python module.

	
salt.modules.augeas_cfg.get(path, value='')

	Get a value for a specific augeas path

CLI Example:

salt '*' augeas.get /files/etc/hosts/1/ ipaddr

	
salt.modules.augeas_cfg.ls(path)

	List the direct children of a node

CLI Example:

salt '*' augeas.ls /files/etc/passwd

	
salt.modules.augeas_cfg.match(path, value='')

	Get matches for path expression

CLI Example:

salt '*' augeas.match /files/etc/services/service-name ssh

	
salt.modules.augeas_cfg.remove(path)

	Get matches for path expression

CLI Example:

salt '*' augeas.remove /files/etc/sysctl.conf/net.ipv4.conf.all.log_martians

	
salt.modules.augeas_cfg.setvalue(*args)

	Set a value for a specific augeas path

CLI Example:

salt '*' augeas.setvalue /files/etc/hosts/1/canonical localhost

This will set the first entry in /etc/hosts to localhost

CLI Example:

salt '*' augeas.setvalue /files/etc/hosts/01/ipaddr 192.168.1.1 \
 /files/etc/hosts/01/canonical test

Adds a new host to /etc/hosts the ip address 192.168.1.1 and hostname test

CLI Example:

salt '*' augeas.setvalue prefix=/files/etc/sudoers/ \
 "spec[user = '%wheel']/user" "%wheel" \
 "spec[user = '%wheel']/host_group/host" 'ALL' \
 "spec[user = '%wheel']/host_group/command[1]" 'ALL' \
 "spec[user = '%wheel']/host_group/command[1]/tag" 'PASSWD' \
 "spec[user = '%wheel']/host_group/command[2]" '/usr/bin/apt-get' \
 "spec[user = '%wheel']/host_group/command[2]/tag" NOPASSWD

Ensures that the following line is present in /etc/sudoers:

%wheel ALL = PASSWD : ALL , NOPASSWD : /usr/bin/apt-get , /usr/bin/aptitude

	
salt.modules.augeas_cfg.tree(path)

	Returns recursively the complete tree of a node

CLI Example:

salt '*' augeas.tree /files/etc/

salt.modules.bluez

Support for Bluetooth (using BlueZ in Linux).

The following packages are required packages for this module:

bluez >= 5.7
bluez-libs >= 5.7
bluez-utils >= 5.7
pybluez >= 0.18

	
salt.modules.bluez.address_()

	Get the many addresses of the Bluetooth adapter

CLI Example:

salt '*' bluetooth.address

	
salt.modules.bluez.block(bdaddr)

	Block a specific bluetooth device by BD Address

CLI Example:

salt '*' bluetooth.block DE:AD:BE:EF:CA:FE

	
salt.modules.bluez.discoverable(dev)

	Enable this bluetooth device to be discovrable.

CLI Example:

salt '*' bluetooth.discoverable hci0

	
salt.modules.bluez.noscan(dev)

	Turn off scanning modes on this device.

CLI Example:

salt '*' bluetooth.noscan hci0

	
salt.modules.bluez.pair(address, key)

	Pair the bluetooth adapter with a device

CLI Example:

salt '*' bluetooth.pair DE:AD:BE:EF:CA:FE 1234

Where DE:AD:BE:EF:CA:FE is the address of the device to pair with, and 1234
is the passphrase.

TODO: This function is currently broken, as the bluez-simple-agent program
no longer ships with BlueZ >= 5.0. It needs to be refactored.

	
salt.modules.bluez.power(dev, mode)

	Power a bluetooth device on or off

CLI Examples:

salt '*' bluetooth.power hci0 on
salt '*' bluetooth.power hci0 off

	
salt.modules.bluez.scan()

	Scan for bluetooth devices in the area

CLI Example:

salt '*' bluetooth.scan

	
salt.modules.bluez.start()

	Start the bluetooth service.

CLI Example:

salt '*' bluetooth.start

	
salt.modules.bluez.stop()

	Stop the bluetooth service.

CLI Example:

salt '*' bluetooth.stop

	
salt.modules.bluez.unblock(bdaddr)

	Unblock a specific bluetooth device by BD Address

CLI Example:

salt '*' bluetooth.unblock DE:AD:BE:EF:CA:FE

	
salt.modules.bluez.unpair(address)

	Unpair the bluetooth adapter from a device

CLI Example:

salt '*' bluetooth.unpair DE:AD:BE:EF:CA:FE

Where DE:AD:BE:EF:CA:FE is the address of the device to unpair.

TODO: This function is currently broken, as the bluez-simple-agent program
no longer ships with BlueZ >= 5.0. It needs to be refactored.

	
salt.modules.bluez.version()

	Return Bluez version from bluetoothd -v

CLI Example:

salt '*' bluetoothd.version

salt.modules.brew

Homebrew for Mac OS X

	
salt.modules.brew.install(name=None, pkgs=None, taps=None, options=None, **kwargs)

	Install the passed package(s) with brew install

	name

	The name of the formula to be installed. Note that this parameter is
ignored if "pkgs" is passed.

CLI Example:

salt '*' pkg.install <package name>

	taps

	Unofficial Github repos to use when updating and installing formulas.

CLI Example:

salt '*' pkg.install <package name> tap='<tap>'
salt '*' pkg.install zlib taps='homebrew/dupes'
salt '*' pkg.install php54 taps='["josegonzalez/php", "homebrew/dupes"]'

	options

	Options to pass to brew. Only applies to inital install. Due to how brew
works, modifying chosen options requires a full uninstall followed by a
fresh install. Note that if "pkgs" is used, all options will be passed
to all packages. Unreconized options for a package will be silently
ignored by brew.

CLI Example:

salt '*' pkg.install <package name> tap='<tap>'
salt '*' pkg.install php54 taps='["josegonzalez/php", "homebrew/dupes"]' options='["--with-fpm"]'

Multiple Package Installation Options:

	pkgs

	A list of formulas to install. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install 'package package package'

	
salt.modules.brew.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation

Note that this currently not fully implemented but needs to return
something to avoid a traceback when calling pkg.latest.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3>

	
salt.modules.brew.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.brew.list_upgrades()

	Check whether or not an upgrade is available for all packages

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.brew.remove(name=None, pkgs=None, **kwargs)

	Removes packages with brew uninstall.

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.brew.upgrade_available(pkg)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.brew.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3>

salt.modules.bridge

Module for gathering and managing bridging information

	
salt.modules.bridge.add(br=None)

	Creates a bridge

CLI Example:

salt '*' bridge.add br0

	
salt.modules.bridge.addif(br=None, iface=None)

	Adds an interface to a bridge

CLI Example:

salt '*' bridge.addif br0 eth0

	
salt.modules.bridge.delete(br=None)

	Deletes a bridge

CLI Example:

salt '*' bridge.delete br0

	
salt.modules.bridge.delif(br=None, iface=None)

	Removes an interface from a bridge

CLI Example:

salt '*' bridge.delif br0 eth0

	
salt.modules.bridge.find_interfaces(*args)

	Returns the bridge to which the interfaces are bond to

CLI Example:

salt '*' bridge.find_interfaces eth0 [eth1...]

	
salt.modules.bridge.interfaces(br=None)

	Returns interfaces attached to a bridge

CLI Example:

salt '*' bridge.interfaces br0

	
salt.modules.bridge.list_()

	Returns the machine's bridges list

CLI Example:

salt '*' bridge.list

	
salt.modules.bridge.show(br=None)

	Returns bridges interfaces along with enslaved physical interfaces. If
no interface is given, all bridges are shown, else only the specified
bridge values are returned.

CLI Example:

salt '*' bridge.show
salt '*' bridge.show br0

	
salt.modules.bridge.stp(br=None, state='disable', iface=None)

	Sets Spanning Tree Protocol state for a bridge

CLI Example:

salt '*' bridge.stp br0 enable
salt '*' bridge.stp br0 disable

For the NetBSD operating system, it is required to add the interface on
which to enable the STP.

CLI Example:

salt '*' bridge.stp bridge0 enable fxp0
salt '*' bridge.stp bridge0 disable fxp0

salt.modules.bsd_shadow

Manage the password database on BSD systems

	
salt.modules.bsd_shadow.default_hash()

	Returns the default hash used for unset passwords

CLI Example:

salt '*' shadow.default_hash

	
salt.modules.bsd_shadow.info(name)

	Return information for the specified user

CLI Example:

salt '*' shadow.info someuser

	
salt.modules.bsd_shadow.set_password(name, password)

	Set the password for a named user. The password must be a properly defined
hash. The password hash can be generated with this command:

python -c "import crypt; print crypt.crypt('password', ciphersalt)"

NOTE: When constructing the ciphersalt string, you must
escape any dollar signs, to avoid them being interpolated by the shell.

'password' is, of course, the password for which you want to generate
a hash.

ciphersalt is a combination of a cipher identifier, an optional number
of rounds, and the cryptographic salt. The arrangement and format of these
fields depends on the cipher and which flavor of BSD you are using. For
more information on this, see the manpage for crpyt(3). On NetBSD,
additional information is available in passwd.conf(5).

It is important to make sure that a supported cipher is used.

CLI Example:

salt '*' shadow.set_password someuser '1UYCIxa628.9qXjpQCjM4a..'

salt.modules.cassandra

Cassandra NoSQL Database Module

	depends:	
	pycassa Cassandra Python adapter

	configuration:	The location of the 'nodetool' command, host, and thrift port needs to be
specified via pillar:

cassandra.nodetool: /usr/local/bin/nodetool
cassandra.host: localhost
cassandra.thrift_port: 9160

	
salt.modules.cassandra.column_families(keyspace=None)

	Return existing column families for all keyspaces
or just the provided one.

CLI Example:

salt '*' cassandra.column_families
salt '*' cassandra.column_families <keyspace>

	
salt.modules.cassandra.column_family_definition(keyspace=None, column_family=None)

	Return a dictionary of column family definitions for the given
keyspace/column_family

CLI Example:

salt '*' cassandra.column_family_definition <keyspace> <column_family>

	
salt.modules.cassandra.compactionstats()

	Return compactionstats info

CLI Example:

salt '*' cassandra.compactionstats

	
salt.modules.cassandra.info()

	Return cassandra node info

CLI Example:

salt '*' cassandra.info

	
salt.modules.cassandra.keyspaces()

	Return existing keyspaces

CLI Example:

salt '*' cassandra.keyspaces

	
salt.modules.cassandra.netstats()

	Return netstats info

CLI Example:

salt '*' cassandra.netstats

	
salt.modules.cassandra.ring()

	Return cassandra ring info

CLI Example:

salt '*' cassandra.ring

	
salt.modules.cassandra.tpstats()

	Return tpstats info

CLI Example:

salt '*' cassandra.tpstats

	
salt.modules.cassandra.version()

	Return the cassandra version

CLI Example:

salt '*' cassandra.version

salt.modules.cmdmod

A module for shelling out

Keep in mind that this module is insecure, in that it can give whomever has
access to the master root execution access to all salt minions

	
salt.modules.cmdmod.exec_code(lang, code, cwd=None)

	Pass in two strings, the first naming the executable language, aka -
python2, python3, ruby, perl, lua, etc. the second string containing
the code you wish to execute. The stdout and stderr will be returned

CLI Example:

salt '*' cmd.exec_code ruby 'puts "cheese"'

	
salt.modules.cmdmod.has_exec(cmd)

	Returns true if the executable is available on the minion, false otherwise

CLI Example:

salt '*' cmd.has_exec cat

	
salt.modules.cmdmod.retcode(cmd, cwd=None, stdin=None, runas=None, shell='/bin/sh', env=(), clean_env=False, template=None, umask=None, quiet=False, timeout=None, reset_system_locale=True)

	Execute a shell command and return the command's return code.

Note that env represents the environment variables for the command, and
should be formatted as a dict, or a YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.retcode "file /bin/bash"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.retcode template=jinja "file {{grains.pythonpath[0]}}/python"

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.:

salt '*' cmd.retcode "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.run(cmd, cwd=None, stdin=None, runas=None, shell='/bin/sh', env=(), clean_env=False, template=None, rstrip=True, umask=None, quiet=False, timeout=None, reset_system_locale=True, **kwargs)

	Execute the passed command and return the output as a string

Note that env represents the environment variables for the command, and
should be formatted as a dict, or a YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.run "ls -l | awk '/foo/{print \$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

Specify an alternate shell with the shell parameter:

salt '*' cmd.run "Get-ChildItem C:\ " shell='powershell'

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.:

salt '*' cmd.run "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.run_all(cmd, cwd=None, stdin=None, runas=None, shell='/bin/sh', env=(), clean_env=False, template=None, rstrip=True, umask=None, quiet=False, timeout=None, reset_system_locale=True, **kwargs)

	Execute the passed command and return a dict of return data

Note that env represents the environment variables for the command, and
should be formatted as a dict, or a YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.run_all "ls -l | awk '/foo/{print \$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run_all template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.:

salt '*' cmd.run_all "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.run_stderr(cmd, cwd=None, stdin=None, runas=None, shell='/bin/sh', env=(), clean_env=False, template=None, rstrip=True, umask=None, quiet=False, timeout=None, reset_system_locale=True, **kwargs)

	Execute a command and only return the standard error

Note that env represents the environment variables for the command, and
should be formatted as a dict, or a YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.run_stderr "ls -l | awk '/foo/{print \$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run_stderr template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.:

salt '*' cmd.run_stderr "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.run_stdout(cmd, cwd=None, stdin=None, runas=None, shell='/bin/sh', env=(), clean_env=False, template=None, rstrip=True, umask=None, quiet=False, timeout=None, reset_system_locale=True, **kwargs)

	Execute a command, and only return the standard out

Note that env represents the environment variables for the command, and
should be formatted as a dict, or a YAML string which resolves to a dict.

CLI Example:

salt '*' cmd.run_stdout "ls -l | awk '/foo/{print \$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run_stdout template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.:

salt '*' cmd.run_stdout "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.script(source, args=None, cwd=None, stdin=None, runas=None, shell='/bin/sh', env=(), template='jinja', umask=None, timeout=None, reset_system_locale=True, __env__='base', **kwargs)

	Download a script from a remote location and execute the script locally.
The script can be located on the salt master file server or on an HTTP/FTP
server.

The script will be executed directly, so it can be written in any available
programming language.

The script can also be formated as a template, the default is jinja.
Arguments for the script can be specified as well.

CLI Example:

salt '*' cmd.script salt://scripts/runme.sh
salt '*' cmd.script salt://scripts/runme.sh 'arg1 arg2 "arg 3"'
salt '*' cmd.script salt://scripts/windows_task.ps1 args=' -Input c:\tmp\infile.txt' shell='powershell'

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.:

salt '*' cmd.script salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.script_retcode(source, cwd=None, stdin=None, runas=None, shell='/bin/sh', env=(), template='jinja', umask=None, timeout=None, reset_system_locale=True, __env__='base', **kwargs)

	Download a script from a remote location and execute the script locally.
The script can be located on the salt master file server or on an HTTP/FTP
server.

The script will be executed directly, so it can be written in any available
programming language.

The script can also be formated as a template, the default is jinja.

Only evaluate the script return code and do not block for terminal output

CLI Example:

salt '*' cmd.script_retcode salt://scripts/runme.sh

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.:

salt '*' cmd.script_retcode salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.which(cmd)

	Returns the path of an executable available on the minion, None otherwise

CLI Example:

salt '*' cmd.which cat

	
salt.modules.cmdmod.which_bin(cmds)

	Returns the first command found in a list of commands

CLI Example:

salt '*' cmd.which_bin '[pip2, pip, pip-python]'

salt.modules.config

Return config information

	
salt.modules.config.backup_mode(backup='')

	Return the backup mode

CLI Example:

salt '*' config.backup_mode

	
salt.modules.config.dot_vals(value)

	Pass in a configuration value that should be preceded by the module name
and a dot, this will return a list of all read key/value pairs

CLI Example:

salt '*' config.dot_vals host

	
salt.modules.config.gather_bootstrap_script(replace=False)

	Download the salt-bootstrap script, set replace to True to refresh the
script if it has already been downloaded

CLI Example:

salt '*' config.gather_bootstrap_script True

	
salt.modules.config.get(key, default='')

	Attempt to retrieve the named value from opts, pillar, grains of the master
config, if the named value is not available return the passed default.
The default return is an empty string.

The value can also represent a value in a nested dict using a ":" delimiter
for the dict. This means that if a dict looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg dict this
key can be passed:

pkg:apache

This routine traverses these data stores in this order:

	Local minion config (opts)

	Minion's grains

	Minion's pillar

	Master config

CLI Example:

salt '*' config.get pkg:apache

	
salt.modules.config.manage_mode(mode)

	Return a mode value, normalized to a string

CLI Example:

salt '*' config.manage_mode

	
salt.modules.config.merge(value, default='', omit_opts=False, omit_master=False, omit_pillar=False)

	Retrieves an option based on key, merging all matches.

Same as option() except that it merges all matches, rather than taking
the first match.

CLI Example:

salt '*' config.merge schedule

	
salt.modules.config.option(value, default='', omit_opts=False, omit_master=False, omit_pillar=False)

	Pass in a generic option and receive the value that will be assigned

CLI Example:

salt '*' config.option redis.host

	
salt.modules.config.valid_fileproto(uri)

	Returns a boolean value based on whether or not the URI passed has a valid
remote file protocol designation

CLI Example:

salt '*' config.valid_fileproto salt://path/to/file

salt.modules.cp

Minion side functions for salt-cp

	
salt.modules.cp.cache_dir(path, env='base', include_empty=False)

	Download and cache everything under a directory from the master

CLI Example:

salt '*' cp.cache_dir salt://path/to/dir

	
salt.modules.cp.cache_file(path, env='base')

	Used to cache a single file in the local salt-master file cache.

CLI Example:

salt '*' cp.cache_file salt://path/to/file

	
salt.modules.cp.cache_files(paths, env='base')

	Used to gather many files from the master, the gathered files will be
saved in the minion cachedir reflective to the paths retrieved from the
master.

CLI Example:

salt '*' cp.cache_files salt://pathto/file1,salt://pathto/file1

	
salt.modules.cp.cache_local_file(path)

	Cache a local file on the minion in the localfiles cache

CLI Example:

salt '*' cp.cache_local_file /etc/hosts

	
salt.modules.cp.cache_master(env='base')

	Retrieve all of the files on the master and cache them locally

CLI Example:

salt '*' cp.cache_master

	
salt.modules.cp.get_dir(path, dest, env='base', template=None, gzip=None)

	Used to recursively copy a directory from the salt master

CLI Example:

salt '*' cp.get_dir salt://path/to/dir/ /minion/dest

get_dir supports the same template and gzip arguments as get_file.

	
salt.modules.cp.get_file(path, dest, env='base', makedirs=False, template=None, gzip=None)

	Used to get a single file from the salt master

CLI Example:

salt '*' cp.get_file salt://path/to/file /minion/dest

Template rendering can be enabled on both the source and destination file
names like so:

salt '*' cp.get_file "salt://{{grains.os}}/vimrc" /etc/vimrc template=jinja

This example would instruct all Salt minions to download the vimrc from a
directory with the same name as their os grain and copy it to /etc/vimrc

For larger files, the cp.get_file module also supports gzip compression.
Because gzip is CPU-intensive, this should only be used in scenarios where
the compression ratio is very high (e.g. pretty-printed JSON or YAML
files).

Use the gzip named argument to enable it. Valid values are 1..9, where 1
is the lightest compression and 9 the heaviest. 1 uses the least CPU on
the master (and minion), 9 uses the most.

	
salt.modules.cp.get_file_str(path, env='base')

	Return the contents of a file from a URL

CLI Example:

salt '*' cp.get_file_str salt://my/file

	
salt.modules.cp.get_template(path, dest, template='jinja', env='base', **kwargs)

	Render a file as a template before setting it down

CLI Example:

salt '*' cp.get_template salt://path/to/template /minion/dest

	
salt.modules.cp.get_url(path, dest, env='base')

	Used to get a single file from a URL.

CLI Example:

salt '*' cp.get_url salt://my/file /tmp/mine
salt '*' cp.get_url http://www.slashdot.org /tmp/index.html

	
salt.modules.cp.hash_file(path, env='base')

	Return the hash of a file, to get the hash of a file on the
salt master file server prepend the path with salt://<file on server>
otherwise, prepend the file with / for a local file.

CLI Example:

salt '*' cp.hash_file salt://path/to/file

	
salt.modules.cp.is_cached(path, env='base')

	Return a boolean if the given path on the master has been cached on the
minion

CLI Example:

salt '*' cp.is_cached salt://path/to/file

	
salt.modules.cp.list_master(env='base', prefix='')

	List all of the files stored on the master

CLI Example:

salt '*' cp.list_master

	
salt.modules.cp.list_master_dirs(env='base', prefix='')

	List all of the directories stored on the master

CLI Example:

salt '*' cp.list_master_dirs

	
salt.modules.cp.list_minion(env='base')

	List all of the files cached on the minion

CLI Example:

salt '*' cp.list_minion

	
salt.modules.cp.list_states(env='base')

	List all of the available state modules in an environment

CLI Example:

salt '*' cp.list_states

	
salt.modules.cp.push(path)

	Push a file from the minion up to the master, the file will be saved to
the salt master in the master's minion files cachedir
(defaults to /var/cache/salt/master/minions/minion-id/files)

Since this feature allows a minion to push a file up to the master server
it is disabled by default for security purposes. To enable, set
file_recv to True in the master configuration file, and restart the
master.

CLI Example:

salt '*' cp.push /etc/fstab

	
salt.modules.cp.recv(files, dest)

	Used with salt-cp, pass the files dict, and the destination.

This function receives small fast copy files from the master via salt-cp.
It does not work via the CLI.

salt.modules.cron

Work with cron

	
salt.modules.cron.list_tab(user)

	Return the contents of the specified user's crontab

CLI Example:

salt '*' cron.list_tab root

	
salt.modules.cron.ls(user)

	Return the contents of the specified user's crontab

CLI Example:

salt '*' cron.list_tab root

	
salt.modules.cron.raw_cron(user)

	Return the contents of the user's crontab

CLI Example:

salt '*' cron.raw_cron root

	
salt.modules.cron.rm(user, cmd, minute=None, hour=None, daymonth=None, month=None, dayweek=None)

	Remove a cron job for a specified user. If any of the day/time params are
specified, the job will only be removed if the specified params match.

CLI Example:

salt '*' cron.rm_job root /usr/local/weekly
salt '*' cron.rm_job root /usr/bin/foo dayweek=1

	
salt.modules.cron.rm_env(user, name)

	Remove cron environment variable for a specified user.

CLI Example:

salt '*' cron.rm_env root MAILTO

	
salt.modules.cron.rm_job(user, cmd, minute=None, hour=None, daymonth=None, month=None, dayweek=None)

	Remove a cron job for a specified user. If any of the day/time params are
specified, the job will only be removed if the specified params match.

CLI Example:

salt '*' cron.rm_job root /usr/local/weekly
salt '*' cron.rm_job root /usr/bin/foo dayweek=1

	
salt.modules.cron.set_env(user, name, value=None)

	Set up an environment variable in the crontab.

CLI Example:

salt '*' cron.set_env root MAILTO user@example.com

	
salt.modules.cron.set_job(user, minute, hour, daymonth, month, dayweek, cmd)

	Sets a cron job up for a specified user.

CLI Example:

salt '*' cron.set_job root '*' '*' '*' '*' 1 /usr/local/weekly

	
salt.modules.cron.set_special(user, special, cmd)

	Set up a special command in the crontab.

CLI Example:

salt '*' cron.set_special @hourly 'echo foobar'

	
salt.modules.cron.write_cron_file(user, path)

	Writes the contents of a file to a user's crontab

CLI Example:

salt '*' cron.write_cron_file root /tmp/new_cron

	
salt.modules.cron.write_cron_file_verbose(user, path)

	Writes the contents of a file to a user's crontab and return error message on error

CLI Example:

salt '*' cron.write_cron_file_verbose root /tmp/new_cron

salt.modules.daemontools

daemontools service module. This module will create daemontools type
service watcher.
This module is states.service compatible so it can be used to maintain
service state via provider interface:

	provider: daemontools

	
salt.modules.daemontools.full_restart(name)

	Calls daemontools.restart() function

CLI Example:

salt '*' daemontools.full_restart <service name>

	
salt.modules.daemontools.get_all()

	Return a list of all available services

CLI Example:

salt '*' daemontools.get_all

	
salt.modules.daemontools.reload_(name)

	Wrapper for term()

CLI Example:

salt '*' daemontools.reload <service name>

	
salt.modules.daemontools.restart(name)

	Restart service via daemontools. This will stop/start service

CLI Example:

salt '*' daemontools.restart <service name>

	
salt.modules.daemontools.start(name)

	Starts service via daemontools

CLI Example:

salt '*' daemontools.start <service name>

	
salt.modules.daemontools.status(name, sig=None)

	Return the status for a service via daemontools, return pid if running

CLI Example:

salt '*' daemontools.status <service name>

	
salt.modules.daemontools.stop(name)

	Stops service via daemontools

CLI Example:

salt '*' daemontools.stop <service name>

	
salt.modules.daemontools.term(name)

	Send a TERM to service via daemontools

CLI Example:

salt '*' daemontools.term <service name>

salt.modules.darwin_sysctl

Module for viewing and modifying sysctl parameters

	
salt.modules.darwin_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

	
salt.modules.darwin_sysctl.get(name)

	Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get hw.physmem

	
salt.modules.darwin_sysctl.persist(name, value, config='/etc/sysctl.conf')

	Assign and persist a simple sysctl parameter for this minion

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50
salt '*' sysctl.persist coretemp_load NO config=/etc/sysctl.conf

	
salt.modules.darwin_sysctl.show()

	Return a list of sysctl parameters for this minion

CLI Example:

salt '*' sysctl.show

salt.modules.data

Manage a local persistent data structure that can hold any arbitrary data
specific to the minion

	
salt.modules.data.cas(key, value, old_value)

	Check and set a value in the minion datastore

CLI Example:

salt '*' data.cas <key> <value> <old_value>

	
salt.modules.data.clear()

	Clear out all of the data in the minion datastore, this function is
destructive!

CLI Example:

salt '*' data.clear

	
salt.modules.data.dump(new_data)

	Replace the entire datastore with a passed data structure

CLI Example:

salt '*' data.dump '{'eggs': 'spam'}'

	
salt.modules.data.getval(key)

	Get a value from the minion datastore

CLI Example:

salt '*' data.getval <key>

	
salt.modules.data.getvals(*keys)

	Get values from the minion datastore

CLI Example:

salt '*' data.getvals <key> [<key> ...]

	
salt.modules.data.load()

	Return all of the data in the minion datastore

CLI Example:

salt '*' data.load

	
salt.modules.data.update(key, value)

	Update a key with a value in the minion datastore

CLI Example:

salt '*' data.update <key> <value>

salt.modules.ddns

Support for RFC 2136 dynamic DNS updates.
Requires dnspython module.

	
salt.modules.ddns.add_host(zone, name, ttl, ip, nameserver='127.0.0.1', replace=True)

	Add, replace, or update the A and PTR (reverse) records for a host.

CLI Example:

salt ns1 ddns.add_host example.com host1 60 10.1.1.1

	
salt.modules.ddns.delete(zone, name, rdtype=None, data=None, nameserver='127.0.0.1')

	Delete a DNS record.

CLI Example:

salt ns1 ddns.delete example.com host1 A

	
salt.modules.ddns.delete_host(zone, name, nameserver='127.0.0.1')

	Delete the forward and reverse records for a host.

Returns true if any records are deleted.

CLI Example:

salt ns1 ddns.delete_host example.com host1

	
salt.modules.ddns.update(zone, name, ttl, rdtype, data, nameserver='127.0.0.1', replace=False)

	Add, replace, or update a DNS record.
nameserver must be an IP address and the minion running this module
must have update privileges on that server.
If replace is true, first deletes all records for this name and type.

CLI Example:

salt ns1 ddns.update example.com host1 60 A 10.0.0.1

salt.modules.debconfmod

Support for Debconf

	
salt.modules.debconfmod.get_selections(fetchempty=True)

	Answers to debconf questions for all packages in the following format:

{'package': [['question', 'type', 'value'], ...]}

CLI Example:

salt '*' debconf.get_selections

	
salt.modules.debconfmod.set_(package, question, type, value, *extra)

	Set answers to debconf questions for a package.

CLI Example:

salt '*' debconf.set <package> <question> <type> <value> [<value> ...]

	
salt.modules.debconfmod.set_file(path, **kwargs)

	Set answers to debconf questions from a file.

CLI Example:

salt '*' debconf.set_file salt://pathto/pkg.selections

	
salt.modules.debconfmod.show(name)

	Answers to debconf questions for a package in the following format:

[['question', 'type', 'value'], ...]

If debconf doesn't know about a package, we return None.

CLI Example:

salt '*' debconf.show <package name>

salt.modules.debian_service

Service support for Debian systems (uses update-rc.d and /sbin/service)

	
salt.modules.debian_service.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.debian_service.disabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.debian_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.debian_service.enabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.debian_service.force_reload(name)

	Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.debian_service.get_all()

	Return all available boot services

CLI Example:

salt '*' service.get_all

	
salt.modules.debian_service.get_disabled()

	Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

	
salt.modules.debian_service.get_enabled()

	Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

	
salt.modules.debian_service.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.debian_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.debian_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.debian_service.status(name, sig=None)

	Return the status for a service, pass a signature to use to find
the service via ps

CLI Example:

salt '*' service.status <service name>

	
salt.modules.debian_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.dig

Compendium of generic DNS utilities

	
salt.modules.dig.A(host, nameserver=None)

	Return the A record for host.

Always returns a list.

CLI Example:

salt ns1 dig.A www.google.com

	
salt.modules.dig.MX(domain, resolve=False, nameserver=None)

	Return a list of lists for the MX of domain.

If the resolve argument is True, resolve IPs for the servers.

It's limited to one IP, because although in practice it's very rarely a
round robin, it is an acceptable configuration and pulling just one IP lets
the data be similar to the non-resolved version. If you think an MX has
multiple IPs, don't use the resolver here, resolve them in a separate step.

CLI Example:

salt ns1 dig.MX google.com

	
salt.modules.dig.NS(domain, resolve=True, nameserver=None)

	Return a list of IPs of the nameservers for domain

If resolve is False, don't resolve names.

CLI Example:

salt ns1 dig.NS google.com

	
salt.modules.dig.SPF(domain, record='SPF', nameserver=None)

	Return the allowed IPv4 ranges in the SPF record for domain.

If record is SPF and the SPF record is empty, the TXT record will be
searched automatically. If you know the domain uses TXT and not SPF,
specifying that will save a lookup.

CLI Example:

salt ns1 dig.SPF google.com

	
salt.modules.dig.check_ip(x)

	Check that string x is a valid IP

CLI Example:

salt ns1 dig.check_ip 127.0.0.1

salt.modules.disk

Module for gathering disk information

	
salt.modules.disk.inodeusage(args=None)

	Return inode usage information for volumes mounted on this minion

CLI Example:

salt '*' disk.inodeusage

	
salt.modules.disk.usage(args=None)

	Return usage information for volumes mounted on this minion

CLI Example:

salt '*' disk.usage

salt.modules.djangomod

Manage Django sites

	
salt.modules.djangomod.collectstatic(settings_module, bin_env=None, no_post_process=False, ignore=None, dry_run=False, clear=False, link=False, no_default_ignore=False, pythonpath=None, env=None)

	Collect static files from each of your applications into a single location
that can easily be served in production.

CLI Example:

salt '*' django.collectstatic <settings_module>

	
salt.modules.djangomod.command(settings_module, command, bin_env=None, pythonpath=None, env=None, *args, **kwargs)

	Run arbitrary django management command

CLI Example:

salt '*' django.command <settings_module> <command>

	
salt.modules.djangomod.createsuperuser(settings_module, username, email, bin_env=None, database=None, pythonpath=None, env=None)

	Create a super user for the database.
This function defaults to use the --noinput flag which prevents the
creation of a password for the superuser.

CLI Example:

salt '*' django.createsuperuser <settings_module> user user@example.com

	
salt.modules.djangomod.loaddata(settings_module, fixtures, bin_env=None, database=None, pythonpath=None, env=None)

	Load fixture data

	Fixtures:

	comma separated list of fixtures to load

CLI Example:

salt '*' django.loaddata <settings_module> <comma delimited list of fixtures>

	
salt.modules.djangomod.syncdb(settings_module, bin_env=None, migrate=False, database=None, pythonpath=None, env=None, noinput=True)

	Run syncdb

Execute the Django-Admin syncdb command, if South is available on the
minion the migrate option can be passed as True calling the
migrations to run after the syncdb completes

CLI Example:

salt '*' django.syncdb <settings_module>

salt.modules.dnsmasq

Module for managing dnqmasq

	
salt.modules.dnsmasq.fullversion()

	Shows installed version of dnsmasq, and compile options

CLI Example:

salt '*' dnsmasq.version

	
salt.modules.dnsmasq.get_config(config_file='/etc/dnsmasq.conf')

	Dumps all options from the config file

CLI Examples:

salt '*' dnsmasq.get_config
salt '*' dnsmasq.get_config file=/etc/dnsmasq.conf

	
salt.modules.dnsmasq.set_config(config_file='/etc/dnsmasq.conf', follow=True, **kwargs)

	Sets a value or a set of values in the specified file. By default, if
conf-dir is configured in this file, salt will attempt to set the option
in any file inside the conf-dir where it has already been enabled. If it
does not find it inside any files, it will append it to the main config
file. Setting follow to False will turn off this behavior.

If a config option currently appears multiple times (such as dhcp-host,
which is specified at least once per host), the new option will be added
to the end of the main config file (and not to any includes). If you need
an option added to a specific include file, specify it as the config_file.

CLI Examples:

salt '*' dnsmasq.set_config domain=mydomain.com
salt '*' dnsmasq.set_config follow=False domain=mydomain.com
salt '*' dnsmasq.set_config file=/etc/dnsmasq.conf domain=mydomain.com

	
salt.modules.dnsmasq.version()

	Shows installed version of dnsmasq

CLI Example:

salt '*' dnsmasq.version

salt.modules.dnsutil

Compendium of generic DNS utilities

	
salt.modules.dnsutil.A(host, nameserver=None)

	Return the A record for 'host'.

Always returns a list.

CLI Example:

salt ns1 dig.A www.google.com

	
salt.modules.dnsutil.MX(domain, resolve=False, nameserver=None)

	Return a list of lists for the MX of domain.

If the 'resolve' argument is True, resolve IPs for the servers.

It's limited to one IP, because although in practice it's very rarely a
round robin, it is an acceptable configuration and pulling just one IP lets
the data be similar to the non-resolved version. If you think an MX has
multiple IPs, don't use the resolver here, resolve them in a separate step.

CLI Example:

salt ns1 dig.MX google.com

	
salt.modules.dnsutil.NS(domain, resolve=True, nameserver=None)

	Return a list of IPs of the nameservers for domain

If 'resolve' is False, don't resolve names.

CLI Example:

salt ns1 dig.NS google.com

	
salt.modules.dnsutil.SPF(domain, record='SPF', nameserver=None)

	Return the allowed IPv4 ranges in the SPF record for domain.

If record is SPF and the SPF record is empty, the TXT record will be
searched automatically. If you know the domain uses TXT and not SPF,
specifying that will save a lookup.

CLI Example:

salt ns1 dig.SPF google.com

	
salt.modules.dnsutil.check_ip(ip_addr)

	Check that string ip_addr is a valid IP

CLI Example:

salt ns1 dig.check_ip 127.0.0.1

	
salt.modules.dnsutil.hosts_append(hostsfile='/etc/hosts', ip_addr=None, entries=None)

	Append a single line to the /etc/hosts file.

CLI Example:

salt '*' dnsutil.hosts_append /etc/hosts 127.0.0.1 ad1.yuk.co,ad2.yuk.co

	
salt.modules.dnsutil.hosts_remove(hostsfile='/etc/hosts', entries=None)

	Remove a host from the /etc/hosts file. If doing so will leave a line
containing only an IP address, then the line will be deleted. This function
will leave comments and blank lines intact.

CLI Examples:

salt '*' dnsutil.hosts_remove /etc/hosts ad1.yuk.co
salt '*' dnsutil.hosts_remove /etc/hosts ad2.yuk.co,ad1.yuk.co

	
salt.modules.dnsutil.parse_hosts(hostsfile='/etc/hosts', hosts=None)

	Parse /etc/hosts file.

CLI Example:

salt '*' dnsutil.parse_hosts

	
salt.modules.dnsutil.parse_zone(zonefile=None, zone=None)

	Parses a zone file. Can be passed raw zone data on the API level.

CLI Example:

salt ns1 dnsutil.parse_zone /var/lib/named/example.com.zone

salt.modules.dpkg

Support for DEB packages

	
salt.modules.dpkg.file_dict(*packages)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
package database (not generally recommended).

CLI Examples:

salt '*' lowpkg.file_list httpd
salt '*' lowpkg.file_list httpd postfix
salt '*' lowpkg.file_list

	
salt.modules.dpkg.file_list(*packages)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' lowpkg.file_list httpd
salt '*' lowpkg.file_list httpd postfix
salt '*' lowpkg.file_list

	
salt.modules.dpkg.list_pkgs(*packages)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

External dependencies:

Virtual package resolution requires aptitude. Because this function
uses dpkg, virtual packages will be reported as not installed.

CLI Example:

salt '*' lowpkg.list_pkgs
salt '*' lowpkg.list_pkgs httpd

salt.modules.ebuild

Support for Portage

	optdepends:	
	portage Python adapter

For now all package names MUST include the package category,
i.e. 'vim' will not work, 'app-editors/vim' will.

	
salt.modules.ebuild.check_db(*names, **kwargs)

	
New in version 0.17.0.

Returns a dict containing the following information for each specified
package:

	A key found, which will be a boolean value denoting if a match was
found in the package database.

	If found is False, then a second key called suggestions will
be present, which will contain a list of possible matches. This list
will be empty if the package name was specified in category/pkgname
format, since the suggestions are only intended to disambiguate
ambiguous package names (ones submitted without a category).

CLI Examples:

salt '*' pkg.check_db <package1> <package2> <package3>

	
salt.modules.ebuild.check_extra_requirements(pkgname, pkgver)

	Check if the installed package already has the given requirements.

CLI Example:

salt '*' pkg.check_extra_requirements 'sys-devel/gcc' '~>4.1.2:4.1::gentoo[nls,fortran]'

	
salt.modules.ebuild.depclean(name=None, slot=None, fromrepo=None, pkgs=None)

	Portage has a function to remove unused dependencies. If a package
is provided, it will only removed the package if no other package
depends on it.

	name

	The name of the package to be cleaned.

	slot

	Restrict the remove to a specific slot. Ignored if name is None.

	fromrepo

	Restrict the remove to a specific slot. Ignored if name is None.

	pkgs

	Clean multiple packages. slot and fromrepo arguments are
ignored if this argument is present. Must be passed as a python list.

Return a list containing the removed packages:

CLI Example:

salt '*' pkg.depclean <package name>

	
salt.modules.ebuild.ex_mod_init(low)

	Enforce a nice tree structure for /etc/portage/package.* configuration files.

CLI Example:

salt '*' pkg.ex_mod_init

	
salt.modules.ebuild.install(name=None, refresh=False, pkgs=None, sources=None, slot=None, fromrepo=None, uses=None, **kwargs)

	Install the passed package(s), add refresh=True to sync the portage tree
before package is installed.

	name

	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to emerge a package from the
portage tree. To install a tbz2 package manually, use the "sources"
option described below.

CLI Example:

salt '*' pkg.install <package name>

	refresh

	Whether or not to sync the portage tree before installing.

	version

	Install a specific version of the package, e.g. 1.0.9-r1. Ignored
if "pkgs" or "sources" is passed.

	slot

	Similar to version, but specifies a valid slot to be installed. It
will install the latest available version in the specified slot.
Ignored if "pkgs" or "sources" or "version" is passed.

CLI Example:

salt '*' pkg.install sys-devel/gcc slot='4.4'

	fromrepo

	Similar to slot, but specifies the repository from the package will be
installed. It will install the latest available version in the
specified repository.
Ignored if "pkgs" or "sources" or "version" is passed.

CLI Example:

salt '*' pkg.install salt fromrepo='gentoo'

	uses

	Similar to slot, but specifies a list of use flag.
Ignored if "pkgs" or "sources" or "version" is passed.

CLI Example:

salt '*' pkg.install sys-devel/gcc uses='["nptl","-nossp"]'

Multiple Package Installation Options:

	pkgs

	A list of packages to install from the portage tree. Must be passed as
a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar","~category/package:slot::repository[use]"]'

	sources

	A list of tbz2 packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.tbz2"},{"bar": "salt://bar.tbz2"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.ebuild.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.ebuild.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.ebuild.list_upgrades(refresh=True)

	List all available package upgrades.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.ebuild.porttree_matches(name)

	Returns a list containing the matches for a given package name from the
portage tree. Note that the specific version of the package will not be
provided for packages that have several versions in the portage tree, but
rather the name of the package (i.e. "dev-python/paramiko").

	
salt.modules.ebuild.purge(name=None, slot=None, fromrepo=None, pkgs=None, **kwargs)

	Portage does not have a purge, this function calls remove followed
by depclean to emulate a purge process

	name

	The name of the package to be deleted.

	slot

	Restrict the remove to a specific slot. Ignored if name is None.

	fromrepo

	Restrict the remove to a specific slot. Ignored if name is None.

Multiple Package Options:

	pkgs

	Uninstall multiple packages. slot and fromrepo arguments are
ignored if this argument is present. Must be passed as a python list.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package name> slot=4.4
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.ebuild.refresh_db()

	Updates the portage tree (emerge --sync). Uses eix-sync if available.

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.ebuild.remove(name=None, slot=None, fromrepo=None, pkgs=None, **kwargs)

	Remove packages via emerge --unmerge.

	name

	The name of the package to be deleted.

	slot

	Restrict the remove to a specific slot. Ignored if name is None.

	fromrepo

	Restrict the remove to a specific slot. Ignored if name is None.

Multiple Package Options:

	pkgs

	Uninstall multiple packages. slot and fromrepo arguments are
ignored if this argument is present. Must be passed as a python list.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package name> slot=4.4 fromrepo=gentoo
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.ebuild.update(pkg, slot=None, fromrepo=None, refresh=False)

	Updates the passed package (emerge --update package)

	slot

	Restrict the update to a particular slot. It will update to the
latest version within the slot.

	fromrepo

	Restrict the update to a particular repository. It will update to the
latest version within the repository.

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.update <package name>

	
salt.modules.ebuild.upgrade(refresh=True)

	Run a full system upgrade (emerge --update world)

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.ebuild.upgrade_available(name)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.ebuild.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.ebuild.version_clean(version)

	Clean the version string removing extra data.

CLI Example:

salt '*' pkg.version_clean <version_string>

	
salt.modules.ebuild.version_cmp(pkg1, pkg2)

	Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if
pkg1 == pkg2, and 1 if pkg1 > pkg2. Return None if there was a problem
making the comparison.

CLI Example:

salt '*' pkg.version_cmp '0.2.4-0' '0.2.4.1-0'

salt.modules.eix

Support for Eix

	
salt.modules.eix.sync()

	Sync portage/overlay trees and update the eix database

CLI Example:

salt '*' eix.sync

	
salt.modules.eix.update()

	Update the eix database

CLI Example:

salt '*' eix.update

salt.modules.eselect

Support for eselect, Gentoo's configuration and management tool.

	
salt.modules.eselect.exec_action(module, action, parameter='', state_only=False)

	Execute an arbitrary action on a module.

CLI Example:

salt '*' eselect.exec_action <module name> <action> [parameter]

	
salt.modules.eselect.get_current_target(module)

	Get the currently selected target for the given module.

CLI Example:

salt '*' eselect.get_current_target <module name>

	
salt.modules.eselect.get_modules()

	Get available modules list.

CLI Example:

salt '*' eselect.get_modules

	
salt.modules.eselect.get_target_list(module)

	Get available target for the given module.

CLI Example:

salt '*' eselect.get_target_list <module name>

	
salt.modules.eselect.set_target(module, target)

	Set the target for the given module.
Target can be specified by index or name.

CLI Example:

salt '*' eselect.set_target <module name> <target>

salt.modules.event

Use the Salt Event System to fire events from the
master to the minion and vice-versa.

	
salt.modules.event.fire(data, tag)

	Fire an event on the local minion event bus

CLI Example:

salt '*' event.fire 'stuff to be in the event' 'tag'

	
salt.modules.event.fire_master(data, tag)

	Fire an event off up to the master server

CLI Example:

salt '*' event.fire_master 'stuff to be in the event' 'tag'

salt.modules.extfs

Module for managing ext2/3/4 file systems

	
salt.modules.extfs.attributes(device, args=None)

	Return attributes from dumpe2fs for a specified device

CLI Example:

salt '*' extfs.attributes /dev/sda1

	
salt.modules.extfs.blocks(device, args=None)

	Return block and inode info from dumpe2fs for a specified device

CLI Example:

salt '*' extfs.blocks /dev/sda1

	
salt.modules.extfs.dump(device, args=None)

	Return all contents of dumpe2fs for a specified device

CLI Example:

salt '*' extfs.dump /dev/sda1

	
salt.modules.extfs.mkfs(device, fs_type, **kwargs)

	Create a file system on the specified device

CLI Example:

salt '*' extfs.mkfs /dev/sda1 fs_type=ext4 opts='acl,noexec'

Valid options are:

block_size: 1024, 2048 or 4096
check: check for bad blocks
direct: use direct IO
ext_opts: extended file system options (comma-separated)
fragment_size: size of fragments
force: setting force to True will cause mke2fs to specify the -F option
 twice (it is already set once); this is truly dangerous
blocks_per_group: number of blocks in a block group
number_of_groups: ext4 option for a virtual block group
bytes_per_inode: set the bytes/inode ratio
inode_size: size of the inode
journal: set to True to create a journal (default on ext3/4)
journal_opts: options for the fs journal (comma separated)
blocks_file: read bad blocks from file
label: label to apply to the file system
reserved: percentage of blocks reserved for super-user
last_dir: last mounted directory
test: set to True to not actually create the file system (mke2fs -n)
number_of_inodes: override default number of inodes
creator_os: override "creator operating system" field
opts: mount options (comma separated)
revision: set the filesystem revision (default 1)
super: write superblock and group descriptors only
fs_type: set the filesystem type (REQUIRED)
usage_type: how the filesystem is going to be used
uuid: set the UUID for the file system

See the mke2fs(8) manpage for a more complete description of these
options.

	
salt.modules.extfs.tune(device, **kwargs)

	Set attributes for the specified device (using tune2fs)

CLI Example:

salt '*' extfs.tune /dev/sda1 force=True label=wildstallyns opts='acl,noexec'

Valid options are:

max: max mount count
count: mount count
error: error behavior
extended_opts: extended options (comma separated)
force: force, even if there are errors (set to True)
group: group name or gid that can use the reserved blocks
interval: interval between checks
journal: set to True to create a journal (default on ext3/4)
journal_opts: options for the fs journal (comma separated)
label: label to apply to the file system
reserved: percentage of blocks reserved for super-user
last_dir: last mounted directory
opts: mount options (comma separated)
feature: set or clear a feature (comma separated)
mmp_check: mmp check interval
reserved: reserved blocks count
quota_opts: quota options (comma separated)
time: time last checked
user: user or uid who can use the reserved blocks
uuid: set the UUID for the file system

See the mke2fs(8) manpage for a more complete description of these
options.

salt.modules.file

Manage information about regular files, directories,
and special files on the minion, set/read user,
group, mode, and data

	
salt.modules.file.append(path, *args)

	
New in version 0.9.5.

Append text to the end of a file

CLI Example:

salt '*' file.append /etc/motd \
 "With all thine offerings thou shalt offer salt." \
 "Salt is what makes things taste bad when it isn't in them."

	
salt.modules.file.check_file_meta(name, sfn, source, source_sum, user, group, mode, env, template=None, contents=None)

	Check for the changes in the file metadata.

CLI Example:

salt '*' file.check_file_meta /etc/httpd/conf.d/httpd.conf salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root, root, '755' base

	
salt.modules.file.check_hash(path, hash)

	Check if a file matches the given hash string

Returns true if the hash matched, otherwise false. Raises ValueError if
the hash was not formatted correctly.

	path

	A file path

	hash

	A string in the form <hash_type>=<hash_value>. For example:
md5=e138491e9d5b97023cea823fe17bac22

CLI Example:

salt '*' file.check_hash /etc/fstab md5=<md5sum>

	
salt.modules.file.check_managed(name, source, source_hash, user, group, mode, template, makedirs, context, defaults, env, contents=None, **kwargs)

	Check to see what changes need to be made for a file

CLI Example:

salt '*' file.check_managed /etc/httpd/conf.d/httpd.conf salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root, root, '755' jinja True None None base

	
salt.modules.file.check_perms(name, ret, user, group, mode)

	Check the permissions on files and chown if needed

CLI Example:

salt '*' file.check_perms /etc/sudoers '{}' root root 400

	
salt.modules.file.chgrp(path, group)

	Change the group of a file

CLI Example:

salt '*' file.chgrp /etc/passwd root

	
salt.modules.file.chown(path, user, group)

	Chown a file, pass the file the desired user and group

CLI Example:

salt '*' file.chown /etc/passwd root root

	
salt.modules.file.comment(path, regex, char='#', backup='.bak')

	
Deprecated since version 0.17.1: Use replace() instead.

Comment out specified lines in a file

	path

	The full path to the file to be edited

	regex

	A regular expression used to find the lines that are to be commented;
this pattern will be wrapped in parenthesis and will move any
preceding/trailing ^ or $ characters outside the parenthesis
(e.g., the pattern ^foo$ will be rewritten as ^(foo)$)

	char : #

	The character to be inserted at the beginning of a line in order to
comment it out

	backup : .bak

	The file will be backed up before edit with this file extension

Warning

This backup will be overwritten each time sed / comment /
uncomment is called. Meaning the backup will only be useful
after the first invocation.

CLI Example:

salt '*' file.comment /etc/modules pcspkr

	
salt.modules.file.contains(path, text)

	
Deprecated since version 0.17.1: Use search() instead.

Return True if the file at path contains text

CLI Example:

salt '*' file.contains /etc/crontab 'mymaintenance.sh'

	
salt.modules.file.contains_glob(path, glob)

	
Deprecated since version 0.17.1: Use search() instead.

Return True if the given glob matches a string in the named file

CLI Example:

salt '*' file.contains_glob /etc/foobar '*cheese*'

	
salt.modules.file.contains_regex(path, regex, lchar='')

	
Deprecated since version 0.17.1: Use search() instead.

Return True if the given regular expression matches on any line in the text
of a given file.

If the lchar argument (leading char) is specified, it
will strip lchar from the left side of each line before trying to match

CLI Example:

salt '*' file.contains_regex /etc/crontab

	
salt.modules.file.contains_regex_multiline(path, regex)

	
Deprecated since version 0.17.1: Use search() instead.

Return True if the given regular expression matches anything in the text
of a given file

Traverses multiple lines at a time, via the salt BufferedReader (reads in
chunks)

CLI Example:

salt '*' file.contains_regex_multiline /etc/crontab '^maint'

	
salt.modules.file.copy(src, dst)

	Copy a file or directory

CLI Example:

salt '*' file.copy /path/to/src /path/to/dst

	
salt.modules.file.delete_backup(path, backup_id)

	
Note

This function will be available in version 0.17.0.

Restore a previous version of a file that was backed up using Salt's
file state backup system.

	path

	The path on the minion to check for backups

	backup_id

	The numeric id for the backup you wish to delete, as found using
file.list_backups

CLI Example:

salt '*' file.restore_backup /foo/bar/baz.txt 0

	
salt.modules.file.directory_exists(path)

	Tests to see if path is a valid directory. Returns True/False.

CLI Example:

salt '*' file.directory_exists /etc

	
salt.modules.file.file_exists(path)

	Tests to see if path is a valid file. Returns True/False.

CLI Example:

salt '*' file.file_exists /etc/passwd

	
salt.modules.file.find(path, **kwargs)

	Approximate the Unix find(1) command and return a list of paths that
meet the specified criteria.

The options include match criteria:

name = path-glob # case sensitive
iname = path-glob # case insensitive
regex = path-regex # case sensitive
iregex = path-regex # case insensitive
type = file-types # match any listed type
user = users # match any listed user
group = groups # match any listed group
size = [+-]number[size-unit] # default unit = byte
mtime = interval # modified since date
grep = regex # search file contents

and/or actions:

delete [= file-types] # default type = 'f'
exec = command [arg ...] # where {} is replaced by pathname
print [= print-opts]

The default action is 'print=path'.

file-glob:

* = match zero or more chars
? = match any char
[abc] = match a, b, or c
[!abc] or [^abc] = match anything except a, b, and c
[x-y] = match chars x through y
[!x-y] or [^x-y] = match anything except chars x through y
{a,b,c} = match a or b or c

path-regex: a Python re (regular expression) pattern to match pathnames

file-types: a string of one or more of the following:

a: all file types
b: block device
c: character device
d: directory
p: FIFO (named pipe)
f: plain file
l: symlink
s: socket

users: a space and/or comma separated list of user names and/or uids

groups: a space and/or comma separated list of group names and/or gids

size-unit:

b: bytes
k: kilobytes
m: megabytes
g: gigabytes
t: terabytes

interval:

[<num>w] [<num>[d]] [<num>h] [<num>m] [<num>s]

where:
 w: week
 d: day
 h: hour
 m: minute
 s: second

print-opts: a comma and/or space separated list of one or more of the
following:

group: group name
md5: MD5 digest of file contents
mode: file permissions (as integer)
mtime: last modification time (as time_t)
name: file basename
path: file absolute path
size: file size in bytes
type: file type
user: user name

CLI Examples:

salt '*' file.find / type=f name=*.bak size=+10m
salt '*' file.find /var mtime=+30d size=+10m print=path,size,mtime
salt '*' file.find /var/log name=*.[0-9] mtime=+30d size=+10m delete

	
salt.modules.file.get_devmm(name)

	Get major/minor info from a device

CLI Example:

salt '*' file.get_devmm /dev/chr

	
salt.modules.file.get_diff(minionfile, masterfile, env='base')

	Return unified diff of file compared to file on master

CLI Example:

salt '*' file.get_diff /home/fred/.vimrc salt://users/fred/.vimrc

	
salt.modules.file.get_gid(path, follow_symlinks=True)

	Return the id of the group that owns a given file

CLI Example:

salt '*' file.get_gid /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

	
salt.modules.file.get_group(path, follow_symlinks=True)

	Return the group that owns a given file

CLI Example:

salt '*' file.get_group /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

	
salt.modules.file.get_hash(path, form='md5', chunk_size=4096)

	Get the hash sum of a file

	This is better than get_sum for the following reasons:

	
	It does not read the entire file into memory.

	
	It does not return a string on error. The returned value of

	get_sum cannot really be trusted since it is vulnerable to
collisions: get_sum(..., 'xyz') == 'Hash xyz not supported'

CLI Example:

salt '*' file.get_hash /etc/shadow

	
salt.modules.file.get_managed(name, template, source, source_hash, user, group, mode, env, context, defaults, **kwargs)

	Return the managed file data for file.managed

CLI Example:

salt '*' file.get_managed /etc/httpd/conf.d/httpd.conf jinja salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root root '755' base None None

	
salt.modules.file.get_mode(path)

	Return the mode of a file

CLI Example:

salt '*' file.get_mode /etc/passwd

	
salt.modules.file.get_selinux_context(path)

	Get an SELinux context from a given path

CLI Example:

salt '*' file.get_selinux_context /etc/hosts

	
salt.modules.file.get_sum(path, form='md5')

	Return the sum for the given file, default is md5, sha1, sha224, sha256,
sha384, sha512 are supported

CLI Example:

salt '*' file.get_sum /etc/passwd sha512

	
salt.modules.file.get_uid(path, follow_symlinks=True)

	Return the id of the user that owns a given file

CLI Example:

salt '*' file.get_uid /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

	
salt.modules.file.get_user(path, follow_symlinks=True)

	Return the user that owns a given file

CLI Example:

salt '*' file.get_user /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

	
salt.modules.file.gid_to_group(gid)

	Convert the group id to the group name on this system

CLI Example:

salt '*' file.gid_to_group 0

	
salt.modules.file.group_to_gid(group)

	Convert the group to the gid on this system

CLI Example:

salt '*' file.group_to_gid root

	
salt.modules.file.is_blkdev(name)

	Check if a file exists and is a block device.

CLI Example:

salt '*' file.is_blkdev /dev/blk

	
salt.modules.file.is_chrdev(name)

	Check if a file exists and is a character device.

CLI Example:

salt '*' file.is_chrdev /dev/chr

	
salt.modules.file.is_fifo(name)

	Check if a file exists and is a FIFO.

CLI Example:

salt '*' file.is_fifo /dev/fifo

	
salt.modules.file.list_backups(path, limit=None)

	
Note

This function will be available in version 0.17.0.

Lists the previous versions of a file backed up using Salt's file
state backup system.

	path

	The path on the minion to check for backups

	limit

	Limit the number of results to the most recent N backups

CLI Example:

salt '*' file.list_backups /foo/bar/baz.txt

	
salt.modules.file.makedirs(path, user=None, group=None, mode=None)

	Ensure that the directory containing this path is available.

CLI Example:

salt '*' file.makedirs /opt/code

	
salt.modules.file.makedirs_perms(name, user=None, group=None, mode='0755')

	Taken and modified from os.makedirs to set user, group and mode for each
directory created.

CLI Example:

salt '*' file.makedirs_perms /opt/code

	
salt.modules.file.manage_file(name, sfn, ret, source, source_sum, user, group, mode, env, backup, template=None, show_diff=True, contents=None)

	Checks the destination against what was retrieved with get_managed and
makes the appropriate modifications (if necessary).

CLI Example:

salt '*' file.manage_file /etc/httpd/conf.d/httpd.conf '{}' salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root root '755' base ''

	
salt.modules.file.mkdir(dir_path, user=None, group=None, mode=None)

	Ensure that a directory is available.

CLI Example:

salt '*' file.mkdir /opt/jetty/context

	
salt.modules.file.mknod(name, ntype, major=0, minor=0, user=None, group=None, mode='0600')

	
Create a block device, character device, or fifo pipe.
Identical to the gnu mknod.

CLI Examples:

salt '*' file.mknod /dev/chr c 180 31
salt '*' file.mknod /dev/blk b 8 999
salt '*' file.nknod /dev/fifo p

	
salt.modules.file.mknod_blkdev(name, major, minor, user=None, group=None, mode='0660')

	Create a block device.

CLI Example:

salt '*' file.mknod_blkdev /dev/blk 8 999

	
salt.modules.file.mknod_chrdev(name, major, minor, user=None, group=None, mode='0660')

	Create a character device.

CLI Example:

salt '*' file.mknod_chrdev /dev/chr 180 31

	
salt.modules.file.mknod_fifo(name, user=None, group=None, mode='0660')

	Create a FIFO pipe.

CLI Example:

salt '*' file.mknod_fifo /dev/fifo

	
salt.modules.file.patch(originalfile, patchfile, options='', dry_run=False)

	
New in version 0.10.4.

Apply a patch to a file

Equivalent to:

patch <options> <originalfile> <patchfile>

	originalfile

	The full path to the file or directory to be patched

	patchfile

	A patch file to apply to originalfile

	options

	Options to pass to patch.

CLI Example:

salt '*' file.patch /opt/file.txt /tmp/file.txt.patch

	
salt.modules.file.psed(path, before, after, limit='', backup='.bak', flags='gMS', escape_all=False, multi=False)

	
Deprecated since version 0.17.1: Use replace() instead.

Make a simple edit to a file (pure Python version)

Equivalent to:

sed <backup> <options> "/<limit>/ s/<before>/<after>/<flags> <file>"

	path

	The full path to the file to be edited

	before

	A pattern to find in order to replace with after

	after

	Text that will replace before

	limit : ''

	An initial pattern to search for before searching for before

	backup : .bak

	The file will be backed up before edit with this file extension;
WARNING: each time sed/comment/uncomment is called will
overwrite this backup

	flags : gMS

	
	Flags to modify the search. Valid values are:

	
	g: Replace all occurrences of the pattern, not just the first.

	I: Ignore case.

	L: Make \w, \W, \b, \B, \s and \S
dependent on the locale.

	M: Treat multiple lines as a single line.

	S: Make . match all characters, including newlines.

	U: Make \w, \W, \b, \B, \d, \D,
\s and \S dependent on Unicode.

	X: Verbose (whitespace is ignored).

	multi: False

	If True, treat the entire file as a single line

Forward slashes and single quotes will be escaped automatically in the
before and after patterns.

CLI Example:

salt '*' file.sed /etc/httpd/httpd.conf 'LogLevel warn' 'LogLevel info'

	
salt.modules.file.remove(path)

	Remove the named file

CLI Example:

salt '*' file.remove /tmp/foo

	
salt.modules.file.rename(src, dst)

	Rename a file or directory

CLI Example:

salt '*' file.rename /path/to/src /path/to/dst

	
salt.modules.file.replace(path, pattern, repl, count=0, flags=0, bufsize=1, backup='.bak', dry_run=False, search_only=False, show_changes=True)

	Replace occurances of a pattern in a file

New in version 0.17.1.

This is a pure Python implementation that wraps Python's sub() [https://docs.python.org/3/library/re.html#re.sub].

	Parameters:	
	path -- Filesystem path to the file to be edited

	pattern -- The PCRE search

	repl -- The replacement text

	count -- Maximum number of pattern occurrences to be replaced

	flags (list or int [https://docs.python.org/3/library/functions.html#int]) -- A list of flags defined in Module Contents [https://docs.python.org/3/library/re.html#contents-of-module-re]. Each
list item should be a string that will correlate to the human-friendly
flag name. E.g., ['IGNORECASE', 'MULTILINE']. Note: multiline
searches must specify file as the bufsize argument below.

	bufsize (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) -- How much of the file to buffer into memory at once. The
default value 1 processes one line at a time. The special value
file may be specified which will read the entire file into memory
before processing. Note: multiline searches must specify file
buffering.

	backup -- The file extension to use for a backup of the file before
editing. Set to False to skip making a backup.

	dry_run -- Don't make any edits to the file

	search_only -- Just search for the pattern; ignore the replacement;
stop on the first match

	show_changes -- Output a unified diff of the old file and the new
file. If False return a boolean if any changes were made.
Note: using this option will store two copies of the file in-memory
(the original version and the edited version) in order to generate the
diff.

	Return type:	bool [https://docs.python.org/3/library/functions.html#bool] or str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.replace /etc/httpd/httpd.conf 'LogLevel warn' 'LogLevel info'
salt '*' file.replace /some/file 'before' 'after' flags='[MULTILINE, IGNORECASE]'

	
salt.modules.file.restore_backup(path, backup_id)

	
Note

This function will be available in version 0.17.0.

Restore a previous version of a file that was backed up using Salt's
file state backup system.

	path

	The path on the minion to check for backups

	backup_id

	The numeric id for the backup you wish to restore, as found using
file.list_backups

CLI Example:

salt '*' file.restore_backup /foo/bar/baz.txt 0

	
salt.modules.file.restorecon(path, recursive=False)

	Reset the SELinux context on a given path

CLI Example:

salt '*' file.restorecon /home/user/.ssh/authorized_keys

	
salt.modules.file.search(path, pattern, flags=0, bufsize=1)

	Search for occurances of a pattern in a file

New in version 0.17.

Params are identical to replace().

CLI Example:

salt '*' file.search /etc/crontab 'mymaintenance.sh'

	
salt.modules.file.sed(path, before, after, limit='', backup='.bak', options='-r -e', flags='g', escape_all=False, negate_match=False)

	
Deprecated since version 0.17.1: Use replace() instead.

Make a simple edit to a file

Equivalent to:

sed <backup> <options> "/<limit>/ s/<before>/<after>/<flags> <file>"

	path

	The full path to the file to be edited

	before

	A pattern to find in order to replace with after

	after

	Text that will replace before

	limit : ''

	An initial pattern to search for before searching for before

	backup : .bak

	The file will be backed up before edit with this file extension;
WARNING: each time sed/comment/uncomment is called will
overwrite this backup

	options : -r -e

	Options to pass to sed

	flags : g

	Flags to modify the sed search; e.g., i for case-insensitve pattern
matching

	negate_match : False

	Negate the search command (!)

New in version 0.17.

Forward slashes and single quotes will be escaped automatically in the
before and after patterns.

CLI Example:

salt '*' file.sed /etc/httpd/httpd.conf 'LogLevel warn' 'LogLevel info'

	
salt.modules.file.sed_contains(path, text, limit='', flags='g')

	
Deprecated since version 0.17.1: Use search() instead.

Return True if the file at path contains text. Utilizes sed to
perform the search (line-wise search).

Note: the p flag will be added to any flags you pass in.

CLI Example:

salt '*' file.contains /etc/crontab 'mymaintenance.sh'

	
salt.modules.file.set_mode(path, mode)

	Set the mode of a file

CLI Example:

salt '*' file.set_mode /etc/passwd 0644

	
salt.modules.file.set_selinux_context(path, user=None, role=None, type=None, range=None)

	Set a specific SELinux label on a given path

CLI Example:

salt '*' file.set_selinux_context path <role> <type> <range>

	
salt.modules.file.source_list(source, source_hash, env)

	Check the source list and return the source to use

CLI Example:

salt '*' file.source_list salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' base

	
salt.modules.file.stats(path, hash_type='md5', follow_symlink=False)

	Return a dict containing the stats for a given file

CLI Example:

salt '*' file.stats /etc/passwd

	
salt.modules.file.symlink(src, link)

	Create a symbolic link to a file

CLI Example:

salt '*' file.symlink /path/to/file /path/to/link

	
salt.modules.file.touch(name, atime=None, mtime=None)

	
New in version 0.9.5.

Just like the touch command, create a file if it doesn't exist or
simply update the atime and mtime if it already does.

	atime:

	Access time in Unix epoch time

	mtime:

	Last modification in Unix epoch time

CLI Example:

salt '*' file.touch /var/log/emptyfile

	
salt.modules.file.uid_to_user(uid)

	Convert a uid to a user name

CLI Example:

salt '*' file.uid_to_user 0

	
salt.modules.file.uncomment(path, regex, char='#', backup='.bak')

	
Deprecated since version 0.17.1: Use replace() instead.

Uncomment specified commented lines in a file

	path

	The full path to the file to be edited

	regex

	A regular expression used to find the lines that are to be uncommented.
This regex should not include the comment character. A leading ^
character will be stripped for convenience (for easily switching
between comment() and uncomment()).

	char : #

	The character to remove in order to uncomment a line

	backup : .bak

	The file will be backed up before edit with this file extension;
WARNING: each time sed/comment/uncomment is called will
overwrite this backup

CLI Example:

salt '*' file.uncomment /etc/hosts.deny 'ALL: PARANOID'

	
salt.modules.file.user_to_uid(user)

	Convert user name to a uid

CLI Example:

salt '*' file.user_to_uid root

salt.modules.freebsd_sysctl

Module for viewing and modifying sysctl parameters

	
salt.modules.freebsd_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

	
salt.modules.freebsd_sysctl.get(name)

	Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get hw.physmem

	
salt.modules.freebsd_sysctl.persist(name, value, config='/etc/sysctl.conf')

	Assign and persist a simple sysctl parameter for this minion

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50
salt '*' sysctl.persist coretemp_load NO config=/boot/loader.conf

	
salt.modules.freebsd_sysctl.show()

	Return a list of sysctl parameters for this minion

CLI Example:

salt '*' sysctl.show

salt.modules.freebsdjail

The jail module for FreeBSD

	
salt.modules.freebsdjail.fstab(jail)

	Display contents of a fstab(5) file defined in specified
jail's configuration. If no file is defined, return False.

CLI Example:

salt '*' jail.fstab <jail name>

	
salt.modules.freebsdjail.get_enabled()

	Return which jails are set to be run

CLI Example:

salt '*' jail.get_enabled

	
salt.modules.freebsdjail.is_enabled()

	See if jail service is actually enabled on boot

CLI Example:

salt '*' jail.is_enabled <jail name>

	
salt.modules.freebsdjail.restart(jail='')

	Restart the specified jail or all, if none specified

CLI Example:

salt '*' jail.restart [<jail name>]

	
salt.modules.freebsdjail.show_config(jail)

	Display specified jail's configuration

CLI Example:

salt '*' jail.show_config <jail name>

	
salt.modules.freebsdjail.start(jail='')

	Start the specified jail or all, if none specified

CLI Example:

salt '*' jail.start [<jail name>]

	
salt.modules.freebsdjail.status(jail)

	See if specified jail is currently running

CLI Example:

salt '*' jail.status <jail name>

	
salt.modules.freebsdjail.stop(jail='')

	Stop the specified jail or all, if none specified

CLI Example:

salt '*' jail.stop [<jail name>]

	
salt.modules.freebsdjail.sysctl()

	Dump all jail related kernel states (sysctl)

CLI Example:

salt '*' jail.sysctl

salt.modules.freebsdkmod

Module to manage FreeBSD kernel modules

	
salt.modules.freebsdkmod.available()

	Return a list of all available kernel modules

CLI Example:

salt '*' kmod.available

	
salt.modules.freebsdkmod.check_available(mod)

	Check to see if the specified kernel module is available

CLI Example:

salt '*' kmod.check_available kvm

	
salt.modules.freebsdkmod.load(mod)

	Load the specified kernel module

CLI Example:

salt '*' kmod.load kvm

	
salt.modules.freebsdkmod.lsmod()

	Return a dict containing information about currently loaded modules

CLI Example:

salt '*' kmod.lsmod

	
salt.modules.freebsdkmod.remove(mod)

	Remove the specified kernel module

CLI Example:

salt '*' kmod.remove kvm

salt.modules.freebsdpkg

Package support for FreeBSD

	
salt.modules.freebsdpkg.file_dict(*packages)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the
system's package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.freebsdpkg.file_list(*packages)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.freebsdpkg.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, **kwargs)

	Install the passed package

	name

	The name of the package to be installed.

	refresh

	Whether or not to refresh the package database before installing.

	fromrepo

	Specify a package repository to install from.

Multiple Package Installation Options:

	pkgs

	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'

	sources

	A list of packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install <package name>

	
salt.modules.freebsdpkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.freebsdpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.freebsdpkg.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.freebsdpkg.refresh_db()

	Use pkg update to get latest repo.txz when using pkgng. Updating
with portsnap is not yet supported.

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.freebsdpkg.rehash()

	Recomputes internal hash table for the PATH variable.
Use whenever a new command is created during the current
session.

CLI Example:

salt '*' pkg.rehash

	
salt.modules.freebsdpkg.remove(name=None, pkgs=None, **kwargs)

	Remove packages.

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.freebsdpkg.search(pkg_name)

	Use pkg search if pkg is being used.

CLI Example:

salt '*' pkg.search 'mysql-server'

	
salt.modules.freebsdpkg.upgrade()

	Run pkg upgrade, if pkgng used. Otherwise do nothing

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.freebsdpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.freebsdservice

The service module for FreeBSD

	
salt.modules.freebsdservice.available(name)

	Check that the given service is available.

CLI Example:

salt '*' service.available sshd

	
salt.modules.freebsdservice.disable(name, **kwargs)

	Disable the named service to start at boot

Arguments the same as for enable()

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.freebsdservice.disabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.freebsdservice.enable(name, **kwargs)

	Enable the named service to start at boot

	name

	service name

	config : /etc/rc.conf

	Config file for managing service. If config value is
empty string, then /etc/rc.conf.d/<service> used.
See man rc.conf(5) for details.

Also service.config variable can be used to change default.

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.freebsdservice.enabled(name)

	Return True if the named service is enabled, false otherwise

	name

	Service name

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.freebsdservice.get_all()

	Return a list of all available services

CLI Example:

salt '*' service.get_all

	
salt.modules.freebsdservice.get_disabled()

	Return what services are available but not enabled to start at boot

CLI Example:

salt '*' service.get_disabled

	
salt.modules.freebsdservice.get_enabled()

	Return what services are set to run on boot

CLI Example:

salt '*' service.get_enabled

	
salt.modules.freebsdservice.reload_(name)

	Restart the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.freebsdservice.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.freebsdservice.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.freebsdservice.status(name, sig=None)

	Return the status for a service (True or False).

	name

	Name of service

CLI Example:

salt '*' service.status <service name>

	
salt.modules.freebsdservice.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.gem

Manage ruby gems.

	
salt.modules.gem.install(gems, ruby=None, runas=None, version=None, rdoc=False, ri=False)

	Installs one or several gems.

	gems

	The gems to install

	ruby : None

	If RVM is installed, the ruby version and gemset to use.

	runas : None

	The user to run gem as.

	version : None

	Specify the version to install for the gem.
Doesn't play nice with multiple gems at once

	rdoc : False

	Generate RDoc documentation for the gem(s).

	ri : False

	Generate RI documentation for the gem(s).

CLI Example:

salt '*' gem.install vagrant

	
salt.modules.gem.list_(prefix='', ruby=None, runas=None)

	List locally installed gems.

	prefix :

	Only list gems when the name matches this prefix.

	ruby : None

	If RVM is installed, the ruby version and gemset to use.

	runas : None

	The user to run gem as.

CLI Example:

salt '*' gem.list

	
salt.modules.gem.sources_add(source_uri, ruby=None, runas=None)

	Add a gem source.

	source_uri

	The source URI to add.

	ruby : None

	If RVM is installed, the ruby version and gemset to use.

	runas : None

	The user to run gem as.

CLI Example:

salt '*' gem.sources_add http://rubygems.org/

	
salt.modules.gem.sources_list(ruby=None, runas=None)

	List the configured gem sources.

	ruby : None

	If RVM is installed, the ruby version and gemset to use.

	runas : None

	The user to run gem as.

CLI Example:

salt '*' gem.sources_list

	
salt.modules.gem.sources_remove(source_uri, ruby=None, runas=None)

	Remove a gem source.

	source_uri

	The source URI to remove.

	ruby : None

	If RVM is installed, the ruby version and gemset to use.

	runas : None

	The user to run gem as.

CLI Example:

salt '*' gem.sources_remove http://rubygems.org/

	
salt.modules.gem.uninstall(gems, ruby=None, runas=None)

	Uninstall one or several gems.

	gems

	The gems to uninstall.

	ruby : None

	If RVM is installed, the ruby version and gemset to use.

	runas : None

	The user to run gem as.

CLI Example:

salt '*' gem.uninstall vagrant

	
salt.modules.gem.update(gems, ruby=None, runas=None)

	Update one or several gems.

	gems

	The gems to update.

	ruby : None

	If RVM is installed, the ruby version and gemset to use.

	runas : None

	The user to run gem as.

CLI Example:

salt '*' gem.update vagrant

	
salt.modules.gem.update_system(version='', ruby=None, runas=None)

	Update rubygems.

	version : (newest)

	The version of rubygems to install.

	ruby : None

	If RVM is installed, the ruby version and gemset to use.

	runas : None

	The user to run gem as.

CLI Example:

salt '*' gem.update_system

salt.modules.gentoo_service

Top level package command wrapper, used to translate the os detected by grains to the correct service manager

	
salt.modules.gentoo_service.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.gentoo_service.disabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.gentoo_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.gentoo_service.enabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.gentoo_service.get_all()

	Return all available boot services

CLI Example:

salt '*' service.get_all

	
salt.modules.gentoo_service.get_disabled()

	Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

	
salt.modules.gentoo_service.get_enabled()

	Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

	
salt.modules.gentoo_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.gentoo_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.gentoo_service.status(name, sig=None)

	Return the status for a service, returns the PID or an empty string if the
service is running or not, pass a signature to use to find the service via
ps

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.gentoo_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.gentoolkitmod

Support for Gentoolkit

	
salt.modules.gentoolkitmod.eclean_dist(destructive=False, package_names=False, size_limit=0, time_limit=0, fetch_restricted=False, exclude_file='/etc/eclean/distfiles.exclude')

	Clean obsolete portage sources

	destructive

	Only keep minimum for reinstallation

	package_names

	Protect all versions of installed packages. Only meaningful if used
with destructive=True

	size_limit <size>

	Don't delete distfiles bigger than <size>.
<size> is a size specification: "10M" is "ten megabytes",
"200K" is "two hundreds kilobytes", etc. Units are: G, M, K and B.

	time_limit <time>

	Don't delete distfiles files modified since <time>
<time> is an amount of time: "1y" is "one year", "2w" is
"two weeks", etc. Units are: y (years), m (months), w (weeks),
d (days) and h (hours).

	fetch_restricted

	Protect fetch-restricted files. Only meaningful if used with
destructive=True

	exclude_file

	Path to exclusion file. Default is /etc/eclean/distfiles.exclude
This is the same default eclean-dist uses. Use None if this file
exists and you want to ignore.

Returns a dict containing the cleaned, saved, and deprecated dists:

{'cleaned': {<dist file>: <size>},
 'deprecated': {<package>: <dist file>},
 'saved': {<package>: <dist file>},
 'total_cleaned': <size>}

CLI Example:

salt '*' gentoolkit.eclean_dist destructive=True

	
salt.modules.gentoolkitmod.eclean_pkg(destructive=False, package_names=False, time_limit=0, exclude_file='/etc/eclean/packages.exclude')

	Clean obsolete binary packages

	destructive

	Only keep minimum for reinstallation

	package_names

	Protect all versions of installed packages. Only meaningful if used
with destructive=True

	time_limit <time>

	Don't delete distfiles files modified since <time>
<time> is an amount of time: "1y" is "one year", "2w" is
"two weeks", etc. Units are: y (years), m (months), w (weeks),
d (days) and h (hours).

	exclude_file

	Path to exclusion file. Default is /etc/eclean/packages.exclude
This is the same default eclean-pkg uses. Use None if this file
exists and you want to ignore.

Returns a dict containing the cleaned binary packages:

{'cleaned': {<dist file>: <size>},
 'total_cleaned': <size>}

CLI Example:

salt '*' gentoolkit.eclean_pkg destructive=True

	
salt.modules.gentoolkitmod.glsa_check_list(glsa_list)

	List the status of Gentoo Linux Security Advisories

	glsa_list

	can contain an arbitrary number of GLSA ids, filenames
containing GLSAs or the special identifiers 'all' and 'affected'

Returns a dict containing glsa ids with a description, status, and CVEs:

{<glsa_id>: {'description': <glsa_description>,
 'status': <glsa status>,
 'CVEs': [<list of CVEs>]}}

CLI Example:

salt '*' gentoolkit.glsa_check_list 'affected'

	
salt.modules.gentoolkitmod.revdep_rebuild(lib=None)

	Fix up broken reverse dependencies

	lib

	Search for reverse dependencies for a particular library rather
than every library on the system. It can be a full path to a
library or basic regular expression.

CLI Example:

salt '*' gentoolkit.revdep_rebuild

salt.modules.git

Support for the Git SCM

	
salt.modules.git.add(cwd, file_name, user=None, opts=None)

	add a file to git

	cwd

	The path to the Git repository

	file_name

	Path to the file in the cwd

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.add /path/to/git/repo /path/to/file

	
salt.modules.git.archive(cwd, output, rev='HEAD', fmt=None, prefix=None, user=None)

	Export a tarball from the repository

	cwd

	The path to the Git repository

	output

	The path to the archive tarball

	rev: HEAD

	The revision to create an archive from

	fmt: None

	Format of the resulting archive, zip and tar are commonly used

	prefix : None

	Prepend <prefix>/ to every filename in the archive

	user : None

	Run git as a user other than what the minion runs as

If prefix is not specified it defaults to the basename of the repo
directory.

CLI Example:

salt '*' git.archive /path/to/repo /path/to/archive.tar.gz

	
salt.modules.git.checkout(cwd, rev, force=False, opts=None, user=None)

	Checkout a given revision

	cwd

	The path to the Git repository

	rev

	The remote branch or revision to checkout

	force : False

	Force a checkout even if there might be overwritten changes

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Examples:

salt '*' git.checkout /path/to/repo somebranch user=jeff

salt '*' git.checkout /path/to/repo opts='testbranch -- conf/file1 file2'

salt '*' git.checkout /path/to/repo rev=origin/mybranch opts=--track

	
salt.modules.git.clone(cwd, repository, opts=None, user=None, identity=None)

	Clone a new repository

	cwd

	The path to the Git repository

	repository

	The git URI of the repository

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

	identity : None

	A path to a private key to use over SSH

CLI Example:

salt '*' git.clone /path/to/repo git://github.com/saltstack/salt.git

salt '*' git.clone /path/to/repo.git\
 git://github.com/saltstack/salt.git '--bare --origin github'

	
salt.modules.git.commit(cwd, message, user=None, opts=None)

	create a commit

	cwd

	The path to the Git repository

	message

	The commit message

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.commit /path/to/git/repo 'The commit message'

	
salt.modules.git.config_get(cwd, setting_name, user=None)

	Get a key from the git configuration file (.git/config) of the repository.

	cwd

	The path to the Git repository

	setting_name

	The name of the configuration key to get

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.config_get /path/to/repo user.email

	
salt.modules.git.config_set(cwd, setting_name, setting_value, user=None, is_global=False)

	Set a key in the git configuration file (.git/config) of the repository or
globally.

	cwd

	The path to the Git repository

	setting_name

	The name of the configuration key to set

	setting_value

	The (new) value to set

	user : None

	Run git as a user other than what the minion runs as

	is_global : False

	Set to True to use the '--global' flag with 'git config'

CLI Example:

salt '*' git.config_set /path/to/repo user.email me@example.com

	
salt.modules.git.current_branch(cwd, user=None)

	Returns the current branch name, if on a branch.

CLI Example:

salt '*' git.current_branch /path/to/repo

	
salt.modules.git.describe(cwd, rev='HEAD', user=None)

	Returns the git describe string (or the SHA hash if there are no tags) for
the given revision

	cwd

	The path to the Git repository

	rev: HEAD

	The revision to describe

	user : None

	Run git as a user other than what the minion runs as

CLI Examples:

salt '*' git.describe /path/to/repo

salt '*' git.describe /path/to/repo develop

	
salt.modules.git.fetch(cwd, opts=None, user=None, identity=None)

	Perform a fetch on the given repository

	cwd

	The path to the Git repository

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

	identity : None

	A path to a private key to use over SSH

CLI Example:

salt '*' git.fetch /path/to/repo '--all'

salt '*' git.fetch cwd=/path/to/repo opts='--all' user=johnny

	
salt.modules.git.init(cwd, opts=None, user=None)

	Initialize a new git repository

	cwd

	The path to the Git repository

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.init /path/to/repo.git opts='--bare'

	
salt.modules.git.merge(cwd, branch='@{upstream}', opts=None, user=None)

	Merge a given branch

	cwd

	The path to the Git repository

	branch : @{upstream}

	The remote branch or revision to merge into the current branch

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.fetch /path/to/repo
salt '*' git.merge /path/to/repo @{upstream}

	
salt.modules.git.pull(cwd, opts=None, user=None, identity=None)

	Perform a pull on the given repository

	cwd

	The path to the Git repository

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

	identity : None

	A path to a private key to use over SSH

CLI Example:

salt '*' git.pull /path/to/repo opts='--rebase origin master'

	
salt.modules.git.push(cwd, remote_name, branch='master', user=None, opts=None, identity=None)

	Push to remote

	cwd

	The path to the Git repository

	remote_name

	Name of the remote to push to

	branch : master

	Name of the branch to push

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

	identity : None

	A path to a private key to use over SSH

CLI Example:

salt '*' git.push /path/to/git/repo remote-name

	
salt.modules.git.rebase(cwd, rev='master', opts=None, user=None)

	Rebase the current branch

	cwd

	The path to the Git repository

	rev : master

	The revision to rebase onto the current branch

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.rebase /path/to/repo master
salt '*' git.rebase /path/to/repo 'origin master'

That is the same as:

git rebase master
git rebase origin master

	
salt.modules.git.remote_get(cwd, remote='origin', user=None)

	get the fetch and push URL for a specified remote name

	remote : origin

	the remote name used to define the fetch and push URL

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.remote_get /path/to/repo
salt '*' git.remote_get /path/to/repo upstream

	
salt.modules.git.remote_set(cwd, name='origin', url=None, user=None)

	sets a remote with name and URL like git remote add <remote_name> <remote_url>

	remote_name : origin

	defines the remote name

	remote_url : None

	defines the remote URL; should not be None!

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.remote_set /path/to/repo remote_url=git@github.com:saltstack/salt.git
salt '*' git.remote_set /path/to/repo origin git@github.com:saltstack/salt.git

	
salt.modules.git.remotes(cwd, user=None)

	Get remotes like git remote -v

	cwd

	The path to the Git repository

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.remotes /path/to/repo

	
salt.modules.git.reset(cwd, opts=None, user=None)

	Reset the repository checkout

	cwd

	The path to the Git repository

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.reset /path/to/repo master

	
salt.modules.git.revision(cwd, rev='HEAD', short=False, user=None)

	Returns the long hash of a given identifier (hash, branch, tag, HEAD, etc)

	cwd

	The path to the Git repository

	rev: HEAD

	The revision

	short: False

	Return an abbreviated SHA1 git hash

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.revision /path/to/repo mybranch

	
salt.modules.git.rm(cwd, file_name, user=None, opts=None)

	Remove a file from git

	cwd

	The path to the Git repository

	file_name

	Path to the file in the cwd

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.rm /path/to/git/repo /path/to/file

	
salt.modules.git.stash(cwd, opts=None, user=None)

	Stash changes in the repository checkout

	cwd

	The path to the Git repository

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.stash /path/to/repo master

	
salt.modules.git.status(cwd, user=None)

	Return the status of the repository. The returned format uses the status
codes of gits 'porcelain' output mode

	cwd

	The path to the Git repository

	user : None

	Run git as a user other than what the minion runs as

CLI Example:

salt '*' git.status /path/to/git/repo

	
salt.modules.git.submodule(cwd, init=True, opts=None, user=None, identity=None)

	Initialize git submodules

	cwd

	The path to the Git repository

	init : True

	Ensure that new submodules are initialized

	opts : None

	Any additional options to add to the command line

	user : None

	Run git as a user other than what the minion runs as

	identity : None

	A path to a private key to use over SSH

CLI Example:

salt '*' git.submodule /path/to/repo.git/sub/repo

salt.modules.glance

Module for handling openstack glance calls.

	optdepends:	
	glanceclient Python adapter

	configuration:	This module is not usable until the following are specified
either in a pillar or in the minion's config file:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.insecure: False #(optional)
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

If configuration for multiple openstack accounts is required, they can be
set up as different configuration profiles:
For example:

openstack1:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.tenant_id: f80919baedab48ec8931f200c65a50df
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.tenant_id: f80919baedab48ec8931f200c65a50df
 keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

With this configuration in place, any of the keystone functions can make use
of a configuration profile by declaring it explicitly.
For example:

salt '*' glance.image_list profile=openstack1

	
salt.modules.glance.image_create(profile=None, **kwargs)

	Create an image (glance image-create)

CLI Example:

salt '*' glance.image_create name=f16-jeos is_public=true \
 disk_format=qcow2 container_format=ovf \
 copy_from=http://berrange.fedorapeople.org/images/2012-02-29/f16-x86_64-openstack-sda.qcow2

For all possible values, run glance help image-create on the minion.

	
salt.modules.glance.image_delete(id=None, name=None, profile=None)

	Delete an image (glance image-delete)

CLI Examples:

salt '*' glance.image_delete c2eb2eb0-53e1-4a80-b990-8ec887eae7df
salt '*' glance.image_delete id=c2eb2eb0-53e1-4a80-b990-8ec887eae7df
salt '*' glance.image_delete name=f16-jeos

	
salt.modules.glance.image_list(id=None, profile=None)

	Return a list of available images (glance image-list)

CLI Example:

salt '*' glance.image_list

	
salt.modules.glance.image_show(id=None, name=None, profile=None)

	Return details about a specific image (glance image-show)

CLI Example:

salt '*' glance.image_get

salt.modules.grains

Return/control aspects of the grains data

	
salt.modules.grains.append(key, val)

	
New in version 0.17.0.

Append a value to a list in the grains config file

CLI Example:

salt '*' grains.append key val

	
salt.modules.grains.delval(key)

	
New in version 0.17.0.

Delete a grain from the grains config file

CLI Example:

salt '*' grains.delval key

	
salt.modules.grains.filter_by(lookup_dict, grain='os_family', merge=None)

	
New in version 0.17.0.

Look up the given grain in a given dictionary for the current OS and return
the result

Although this may occasionally be useful at the CLI, the primary intent of
this function is for use in Jinja to make short work of creating lookup
tables for OS-specific data. For example:

{% set apache = salt['grains.filter_by']({
 'Debian': {'pkg': 'apache2', 'srv': 'apache2'},
 'RedHat': {'pkg': 'httpd', 'srv': 'httpd'},
}) %}

myapache:
 pkg:
 - installed
 - name: {{ apache.pkg }}
 service:
 - running
 - name: {{ apache.srv }}

Values in the lookup table may be overridden by values in Pillar. An
example Pillar to override values in the example above could be as follows:

apache:
 lookup:
 pkg: apache_13
 srv: apache

The call to filter_by() would be modified as follows to reference those
Pillar values:

{% set apache = salt['grains.filter_by']({
 ...
}, merge=salt['pillar.get']('apache:lookup')) %}

	Parameters:	
	lookup_dict -- A dictionary, keyed by a grain, containing a value or
values relevant to systems matching that grain. For example, a key
could be the grain for an OS and the value could the name of a package
on that particular OS.

	grain -- The name of a grain to match with the current system's
grains. For example, the value of the "os_family" grain for the current
system could be used to pull values from the lookup_dict
dictionary.

	merge -- A dictionary to merge with the lookup_dict before doing
the lookup. This allows Pillar to override the values in the
lookup_dict. This could be useful, for example, to override the
values for non-standard package names such as when using a different
Python version from the default Python version provided by the OS
(e.g., python26-mysql instead of python-mysql).

CLI Example:

salt '*' grains.filter_by '{Debian: Debheads rule, RedHat: I love my hat}'

	
salt.modules.grains.get(key, default='')

	Attempt to retrieve the named value from grains, if the named value is not
available return the passed default. The default return is an empty string.

The value can also represent a value in a nested dict using a ":" delimiter
for the dict. This means that if a dict in grains looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg dict this
key can be passed:

pkg:apache

CLI Example:

salt '*' grains.get pkg:apache

	
salt.modules.grains.item(*args, **kwargs)

	Return one or more grains

CLI Example:

salt '*' grains.item os
salt '*' grains.item os osrelease oscodename

Sanitized CLI Example:

salt '*' grains.item host sanitize=True

	
salt.modules.grains.items(sanitize=False)

	Return all of the minion's grains

CLI Example:

salt '*' grains.items

Sanitized CLI Example:

salt '*' grains.items sanitize=True

	
salt.modules.grains.ls()

	Return a list of all available grains

CLI Example:

salt '*' grains.ls

	
salt.modules.grains.remove(key, val)

	
New in version 0.17.0.

Remove a value from a list in the grains config file

CLI Example:

salt '*' grains.remove key val

	
salt.modules.grains.setval(key, val)

	Set a grains value in the grains config file

CLI Example:

salt '*' grains.setval key val
salt '*' grains.setval key "{'sub-key': 'val', 'sub-key2': 'val2'}"

salt.modules.groupadd

Manage groups on Linux and OpenBSD

	
salt.modules.groupadd.add(name, gid=None, system=False)

	Add the specified group

CLI Example:

salt '*' group.add foo 3456

	
salt.modules.groupadd.chgid(name, gid)

	Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

	
salt.modules.groupadd.delete(name)

	Remove the named group

CLI Example:

salt '*' group.delete foo

	
salt.modules.groupadd.getent(refresh=False)

	Return info on all groups

CLI Example:

salt '*' group.getent

	
salt.modules.groupadd.info(name)

	Return information about a group

CLI Example:

salt '*' group.info foo

salt.modules.grub_legacy

Support for GRUB Legacy

	
salt.modules.grub_legacy.conf()

	Parse GRUB conf file

CLI Example:

salt '*' grub.conf

	
salt.modules.grub_legacy.version()

	Return server version from grub --version

CLI Example:

salt '*' grub.version

salt.modules.guestfs

Interact with virtual machine images via libguestfs

	depends:	
	libguestfs

	
salt.modules.guestfs.mount(location, access='rw')

	Mount an image

CLI Example:

salt '*' guest.mount /srv/images/fedora.qcow

salt.modules.hg

Support for the Mercurial SCM

	
salt.modules.hg.archive(cwd, output, rev='tip', fmt=None, prefix=None, user=None)

	Export a tarball from the repository

	cwd

	The path to the Mercurial repository

	output

	The path to the archive tarball

	rev: tip

	The revision to create an archive from

	fmt: None

	Format of the resulting archive. Mercurial supports: tar,
tbz2, tgz, zip, uzip, and files formats.

	prefix : None

	Prepend <prefix>/ to every filename in the archive

	user : None

	Run hg as a user other than what the minion runs as

If prefix is not specified it defaults to the basename of the repo
directory.

CLI Example:

salt '*' hg.archive /path/to/repo output=/tmp/archive.tgz fmt=tgz

	
salt.modules.hg.clone(cwd, repository, opts=None, user=None)

	Clone a new repository

	cwd

	The path to the Mercurial repository

	repository

	The hg URI of the repository

	opts : None

	Any additional options to add to the command line

	user : None

	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.clone /path/to/repo https://bitbucket.org/birkenfeld/sphinx

	
salt.modules.hg.describe(cwd, rev='tip', user=None)

	Mimick git describe and return an identifier for the given revision

	cwd

	The path to the Mercurial repository

	rev: tip

	The path to the archive tarball

	user : None

	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.describe /path/to/repo

	
salt.modules.hg.pull(cwd, opts=None, user=None)

	Perform a pull on the given repository

	cwd

	The path to the Mercurial repository

	opts : None

	Any additional options to add to the command line

	user : None

	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.pull /path/to/repo '-u'

	
salt.modules.hg.revision(cwd, rev='tip', short=False, user=None)

	Returns the long hash of a given identifier (hash, branch, tag, HEAD, etc)

	cwd

	The path to the Mercurial repository

	rev: tip

	The revision

	short: False

	Return an abbreviated commit hash

	user : None

	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.revision /path/to/repo mybranch

	
salt.modules.hg.update(cwd, rev, force=False, user=None)

	Update to a given revision

	cwd

	The path to the Mercurial repository

	rev

	The revision to update to

	force : False

	Force an update

	user : None

	Run hg as a user other than what the minion runs as

CLI Example:

salt devserver1 hg.update /path/to/repo somebranch

salt.modules.hosts

Manage the information in the hosts file

	
salt.modules.hosts.add_host(ip, alias)

	Add a host to an existing entry, if the entry is not in place then create
it with the given host

CLI Example:

salt '*' hosts.add_host <ip> <alias>

	
salt.modules.hosts.get_alias(ip)

	Return the list of aliases associated with an ip

CLI Example:

salt '*' hosts.get_alias <ip addr>

	
salt.modules.hosts.get_ip(host)

	Return the ip associated with the named host

CLI Example:

salt '*' hosts.get_ip <hostname>

	
salt.modules.hosts.has_pair(ip, alias)

	Return true if the alias is set

CLI Example:

salt '*' hosts.has_pair <ip> <alias>

	
salt.modules.hosts.list_hosts()

	Return the hosts found in the hosts file in this format:

{'<ip addr>': ['alias1', 'alias2', ...]}

CLI Example:

salt '*' hosts.list_hosts

	
salt.modules.hosts.rm_host(ip, alias)

	Remove a host entry from the hosts file

CLI Example:

salt '*' hosts.rm_host <ip> <alias>

	
salt.modules.hosts.set_host(ip, alias)

	Set the host entry in the hosts file for the given ip, this will overwrite
any previous entry for the given ip

CLI Example:

salt '*' hosts.set_host <ip> <alias>

salt.modules.img

Virtual machine image management tools

	
salt.modules.img.bootstrap(location, size, fmt)

	HIGHLY EXPERIMENTAL
Bootstrap a virtual machine image

	location:

	The location to create the image

	size:

	The size of the image to create in megabytes

	fmt:

	The image format, raw or qcow2

CLI Example:

salt '*' qemu_nbd.bootstrap /srv/salt-images/host.qcow 4096 qcow2

	
salt.modules.img.mnt_image(location)

	Mount the named image and return the mount point

CLI Example:

salt '*' img.mount_image /tmp/foo

	
salt.modules.img.mount_image(location)

	Mount the named image and return the mount point

CLI Example:

salt '*' img.mount_image /tmp/foo

	
salt.modules.img.umount_image(mnt)

	Unmount an image mountpoint

CLI Example:

salt '*' img.umount_image /mnt/foo

salt.modules.iptables

Support for iptables

	
salt.modules.iptables.append(table='filter', chain=None, rule=None)

	Append a rule to the specified table/chain.

	This function accepts a rule in a standard iptables command format,

	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Example:

salt '*' iptables.append filter INPUT rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

	
salt.modules.iptables.build_rule(table=None, chain=None, command=None, position='', full=None, **kwargs)

	Build a well-formatted iptables rule based on kwargs. Long options must be
used (--jump instead of -j) because they will have the -- added to
them. A table and chain are not required, unless full is True.

If full is True, then table, chain and command are required.
command may be specified as either a short option ('I') or a long option
(--insert). This will return the iptables command, exactly as it would
be used from the command line.

If a position is required (as with -I or -D), it may be specified as
position. This will only be useful if full is True.

If connstate is passed in, it will automatically be changed to state.

CLI Examples:

salt '*' iptables.build_rule match=state connstate=RELATED,ESTABLISHED \
 jump=ACCEPT
salt '*' iptables.build_rule filter INPUT command=I position=3 \
 full=True match=state state=RELATED,ESTABLISHED jump=ACCEPT

	
salt.modules.iptables.check(table='filter', chain=None, rule=None)

	Check for the existance of a rule in the table and chain

	This function accepts a rule in a standard iptables command format,

	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Example:

salt '*' iptables.check filter INPUT rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

	
salt.modules.iptables.delete(table, chain=None, position=None, rule=None)

	
	Delete a rule from the specified table/chain, specifying either the rule

	in its entirety, or the rule's position in the chain.

	This function accepts a rule in a standard iptables command format,

	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Examples:

salt '*' iptables.delete filter INPUT position=3
salt '*' iptables.delete filter INPUT rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

	
salt.modules.iptables.flush(table='filter')

	Flush all chains in the specified table.

CLI Example:

salt '*' iptables.flush filter

	
salt.modules.iptables.get_policy(table='filter', chain=None)

	Return the current policy for the specified table/chain

CLI Example:

salt '*' iptables.get_policy filter INPUT

	
salt.modules.iptables.get_rules()

	Return a data structure of the current, in-memory rules

CLI Example:

salt '*' iptables.get_rules

	
salt.modules.iptables.get_saved_policy(table='filter', chain=None, conf_file=None)

	Return the current policy for the specified table/chain

CLI Examples:

salt '*' iptables.get_saved_policy filter INPUT
salt '*' iptables.get_saved_policy filter INPUT conf_file=/etc/iptables.saved

	
salt.modules.iptables.get_saved_rules(conf_file=None)

	Return a data structure of the rules in the conf file

CLI Example:

salt '*' iptables.get_saved_rules

	
salt.modules.iptables.insert(table='filter', chain=None, position=None, rule=None)

	Insert a rule into the specified table/chain, at the specified position.

	This function accepts a rule in a standard iptables command format,

	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Examples:

salt '*' iptables.insert filter INPUT position=3 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

	
salt.modules.iptables.save(filename=None)

	Save the current in-memory rules to disk

CLI Example:

salt '*' iptables.save /etc/sysconfig/iptables

	
salt.modules.iptables.set_policy(table='filter', chain=None, policy=None)

	Set the current policy for the specified table/chain

CLI Example:

salt '*' iptables.set_policy filter INPUT ACCEPT

	
salt.modules.iptables.version()

	Return version from iptables --version

CLI Example:

salt '*' iptables.version

salt.modules.key

Functions to view the minion's public key information

	
salt.modules.key.finger()

	Return the minion's public key fingerprint

CLI Example:

salt '*' key.finger

salt.modules.keyboard

Module for managing keyboards on POSIX-like systems.

	
salt.modules.keyboard.get_sys()

	Get current system keyboard setting

CLI Example:

salt '*' keyboard.get_sys

	
salt.modules.keyboard.get_x()

	Get current X keyboard setting

CLI Example:

salt '*' keyboard.get_x

	
salt.modules.keyboard.set_sys(layout)

	Set current system keyboard setting

CLI Example:

salt '*' keyboard.set_sys dvorak

	
salt.modules.keyboard.set_x(layout)

	Set current X keyboard setting

CLI Example:

salt '*' keyboard.set_x dvorak

salt.modules.keystone

Module for handling openstack keystone calls.

	optdepends:	
	keystoneclient Python adapter

	configuration:	This module is not usable until the following are specified
either in a pillar or in the minion's config file:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.insecure: False #(optional)
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

OR (for token based authentication)

keystone.token: 'ADMIN'
keystone.endpoint: 'http://127.0.0.1:35357/v2.0'

If configuration for multiple openstack accounts is required, they can be
set up as different configuration profiles:
For example:

openstack1:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.tenant_id: f80919baedab48ec8931f200c65a50df
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.tenant_id: f80919baedab48ec8931f200c65a50df
 keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

With this configuration in place, any of the keystone functions can make use
of a configuration profile by declaring it explicitly.
For example:

salt '*' keystone.tenant_list profile=openstack1

	
salt.modules.keystone.auth(profile=None)

	Set up keystone credentials

Only intended to be used within Keystone-enabled modules

	
salt.modules.keystone.ec2_credentials_create(user_id=None, name=None, tenant_id=None, tenant=None, profile=None)

	Create EC2-compatibile credentials for user per tenant

CLI Examples:

salt '*' keystone.ec2_credentials_create name=admin tenant=admin
salt '*' keystone.ec2_credentials_create user_id=c965f79c4f864eaaa9c3b41904e67082 tenant_id=722787eb540849158668370dc627ec5f

	
salt.modules.keystone.ec2_credentials_delete(user_id=None, name=None, access_key=None, profile=None)

	Delete EC2-compatibile credentials

CLI Examples:

salt '*' keystone.ec2_credentials_delete 860f8c2c38ca4fab989f9bc56a061a64
 access_key=5f66d2f24f604b8bb9cd28886106f442
salt '*' keystone.ec2_credentials_delete name=admin access_key=5f66d2f24f604b8bb9cd28886106f442

	
salt.modules.keystone.ec2_credentials_get(user_id=None, name=None, access=None, profile=None)

	Return ec2_credentials for a user (keystone ec2-credentials-get)

CLI Examples:

salt '*' keystone.ec2_credentials_get c965f79c4f864eaaa9c3b41904e67082 access=722787eb540849158668370dc627ec5f
salt '*' keystone.ec2_credentials_get user_id=c965f79c4f864eaaa9c3b41904e67082 access=722787eb540849158668370dc627ec5f
salt '*' keystone.ec2_credentials_get name=nova access=722787eb540849158668370dc627ec5f

	
salt.modules.keystone.ec2_credentials_list(user_id=None, name=None, profile=None)

	Return a list of ec2_credentials for a specific user (keystone ec2-credentials-list)

CLI Examples:

salt '*' keystone.ec2_credentials_list 298ce377245c4ec9b70e1c639c89e654
salt '*' keystone.ec2_credentials_list user_id=298ce377245c4ec9b70e1c639c89e654
salt '*' keystone.ec2_credentials_list name=jack

	
salt.modules.keystone.endpoint_get(service, profile=None)

	Return a specific endpoint (keystone endpoint-get)

CLI Example:

salt '*' keystone.endpoint_get ec2

	
salt.modules.keystone.endpoint_list(profile=None)

	Return a list of available endpoints (keystone endpoints-list)

CLI Example:

salt '*' keystone.endpoint_list

	
salt.modules.keystone.role_create(name, profile=None)

	Create named role

salt '*' keystone.role_create admin

	
salt.modules.keystone.role_delete(role_id=None, name=None, profile=None)

	Delete a role (keystone role-delete)

CLI Examples:

salt '*' keystone.role_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_delete role_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_delete name=admin

	
salt.modules.keystone.role_get(role_id=None, name=None, profile=None)

	Return a specific roles (keystone role-get)

CLI Examples:

salt '*' keystone.role_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_get role_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_get name=nova

	
salt.modules.keystone.role_list(profile=None)

	Return a list of available roles (keystone role-list)

CLI Example:

salt '*' keystone.role_list

	
salt.modules.keystone.service_create(name, service_type, description=None, profile=None)

	Add service to Keystone service catalog

CLI Examples:

salt '*' keystone.service_create nova compute 'OpenStack Compute Service'

	
salt.modules.keystone.service_delete(service_id=None, name=None, profile=None)

	Delete a service from Keystone service catalog

CLI Examples:

salt '*' keystone.service_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_delete name=nova

	
salt.modules.keystone.service_get(service_id=None, name=None, profile=None)

	Return a specific services (keystone service-get)

CLI Examples:

salt '*' keystone.service_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_get service_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_get name=nova

	
salt.modules.keystone.service_list(profile=None)

	Return a list of available services (keystone services-list)

CLI Example:

salt '*' keystone.service_list

	
salt.modules.keystone.tenant_create(name, description=None, enabled=True, profile=None)

	Create a keystone tenant

CLI Examples:

salt '*' keystone.tenant_create nova description='nova tenant'
salt '*' keystone.tenant_create test enabled=False

	
salt.modules.keystone.tenant_delete(tenant_id=None, name=None, profile=None)

	Delete a tenant (keystone tenant-delete)

CLI Examples:

salt '*' keystone.tenant_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_delete tenant_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_delete name=demo

	
salt.modules.keystone.tenant_get(tenant_id=None, name=None, profile=None)

	Return a specific tenants (keystone tenant-get)

CLI Examples:

salt '*' keystone.tenant_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_get tenant_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_get name=nova

	
salt.modules.keystone.tenant_list(profile=None)

	Return a list of available tenants (keystone tenants-list)

CLI Example:

salt '*' keystone.tenant_list

	
salt.modules.keystone.tenant_update(tenant_id=None, name=None, email=None, enabled=None, profile=None)

	Update a tenant's information (keystone tenant-update)
The following fields may be updated: name, email, enabled.
Can only update name if targeting by ID

CLI Examples:

salt '*' keystone.tenant_update name=admin enabled=True
salt '*' keystone.tenant_update c965f79c4f864eaaa9c3b41904e67082 name=admin email=admin@domain.com

	
salt.modules.keystone.token_get(profile=None)

	Return the configured tokens (keystone token-get)

CLI Example:

salt '*' keystone.token_get c965f79c4f864eaaa9c3b41904e67082

	
salt.modules.keystone.user_create(name, password, email, tenant_id=None, enabled=True, profile=None)

	Create a user (keystone user-create)

CLI Examples:

salt '*' keystone.user_create name=jack password=zero email=jack@halloweentown.org tenant_id=a28a7b5a999a455f84b1f5210264375e enabled=True

	
salt.modules.keystone.user_delete(user_id=None, name=None, profile=None)

	Delete a user (keystone user-delete)

CLI Examples:

salt '*' keystone.user_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_delete user_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_delete name=nova

	
salt.modules.keystone.user_get(user_id=None, name=None, profile=None)

	Return a specific users (keystone user-get)

CLI Examples:

salt '*' keystone.user_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_get user_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_get name=nova

	
salt.modules.keystone.user_list(profile=None)

	Return a list of available users (keystone user-list)

CLI Example:

salt '*' keystone.user_list

	
salt.modules.keystone.user_password_update(user_id=None, name=None, password=None, profile=None)

	Update a user's password (keystone user-password-update)

CLI Examples:

salt '*' keystone.user_delete c965f79c4f864eaaa9c3b41904e67082 password=12345
salt '*' keystone.user_delete user_id=c965f79c4f864eaaa9c3b41904e67082 password=12345
salt '*' keystone.user_delete name=nova password=12345

	
salt.modules.keystone.user_role_add(user_id=None, user=None, tenant_id=None, tenant=None, role_id=None, role=None, profile=None)

	Add role for user in tenant (keystone user-role-add)

CLI Examples:

salt '*' keystone.user_role_add user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b role_id=ce377245c4ec9b70e1c639c89e8cead4
salt '*' keystone.user_role_add user=admin tenant=admin role=admin

	
salt.modules.keystone.user_role_list(user_id=None, tenant_id=None, user_name=None, tenant_name=None, profile=None)

	Return a list of available user_roles (keystone user-roles-list)

CLI Examples:

salt '*' keystone.user_role_list user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b
salt '*' keystone.user_role_list user_name=admin tenant_name=admin

	
salt.modules.keystone.user_role_remove(user_id=None, user=None, tenant_id=None, tenant=None, role_id=None, role=None, profile=None)

	Remove role for user in tenant (keystone user-role-remove)

CLI Examples:

salt '*' keystone.user_role_remove user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b role_id=ce377245c4ec9b70e1c639c89e8cead4
salt '*' keystone.user_role_remove user=admin tenant=admin role=admin

	
salt.modules.keystone.user_update(user_id=None, name=None, email=None, enabled=None, tenant=None, profile=None)

	Update a user's information (keystone user-update)
The following fields may be updated: name, email, enabled, tenant.
Because the name is one of the fields, a valid user id is required.

CLI Examples:

salt '*' keystone.user_update user_id=c965f79c4f864eaaa9c3b41904e67082 name=newname
salt '*' keystone.user_update c965f79c4f864eaaa9c3b41904e67082 name=newname email=newemail@domain.com

	
salt.modules.keystone.user_verify_password(user_id=None, name=None, password=None, profile=None)

	Verify a user's password

CLI Examples:

salt '*' keystone.user_verify_password name=test password=foobar
salt '*' keystone.user_verify_password user_id=c965f79c4f864eaaa9c3b41904e67082 password=foobar

salt.modules.kmod

Module to manage Linux kernel modules

	
salt.modules.kmod.available()

	Return a list of all available kernel modules

CLI Example:

salt '*' kmod.available

	
salt.modules.kmod.check_available(mod)

	Check to see if the specified kernel module is available

CLI Example:

salt '*' kmod.check_available kvm

	
salt.modules.kmod.is_loaded(mod)

	Check to see if the specified kernel module is loaded

CLI Example:

salt '*' kmod.is_loaded kvm

	
salt.modules.kmod.load(mod, persist=False)

	Load the specified kernel module

	mod

	Name of module to add

	persist

	Write module to /etc/modules to make it load on system reboot

CLI Example:

salt '*' kmod.load kvm

	
salt.modules.kmod.lsmod()

	Return a dict containing information about currently loaded modules

CLI Example:

salt '*' kmod.lsmod

	
salt.modules.kmod.mod_list(only_persist=False)

	Return a list of the loaded module names

CLI Example:

salt '*' kmod.mod_list

	
salt.modules.kmod.remove(mod, persist=False, comment=True)

	Remove the specified kernel module

	mod

	Name of module to remove

	persist

	Also remove module from /etc/modules

	comment

	If persist is set don't remove line from /etc/modules but only
comment it

CLI Example:

salt '*' kmod.remove kvm

salt.modules.launchctl

Module for the management of MacOS systems that use launchd/launchctl

	depends:	
	plistlib Python module

	
salt.modules.launchctl.available(job_label)

	Check that the given service is available.

CLI Example:

salt '*' service.available com.openssh.sshd

	
salt.modules.launchctl.get_all()

	Return all installed services

CLI Example:

salt '*' service.get_all

	
salt.modules.launchctl.restart(job_label, runas=None)

	Restart the named service

CLI Example:

salt '*' service.restart <service label>

	
salt.modules.launchctl.start(job_label, runas=None)

	Start the specified service

CLI Example:

salt '*' service.start <service label>
salt '*' service.start org.ntp.ntpd
salt '*' service.start /System/Library/LaunchDaemons/org.ntp.ntpd.plist

	
salt.modules.launchctl.status(job_label, runas=None)

	Return the status for a service, returns a bool whether the service is
running.

CLI Example:

salt '*' service.status <service label>

	
salt.modules.launchctl.stop(job_label, runas=None)

	Stop the specified service

CLI Example:

salt '*' service.stop <service label>
salt '*' service.stop org.ntp.ntpd
salt '*' service.stop /System/Library/LaunchDaemons/org.ntp.ntpd.plist

salt.modules.layman

Support for Layman

	
salt.modules.layman.add(overlay)

	Add the given overlay from the caced remote list to your locally
installed overlays. Specify 'ALL' to add all overlays from the
remote list.

Return a list of the new overlay(s) added:

CLI Example:

salt '*' layman.add <overlay name>

	
salt.modules.layman.delete(overlay)

	Remove the given overlay from the your locally installed overlays.
Specify 'ALL' to remove all overlays.

Return a list of the overlays(s) that were removed:

CLI Example:

salt '*' layman.delete <overlay name>

	
salt.modules.layman.list_local()

	List the locally installed overlays.

Return a list of installed overlays:

CLI Example:

salt '*' layman.list_local

	
salt.modules.layman.sync(overlay='ALL')

	Update the specified overlay. Use 'ALL' to synchronize all overlays.
This is the default if no overlay is specified.

	overlay

	Name of the overlay to sync. (Defaults to 'ALL')

CLI Example:

salt '*' layman.sync

salt.modules.ldapmod

Salt interface to LDAP commands

	depends:	
	ldap Python module

	configuration:	In order to connect to LDAP, certain configuration is required
in the minion config on the LDAP server. The minimum configuration items
that must be set are:

ldap.basedn: dc=acme,dc=com (example values, adjust to suit)

If your LDAP server requires authentication then you must also set:

ldap.binddn: admin
ldap.bindpw: password

In addition, the following optional values may be set:

ldap.server: localhost (default=localhost, see warning below)
ldap.port: 389 (default=389, standard port)
ldap.tls: False (default=False, no TLS)
ldap.scope: 2 (default=2, ldap.SCOPE_SUBTREE)
ldap.attrs: [saltAttr] (default=None, return all attributes)

Warning

At the moment this module only recommends connection to LDAP services
listening on localhost. This is deliberate to avoid the potentially
dangerous situation of multiple minions sending identical update commands
to the same LDAP server. It's easy enough to override this behaviour, but
badness may ensue - you have been warned.

	
salt.modules.ldapmod.search(filter, dn=None, scope=None, attrs=None, **kwargs)

	Run an arbitrary LDAP query and return the results.

CLI Example:

salt 'ldaphost' ldap.search "filter=cn=myhost"

Return data:

{'myhost': {'count': 1,
 'results': [['cn=myhost,ou=hosts,o=acme,c=gb',
 {'saltKeyValue': ['ntpserver=ntp.acme.local',
 'foo=myfoo'],
 'saltState': ['foo', 'bar']}]],
 'time': {'human': '1.2ms', 'raw': '0.00123'}}}

Search and connection options can be overridden by specifying the relevant
option as key=value pairs, for example:

salt 'ldaphost' ldap.search filter=cn=myhost dn=ou=hosts,o=acme,c=gb
scope=1 attrs='' server='localhost' port='7393' tls=True bindpw='ssh'

salt.modules.linux_acl

Support for Linux File Access Control Lists

	
salt.modules.linux_acl.delfacl(acl_type, acl_name, *args)

	Remove specific FACL from the specified file(s)

CLI Examples:

salt '*' acl.delfacl user myuser /tmp/house/kitchen
salt '*' acl.delfacl default:group mygroup /tmp/house/kitchen
salt '*' acl.delfacl d:u myuser /tmp/house/kitchen
salt '*' acl.delfacl g myuser /tmp/house/kitchen /tmp/house/livingroom

	
salt.modules.linux_acl.getfacl(*args)

	Return (extremely verbose) map of FACLs on specified file(s)

CLI Examples:

salt '*' acl.getfacl /tmp/house/kitchen
salt '*' acl.getfacl /tmp/house/kitchen /tmp/house/livingroom

	
salt.modules.linux_acl.modfacl(acl_type, acl_name, perms, *args)

	Add or modify a FACL for the specified file(s)

CLI Examples:

salt '*' acl.addfacl user myuser rwx /tmp/house/kitchen
salt '*' acl.addfacl default:group mygroup rx /tmp/house/kitchen
salt '*' acl.addfacl d:u myuser 7 /tmp/house/kitchen
salt '*' acl.addfacl g mygroup 0 /tmp/house/kitchen /tmp/house/livingroom

	
salt.modules.linux_acl.version()

	Return facl version from getfacl --version

CLI Example:

salt '*' acl.version

	
salt.modules.linux_acl.wipefacls(*args)

	Remove all FACLs from the specified file(s)

CLI Examples:

salt '*' acl.wipefacls /tmp/house/kitchen
salt '*' acl.wipefacls /tmp/house/kitchen /tmp/house/livingroom

salt.modules.linux_lvm

Support for Linux LVM2

	
salt.modules.linux_lvm.fullversion()

	Return all version info from lvm version

CLI Example:

salt '*' lvm.fullversion

	
salt.modules.linux_lvm.lvcreate(lvname, vgname, size=None, extents=None, pv='')

	Create a new logical volume, with option for which physical volume to be used

CLI Examples:

salt '*' lvm.lvcreate new_volume_name vg_name size=10G
salt '*' lvm.lvcreate new_volume_name vg_name extents=100 /dev/sdb

	
salt.modules.linux_lvm.lvdisplay(lvname='')

	Return information about the logical volume(s)

CLI Examples:

salt '*' lvm.lvdisplay
salt '*' lvm.lvdisplay /dev/vg_myserver/root

	
salt.modules.linux_lvm.lvremove(lvname, vgname)

	Remove a given existing logical volume from a named existing volume group

CLI Example:

salt '*' lvm.lvremove lvname vgname force=True

	
salt.modules.linux_lvm.pvcreate(devices, **kwargs)

	Set a physical device to be used as an LVM physical volume

CLI Examples:

salt mymachine lvm.pvcreate /dev/sdb1,/dev/sdb2
salt mymachine lvm.pvcreate /dev/sdb1 dataalignmentoffset=7s

	
salt.modules.linux_lvm.pvdisplay(pvname='')

	Return information about the physical volume(s)

CLI Examples:

salt '*' lvm.pvdisplay
salt '*' lvm.pvdisplay /dev/md0

	
salt.modules.linux_lvm.version()

	Return LVM version from lvm version

CLI Example:

salt '*' lvm.version

	
salt.modules.linux_lvm.vgcreate(vgname, devices, **kwargs)

	Create an LVM volume group

CLI Examples:

salt mymachine lvm.vgcreate my_vg /dev/sdb1,/dev/sdb2
salt mymachine lvm.vgcreate my_vg /dev/sdb1 clustered=y

	
salt.modules.linux_lvm.vgdisplay(vgname='')

	Return information about the volume group(s)

CLI Examples:

salt '*' lvm.vgdisplay
salt '*' lvm.vgdisplay nova-volumes

	
salt.modules.linux_lvm.vgremove(vgname)

	Remove an LVM volume group

CLI Examples:

salt mymachine lvm.vgremove vgname
salt mymachine lvm.vgremove vgname force=True

salt.modules.linux_sysctl

Module for viewing and modifying sysctl parameters

	
salt.modules.linux_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.ipv4.ip_forward 1

	
salt.modules.linux_sysctl.default_config()

	Linux hosts using systemd 207 or later ignore /etc/sysctl.conf and only
load from /etc/sysctl.d/*.conf. This function will do the proper checks
and return a default config file which will be valid for the Minion. Hosts
running systemd >= 207 will use /etc/sysctl.d/99-salt.conf.

CLI Example:

salt -G 'kernel:Linux' sysctl.default_config

	
salt.modules.linux_sysctl.get(name)

	Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get net.ipv4.ip_forward

	
salt.modules.linux_sysctl.persist(name, value, config=None)

	Assign and persist a simple sysctl parameter for this minion. If config
is not specified, a sensible default will be chosen using
sysctl.default_config.

CLI Example:

salt '*' sysctl.persist net.ipv4.ip_forward 1

	
salt.modules.linux_sysctl.show()

	Return a list of sysctl parameters for this minion

CLI Example:

salt '*' sysctl.show

salt.modules.localemod

Module for managing locales on POSIX-like systems.

	
salt.modules.localemod.get_locale()

	Get the current system locale

CLI Example:

salt '*' locale.get_locale

	
salt.modules.localemod.list_avail()

	Lists available (compiled) locales

CLI Example:

salt '*' locale.list_avail

	
salt.modules.localemod.set_locale(locale)

	Sets the current system locale

CLI Example:

salt '*' locale.set_locale 'en_US.UTF-8'

salt.modules.locate

Module for using the locate utilities

	
salt.modules.locate.locate(pattern, database='', limit=0, **kwargs)

	Performs a file lookup. Valid options (and their defaults) are:

basename=False
count=False
existing=False
follow=True
ignore=False
nofollow=False
wholename=True
regex=False
database=<locate's default database>
limit=<integer, not set by default>

See the manpage for locate(1) for further explanation of these options.

CLI Example:

salt '*' locate.locate

	
salt.modules.locate.stats()

	Returns statistics about the locate database

CLI Example:

salt '*' locate.stats

	
salt.modules.locate.updatedb()

	Updates the locate database

CLI Example:

salt '*' locate.updatedb

	
salt.modules.locate.version()

	Returns the version of locate

CLI Example:

salt '*' locate.version

salt.modules.logrotate

Module for managing logrotate.

	
salt.modules.logrotate.set_(key, value, setting=None, conf_file='/etc/logrotate.conf')

	Set a new value for a specific configuration line

CLI Example:

salt '*' logrotate.set rotate 2

Can also be used to set a single value inside a multiline configuration
block. For instance, to change rotate in the following block:

/var/log/wtmp {
 monthly
 create 0664 root root
 rotate 1
}

Use the following command:

salt '*' logrotate.set /var/log/wtmp rotate 2

This module also has the ability to scan files inside an include directory,
and make changes in the appropriate file.

	
salt.modules.logrotate.show_conf(conf_file='/etc/logrotate.conf')

	Show parsed configuration

CLI Example:

salt '*' logrotate.show_conf

salt.modules.lxc

Work with linux containers

	depends:	lxc package for distribution

	
salt.modules.lxc.create(name, config=None, profile=None, options=None, **kwargs)

	Create a new container.

salt 'minion' lxc.create name [config=config_file] \
 [profile=profile] [template=template_name] \
 [backing=backing_store] [vgname=volume_group] \
 [size=filesystem_size] [options=template_options]

	name

	Name of the container.

	config

	The config file to use for the container. Defaults to system-wide
config (usually in /etc/lxc/lxc.conf).

	profile

	A LXC profile (defined in config or pillar).

	template

	The template to use. E.g., 'ubuntu' or 'fedora'.

	backing

	The type of storage to use. Set to 'lvm' to use an LVM group. Defaults
to filesystem within /var/lib/lxc/.

	vgname

	Name of the LVM volume group in which to create the volume for this
container. Only applicable if backing=lvm. Defaults to 'lxc'.

	size

	Size of the volume to create. Only applicable if backing=lvm.
Defaults to 1G.

	options

	Template specific options to pass to the lxc-create command.

	
salt.modules.lxc.destroy(name)

	Destroy the named container.
WARNING: Destroys all data associated with the container.

salt '*' lxc.destroy name

	
salt.modules.lxc.exists(name)

	Returns whether the named container exists.

salt '*' lxc.exists name

	
salt.modules.lxc.freeze(name)

	Freeze the named container.

salt '*' lxc.freeze name

	
salt.modules.lxc.info(name)

	Returns information about a container.

salt '*' lxc.info name

	
salt.modules.lxc.init(name, cpuset=None, cpushare=None, memory=None, nic='default', profile=None, **kwargs)

	Initialize a new container.

salt 'minion' lxc.init name [cpuset=cgroups_cpuset] \
 [cpushare=cgroups_cpushare] [memory=cgroups_memory] \
 [nic=nic_profile] [profile=lxc_profile] \
 [start=(true|false)]

	name

	Name of the container.

	cpuset

	cgroups cpuset.

	cpushare

	cgroups cpu shares.

	memory

	cgroups memory limit, in MB.

	nic

	Network interfaces profile (defined in config or pillar).

	profile

	A LXC profile (defined in config or pillar).

	start

	If true, start the newly created container.

	
salt.modules.lxc.list_()

	List defined containers (running, stopped, and frozen).

salt '*' lxc.list

	
salt.modules.lxc.start(name)

	Start the named container.

salt '*' lxc.start name

	
salt.modules.lxc.state(name)

	Returns the state of a container.

salt '*' lxc.state name

	
salt.modules.lxc.stop(name)

	Stop the named container.

salt '*' lxc.stop name

	
salt.modules.lxc.unfreeze(name)

	Unfreeze the named container.

salt '*' lxc.unfreeze name

salt.modules.makeconf

Support for modifying make.conf under Gentoo

	
salt.modules.makeconf.append_cflags(value)

	Add to or create a new CFLAGS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_cflags '-pipe'

	
salt.modules.makeconf.append_cxxflags(value)

	Add to or create a new CXXFLAGS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_cxxflags '-pipe'

	
salt.modules.makeconf.append_emerge_default_opts(value)

	Add to or create a new EMERGE_DEFAULT_OPTS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_emerge_default_opts '--jobs'

	
salt.modules.makeconf.append_features(value)

	Add to or create a new FEATURES in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_features 'webrsync-gpg'

	
salt.modules.makeconf.append_gentoo_mirrors(value)

	Add to or create a new GENTOO_MIRRORS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_gentoo_mirrors 'http://distfiles.gentoo.org'

	
salt.modules.makeconf.append_makeopts(value)

	Add to or create a new MAKEOPTS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_makeopts '-j3'

	
salt.modules.makeconf.append_var(var, value)

	Add to or create a new variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_var 'LINGUAS' 'en'

	
salt.modules.makeconf.cflags_contains(value)

	Verify if CFLAGS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.cflags_contains '-pipe'

	
salt.modules.makeconf.chost_contains(value)

	Verify if CHOST variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.chost_contains 'x86_64-pc-linux-gnu'

	
salt.modules.makeconf.cxxflags_contains(value)

	Verify if CXXFLAGS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.cxxflags_contains '-pipe'

	
salt.modules.makeconf.emerge_default_opts_contains(value)

	Verify if EMERGE_DEFAULT_OPTS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.emerge_default_opts_contains '--jobs'

	
salt.modules.makeconf.features_contains(value)

	Verify if FEATURES variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.features_contains 'webrsync-gpg'

	
salt.modules.makeconf.gentoo_mirrors_contains(value)

	Verify if GENTOO_MIRRORS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.gentoo_mirrors_contains 'http://distfiles.gentoo.org'

	
salt.modules.makeconf.get_cflags()

	Get the value of CFLAGS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_cflags

	
salt.modules.makeconf.get_chost()

	Get the value of CHOST variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_chost

	
salt.modules.makeconf.get_cxxflags()

	Get the value of CXXFLAGS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_cxxflags

	
salt.modules.makeconf.get_emerge_default_opts()

	Get the value of EMERGE_DEFAULT_OPTS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_emerge_default_opts

	
salt.modules.makeconf.get_features()

	Get the value of FEATURES variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_features

	
salt.modules.makeconf.get_gentoo_mirrors()

	Get the value of GENTOO_MIRRORS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_gentoo_mirrors

	
salt.modules.makeconf.get_makeopts()

	Get the value of MAKEOPTS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_makeopts

	
salt.modules.makeconf.get_sync()

	Get the value of SYNC variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_sync

	
salt.modules.makeconf.get_var(var)

	Get the value of a variable in make.conf

Return the value of the variable or None if the variable is not in
make.conf

CLI Example:

salt '*' makeconf.get_var 'LINGUAS'

	
salt.modules.makeconf.makeopts_contains(value)

	Verify if MAKEOPTS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.makeopts_contains '-j3'

	
salt.modules.makeconf.remove_var(var)

	Remove a variable from the make.conf

Return a dict containing the new value for the variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.remove_var 'LINGUAS'

	
salt.modules.makeconf.set_cflags(value)

	Set the CFLAGS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_cflags '-march=native -O2 -pipe'

	
salt.modules.makeconf.set_chost(value)

	Set the CHOST variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_chost 'x86_64-pc-linux-gnu'

	
salt.modules.makeconf.set_cxxflags(value)

	Set the CXXFLAGS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_cxxflags '-march=native -O2 -pipe'

	
salt.modules.makeconf.set_emerge_default_opts(value)

	Set the EMERGE_DEFAULT_OPTS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_emerge_default_opts '--jobs'

	
salt.modules.makeconf.set_gentoo_mirrors(value)

	Set the GENTOO_MIRRORS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_gentoo_mirrors 'http://distfiles.gentoo.org'

	
salt.modules.makeconf.set_makeopts(value)

	Set the MAKEOPTS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_makeopts '-j3'

	
salt.modules.makeconf.set_sync(value)

	Set the SYNC variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_sync 'rsync://rsync.namerica.gentoo.org/gentoo-portage'

	
salt.modules.makeconf.set_var(var, value)

	Set a variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_var 'LINGUAS' 'en'

	
salt.modules.makeconf.sync_contains(value)

	Verify if SYNC variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.sync_contains 'rsync://rsync.namerica.gentoo.org/gentoo-portage'

	
salt.modules.makeconf.trim_cflags(value)

	Remove a value from CFLAGS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_cflags '-pipe'

	
salt.modules.makeconf.trim_cxxflags(value)

	Remove a value from CXXFLAGS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_cxxflags '-pipe'

	
salt.modules.makeconf.trim_emerge_default_opts(value)

	Remove a value from EMERGE_DEFAULT_OPTS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_emerge_default_opts '--jobs'

	
salt.modules.makeconf.trim_features(value)

	Remove a value from FEATURES variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_features 'webrsync-gpg'

	
salt.modules.makeconf.trim_gentoo_mirrors(value)

	Remove a value from GENTOO_MIRRORS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_gentoo_mirrors 'http://distfiles.gentoo.org'

	
salt.modules.makeconf.trim_makeopts(value)

	Remove a value from MAKEOPTS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_makeopts '-j3'

	
salt.modules.makeconf.trim_var(var, value)

	Remove a value from a variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_var 'LINGUAS' 'en'

	
salt.modules.makeconf.var_contains(var, value)

	Verify if variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.var_contains 'LINGUAS' 'en'

salt.modules.match

The match module allows for match routines to be run and determine target specs

	
salt.modules.match.compound(tgt)

	Return True if the minion matches the given compound target

CLI Example:

salt '*' match.compound 'L@cheese,foo and *'

	
salt.modules.match.data(tgt)

	Return True if the minion matches the given data target

CLI Example:

salt '*' match.data 'spam:eggs'

	
salt.modules.match.glob(tgt)

	Return True if the minion matches the given glob target

CLI Example:

salt '*' match.glob '*'

	
salt.modules.match.grain(tgt, delim=':')

	Return True if the minion matches the given grain target. The delim
argument can be used to specify a different delimiter.

CLI Example:

salt '*' match.grain 'os:Ubuntu'
salt '*' match.grain_pcre 'ipv6|2001:db8::ff00:42:8329' delim='|'

Changed in version 0.16.4: delim argument added

	
salt.modules.match.grain_pcre(tgt, delim=':')

	Return True if the minion matches the given grain_pcre target. The
delim argument can be used to specify a different delimiter.

CLI Example:

salt '*' match.grain_pcre 'os:Fedo.*'
salt '*' match.grain_pcre 'ipv6|2001:.*' delim='|'

Changed in version 0.16.4: delim argument added

	
salt.modules.match.ipcidr(tgt)

	Return True if the minion matches the given ipcidr target

CLI Example:

salt '*' match.ipcidr '192.168.44.0/24'

	
salt.modules.match.list_(tgt)

	Return True if the minion matches the given list target

CLI Example:

salt '*' match.list 'server1,server2'

	
salt.modules.match.pcre(tgt)

	Return True if the minion matches the given pcre target

CLI Example:

salt '*' match.pcre '.*'

	
salt.modules.match.pillar(tgt, delim=':')

	Return True if the minion matches the given pillar target. The
delim argument can be used to specify a different delimiter.

CLI Example:

salt '*' match.pillar 'cheese:foo'
salt '*' match.pillar 'clone_url|https://github.com/saltstack/salt.git' delim='|'

Changed in version 0.16.4: delim argument added

salt.modules.mdadm

Salt module to manage RAID arrays with mdadm

	
salt.modules.mdadm.create(*args)

	Create a RAID device.

Warning

Use with CAUTION, as this function can be very destructive if not used
properly!

Use this module just as a regular mdadm command.

For more info, read the mdadm(8) manpage

NOTE: It takes time to create a RAID array. You can check the progress in
"resync_status:" field of the results from the following command:

salt '*' raid.detail /dev/md0

CLI Examples:

salt '*' raid.create /dev/md0 level=1 chunk=256 raid-devices=2 /dev/xvdd /dev/xvde test_mode=True

Note

Test mode

Adding test_mode=True as an argument will print out the mdadm
command that would have been run.

	Parameters:	
	args -- The arguments u pass to this function.

	arguments -- arguments['new_array']: The name of the new RAID array that will be created.
arguments['opt_val']: Option with Value. Example: raid-devices=2
arguments['opt_raw']: Option without Value. Example: force
arguments['disks_to_array']: The disks that will be added to the new raid.

	Returns:	
	test_mode=True:

	Prints out the full command.

	test_mode=False (Default):

	Executes command on remote the host(s) and
Prints out the mdadm output.

	
salt.modules.mdadm.destroy(device)

	Destroy a RAID device.

WARNING This will zero the superblock of all members of the RAID array..

CLI Example:

salt '*' raid.destroy /dev/md0

	
salt.modules.mdadm.detail(device='/dev/md0')

	Show detail for a specified RAID device

CLI Example:

salt '*' raid.detail '/dev/md0'

	
salt.modules.mdadm.list_()

	List the RAID devices.

CLI Example:

salt '*' raid.list

salt.modules.mine

The function cache system allows for data to be stored on the master so it can be easily read by other minions

	
salt.modules.mine.delete(fun)

	Remove specific function contents of minion. Returns True on success.

CLI Example:

salt '*' mine.delete 'network.interfaces'

	
salt.modules.mine.flush()

	Remove all mine contents of minion. Returns True on success.

CLI Example:

salt '*' mine.flush

	
salt.modules.mine.get(tgt, fun, expr_form='glob')

	Get data from the mine based on the target, function and expr_form

Targets can be matched based on any standard matching system that can be
matched on the master via these keywords:

glob
pcre
grain
grain_pcre
pillar

CLI Example:

salt '*' mine.get '*' network.interfaces
salt '*' mine.get 'os:Fedora' network.interfaces grain

	
salt.modules.mine.send(func, *args, **kwargs)

	Send a specific function to the mine.

CLI Example:

salt '*' mine.send network.interfaces eth0

	
salt.modules.mine.update(clear=False)

	Execute the configured functions and send the data back up to the master
The functions to be executed are merged from the master config, pillar and
minion config under the option "function_cache":

mine_functions:
 network.ip_addrs:
 - eth0
 disk.usage: []

The function cache will be populated with information from executing these
functions

CLI Example:

salt '*' mine.update

salt.modules.modjk

Control Modjk via the Apache Tomcat "Status" worker
(http://tomcat.apache.org/connectors-doc/reference/status.html)

Below is an example of the configuration needed for this module. This
configuration data can be placed either in grains or pillar.

If using grains, this can be accomplished statically or via a grain module.

If using pillar, the yaml configuration can be placed directly into a pillar
SLS file, making this both the easier and more dynamic method of configuring
this module.

modjk:
 default:
 url: http://localhost/jkstatus
 user: modjk
 pass: secret
 realm: authentication realm for digest passwords
 timeout: 5
 otherVhost:
 url: http://otherVhost/jkstatus
 user: modjk
 pass: secret2
 realm: authentication realm2 for digest passwords
 timeout: 600

	
salt.modules.modjk.bulk_activate(workers, lbn, profile='default')

	Activate all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_activate node1,node2,node3
salt '*' modjk.bulk_activate node1,node2,node3 other-profile

salt '*' modjk.bulk_activate ["node1","node2","node3"]
salt '*' modjk.bulk_activate ["node1","node2","node3"] other-profile

	
salt.modules.modjk.bulk_disable(workers, lbn, profile='default')

	Disable all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_disable node1,node2,node3
salt '*' modjk.bulk_disable node1,node2,node3 other-profile

salt '*' modjk.bulk_disable ["node1","node2","node3"]
salt '*' modjk.bulk_disable ["node1","node2","node3"] other-profile

	
salt.modules.modjk.bulk_recover(workers, lbn, profile='default')

	Recover all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_recover node1,node2,node3
salt '*' modjk.bulk_recover node1,node2,node3 other-profile

salt '*' modjk.bulk_recover ["node1","node2","node3"]
salt '*' modjk.bulk_recover ["node1","node2","node3"] other-profile

	
salt.modules.modjk.bulk_stop(workers, lbn, profile='default')

	Stop all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_stop node1,node2,node3
salt '*' modjk.bulk_stop node1,node2,node3 other-profile

salt '*' modjk.bulk_stop ["node1","node2","node3"]
salt '*' modjk.bulk_stop ["node1","node2","node3"] other-profile

	
salt.modules.modjk.dump_config(profile='default')

	Dump the original configuration that was loaded from disk

CLI Examples:

salt '*' modjk.dump_config
salt '*' modjk.dump_config other-profile

	
salt.modules.modjk.get_running(profile='default')

	Get the current running config (not from disk)

CLI Examples:

salt '*' modjk.get_running
salt '*' modjk.get_running other-profile

	
salt.modules.modjk.lb_edit(lbn, settings, profile='default')

	Edit the loadbalancer settings

Note: http://tomcat.apache.org/connectors-doc/reference/status.html
Data Parameters for the standard Update Action

CLI Examples:

salt '*' modjk.lb_edit loadbalancer1 "{'vlr': 1, 'vlt': 60}"
salt '*' modjk.lb_edit loadbalancer1 "{'vlr': 1, 'vlt': 60}" other-profile

	
salt.modules.modjk.list_configured_members(lbn, profile='default')

	Return a list of member workers from the configuration files

CLI Examples:

salt '*' modjk.list_configured_members loadbalancer1
salt '*' modjk.list_configured_members loadbalancer1 other-profile

	
salt.modules.modjk.recover_all(lbn, profile='default')

	Set the all the workers in lbn to recover and activate them if they are not

CLI Examples:

salt '*' modjk.recover_all loadbalancer1
salt '*' modjk.recover_all loadbalancer1 other-profile

	
salt.modules.modjk.reset_stats(lbn, profile='default')

	Reset all runtime statistics for the load balancer

CLI Examples:

salt '*' modjk.reset_stats loadbalancer1
salt '*' modjk.reset_stats loadbalancer1 other-profile

	
salt.modules.modjk.version(profile='default')

	Return the modjk version

CLI Examples:

salt '*' modjk.version
salt '*' modjk.version other-profile

	
salt.modules.modjk.worker_activate(worker, lbn, profile='default')

	Set the worker to activate state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_activate node1 loadbalancer1
salt '*' modjk.worker_activate node1 loadbalancer1 other-profile

	
salt.modules.modjk.worker_disable(worker, lbn, profile='default')

	Set the worker to disable state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_disable node1 loadbalancer1
salt '*' modjk.worker_disable node1 loadbalancer1 other-profile

	
salt.modules.modjk.worker_edit(worker, lbn, settings, profile='default')

	Edit the worker settings

Note: http://tomcat.apache.org/connectors-doc/reference/status.html
Data Parameters for the standard Update Action

CLI Examples:

salt '*' modjk.worker_edit node1 loadbalancer1 "{'vwf': 500, 'vwd': 60}"
salt '*' modjk.worker_edit node1 loadbalancer1 "{'vwf': 500, 'vwd': 60}" other-profile

	
salt.modules.modjk.worker_recover(worker, lbn, profile='default')

	Set the worker to recover
this module will fail if it is in OK state

CLI Examples:

salt '*' modjk.worker_recover node1 loadbalancer1
salt '*' modjk.worker_recover node1 loadbalancer1 other-profile

	
salt.modules.modjk.worker_status(worker, profile='default')

	Return the state of the worker

CLI Examples:

salt '*' modjk.worker_status node1
salt '*' modjk.worker_status node1 other-profile

	
salt.modules.modjk.worker_stop(worker, lbn, profile='default')

	Set the worker to stopped state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_activate node1 loadbalancer1
salt '*' modjk.worker_activate node1 loadbalancer1 other-profile

	
salt.modules.modjk.workers(profile='default')

	Return a list of member workers and their status

CLI Examples:

salt '*' modjk.workers
salt '*' modjk.workers other-profile

salt.modules.mongodb

Module to provide MongoDB functionality to Salt

	configuration:	This module uses PyMongo, and accepts configuration details as
parameters as well as configuration settings:

mongodb.host: 'localhost'
mongodb.port: 27017
mongodb.user: ''
mongodb.password: ''

This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar.

	
salt.modules.mongodb.db_exists(name, user=None, password=None, host=None, port=None)

	Checks if a database exists in Mongodb

CLI Example:

salt '*' mongodb.db_exists <name> <user> <password> <host> <port>

	
salt.modules.mongodb.db_list(user=None, password=None, host=None, port=None)

	List all Mongodb databases

CLI Example:

salt '*' mongodb.db_list <user> <password> <host> <port>

	
salt.modules.mongodb.db_remove(name, user=None, password=None, host=None, port=None)

	Remove a Mongodb database

CLI Example:

salt '*' mongodb.db_remove <name> <user> <password> <host> <port>

	
salt.modules.mongodb.user_create(name, passwd, user=None, password=None, host=None, port=None, database='admin')

	Create a Mongodb user

CLI Example:

salt '*' mongodb.user_create <name> <user> <password> <host> <port> <database>

	
salt.modules.mongodb.user_exists(name, user=None, password=None, host=None, port=None, database='admin')

	Checks if a user exists in Mongodb

CLI Example:

salt '*' mongodb.user_exists <name> <user> <password> <host> <port> <database>

	
salt.modules.mongodb.user_list(user=None, password=None, host=None, port=None, database='admin')

	List users of a Mongodb database

CLI Example:

salt '*' mongodb.user_list <name> <user> <password> <host> <port> <database>

	
salt.modules.mongodb.user_remove(name, user=None, password=None, host=None, port=None, database='admin')

	Remove a Mongodb user

CLI Example:

salt '*' mongodb.user_remove <name> <user> <password> <host> <port> <database>

salt.modules.monit

Monit service module. This module will create a monit type
service watcher.

	
salt.modules.monit.monitor(name)

	monitor service via monit

CLI Example:

salt '*' monit.monitor <service name>

	
salt.modules.monit.restart(name)

	Restart service via monit

CLI Example:

salt '*' monit.restart <service name>

	
salt.modules.monit.start(name)

	CLI Example:

salt '*' monit.start <service name>

	
salt.modules.monit.stop(name)

	Stops service via monit

CLI Example:

salt '*' monit.stop <service name>

	
salt.modules.monit.summary(svc_name='')

	Display a summary from monit

CLI Example:

salt '*' monit.summary
salt '*' monit.summary <service name>

	
salt.modules.monit.unmonitor(name)

	Unmonitor service via monit

CLI Example:

salt '*' monit.unmonitor <service name>

salt.modules.moosefs

Module for gathering and managing information about MooseFS

	
salt.modules.moosefs.dirinfo(path, opts=None)

	Return information on a directory located on the Moose

CLI Example:

salt '*' moosefs.dirinfo /path/to/dir/ [-[n][h|H]]

	
salt.modules.moosefs.fileinfo(path)

	Return information on a file located on the Moose

CLI Example:

salt '*' moosefs.fileinfo /path/to/dir/

	
salt.modules.moosefs.getgoal(path, opts=None)

	Return goal(s) for a file or directory

CLI Example:

salt '*' moosefs.getgoal /path/to/file [-[n][h|H]]
salt '*' moosefs.getgoal /path/to/dir/ [-[n][h|H][r]]

	
salt.modules.moosefs.mounts()

	Return a list of current MooseFS mounts

CLI Example:

salt '*' moosefs.mounts

salt.modules.mount

Salt module to manage unix mounts and the fstab file

	
salt.modules.mount.active()

	List the active mounts.

CLI Example:

salt '*' mount.active

	
salt.modules.mount.fstab(config='/etc/fstab')

	List the contents of the fstab

CLI Example:

salt '*' mount.fstab

	
salt.modules.mount.is_fuse_exec(cmd)

	Returns true if the command passed is a fuse mountable application.

CLI Example:

salt '*' mount.is_fuse_exec sshfs

	
salt.modules.mount.mount(name, device, mkmnt=False, fstype='', opts='defaults')

	Mount a device

CLI Example:

salt '*' mount.mount /mnt/foo /dev/sdz1 True

	
salt.modules.mount.remount(name, device, mkmnt=False, fstype='', opts='defaults')

	Attempt to remount a device, if the device is not already mounted, mount
is called

CLI Example:

salt '*' mount.remount /mnt/foo /dev/sdz1 True

	
salt.modules.mount.rm_fstab(name, config='/etc/fstab')

	Remove the mount point from the fstab

CLI Example:

salt '*' mount.rm_fstab /mnt/foo

	
salt.modules.mount.set_fstab(name, device, fstype, opts='defaults', dump=0, pass_num=0, config='/etc/fstab', test=False, **kwargs)

	Verify that this mount is represented in the fstab, change the mount
to match the data passed, or add the mount if it is not present.

CLI Example:

salt '*' mount.set_fstab /mnt/foo /dev/sdz1 ext4

	
salt.modules.mount.swapoff(name)

	Deactivate a named swap mount

CLI Example:

salt '*' mount.swapoff /root/swapfile

	
salt.modules.mount.swapon(name, priority=None)

	Activate a swap disk

CLI Example:

salt '*' mount.swapon /root/swapfile

	
salt.modules.mount.swaps()

	Return a dict containing information on active swap

CLI Example:

salt '*' mount.swaps

	
salt.modules.mount.umount(name)

	Attempt to unmount a device by specifying the directory it is mounted on

CLI Example:

salt '*' mount.umount /mnt/foo

salt.modules.munin

Run munin plugins/checks from salt and format the output as data.

	
salt.modules.munin.list_plugins()

	List all the munin plugins

CLI Example:

salt '*' munin.list_plugins

	
salt.modules.munin.run(plugins)

	Run one or more named munin plugins

CLI Example:

salt '*' munin.run uptime
salt '*' munin.run uptime,cpu,load,memory

	
salt.modules.munin.run_all()

	Run all the munin plugins

CLI Example:

salt '*' munin.run_all

salt.modules.mysql

Module to provide MySQL compatibility to salt.

	depends:	
	MySQLdb Python module

	configuration:	In order to connect to MySQL, certain configuration is required
in /etc/salt/minion on the relevant minions. Some sample configs might look
like:

mysql.host: 'localhost'
mysql.port: 3306
mysql.user: 'root'
mysql.pass: ''
mysql.db: 'mysql'
mysql.unix_socket: '/tmp/mysql.sock'

You can also use a defaults file:

mysql.default_file: '/etc/mysql/debian.cnf'

Changed in version 0.16.2: Connection arguments from the minion config file can be overridden on the
CLI by using the arguments defined here. Additionally, it is now possible
to setup a user with no password.

	
salt.modules.mysql.db_check(name, table=None, **connection_args)

	Repairs the full database or just a given table

CLI Example:

salt '*' mysql.db_check dbname

	
salt.modules.mysql.db_create(name, **connection_args)

	Adds a databases to the MySQL server.

CLI Example:

salt '*' mysql.db_create 'dbname'

	
salt.modules.mysql.db_exists(name, **connection_args)

	Checks if a database exists on the MySQL server.

CLI Example:

salt '*' mysql.db_exists 'dbname'

	
salt.modules.mysql.db_list(**connection_args)

	Return a list of databases of a MySQL server using the output
from the SHOW DATABASES query.

CLI Example:

salt '*' mysql.db_list

	
salt.modules.mysql.db_optimize(name, table=None, **connection_args)

	Optimizes the full database or just a given table

CLI Example:

salt '*' mysql.db_optimize dbname

	
salt.modules.mysql.db_remove(name, **connection_args)

	Removes a databases from the MySQL server.

CLI Example:

salt '*' mysql.db_remove 'dbname'

	
salt.modules.mysql.db_repair(name, table=None, **connection_args)

	Repairs the full database or just a given table

CLI Example:

salt '*' mysql.db_repair dbname

	
salt.modules.mysql.db_tables(name, **connection_args)

	Shows the tables in the given MySQL database (if exists)

CLI Example:

salt '*' mysql.db_tables 'database'

	
salt.modules.mysql.free_slave(**connection_args)

	Frees a slave from its master. This is a WIP, do not use.

CLI Example:

salt '*' mysql.free_slave

	
salt.modules.mysql.get_master_status(**connection_args)

	Retrieves the master status from the minion.

	Returns:

	
	{'host.domain.com': {'Binlog_Do_DB': '',

	'Binlog_Ignore_DB': '',
'File': 'mysql-bin.000021',
'Position': 107}}

CLI Example:

salt '*' mysql.get_master_status

	
salt.modules.mysql.get_slave_status(**connection_args)

	Retrieves the slave status from the minion.

Returns:

{'host.domain.com': {'Connect_Retry': 60,
 'Exec_Master_Log_Pos': 107,
 'Last_Errno': 0,
 'Last_Error': '',
 'Last_IO_Errno': 0,
 'Last_IO_Error': '',
 'Last_SQL_Errno': 0,
 'Last_SQL_Error': '',
 'Master_Host': 'comet.scion-eng.com',
 'Master_Log_File': 'mysql-bin.000021',
 'Master_Port': 3306,
 'Master_SSL_Allowed': 'No',
 'Master_SSL_CA_File': '',
 'Master_SSL_CA_Path': '',
 'Master_SSL_Cert': '',
 'Master_SSL_Cipher': '',
 'Master_SSL_Key': '',
 'Master_SSL_Verify_Server_Cert': 'No',
 'Master_Server_Id': 1,
 'Master_User': 'replu',
 'Read_Master_Log_Pos': 107,
 'Relay_Log_File': 'klo-relay-bin.000071',
 'Relay_Log_Pos': 253,
 'Relay_Log_Space': 553,
 'Relay_Master_Log_File': 'mysql-bin.000021',
 'Replicate_Do_DB': '',
 'Replicate_Do_Table': '',
 'Replicate_Ignore_DB': '',
 'Replicate_Ignore_Server_Ids': '',
 'Replicate_Ignore_Table': '',
 'Replicate_Wild_Do_Table': '',
 'Replicate_Wild_Ignore_Table': '',
 'Seconds_Behind_Master': 0,
 'Skip_Counter': 0,
 'Slave_IO_Running': 'Yes',
 'Slave_IO_State': 'Waiting for master to send event',
 'Slave_SQL_Running': 'Yes',
 'Until_Condition': 'None',
 'Until_Log_File': '',
 'Until_Log_Pos': 0}}

CLI Example:

salt '*' mysql.get_slave_status

	
salt.modules.mysql.grant_add(grant, database, user, host='localhost', grant_option=False, escape=True, **connection_args)

	Adds a grant to the MySQL server.

For database, make sure you specify database.table or database.*

CLI Example:

salt '*' mysql.grant_add 'SELECT,INSERT,UPDATE,...' 'database.*' 'frank' 'localhost'

	
salt.modules.mysql.grant_exists(grant, database, user, host='localhost', grant_option=False, escape=True, **connection_args)

	Checks to see if a grant exists in the database

CLI Example:

salt '*' mysql.grant_exists 'SELECT,INSERT,UPDATE,...' 'database.*' 'frank' 'localhost'

	
salt.modules.mysql.grant_revoke(grant, database, user, host='localhost', grant_option=False, escape=True, **connection_args)

	Removes a grant from the MySQL server.

CLI Example:

salt '*' mysql.grant_revoke 'SELECT,INSERT,UPDATE' 'database.*' 'frank' 'localhost'

	
salt.modules.mysql.processlist(**connection_args)

	Retrieves the processlist from the MySQL server via
"SHOW FULL PROCESSLIST".

	Returns: a list of dicts, with each dict representing a process:

	
	{'Command': 'Query',

	'Host': 'localhost',
'Id': 39,
'Info': 'SHOW FULL PROCESSLIST',
'Rows_examined': 0,
'Rows_read': 1,
'Rows_sent': 0,
'State': None,
'Time': 0,
'User': 'root',
'db': 'mysql'}

CLI Example:

salt '*' mysql.processlist

	
salt.modules.mysql.query(database, query, **connection_args)

	Run an arbitrary SQL query and return the results or
the number of affected rows.

CLI Example:

salt '*' mysql.query mydb "UPDATE mytable set myfield=1 limit 1"

Return data:

{'query time': {'human': '39.0ms', 'raw': '0.03899'}, 'rows affected': 1L}

CLI Example:

salt '*' mysql.query mydb "SELECT id,name,cash from users limit 3"

Return data:

{'columns': ('id', 'name', 'cash'),
 'query time': {'human': '1.0ms', 'raw': '0.001'},
 'results': ((1L, 'User 1', Decimal('110.000000')),
 (2L, 'User 2', Decimal('215.636756')),
 (3L, 'User 3', Decimal('0.040000'))),
 'rows returned': 3L}

CLI Example:

salt '*' mysql.query mydb 'INSERT into users values (null,"user 4", 5)'

Return data:

{'query time': {'human': '25.6ms', 'raw': '0.02563'}, 'rows affected': 1L}

CLI Example:

salt '*' mysql.query mydb 'DELETE from users where id = 4 limit 1'

Return data:

{'query time': {'human': '39.0ms', 'raw': '0.03899'}, 'rows affected': 1L}

Jinja Example: Run a query on mydb and use row 0, column 0's data.

{{ salt['mysql.query']('mydb', 'SELECT info from mytable limit 1')['results'][0][0] }}

	
salt.modules.mysql.slave_lag(**connection_args)

	Return the number of seconds that a slave SQL server is lagging behind the
master, if the host is not a slave it will return -1. If the server is
configured to be a slave for replication but slave IO is not running then
-2 will be returned. If there was an error connecting to the database or
checking the slave status, -3 will be returned.

CLI Example:

salt '*' mysql.slave_lag

	
salt.modules.mysql.status(**connection_args)

	Return the status of a MySQL server using the output from the SHOW
STATUS query.

CLI Example:

salt '*' mysql.status

	
salt.modules.mysql.user_chpass(user, host='localhost', password=None, password_hash=None, allow_passwordless=False, **connection_args)

	Change password for a MySQL user

	host

	Host for which this user/password combo applies

	password

	The password to set for the new user. Will take precedence over the
password_hash option if both are specified.

	password_hash

	The password in hashed form. Be sure to quote the password because YAML
doesn't like the *. A password hash can be obtained from the mysql
command-line client like so:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
1 row in set (0.00 sec)

	allow_passwordless

	If True, then password and password_hash can be omitted (or
set to None) to permit a passwordless login.

New in version 0.16.2: The allow_passwordless option was added.

CLI Examples:

salt '*' mysql.user_chpass frank localhost newpassword
salt '*' mysql.user_chpass frank localhost password_hash='hash'
salt '*' mysql.user_chpass frank localhost allow_passwordless=True

	
salt.modules.mysql.user_create(user, host='localhost', password=None, password_hash=None, allow_passwordless=False, **connection_args)

	Creates a MySQL user

	host

	Host for which this user/password combo applies

	password

	The password to use for the new user. Will take precedence over the
password_hash option if both are specified.

	password_hash

	The password in hashed form. Be sure to quote the password because YAML
doesn't like the *. A password hash can be obtained from the mysql
command-line client like so:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
1 row in set (0.00 sec)

	allow_passwordless

	If True, then password and password_hash can be omitted (or
set to None) to permit a passwordless login.

New in version 0.16.2: The allow_passwordless option was added.

CLI Examples:

salt '*' mysql.user_create 'username' 'hostname' 'password'
salt '*' mysql.user_create 'username' 'hostname' password_hash='hash'
salt '*' mysql.user_create 'username' 'hostname' allow_passwordless=True

	
salt.modules.mysql.user_exists(user, host='localhost', password=None, password_hash=None, passwordless=False, **connection_args)

	Checks if a user exists on the MySQL server. A login can be checked to see
if passwordless login is permitted by omitting password and
password_hash, and using passwordless=True.

New in version 0.16.2: The passwordless option was added.

CLI Example:

salt '*' mysql.user_exists 'username' 'hostname' 'password'
salt '*' mysql.user_exists 'username' 'hostname' password_hash='hash'
salt '*' mysql.user_exists 'username' passwordless=True

	
salt.modules.mysql.user_grants(user, host='localhost', **connection_args)

	Shows the grants for the given MySQL user (if it exists)

CLI Example:

salt '*' mysql.user_grants 'frank' 'localhost'

	
salt.modules.mysql.user_info(user, host='localhost', **connection_args)

	Get full info on a MySQL user

CLI Example:

salt '*' mysql.user_info root localhost

	
salt.modules.mysql.user_list(**connection_args)

	Return a list of users on a MySQL server

CLI Example:

salt '*' mysql.user_list

	
salt.modules.mysql.user_remove(user, host='localhost', **connection_args)

	Delete MySQL user

CLI Example:

salt '*' mysql.user_remove frank localhost

	
salt.modules.mysql.version(**connection_args)

	Return the version of a MySQL server using the output from the SELECT
VERSION() query.

CLI Example:

salt '*' mysql.version

salt.modules.netbsd_sysctl

Module for viewing and modifying sysctl parameters

	
salt.modules.netbsd_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

	
salt.modules.netbsd_sysctl.get(name)

	Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get hw.physmem

	
salt.modules.netbsd_sysctl.persist(name, value)

	Assign and persist a simple sysctl parameter for this minion

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50

	
salt.modules.netbsd_sysctl.show()

	Return a list of sysctl parameters for this minion

CLI Example:

salt '*' sysctl.show

salt.modules.netbsdservice

The service module for NetBSD

	
salt.modules.netbsdservice.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.netbsdservice.disabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.netbsdservice.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.netbsdservice.enabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.netbsdservice.force_reload(name)

	Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.netbsdservice.get_all()

	Return all available boot services

CLI Example:

salt '*' service.get_all

	
salt.modules.netbsdservice.get_disabled()

	Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

	
salt.modules.netbsdservice.get_enabled()

	Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

	
salt.modules.netbsdservice.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.netbsdservice.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.netbsdservice.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.netbsdservice.status(name, sig=None)

	Return the status for a service, returns a bool whether the service is
running.

CLI Example:

salt '*' service.status <service name>

	
salt.modules.netbsdservice.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.network

Module for gathering and managing network information

	
salt.modules.network.arp()

	Return the arp table from the minion

CLI Example:

salt '*' '*' network.arp

	
salt.modules.network.dig(host)

	Performs a DNS lookup with dig

CLI Example:

salt '*' network.dig archlinux.org

	
salt.modules.network.hw_addr(iface)

	Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr eth0

	
salt.modules.network.hwaddr(iface)

	Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr eth0

	
salt.modules.network.in_subnet(cidr)

	Returns True if host is within specified subnet, otherwise False.

CLI Example:

salt '*' network.in_subnet 10.0.0.0/16

	
salt.modules.network.interfaces()

	Return a dictionary of information about all the interfaces on the minion

CLI Example:

salt '*' network.interfaces

	
salt.modules.network.ip_addrs(interface=None, include_loopback=False)

	Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is
ignored, unless 'include_loopback=True' is indicated. If 'interface' is
provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs

	
salt.modules.network.ip_addrs6(interface=None, include_loopback=False)

	Returns a list of IPv6 addresses assigned to the host. ::1 is ignored,
unless 'include_loopback=True' is indicated. If 'interface' is provided,
then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs6

	
salt.modules.network.ipaddrs(interface=None, include_loopback=False)

	Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is
ignored, unless 'include_loopback=True' is indicated. If 'interface' is
provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs

	
salt.modules.network.ipaddrs6(interface=None, include_loopback=False)

	Returns a list of IPv6 addresses assigned to the host. ::1 is ignored,
unless 'include_loopback=True' is indicated. If 'interface' is provided,
then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs6

	
salt.modules.network.netstat()

	Return information on open ports and states

CLI Example:

salt '*' network.netstat

	
salt.modules.network.ping(host)

	Performs a ping to a host

CLI Example:

salt '*' network.ping archlinux.org

	
salt.modules.network.subnets()

	Returns a list of subnets to which the host belongs

CLI Example:

salt '*' network.subnets

	
salt.modules.network.traceroute(host)

	Performs a traceroute to a 3rd party host

CLI Example:

salt '*' network.traceroute archlinux.org

salt.modules.nfs3

Module for managing NFS version 3.

	
salt.modules.nfs3.del_export(exports='/etc/exports', path=None)

	Remove an export

CLI Example:

salt '*' nfs.del_export /media/storage

	
salt.modules.nfs3.list_exports(exports='/etc/exports')

	List configured exports

CLI Example:

salt '*' nfs.list_exports

salt.modules.nginx

Support for nginx

	
salt.modules.nginx.configtest()

	test configuration and exit

CLI Example:

salt '*' nginx.configtest

	
salt.modules.nginx.signal(signal=None)

	Signals nginx to start, reload, reopen or stop.

CLI Example:

salt '*' nginx.signal reload

	
salt.modules.nginx.version()

	Return server version from nginx -v

CLI Example:

salt '*' nginx.version

salt.modules.nova

Module for handling openstack nova calls.

	depends:	
	novaclient Python module

	configuration:	This module is not usable until the user, password, tenant, and
auth URL are specified either in a pillar or in the minion's config file.
For example:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

If configuration for multiple openstack accounts is required, they can be
set up as different configuration profiles:
For example:

openstack1:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

With this configuration in place, any of the nova functions can make use of
a configuration profile by declaring it explicitly.
For example:

salt '*' nova.flavor_list profile=openstack1

	
salt.modules.nova.boot(name, flavor_id=0, image_id=0, profile=None)

	Boot (create) a new instance

<name> Name of the new instance (must be first)
<flavor_id> Unique integer ID for the flavor
<image_id> Unique integer ID for the image

CLI Example:

salt '*' nova.boot myinstance flavor_id=4596 image_id=2

The flavor_id and image_id are obtained from nova.flavor_list and
nova.image_list

salt '*' nova.flavor_list
salt '*' nova.image_list

	
salt.modules.nova.delete(instance_id, profile=None)

	Boot (create) a new instance

<instance_id> ID of the instance to be deleted

CLI Example:

salt '*' nova.delete 1138

	
salt.modules.nova.flavor_create(name, id=0, ram=0, disk=0, vcpus=1, profile=None)

	Add a flavor to nova (nova flavor-create). The following parameters are
required:

<name> Name of the new flavor (must be first)
<id> Unique integer ID for the new flavor
<ram> Memory size in MB
<disk> Disk size in GB
<vcpus> Number of vcpus

CLI Example:

salt '*' nova.flavor_create myflavor id=6 ram=4096 disk=10 vcpus=1

	
salt.modules.nova.flavor_delete(id, profile=None)

	Delete a flavor from nova by id (nova flavor-delete)

CLI Example:

salt '*' nova.flavor_delete 7'

	
salt.modules.nova.flavor_list(profile=None)

	Return a list of available flavors (nova flavor-list)

CLI Example:

salt '*' nova.flavor_list

	
salt.modules.nova.image_list(name=None, profile=None)

	Return a list of available images (nova images-list + nova image-show)
If a name is provided, only that image will be displayed.

CLI Examples:

salt '*' nova.image_list
salt '*' nova.image_list myimage

	
salt.modules.nova.image_meta_delete(id=None, name=None, keys=None, profile=None)

	Delete a key=value pair from the metadata for an image (nova image-meta set)

CLI Examples:

salt '*' nova.image_meta_delete id=6f52b2ff-0b31-4d84-8fd1-af45b84824f6 keys=cheese
salt '*' nova.image_meta_delete name=myimage keys=salad,beans

	
salt.modules.nova.image_meta_set(id=None, name=None, profile=None, **kwargs)

	Sets a key=value pair in the metadata for an image (nova image-meta set)

CLI Examples:

salt '*' nova.image_meta_set id=6f52b2ff-0b31-4d84-8fd1-af45b84824f6 cheese=gruyere
salt '*' nova.image_meta_set name=myimage salad=pasta beans=baked

	
salt.modules.nova.keypair_add(name, pubfile=None, pubkey=None, profile=None)

	Add a keypair to nova (nova keypair-add)

CLI Examples:

salt '*' nova.keypair_add mykey pubfile='/home/myuser/.ssh/id_rsa.pub'
salt '*' nova.keypair_add mykey pubkey='ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAuGj4A7HcPLPl/etc== myuser@mybox'

	
salt.modules.nova.keypair_delete(name, profile=None)

	Add a keypair to nova (nova keypair-delete)

CLI Example:

salt '*' nova.keypair_delete mykey'

	
salt.modules.nova.keypair_list(profile=None)

	Return a list of available keypairs (nova keypair-list)

CLI Example:

salt '*' nova.keypair_list

	
salt.modules.nova.list_(profile=None)

	To maintain the feel of the nova command line, this function simply calls
the server_list function.

	
salt.modules.nova.secgroup_create(name, description, profile=None)

	Add a secgroup to nova (nova secgroup-create)

CLI Example:

salt '*' nova.secgroup_create mygroup 'This is my security group'

	
salt.modules.nova.secgroup_delete(name, profile=None)

	Delete a secgroup to nova (nova secgroup-delete)

CLI Example:

salt '*' nova.secgroup_delete mygroup

	
salt.modules.nova.secgroup_list(profile=None)

	Return a list of available security groups (nova items-list)

CLI Example:

salt '*' nova.secgroup_list

	
salt.modules.nova.server_list(profile=None)

	Return detailed information for an active server

CLI Example:

salt '*' nova.show

	
salt.modules.nova.server_show(server_id, profile=None)

	Return detailed information for an active server

CLI Example:

salt '*' nova.show

	
salt.modules.nova.show(server_id, profile=None)

	To maintain the feel of the nova command line, this function simply calls
the server_show function.

salt.modules.npm

Manage and query NPM packages.

	
salt.modules.npm.install(pkg=None, dir=None, runas=None)

	Install an NPM package.

If no directory is specified, the package will be installed globally. If
no package is specified, the dependencies (from package.json) of the
package in the given directory will be installed.

	pkg

	A package name in any format accepted by NPM

	dir

	The target directory in which to install the package, or None for
global installation

	runas

	The user to run NPM with

CLI Example:

salt '*' npm.install coffee-script

	
salt.modules.npm.list_(pkg=None, dir=None)

	List installed NPM packages.

If no directory is specified, this will return the list of globally-
installed packages.

	pkg

	Limit package listing by name

	dir

	The directory whose packages will be listed, or None for global
installation

CLI Example:

salt '*' npm.list

	
salt.modules.npm.uninstall(pkg, dir=None, runas=None)

	Uninstall an NPM package.

If no directory is specified, the package will be uninstalled globally.

	pkg

	A package name in any format accepted by NPM

	dir

	The target directory from which to uninstall the package, or None for
global installation

	runas

	The user to run NPM with

CLI Example:

salt '*' npm.uninstall coffee-script

salt.modules.nzbget

Support for nzbget

	
salt.modules.nzbget.list_(user=None)

	Return list of active downloads using nzbget -L. Default user is root.

CLI Example:

salt '*' nzbget.list larry

	
salt.modules.nzbget.pause(user=None)

	Pause nzbget daemon using -P option. Default user is root.

CLI Example:

salt '*' nzbget.pause shemp

	
salt.modules.nzbget.serverversion()

	Return server version from nzbget -V. Default user is root.

CLI Example:

salt '*' nzbget.serverversion moe

	
salt.modules.nzbget.start(user=None)

	Start nzbget as a daemon using -D option. Default user is root.

CLI Example:

salt '*' nzbget.start

	
salt.modules.nzbget.stop(user=None)

	Stop nzbget daemon using -Q option. Default user is root.

CLI Example:

salt '*' nzbget.stop curly

	
salt.modules.nzbget.unpause(user=None)

	Unpause nzbget daemon using -U option. Default user is root.

CLI Example:

salt '*' nzbget.unpause shemp

	
salt.modules.nzbget.version()

	Return version from nzbget -v.

CLI Example:

salt '*' nzbget.version

salt.modules.openbsdpkg

Package support for OpenBSD

	
salt.modules.openbsdpkg.install(name=None, pkgs=None, sources=None, **kwargs)

	Install the passed package

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example, Install one package:

salt '*' pkg.install <package name>

CLI Example, Install more than one package:

salt '*' pkg.install pkgs='["<package name>", "<package name>"]'

CLI Example, Install more than one package from a alternate source (e.g. salt file-server, HTTP, FTP, local filesystem):

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]'

	
salt.modules.openbsdpkg.latest_version(*names, **kwargs)

	The available version of the package in the repository

CLI Example:

salt '*' pkg.latest_version <package name>

	
salt.modules.openbsdpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.openbsdpkg.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.openbsdpkg.remove(name=None, pkgs=None, **kwargs)

	Remove a single package with pkg_delete

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.openbsdpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.openbsdservice

The service module for OpenBSD

	
salt.modules.openbsdservice.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.openbsdservice.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.openbsdservice.status(name, sig=None)

	Return the status for a service, returns a bool whether the service is
running.

CLI Example:

salt '*' service.status <service name>

	
salt.modules.openbsdservice.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.osxdesktop

Mac OS X implementations of various commands in the "desktop" interface

	
salt.modules.osxdesktop.get_output_volume()

	Get the output volume (range 0 to 100)

CLI Example:

salt '*' desktop.get_output_volume

	
salt.modules.osxdesktop.lock()

	Lock the desktop session

CLI Example:

salt '*' desktop.lock

	
salt.modules.osxdesktop.say(*words)

	Say some words.

CLI Example:

salt '*' desktop.say <word0> <word1> ... <wordN>

	
salt.modules.osxdesktop.screensaver()

	Launch the screensaver

CLI Example:

salt '*' desktop.screensaver

	
salt.modules.osxdesktop.set_output_volume(volume)

	Set the volume of sound (range 0 to 100)

CLI Example:

salt '*' desktop.set_output_volume <volume>

salt.modules.pacman

A module to wrap pacman calls, since Arch is the best
(https://wiki.archlinux.org/index.php/Arch_is_the_best)

	
salt.modules.pacman.file_dict(*packages)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.pacman.file_list(*packages)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.pacman.install(name=None, refresh=True, pkgs=None, sources=None, **kwargs)

	Install the passed package, add refresh=True to install with an -Sy.

	name

	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

CLI Example:

salt '*' pkg.install <package name>

	refresh

	Whether or not to refresh the package database before installing.

Multiple Package Installation Options:

	pkgs

	A list of packages to install from a software repository. Must be
passed as a python list. A specific version number can be specified
by using a single-element dict representing the package and its
version. As with the version parameter above, comparison operators
can be used to target a specific version of a package.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4"}]'
salt '*' pkg.install pkgs='["foo", {"bar": "<1.2.3-4"}]'

	sources

	A list of packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.pkg.tar.xz"},{"bar": "salt://bar.pkg.tar.xz"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.pacman.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.pacman.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.pacman.list_upgrades()

	List all available package upgrades on this system

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.pacman.purge(name=None, pkgs=None, **kwargs)

	Recursively remove a package and all dependencies which were installed
with it, this will call a pacman -Rsc

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.pacman.refresh_db()

	Just run a pacman -Sy, return a dict:

{'<database name>': Bool}

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.pacman.remove(name=None, pkgs=None, **kwargs)

	Remove packages with pacman -R.

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.pacman.upgrade()

	Run a full system upgrade, a pacman -Syu

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.pacman.upgrade_available(name)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.pacman.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.pam

Support for pam

	
salt.modules.pam.read_file(file_name)

	This is just a test function, to make sure parsing works

CLI Example:

salt '*' pam.read_file /etc/pam.d/login

salt.modules.parted

Module for managing partitions on POSIX-like systems.

Some functions may not be available, depending on your version of parted.

Check the manpage for parted(8) for more information, or the online docs
at:

http://www.gnu.org/software/parted/manual/html_chapter/parted_2.html

In light of parted not directly supporting partition IDs, some of this module
has been written to utilize sfdisk instead. For further information, please
reference the man page for sfdisk(8).

	
salt.modules.parted.align_check(device, part_type, partition)

	partition.align_check device part_type partition

Check if partition satisfies the alignment constraint of part_type.
Type must be "minimal" or "optimal".

CLI Example:

salt '*' partition.align_check /dev/sda minimal 1

	
salt.modules.parted.check(device, minor)

	partition.check device minor

Checks if the file system on partition <minor> has any errors.

CLI Example:

salt '*' partition.check 1

	
salt.modules.parted.cp(device, from_minor, to_minor)

	partition.check device from_minor to_minor

	Copies the file system on the partition <from-minor> to partition

	<to-minor>, deleting the original contents of the destination
partition.

CLI Example:

salt '*' partition.cp /dev/sda 2 3

	
salt.modules.parted.get_id(device, minor)

	Prints the system ID for the partition. Some typical values are:

 b: FAT32 (vfat)
 7: HPFS/NTFS
82: Linux Swap
83: Linux
8e: Linux LVM
fd: Linux RAID Auto

CLI Example:

salt '*' partition.get_id /dev/sda 1

	
salt.modules.parted.mkfs(device, fs_type)

	partition.mkfs device fs_type

	Makes a file system <fs_type> on partition <device>, destroying all data

	that resides on that partition. <fs_type> must be one of "ext2",
"fat32", "fat16", "linux-swap" or "reiserfs" (if libreiserfs is
installed)

CLI Example:

salt '*' partition.mkfs /dev/sda2 fat32

	
salt.modules.parted.mklabel(device, label_type)

	partition.mklabel device label_type

Create a new disklabel (partition table) of label_type.
Type should be one of "aix", "amiga", "bsd", "dvh", "gpt", "loop", "mac",
"msdos", "pc98", or "sun".

CLI Example:

salt '*' partition.mklabel /dev/sda msdos

	
salt.modules.parted.mkpart(device, part_type, fs_type, start, end)

	partition.mkpart device part_type fs_type start end

	Make a part_type partition for filesystem fs_type, beginning at start and

	ending at end (by default in megabytes). part_type should be one of
"primary", "logical", or "extended".

CLI Example:

salt '*' partition.mkpart /dev/sda primary fat32 0 639

	
salt.modules.parted.mkpartfs(device, part_type, fs_type, start, end)

	partition.mkpartfs device part_type fs_type start end

	Make a <part_type> partition with a new filesystem of <fs_type>, beginning

	at <start> and ending at <end> (by default in megabytes). <part_type>
should be one of "primary", "logical", or "extended". <fs_type> must be
one of "ext2", "fat32", "fat16", "linux-swap" or "reiserfs" (if
libreiserfs is installed)

CLI Example:

salt '*' partition.mkpartfs /dev/sda logical ext2 440 670

	
salt.modules.parted.name(device, partition, name)

	partition.name device partition name

	Set the name of partition to name. This option works only on Mac, PC98,

	and GPT disklabels. The name can be placed in quotes, if necessary.

CLI Example:

salt '*' partition.name /dev/sda 1 'My Documents'

	
salt.modules.parted.part_list(device, unit=None)

	partition.part_list device unit

Prints partition information of given <device>

CLI Examples:

salt '*' partition.part_list /dev/sda
salt '*' partition.part_list /dev/sda unit=s
salt '*' partition.part_list /dev/sda unit=kB

	
salt.modules.parted.probe(device='')

	Ask the kernel to update its local partition data

CLI Examples:

salt '*' partition.probe
salt '*' partition.probe /dev/sda

	
salt.modules.parted.rescue(device, start, end)

	partition.rescue device start end

	Rescue a lost partition that was located somewhere between start and end.

	If a partition is found, parted will ask if you want to create an
entry for it in the partition table.

CLI Example:

salt '*' partition.rescue /dev/sda 0 8056

	
salt.modules.parted.resize(device, minor, start, end)

	partition.resize device minor, start, end

	Resizes the partition with number <minor>. The partition will start <start>

	from the beginning of the disk, and end <end> from the beginning of the
disk. resize never changes the minor number. Extended partitions can be
resized, so long as the new extended partition completely contains all
logical partitions.

CLI Example:

salt '*' partition.resize /dev/sda 3 200 850

	
salt.modules.parted.rm(device, minor)

	partition.rm device minor

Removes the partition with number <minor>.

CLI Example:

salt '*' partition.rm /dev/sda 5

	
salt.modules.parted.set_(device, minor, flag, state)

	partition.set device minor flag state

	Changes a flag on the partition with number <minor>. A flag can be either

	"on" or "off". Some or all of these flags will be available, depending
on what disk label you are using.

CLI Example:

salt '*' partition.set /dev/sda 1 boot on

	
salt.modules.parted.set_id(device, minor, system_id)

	Sets the system ID for the partition. Some typical values are:

 b: FAT32 (vfat)
 7: HPFS/NTFS
82: Linux Swap
83: Linux
8e: Linux LVM
fd: Linux RAID Auto

CLI Example:

salt '*' partition.set_id /dev/sda 1 83

	
salt.modules.parted.toggle(device, partition, flag)

	partition.toggle device partition flag

Toggle the state of <flag> on <partition>

CLI Example:

salt '*' partition.name /dev/sda 1 boot

salt.modules.pecl

Manage PHP pecl extensions.

	
salt.modules.pecl.install(pecls, defaults=False, force=False)

	Installs one or several pecl extensions.

	pecls

	The pecl extensions to install.

	defaults

	Use default answers for extensions such as pecl_http which ask
questions before installation. Without this option, the pecl.installed
state will hang indefinitely when trying to install these extensions.

	force

	Whether to force the installed version or not

Note

The defaults option will be available in version 0.17.0.

CLI Example:

salt '*' pecl.install fuse

	
salt.modules.pecl.list_()

	List installed pecl extensions.

CLI Example:

salt '*' pecl.list

	
salt.modules.pecl.uninstall(pecls)

	Uninstall one or several pecl extensions.

	pecls

	The pecl extensions to uninstall.

CLI Example:

salt '*' pecl.uninstall fuse

	
salt.modules.pecl.update(pecls)

	Update one or several pecl extensions.

	pecls

	The pecl extensions to update.

CLI Example:

salt '*' pecl.update fuse

salt.modules.pillar

Extract the pillar data for this minion

	
salt.modules.pillar.ext(external)

	Generate the pillar and apply an explicit external pillar

CLI Example:

salt '*' pillar.ext 'libvirt: _'

	
salt.modules.pillar.get(key, default='')

	
New in version 0.14.

Attempt to retrieve the named value from pillar, if the named value is not
available return the passed default. The default return is an empty string.

The value can also represent a value in a nested dict using a ":" delimiter
for the dict. This means that if a dict in pillar looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg dict this
key can be passed:

pkg:apache

CLI Example:

salt '*' pillar.get pkg:apache

	
salt.modules.pillar.item(*args)

	
New in version 0.16.2.

Return one ore more pillar entries

CLI Examples:

salt '*' pillar.item foo
salt '*' pillar.item foo bar baz

	
salt.modules.pillar.items(*args)

	This function calls the master for a fresh pillar and generates the pillar
data on the fly, unlike pillar.raw which returns the pillar data which
is currently loaded into the minion.

CLI Example:

salt '*' pillar.items

	
salt.modules.pillar.raw(key=None)

	Return the raw pillar data that is available in the module. This will
show the pillar as it is loaded as the __pillar__ dict.

CLI Example:

salt '*' pillar.raw

With the optional key argument, you can select a subtree of the
pillar raw data.:

salt '*' pillar.raw key='roles'

salt.modules.pip

Install Python packages with pip to either the system or a virtualenv

	
salt.modules.pip.freeze(bin_env=None, user=None, runas=None, cwd=None)

	Return a list of installed packages either globally or in the specified
virtualenv

	bin_env

	path to pip bin or path to virtualenv. If doing an uninstall from
the system python and want to use a specific pip bin (pip-2.7,
pip-2.6, etc..) just specify the pip bin you want.
If uninstalling from a virtualenv, just use the path to the virtualenv
(/home/code/path/to/virtualenv/)

	user

	The user under which to run pip

Note

The runas argument is deprecated as of 0.16.2. user should be
used instead.

	cwd

	Current working directory to run pip from

CLI Example:

salt '*' pip.freeze /home/code/path/to/virtualenv/

	
salt.modules.pip.install(pkgs=None, requirements=None, env=None, bin_env=None, use_wheel=False, log=None, proxy=None, timeout=None, editable=None, find_links=None, index_url=None, extra_index_url=None, no_index=False, mirrors=None, build=None, target=None, download=None, download_cache=None, source=None, upgrade=False, force_reinstall=False, ignore_installed=False, exists_action=None, no_deps=False, no_install=False, no_download=False, global_options=None, install_options=None, user=None, runas=None, no_chown=False, cwd=None, activate=False, pre_releases=False, __env__='base')

	Install packages with pip

Install packages individually or from a pip requirements file. Install
packages globally or to a virtualenv.

	pkgs

	comma separated list of packages to install

	requirements

	path to requirements

	bin_env

	path to pip bin or path to virtualenv. If doing a system install,
and want to use a specific pip bin (pip-2.7, pip-2.6, etc..) just
specify the pip bin you want.
If installing into a virtualenv, just use the path to the virtualenv
(/home/code/path/to/virtualenv/)

	env

	deprecated, use bin_env now

	use_wheel

	Prefer wheel archives (requires pip>=1.4)

	log

	Log file where a complete (maximum verbosity) record will be kept

	proxy

	Specify a proxy in the form
user:passwd@proxy.server:port. Note that the
user:password@ is optional and required only if you
are behind an authenticated proxy. If you provide
user@proxy.server:port then you will be prompted for a
password.

	timeout

	Set the socket timeout (default 15 seconds)

	editable

	install something editable (i.e.
git+https://github.com/worldcompany/djangoembed.git#egg=djangoembed)

	find_links

	URL to look for packages at

	index_url

	Base URL of Python Package Index

	extra_index_url

	Extra URLs of package indexes to use in addition to index_url

	no_index

	Ignore package index

	mirrors

	Specific mirror URL(s) to query (automatically adds --use-mirrors)

	build

	Unpack packages into build dir

	target

	Install packages into target dir

	download

	Download packages into download instead of installing them

	download_cache

	Cache downloaded packages in download_cache dir

	source

	Check out editable packages into source dir

	upgrade

	Upgrade all packages to the newest available version

	force_reinstall

	When upgrading, reinstall all packages even if they are already
up-to-date.

	ignore_installed

	Ignore the installed packages (reinstalling instead)

	exists_action

	Default action when a path already exists: (s)witch, (i)gnore, (w)wipe,
(b)ackup

	no_deps

	Ignore package dependencies

	no_install

	Download and unpack all packages, but don't actually install them

	no_download

	Don't download any packages, just install the ones
already downloaded (completes an install run with
--no-install)

	install_options

	Extra arguments to be supplied to the setup.py install
command (use like --install-option="--install-
scripts=/usr/local/bin"). Use multiple --install-
option options to pass multiple options to setup.py
install. If you are using an option with a directory
path, be sure to use absolute path.

	global_options

	Extra global options to be supplied to the setup.py call before the
install command.

	user

	The user under which to run pip

Note

The runas argument is deprecated as of 0.16.2. user should be
used instead.

	no_chown

	When user is given, do not attempt to copy and chown
a requirements file

	cwd

	Current working directory to run pip from

	activate

	Activates the virtual environment, if given via bin_env,
before running install.

	pre_releases

	Include pre-releases in the available versions

CLI Example:

salt '*' pip.install <package name>,<package2 name>
salt '*' pip.install requirements=/path/to/requirements.txt
salt '*' pip.install <package name> bin_env=/path/to/virtualenv
salt '*' pip.install <package name> bin_env=/path/to/pip_bin

Complicated CLI example:

salt '*' pip.install markdown,django editable=git+https://github.com/worldcompany/djangoembed.git#egg=djangoembed upgrade=True no_deps=True

	
salt.modules.pip.list_(prefix=None, bin_env=None, user=None, runas=None, cwd=None)

	Filter list of installed apps from freeze and check to see if
prefix exists in the list of packages installed.

CLI Example:

salt '*' pip.list salt

	
salt.modules.pip.uninstall(pkgs=None, requirements=None, bin_env=None, log=None, proxy=None, timeout=None, user=None, runas=None, no_chown=False, cwd=None, __env__='base')

	Uninstall packages with pip

Uninstall packages individually or from a pip requirements file. Uninstall
packages globally or from a virtualenv.

	pkgs

	comma separated list of packages to install

	requirements

	path to requirements

	bin_env

	path to pip bin or path to virtualenv. If doing an uninstall from
the system python and want to use a specific pip bin (pip-2.7,
pip-2.6, etc..) just specify the pip bin you want.
If uninstalling from a virtualenv, just use the path to the virtualenv
(/home/code/path/to/virtualenv/)

	log

	Log file where a complete (maximum verbosity) record will be kept

	proxy

	Specify a proxy in the form
user:passwd@proxy.server:port. Note that the
user:password@ is optional and required only if you
are behind an authenticated proxy. If you provide
user@proxy.server:port then you will be prompted for a
password.

	timeout

	Set the socket timeout (default 15 seconds)

	user

	The user under which to run pip

Note

The runas argument is deprecated as of 0.16.2. user should be
used instead.

	no_chown

	When user is given, do not attempt to copy and chown
a requirements file

	cwd

	Current working directory to run pip from

CLI Example:

salt '*' pip.uninstall <package name>,<package2 name>
salt '*' pip.uninstall requirements=/path/to/requirements.txt
salt '*' pip.uninstall <package name> bin_env=/path/to/virtualenv
salt '*' pip.uninstall <package name> bin_env=/path/to/pip_bin

	
salt.modules.pip.version(bin_env=None)

	
New in version 0.17.0.

Returns the version of pip. Use bin_env to specify the path to a
virtualenv and get the version of pip in that virtualenv.

If unable to detect the pip version, returns None.

CLI Example:

salt '*' pip.version

salt.modules.pkg_resource

Resources needed by pkg providers

	
salt.modules.pkg_resource.add_pkg(pkgs, name, version)

	Add a package to a dict of installed packages.

CLI Example:

salt '*' pkg_resource.add_pkg '{}' bind 9

	
salt.modules.pkg_resource.check_extra_requirements(pkgname, pkgver)

	Check if the installed package already has the given requirements.
This function will simply try to call "pkg.check_extra_requirements".

CLI Example:

salt '*' pkg_resource.check_extra_requirements <pkgname> <extra_requirements>

	
salt.modules.pkg_resource.find_changes(old=None, new=None)

	Compare before and after results from pkg.list_pkgs() to determine what
changes were made to the packages installed on the minion.

CLI Example:

salt '*' pkg_resource.find_changes

	
salt.modules.pkg_resource.pack_pkgs(pkgs)

	Accepts a list of packages or package/version pairs (or a string
representing said list) and returns a dict of name/version pairs. For a
given package, if no version was specified (i.e. the value is a string and
not a dict, then the dict returned will use None as the value for that
package.

'["foo", {"bar": 1.2}, "baz"]' would become
{'foo': None, 'bar': 1.2, 'baz': None}

CLI Example:

salt '*' pkg_resource.pack_pkgs '["foo", {"bar": 1.2}, "baz"]'

	
salt.modules.pkg_resource.pack_sources(sources)

	Accepts list of dicts (or a string representing a list of dicts) and packs
the key/value pairs into a single dict.

'[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]' would become
{"foo": "salt://foo.rpm", "bar": "salt://bar.rpm"}

CLI Example:

salt '*' pkg_resource.pack_sources '[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]'

	
salt.modules.pkg_resource.parse_targets(name=None, pkgs=None, sources=None, **kwargs)

	Parses the input to pkg.install and returns back the package(s) to be
installed. Returns a list of packages, as well as a string noting whether
the packages are to come from a repository or a binary package.

CLI Example:

salt '*' pkg_resource.parse_targets

	
salt.modules.pkg_resource.sort_pkglist(pkgs)

	Accepts a dict obtained from pkg.list_pkgs() and sorts in place the list of
versions for any packages that have multiple versions installed, so that
two package lists can be compared to one another.

CLI Example:

salt '*' pkg_resource.sort_pkglist '["3.45", "2.13"]'

	
salt.modules.pkg_resource.stringify(pkgs)

	Takes a dict of package name/version information and joins each list of
installed versions into a string.

CLI Example:

salt '*' pkg_resource.stringify 'vim: 7.127'

	
salt.modules.pkg_resource.version(*names, **kwargs)

	Common interface for obtaining the version of installed packages.

CLI Example:

salt '*' pkg_resource.version vim
salt '*' pkg_resource.version foo bar baz
salt '*' pkg_resource.version 'python*'

	
salt.modules.pkg_resource.version_clean(version)

	Clean the version string removing extra data.
This function will simply try to call pkg.version_clean.

CLI Example:

salt '*' pkg_resource.version_clean <version_string>

salt.modules.pkgin

Package support for pkgin based systems, inspired from freebsdpkg module

	
salt.modules.pkgin.available_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> ...

	
salt.modules.pkgin.file_dict(package)

	List the files that belong to a package.

CLI Examples:

salt '*' pkg.file_list nginx

	
salt.modules.pkgin.file_list(package)

	List the files that belong to a package.

CLI Examples:

salt '*' pkg.file_list nginx

	
salt.modules.pkgin.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, **kwargs)

	Install the passed package

	name

	The name of the package to be installed.

	refresh

	Whether or not to refresh the package database before installing.

	fromrepo

	Specify a package repository to install from.

Multiple Package Installation Options:

	pkgs

	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'

	sources

	A list of packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install <package name>

	
salt.modules.pkgin.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> ...

	
salt.modules.pkgin.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.pkgin.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.pkgin.refresh_db()

	Use pkg update to get latest pkg_summary

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.pkgin.rehash()

	Recomputes internal hash table for the PATH variable.
Use whenever a new command is created during the current
session.

CLI Example:

salt '*' pkg.rehash

	
salt.modules.pkgin.remove(name=None, pkgs=None, **kwargs)

	
	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a list containing the removed packages.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.pkgin.search(pkg_name)

	Searches for an exact match using pkgin ^package$

CLI Example:

salt '*' pkg.search 'mysql-server'

	
salt.modules.pkgin.upgrade()

	Run pkg upgrade, if pkgin used. Otherwise do nothing

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.pkgin.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.pkgng

Support for pkgng

	
salt.modules.pkgng.add(pkg_path)

	Install a package from either a local source or remote one

CLI Example:

salt '*' pkgng.add /tmp/package.txz

	
salt.modules.pkgng.audit()

	Audits installed packages against known vulnerabilities

CLI Example:

salt '*' pkgng.audit

	
salt.modules.pkgng.autoremove(dryrun=False)

	Delete packages which were automatically installed as dependencies and are
not required anymore.

	dryrun

	Dry-run mode. The list of changes to packages is always printed,
but no changes are actually made.

CLI Example:

salt '*' pkgng.autoremove
salt '*' pkgng.autoremove dryrun=True

	
salt.modules.pkgng.backup(file_name)

	Export installed packages into yaml+mtree file

CLI Example:

salt '*' pkgng.backup /tmp/pkg

	
salt.modules.pkgng.check(depends=False, recompute=False, checksum=False)

	Sanity checks installed packages

	depends

	Check for and install missing dependencies.

CLI Example:

salt '*' pkgng.check recompute=True

	recompute

	Recompute sizes and checksums of installed packages.

CLI Example:

salt '*' pkgng.check depends=True

	checksum

	Find invalid checksums for installed packages.

CLI Example:

salt '*' pkgng.check checksum=True

	
salt.modules.pkgng.clean()

	Cleans the local cache of fetched remote packages

CLI Example:

salt '*' pkgng.clean

	
salt.modules.pkgng.delete(pkg_name, all_installed=False, force=False, glob=False, dryrun=False, recurse=False, regex=False, pcre=False)

	Delete a package from the database and system

CLI Example:

salt '*' pkgng.delete <package name>

	all_installed

	Deletes all installed packages from the system and empties the
database. USE WITH CAUTION!

CLI Example:

salt '*' pkgng.delete all all_installed=True force=True

	force

	Forces packages to be removed despite leaving unresolved
dependencies.

CLI Example:

salt '*' pkgng.delete <package name> force=True

	glob

	Treat the package names as shell glob patterns.

CLI Example:

salt '*' pkgng.delete <package name> glob=True

	dryrun

	Dry run mode. The list of packages to delete is always printed, but
no packages are actually deleted.

CLI Example:

salt '*' pkgng.delete <package name> dryrun=True

	recurse

	Delete all packages that require the listed package as well.

CLI Example:

salt '*' pkgng.delete <package name> recurse=True

	regex

	Treat the package names as regular expressions.

CLI Example:

salt '*' pkgng.delete <regular expression> regex=True

	pcre

	Treat the package names as extended regular expressions.

CLI Example:

salt '*' pkgng.delete <extended regular expression> pcre=True

	
salt.modules.pkgng.fetch(pkg_name, all=False, quiet=False, reponame=None, glob=True, regex=False, pcre=False, local=False, depends=False)

	Fetches remote packages

CLI Example:

salt '*' pkgng.fetch <package name>

	all

	Fetch all packages.

CLI Example:

salt '*' pkgng.fetch <package name> all=True

	quiet

	Quiet mode. Show less output.

CLI Example:

salt '*' pkgng.fetch <package name> quiet=True

	reponame

	Fetches packages from the given reponame if multiple repo support
is enabled. See pkg.conf(5).

CLI Example:

salt '*' pkgng.fetch <package name> reponame=repo

	glob

	Treat pkg_name as a shell glob pattern.

CLI Example:

salt '*' pkgng.fetch <package name> glob=True

	regex

	Treat pkg_name as a regular expression.

CLI Example:

salt '*' pkgng.fetch <regular expression> regex=True

	pcre

	Treat pkg_name is an extended regular expression.

CLI Example:

salt '*' pkgng.fetch <extended regular expression> pcre=True

	local

	Skip updating the repository catalogues with pkg-update(8). Use the
local cache only.

CLI Example:

salt '*' pkgng.fetch <package name> local=True

	depends

	Fetch the package and its dependencies as well.

CLI Example:

salt '*' pkgng.fetch <package name> depends=True

	
salt.modules.pkgng.info(pkg_name=None)

	Returns info on packages installed on system

CLI Example:

salt '*' pkgng.info
salt '*' pkgng.info sudo

	
salt.modules.pkgng.install(pkg_name, orphan=False, force=False, glob=False, local=False, dryrun=False, quiet=False, require=False, reponame=None, regex=False, pcre=False)

	Install package from repositories

CLI Example:

salt '*' pkgng.install <package name>

	orphan

	Mark the installed package as orphan. Will be automatically removed
if no other packages depend on them. For more information please
refer to pkg-autoremove(8).

CLI Example:

salt '*' pkgng.install <package name> orphan=True

	force

	Force the reinstallation of the package if already installed.

CLI Example:

salt '*' pkgng.install <package name> force=True

	glob

	Treat the package names as shell glob patterns.

CLI Example:

salt '*' pkgng.install <package name> glob=True

	local

	Skip updating the repository catalogues with pkg-update(8). Use the
locally cached copies only.

CLI Example:

salt '*' pkgng.install <package name> local=True

	dryrun

	Dru-run mode. The list of changes to packages is always printed,
but no changes are actually made.

CLI Example:

salt '*' pkgng.install <package name> dryrun=True

	quiet

	Force quiet output, except when dryrun is used, where pkg install
will always show packages to be installed, upgraded or deleted.

CLI Example:

salt '*' pkgng.install <package name> quiet=True

	require

	When used with force, reinstalls any packages that require the
given package.

CLI Example:

salt '*' pkgng.install <package name> require=True force=True

	reponame

	In multi-repo mode, override the pkg.conf ordering and only attempt
to download packages from the named repository.

CLI Example:

salt '*' pkgng.install <package name> reponame=repo

	regex

	Treat the package names as a regular expression

CLI Example:

salt '*' pkgng.install <regular expression> regex=True

	pcre

	Treat the package names as extended regular expressions.

CLI Example:

salt '*' pkgng.install <extended regular expression> pcre=True

	
salt.modules.pkgng.latest_version(pkg_name, **kwargs)

	The available version of the package in the repository

CLI Example:

salt '*' pkgng.latest_version <package name>

	
salt.modules.pkgng.parse_config(file_name='/usr/local/etc/pkg.conf')

	Return dict of uncommented global variables.

CLI Example:

salt '*' pkgng.parse_config

NOTE: not working properly right now

	
salt.modules.pkgng.restore(file_name)

	Reads archive created by pkg backup -d and recreates the database.

CLI Example:

salt '*' pkgng.restore /tmp/pkg

	
salt.modules.pkgng.search(pkg_name, exact=False, glob=False, regex=False, pcre=False, comment=False, desc=False, full=False, depends=False, size=False, quiet=False, origin=False, prefix=False)

	Searches in remote package repositories

CLI Example:

salt '*' pkgng.search pattern

	exact

	Treat pattern as exact pattern.

CLI Example:

salt '*' pkgng.search pattern exact=True

	glob

	Treat pattern as a shell glob pattern.

CLI Example:

salt '*' pkgng.search pattern glob=True

	regex

	Treat pattern as a regular expression.

CLI Example:

salt '*' pkgng.search pattern regex=True

	pcre

	Treat pattern as an extended regular expression.

CLI Example:

salt '*' pkgng.search pattern pcre=True

	comment

	Search for pattern in the package comment one-line description.

CLI Example:

salt '*' pkgng.search pattern comment=True

	desc

	Search for pattern in the package description.

CLI Example:

salt '*' pkgng.search pattern desc=True

	full

	Displays full information about the matching packages.

CLI Example:

salt '*' pkgng.search pattern full=True

	depends

	Displays the dependencies of pattern.

CLI Example:

salt '*' pkgng.search pattern depends=True

	size

	Displays the size of the package

CLI Example:

salt '*' pkgng.search pattern size=True

	quiet

	Be quiet. Prints only the requested information without displaying
many hints.

CLI Example:

salt '*' pkgng.search pattern quiet=True

	origin

	Displays pattern origin.

CLI Example:

salt '*' pkgng.search pattern origin=True

	prefix

	Displays the installation prefix for each package matching pattern.

CLI Example:

salt '*' pkgng.search pattern prefix=True

	
salt.modules.pkgng.stats(local=False, remote=False)

	Return pkgng stats.

CLI Example:

salt '*' pkgng.stats

	local

	Display stats only for the local package database.

CLI Example:

salt '*' pkgng.stats local=True

	remote

	Display stats only for the remote package database(s).

CLI Example:

salt '*' pkgng.stats remote=True

	
salt.modules.pkgng.update(force=False)

	Refresh PACKAGESITE contents

CLI Example:

salt '*' pkgng.update

	force

	Force a full download of the repository catalogue without regard to the
respective ages of the local and remote copies of the catalogue.

CLI Example:

salt '*' pkgng.update force=True

	
salt.modules.pkgng.update_package_site(new_url)

	Updates remote package repo URL, PACKAGESITE var to be exact.

Must be using http://, ftp://, or https// protos

CLI Example:

salt '*' pkgng.update_package_site http://127.0.0.1/

	
salt.modules.pkgng.updating(pkg_name, filedate=None, filename=None)

	'
Displays UPDATING entries of software packages

CLI Example:

salt '*' pkgng.updating foo

	filedate

	Only entries newer than date are shown. Use a YYYYMMDD date format.

CLI Example:

salt '*' pkgng.updating foo filedate=20130101

	filename

	Defines an alternative location of the UPDATING file.

CLI Example:

salt '*' pkgng.updating foo filename=/tmp/UPDATING

	
salt.modules.pkgng.upgrade(force=False, local=False, dryrun=False)

	Upgrade all packages

CLI Example:

salt '*' pkgng.upgrade

	force

	Force reinstalling/upgrading the whole set of packages.

CLI Example:

salt '*' pkgng.upgrade force=True

	local

	Skip updating the repository catalogues with pkg-update(8). Use the
local cache only.

CLI Example:

salt '*' pkgng.update local=True

	dryrun

	Dry-run mode: show what packages have updates available, but do not
perform any upgrades. Repository catalogues will be updated as usual
unless the local option is also given.

CLI Example:

salt '*' pkgng.update dryrun=True

	
salt.modules.pkgng.version()

	Displays the current version of pkg

CLI Example:

salt '*' pkgng.version

	
salt.modules.pkgng.which(file_name, origin=False, quiet=False)

	Displays which package installed a specific file

CLI Example:

salt '*' pkgng.which <file name>

	origin

	Shows the origin of the package instead of name-version.

CLI Example:

salt '*' pkgng.which <file name> origin=True

	quiet

	Quiet output.

CLI Example:

salt '*' pkgng.which <file name> quiet=True

salt.modules.pkgutil

Pkgutil support for Solaris

	
salt.modules.pkgutil.install(name=None, refresh=False, version=None, pkgs=None, **kwargs)

	Install packages using the pkgutil tool.

CLI Example:

salt '*' pkg.install <package_name>
salt '*' pkg.install SMClgcc346

Multiple Package Installation Options:

	pkgs

	A list of packages to install from OpenCSW. Must be passed as a python
list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.pkgutil.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkgutil.latest_version CSWpython
salt '*' pkgutil.latest_version <package1> <package2> <package3> ...

	
salt.modules.pkgutil.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

	
salt.modules.pkgutil.list_upgrades(refresh=True)

	List all available package upgrades on this system

CLI Example:

salt '*' pkgutil.list_upgrades

	
salt.modules.pkgutil.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.pkgutil.refresh_db()

	Updates the pkgutil repo database (pkgutil -U)

CLI Example:

salt '*' pkgutil.refresh_db

	
salt.modules.pkgutil.remove(name=None, pkgs=None, **kwargs)

	Remove a package and all its dependencies which are not in use by other
packages.

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.pkgutil.upgrade(refresh=True, **kwargs)

	Upgrade all of the packages to the latest available version.

Returns a dict containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkgutil.upgrade

	
salt.modules.pkgutil.upgrade_available(name)

	Check if there is an upgrade available for a certain package

CLI Example:

salt '*' pkgutil.upgrade_available CSWpython

	
salt.modules.pkgutil.version(*names, **kwargs)

	Returns a version if the package is installed, else returns an empty string

CLI Example:

salt '*' pkgutil.version CSWpython

salt.modules.portage_config

Configure portage(5)

	
salt.modules.portage_config.append_to_package_conf(conf, atom='', flags=None, string='', overwrite=False)

	Append a string or a list of flags for a given package or DEPEND atom to a
given configuration file.

CLI Example:

salt '*' portage_config.append_to_package_conf use string="app-admin/salt ldap -libvirt"
salt '*' portage_config.append_to_package_conf use atom="> = app-admin/salt-0.14.1" flags="['ldap', '-libvirt']"

	
salt.modules.portage_config.append_use_flags(atom, uses=None, overwrite=False)

	Append a list of use flags for a given package or DEPEND atom

CLI Example:

salt '*' portage_config.append_use_flags "app-admin/salt[ldap, -libvirt]"
salt '*' portage_config.append_use_flags ">=app-admin/salt-0.14.1" "['ldap', '-libvirt']"

	
salt.modules.portage_config.enforce_nice_config()

	Enforce a nice tree structure for /etc/portage/package.* configuration
files.

CLI Example:

salt '*' portage_config.enforce_nice_config

	
salt.modules.portage_config.get_flags_from_package_conf(conf, atom)

	Get flags for a given package or DEPEND atom.
Warning: This only works if the configuration files tree is in the correct
format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.get_flags_from_package_conf license salt

	
salt.modules.portage_config.get_missing_flags(conf, atom, flags)

	Find out which of the given flags are currently not set.
CLI Example:

salt '*' portage_config.get_missing_flags use salt "['ldap', '-libvirt', 'openssl']"

	
salt.modules.portage_config.has_flag(conf, atom, flag)

	Verify if the given package or DEPEND atom has the given flag.
Warning: This only works if the configuration files tree is in the correct
format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.has_flag license salt Apache-2.0

	
salt.modules.portage_config.has_use(atom, use)

	Verify if the given package or DEPEND atom has the given use flag.
Warning: This only works if the configuration files tree is in the correct
format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.has_use salt libvirt

	
salt.modules.portage_config.is_present(conf, atom)

	Tell if a given package or DEPEND atom is present in the configuration
files tree.
Warning: This only works if the configuration files tree is in the correct
format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.is_present unmask salt

salt.modules.postgres

Module to provide Postgres compatibility to salt.

	configuration:	In order to connect to Postgres, certain configuration is
required in /etc/salt/minion on the relevant minions. Some sample configs
might look like:

postgres.host: 'localhost'
postgres.port: '5432'
postgres.user: 'postgres'
postgres.pass: ''
postgres.maintenance_db: 'postgres'

The default for the maintenance_db is 'postgres' and in most cases it can
be left at the default setting.
This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar

	
salt.modules.postgres.db_alter(name, user=None, host=None, port=None, maintenance_db=None, password=None, tablespace=None, owner=None, runas=None)

	Change tablesbase or/and owner of databse.

CLI Example:

salt '*' postgres.db_alter dbname owner=otheruser

	
salt.modules.postgres.db_create(name, user=None, host=None, port=None, maintenance_db=None, password=None, tablespace=None, encoding=None, lc_collate=None, lc_ctype=None, owner=None, template=None, runas=None)

	Adds a databases to the Postgres server.

CLI Example:

salt '*' postgres.db_create 'dbname'

salt '*' postgres.db_create 'dbname' template=template_postgis

	
salt.modules.postgres.db_exists(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Checks if a database exists on the Postgres server.

CLI Example:

salt '*' postgres.db_exists 'dbname'

	
salt.modules.postgres.db_list(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Return dictionary with information about databases of a Postgres server.

CLI Example:

salt '*' postgres.db_list

	
salt.modules.postgres.db_remove(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Removes a databases from the Postgres server.

CLI Example:

salt '*' postgres.db_remove 'dbname'

	
salt.modules.postgres.group_create(groupname, user=None, host=None, port=None, maintenance_db=None, password=None, createdb=False, createuser=False, encrypted=False, superuser=False, replication=False, rolepassword=None, groups=None, runas=None)

	Creates a Postgres group. A group is postgres is similar to a user, but
cannot login.

CLI Example:

salt '*' postgres.group_create 'groupname' user='user' \
 host='hostname' port='port' password='password' \
 rolepassword='rolepassword'

	
salt.modules.postgres.group_remove(groupname, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Removes a group from the Postgres server.

CLI Example:

salt '*' postgres.group_remove 'groupname'

	
salt.modules.postgres.group_update(groupname, user=None, host=None, port=None, maintenance_db=None, password=None, createdb=False, createuser=False, encrypted=False, replication=False, rolepassword=None, groups=None, runas=None)

	Updated a postgres group

CLI Examples:

salt '*' postgres.group_update 'username' user='user' \
 host='hostname' port='port' password='password' \
 rolepassword='rolepassword'

	
salt.modules.postgres.owner_to(dbname, ownername, user=None, host=None, port=None, password=None, runas=None)

	Set the owner of all schemas, functions, tables, views and sequences to
the given username.

CLI Example:

salt '*' postgres.owner_to 'dbname' 'username'

	
salt.modules.postgres.psql_query(query, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Run an SQL-Query and return the results as a list. This command
only supports SELECT statements.

CLI Example:

salt '*' postgres.psql_query 'select * from pg_stat_activity'

	
salt.modules.postgres.user_create(username, user=None, host=None, port=None, maintenance_db=None, password=None, createdb=False, createuser=False, encrypted=False, superuser=False, replication=False, rolepassword=None, groups=None, runas=None)

	Creates a Postgres user.

CLI Examples:

salt '*' postgres.user_create 'username' user='user' \
 host='hostname' port='port' password='password' \
 rolepassword='rolepassword'

	
salt.modules.postgres.user_exists(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Checks if a user exists on the Postgres server.

CLI Example:

salt '*' postgres.user_exists 'username'

	
salt.modules.postgres.user_list(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Return a dict with information about users of a Postgres server.

CLI Example:

salt '*' postgres.user_list

	
salt.modules.postgres.user_remove(username, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Removes a user from the Postgres server.

CLI Example:

salt '*' postgres.user_remove 'username'

	
salt.modules.postgres.user_update(username, user=None, host=None, port=None, maintenance_db=None, password=None, createdb=False, createuser=False, encrypted=False, replication=False, rolepassword=None, groups=None, runas=None)

	Creates a Postgres user.

CLI Examples:

salt '*' postgres.user_create 'username' user='user' \
 host='hostname' port='port' password='password' \
 rolepassword='rolepassword'

	
salt.modules.postgres.version(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Return the version of a Postgres server.

CLI Example:

salt '*' postgres.version

salt.modules.poudriere

Support for poudriere

	
salt.modules.poudriere.bulk_build(jail, pkg_file, keep=False)

	Run bulk build on poudriere server.

Return number of pkg builds, failures, and errors, on error dump to CLI

CLI Example:

salt -N buildbox_group poudriere.bulk_build 90amd64 /root/pkg_list

	
salt.modules.poudriere.create_jail(name, arch, version='9.0-RELEASE')

	Creates a new poudriere jail if one does not exist

NOTE creating a new jail will take some time the master is not hanging

CLI Example:

salt '*' poudriere.create_jail 90amd64 amd64

	
salt.modules.poudriere.create_ports_tree()

	Not working need to run portfetch non interactive

	
salt.modules.poudriere.delete_jail(name)

	Deletes poudriere jail with name

CLI Example:

salt '*' poudriere.delete_jail 90amd64

	
salt.modules.poudriere.is_jail(name)

	Return True if jail exists False if not

CLI Example:

salt '*' poudriere.is_jail <jail name>

	
salt.modules.poudriere.list_jails()

	Return a list of current jails managed by poudriere

CLI Example:

salt '*' poudriere.list_jails

	
salt.modules.poudriere.list_ports()

	Return a list of current port trees managed by poudriere

CLI Example:

salt '*' poudriere.list_ports

	
salt.modules.poudriere.make_pkgng_aware(jname)

	Make jail jname pkgng aware

CLI Example:

salt '*' poudriere.make_pkgng_aware <jail name>

	
salt.modules.poudriere.parse_config(config_file=None)

	Returns a dict of poudriere main configuration definitions

CLI Example:

salt '*' poudriere.parse_config

	
salt.modules.poudriere.version()

	Return poudriere version

CLI Example:

salt '*' poudriere.version

salt.modules.ps

A salt interface to psutil, a system and process library.
See http://code.google.com/p/psutil.

	depends:	
	psutil Python module

	
salt.modules.ps.boot_time()

	Return the boot time in number of seconds since the epoch began.

CLI Example:

salt '*' ps.boot_time

	
salt.modules.ps.cached_physical_memory()

	Return the amount cached memory.

CLI Example:

salt '*' ps.cached_physical_memory

	
salt.modules.ps.cpu_percent(interval=0.1, per_cpu=False)

	Return the percent of time the CPU is busy.

	interval

	the number of seconds to sample CPU usage over

	per_cpu

	if True return an array of CPU percent busy for each CPU, otherwise
aggregate all percents into one number

CLI Example:

salt '*' ps.cpu_percent

	
salt.modules.ps.cpu_times(per_cpu=False)

	Return the percent of time the CPU spends in each state,
e.g. user, system, idle, nice, iowait, irq, softirq.

	per_cpu

	if True return an array of percents for each CPU, otherwise aggregate
all percents into one number

CLI Example:

salt '*' ps.cpu_times

	
salt.modules.ps.disk_io_counters()

	Return disk I/O statisitics.

CLI Example:

salt '*' ps.disk_io_counters

	
salt.modules.ps.disk_partition_usage(all=False)

	Return a list of disk partitions plus the mount point, filesystem and usage
statistics.

CLI Example:

salt '*' ps.disk_partition_usage

	
salt.modules.ps.disk_partitions(all=False)

	Return a list of disk partitions and their device, mount point, and
filesystem type.

	all

	if set to False, only return local, physical partitions (hard disk,
USB, CD/DVD partitions). If True, return all filesystems.

CLI Example:

salt '*' ps.disk_partitions

	
salt.modules.ps.disk_usage(path)

	Given a path, return a dict listing the total available space as well as
the free space, and used space.

CLI Example:

salt '*' ps.disk_usage /home

	
salt.modules.ps.get_pid_list()

	Return a list of process ids (PIDs) for all running processes.

CLI Example:

salt '*' ps.get_pid_list

	
salt.modules.ps.kill_pid(pid, signal=15)

	Kill a proccess by PID.

salt 'minion' ps.kill_pid pid [signal=signal_number]

	pid

	PID of process to kill.

	signal

	Signal to send to the process. See manpage entry for kill
for possible values. Default: 15 (SIGTERM).

Example:

Send SIGKILL to process with PID 2000:

salt 'minion' ps.kill_pid 2000 signal=9

	
salt.modules.ps.network_io_counters()

	Return network I/O statisitics.

CLI Example:

salt '*' ps.network_io_counters

	
salt.modules.ps.num_cpus()

	Return the number of CPUs.

CLI Example:

salt '*' ps.num_cpus

	
salt.modules.ps.pgrep(pattern, user=None, full=False)

	Return the pids for processes matching a pattern.

If full is true, the full command line is searched for a match,
otherwise only the name of the command is searched.

salt '*' ps.pgrep pattern [user=username] [full=(true|false)]

	pattern

	Pattern to search for in the process list.

	user

	Limit matches to the given username. Default: All users.

	full

	A boolean value indicating whether only the name of the command or
the full command line should be matched against the pattern.

Examples:

Find all httpd processes on all 'www' minions:

salt 'www.*' httpd

Find all bash processes owned by user 'tom':

salt '*' bash user=tom

	
salt.modules.ps.physical_memory_buffers()

	Return the amount of physical memory buffers.

CLI Example:

salt '*' ps.physical_memory_buffers

	
salt.modules.ps.physical_memory_usage()

	Return a dict that describes free and available physical memory.

CLI Examples:

salt '*' ps.physical_memory_usage

	
salt.modules.ps.pkill(pattern, user=None, signal=15, full=False)

	Kill processes matching a pattern.

salt '*' ps.pkill pattern [user=username] [signal=signal_number] \
 [full=(true|false)]

	pattern

	Pattern to search for in the process list.

	user

	Limit matches to the given username. Default: All users.

	signal

	Signal to send to the process(es). See manpage entry for kill
for possible values. Default: 15 (SIGTERM).

	full

	A boolean value indicating whether only the name of the command or
the full command line should be matched against the pattern.

Examples:

Send SIGHUP to all httpd processes on all 'www' minions:

salt 'www.*' httpd signal=1

Send SIGKILL to all bash processes owned by user 'tom':

salt '*' bash signal=9 user=tom

	
salt.modules.ps.top(num_processes=5, interval=3)

	Return a list of top CPU consuming processes during the interval.
num_processes = return the top N CPU consuming processes
interval = the number of seconds to sample CPU usage over

CLI Examples:

salt '*' ps.top

salt '*' ps.top 5 10

	
salt.modules.ps.total_physical_memory()

	Return the total number of bytes of physical memory.

CLI Example:

salt '*' ps.total_physical_memory

	
salt.modules.ps.virtual_memory_usage()

	Return a dict that describes free and available memory, both physical
and virtual.

CLI Example:

salt '*' ps.virtual_memory_usage

salt.modules.publish

Publish a command from a minion to a target

	
salt.modules.publish.full_data(tgt, fun, arg=None, expr_form='glob', returner='', timeout=5)

	Return the full data about the publication, this is invoked in the same
way as the publish function

CLI Example:

salt system.example.com publish.full_data '*' cmd.run 'ls -la /tmp'

	
salt.modules.publish.publish(tgt, fun, arg=None, expr_form='glob', returner='', timeout=5)

	Publish a command from the minion out to other minions.

Publications need to be enabled on the Salt master and the minion
needs to have permission to publish the command. The Salt master
will also prevent a recursive publication loop, this means that a
minion cannot command another minion to command another minion as
that would create an infinite command loop.

The expr_form argument is used to pass a target other than a glob into
the execution, the available options are:

	glob

	pcre

	grain

	grain_pcre

	pillar

	ipcidr

	range

	compound

The arguments sent to the minion publish function are separated with
commas. This means that for a minion executing a command with multiple
args it will look like this:

salt system.example.com publish.publish '*' user.add 'foo,1020,1020'
salt system.example.com publish.publish 'os:Fedora' network.interfaces '' grain

CLI Example:

salt system.example.com publish.publish '*' cmd.run 'ls -la /tmp'

	
salt.modules.publish.runner(fun, arg=None)

	Execute a runner on the master and return the data from the runner
function

CLI Example:

salt publish.runner manage.down

salt.modules.puppet

Execute puppet routines

	
salt.modules.puppet.fact(name)

	Run facter for a specific fact

CLI Example:

salt '*' puppet.fact kernel

	
salt.modules.puppet.facts()

	Run facter and return the results

CLI Example:

salt '*' puppet.facts

	
salt.modules.puppet.noop(*args, **kwargs)

	Execute a puppet noop run and return a dict with the stderr, stdout,
return code, etc. Usage is the same as for puppet.run.

CLI Example:

salt '*' puppet.noop
salt '*' puppet.noop tags=basefiles::edit,apache::server
salt '*' puppet.noop debug
salt '*' puppet.noop apply /a/b/manifest.pp modulepath=/a/b/modules tags=basefiles::edit,apache::server

	
salt.modules.puppet.run(*args, **kwargs)

	Execute a puppet run and return a dict with the stderr, stdout,
return code, etc. The first positional argument given is checked as a
subcommand. Following positional arguments should be ordered with arguments
required by the subcommand first, followed by non-keyvalue pair options.
Tags are specified by a tag keyword and comma separated list of values. --
http://projects.puppetlabs.com/projects/1/wiki/Using_Tags

CLI Examples:

salt '*' puppet.run
salt '*' puppet.run tags=basefiles::edit,apache::server
salt '*' puppet.run agent onetime no-daemonize no-usecacheonfailure no-splay ignorecache
salt '*' puppet.run debug
salt '*' puppet.run apply /a/b/manifest.pp modulepath=/a/b/modules tags=basefiles::edit,apache::server

salt.modules.pw_group

Manage groups on FreeBSD

	
salt.modules.pw_group.add(name, gid=None, **kwargs)

	Add the specified group

CLI Example:

salt '*' group.add foo 3456

	
salt.modules.pw_group.chgid(name, gid)

	Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

	
salt.modules.pw_group.delete(name)

	Remove the named group

CLI Example:

salt '*' group.delete foo

	
salt.modules.pw_group.getent(refresh=False)

	Return info on all groups

CLI Example:

salt '*' group.getent

	
salt.modules.pw_group.info(name)

	Return information about a group

CLI Example:

salt '*' group.info foo

salt.modules.pw_user

Manage users with the useradd command

	
salt.modules.pw_user.add(name, uid=None, gid=None, groups=None, home=None, shell=None, unique=True, fullname='', roomnumber='', workphone='', homephone='', createhome=True, **kwargs)

	Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

	
salt.modules.pw_user.chfullname(name, fullname)

	Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

	
salt.modules.pw_user.chgid(name, gid)

	Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

	
salt.modules.pw_user.chgroups(name, groups, append=False)

	Change the groups this user belongs to, add append to append the specified
groups

CLI Example:

salt '*' user.chgroups foo wheel,root True

	
salt.modules.pw_user.chhome(name, home, persist=False)

	Change the home directory of the user, pass true for persist to copy files
to the new home dir

CLI Example:

salt '*' user.chhome foo /home/users/foo True

	
salt.modules.pw_user.chhomephone(name, homephone)

	Change the user's Home Phone

CLI Example:

salt '*' user.chhomephone foo "7735551234"

	
salt.modules.pw_user.chroomnumber(name, roomnumber)

	Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

	
salt.modules.pw_user.chshell(name, shell)

	Change the default shell of the user

CLI Example:

salt '*' user.chshell foo /bin/zsh

	
salt.modules.pw_user.chuid(name, uid)

	Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

	
salt.modules.pw_user.chworkphone(name, workphone)

	Change the user's Work Phone

CLI Example:

salt '*' user.chworkphone foo "7735550123"

	
salt.modules.pw_user.delete(name, remove=False, force=False)

	Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

	
salt.modules.pw_user.getent()

	Return the list of all info for all users

CLI Example:

salt '*' user.getent

	
salt.modules.pw_user.info(name)

	Return user information

CLI Example:

salt '*' user.info root

	
salt.modules.pw_user.list_groups(name)

	Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

salt.modules.qemu_img

Qemu-img Command Wrapper

The qemu img command is wrapped for specific functions

	depends:	qemu-img

	
salt.modules.qemu_img.make_image(location, size, fmt)

	Create a blank virtual machine image file of the specified size in
megabytes. The image can be created in any format supported by qemu

CLI Example:

salt '*' qemu_img.make_image /tmp/image.qcow 2048 qcow2
salt '*' qemu_img.make_image /tmp/image.raw 10240 raw

salt.modules.qemu_nbd

Qemu Command Wrapper

The qemu system comes with powerful tools, such as qemu-img and qemu-nbd which
are used here to build up kvm images.

	
salt.modules.qemu_nbd.clear(mnt)

	Pass in the mnt dict returned from nbd_mount to unmount and disconnect
the image from nbd. If all of the partitions are unmounted return an
empty dict, otherwise return a dict containing the still mounted
partitions

CLI Example:

salt '*' qemu_nbd.clear '{"/mnt/foo": "/dev/nbd0p1"}'

	
salt.modules.qemu_nbd.connect(image)

	Activate nbd for an image file.

CLI Example:

salt '*' qemu_nbd.connect /tmp/image.raw

	
salt.modules.qemu_nbd.init(image)

	Mount the named image via qemu-nbd and return the mounted roots

CLI Example:

salt '*' qemu_nbd.init /srv/image.qcow2

	
salt.modules.qemu_nbd.mount(nbd)

	Pass in the nbd connection device location, mount all partitions and return
a dict of mount points

CLI Example:

salt '*' qemu_nbd.mount /dev/nbd0

salt.modules.quota

Module for managing quotas on POSIX-like systems.

	
salt.modules.quota.get_mode(device)

	Report whether the quota system for this device is on or off

CLI Example:

salt '*' quota.get_mode

	
salt.modules.quota.off(device)

	Turns off the quota system

CLI Example:

salt '*' quota.off

	
salt.modules.quota.on(device)

	Turns on the quota system

CLI Example:

salt '*' quota.on

	
salt.modules.quota.report(mount)

	Report on quotas for a specific volume

CLI Example:

salt '*' quota.report /media/data

	
salt.modules.quota.set_(device, **kwargs)

	Calls out to setquota, for a specific user or group

CLI Example:

salt '*' quota.set /media/data user=larry block-soft-limit=1048576
salt '*' quota.set /media/data group=painters file-hard-limit=1000

	
salt.modules.quota.stats()

	Runs the quotastats command, and returns the parsed output

CLI Example:

salt '*' quota.stats

	
salt.modules.quota.warn()

	Runs the warnquota command, to send warning emails to users who
are over their quota limit.

CLI Example:

salt '*' quota.warn

salt.modules.rabbitmq

Module to provide RabbitMQ compatibility to Salt.
Todo: A lot, need to add cluster support, logging, and minion configuration
data.

	
salt.modules.rabbitmq.add_user(name, password, runas=None)

	Add a rabbitMQ user via rabbitmqctl user_add <user> <password>

CLI Example:

salt '*' rabbitmq.add_user rabbit_user password

	
salt.modules.rabbitmq.add_vhost(vhost, runas=None)

	Adds a vhost via rabbitmqctl add_vhost.

CLI Example:

salt '*' rabbitmq add_vhost '<vhost_name>'

	
salt.modules.rabbitmq.change_password(name, password, runas=None)

	Changes a user's password.

CLI Example:

salt '*' rabbitmq.change_password rabbit_user password

	
salt.modules.rabbitmq.clear_password(name, runas=None)

	Removes a user's password.

CLI Example:

salt '*' rabbitmq.clear_password rabbit_user

	
salt.modules.rabbitmq.cluster_status(user=None)

	return rabbitmq cluster_status

CLI Example:

salt '*' rabbitmq.cluster_status

	
salt.modules.rabbitmq.delete_policy(vhost, name, runas=None)

	Delete a policy based on rabbitmqctl clear_policy.

Reference: http://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.delete_policy / HA'

	
salt.modules.rabbitmq.delete_user(name, runas=None)

	Deletes a user via rabbitmqctl delete_user.

CLI Example:

salt '*' rabbitmq.delete_user rabbit_user

	
salt.modules.rabbitmq.delete_vhost(vhost, runas=None)

	Deletes a vhost rabbitmqctl delete_vhost.

CLI Example:

salt '*' rabbitmq.delete_vhost '<vhost_name>'

	
salt.modules.rabbitmq.force_reset(runas=None)

	Forcefully Return a RabbitMQ node to its virgin state

CLI Example:

salt '*' rabbitmq.force_reset

	
salt.modules.rabbitmq.list_policies(runas=None)

	Return a dictionary of policies nested by vhost and name
based on the data returned from rabbitmqctl list_policies.

Reference: http://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.list_policies'

	
salt.modules.rabbitmq.list_queues(*kwargs)

	Returns queue details of the / virtual host

CLI Example:

salt '*' rabbitmq.list_queues messages consumers

	
salt.modules.rabbitmq.list_queues_vhost(vhost, *kwargs)

	Returns queue details of specified virtual host. This command will consider
first parameter as the vhost name and rest will be treated as
queueinfoitem. For getting details on vhost /, use list_queues instead).

CLI Example:

salt '*' rabbitmq.list_queues messages consumers

	
salt.modules.rabbitmq.list_user_permissions(name, user=None)

	List permissions for a user via rabbitmqctl list_user_permissions

CLI Example:

salt '*' rabbitmq.list_user_permissions 'user'.

	
salt.modules.rabbitmq.list_users(runas=None)

	Return a list of users based off of rabbitmqctl user_list.

CLI Example:

salt '*' rabbitmq.list_users

	
salt.modules.rabbitmq.list_vhosts(runas=None)

	Return a list of vhost based on rabbitmqctl list_vhosts.

CLI Example:

salt '*' rabbitmq.list_vhosts

	
salt.modules.rabbitmq.policy_exists(vhost, name, runas=None)

	Return whether the policy exists based on rabbitmqctl list_policies.

Reference: http://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.policy_exists / HA

	
salt.modules.rabbitmq.reset(runas=None)

	Return a RabbitMQ node to its virgin state

CLI Example:

salt '*' rabbitmq.reset

	
salt.modules.rabbitmq.set_permissions(vhost, user, conf='.*', write='.*', read='.*', runas=None)

	Sets permissions for vhost via rabbitmqctl set_permissions

CLI Example:

salt '*' rabbitmq.set_permissions 'myvhost' 'myuser'

	
salt.modules.rabbitmq.set_policy(vhost, name, pattern, definition, priority=0, runas=None)

	Set a policy based on rabbitmqctl set_policy.

Reference: http://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.set_policy / HA '.*' '{"ha-mode": "all"}'

	
salt.modules.rabbitmq.start_app(runas=None)

	Start the RabbitMQ application.

CLI Example:

salt '*' rabbitmq.start_app

	
salt.modules.rabbitmq.status(user=None)

	return rabbitmq status

CLI Example:

salt '*' rabbitmq.status

	
salt.modules.rabbitmq.stop_app(runas=None)

	Stops the RabbitMQ application, leaving the Erlang node running.

CLI Example:

salt '*' rabbitmq.stop_app

	
salt.modules.rabbitmq.user_exists(name, runas=None)

	Return whether the user exists based on rabbitmqctl list_users.

CLI Example:

salt '*' rabbitmq.user_exists rabbit_user

	
salt.modules.rabbitmq.vhost_exists(name, runas=None)

	Return whether the vhost exists based on rabbitmqctl list_vhosts.

CLI Example:

salt '*' rabbitmq.vhost_exists rabbit_host

salt.modules.rbenv

Manage ruby installations with rbenv.

New in version 0.16.0.

	
salt.modules.rbenv.default(ruby=None, runas=None)

	Returns or sets the currently defined default ruby.

	ruby=None

	The version to set as the default. Should match one of the versions
listed by rbenv.versions. Leave
blank to return the current default.

CLI Example:

salt '*' rbenv.default
salt '*' rbenv.default 2.0.0-p0

	
salt.modules.rbenv.install(runas=None, path=None)

	Install Rbenv systemwide

CLI Example:

salt '*' rbenv.install

	
salt.modules.rbenv.install_ruby(ruby, runas=None)

	Install a ruby implementation.

	ruby

	The version of Ruby to install, should match one of the
versions listed by rbenv.list

CLI Example:

salt '*' rbenv.install_ruby 2.0.0-p0

	
salt.modules.rbenv.is_installed(runas=None)

	Check if Rbenv is installed.

CLI Example:

salt '*' rbenv.is_installed

	
salt.modules.rbenv.list_(runas=None)

	List the installable versions of ruby.

CLI Example:

salt '*' rbenv.list

	
salt.modules.rbenv.uninstall_ruby(ruby, runas=None)

	Uninstall a ruby implementation.

	ruby

	The version of ruby to uninstall. Should match one of the versions
listed by rbenv.versions

CLI Example:

salt '*' rbenv.uninstall_ruby 2.0.0-p0

	
salt.modules.rbenv.update(runas=None, path=None)

	Updates the current versions of Rbenv and Ruby-Build

CLI Example:

salt '*' rbenv.update

	
salt.modules.rbenv.versions(runas=None)

	List the installed versions of ruby.

CLI Example:

salt '*' rbenv.versions

salt.modules.reg

Manage the registry on Windows

	depends:	
	winreg Python module

	
class salt.modules.reg.Registry

	Delay '_winreg' usage until this module is used

	
salt.modules.reg.create_key(hkey, path, key, value=None)

	Create a registry key

CLI Example:

salt '*' reg.create_key HKEY_CURRENT_USER 'SOFTWARE\Salt' 'version' '0.97'

	
salt.modules.reg.delete_key(hkey, path, key)

	Delete a registry key

Note: This cannot delete a key with subkeys

CLI Example:

salt '*' reg.delete_key HKEY_CURRENT_USER 'SOFTWARE\Salt' 'version'

	
salt.modules.reg.read_key(hkey, path, key)

	Read registry key value

CLI Example:

salt '*' reg.read_key HKEY_LOCAL_MACHINE 'SOFTWARE\Salt' 'version'

	
salt.modules.reg.set_key(hkey, path, key, value, vtype='REG_DWORD')

	Set a registry key
vtype: http://docs.python.org/2/library/_winreg.html#value-types

CLI Example:

salt '*' reg.set_key HKEY_CURRENT_USER 'SOFTWARE\Salt' 'version' '0.97' REG_DWORD

salt.modules.ret

Module to integrate with the returner system and retrieve data sent to a salt returner

	
salt.modules.ret.get_fun(returner, fun)

	Return info about last time fun was called on each minion

CLI Example:

salt '*' ret.get_fun mysql network.interfaces

	
salt.modules.ret.get_jid(returner, jid)

	Return the information for a specified job id

CLI Example:

salt '*' ret.get_jid redis 20421104181954700505

	
salt.modules.ret.get_jids(returner)

	Return a list of all job ids

CLI Example:

salt '*' ret.get_jids mysql

	
salt.modules.ret.get_minions(returner)

	Return a list of all minions

CLI Example:

salt '*' ret.get_minions mysql

salt.modules.rh_ip

The networking module for RHEL/Fedora based distros

	
salt.modules.rh_ip.apply_network_settings(**settings)

	Apply global network configuration.

CLI Example:

salt '*' ip.apply_network_settings

	
salt.modules.rh_ip.build_bond(iface, **settings)

	Create a bond script in /etc/modprobe.d with the passed settings
and load the bonding kernel module.

CLI Example:

salt '*' ip.build_bond bond0 mode=balance-alb

	
salt.modules.rh_ip.build_interface(iface, iface_type, enabled, **settings)

	Build an interface script for a network interface.

CLI Example:

salt '*' ip.build_interface eth0 eth <settings>

	
salt.modules.rh_ip.build_network_settings(**settings)

	Build the global network script.

CLI Example:

salt '*' ip.build_network_settings <settings>

	
salt.modules.rh_ip.build_routes(iface, **settings)

	Build a route script for a network interface.

CLI Example:

salt '*' ip.build_routes eth0 <settings>

	
salt.modules.rh_ip.down(iface, iface_type)

	Shutdown a network interface

CLI Example:

salt '*' ip.down eth0

	
salt.modules.rh_ip.get_bond(iface)

	Return the content of a bond script

CLI Example:

salt '*' ip.get_bond bond0

	
salt.modules.rh_ip.get_interface(iface)

	Return the contents of an interface script

CLI Example:

salt '*' ip.get_interface eth0

	
salt.modules.rh_ip.get_network_settings()

	Return the contents of the global network script.

CLI Example:

salt '*' ip.get_network_settings

	
salt.modules.rh_ip.get_routes(iface)

	Return the contents of the interface routes script.

CLI Example:

salt '*' ip.get_routes eth0

	
salt.modules.rh_ip.up(iface, iface_type)

	Start up a network interface

CLI Example:

salt '*' ip.up eth0

salt.modules.rh_service

Service support for RHEL-based systems, including support for both upstart and sysvinit

	
salt.modules.rh_service.available(name, limit='')

	Return True is the named service is available. Use the limit param to
restrict results to services of that type.

CLI Examples:

salt '*' service.get_enabled
salt '*' service.get_enabled limit=upstart
salt '*' service.get_enabled limit=sysvinit

	
salt.modules.rh_service.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.rh_service.disabled(name)

	Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.rh_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.rh_service.enabled(name)

	Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.rh_service.get_all(limit='')

	Return all installed services. Use the limit param to restrict results
to services of that type.

CLI Example:

salt '*' service.get_all
salt '*' service.get_all limit=upstart
salt '*' service.get_all limit=sysvinit

	
salt.modules.rh_service.get_disabled(limit='')

	Return the disabled services. Use the limit param to restrict results
to services of that type.

CLI Example:

salt '*' service.get_disabled
salt '*' service.get_disabled limit=upstart
salt '*' service.get_disabled limit=sysvinit

	
salt.modules.rh_service.get_enabled(limit='')

	Return the enabled services. Use the limit param to restrict results
to services of that type.

CLI Examples:

salt '*' service.get_enabled
salt '*' service.get_enabled limit=upstart
salt '*' service.get_enabled limit=sysvinit

	
salt.modules.rh_service.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.rh_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.rh_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.rh_service.status(name, sig=None)

	Return the status for a service, returns a bool whether the service is
running.

CLI Example:

salt '*' service.status <service name>

	
salt.modules.rh_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.rpm

Support for rpm

	
salt.modules.rpm.file_dict(*packages)

	List the files that belong to a package, sorted by group. Not specifying
any packages will return a list of _every_ file on the system's rpm
database (not generally recommended).

CLI Examples:

salt '*' lowpkg.file_list httpd
salt '*' lowpkg.file_list httpd postfix
salt '*' lowpkg.file_list

	
salt.modules.rpm.file_list(*packages)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's rpm database (not generally
recommended).

CLI Examples:

salt '*' lowpkg.file_list httpd
salt '*' lowpkg.file_list httpd postfix
salt '*' lowpkg.file_list

	
salt.modules.rpm.list_pkgs(*packages)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' lowpkg.list_pkgs

	
salt.modules.rpm.verify(*package)

	Runs an rpm -Va on a system, and returns the results in a dict

CLI Example:

salt '*' lowpkg.verify

salt.modules.rvm

Manage ruby installations and gemsets with RVM, the Ruby Version Manager.

	
salt.modules.rvm.do(ruby, command, runas=None)

	Execute a command in an RVM controlled environment.

	ruby:

	The ruby to use.

	command:

	The command to execute.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.do 2.0.0 <command>

	
salt.modules.rvm.gemset_copy(source, destination, runas=None)

	Copy all gems from one gemset to another.

	source

	The name of the gemset to copy, complete with ruby version.

	destination

	The destination gemset.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.gemset_copy foobar bazquo

	
salt.modules.rvm.gemset_create(ruby, gemset, runas=None)

	Creates a gemset.

	ruby

	The ruby version to create the gemset for.

	gemset

	The name of the gemset to create.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.gemset_create 2.0.0 foobar

	
salt.modules.rvm.gemset_delete(ruby, gemset, runas=None)

	Deletes a gemset.

	ruby

	The ruby version the gemset belongs to.

	gemset

	The gemset to delete.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.gemset_delete 2.0.0 foobar

	
salt.modules.rvm.gemset_empty(ruby, gemset, runas=None)

	Remove all gems from a gemset.

	ruby

	The ruby version the gemset belongs to.

	gemset

	The gemset to empty.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.gemset_empty 2.0.0 foobar

	
salt.modules.rvm.gemset_list(ruby='default', runas=None)

	List all gemsets for the given ruby.

	ruby : default

	The ruby version to list the gemsets for

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.gemset_list

	
salt.modules.rvm.gemset_list_all(runas=None)

	List all gemsets for all installed rubies.

Note that you must have set a default ruby before this can work.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.gemset_list_all

	
salt.modules.rvm.get(version='stable', runas=None)

	Update RVM.

	version : stable

	Which version of RVM to install, e.g. stable or head.

	ruby

	The version of ruby to reinstall.

CLI Example:

salt '*' rvm.get

	
salt.modules.rvm.install(runas=None)

	Install RVM system wide.

CLI Example:

salt '*' rvm.install

	
salt.modules.rvm.install_ruby(ruby, runas=None)

	Install a ruby implementation.

	ruby

	The version of ruby to install.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.install_ruby 1.9.3-p385

	
salt.modules.rvm.is_installed(runas=None)

	Check if RVM is installed.

CLI Example:

salt '*' rvm.is_installed

	
salt.modules.rvm.list_(runas=None)

	List all rvm installed rubies.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.list

	
salt.modules.rvm.reinstall_ruby(ruby, runas=None)

	Reinstall a ruby implementation.

	ruby

	The version of ruby to reinstall.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.reinstall_ruby 1.9.3-p385

	
salt.modules.rvm.rubygems(ruby, version, runas=None)

	Installs a specific rubygems version in the given ruby.

	ruby

	The ruby to install rubygems for.

	version

	The version of rubygems to install or 'remove' to use the version that
ships with 1.9

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.rubygems 2.0.0 1.8.24

	
salt.modules.rvm.set_default(ruby, runas=None)

	Set the default ruby.

	ruby

	The version of ruby to make the default.

	runas : None

	The user to run rvm as.

CLI Example:

salt '*' rvm.set_default 2.0.0

	
salt.modules.rvm.wrapper(ruby_string, wrapper_prefix, runas=None, *binaries)

	Install RVM wrapper scripts.

	ruby_string

	Ruby/gemset to install wrappers for.

	wrapper_prefix

	What to prepend to the name of the generated wrapper binaries.

	runas : None

	The user to run rvm as.

	binaries : None

	The names of the binaries to create wrappers for. When nothing is
given, wrappers for ruby, gem, rake, irb, rdoc, ri and testrb are
generated.

CLI Example:

salt '*' rvm.wrapper <ruby_string> <wrapper_prefix>

salt.modules.s3

Connection module for Amazon S3

	configuration:	This module is not usable until the following are specified
either in a pillar or in the minion's config file:

s3.keyid: GKTADJGHEIQSXMKKRBJ08H
s3.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A service_url may also be specified in the configuration:

s3.service_url: s3.amazonaws.com

If a service_url is not specified, the default is s3.amazonaws.com. This
may appear in various documentation as an "endpoint". A comprehensive list
for Amazon S3 may be found at:

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

The service_url will form the basis for the final endpoint that is used to
query the service.

This module should be usable to query other S3-like services, such as
Eucalyptus.

	
salt.modules.s3.delete(bucket, path=None, action=None, key=None, keyid=None, service_url=None)

	Delete a bucket, or delete an object from a bucket.

CLI Example to delete a bucket:

salt myminion s3.delete mybucket

CLI Example to delete an object from a bucket:

salt myminion s3.delete mybucket remoteobject

	
salt.modules.s3.get(bucket=None, path=None, return_bin=False, action=None, local_file=None, key=None, keyid=None, service_url=None)

	List the contents of a bucket, or return an object from a bucket. Set
return_bin to True in order to retrieve an object wholesale. Otherwise,
Salt will attempt to parse an XML response.

CLI Example to list buckets:

salt myminion s3.get

CLI Example to list the contents of a bucket:

salt myminion s3.get mybucket

CLI Example to return the binary contents of an object:

salt myminion s3.get mybucket myfile.png return_bin=True

CLI Example to save the binary contents of an object to a local file:

salt myminion s3.get mybucket myfile.png local_file=/tmp/myfile.png

It is also possible to perform an action on a bucket. Currently, S3
supports the following actions:

acl
cors
lifecycle
policy
location
logging
notification
tagging
versions
requestPayment
versioning
website

To perform an action on a bucket:

salt myminion s3.get mybucket myfile.png action=acl

	
salt.modules.s3.head(bucket, path=None, key=None, keyid=None, service_url=None)

	Return the metadata for a bucket, or an object in a bucket.

CLI Examples:

salt myminion s3.head mybucket
salt myminion s3.head mybucket myfile.png

	
salt.modules.s3.put(bucket, path=None, return_bin=False, action=None, local_file=None, key=None, keyid=None, service_url=None)

	Create a new bucket, or upload an object to a bucket.

CLI Example to create a bucket:

salt myminion s3.put mybucket

CLI Example to upload an object to a bucket:

salt myminion s3.put mybucket remotepath local_path=/path/to/file

salt.modules.saltutil

The Saltutil module is used to manage the state of the salt minion itself. It is used to manage minion modules as well as automate updates to the salt minion.

	depends:	
	esky Python module for update functionality

	
salt.modules.saltutil.cmd(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='', kwarg=None, ssh=False, **kwargs)

	Assuming this minion is a master, execute a salt command

CLI Example:

salt '*' saltutil.cmd

	
salt.modules.saltutil.cmd_iter(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='', kwarg=None, ssh=False, **kwargs)

	Assuming this minion is a master, execute a salt command

CLI Example:

salt '*' saltutil.cmd

	
salt.modules.saltutil.find_job(jid)

	Return the data for a specific job id

CLI Example:

salt '*' saltutil.find_job <job id>

	
salt.modules.saltutil.is_running(fun)

	If the named function is running return the data associated with it/them.
The argument can be a glob

CLI Example:

salt '*' saltutil.is_running state.highstate

	
salt.modules.saltutil.kill_job(jid)

	Sends a kill signal (SIGKILL 9) to the named salt job's process

CLI Example:

salt '*' saltutil.kill_job <job id>

	
salt.modules.saltutil.refresh_modules()

	Signal the minion to refresh the module and grain data

CLI Example:

salt '*' saltutil.refresh_modules

	
salt.modules.saltutil.refresh_pillar()

	Signal the minion to refresh the pillar data.

CLI Example:

salt '*' saltutil.refresh_pillar

	
salt.modules.saltutil.regen_keys()

	Used to regenerate the minion keys.

CLI Example:

salt '*' saltutil.regen_keys

	
salt.modules.saltutil.revoke_auth()

	The minion sends a request to the master to revoke its own key.
Note that the minion session will be revoked and the minion may
not be able to return the result of this command back to the master.

CLI Example:

salt '*' saltutil.revoke_auth

	
salt.modules.saltutil.running()

	Return the data on all running salt processes on the minion

CLI Example:

salt '*' saltutil.running

	
salt.modules.saltutil.signal_job(jid, sig)

	Sends a signal to the named salt job's process

CLI Example:

salt '*' saltutil.signal_job <job id> 15

	
salt.modules.saltutil.sync_all(env=None, refresh=True)

	Sync down all of the dynamic modules from the file server for a specific
environment

CLI Example:

salt '*' saltutil.sync_all

	
salt.modules.saltutil.sync_grains(env=None, refresh=True)

	Sync the grains from the _grains directory on the salt master file
server. This function is environment aware, pass the desired environment
to grab the contents of the _grains directory, base is the default
environment.

CLI Example:

salt '*' saltutil.sync_grains

	
salt.modules.saltutil.sync_modules(env=None, refresh=True)

	Sync the modules from the _modules directory on the salt master file
server. This function is environment aware, pass the desired environment
to grab the contents of the _modules directory, base is the default
environment.

CLI Example:

salt '*' saltutil.sync_modules

	
salt.modules.saltutil.sync_outputters(env=None, refresh=True)

	Sync the outputters from the _outputters directory on the salt master file
server. This function is environment aware, pass the desired environment
to grab the contents of the _outputters directory, base is the default
environment.

CLI Example:

salt '*' saltutil.sync_outputters

	
salt.modules.saltutil.sync_renderers(env=None, refresh=True)

	Sync the renderers from the _renderers directory on the salt master file
server. This function is environment aware, pass the desired environment
to grab the contents of the _renderers directory, base is the default
environment.

CLI Example:

salt '*' saltutil.sync_renderers

	
salt.modules.saltutil.sync_returners(env=None, refresh=True)

	Sync the returners from the _returners directory on the salt master file
server. This function is environment aware, pass the desired environment
to grab the contents of the _returners directory, base is the default
environment.

CLI Example:

salt '*' saltutil.sync_returners

	
salt.modules.saltutil.sync_states(env=None, refresh=True)

	Sync the states from the _states directory on the salt master file
server. This function is environment aware, pass the desired environment
to grab the contents of the _states directory, base is the default
environment.

CLI Example:

salt '*' saltutil.sync_states

	
salt.modules.saltutil.term_job(jid)

	Sends a termination signal (SIGTERM 15) to the named salt job's process

CLI Example:

salt '*' saltutil.term_job <job id>

	
salt.modules.saltutil.update(version=None)

	Update the salt minion from the URL defined in opts['update_url']

This feature requires the minion to be running a bdist_esky build.

The version number is optional and will default to the most recent version
available at opts['update_url'].

Returns details about the transaction upon completion.

CLI Example:

salt '*' saltutil.update 0.10.3

salt.modules.seed

Virtual machine image management tools

	
salt.modules.seed.apply_(path, id_=None, config=None, approve_key=True, install=True)

	Seed a location (disk image, directory, or block device) with the
minion config, approve the minion's key, and/or install salt-minion.

CLI Example:

salt 'minion' seed.whatever path id [config=config_data] \
 [gen_key=(true|false)] [approve_key=(true|false)] \
 [install=(true|false)]

	path

	Full path to the directory, device, or disk image on the target
minion's file system.

	id

	Minion id with which to seed the path.

	config

	Minion configuration options. By default, the 'master' option is set to
the target host's 'master'.

	approve_key

	Request a pre-approval of the generated minion key. Requires
that the salt-master be configured to either auto-accept all keys or
expect a signing request from the target host. Default: true.

	install

	Install salt-minion, if absent. Default: true.

salt.modules.selinux

Execute calls on selinux

Note

This module requires the semanage and setsebool commands to be
available on the minion. On RHEL-based distros, this means that the
policycoreutils and policycoreutils-python packages must be
installed. If not on a RHEL-based distribution, consult the selinux
documentation for your distro to ensure that the proper packages are
installed.

	
salt.modules.selinux.getenforce()

	Return the mode selinux is running in

CLI Example:

salt '*' selinux.getenforce

	
salt.modules.selinux.getsebool(boolean)

	Return the information on a specific selinux boolean

CLI Example:

salt '*' selinux.getsebool virt_use_usb

	
salt.modules.selinux.list_sebool()

	Return a structure listing all of the selinux booleans on the system and
what state they are in

CLI Example:

salt '*' selinux.list_sebool

	
salt.modules.selinux.selinux_fs_path(*args)

	Return the location of the SELinux VFS directory

CLI Example:

salt '*' selinux.selinux_fs_path

	
salt.modules.selinux.setenforce(mode)

	Set the SELinux enforcing mode

CLI Example:

salt '*' selinux.setenforce enforcing

	
salt.modules.selinux.setsebool(boolean, value, persist=False)

	Set the value for a boolean

CLI Example:

salt '*' selinux.setsebool virt_use_usb off

	
salt.modules.selinux.setsebools(pairs, persist=False)

	Set the value of multiple booleans

CLI Example:

salt '*' selinux.setsebools '{virt_use_usb: on, squid_use_tproxy: off}'

salt.modules.service

The default service module, if not otherwise specified salt will fall back
to this basic module

	
salt.modules.service.available(name)

	Return if the specified service is available

CLI Example:

salt '*' service.available

	
salt.modules.service.get_all()

	Return a list of all available services

CLI Example:

salt '*' service.get_all

	
salt.modules.service.reload_(name)

	Restart the specified service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.service.restart(name)

	Restart the specified service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.service.status(name, sig=None)

	Return the status for a service, returns the PID or an empty string if the
service is running or not, pass a signature to use to find the service via
ps

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.shadow

Manage the shadow file

	
salt.modules.shadow.default_hash()

	Returns the default hash used for unset passwords

CLI Example:

salt '*' shadow.default_hash

	
salt.modules.shadow.info(name)

	Return information for the specified user

CLI Example:

salt '*' shadow.info root

	
salt.modules.shadow.set_date(name, date)

	sets the value for the date the password was last changed to the epoch
(January 1, 1970). See man chage.

CLI Example:

salt '*' shadow.set_date username 0

	
salt.modules.shadow.set_inactdays(name, inactdays)

	Set the number of days of inactivity after a password has expired before
the account is locked. See man chage.

CLI Example:

salt '*' shadow.set_inactdays username 7

	
salt.modules.shadow.set_maxdays(name, maxdays)

	Set the maximum number of days during which a password is valid.
See man chage.

CLI Example:

salt '*' shadow.set_maxdays username 90

	
salt.modules.shadow.set_mindays(name, mindays)

	Set the minimum number of days between password changes. See man chage.

CLI Example:

salt '*' shadow.set_mindays username 7

	
salt.modules.shadow.set_password(name, password, use_usermod=False)

	Set the password for a named user. The password must be a properly defined
hash. The password hash can be generated with this command:

python -c "import crypt; print crypt.crypt('password',
'\$6\$SALTsalt')"

SALTsalt is the 8-character crpytographic salt. Valid characters in the
salt are ., /, and any alphanumeric character.

Keep in mind that the $6 represents a sha512 hash, if your OS is using a
different hashing algorithm this needs to be changed accordingly

CLI Example:

salt '*' shadow.set_password root '1UYCIxa628.9qXjpQCjM4a..'

	
salt.modules.shadow.set_warndays(name, warndays)

	Set the number of days of warning before a password change is required.
See man chage.

CLI Example:

salt '*' shadow.set_warndays username 7

salt.modules.smartos_imgadm

Module for running imgadm command on SmartOS

	
salt.modules.smartos_imgadm.avail(search=None)

	Return a list of available images

CLI Example:

salt '*' imgadm.avail [percona]

	
salt.modules.smartos_imgadm.delete(uuid=None)

	Remove an installed image

CLI Example:

salt '*' imgadm.delete e42f8c84-bbea-11e2-b920-078fab2aab1f

	
salt.modules.smartos_imgadm.get(uuid=None)

	Return info on an installed image

CLI Example:

salt '*' imgadm.get e42f8c84-bbea-11e2-b920-078fab2aab1f

	
salt.modules.smartos_imgadm.import_image(uuid=None)

	Import an image from the repository

CLI Example:

salt '*' imgadm.import_image e42f8c84-bbea-11e2-b920-078fab2aab1f

	
salt.modules.smartos_imgadm.list_installed()

	Return a list of installed images

CLI Example:

salt '*' imgadm.list_installed

	
salt.modules.smartos_imgadm.show(uuid=None)

	Show manifest of a given image

CLI Example:

salt '*' imgadm.show e42f8c84-bbea-11e2-b920-078fab2aab1f

	
salt.modules.smartos_imgadm.update_installed()

	Gather info on unknown images (locally installed)

CLI Example:

salt '*' imgadm.update_installed()

	
salt.modules.smartos_imgadm.version()

	Return imgadm version

CLI Example:

salt '*' imgadm.version

salt.modules.smartos_vmadm

Module for managing VMs on SmartOS

	
salt.modules.smartos_vmadm.destroy(uuid=None)

	Hard power down the virtual machine, this is equivalent to pulling the power

CLI Example:

salt '*' virt.destroy <uuid>

	
salt.modules.smartos_vmadm.get_macs(uuid=None)

	Return a list off MAC addresses from the named VM

CLI Example:

salt '*' virt.get_macs <uuid>

	
salt.modules.smartos_vmadm.init(**kwargs)

	Initialize a new VM

CLI Example:

salt '*' virt.init image_uuid='...' alias='...' [...]

	
salt.modules.smartos_vmadm.list_active_vms()

	Return a list of uuids for active virtual machine on the minion

CLI Example:

salt '*' virt.list_active_vms

	
salt.modules.smartos_vmadm.list_inactive_vms()

	Return a list of uuids for inactive virtual machine on the minion

CLI Example:

salt '*' virt.list_inactive_vms

	
salt.modules.smartos_vmadm.list_vms()

	Return a list of virtual machine names on the minion

CLI Example:

salt '*' virt.list_vms

	
salt.modules.smartos_vmadm.reboot(uuid=None)

	Reboot a domain via ACPI request

CLI Example:

salt '*' virt.reboot <uuid>

	
salt.modules.smartos_vmadm.setmem(uuid, memory)

	Change the amount of memory allocated to VM.
<memory> is to be specified in MB.

Note for KVM : this would require a restart of the VM.

CLI Example:

salt '*' virt.setmem <uuid> 512

	
salt.modules.smartos_vmadm.shutdown(uuid=None)

	Send a soft shutdown signal to the named vm

CLI Example:

salt '*' virt.shutdown <uuid>

	
salt.modules.smartos_vmadm.start(uuid=None)

	Start a defined domain

CLI Example:

salt '*' virt.start <uuid>

	
salt.modules.smartos_vmadm.vm_info(uuid=None)

	Return a dict with information about the specified VM on this CN

CLI Example:

salt '*' virt.vm_info <uuid>

	
salt.modules.smartos_vmadm.vm_virt_type(uuid=None)

	Return VM virtualization type : OS or KVM

CLI Example:

salt '*' virt.vm_virt_type <uuid>

salt.modules.smf

Service support for Solaris 10 and 11, should work with other systems
that use SMF also. (e.g. SmartOS)

	
salt.modules.smf.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.smf.disabled(name)

	Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.smf.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.smf.enabled(name)

	Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.smf.get_all()

	Return all installed services

CLI Example:

salt '*' service.get_all

	
salt.modules.smf.get_disabled()

	Return the disabled services

CLI Example:

salt '*' service.get_disabled

	
salt.modules.smf.get_enabled()

	Return the enabled services

CLI Example:

salt '*' service.get_enabled

	
salt.modules.smf.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.smf.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.smf.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.smf.status(name, sig=None)

	Return the status for a service, returns a bool whether the service is
running.

CLI Example:

salt '*' service.status <service name>

	
salt.modules.smf.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.solaris_group

Manage groups on Solaris

	
salt.modules.solaris_group.add(name, gid=None, **kwargs)

	Add the specified group

CLI Example:

salt '*' group.add foo 3456

	
salt.modules.solaris_group.chgid(name, gid)

	Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

	
salt.modules.solaris_group.delete(name)

	Remove the named group

CLI Example:

salt '*' group.delete foo

	
salt.modules.solaris_group.getent(refresh=False)

	Return info on all groups

CLI Example:

salt '*' group.getent

	
salt.modules.solaris_group.info(name)

	Return information about a group

CLI Example:

salt '*' group.info foo

salt.modules.solaris_shadow

Manage the password database on Solaris systems

	
salt.modules.solaris_shadow.default_hash()

	Returns the default hash used for unset passwords

CLI Example:

salt '*' shadow.default_hash

	
salt.modules.solaris_shadow.info(name)

	Return information for the specified user

CLI Example:

salt '*' shadow.info root

	
salt.modules.solaris_shadow.set_maxdays(name, maxdays)

	Set the maximum number of days during which a password is valid. See man
passwd.

CLI Example:

salt '*' shadow.set_maxdays username 90

	
salt.modules.solaris_shadow.set_mindays(name, mindays)

	Set the minimum number of days between password changes. See man passwd.

CLI Example:

salt '*' shadow.set_mindays username 7

	
salt.modules.solaris_shadow.set_password(name, password)

	Set the password for a named user. The password must be a properly defined
hash, the password hash can be generated with this command:
openssl passwd -1 <plaintext password>

CLI Example:

salt '*' shadow.set_password root 1UYCIxa628.9qXjpQCjM4a..

	
salt.modules.solaris_shadow.set_warndays(name, warndays)

	Set the number of days of warning before a password change is required.
See man passwd.

CLI Example:

salt '*' shadow.set_warndays username 7

salt.modules.solaris_user

Manage users with the useradd command

	
salt.modules.solaris_user.add(name, uid=None, gid=None, groups=None, home=None, shell=None, unique=True, fullname='', roomnumber='', workphone='', homephone='', createhome=True, **kwargs)

	Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

	
salt.modules.solaris_user.chfullname(name, fullname)

	Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

	
salt.modules.solaris_user.chgid(name, gid)

	Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

	
salt.modules.solaris_user.chgroups(name, groups, append=False)

	Change the groups this user belongs to, add append to append the specified
groups

CLI Example:

salt '*' user.chgroups foo wheel,root True

	
salt.modules.solaris_user.chhome(name, home, persist=False)

	Change the home directory of the user, pass true for persist to copy files
to the new home dir

CLI Example:

salt '*' user.chhome foo /home/users/foo True

	
salt.modules.solaris_user.chhomephone(name, homephone)

	Change the user's Home Phone

CLI Example:

salt '*' user.chhomephone foo "7735551234"

	
salt.modules.solaris_user.chroomnumber(name, roomnumber)

	Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

	
salt.modules.solaris_user.chshell(name, shell)

	Change the default shell of the user

CLI Example:

salt '*' user.chshell foo /bin/zsh

	
salt.modules.solaris_user.chuid(name, uid)

	Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

	
salt.modules.solaris_user.chworkphone(name, workphone)

	Change the user's Work Phone

CLI Example:

salt '*' user.chworkphone foo "7735550123"

	
salt.modules.solaris_user.delete(name, remove=False, force=False)

	Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

	
salt.modules.solaris_user.getent()

	Return the list of all info for all users

CLI Example:

salt '*' user.getent

	
salt.modules.solaris_user.info(name)

	Return user information

CLI Example:

salt '*' user.info root

	
salt.modules.solaris_user.list_groups(name)

	Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

salt.modules.solarispkg

Package support for Solaris

	
salt.modules.solarispkg.install(name=None, sources=None, **kwargs)

	Install the passed package. Can install packages from the following
sources:

* Locally (package already exists on the minion
* HTTP/HTTPS server
* FTP server
* Salt master

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example, installing a datastream pkg that already exists on the
minion:

salt '*' pkg.install sources='[{"<pkg name>": "/dir/on/minion/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "/var/spool/pkg/gcc-3.4.6-sol10-sparc-local.pkg"}]'

CLI Example, installing a datastream pkg that exists on the salt master:

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "salt://pkgs/gcc-3.4.6-sol10-sparc-local.pkg"}]'

CLI Example, installing a datastream pkg that exists on a HTTP server:

salt '*' pkg.install sources='[{"<pkg name>": "http://packages.server.com/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "http://packages.server.com/gcc-3.4.6-sol10-sparc-local.pkg"}]'

If working with solaris zones and you want to install a package only in the
global zone you can pass 'current_zone_only=True' to salt to have the
package only installed in the global zone. (Behind the scenes this is
passing '-G' to the pkgadd command.) Solaris default when installing a
package in the global zone is to install it in all zones. This overrides
that and installs the package only in the global.

CLI Example, installing a datastream package only in the global zone:

salt 'global_zone' pkg.install sources='[{"SMClgcc346": "/var/spool/pkg/gcc-3.4.6-sol10-sparc-local.pkg"}]' current_zone_only=True

By default salt automatically provides an adminfile, to automate package
installation, with these options set:

email=
instance=quit
partial=nocheck
runlevel=nocheck
idepend=nocheck
rdepend=nocheck
space=nocheck
setuid=nocheck
conflict=nocheck
action=nocheck
basedir=default

You can override any of these options in two ways. First you can optionally
pass any of the options as a kwarg to the module/state to override the
default value or you can optionally pass the 'admin_source' option
providing your own adminfile to the minions.

Note: You can find all of the possible options to provide to the adminfile
by reading the admin man page:

man -s 4 admin

CLI Example - Overriding the 'instance' adminfile option when calling the
module directly:

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]' instance="overwrite"

CLI Example - Overriding the 'instance' adminfile option when used in a
state:

SMClgcc346:
 pkg.installed:
 - sources:
 - SMClgcc346: salt://srv/salt/pkgs/gcc-3.4.6-sol10-sparc-local.pkg
 - instance: overwrite

Note: the ID declaration is ignored, as the package name is read from the
"sources" parameter.

CLI Example - Providing your own adminfile when calling the module
directly:

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]' admin_source='salt://pkgs/<adminfile filename>'

CLI Example - Providing your own adminfile when using states:

<pkg name>:
 pkg.installed:
 - sources:
 - <pkg name>: salt://pkgs/<pkg filename>
 - admin_source: salt://pkgs/<adminfile filename>

Note: the ID declaration is ignored, as the package name is read from the
"sources" parameter.

	
salt.modules.solarispkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

NOTE: As package repositories are not presently supported for Solaris
pkgadd, this function will always return an empty string for a given
package.

	
salt.modules.solarispkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.solarispkg.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name

	The name of the package to be deleted

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.solarispkg.remove(name=None, pkgs=None, **kwargs)

	Remove packages with pkgrm

	name

	The name of the package to be deleted

By default salt automatically provides an adminfile, to automate package
removal, with these options set:

email=
instance=quit
partial=nocheck
runlevel=nocheck
idepend=nocheck
rdepend=nocheck
space=nocheck
setuid=nocheck
conflict=nocheck
action=nocheck
basedir=default

You can override any of these options in two ways. First you can optionally
pass any of the options as a kwarg to the module/state to override the
default value or you can optionally pass the 'admin_source' option
providing your own adminfile to the minions.

Note: You can find all of the possible options to provide to the adminfile
by reading the admin man page:

man -s 4 admin

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove SUNWgit
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.solarispkg.upgrade_available(name)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.solarispkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.solr

Apache Solr Salt Module

Author: Jed Glazner
Version: 0.2.1
Modified: 12/09/2011

This module uses HTTP requests to talk to the apache solr request handlers
to gather information and report errors. Because of this the minion doesn't
necessarily need to reside on the actual slave. However if you want to
use the signal function the minion must reside on the physical solr host.

This module supports multi-core and standard setups. Certain methods are
master/slave specific. Make sure you set the solr.type. If you have
questions or want a feature request please ask.

Coming Features in 0.3

	Add command for checking for replication failures on slaves

	Improve match_index_versions since it's pointless on busy solr masters

	Add additional local fs checks for backups to make sure they succeeded

Override these in the minion config

	solr.cores

	A list of core names eg ['core1','core2'].
An empty list indicates non-multicore setup.

	solr.baseurl

	The root level URL to access solr via HTTP

	solr.request_timeout

	The number of seconds before timing out an HTTP/HTTPS/FTP request. If
nothing is specified then the python global timeout setting is used.

	solr.type

	Possible values are 'master' or 'slave'

	solr.backup_path

	The path to store your backups. If you are using cores and you can specify
to append the core name to the path in the backup method.

	solr.num_backups

	For versions of solr >= 3.5. Indicates the number of backups to keep. This
option is ignored if your version is less.

	solr.init_script

	The full path to your init script with start/stop options

	solr.dih.options

	A list of options to pass to the DIH.

Required Options for DIH

	clean : False

	Clear the index before importing

	commit : True

	Commit the documents to the index upon completion

	optimize : True

	Optimize the index after commit is complete

	verbose : True

	Get verbose output

	
salt.modules.solr.abort_import(handler, host=None, core_name=None, verbose=False)

	MASTER ONLY
Aborts an existing import command to the specified handler.
This command can only be run if the minion is configured with
solr.type=master

	handler : str

	The name of the data import handler.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core : str (None)

	The core the handler belongs to.

	verbose : boolean (False)

	Run the command with verbose output.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.abort_import dataimport None music {'clean':True}

	
salt.modules.solr.backup(host=None, core_name=None, append_core_to_path=False)

	Tell solr make a backup. This method can be mis-leading since it uses the
backup API. If an error happens during the backup you are not notified.
The status: 'OK' in the response simply means that solr received the
request successfully.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

	append_core_to_path : boolean (False)

	If True add the name of the core to the backup path. Assumes that
minion backup path is not None.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.backup music

	
salt.modules.solr.core_status(host=None, core_name=None)

	MULTI-CORE HOSTS ONLY
Get the status for a given core or all cores if no core is specified

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str

	The name of the core to reload

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.core_status None music

	
salt.modules.solr.delta_import(handler, host=None, core_name=None, options=None, extra=None)

	Submits an import command to the specified handler using specified options.
This command can only be run if the minion is configured with
solr.type=master

	handler : str

	The name of the data import handler.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core : str (None)

	The core the handler belongs to.

	options : dict (__opts__)

	A list of options such as clean, optimize commit, verbose, and
pause_replication. leave blank to use __opts__ defaults. options will
be merged with __opts__

	extra : dict ([])

	Extra name value pairs to pass to the handler. eg ["name=value"]

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.delta_import dataimport None music {'clean':True}

	
salt.modules.solr.full_import(handler, host=None, core_name=None, options=None, extra=None)

	MASTER ONLY
Submits an import command to the specified handler using specified options.
This command can only be run if the minion is configured with
solr.type=master

	handler : str

	The name of the data import handler.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core : str (None)

	The core the handler belongs to.

	options : dict (__opts__)

	A list of options such as clean, optimize commit, verbose, and
pause_replication. leave blank to use __opts__ defaults. options will
be merged with __opts__

	extra : dict ([])

	Extra name value pairs to pass to the handler. e.g. ["name=value"]

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.full_import dataimport None music {'clean':True}

	
salt.modules.solr.import_status(handler, host=None, core_name=None, verbose=False)

	Submits an import command to the specified handler using specified options.
This command can only be run if the minion is configured with
solr.type: 'master'

	handler : str

	The name of the data import handler.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core : str (None)

	The core the handler belongs to.

	verbose : boolean (False)

	Specifies verbose output

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.import_status dataimport None music False

	
salt.modules.solr.is_replication_enabled(host=None, core_name=None)

	SLAVE CALL
Check for errors, and determine if a slave is replicating or not.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.is_replication_enabled music

	
salt.modules.solr.lucene_version(core_name=None)

	Gets the lucene version that solr is using. If you are running a multi-core
setup you should specify a core name since all the cores run under the same
servlet container, they will all have the same version.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return: dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.lucene_version

	
salt.modules.solr.match_index_versions(host=None, core_name=None)

	SLAVE CALL
Verifies that the master and the slave versions are in sync by
comparing the index version. If you are constantly pushing updates
the index the master and slave versions will seldom match. A solution
to this is pause indexing every so often to allow the slave to replicate
and then call this method before allowing indexing to resume.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.match_index_versions music

	
salt.modules.solr.optimize(host=None, core_name=None)

	Search queries fast, but it is a very expensive operation. The ideal
process is to run this with a master/slave configuration. Then you
can optimize the master, and push the optimized index to the slaves.
If you are running a single solr instance, or if you are going to run
this on a slave be aware than search performance will be horrible
while this command is being run. Additionally it can take a LONG time
to run and your HTTP request may timeout. If that happens adjust your
timeout settings.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.optimize music

	
salt.modules.solr.ping(host=None, core_name=None)

	Does a health check on solr, makes sure solr can talk to the indexes.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.ping music

	
salt.modules.solr.reload_core(host=None, core_name=None)

	MULTI-CORE HOSTS ONLY
Load a new core from the same configuration as an existing registered core.
While the "new" core is initializing, the "old" one will continue to accept
requests. Once it has finished, all new request will go to the "new" core,
and the "old" core will be unloaded.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str

	The name of the core to reload

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.reload_core None music

Return data is in the following format:

{'success':bool, 'data':dict, 'errors':list, 'warnings':list}

	
salt.modules.solr.reload_import_config(handler, host=None, core_name=None, verbose=False)

	MASTER ONLY
re-loads the handler config XML file.
This command can only be run if the minion is a 'master' type

	handler : str

	The name of the data import handler.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core : str (None)

	The core the handler belongs to.

	verbose : boolean (False)

	Run the command with verbose output.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.reload_import_config dataimport None music {'clean':True}

	
salt.modules.solr.replication_details(host=None, core_name=None)

	Get the full replication details.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.replication_details music

	
salt.modules.solr.set_is_polling(polling, host=None, core_name=None)

	SLAVE CALL
Prevent the slaves from polling the master for updates.

	polling : boolean

	True will enable polling. False will disable it.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.set_is_polling False

	
salt.modules.solr.set_replication_enabled(status, host=None, core_name=None)

	MASTER ONLY
Sets the master to ignore poll requests from the slaves. Useful when you
don't want the slaves replicating during indexing or when clearing the
index.

	status : boolean

	Sets the replication status to the specified state.

	host : str (None)

	The solr host to query. __opts__['host'] is default.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to set the status on all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.set_replication_enabled false, None, music

	
salt.modules.solr.signal(signal=None)

	Signals Apache Solr to start, stop, or restart. Obviously this is only
going to work if the minion resides on the solr host. Additionally Solr
doesn't ship with an init script so one must be created.

	signal : str (None)

	The command to pass to the apache solr init valid values are 'start',
'stop', and 'restart'

CLI Example:

salt '*' solr.signal restart

	
salt.modules.solr.version(core_name=None)

	Gets the solr version for the core specified. You should specify a core
here as all the cores will run under the same servlet container and so will
all have the same version.

	core_name : str (None)

	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.version

salt.modules.sqlite3

Support for SQLite3

	
salt.modules.sqlite3.fetch(db=None, sql=None)

	Retrieve data from an sqlite3 db (returns all rows, be careful!)

CLI Example:

salt '*' sqlite3.fetch /root/test.db 'SELECT * FROM test;'

	
salt.modules.sqlite3.indexes(db=None)

	Show all indices in the database, for people with poor spelling skills

CLI Example:

salt '*' sqlite3.indexes /root/test.db

	
salt.modules.sqlite3.indices(db=None)

	Show all indices in the database

CLI Example:

salt '*' sqlite3.indices /root/test.db

	
salt.modules.sqlite3.modify(db=None, sql=None)

	Issue an SQL query to sqlite3 (with no return data), usually used
to modify the database in some way (insert, delete, create, etc)

CLI Example:

salt '*' sqlite3.modify /root/test.db 'CREATE TABLE test(id INT, testdata TEXT);'

	
salt.modules.sqlite3.sqlite_version()

	Return version of sqlite

CLI Example:

salt '*' sqlite3.sqlite_version

	
salt.modules.sqlite3.tables(db=None)

	Show all tables in the database

CLI Example:

salt '*' sqlite3.tables /root/test.db

	
salt.modules.sqlite3.version()

	Return version of pysqlite

CLI Example:

salt '*' sqlite3.version

salt.modules.ssh

Manage client ssh components

	
salt.modules.ssh.auth_keys(user, config='.ssh/authorized_keys')

	Return the authorized keys for the specified user

CLI Example:

salt '*' ssh.auth_keys root

	
salt.modules.ssh.check_key(user, key, enc, comment, options, config='.ssh/authorized_keys')

	Check to see if a key needs updating, returns "update", "add" or "exists"

CLI Example:

salt '*' ssh.check_key <user> <key> <enc> <comment> <options>

	
salt.modules.ssh.check_key_file(user, source, config='.ssh/authorized_keys', env='base')

	Check a keyfile from a source destination against the local keys and
return the keys to change

CLI Example:

salt '*' root salt://ssh/keyfile

	
salt.modules.ssh.check_known_host(user, hostname, key=None, fingerprint=None, config='.ssh/known_hosts')

	Check the record in known_hosts file, either by its value or by fingerprint
(it's enough to set up either key or fingerprint, you don't need to set up
both).

If provided key or fingerprint doesn't match with stored value, return
"update", if no value is found for a given host, return "add", otherwise
return "exists".

If neither key, nor fingerprint is defined, then additional validation is
not performed.

CLI Example:

salt '*' ssh.check_known_host <user> <hostname> key='AAAA...FAaQ=='

	
salt.modules.ssh.get_known_host(user, hostname, config='.ssh/known_hosts')

	Return information about known host from the configfile, if any.
If there is no such key, return None.

CLI Example:

salt '*' ssh.get_known_host <user> <hostname>

	
salt.modules.ssh.host_keys(keydir=None)

	Return the minion's host keys

CLI Example:

salt '*' ssh.host_keys

	
salt.modules.ssh.recv_known_host(hostname, enc=None, port=None, hash_hostname=False)

	Retrieve information about host public key from remote server

CLI Example:

salt '*' ssh.recv_known_host <hostname> enc=<enc> port=<port>

	
salt.modules.ssh.rm_auth_key(user, key, config='.ssh/authorized_keys')

	Remove an authorized key from the specified user's authorized key file

CLI Example:

salt '*' ssh.rm_auth_key <user> <key>

	
salt.modules.ssh.rm_known_host(user, hostname, config='.ssh/known_hosts')

	Remove all keys belonging to hostname from a known_hosts file.

CLI Example:

salt '*' ssh.rm_known_host <user> <hostname>

	
salt.modules.ssh.set_auth_key(user, key, enc='ssh-rsa', comment='', options=None, config='.ssh/authorized_keys')

	Add a key to the authorized_keys file. The "key" parameter must only be the
string of text that is the encoded key. If the key begins with "ssh-rsa"
or ends with user@host, remove those from the key before passing it to this
function.

CLI Example:

salt '*' ssh.set_auth_key <user> '<key>' enc='dsa'

	
salt.modules.ssh.set_auth_key_from_file(user, source, config='.ssh/authorized_keys', env='base')

	Add a key to the authorized_keys file, using a file as the source.

CLI Example:

salt '*' ssh.set_auth_key_from_file <user> salt://ssh_keys/<user>.id_rsa.pub

	
salt.modules.ssh.set_known_host(user, hostname, fingerprint=None, port=None, enc=None, hash_hostname=True, config='.ssh/known_hosts')

	Download SSH public key from remote host "hostname", optionally validate
its fingerprint against "fingerprint" variable and save the record in the
known_hosts file.

If such a record does already exists in there, do nothing.

CLI Example:

salt '*' ssh.set_known_host <user> fingerprint='xx:xx:..:xx' enc='ssh-rsa' config='.ssh/known_hosts'

salt.modules.state

Control the state system on the minion

	
salt.modules.state.clear_cache()

	Clear out cached state files, forcing even cache runs to refresh the cache
on the next state execution.

Remember that the state cache is completely disabled by default, this
execution only applies if cache=True is used in states

CLI Example:

salt '*' state.clear_cache

	
salt.modules.state.high(data, queue=False, **kwargs)

	Execute the compound calls stored in a single set of high data
This function is mostly intended for testing the state system

CLI Example:

salt '*' state.high '{"vim": {"pkg": ["installed"]}}'

	
salt.modules.state.highstate(test=None, queue=False, **kwargs)

	Retrieve the state data from the salt master for this minion and execute it

CLI Example:

salt '*' state.highstate

salt '*' state.highstate exclude=sls_to_exclude
salt '*' state.highstate exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

	
salt.modules.state.low(data, queue=False, **kwargs)

	Execute a single low data call
This function is mostly intended for testing the state system

CLI Example:

salt '*' state.low '{"state": "pkg", "fun": "installed", "name": "vi"}'

	
salt.modules.state.pkg(pkg_path, test=False, **kwargs)

	Execute a packaged state run, the packaged state run will exist in a
tarball available locally. This packaged state
can be generated using salt-ssh.

CLI Example:

salt '*' state.pkg /tmp/state_pkg.tgz

	
salt.modules.state.running()

	Return a dict of state return data if a state function is already running.
This function is used to prevent multiple state calls from being run at
the same time.

CLI Example:

salt '*' state.running

	
salt.modules.state.show_highstate(queue=False, **kwargs)

	Retrieve the highstate data from the salt master and display it

CLI Example:

salt '*' state.show_highstate

	
salt.modules.state.show_lowstate(queue=False, **kwargs)

	List out the low data that will be applied to this minion

CLI Example:

salt '*' state.show_lowstate

	
salt.modules.state.show_sls(mods, env='base', test=None, queue=False, **kwargs)

	Display the state data from a specific sls or list of sls files on the
master

CLI Example:

salt '*' state.show_sls core,edit.vim dev

	
salt.modules.state.show_top(queue=False, **kwargs)

	Return the top data that the minion will use for a highstate

CLI Example:

salt '*' state.show_top

	
salt.modules.state.single(fun, name, test=None, queue=False, **kwargs)

	Execute a single state function with the named kwargs, returns False if
insufficient data is sent to the command

By default, the values of the kwargs will be parsed as YAML. So, you can
specify lists values, or lists of single entry key-value maps, as you
would in a YAML salt file. Alternatively, JSON format of keyword values
is also supported.

CLI Example:

salt '*' state.single pkg.installed name=vim

	
salt.modules.state.sls(mods, env='base', test=None, exclude=None, queue=False, **kwargs)

	Execute a set list of state modules from an environment, default
environment is base

CLI Example:

salt '*' state.sls core,edit.vim dev
salt '*' state.sls core exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

	
salt.modules.state.template(tem, queue=False, **kwargs)

	Execute the information stored in a template file on the minion

CLI Example:

salt '*' state.template '<Path to template on the minion>'

	
salt.modules.state.template_str(tem, queue=False, **kwargs)

	Execute the information stored in a string from an sls template

CLI Example:

salt '*' state.template_str '<Template String>'

	
salt.modules.state.top(topfn, test=None, queue=False, **kwargs)

	Execute a specific top file instead of the default

CLI Example:

salt '*' state.top reverse_top.sls
salt '*' state.top reverse_top.sls exclude=sls_to_exclude
salt '*' state.top reverse_top.sls exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

salt.modules.status

Module for returning various status data about a minion.
These data can be useful for compiling into stats later.

	
salt.modules.status.all_status()

	Return a composite of all status data and info for this minion.
Warning: There is a LOT here!

CLI Example:

salt '*' status.all_status

	
salt.modules.status.cpuinfo()

	Return the CPU info for this minion

CLI Example:

salt '*' status.cpuinfo

	
salt.modules.status.cpustats()

	Return the CPU stats for this minion

CLI Example:

salt '*' status.cpustats

	
salt.modules.status.custom()

	Return a custom composite of status data and info for this minion,
based on the minion config file. An example config like might be:

status.cpustats.custom: ['cpu', 'ctxt', 'btime', 'processes']

Where status refers to status.py, cpustats is the function
where we get our data, and custom is this function It is followed
by a list of keys that we want returned.

This function is meant to replace all_status(), which returns
anything and everything, which we probably don't want.

By default, nothing is returned. Warning: Depending on what you
include, there can be a LOT here!

CLI Example:

salt '*' status.custom

	
salt.modules.status.diskstats()

	Return the disk stats for this minion

CLI Example:

salt '*' status.diskstats

	
salt.modules.status.diskusage(*args)

	Return the disk usage for this minion

Usage:

salt '*' status.diskusage [paths and/or filesystem types]

CLI Example:

salt '*' status.diskusage # usage for all filesystems
salt '*' status.diskusage / /tmp # usage for / and /tmp
salt '*' status.diskusage ext? # usage for ext[234] filesystems
salt '*' status.diskusage / ext? # usage for / and all ext filesystems

	
salt.modules.status.loadavg()

	Return the load averages for this minion

CLI Example:

salt '*' status.loadavg

	
salt.modules.status.meminfo()

	Return the CPU stats for this minion

CLI Example:

salt '*' status.meminfo

	
salt.modules.status.netdev()

	Return the network device stats for this minion

CLI Example:

salt '*' status.netdev

	
salt.modules.status.netstats()

	Return the network stats for this minion

CLI Example:

salt '*' status.netstats

	
salt.modules.status.pid(sig)

	Return the PID or an empty string if the process is running or not.
Pass a signature to use to find the process via ps.

CLI Example:

salt '*' status.pid <sig>

	
salt.modules.status.procs()

	Return the process data

CLI Example:

salt '*' status.procs

	
salt.modules.status.uptime()

	Return the uptime for this minion

CLI Example:

salt '*' status.uptime

	
salt.modules.status.vmstats()

	Return the virtual memory stats for this minion

CLI Example:

salt '*' status.vmstats

	
salt.modules.status.w()

	Return a list of logged in users for this minion, using the w command

CLI Example:

salt '*' status.w

salt.modules.supervisord

Provide the service module for system supervisord or supervisord in a virtualenv

	
salt.modules.supervisord.add(name, user=None, conf_file=None, bin_env=None)

	Activates any updates in config for process/group.

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.add <name>

	
salt.modules.supervisord.custom(command, user=None, conf_file=None, bin_env=None)

	Run any custom supervisord command

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.custom "mstop '*gunicorn*'"

	
salt.modules.supervisord.remove(name, user=None, conf_file=None, bin_env=None)

	Removes process/group from active config

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.remove <name>

	
salt.modules.supervisord.reread(user=None, conf_file=None, bin_env=None)

	Reload the daemon's configuration files

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.reread

	
salt.modules.supervisord.restart(name='all', user=None, conf_file=None, bin_env=None)

	Restart the named service.

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.restart <service>

	
salt.modules.supervisord.start(name='all', user=None, conf_file=None, bin_env=None)

	Start the named service.

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.start <service>

	
salt.modules.supervisord.status(name=None, user=None, conf_file=None, bin_env=None)

	List programs and its state

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.status

	
salt.modules.supervisord.status_raw(name=None, user=None, conf_file=None, bin_env=None)

	Display the raw output of status

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.status_raw

	
salt.modules.supervisord.stop(name='all', user=None, conf_file=None, bin_env=None)

	Stop the named service.

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.stop <service>

	
salt.modules.supervisord.update(user=None, conf_file=None, bin_env=None)

	Reload config and add/remove as necessary

	user

	user to run supervisorctl as

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

CLI Example:

salt '*' supervisord.update

salt.modules.svn

Subversion SCM

	
salt.modules.svn.add(cwd, targets, user=None, username=None, password=None, *opts)

	Add files to be tracked by the Subversion working-copy checkout

	cwd

	The path to the Subversion repository

	targets : None

	files and directories to pass to the command as arguments

	user : None

	Run svn as a user other than what the minion runs as

	username : None

	Connect to the Subversion server as another user

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

CLI Example:

salt '*' svn.add /path/to/repo /path/to/new/file

	
salt.modules.svn.checkout(cwd, remote, target=None, user=None, username=None, password=None, *opts)

	Download a working copy of the remote Subversion repository
directory or file

	cwd

	The path to the Subversion repository

	remote : None

	URL to checkout

	target : None

	The name to give the file or directory working copy
Default: svn uses the remote basename

	user : None

	Run svn as a user other than what the minion runs as

	username : None

	Connect to the Subversion server as another user

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

CLI Example:

salt '*' svn.checkout /path/to/repo svn://remote/repo

	
salt.modules.svn.commit(cwd, targets=None, msg=None, user=None, username=None, password=None, *opts)

	Commit the current directory, files, or directories to
the remote Subversion repository

	cwd

	The path to the Subversion repository

	targets : None

	files and directories to pass to the command as arguments
Default: svn uses '.'

	msg : None

	Message to attach to the commit log

	user : None

	Run svn as a user other than what the minion runs as

	username : None

	Connect to the Subversion server as another user

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

CLI Example:

salt '*' svn.commit /path/to/repo

	
salt.modules.svn.diff(cwd, targets=None, user=None, username=None, password=None, *opts)

	Return the diff of the current directory, files, or directories from
the remote Subversion repository

	cwd

	The path to the Subversion repository

	targets : None

	files and directories to pass to the command as arguments
Default: svn uses '.'

	user : None

	Run svn as a user other than what the minion runs as

	username : None

	Connect to the Subversion server as another user

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

CLI Example:

salt '*' svn.diff /path/to/repo

	
salt.modules.svn.export(cwd, remote, target=None, user=None, username=None, password=None, *opts)

	Create an unversioned copy of a tree.

	cwd

	The path to the Subversion repository

	remote : None

	URL and path to file or directory checkout

	target : None

	The name to give the file or directory working copy
Default: svn uses the remote basename

	user : None

	Run svn as a user other than what the minion runs as

	username : None

	Connect to the Subversion server as another user

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

CLI Example:

salt '*' svn.export /path/to/repo svn://remote/repo

	
salt.modules.svn.info(cwd, targets=None, user=None, username=None, password=None, fmt='str')

	Display the Subversion information from the checkout.

	cwd

	The path to the Subversion repository

	targets : None

	files, directories, and URLs to pass to the command as arguments
svn uses '.' by default

	user : None

	Run svn as a user other than what the minion runs as

	username : None

	Connect to the Subversion server as another user

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

	fmt : str

	How to fmt the output from info.
(str, xml, list, dict)

CLI Example:

salt '*' svn.info /path/to/svn/repo

	
salt.modules.svn.remove(cwd, targets, msg=None, user=None, username=None, password=None, *opts)

	Remove files and directories from the Subversion repository

	cwd

	The path to the Subversion repository

	targets : None

	files, directories, and URLs to pass to the command as arguments

	msg : None

	Message to attach to the commit log

	user : None

	Run svn as a user other than what the minion runs as

	username : None

	Connect to the Subversion server as another user

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

CLI Example:

salt '*' svn.remove /path/to/repo /path/to/repo/remove

	
salt.modules.svn.status(cwd, targets=None, user=None, username=None, password=None, *opts)

	Display the status of the current directory, files, or
directories in the Subversion repository

	cwd

	The path to the Subversion repository

	targets : None

	files, directories, and URLs to pass to the command as arguments
Default: svn uses '.'

	user : None

	Run svn as a user other than what the minion runs as

	username : None

	Connect to the Subversion server as another user

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

CLI Example:

salt '*' svn.status /path/to/repo

	
salt.modules.svn.update(cwd, targets=None, user=None, username=None, password=None, *opts)

	Update the current directory, files, or directories from
the remote Subversion repository

	cwd

	The path to the Subversion repository

	targets : None

	files and directories to pass to the command as arguments
Default: svn uses '.'

	user : None

	Run svn as a user other than what the minion runs as

	password : None

	Connect to the Subversion server with this password

New in version 0.17.

	username : None

	Connect to the Subversion server as another user

CLI Example:

salt '*' svn.update /path/to/repo

salt.modules.sysbench

The 'sysbench' module is used to analyse the
performance of the minions, right from the master!
It measures various system parameters such as
CPU, Memory, FileI/O, Threads and Mutex.

	
salt.modules.sysbench.cpu()

	Tests for the CPU performance of minions.

CLI Examples:

salt '*' sysbench.cpu

	
salt.modules.sysbench.fileio()

	This tests for the file read and write operations
Various modes of operations are

	sequential write

	sequential rewrite

	sequential read

	random read

	random write

	random read and write

The test works with 32 files with each file being 1Gb in size
The test consumes a lot of time. Be patient!

CLI Examples:

salt '*' sysbench.fileio

	
salt.modules.sysbench.memory()

	This tests the memory for read and write operations.

CLI Examples:

salt '*' sysbench.memory

	
salt.modules.sysbench.mutex()

	Tests the implementation of mutex

CLI Examples:

salt '*' sysbench.mutex

	
salt.modules.sysbench.ping()

	

	
salt.modules.sysbench.threads()

	This tests the performance of the processor's scheduler

CLI Example:

salt '*' sysbench.threads

salt.modules.sysmod

The sys module provides information about the available functions on the minion

	
salt.modules.sysmod.argspec(module='')

	Return the argument specification of functions in Salt execution
modules.

CLI Example:

salt '*' sys.argspec pkg.install
salt '*' sys.argspec sys
salt '*' sys.argspec

	
salt.modules.sysmod.doc(*args)

	Return the docstrings for all modules. Optionally, specify a module or a
function to narrow the selection.

The strings are aggregated into a single document on the master for easy
reading.

Multiple modules/functions can be specified.

CLI Example:

salt '*' sys.doc
salt '*' sys.doc sys
salt '*' sys.doc sys.doc
salt '*' sys.doc network.traceroute user.info

	
salt.modules.sysmod.list_functions(*args, **kwargs)

	List the functions for all modules. Optionally, specify a module or modules
from which to list.

CLI Example:

salt '*' sys.list_functions
salt '*' sys.list_functions sys
salt '*' sys.list_functions sys user

	
salt.modules.sysmod.list_modules()

	List the modules loaded on the minion

CLI Example:

salt '*' sys.list_modules

	
salt.modules.sysmod.reload_modules()

	Tell the minion to reload the execution modules

CLI Example:

salt '*' sys.reload_modules

salt.modules.system

Support for reboot, shutdown, etc

	
salt.modules.system.halt()

	Halt a running system

CLI Example:

salt '*' system.halt

	
salt.modules.system.init(runlevel)

	Change the system runlevel on sysV compatible systems

CLI Example:

salt '*' system.init 3

	
salt.modules.system.poweroff()

	Poweroff a running system

CLI Example:

salt '*' system.poweroff

	
salt.modules.system.reboot()

	Reboot the system using the 'reboot' command

CLI Example:

salt '*' system.reboot

	
salt.modules.system.shutdown()

	Shutdown a running system

CLI Example:

salt '*' system.shutdown

salt.modules.systemd

Provide the service module for systemd

	
salt.modules.systemd.available(name)

	Check that the given service is available taking into account
template units.

CLI Example:

salt '*' service.available sshd

	
salt.modules.systemd.disable(name, **kwargs)

	Disable the named service to not start when the system boots

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.systemd.disabled(name)

	Return if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.systemd.enable(name, **kwargs)

	Enable the named service to start when the system boots

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.systemd.enabled(name)

	Return if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.systemd.force_reload(name)

	Force-reload the specified service with systemd

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.systemd.get_all()

	Return a list of all available services

CLI Example:

salt '*' service.get_all

	
salt.modules.systemd.get_disabled()

	Return a list of all disabled services

CLI Example:

salt '*' service.get_disabled

	
salt.modules.systemd.get_enabled()

	Return a list of all enabled services

CLI Example:

salt '*' service.get_enabled

	
salt.modules.systemd.reload_(name)

	Reload the specified service with systemd

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.systemd.restart(name)

	Restart the specified service with systemd

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.systemd.start(name)

	Start the specified service with systemd

CLI Example:

salt '*' service.start <service name>

	
salt.modules.systemd.status(name, sig=None)

	Return the status for a service via systemd, returns a bool
whether the service is running.

CLI Example:

salt '*' service.status <service name>

	
salt.modules.systemd.stop(name)

	Stop the specified service with systemd

CLI Example:

salt '*' service.stop <service name>

	
salt.modules.systemd.systemctl_reload()

	Reloads systemctl, an action needed whenever unit files are updated.

CLI Example:

salt '*' service.systemctl_reload

salt.modules.test

Module for running arbitrary tests

	
salt.modules.test.arg(*args, **kwargs)

	Print out the data passed into the function *args and `kwargs, this
is used to both test the publication data and cli argument passing, but
also to display the information available within the publication data.
Returns {"args": args, "kwargs": kwargs}.

CLI Example:

salt '*' test.arg 1 "two" 3.1 txt="hello" wow='{a: 1, b: "hello"}'

	
salt.modules.test.arg_repr(*args, **kwargs)

	Print out the data passed into the function *args and `kwargs, this
is used to both test the publication data and cli argument passing, but
also to display the information available within the publication data.
Returns {"args": repr(args), "kwargs": repr(kwargs)}.

CLI Example:

salt '*' test.arg_repr 1 "two" 3.1 txt="hello" wow='{a: 1, b: "hello"}'

	
salt.modules.test.collatz(start)

	Execute the collatz conjecture from the passed starting number,
returns the sequence and the time it took to compute. Used for
performance tests.

CLI Example:

salt '*' test.collatz 3

	
salt.modules.test.conf_test()

	Return the value for test.foo in the minion configuration file, or return
the default value

CLI Example:

salt '*' test.conf_test

	
salt.modules.test.cross_test(func, args=None)

	Execute a minion function via the __salt__ object in the test
module, used to verify that the minion functions can be called
via the __salt__ module.

CLI Example:

salt '*' test.cross_test file.gid_to_group 0

	
salt.modules.test.echo(text)

	Return a string - used for testing the connection

CLI Example:

salt '*' test.echo 'foo bar baz quo qux'

	
salt.modules.test.fib(num)

	Return a Fibonacci sequence up to the passed number, and the
timeit took to compute in seconds. Used for performance tests

CLI Example:

salt '*' test.fib 3

	
salt.modules.test.get_opts()

	Return the configuration options passed to this minion

CLI Example:

salt '*' test.get_opts

	
salt.modules.test.kwarg(**kwargs)

	Print out the data passed into the function **kwargs, this is used to
both test the publication data and cli kwarg passing, but also to display
the information available within the publication data.

CLI Example:

salt '*' test.kwarg num=1 txt="two" env='{a: 1, b: "hello"}'

	
salt.modules.test.not_loaded()

	List the modules that were not loaded by the salt loader system

CLI Example:

salt '*' test.not_loaded

	
salt.modules.test.opts_pkg()

	Return an opts package with the grains and opts for this minion.
This is primarily used to create the options used for master side
state compiling routines

CLI Example:

salt '*' test.opts_pkg

	
salt.modules.test.outputter(data)

	Test the outputter, pass in data to return

CLI Example:

salt '*' test.outputter foobar

	
salt.modules.test.ping()

	Just used to make sure the minion is up and responding
Return True

CLI Example:

salt '*' test.ping

	
salt.modules.test.provider(module)

	Pass in a function name to discover what provider is being used

CLI Example:

salt '*' test.provider service

	
salt.modules.test.providers()

	Return a dict of the provider names and the files that provided them

CLI Example:

salt '*' test.providers

	
salt.modules.test.rand_sleep(max=60)

	Sleep for a random number of seconds, used to test long-running commands
and minions returning at differing intervals

CLI Example:

salt '*' test.rand_sleep 60

	
salt.modules.test.retcode(code=42)

	Test that the returncode system is functioning correctly

CLI Example:

salt '*' test.retcode 42

	
salt.modules.test.sleep(length)

	Instruct the minion to initiate a process that will sleep for a given
period of time.

CLI Example:

salt '*' test.sleep 20

	
salt.modules.test.tty(device, echo=None)

	Echo a string to a specific tty

CLI Example:

salt '*' test.tty tty0 'This is a test'
salt '*' test.tty pts3 'This is a test'

	
salt.modules.test.version()

	Return the version of salt on the minion

CLI Example:

salt '*' test.version

	
salt.modules.test.versions_information()

	Returns versions of components used by salt as a dict

CLI Example:

salt '*' test.versions_information

	
salt.modules.test.versions_report()

	Returns versions of components used by salt

CLI Example:

salt '*' test.versions_report

salt.modules.timezone

Module for managing timezone on POSIX-like systems.

	
salt.modules.timezone.get_hwclock()

	Get current hardware clock setting (UTC or localtime)

CLI Example:

salt '*' timezone.get_hwclock

	
salt.modules.timezone.get_offset()

	Get current numeric timezone offset from UCT (i.e. -0700)

CLI Example:

salt '*' timezone.get_offset

	
salt.modules.timezone.get_zone()

	Get current timezone (i.e. America/Denver)

CLI Example:

salt '*' timezone.get_zone

	
salt.modules.timezone.get_zonecode()

	Get current timezone (i.e. PST, MDT, etc)

CLI Example:

salt '*' timezone.get_zonecode

	
salt.modules.timezone.set_hwclock(clock)

	Sets the hardware clock to be either UTC or localtime

CLI Example:

salt '*' timezone.set_hwclock UTC

	
salt.modules.timezone.set_zone(timezone)

	Unlinks, then symlinks /etc/localtime to the set timezone.

The timezone is crucial to several system processes, each of which SHOULD
be restarted (for instance, whatever you system uses as its cron and
syslog daemons). This will not be magically done for you!

CLI Example:

salt '*' timezone.set_zone 'America/Denver'

	
salt.modules.timezone.zone_compare(timezone)

	Checks the md5sum between the given timezone, and the one set in
/etc/localtime. Returns True if they match, and False if not. Mostly useful
for running state checks.

CLI Example:

salt '*' timezone.zone_compare 'America/Denver'

salt.modules.tls

A salt module for SSL/TLS.
Can create a Certificate Authority (CA)
or use Self-Signed certificates.

	depends:	
	PyOpenSSL Python module

	configuration:	Add the following values in /etc/salt/minion for the CA module
to function properly:

ca.cert_base_path: '/etc/pki'

	
salt.modules.tls.create_ca(ca_name, bits=2048, days=365, CN='localhost', C='US', ST='Utah', L='Salt Lake City', O='Salt Stack', OU=None, emailAddress='xyz@pdq.net')

	Create a Certificate Authority (CA)

	ca_name

	name of the CA

	bits

	number of RSA key bits, default is 2048

	days

	number of days the CA will be valid, default is 365

	CN

	common name in the request, default is "localhost"

	C

	country, default is "US"

	ST

	state, default is "Utah"

	L

	locality, default is "Centerville", the city where SaltStack originated

	O

	organization, default is "Salt Stack"

	OU

	organizational unit, default is None

	emailAddress

	email address for the CA owner, default is 'xyz@pdq.net'

Writes out a CA certificate based upon defined config values. If the file
already exists, the function just returns assuming the CA certificate
already exists.

If the following values were set:

ca.cert_base_path='/etc/pki/koji'
ca_name='koji'

the resulting CA would be written in the following location:

/etc/pki/koji/koji_ca_cert.crt

CLI Example:

salt '*' tls.create_ca test_ca

	
salt.modules.tls.create_ca_signed_cert(ca_name, CN, days=365)

	Create a Certificate (CERT) signed by a
named Certificate Authority (CA)

	ca_name

	name of the CA

	CN

	common name matching the certificate signing request

	days

	number of days certificate is valid, default is 365 (1 year)

Writes out a Certificate (CERT) If the file already
exists, the function just returns assuming the CERT already exists.

The CN must match an existing CSR generated by create_csr. If it
does not, this method does nothing.

CLI Example:

salt '*' tls.create_ca_signed_cert test localhost

	
salt.modules.tls.create_csr(ca_name, bits=2048, CN='localhost', C='US', ST='Utah', L='Salt Lake City', O='Salt Stack', OU=None, emailAddress='xyz@pdq.net')

	Create a Certificate Signing Request (CSR) for a
particular Certificate Authority (CA)

	ca_name

	name of the CA

	bits

	number of RSA key bits, default is 2048

	CN

	common name in the request, default is "localhost"

	C

	country, default is "US"

	ST

	state, default is "Utah"

	L

	locality, default is "Centerville", the city where SaltStack originated

	O

	organization, default is "Salt Stack"
NOTE: Must the same as CA certificate or an error will be raised

	OU

	organizational unit, default is None

	emailAddress

	email address for the request, default is 'xyz@pdq.net'

Writes out a Certificate Signing Request (CSR) If the file already
exists, the function just returns assuming the CSR already exists.

If the following values were set:

ca.cert_base_path='/etc/pki/koji'
ca_name='koji'
CN='test.egavas.org'

the resulting CSR, and corresponding key, would be written in the
following location:

/etc/pki/koji/certs/test.egavas.org.csr
/etc/pki/koji/certs/test.egavas.org.key

CLI Example:

salt '*' tls.create_csr test

	
salt.modules.tls.create_pkcs12(ca_name, CN, passphrase='')

	Create a PKCS#12 browser certificate for a particular Certificate (CN)

	ca_name

	name of the CA

	CN

	common name matching the certificate signing request

	passphrase

	used to unlock the PKCS#12 certificate when loaded into the browser

CLI Example:

salt '*' tls.create_pkcs12 test localhost

	
salt.modules.tls.create_self_signed_cert(tls_dir='tls', bits=2048, days=365, CN='localhost', C='US', ST='Utah', L='Salt Lake City', O='Salt Stack', OU=None, emailAddress='xyz@pdq.net')

	Create a Self-Signed Certificate (CERT)

	tls_dir

	location appended to the ca.cert_base_path, default is 'tls'

	bits

	number of RSA key bits, default is 2048

	CN

	common name in the request, default is "localhost"

	C

	country, default is "US"

	ST

	state, default is "Utah"

	L

	locality, default is "Centerville", the city where SaltStack originated

	O

	organization, default is "Salt Stack"
NOTE: Must the same as CA certificate or an error will be raised

	OU

	organizational unit, default is None

	emailAddress

	email address for the request, default is 'xyz@pdq.net'

Writes out a Self-Signed Certificate (CERT). If the file already
exists, the function just returns.

If the following values were set:

ca.cert_base_path='/etc/pki/koji'
tls_dir='koji'
CN='test.egavas.org'

the resulting CERT, and corresponding key, would be written in the
following location:

/etc/pki/tls/certs/test.egavas.org.crt
/etc/pki/tls/certs/test.egavas.org.key

CLI Example:

salt '*' tls.create_self_signed_cert

salt.modules.tomcat

Support for Tomcat

This module uses the manager webapp to manage Apache tomcat webapps
If the manager webapp is not configured some of the functions won't work

The following grains/pillar should be set:

tomcat-manager.user: admin user name
tomcat-manager.passwd: password

and also configure a user in the conf/tomcat-users.xml file:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager-script"/>
 <user username="tomcat" password="tomcat" roles="manager-script"/>
</tomcat-users>

Notes:

	More information about tomcat manager:
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html

	if you use only this module for deployments you've might want to strict
access to the manager only from localhost for more info:
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Configuring_Manager_Application_Access

	Tested on:

	JVM Vendor:

	Sun Microsystems Inc.

	JVM Version:

	1.6.0_43-b01

	OS Architecture:

	amd64

	OS Name:

	Linux

	OS Version:

	2.6.32-358.el6.x86_64

	Tomcat Version:

	Apache Tomcat/7.0.37

	
salt.modules.tomcat.deploy_war(war, context, force='no', url='http://localhost:8080/manager', env='base', timeout=180)

	Deploy a WAR file

	war

	absolute path to WAR file (should be accessible by the user running
tomcat) or a path supported by the salt.modules.cp.get_file function

	context

	the context path to deploy

	force : False

	set True to deploy the webapp even one is deployed in the context

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	env : base

	the environment for WAR file in used by salt.modules.cp.get_file
function

	timeout : 180

	timeout for HTTP request

CLI Examples:

cp module
.. code-block:: bash

salt '*' tomcat.deploy_war salt://application.war /api
salt '*' tomcat.deploy_war salt://application.war /api no
salt '*' tomcat.deploy_war salt://application.war /api yes http://localhost:8080/manager

minion local file system
.. code-block:: bash

salt '*' tomcat.deploy_war /tmp/application.war /api
salt '*' tomcat.deploy_war /tmp/application.war /api no
salt '*' tomcat.deploy_war /tmp/application.war /api yes http://localhost:8080/manager

	
salt.modules.tomcat.fullversion()

	Return all server information from catalina.sh version

CLI Example:

salt '*' tomcat.fullversion

	
salt.modules.tomcat.leaks(url='http://localhost:8080/manager', timeout=180)

	Find memory leaks in tomcat

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.leaks

	
salt.modules.tomcat.ls(url='http://localhost:8080/manager', timeout=180)

	list all the deployed webapps

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.ls
salt '*' tomcat.ls http://localhost:8080/manager

	
salt.modules.tomcat.passwd(passwd, user='', alg='md5', realm=None)

	This function replaces the $CATALINS_HOME/bin/digest.sh script
convert a clear-text password to the $CATALINA_BASE/conf/tomcat-users.xml
format

CLI Examples:

salt '*' tomcat.passwd secret
salt '*' tomcat.passwd secret tomcat sha1
salt '*' tomcat.passwd secret tomcat sha1 'Protected Realm'

	
salt.modules.tomcat.reload_(app, url='http://localhost:8080/manager', timeout=180)

	Reload the webapp

	app

	the webapp context path

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.reload /jenkins
salt '*' tomcat.reload /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.serverinfo(url='http://localhost:8080/manager', timeout=180)

	return detailes about the server

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.serverinfo
salt '*' tomcat.serverinfo http://localhost:8080/manager

	
salt.modules.tomcat.sessions(app, url='http://localhost:8080/manager', timeout=180)

	return the status of the webapp sessions

	app

	the webapp context path

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.sessions /jenkins
salt '*' tomcat.sessions /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.signal(signal=None)

	Signals catalina to start, stop, securestart, forcestop.

CLI Example:

salt '*' tomcat.signal start

	
salt.modules.tomcat.start(app, url='http://localhost:8080/manager', timeout=180)

	Start the webapp

	app

	the webapp context path

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.start /jenkins
salt '*' tomcat.start /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.status(url='http://localhost:8080/manager', timeout=180)

	Used to test if the tomcat manager is up

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.status
salt '*' tomcat.status http://localhost:8080/manager

	
salt.modules.tomcat.status_webapp(app, url='http://localhost:8080/manager', timeout=180)

	return the status of the webapp (stopped | running | missing)

	app

	the webapp context path

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.status_webapp /jenkins
salt '*' tomcat.status_webapp /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.stop(app, url='http://localhost:8080/manager', timeout=180)

	Stop the webapp

	app

	the webapp context path

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.stop /jenkins
salt '*' tomcat.stop /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.undeploy(app, url='http://localhost:8080/manager', timeout=180)

	Undeploy a webapp

	app

	the webapp context path

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request

CLI Examples:

salt '*' tomcat.undeploy /jenkins
salt '*' tomcat.undeploy /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.version()

	Return server version from catalina.sh version

CLI Example:

salt '*' tomcat.version

salt.modules.upstart

Module for the management of upstart systems. The Upstart system only supports
service starting, stopping and restarting.

Currently (as of Ubuntu 12.04) there is no tool available to disable
Upstart services (like update-rc.d). This[1] is the recommended way to
disable an Upstart service. So we assume that all Upstart services
that have not been disabled in this manner are enabled.

But this is broken because we do not check to see that the dependent
services are enabled. Otherwise we would have to do something like
parse the output of "initctl show-config" to determine if all service
dependencies are enabled to start on boot. For example, see the "start
on" condition for the lightdm service below[2]. And this would be too
hard. So we wait until the upstart developers have solved this
problem. :) This is to say that an Upstart service that is enabled may
not really be enabled.

Also, when an Upstart service is enabled, should the dependent
services be enabled too? Probably not. But there should be a notice
about this, at least.

[1] http://upstart.ubuntu.com/cookbook/#disabling-a-job-from-automatically-starting

[2] example upstart configuration file:

lightdm
emits login-session-start
emits desktop-session-start
emits desktop-shutdown
start on ((((filesystem and runlevel [!06]) and started dbus) and (drm-device-added card0 PRIMARY_DEVICE_FOR_DISPLAY=1 or stopped udev-fallback-graphics)) or runlevel PREVLEVEL=S)
stop on runlevel [016]

Warning

This module should not be used on Red Hat systems. For these, the
rh_service module should be used, as it
supports the hybrid upstart/sysvinit system used in RHEL/CentOS 6.

	
salt.modules.upstart.disable(name, **kwargs)

	Disable the named service from starting on boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.upstart.disabled(name)

	Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.upstart.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.upstart.enabled(name)

	Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.upstart.force_reload(name)

	Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.upstart.full_restart(name)

	Do a full restart (stop/start) of the named service

CLI Example:

salt '*' service.full_restart <service name>

	
salt.modules.upstart.get_all()

	Return all installed services

CLI Example:

salt '*' service.get_all

	
salt.modules.upstart.get_disabled()

	Return the disabled services

CLI Example:

salt '*' service.get_disabled

	
salt.modules.upstart.get_enabled()

	Return the enabled services

CLI Example:

salt '*' service.get_enabled

	
salt.modules.upstart.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.upstart.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.upstart.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.upstart.status(name, sig=None)

	Return the status for a service, returns a bool whether the service is
running.

CLI Example:

salt '*' service.status <service name>

	
salt.modules.upstart.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.useradd

Manage users with the useradd command

	
salt.modules.useradd.add(name, uid=None, gid=None, groups=None, home=None, shell=None, unique=True, system=False, fullname='', roomnumber='', workphone='', homephone='', createhome=True)

	Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

	
salt.modules.useradd.chfullname(name, fullname)

	Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

	
salt.modules.useradd.chgid(name, gid)

	Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

	
salt.modules.useradd.chgroups(name, groups, append=False)

	Change the groups this user belongs to, add append to append the specified
groups

CLI Example:

salt '*' user.chgroups foo wheel,root True

	
salt.modules.useradd.chhome(name, home, persist=False)

	Change the home directory of the user, pass true for persist to copy files
to the new home dir

CLI Example:

salt '*' user.chhome foo /home/users/foo True

	
salt.modules.useradd.chhomephone(name, homephone)

	Change the user's Home Phone

CLI Example:

salt '*' user.chhomephone foo "7735551234"

	
salt.modules.useradd.chroomnumber(name, roomnumber)

	Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

	
salt.modules.useradd.chshell(name, shell)

	Change the default shell of the user

CLI Example:

salt '*' user.chshell foo /bin/zsh

	
salt.modules.useradd.chuid(name, uid)

	Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

	
salt.modules.useradd.chworkphone(name, workphone)

	Change the user's Work Phone

CLI Example:

salt '*' user.chworkphone foo "7735550123"

	
salt.modules.useradd.delete(name, remove=False, force=False)

	Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

	
salt.modules.useradd.getent()

	Return the list of all info for all users

CLI Example:

salt '*' user.getent

	
salt.modules.useradd.info(name)

	Return user information

CLI Example:

salt '*' user.info root

	
salt.modules.useradd.list_groups(name)

	Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

	
salt.modules.useradd.list_users()

	Return a list of all users

CLI Example:

salt '*' user.list_users

salt.modules.virt

Work with virtual machines managed by libvirt

	depends:	libvirt Python module

	
salt.modules.virt.create(vm_)

	Start a defined domain

CLI Example:

salt '*' virt.create <vm name>

	
salt.modules.virt.create_xml_path(path)

	Start a domain based on the XML-file path passed to the function

CLI Example:

salt '*' virt.create_xml_path <path to XML file on the node>

	
salt.modules.virt.create_xml_str(xml)

	Start a domain based on the XML passed to the function

CLI Example:

salt '*' virt.create_xml_str <XML in string format>

	
salt.modules.virt.ctrl_alt_del(vm_)

	Sends CTRL+ALT+DEL to a VM

CLI Example:

salt '*' virt.ctrl_alt_del <vm name>

	
salt.modules.virt.define_vol_xml_path(path)

	Define a volume based on the XML-file path passed to the function

CLI Example:

salt '*' virt.define_vol_xml_path <path to XML file on the node>

	
salt.modules.virt.define_vol_xml_str(xml)

	Define a volume based on the XML passed to the function

CLI Example:

salt '*' virt.define_vol_xml_str <XML in string format>

	
salt.modules.virt.define_xml_path(path)

	Define a domain based on the XML-file path passed to the function

CLI Example:

salt '*' virt.define_xml_path <path to XML file on the node>

	
salt.modules.virt.define_xml_str(xml)

	Define a domain based on the XML passed to the function

CLI Example:

salt '*' virt.define_xml_str <XML in string format>

	
salt.modules.virt.destroy(vm_)

	Hard power down the virtual machine, this is equivalent to pulling the
power

CLI Example:

salt '*' virt.destroy <vm name>

	
salt.modules.virt.freecpu()

	Return an int representing the number of unallocated cpus on this
hypervisor

CLI Example:

salt '*' virt.freecpu

	
salt.modules.virt.freemem()

	Return an int representing the amount of memory that has not been given
to virtual machines on this node

CLI Example:

salt '*' virt.freemem

	
salt.modules.virt.full_info()

	Return the node_info, vm_info and freemem

CLI Example:

salt '*' virt.full_info

	
salt.modules.virt.get_disks(vm_)

	Return the disks of a named vm

CLI Example:

salt '*' virt.get_disks <vm name>

	
salt.modules.virt.get_graphics(vm_)

	Returns the information on vnc for a given vm

CLI Example:

salt '*' virt.get_graphics <vm name>

	
salt.modules.virt.get_macs(vm_)

	Return a list off MAC addresses from the named vm

CLI Example:

salt '*' virt.get_macs <vm name>

	
salt.modules.virt.get_nics(vm_)

	Return info about the network interfaces of a named vm

CLI Example:

salt '*' virt.get_nics <vm name>

	
salt.modules.virt.get_xml(vm_)

	Returns the XML for a given vm

CLI Example:

salt '*' virt.get_xml <vm name>

	
salt.modules.virt.init(name, cpu, mem, image, nic='default', hypervisor='kvm', start=True, **kwargs)

	Initialize a new vm

CLI Example:

salt 'hypervisor' virt.init vm_name 4 512 salt://path/to/image.raw

	
salt.modules.virt.is_hyper()

	Returns a bool whether or not this node is a hypervisor of any kind

CLI Example:

salt '*' virt.is_hyper

	
salt.modules.virt.is_kvm_hyper()

	Returns a bool whether or not this node is a KVM hypervisor

CLI Example:

salt '*' virt.is_kvm_hyper

	
salt.modules.virt.is_xen_hyper()

	Returns a bool whether or not this node is a XEN hypervisor

CLI Example:

salt '*' virt.is_xen_hyper

	
salt.modules.virt.list_active_vms()

	Return a list of names for active virtual machine on the minion

CLI Example:

salt '*' virt.list_active_vms

	
salt.modules.virt.list_inactive_vms()

	Return a list of names for inactive virtual machine on the minion

CLI Example:

salt '*' virt.list_inactive_vms

	
salt.modules.virt.list_vms()

	Return a list of virtual machine names on the minion

CLI Example:

salt '*' virt.list_vms

	
salt.modules.virt.migrate(vm_, target, ssh=False)

	Shared storage migration

CLI Example:

salt '*' virt.migrate <vm name> <target hypervisor>

	
salt.modules.virt.migrate_non_shared(vm_, target, ssh=False)

	Attempt to execute non-shared storage "all" migration

CLI Example:

salt '*' virt.migrate_non_shared <vm name> <target hypervisor>

	
salt.modules.virt.migrate_non_shared_inc(vm_, target, ssh=False)

	Attempt to execute non-shared storage "all" migration

CLI Example:

salt '*' virt.migrate_non_shared_inc <vm name> <target hypervisor>

	
salt.modules.virt.node_info()

	Return a dict with information about this node

CLI Example:

salt '*' virt.node_info

	
salt.modules.virt.pause(vm_)

	Pause the named vm

CLI Example:

salt '*' virt.pause <vm name>

	
salt.modules.virt.purge(vm_, dirs=False)

	Recursively destroy and delete a virtual machine, pass True for dir's to
also delete the directories containing the virtual machine disk images -
USE WITH EXTREME CAUTION!

CLI Example:

salt '*' virt.purge <vm name>

	
salt.modules.virt.reboot(vm_)

	Reboot a domain via ACPI request

CLI Example:

salt '*' virt.reboot <vm name>

	
salt.modules.virt.reset(vm_)

	Reset a VM by emulating the reset button on a physical machine

CLI Example:

salt '*' virt.reset <vm name>

	
salt.modules.virt.resume(vm_)

	Resume the named vm

CLI Example:

salt '*' virt.resume <vm name>

	
salt.modules.virt.seed_non_shared_migrate(disks, force=False)

	Non shared migration requires that the disks be present on the migration
destination, pass the disks information via this function, to the
migration destination before executing the migration.

CLI Example:

salt '*' virt.seed_non_shared_migrate <disks>

	
salt.modules.virt.set_autostart(vm_, state='on')

	Set the autostart flag on a VM so that the VM will start with the host
system on reboot.

CLI Example:

salt "*" virt.set_autostart <vm name> <on | off>

	
salt.modules.virt.setmem(vm_, memory, config=False)

	Changes the amount of memory allocated to VM. The VM must be shutdown
for this to work.

memory is to be specified in MB
If config is True then we ask libvirt to modify the config as well

CLI Example:

salt '*' virt.setmem myvm 768

	
salt.modules.virt.setvcpus(vm_, vcpus, config=False)

	Changes the amount of vcpus allocated to VM. The VM must be shutdown
for this to work.

vcpus is an int representing the number to be assigned
If config is True then we ask libvirt to modify the config as well

CLI Example:

salt '*' virt.setvcpus myvm 2

	
salt.modules.virt.shutdown(vm_)

	Send a soft shutdown signal to the named vm

CLI Example:

salt '*' virt.shutdown <vm name>

	
salt.modules.virt.start(vm_)

	Alias for the obscurely named 'create' function

CLI Example:

salt '*' virt.start <vm name>

	
salt.modules.virt.stop(vm_)

	Alias for the obscurely named 'destroy' function

CLI Example:

salt '*' virt.stop <vm name>

	
salt.modules.virt.undefine(vm_)

	Remove a defined vm, this does not purge the virtual machine image, and
this only works if the vm is powered down

CLI Example:

salt '*' virt.undefine <vm name>

	
salt.modules.virt.virt_type()

	Returns the virtual machine type as a string

CLI Example:

salt '*' virt.virt_type

	
salt.modules.virt.vm_cputime(vm_=None)

	Return cputime used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'cputime' <int>
 'cputime_percent' <int>
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_cputime

	
salt.modules.virt.vm_diskstats(vm_=None)

	Return disk usage counters used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'rd_req' : 0,
 'rd_bytes' : 0,
 'wr_req' : 0,
 'wr_bytes' : 0,
 'errs' : 0
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_blockstats

	
salt.modules.virt.vm_info(vm_=None)

	Return detailed information about the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'cpu': <int>,
 'maxMem': <int>,
 'mem': <int>,
 'state': '<state>',
 'cputime' <int>
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_info

	
salt.modules.virt.vm_netstats(vm_=None)

	Return combined network counters used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'rx_bytes' : 0,
 'rx_packets' : 0,
 'rx_errs' : 0,
 'rx_drop' : 0,
 'tx_bytes' : 0,
 'tx_packets' : 0,
 'tx_errs' : 0,
 'tx_drop' : 0
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_netstats

	
salt.modules.virt.vm_state(vm_=None)

	Return list of all the vms and their state.

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_state <vm name>

salt.modules.virtualenv

Create virtualenv environments

	
salt.modules.virtualenv_mod.create(path, venv_bin=None, no_site_packages=None, system_site_packages=False, distribute=False, clear=False, python=None, extra_search_dir=None, never_download=None, prompt=None, pip=False, symlinks=None, upgrade=None, runas=None)

	Create a virtualenv

	path

	The path to create the virtualenv

	venv_bin : None (default 'virtualenv')

	The name (and optionally path) of the virtualenv command. This can also
be set globally in the minion config file as virtualenv.venv_bin.

	no_site_packages : None

	Passthrough argument given to virtualenv if True. Deprecated since
salt>=0.17.0. Use system_site_packages=False instead.

	system_site_packages : False

	Passthrough argument given to virtualenv or pyvenv

	distribute : False

	Passthrough argument given to virtualenv

	pip : False

	Install pip after creating a virtual environment,
implies distribute=True

	clear : False

	Passthrough argument given to virtualenv or pyvenv

	python : None (default)

	Passthrough argument given to virtualenv

	extra_search_dir : None (default)

	Passthrough argument given to virtualenv

	never_download : None (default)

	Passthrough argument given to virtualenv if True

	prompt : None (default)

	Passthrough argument given to virtualenv if not None

	symlinks : None

	Passthrough argument given to pyvenv if True

	upgrade : None

	Passthrough argument given to pyvenv if True

	runas : None

	Set ownership for the virtualenv

CLI Example:

salt '*' virtualenv.create /path/to/new/virtualenv

	
salt.modules.virtualenv_mod.get_site_packages(venv)

	Returns the path to the site-packages directory inside a virtualenv

CLI Example:

salt '*' virtualenv.get_site_packages /path/to/my/venv

salt.modules.win_disk

Module for gathering disk information on Windows

	depends:	
	win32api Python module

	
salt.modules.win_disk.usage()

	Return usage information for volumes mounted on this minion

CLI Example:

salt '*' disk.usage

salt.modules.win_file

Manage information about files on the minion, set/read user, group
data

	depends:	
	win32api

	win32con

	win32security

	ntsecuritycon

	
salt.modules.win_file.chgrp(path, group)

	Change the group of a file

CLI Example:

salt '*' file.chgrp c:\temp\test.txt administrators

	
salt.modules.win_file.chown(path, user, group)

	Chown a file, pass the file the desired user and group

CLI Example:

salt '*' file.chown c:\temp\test.txt myusername administrators

	
salt.modules.win_file.get_gid(path)

	Return the id of the group that owns a given file

CLI Example:

salt '*' file.get_gid c:\temp\test.txt

	
salt.modules.win_file.get_group(path)

	Return the group that owns a given file

CLI Example:

salt '*' file.get_group c:\temp\test.txt

	
salt.modules.win_file.get_mode(path)

	Return the mode of a file

Right now we're just returning 777
because Windows' doesn't have a mode
like Linux

CLI Example:

salt '*' file.get_mode /etc/passwd

	
salt.modules.win_file.get_uid(path)

	Return the id of the user that owns a given file

CLI Example:

salt '*' file.get_uid c:\temp\test.txt

	
salt.modules.win_file.get_user(path)

	Return the user that owns a given file

CLI Example:

salt '*' file.get_user c:\temp\test.txt

	
salt.modules.win_file.gid_to_group(gid)

	Convert the group id to the group name on this system

CLI Example:

salt '*' file.gid_to_group S-1-5-21-626487655-2533044672-482107328-1010

	
salt.modules.win_file.group_to_gid(group)

	Convert the group to the gid on this system

CLI Example:

salt '*' file.group_to_gid administrators

	
salt.modules.win_file.stats(path, hash_type='md5', follow_symlink=False)

	Return a dict containing the stats for a given file

CLI Example:

salt '*' file.stats /etc/passwd

	
salt.modules.win_file.uid_to_user(uid)

	Convert a uid to a user name

CLI Example:

salt '*' file.uid_to_user S-1-5-21-626487655-2533044672-482107328-1010

	
salt.modules.win_file.user_to_uid(user)

	Convert user name to a uid

CLI Example:

salt '*' file.user_to_uid myusername

salt.modules.win_groupadd

Manage groups on Windows

	
salt.modules.win_groupadd.add(name, gid=None, system=False)

	Add the specified group

CLI Example:

salt '*' group.add foo

	
salt.modules.win_groupadd.delete(name)

	Remove the named group

CLI Example:

salt '*' group.delete foo

	
salt.modules.win_groupadd.getent(refresh=False)

	Return info on all groups

CLI Example:

salt '*' group.getent

	
salt.modules.win_groupadd.info(name)

	Return information about a group

CLI Example:

salt '*' group.info foo

salt.modules.win_network

Module for gathering and managing network information

	
salt.modules.win_network.dig(host)

	Performs a DNS lookup with dig

Note: dig must be installed on the Windows minion

CLI Example:

salt '*' network.dig archlinux.org

	
salt.modules.win_network.hw_addr(iface)

	Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr 'Wireless Connection #1'

	
salt.modules.win_network.hwaddr(iface)

	Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr 'Wireless Connection #1'

	
salt.modules.win_network.in_subnet(cidr)

	Returns True if host is within specified subnet, otherwise False

CLI Example:

salt '*' network.in_subnet 10.0.0.0/16

	
salt.modules.win_network.interfaces()

	Return a dictionary of information about all the interfaces on the minion

CLI Example:

salt '*' network.interfaces

	
salt.modules.win_network.ip_addrs(interface=None, include_loopback=False)

	Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is
ignored, unless 'include_loopback=True' is indicated. If 'interface' is
provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs

	
salt.modules.win_network.ip_addrs6(interface=None, include_loopback=False)

	Returns a list of IPv6 addresses assigned to the host. ::1 is ignored,
unless 'include_loopback=True' is indicated. If 'interface' is provided,
then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs6

	
salt.modules.win_network.ipaddrs(interface=None, include_loopback=False)

	Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is
ignored, unless 'include_loopback=True' is indicated. If 'interface' is
provided, then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs

	
salt.modules.win_network.ipaddrs6(interface=None, include_loopback=False)

	Returns a list of IPv6 addresses assigned to the host. ::1 is ignored,
unless 'include_loopback=True' is indicated. If 'interface' is provided,
then only IP addresses from that interface will be returned.

CLI Example:

salt '*' network.ip_addrs6

	
salt.modules.win_network.netstat()

	Return information on open ports and states

CLI Example:

salt '*' network.netstat

	
salt.modules.win_network.nslookup(host)

	Query DNS for information about a domain or ip address

CLI Example:

salt '*' network.nslookup archlinux.org

	
salt.modules.win_network.ping(host)

	Performs a ping to a host

CLI Example:

salt '*' network.ping archlinux.org

	
salt.modules.win_network.subnets()

	Returns a list of subnets to which the host belongs

CLI Example:

salt '*' network.subnets

	
salt.modules.win_network.traceroute(host)

	Performs a traceroute to a 3rd party host

CLI Example:

salt '*' network.traceroute archlinux.org

salt.modules.win_pkg

A module to manage software on Windows

	depends:	
	pythoncom

	win32com

	win32con

	win32api

	pywintypes

	
salt.modules.win_pkg.get_repo_data()

	Returns the cached winrepo data

CLI Example:

salt '*' pkg.get_repo_data

	
salt.modules.win_pkg.install(name=None, refresh=False, pkgs=None, **kwargs)

	Install the passed package

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install <package name>

	
salt.modules.win_pkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.win_pkg.list_available(*names)

	Return a list of available versions of the specified package.

CLI Example:

salt '*' pkg.list_available <package name>
salt '*' pkg.list_available <package name01> <package name02>

	
salt.modules.win_pkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

	
salt.modules.win_pkg.list_upgrades(refresh=True)

	List all available package upgrades on this system

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.win_pkg.purge(name=None, pkgs=None, version=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name

	The name of the package to be deleted.

	version

	The version of the package to be deleted. If this option is used in
combination with the pkgs option below, then this version will be
applied to all targeted packages.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.win_pkg.refresh_db()

	Just recheck the repository and return a dict:

{'<database name>': Bool}

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.win_pkg.remove(name=None, pkgs=None, version=None, **kwargs)

	Remove packages.

	name

	The name of the package to be deleted.

	version

	The version of the package to be deleted. If this option is used in
combination with the pkgs option below, then this version will be
applied to all targeted packages.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.win_pkg.upgrade(refresh=True)

	Run a full system upgrade

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.win_pkg.upgrade_available(name)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.win_pkg.version(*names, **kwargs)

	Returns a version if the package is installed, else returns an empty string

CLI Example:

salt '*' pkg.version <package name>

salt.modules.win_service

Windows Service module.

	
salt.modules.win_service.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.win_service.disabled(name)

	Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.win_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.win_service.enabled(name)

	Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.win_service.get_all()

	Return all installed services

CLI Example:

salt '*' service.get_all

	
salt.modules.win_service.get_disabled()

	Return the disabled services

CLI Example:

salt '*' service.get_disabled

	
salt.modules.win_service.get_enabled()

	Return the enabled services

CLI Example:

salt '*' service.get_enabled

	
salt.modules.win_service.get_service_name(*args)

	The Display Name is what is displayed in Windows when services.msc is
executed. Each Display Name has an associated Service Name which is the
actual name of the service. This function allows you to discover the
Service Name by returning a dictionary of Display Names and Service Names,
or filter by adding arguments of Display Names.

If no args are passed, return a dict of all services where the keys are the
service Display Names and the values are the Service Names.

If arguments are passed, create a dict of Display Names and Service Names

CLI Example:

salt '*' service.get_service_name
salt '*' service.get_service_name 'Google Update Service (gupdate)' 'DHCP Client'

	
salt.modules.win_service.getsid(name)

	Return the sid for this windows service

CLI Example:

salt '*' service.getsid <service name>

	
salt.modules.win_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.win_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.win_service.status(name, sig=None)

	Return the status for a service, returns the PID or an empty string if the
service is running or not, pass a signature to use to find the service via
ps

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.win_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.win_shadow

Manage the shadow file

	
salt.modules.win_shadow.info(name)

	Return information for the specified user
This is just returns dummy data so that salt states can work.

CLI Example:

salt '*' shadow.info root

	
salt.modules.win_shadow.set_password(name, password)

	Set the password for a named user.

CLI Example:

salt '*' shadow.set_password root mysecretpassword

salt.modules.win_status

Module for returning various status data about a minion.
These data can be useful for compiling into stats later.

	depends:	
	pythoncom

	wmi

	
salt.modules.win_status.procs()

	Return the process data

CLI Example:

salt '*' status.procs

salt.modules.win_system

Support for reboot, shutdown, etc

	
salt.modules.win_system.halt(timeout=5)

	Halt a running system

CLI Example:

salt '*' system.halt

	
salt.modules.win_system.init(runlevel)

	Change the system runlevel on sysV compatible systems

CLI Example:

salt '*' system.init 3

	
salt.modules.win_system.poweroff(timeout=5)

	Poweroff a running system

CLI Example:

salt '*' system.poweroff

	
salt.modules.win_system.reboot(timeout=5)

	Reboot the system

CLI Example:

salt '*' system.reboot

	
salt.modules.win_system.shutdown(timeout=5)

	Shutdown a running system

CLI Example:

salt '*' system.shutdown

	
salt.modules.win_system.shutdown_hard()

	Shutdown a running system with no timeout or warning

CLI Example:

salt '*' system.shutdown_hard

salt.modules.win_useradd

Manage Windows users with the net user command

NOTE: This currently only works with local user accounts, not domain accounts

	
salt.modules.win_useradd.add(name, uid=None, gid=None, groups=None, home=False, shell=None, unique=False, system=False, fullname=False, roomnumber=False, workphone=False, homephone=False, createhome=False)

	Add a user to the minion

CLI Example:

salt '*' user.add name password

	
salt.modules.win_useradd.addgroup(name, group)

	Add user to a group

CLI Example:

salt '*' user.addgroup username groupname

	
salt.modules.win_useradd.chfullname(name, fullname)

	Change the full name of the user

CLI Example:

salt '*' user.chfullname user 'First Last'

	
salt.modules.win_useradd.chgroups(name, groups, append=False)

	Change the groups this user belongs to, add append to append the specified
groups

CLI Example:

salt '*' user.chgroups foo wheel,root True

	
salt.modules.win_useradd.chhome(name, home)

	Change the home directory of the user

CLI Example:

salt '*' user.chhome foo \\fileserver\home\foo

	
salt.modules.win_useradd.chprofile(name, profile)

	Change the profile directory of the user

CLI Example:

salt '*' user.chprofile foo \\fileserver\profiles\foo

	
salt.modules.win_useradd.delete(name, purge=False, force=False)

	Remove a user from the minion
NOTE: purge and force have not been implemented on Windows yet

CLI Example:

salt '*' user.delete name

	
salt.modules.win_useradd.getent()

	Return the list of all info for all users

CLI Example:

salt '*' user.getent

	
salt.modules.win_useradd.info(name)

	Return user information

CLI Example:

salt '*' user.info root

	
salt.modules.win_useradd.list_groups(name)

	Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

	
salt.modules.win_useradd.list_users()

	Return a list of users on Windows

	
salt.modules.win_useradd.removegroup(name, group)

	Remove user from a group

CLI Example:

salt '*' user.removegroup username groupname

	
salt.modules.win_useradd.setpassword(name, password)

	Set a user's password

CLI Example:

salt '*' user.setpassword name password

salt.modules.xapi

This module (mostly) uses the XenAPI to manage Xen virtual machines.

Big fat warning: the XenAPI used in this file is the one bundled with
Xen Source, NOT XenServer nor Xen Cloud Platform. As a matter of fact it
will fail under those platforms. From what I've read, little work is needed
to adapt this code to XS/XCP, mostly playing with XenAPI version, but as
XCP is not taking precedence on Xen Source on many platforms, please keep
compatibility in mind.

Useful documentation:

. http://downloads.xen.org/Wiki/XenAPI/xenapi-1.0.6.pdf
. http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/api/
. https://github.com/xen-org/xen-api/tree/master/scripts/examples/python
. http://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=tools/python/xen/xm;hb=HEAD

	
salt.modules.xapi.create(config_)

	Start a defined domain

CLI Example:

salt '*' virt.create <path to Xen cfg file>

	
salt.modules.xapi.destroy(vm_)

	Hard power down the virtual machine, this is equivalent to pulling the
power

CLI Example:

salt '*' virt.destroy <vm name>

	
salt.modules.xapi.freecpu()

	Return an int representing the number of unallocated cpus on this
hypervisor

CLI Example:

salt '*' virt.freecpu

	
salt.modules.xapi.freemem()

	Return an int representing the amount of memory that has not been given
to virtual machines on this node

CLI Example:

salt '*' virt.freemem

	
salt.modules.xapi.full_info()

	Return the node_info, vm_info and freemem

CLI Example:

salt '*' virt.full_info

	
salt.modules.xapi.get_disks(vm_)

	Return the disks of a named vm

CLI Example:

salt '*' virt.get_disks <vm name>

	
salt.modules.xapi.get_macs(vm_)

	Return a list off MAC addresses from the named vm

CLI Example:

salt '*' virt.get_macs <vm name>

	
salt.modules.xapi.get_nics(vm_)

	Return info about the network interfaces of a named vm

CLI Example:

salt '*' virt.get_nics <vm name>

	
salt.modules.xapi.is_hyper()

	Returns a bool whether or not this node is a hypervisor of any kind

CLI Example:

salt '*' virt.is_hyper

	
salt.modules.xapi.list_vms()

	Return a list of virtual machine names on the minion

CLI Example:

salt '*' virt.list_vms

	
salt.modules.xapi.migrate(vm_, target, live=1, port=0, node=-1, ssl=None, change_home_server=0)

	Migrates the virtual machine to another hypervisor

CLI Example:

salt '*' virt.migrate <vm name> <target hypervisor> [live] [port] [node] [ssl] [change_home_server]

Optional values:

	live

	Use live migration

	port

	Use a specified port

	node

	Use specified NUMA node on target

	ssl

	use ssl connection for migration

	change_home_server

	change home server for managed domains

	
salt.modules.xapi.node_info()

	Return a dict with information about this node

CLI Example:

salt '*' virt.node_info

	
salt.modules.xapi.pause(vm_)

	Pause the named vm

CLI Example:

salt '*' virt.pause <vm name>

	
salt.modules.xapi.reboot(vm_)

	Reboot a domain via ACPI request

CLI Example:

salt '*' virt.reboot <vm name>

	
salt.modules.xapi.reset(vm_)

	Reset a VM by emulating the reset button on a physical machine

CLI Example:

salt '*' virt.reset <vm name>

	
salt.modules.xapi.resume(vm_)

	Resume the named vm

CLI Example:

salt '*' virt.resume <vm name>

	
salt.modules.xapi.setmem(vm_, memory)

	Changes the amount of memory allocated to VM.

Memory is to be specified in MB

CLI Example:

salt '*' virt.setmem myvm 768

	
salt.modules.xapi.setvcpus(vm_, vcpus)

	Changes the amount of vcpus allocated to VM.

vcpus is an int representing the number to be assigned

CLI Example:

salt '*' virt.setvcpus myvm 2

	
salt.modules.xapi.shutdown(vm_)

	Send a soft shutdown signal to the named vm

CLI Example:

salt '*' virt.shutdown <vm name>

	
salt.modules.xapi.start(config_)

	Alias for the obscurely named 'create' function

CLI Example:

salt '*' virt.start <path to Xen cfg file>

	
salt.modules.xapi.vcpu_pin(vm_, vcpu, cpus)

	Set which CPUs a VCPU can use.

CLI Example:

salt 'foo' virt.vcpu_pin domU-id 2 1
salt 'foo' virt.vcpu_pin domU-id 2 2-6

	
salt.modules.xapi.vm_cputime(vm_=None)

	Return cputime used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'cputime' <int>
 'cputime_percent' <int>
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_cputime

	
salt.modules.xapi.vm_diskstats(vm_=None)

	Return disk usage counters used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'io_read_kbs' : 0,
 'io_write_kbs' : 0
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_diskstats

	
salt.modules.xapi.vm_info(vm_=None)

	Return detailed information about the vms.

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_info

	
salt.modules.xapi.vm_netstats(vm_=None)

	Return combined network counters used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'io_read_kbs' : 0,
 'io_total_read_kbs' : 0,
 'io_total_write_kbs' : 0,
 'io_write_kbs' : 0
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_netstats

	
salt.modules.xapi.vm_state(vm_=None)

	Return list of all the vms and their state.

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_state <vm name>

salt.modules.yumpkg

New in version 0.9.4: This module replaces the "yum" module in previous releases. It is backward
compatible and uses the native yum Python interface instead of the CLI
interface.

Support for YUM

	depends:	
	yum Python module

	rpmUtils Python module

This module uses the python interface to YUM. Note that with a default
/etc/yum.conf, this will cause messages to be sent to sent to syslog on
/dev/log, with a log facility of LOG_USER. This is in addition to
whatever is logged to /var/log/yum.log. See the manpage for yum.conf(5) for
information on how to use the syslog_facility and syslog_device config
parameters to configure how syslog is handled, or take the above defaults into
account when configuring your syslog daemon.

	
salt.modules.yumpkg.check_db(*names, **kwargs)

	
New in version 0.17.0.

Returns a dict containing the following information for each specified
package:

	A key found, which will be a boolean value denoting if a match was
found in the package database.

	If found is False, then a second key called suggestions will
be present, which will contain a list of possible matches.

The fromrepo, enablerepo, and disablerepo arguments are
supported, as used in pkg states.

CLI Examples:

salt '*' pkg.check_db <package1> <package2> <package3>
salt '*' pkg.check_db <package1> <package2> <package3> fromrepo=epel-testing

	
salt.modules.yumpkg.clean_metadata()

	Cleans local yum metadata.

CLI Example:

salt '*' pkg.clean_metadata

	
salt.modules.yumpkg.del_repo(repo, basedir='/etc/yum.repos.d', **kwargs)

	Delete a repo from <basedir> (default basedir: /etc/yum.repos.d).

If the .repo file that the repo exists in does not contain any other repo
configuration, the file itself will be deleted.

CLI Examples:

salt '*' pkg.del_repo myrepo
salt '*' pkg.del_repo myrepo basedir=/path/to/dir

	
salt.modules.yumpkg.expand_repo_def(repokwargs)

	Take a repository definition and expand it to the full pkg repository dict
that can be used for comparison. This is a helper function to make
certain repo managers sane for comparison in the pkgrepo states.

There is no use to calling this function via the CLI.

	
salt.modules.yumpkg.file_dict(*packages)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
rpm database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.yumpkg.file_list(*packages)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's rpm database (not generally
recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.yumpkg.get_repo(repo, basedir='/etc/yum.repos.d', **kwargs)

	Display a repo from <basedir> (default basedir: /etc/yum.repos.d).

CLI Examples:

salt '*' pkg.get_repo myrepo
salt '*' pkg.get_repo myrepo basedir=/path/to/dir

	
salt.modules.yumpkg.group_diff(groupname)

	Lists packages belonging to a certain group, and which are installed

CLI Example:

salt '*' pkg.group_diff 'Perl Support'

	
salt.modules.yumpkg.group_info(groupname)

	Lists packages belonging to a certain group

CLI Example:

salt '*' pkg.group_info 'Perl Support'

	
salt.modules.yumpkg.group_install(name=None, groups=None, skip=None, include=None, **kwargs)

	Install the passed package group(s). This is basically a wrapper around
pkg.install, which performs package group resolution for the user. This
function is currently considered "experimental", and should be expected to
undergo changes before it becomes official.

	name

	The name of a single package group to install. Note that this option is
ignored if "groups" is passed.

	groups

	The names of multiple packages which are to be installed.

CLI Example:

salt '*' pkg.group_install groups='["Group 1", "Group 2"]'

	skip

	The name(s), in a list, of any packages that would normally be
installed by the package group ("default" packages), which should not
be installed.

CLI Examples:

salt '*' pkg.group_install 'My Group' skip='["foo", "bar"]'

	include

	The name(s), in a list, of any packages which are included in a group,
which would not normally be installed ("optional" packages). Note that
this will nor enforce group membership; if you include packages which
are not members of the specified groups, they will still be installed.

CLI Examples:

salt '*' pkg.group_install 'My Group' include='["foo", "bar"]'

	other arguments

	Because this is essentially a wrapper around pkg.install, any argument
which can be passed to pkg.install may also be included here, and it
will be passed along wholesale.

	
salt.modules.yumpkg.group_list()

	Lists all groups known by yum on this system

CLI Example:

salt '*' pkg.group_list

	
salt.modules.yumpkg.install(name=None, refresh=False, skip_verify=False, pkgs=None, sources=None, **kwargs)

	Install the passed package(s), add refresh=True to clean the yum database
before package is installed.

	name

	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

32-bit packages can be installed on 64-bit systems by appending the
architecture designation (.i686, .i586, etc.) to the end of the
package name.

CLI Example:

salt '*' pkg.install <package name>

	refresh

	Whether or not to update the yum database before executing.

	skip_verify

	Skip the GPG verification check. (e.g., --nogpgcheck)

	version

	Install a specific version of the package, e.g. 1.2.3-4.el6. Ignored
if "pkgs" or "sources" is passed.

Repository Options:

	fromrepo

	Specify a package repository (or repositories) from which to install.
(e.g., yum --disablerepo='*' --enablerepo='somerepo')

	enablerepo

	Specify a disabled package repository (or repositories) to enable.
(e.g., yum --enablerepo='somerepo')

	disablerepo

	Specify an enabled package repository (or repositories) to disable.
(e.g., yum --disablerepo='somerepo')

Multiple Package Installation Options:

	pkgs

	A list of packages to install from a software repository. Must be
passed as a python list. A specific version number can be specified
by using a single-element dict representing the package and its
version.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4.el6"}]'

	sources

	A list of RPM packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.yumpkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=epel-testing
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.yumpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.yumpkg.list_repos(basedir='/etc/yum.repos.d')

	Lists all repos in <basedir> (default: /etc/yum.repos.d/).

CLI Example:

salt '*' pkg.list_repos

	
salt.modules.yumpkg.list_upgrades(refresh=True)

	Check whether or not an upgrade is available for all packages

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.yumpkg.mod_repo(repo, basedir=None, **kwargs)

	Modify one or more values for a repo. If the repo does not exist, it will
be created, so long as the following values are specified:

	repo

	name by which the yum refers to the repo

	name

	a human-readable name for the repo

	baseurl

	the URL for yum to reference

	mirrorlist

	the URL for yum to reference

Key/Value pairs may also be removed from a repo's configuration by setting
a key to a blank value. Bear in mind that a name cannot be deleted, and a
baseurl can only be deleted if a mirrorlist is specified (or vice versa).

CLI Examples:

salt '*' pkg.mod_repo reponame enabled=1 gpgcheck=1
salt '*' pkg.mod_repo reponame basedir=/path/to/dir enabled=1
salt '*' pkg.mod_repo reponame baseurl= mirrorlist=http://host.com/

	
salt.modules.yumpkg.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported by yum, this function is identical to
remove().

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.yumpkg.refresh_db()

	Since yum refreshes the database automatically, this runs a yum clean,
so that the next yum operation will have a clean database

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.yumpkg.remove(name=None, pkgs=None, **kwargs)

	Removes packages using python API for yum.

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.yumpkg.upgrade(refresh=True)

	Run a full system upgrade, a yum upgrade

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.yumpkg.upgrade_available(name)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.yumpkg.verify(*package)

	Runs an rpm -Va on a system, and returns the results in a dict

CLI Example:

salt '*' pkg.verify

	
salt.modules.yumpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.yumpkg5

Support for YUM

	
salt.modules.yumpkg5.check_db(*names, **kwargs)

	
New in version 0.17.0.

Returns a dict containing the following information for each specified
package:

	A key found, which will be a boolean value denoting if a match was
found in the package database.

	If found is False, then a second key called suggestions will
be present, which will contain a list of possible matches.

The fromrepo, enablerepo, and disablerepo arguments are
supported, as used in pkg states.

CLI Examples:

salt '*' pkg.check_db <package1> <package2> <package3>
salt '*' pkg.check_db <package1> <package2> <package3> fromrepo=epel-testing

	
salt.modules.yumpkg5.install(name=None, refresh=False, fromrepo=None, skip_verify=False, pkgs=None, sources=None, **kwargs)

	Install the passed package(s), add refresh=True to clean the yum database
before package is installed.

	name

	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

32-bit packages can be installed on 64-bit systems by appending the
architecture designation (.i686, .i586, etc.) to the end of the
package name.

CLI Example:

salt '*' pkg.install <package name>

	refresh

	Whether or not to update the yum database before executing.

	skip_verify

	Skip the GPG verification check (e.g., --nogpgcheck)

	version

	Install a specific version of the package, e.g. 1.2.3-4.el5. Ignored
if "pkgs" or "sources" is passed.

Repository Options:

	fromrepo

	Specify a package repository (or repositories) from which to install.
(e.g., yum --disablerepo='*' --enablerepo='somerepo')

	enablerepo (ignored if fromrepo is specified)

	Specify a disabled package repository (or repositories) to enable.
(e.g., yum --enablerepo='somerepo')

	disablerepo (ignored if fromrepo is specified)

	Specify an enabled package repository (or repositories) to disable.
(e.g., yum --disablerepo='somerepo')

Multiple Package Installation Options:

	pkgs

	A list of packages to install from a software repository. Must be
passed as a python list. A specific version number can be specified
by using a single-element dict representing the package and its
version.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4.el5"}]'

	sources

	A list of RPM packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.yumpkg5.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=epel-testing
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.yumpkg5.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.yumpkg5.list_upgrades(refresh=True, **kwargs)

	Check whether or not an upgrade is available for all packages

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.yumpkg5.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported by yum, this function is identical to
remove().

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.yumpkg5.refresh_db()

	Since yum refreshes the database automatically, this runs a yum clean,
so that the next yum operation will have a clean database

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.yumpkg5.remove(name=None, pkgs=None, **kwargs)

	Remove packages with yum -q -y remove.

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.yumpkg5.upgrade(refresh=True)

	Run a full system upgrade, a yum upgrade

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.yumpkg5.upgrade_available(name)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.yumpkg5.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.zfs

Module for running ZFS command

salt.modules.zpool

Module for running ZFS zpool command

	
salt.modules.zpool.add(pool_name, vdev)

	Add the specified vdev to the given pool

CLI Example:

salt '*' zpool.add myzpool /path/to/vdev

	
salt.modules.zpool.create(pool_name, *vdevs)

	Create a new storage pool

CLI Example:

salt '*' zpool.create myzpool /path/to/vdev1 [/path/to/vdev2] [...]

	
salt.modules.zpool.create_file_vdev(size, *vdevs)

	Creates file based virtual devices for a zpool

*vdevs is a list of full paths for mkfile to create

CLI Example:

salt '*' zpool.create_file_vdev 7g /path/to/vdev1 [/path/to/vdev2] [...]

Depending on file size this may take a while to return

	
salt.modules.zpool.destroy(pool_name)

	Destroys a storage pool

CLI Example:

salt '*' zpool.destroy myzpool

	
salt.modules.zpool.exists(pool_name)

	Check if a ZFS storage pool is active

CLI Example:

salt '*' zpool.exists myzpool

	
salt.modules.zpool.iostat(name='')

	Display I/O statistics for the given pools

CLI Example:

salt '*' zpool.iostat

	
salt.modules.zpool.replace(pool_name, old, new)

	Replaces old device with new device.

CLI Example:

salt '*' zpool.replace myzpool /path/to/vdev1 /path/to/vdev2

	
salt.modules.zpool.scrub(pool_name=None)

	Begin a scrub

CLI Example:

salt '*' zpool.scrub myzpool

	
salt.modules.zpool.status(name='')

	Return the status of the named zpool

CLI Example:

salt '*' zpool.status

	
salt.modules.zpool.zpool_list()

	Return a list of all pools in the system with health status and space usage

CLI Example:

salt '*' zpool.zpool_list

salt.modules.zypper

Package support for openSUSE via the zypper package manager

	
salt.modules.zypper.install(name=None, refresh=False, pkgs=None, sources=None, **kwargs)

	Install the passed package(s), add refresh=True to run 'zypper refresh'
before package is installed.

	name

	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

CLI Example:

salt '*' pkg.install <package name>

	refresh

	Whether or not to refresh the package database before installing.

	version

	Can be either a version number, or the combination of a comparison
operator (<, >, <=, >=, =) and a version number (ex. '>1.2.3-4').
This parameter is ignored if "pkgs" or "sources" is passed.

Multiple Package Installation Options:

	pkgs

	A list of packages to install from a software repository. Must be
passed as a python list. A specific version number can be specified
by using a single-element dict representing the package and its
version. As with the version parameter above, comparison operators
can be used to target a specific version of a package.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4"}]'
salt '*' pkg.install pkgs='["foo", {"bar": "<1.2.3-4"}]'

	sources

	A list of RPM packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.rpm"},{"bar": "salt://bar.rpm"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.zypper.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.zypper.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.zypper.list_upgrades(refresh=True)

	List all available package upgrades on this system

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.zypper.purge(name=None, pkgs=None, **kwargs)

	Recursively remove a package and all dependencies which were installed
with it, this will call a zypper -n remove -u

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.zypper.refresh_db()

	Just run a zypper refresh, return a dict:

{'<database name>': Bool}

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.zypper.remove(name=None, pkgs=None, **kwargs)

	Remove packages with zypper -n remove

	name

	The name of the package to be deleted.

Multiple Package Options:

	pkgs

	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.zypper.upgrade(refresh=True)

	Run a full system upgrade, a zypper upgrade

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.zypper.upgrade_available(name)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.zypper.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

Returners

By default the return values of the commands sent to the Salt minions are
returned to the salt-master. But since the commands executed on the Salt
minions are detached from the call on the Salt master, anything at all can be
done with the results data.

This is where the returner interface comes in. Returners are modules called
in addition to returning the data to the Salt master.

The returner interface allows the return data to be sent to any system that
can receive data. This means that return data can be sent to a Redis server,
a MongoDB server, a MySQL server, or any system!

See also

Full list of builtin returners

Using Returners

All commands will return the command data back to the master. Adding more
returners will ensure that the data is also sent to the specified returner
interfaces.

Specifying what returners to use is done when the command is invoked:

salt '*' test.ping --return redis_return

This command will ensure that the redis_return returner is used.

It is also possible to specify multiple returners:

salt '*' test.ping --return mongo_return,redis_return,cassandra_return

In this scenario all three returners will be called and the data from the
test.ping command will be sent out to the three named returners.

Writing a Returner

A returner is a module which contains a returner function, the returner
function must accept a single argument. this argument is the return data from
the called minion function. So if the minion function test.ping is called
the value of the argument will be True.

A simple returner is implemented here:

import redis
import json

def returner(ret):
 '''
 Return information to a redis server
 '''
 # Get a redis connection
 serv = redis.Redis(
 host='redis-serv.example.com',
 port=6379,
 db='0')
 serv.sadd("%(id)s:jobs" % ret, ret['jid'])
 serv.set("%(jid)s:%(id)s" % ret, json.dumps(ret['return']))
 serv.sadd('jobs', ret['jid'])
 serv.sadd(ret['jid'], ret['id'])

This simple example of a returner set to send the data to a redis server
serializes the data as json and sets it in redis.

You can place your custom returners in a _returners directory within the
file_roots specified by the master config file. These custom
returners are distributed when state.highstate is run, or by executing the
saltutil.sync_returners or
saltutil.sync_all functions.

Any custom returners which have been synced to a minion, that are named the
same as one of Salt's default set of returners, will take the place of the
default returner with the same name. Note that a returner's default name is its
filename (i.e. foo.py becomes returner foo), but that its name can be
overridden by using a __virtual__ function. A good
example of this can be found in the redis [https://github.com/saltstack/salt/blob/develop/salt/returners/redis_return.py] returner, which is named
redis_return.py but is loaded as simply redis:

try:
 import redis
 HAS_REDIS = True
except ImportError:
 HAS_REDIS = False

def __virtual__():
 if not HAS_REDIS:
 return False
 return 'redis'

Examples

The collection of built-in Salt returners can be found here:
https://github.com/saltstack/salt/blob/develop/salt/returners

Full list of builtin returner modules

	carbon_return
	Take data from salt and "return" it into a carbon receiver

	cassandra_return
	Return data to a Cassandra ColumnFamily

	local
	The local returner is used to test the returner interface, it just prints the

	mongo_future_return
	Return data to a mongodb server

	mongo_return
	Return data to a mongodb server

	mysql
	Return data to a mysql server

	postgres
	Return data to a postgresql server

	redis_return
	Return data to a redis server

	sentry_return
	Salt returner that report execution results back to sentry.

	smtp_return
	Return salt data via email

	sqlite3_return
	Insert minion return data into a sqlite3 database

	syslog_return
	Return data to the host operating system's syslog facility

salt.returners.carbon_return

Take data from salt and "return" it into a carbon receiver

Add the following configuration to your minion configuration files:

carbon.host: <server ip address>
carbon.port: 2003

	
salt.returners.carbon_return.returner(ret)

	Return data to a remote carbon server using the text metric protocol

salt.returners.cassandra_return

Return data to a Cassandra ColumnFamily

Here's an example Keyspace / ColumnFamily setup that works with this
returner:

create keyspace salt;
use salt;
create column family returns
 with key_validation_class='UTF8Type'
 and comparator='UTF8Type'
 and default_validation_class='UTF8Type';

Required python modules: pycassa

	
salt.returners.cassandra_return.returner(ret)

	Return data to a Cassandra ColumnFamily

salt.returners.local

The local returner is used to test the returner interface, it just prints the
return data to the console to verify that it is being passed properly

	
salt.returners.local.returner(ret)

	Print the return data to the terminal to verify functionality

salt.returners.mongo_future_return

Return data to a mongodb server

Required python modules: pymongo

This returner will send data from the minions to a MongoDB server. To
configure the settings for your MongoDB server, add the following lines
to the minion config files:

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

This mongo returner is being developed to replace the default mongodb returner
in the future and should not be considered API stable yet.

	
salt.returners.mongo_future_return.get_fun(fun)

	Return the most recent jobs that have executed the named function

	
salt.returners.mongo_future_return.get_jid(jid)

	Return the return information associated with a jid

	
salt.returners.mongo_future_return.get_jids()

	Return a list of job ids

	
salt.returners.mongo_future_return.get_load(jid)

	Return the load associated with a given job id

	
salt.returners.mongo_future_return.get_minions()

	Return a list of minions

	
salt.returners.mongo_future_return.returner(ret)

	Return data to a mongodb server

	
salt.returners.mongo_future_return.save_load(jid, load)

	Save the load for a given job id

salt.returners.mongo_return

Return data to a mongodb server

Required python modules: pymongo

This returner will send data from the minions to a MongoDB server. To
configure the settings for your MongoDB server, add the following lines
to the minion config files:

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

	
salt.returners.mongo_return.get_fun(fun)

	Return the most recent jobs that have executed the named function

	
salt.returners.mongo_return.get_jid(jid)

	Return the return information associated with a jid

	
salt.returners.mongo_return.returner(ret)

	Return data to a mongodb server

salt.returners.mysql

Return data to a mysql server

	maintainer:	Dave Boucha <dave@saltstack.com>, Seth House <shouse@saltstack.com>

	maturity:	new

	depends:	python-mysqldb

	platform:	all

To enable this returner the minion will need the python client for mysql
installed and the following values configured in the minion or master
config, these are the defaults:

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

Use the following mysql database schema:

CREATE DATABASE `salt`
 DEFAULT CHARACTER SET utf8
 DEFAULT COLLATE utf8_general_ci;

USE `salt`;

--
-- Table structure for table `jids`
--

DROP TABLE IF EXISTS `jids`;
CREATE TABLE `jids` (
 `jid` varchar(255) NOT NULL,
 `load` mediumtext NOT NULL,
 UNIQUE KEY `jid` (`jid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

--
-- Table structure for table `salt_returns`
--

DROP TABLE IF EXISTS `salt_returns`;
CREATE TABLE `salt_returns` (
 `fun` varchar(50) NOT NULL,
 `jid` varchar(255) NOT NULL,
 `return` mediumtext NOT NULL,
 `id` varchar(255) NOT NULL,
 `success` varchar(10) NOT NULL,
 `full_ret` mediumtext NOT NULL,
 KEY `id` (`id`),
 KEY `jid` (`jid`),
 KEY `fun` (`fun`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Required python modules: MySQLdb

	
salt.returners.mysql.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.mysql.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.mysql.get_jids()

	Return a list of all job ids

	
salt.returners.mysql.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.mysql.get_minions()

	Return a list of minions

	
salt.returners.mysql.returner(ret)

	Return data to a mysql server

	
salt.returners.mysql.save_load(jid, load)

	Save the load to the specified jid id

salt.returners.postgres

Return data to a postgresql server

	maintainer:	None

	maturity:	New

	depends:	psycopg2

	platform:	all

To enable this returner the minion will need the psycopg2 installed and
the following values configured in the minion or master config:

returner.postgres.host: 'salt'
returner.postgres.user: 'salt'
returner.postgres.passwd: 'salt'
returner.postgres.db: 'salt'
returner.postgres.port: 5432

Running the following commands as the postgres user should create the database
correctly:

psql << EOF
CREATE ROLE salt WITH PASSWORD 'salt';
CREATE DATABASE salt WITH OWNER salt;
EOF

psql -h localhost -U salt << EOF
--
-- Table structure for table 'jids'
--

DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
 jid bigint PRIMARY KEY,
 load text NOT NULL
);

--
-- Table structure for table 'salt_returns'
--

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (
 added TIMESTAMP WITH TIME ZONE DEFAULT now(),
 fun text NOT NULL,
 jid varchar(20) NOT NULL,
 return text NOT NULL,
 id text NOT NULL,
 success boolean
);
CREATE INDEX ON salt_returns (added);
CREATE INDEX ON salt_returns (id);
CREATE INDEX ON salt_returns (jid);
CREATE INDEX ON salt_returns (fun);
EOF

Required python modules: psycopg2

	
salt.returners.postgres.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.postgres.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.postgres.get_jids()

	Return a list of all job ids

	
salt.returners.postgres.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.postgres.get_minions()

	Return a list of minions

	
salt.returners.postgres.returner(ret)

	Return data to a postgres server

	
salt.returners.postgres.save_load(jid, load)

	Save the load to the specified jid id

salt.returners.redis_return

Return data to a redis server

To enable this returner the minion will need the python client for redis
installed and the following values configured in the minion or master
config, these are the defaults:

redis.db: '0'
redis.host: 'salt'
redis.port: 6379

	
salt.returners.redis_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.redis_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.redis_return.get_jids()

	Return a list of all job ids

	
salt.returners.redis_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.redis_return.get_minions()

	Return a list of minions

	
salt.returners.redis_return.returner(ret)

	Return data to a redis data store

	
salt.returners.redis_return.save_load(jid, load)

	Save the load to the specified jid

salt.returners.sentry_return

Salt returner that report execution results back to sentry. The returner will
inspect the payload to identify errors and flag them as such.

Pillar need something like:

raven:
 servers:
 - http://192.168.1.1
 - https://sentry.example.com
 public_key: deadbeefdeadbeefdeadbeefdeadbeef
 secret_key: beefdeadbeefdeadbeefdeadbeefdead
 project: 1
 tags:
 - os
 - master
 - saltversion
 - cpuarch

and http://pypi.python.org/pypi/raven installed

The tags list (optional) specifies grains items that will be used as sentry tags, allowing tagging of events
in the sentry ui.

	
salt.returners.sentry_return.returner(ret)

	Log outcome to sentry. The returner tries to identify errors and report them as such. All other
messages will be reported at info level.

salt.returners.smtp_return

Return salt data via email

The following fields can be set in the minion conf file:

smtp.from (required)
smtp.to (required)
smtp.host (required)
smtp.username (optional)
smtp.password (optional)
smtp.tls (optional, defaults to False)
smtp.subject (optional, but helpful)
smtp.fields (optional)

There are a few things to keep in mind:

	If a username is used, a password is also required.

	You should at least declare a subject, but you don't have to.

	smtp.fields lets you include the value(s) of various fields in the subject
line of the email. These are comma-delimited. For instance:

smtp.fields: id,fun

...will display the id of the minion and the name of the function in the
subject line. You may also use 'jid' (the job id), but it is generally
recommended not to use 'return', which contains the entire return data
structure (which can be very large).

	
salt.returners.smtp_return.returner(ret)

	Send an email with the data

salt.returners.sqlite3

Insert minion return data into a sqlite3 database

	maintainer:	Mickey Malone <mickey.malone@gmail.com>

	maturity:	New

	depends:	None

	platform:	All

Sqlite3 is a serverless database that lives in a single file.
In order to use this returner the database file must exist,
have the appropriate schema defined, and be accessible to the
user whom the minion process is running as. This returner
requires the following values configured in the master or
minion config:

returner.sqlite3.database: /usr/lib/salt/salt.db
returner.sqlite3.timeout: 5.0

Use the commands to create the sqlite3 database and tables:

sqlite3 /usr/lib/salt/salt.db << EOF
--
-- Table structure for table 'jids'
--

CREATE TABLE jids (
 jid integer PRIMARY KEY,
 load TEXT NOT NULL
);

--
-- Table structure for table 'salt_returns'
--

CREATE TABLE salt_returns (
 fun TEXT KEY,
 jid TEXT KEY,
 id TEXT KEY,
 date TEXT NOT NULL,
 full_ret TEXT NOT NULL,
 success TEXT NOT NULL
);
EOF

	
salt.returners.sqlite3_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.sqlite3_return.get_jid(jid)

	Return the information returned from a specified jid

	
salt.returners.sqlite3_return.get_jids()

	Return a list of all job ids

	
salt.returners.sqlite3_return.get_load(jid)

	Return the load from a specified jid

	
salt.returners.sqlite3_return.get_minions()

	Return a list of minions

	
salt.returners.sqlite3_return.returner(ret)

	Insert minion return data into the sqlite3 database

	
salt.returners.sqlite3_return.save_load(jid, load)

	Save the load to the specified jid

salt.returners.syslog_return

Return data to the host operating system's syslog facility

Required python modules: syslog, json

The syslog returner simply reuses the operating system's syslog
facility to log return data

	
salt.returners.syslog_return.returner(ret)

	Return data to the local syslog

File State Backups

In 0.10.2 a new feature was added for backing up files that are replaced by
the file.managed and file.recurse states. The new feature is called the backup
mode. Setting the backup mode is easy, but is can be set in a number of
places.

The backup_mode can be set in the minion config file:

backup_mode: minion

Or it can be set for each file:

/etc/ssh/sshd_config:
 file.managed:
 - source: salt://ssh/sshd_config
 - backup: minion

Backed-up Files

The files will be saved in the minion cachedir under the directory named
file_backup. The files will be in the location relative to where they
were under the root filesystem and be appended with a timestamp. This should
make them easy to browse.

Interacting with Backups

Starting with version 0.17.0, it will be possible to list, restore, and delete
previously-created backups.

Listing

The backups for a given file can be listed using file.list_backups:

salt foo.bar.com file.list_backups /tmp/foo.txt
foo.bar.com:

 0:

 Backup Time:
 Sat Jul 27 2013 17:48:41.738027
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:41_738027_2013
 Size:
 13
 1:

 Backup Time:
 Sat Jul 27 2013 17:48:28.369804
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013
 Size:
 35

Restoring

Restoring is easy using file.restore_backup, just pass the path and the numeric id
found with file.list_backups:

salt foo.bar.com file.restore_backup /tmp/foo.txt 1
foo.bar.com:

 comment:
 Successfully restored /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013 to /tmp/foo.txt
 result:
 True

The existing file will be backed up, just in case, as can be seen if
file.list_backups is run again:

salt foo.bar.com file.list_backups /tmp/foo.txt
foo.bar.com:

 0:

 Backup Time:
 Sat Jul 27 2013 18:00:19.822550
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_18:00:19_822550_2013
 Size:
 53
 1:

 Backup Time:
 Sat Jul 27 2013 17:48:41.738027
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:41_738027_2013
 Size:
 13
 2:

 Backup Time:
 Sat Jul 27 2013 17:48:28.369804
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013
 Size:
 35

Note

Since no state is being run, restoring a file will not trigger any watches
for the file. So, if you are restoring a config file for a service, it will
likely still be necessary to run a service.restart.

Deleting

Deleting backups can be done using mod:file.delete_backup
<salt.modules.file.delete_backup>:

salt foo.bar.com file.delete_backup /tmp/foo.txt 0
foo.bar.com:

 comment:
 Successfully removed /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_18:00:19_822550_2013
 result:
 True

Extending External SLS Data

Sometimes a state defined in one SLS file will need to be modified from a
separate SLS file. A good example of this is when an argument needs to be
overwritten or when a service needs to watch an additional state.

The Extend Declaration

The standard way to extend is via the extend declaration. The extend
declaration is a top level declaration like include and encapsulates ID
declaration data included from other SLS files. A standard extend looks like
this:

include:
 - http
 - ssh

extend:
 apache:
 file:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://http/httpd2.conf
 ssh-server:
 service:
 - watch:
 - file: /etc/ssh/banner

/etc/ssh/banner:
 file.managed:
 - source: salt://ssh/banner

A few critical things happened here, first off the SLS files that are going to
be extended are included, then the extend dec is defined. Under the extend dec
2 IDs are extended, the apache ID's file state is overwritten with a new name
and source. Than the ssh server is extended to watch the banner file in
addition to anything it is already watching.

Extend is a Top Level Declaration

This means that extend can only be called once in an sls, if if is used
twice then only one of the extend blocks will be read. So this is WRONG:

include:
 - http
 - ssh

extend:
 apache:
 file:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://http/httpd2.conf
Second extend will overwrite the first!! Only make one
extend:
 ssh-server:
 service:
 - watch:
 - file: /etc/ssh/banner

The Requisite "in" Statement

Since one of the most common things to do when extending another SLS is to add
states for a service to watch, or anything for a watcher to watch, the
requisite in statement was added to 0.9.8 to make extending the watch and
require lists easier. The ssh-server extend statement above could be more
cleanly defined like so:

include:
 - ssh

/etc/ssh/banner:
 file.managed:
 - source: salt://ssh/banner
 - watch_in:
 - service: ssh-server

Rules to Extend By

There are a few rules to remember when extending states:

	Always include the SLS being extended with an include declaration

	Requisites (watch and require) are appended to, everything else is
overwritten

	extend is a top level declaration, like an ID declaration, cannot be
declared twice in a single SLS

	Many IDs can be extended under the extend declaration

Failhard Global Option

Normally, when a state fails Salt continues to execute the remainder of the
defined states and will only refuse to execute states that require the failed
state.

But the situation may exist, where you would want all state execution to stop
if a single state execution fails. The capability to do this is called
failing hard.

State Level Failhard

A single state can have a failhard set, this means that if this individual
state fails that all state execution will immediately stop. This is a great
thing to do if there is a state that sets up a critical config file and
setting a require for each state that reads the config would be cumbersome.
A good example of this would be setting up a package manager early on:

/etc/yum.repos.d/company.repo:
 file.managed:
 - source: salt://company/yumrepo.conf
 - user: root
 - group: root
 - mode: 644
 - order: 1
 - failhard: True

In this situation, the yum repo is going to be configured before other states,
and if it fails to lay down the config file, than no other states will be
executed.

Global Failhard

It may be desired to have failhard be applied to every state that is executed,
if this is the case, then failhard can be set in the master configuration
file. Setting failhard in the master configuration file will result in failing
hard when any minion gathering states from the master have a state fail.

This is NOT the default behavior, normally Salt will only fail states that
require a failed state.

Using the global failhard is generally not recommended, since it can result
in states not being executed or even checked. It can also be confusing to
see states failhard if an admin is not actively aware that the failhard has
been set.

To use the global failhard set failhard: True in the master configuration
file.

Highstate data structure definitions

The Salt State Tree

	Top file

	The main state file that instructs minions what environment and modules
to use during state execution.

Configurable via state_top.

See also

A detailed description of the top file

	State tree

	A collection of SLS files that live under the directory specified
in file_roots. A state tree can be organized into
SLS modules.

Include declaration

	Include declaration

	Defines a list of module reference strings to include in this
SLS.

Occurs only in the top level of the highstate structure.

Example:

include:
 - edit.vim
 - http.server

Module reference

	Module reference

	The name of a SLS module defined by a separate SLS file and residing on
the Salt Master. A module named edit.vim is a reference to the SLS
file salt://edit/vim.sls.

ID declaration

	ID declaration

	Defines an individual highstate component. Always references a value of
a dictionary containing keys referencing state declarations and requisite declarations. Can be overridden by a name declaration or a
names declaration.

Occurs on the top level or under the extend declaration.

Must be unique across entire state tree. If the same ID declaration is
used twice, only the first one matched will be used. All subsequent
ID declarations with the same name will be ignored.

Note

Naming gotchas

Until 0.9.6, IDs could not contain a dot, otherwise highstate summary output was
unpredictable. (It was fixed in versions 0.9.7 and above)

Extend declaration

	Extend declaration

	Extends a name declaration from an included SLS module. The
keys of the extend declaration always define existing ID
declarations which have been defined in included
SLS modules.

Occurs only in the top level and defines a dictionary.

Extend declarations are useful for adding-to or overriding parts of a
state declaration that is defined in another SLS file. In the
following contrived example, the shown mywebsite.sls file is include
-ing and extend -ing the apache.sls module in order to add a watch
declaration that will restart Apache whenever the Apache configuration file,
mywebsite changes.

include:
 - apache

extend:
 apache:
 service:
 - watch:
 - file: mywebsite

mywebsite:
 file:
 - managed

See also

watch_in and require_in

Sometimes it is more convenient to use the watch_in or require_in syntax
instead of extending another SLS file.

State Requisites

State declaration

	State declaration

	A list which contains one string defining the function
declaration and any number of function arg declaration
dictionaries.

Can, optionally, contain a number of additional components like the
name override components — name and
names. Can also contain requisite
declarations.

Occurs under an ID declaration.

Requisite declaration

	Requisite declaration

	A list containing requisite references.

Used to build the action dependency tree. While Salt states are made to
execute in a deterministic order, this order is managed by requiring
and watching other Salt states.

Occurs as a list component under a state declaration or as a
key under an ID declaration.

Requisite reference

	Requisite reference

	A single key dictionary. The key is the name of the referenced
state declaration and the value is the ID of the referenced
ID declaration.

Occurs as a single index in a requisite declaration list.

Function declaration

	Function declaration

	The name of the function to call within the state. A state declaration
can contain only a single function declaration.

For example, the following state declaration calls the installed function in the pkg state module:

httpd:
 pkg.installed

The function can be declared inline with the state as a shortcut, but
the actual data structure is better referenced in this form:

httpd:
 pkg:
 - installed

Where the function is a string in the body of the state declaration.
Technically when the function is declared in dot notation the compiler
converts it to be a string in the state declaration list. Note that the
use of the first example more than once in an ID declaration is invalid
yaml.

INVALID:

httpd:
 pkg.installed
 service.running

When passing a function without arguments and another state declaration
within a single ID declaration, then the long or "standard" format
needs to be used since otherwise it does not represent a valid data
structure.

VALID:

httpd:
 pkg:
 - installed
 service:
 - running

Occurs as the only index in the state declaration list.

Function arg declaration

	Function arg declaration

	A single key dictionary referencing a Python type which is to be passed
to the named function declaration as a parameter. The type must
be the data type expected by the function.

Occurs under a function declaration.

For example in the following state declaration user, group, and
mode are passed as arguments to the managed function in the file state module:

/etc/http/conf/http.conf:
 file.managed:
 - user: root
 - group: root
 - mode: 644

Name declaration

	Name declaration

	Overrides the name argument of a state declaration. If
name is not specified the ID declaration satisfies the
name argument.

The name is always a single key dictionary referencing a string.

Overriding name is useful for a variety of scenarios.

For example, avoiding clashing ID declarations. The following two state
declarations cannot both have /etc/motd as the ID declaration:

motd_perms:
 file.managed:
 - name: /etc/motd
 - mode: 644

motd_quote:
 file.append:
 - name: /etc/motd
 - text: "Of all smells, bread; of all tastes, salt."

Another common reason to override name is if the ID declaration is long and
needs to be referenced in multiple places. In the example below it is much
easier to specify mywebsite than to specify
/etc/apache2/sites-available/mywebsite.com multiple times:

mywebsite:
 file.managed:
 - name: /etc/apache2/sites-available/mywebsite.com
 - source: salt://mywebsite.com

a2ensite mywebsite.com:
 cmd.wait:
 - unless: test -L /etc/apache2/sites-enabled/mywebsite.com
 - watch:
 - file: mywebsite

apache2:
 service:
 - running
 - watch:
 - file: mywebsite

Names declaration

	Names declaration

	Expands the contents of the containing state declaration into
multiple state declarations, each with its own name.

For example, given the following state declaration:

python-pkgs:
 pkg.installed:
 - names:
 - python-django
 - python-crypto
 - python-yaml

Once converted into the lowstate data structure the above state
declaration will be expanded into the following three state declarations:

python-django:
 pkg.installed

python-crypto:
 pkg.installed

python-yaml:
 pkg.installed

Large example

Here is the layout in yaml using the names of the highdata structure
components.

<Include Declaration>:
 - <Module Reference>
 - <Module Reference>

<Extend Declaration>:
 <ID Declaration>:
 [<overrides>]

standard declaration

<ID Declaration>:
 <State Declaration>:
 - <Function>
 - <Function Arg>
 - <Function Arg>
 - <Function Arg>
 - <Name>: <name>
 - <Requisite Declaration>:
 - <Requisite Reference>
 - <Requisite Reference>

inline function and names

<ID Declaration>:
 <State Declaration>.<Function>:
 - <Function Arg>
 - <Function Arg>
 - <Function Arg>
 - <Names>:
 - <name>
 - <name>
 - <name>
 - <Requisite Declaration>:
 - <Requisite Reference>
 - <Requisite Reference>

multiple states for single id

<ID Declaration>:
 <State Declaration>:
 - <Function>
 - <Function Arg>
 - <Name>: <name>
 - <Requisite Declaration>:
 - <Requisite Reference>
 <State Declaration>:
 - <Function>
 - <Function Arg>
 - <Names>:
 - <name>
 - <name>
 - <Requisite Declaration>:
 - <Requisite Reference>

Include and Exclude

Salt sls files can include other sls files and exclude sls files that have been
otherwise included. This allows for an sls file to easily extend or manipulate
other sls files.

Include

When other sls files are included, everything defined in the included sls file
will be added to the state run. When including define a list of sls formulas
to include:

include:
 - http
 - libvirt

The include statement will include sls formulas from the same environment
that the including sls formula is in. But the environment can be explicitly
defined in the configuration to override the running environment, therefore
if an sls formula needs to be included from an external environment named "dev"
the following syntax is used:

include:
 - dev: http

Relative Include

In Salt 0.16.0 the capability to include sls formulas which are relative to
the running sls formula was added, simply precede the formula name with a
.:

include:
 - .virt
 - .virt.hyper

Exclude

The exclude statement, added in Salt 0.10.3 allows an sls to hard exclude
another sls file or a specific id. The component is excluded after the
high data has been compiled, so nothing should be able to override an
exclude.

Since the exclude can remove an id or an sls the type of component to
exclude needs to be defined. an exclude statement that verifies that the
running highstate does not contain the http sls and the /etc/vimrc id
would look like this:

exclude:
 - sls: http
 - id: /etc/vimrc

State Enforcement

Salt offers an optional interface to manage the configuration or "state" of the
Salt minions. This interface is a fully capable mechanism used to enforce the
state of systems from a central manager.

The Salt state system is made to be accurate, simple, and fast. And like the
rest of the Salt system, Salt states are highly modular.

State management

State management, also frequently called software configuration management
(SCM), is a program that puts and keeps a system into a predetermined state. It
installs software packages, starts or restarts services, or puts configuration
files in place and watches them for changes.

Having a state management system in place allows you to easily and reliably
configure and manage a few servers or a few thousand servers. It allows you to
keep that configuration under version control.

Salt States is an extension of the Salt Modules that we discussed in the
previous remote execution tutorial. Instead
of calling one-off executions the state of a system can be easily defined and
then enforced.

Understanding the Salt State System Components

The Salt state system is comprised of a number of components. As a user, an
understanding of the SLS and renderer systems are needed. But as a developer,
an understanding of Salt states and how to write the states is needed as well.

Salt SLS System

	SLS

	The primary system used by the Salt state system is the SLS system. SLS
stands for SaLt State.

The Salt States are files which contain the information about how to
configure Salt minions. The states are laid out in a directory tree and
can be written in many different formats.

The contents of the files and they way they are laid out is intended to
be as simple as possible while allowing for maximum flexibility. The
files are laid out in states and contains information about how the
minion needs to be configured.

SLS File Layout

SLS files are laid out in the Salt file server. A simple layout can look like
this:

top.sls
ssh.sls
sshd_config
users/init.sls
users/admin.sls
salt/init.sls
salt/master.sls

This example shows the core concepts of file layout. The top file is a key
component and is used with Salt matchers to match SLS states with minions.
The .sls files are states. The rest of the files are seen by the Salt
master as just files that can be downloaded.

The states are translated into dot notation, so the ssh.sls file is
seen as the ssh state, the users/admin.sls file is seen as the
users.admin states.

The init.sls files are translated to be the state name of the parent
directory, so the salt/init.sls file translates to the Salt state.

The plain files are visible to the minions, as well as the state files. In
Salt, everything is a file; there is no "magic translation" of files and file
types. This means that a state file can be distributed to minions just like a
plain text or binary file.

SLS Files

The Salt state files are simple sets of data. Since the SLS files are just data
they can be represented in a number of different ways. The default format is
yaml generated from a Jinja template. This allows for the states files to have
all the language constructs of Python and the simplicity of yaml. State files
can then be complicated Jinja templates that translate down to yaml, or just
plain and simple yaml files!

The State files are constructed data structures in a simple format. The format
allows for many real activates to be expressed in very little text, while
maintaining the utmost in readability and usability.

Here is an example of a Salt State:

vim:
 pkg:
 - installed

salt:
 pkg:
 - latest
 service.running:
 - require:
 - file: /etc/salt/minion
 - pkg: salt
 - names:
 - salt-master
 - salt-minion
 - watch:
 - file: /etc/salt/minion

/etc/salt/minion:
 file.managed:
 - source: salt://salt/minion
 - user: root
 - group: root
 - mode: 644
 - require:
 - pkg: salt

This short stanza will ensure that vim is installed, Salt is installed and up
to date, the salt-master and salt-minion daemons are running and the Salt
minion configuration file is in place. It will also ensure everything is
deployed in the right order and that the Salt services are restarted when the
watched file updated.

The Top File

The top file is the mapping for the state system. The top file specifies which
minions should have which modules applied and which environments they should
draw the states from.

The top file works by specifying the environment, containing matchers with
lists of Salt states sent to the matching minions:

base:
 '*':
 - salt
 - users
 - users.admin
 'saltmaster.*':
 - match: pcre
 - salt.master

This simple example uses the base environment, which is built into the default
Salt setup, and then all minions will have the modules salt, users and
users.admin since '*' will match all minions. Then the regular expression
matcher will match all minions' with an id matching saltmaster.* and add the
salt.master state.

Renderer System

The Renderer system is a key component to the state system. SLS files are
representations of Salt "high data" structures. All Salt cares about when
reading an SLS file is the data structure that is produced from the file.

This allows Salt states to be represented by multiple types of files. The
Renderer system can be used to allow different formats to be used for SLS
files.

The available renderers can be found in the renderers directory in the Salt
source code:

https://github.com/saltstack/salt/blob/develop/salt/renderers

By default SLS files are rendered using Jinja as a templating engine, and yaml
as the serialization format. Since the rendering system can be extended simply
by adding a new renderer to the renderers directory, it is possible that any
structured file could be used to represent the SLS files.

In the future XML will be added, as well as many other formats.

Reloading Modules

Some salt states require specific packages to be installed in order for the
module to load, as an example the pip state
module requires the pip [http://pypi.python.org/pypi/pip] package for proper name and version parsing. On
most of the common cases, salt is clever enough to transparently reload the
modules, for example, if you install a package, salt reloads modules because
some other module or state might require just that package which was installed.
On some edge-cases salt might need to be told to reload the modules. Consider
the following state file which we'll call pep8.sls:

python-pip:
 cmd:
 - run
 - cwd: /
 - name: easy_install --script-dir=/usr/bin -U pip

pep8:
 pip.installed
 requires:
 - cmd: python-pip

The above example installs pip [http://pypi.python.org/pypi/pip] using easy_install from setuptools [https://pypi.python.org/pypi/setuptools] and
installs pep8 [https://pypi.python.org/pypi/pep8] using pip, which, as told
earlier, requires pip [http://pypi.python.org/pypi/pip] to be installed system-wide. Let's execute this state:

salt-call state.sls pep8

The execution output would be something like:

 State: - pip
 Name: pep8
 Function: installed
 Result: False
 Comment: State pip.installed found in sls pep8 is unavailable

 Changes:

Summary

Succeeded: 1
Failed: 1

Total: 2

If we executed the state again the output would be:

 State: - pip
 Name: pep8
 Function: installed
 Result: True
 Comment: Package was successfully installed
 Changes: pep8==1.4.6: Installed

Summary

Succeeded: 2
Failed: 0

Total: 2

Since we installed pip [http://pypi.python.org/pypi/pip] using cmd, salt has no way
to know that a system-wide package was installed. On the second execution,
since the required pip [http://pypi.python.org/pypi/pip] package was installed, the state executed perfectly.

To those thinking, couldn't salt reload modules on every state step since it
already does for some cases? It could, but it should not since it would
greatly slow down state execution.

So how do we solve this edge-case? reload_modules!

reload_modules is a boolean option recognized by salt on all available
states which, does exactly what it tells use, forces salt to reload it's
modules once that specific state finishes. The fixed state file would now be:

python-pip:
 cmd:
 - run
 - cwd: /
 - name: easy_install --script-dir=/usr/bin -U pip
 - reload_modules: true

pep8:
 pip.installed
 requires:
 - cmd: python-pip

Let's run it, once:

salt-call state.sls pep8

And it's output now is:

 State: - pip
 Name: pep8
 Function: installed
 Result: True
 Comment: Package was successfully installed
 Changes: pep8==1.4.6: Installed

Summary

Succeeded: 2
Failed: 0

Total: 2

State System Layers

The Salt state system is comprised of multiple layers. While using Salt does
not require an understanding of the state layers, a deeper understanding of
how Salt compiles and manages states can be very beneficial.

Function Call

The lowest layer of functionality in the state system is the direct state
function call. State executions are executions of single state functions at
the core. These individual functions are defined in state modules and can
be called directly via the state.single command.

salt '*' state.single pkg.installed name='vim'

Low Chunk

The low chunk is the bottom of the Salt state compiler. This is a data
representation of a single function call. The low chunk is sent to the state
caller and used to execute a single state function.

A single low chunk can be executed manually via the state.low command.

salt '*' state.low '{name: vim, state: pkg, fun: installed}'

The passed data reflects what the state execution system gets after compiling
the data down from sls formulas.

Low State

The Low State layer is the list of low chunks "evaluated" in order. To see
what the low state looks like for a highstate, run:

salt '*' state.show_lowstate

This will display the raw lowstate in the order which each low chunk will be
evaluated. The order of evaluation is not necessarily the order of execution,
since requisites are evaluated at runtime. Requisite execution and evaluation
is finite; this means that the order of execution can be ascertained with 100%
certainty based on the order of the low state.

High Data

High data is the data structure represented in YAML via SLS files. The High
data structure is created by merging the data components rendered inside sls
files (or other render systems). The High data can be easily viewed by
executing the state.show_highstate or state.show_sls functions. Since
this data is a somewhat complex data structure, it may be easier to read using
the json, yaml, or pprint outputters:

salt '*' state.show_highstate --out yaml
salt '*' state.show_sls edit.vim --out pprint

SLS

Above "High Data", the logical layers are no longer technically required to be
executed, or to be executed in a hierarchy. This means that how the High data
is generated is optional and very flexible. The SLS layer allows for many
mechanisms to be used to render sls data from files or to use the fileserver
backend to generate sls and file data from external systems.

The SLS layer can be called directly to execute individual sls formulas.

Note

SLS Formulas have historically been called "SLS files". This is because a
single SLS was only constituted in a single file. Now the term
"SLS Formula" better expresses how a compartmentalized SLS can be expressed
in a much more dynamic way by combining pillar and other sources, and the
SLS can be dynamically generated.

To call a single SLS formula named edit.vim, execute state.sls:

salt '*' state.sls edit.vim

HighState

Calling SLS directly logically assigns what states should be executed from the
context of the calling minion. The Highstate layer is used to allow for full
contextual assignment of what is executed where to be tied to groups of, or
individual, minions entirely from the master. This means that the environment of
a minion, and all associated execution data pertinent to said minion, can be
assigned from the master without needing to execute or configure anything on
the target minion. This also means that the minion can independently retrieve
information about its complete configuration from the master.

To execute the High State call state.highstate:

salt '*' state.highstate

OverState

The overstate layer expresses the highest functional layer of Salt's automated
logic systems. The Overstate allows for stateful and functional orchestration
of routines from the master. The overstate defines in data execution stages
which minions should execute states, or functions, and in what order using
requisite logic.

Remote Control States

New in version 0.17.0.

Remote Control States is the capability to organize routines on minions from the
master, using state files.

This allows for the use of the Salt state system to execute state runs and
function runs in a way more powerful than the overstate, will full command of
the requisite and ordering systems inside of states.

Note

Remote Control States was added in 0.17.0 with the intent to eventually
deprecate the overstate system in favor of this new, substantially more
powerful system.

The Overstate will still be maintained for the forseable future.

Creating States Trigger Remote Executions

The new salt state module allows for these new states to be defined in
such a way to call out to the salt and/or the salt-ssh remote execution
systems, this also supports the addition of states to connect to remote
embedded devices.

To create a state that calls out to minions simple specify the salt.state
or salt.function states:

webserver_setup:
 salt.state:
 - tgt: 'web*'
 - highstate: True

This sls file can now be referenced by the state.sls runner the same way
an sls is normally referenced, assuming the default configurtion with /srv/salt
as the root of the state tree and the above file being saved as
/srv/salt/webserver.sls, the state can be run from the master with the salt-run
command:

salt-run state.sls webserver

This will execute the defined state to fire up the webserver routine.

Calling Multiple State Runs

All of the concepts of states exist so building something more complex is
easy:

Note

As of Salt 0.17.0 states are run in the order in which they are defined,
so the cmd.run defined below will always execute first

cmd.run:
 salt.function:
 - roster: scan
 - tgt: 10.0.0.0/24
 - arg:
 - 'bootstrap'

storage_setup:
 salt.state:
 - tgt: 'role:storage'
 - tgt_type: grain
 - sls: ceph

webserver_setup:
 salt.state:
 - tgt: 'web*'
 - highstate: True

Ordering States

The way in which configuration management systems are executed is a hotly
debated topic in the configuration management world. Two
major philosophies exist on the subject, to either execute in an imperative
fashion where things are executed in the order in which they are defined, or
in a declarative fashion where dependencies need to be mapped between objects.

Imperative ordering is finite and generally considered easier to write, but
declarative ordering is much more powerful and flexible but generally considered
more difficult to create.

Salt has been created to get the best of both worlds. States are evaluated in
a finite order, which guarantees that states are always executed in the same
order, and the states runtime is declarative, making Salt fully aware of
dependencies via the requisite system.

Also, in Salt 0.17.0, the state_auto_order option was added to Salt.
It makes states get evaluated in the order in which they are defined.

State Auto Ordering

Salt always executes states in a finite manner, meaning that they will always
execute in the same order regardless of the system that is executing them.
But in Salt 0.17.0, the state_auto_order option was added. This option
makes states get evaluated in the order in which they are defined in sls
files.

The evaluation order makes it easy to know what order the states will be
executed in, but it is important to note that the requisite system will
override the ordering defined in the files, and the order option described
below will also override the order in which states are defined in sls files.

If the classic ordering is preferred (lexicographic), then set state_auto_order
to False in the master configuration file.

Requisite Statements

Note

This document represents behavior exhibited by Salt requisites as of
version 0.9.7 of Salt.

Often when setting up states any single action will require or depend on
another action. Salt allows you to build relationships between states with
requisite statements. A requisite statement ensure that the named state is
evaluated before the state requiring it. There are two types of requisite
statements in Salt, require and watch.

These requisite statements are applied to a specific state declaration:

httpd:
 pkg:
 - installed
 file.managed:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://httpd/httpd.conf
 - require:
 - pkg: httpd

In this example we use the require requisite to declare that the file
/etc/httpd/conf/httpd.conf should only be set up if the pkg state executes
successfully.

The requisite system works by finding the states that are required and
executing them before the state that requires them. Then the required states
can be evaluated to see if they have executed correctly.

Note

Requisite matching

Requisites match on both the ID Declaration and the name parameter.
Therefore, if you are using the pkgs or sources argument to install
a list of packages in a pkg state, it's important to note that you cannot
have a requisite that matches on an individual package in the list.

Multiple Requisites

The requisite statement is passed as a list, allowing for the easy addition of
more requisites. Both requisite types can also be separately declared:

httpd:
 pkg:
 - installed
 service.running:
 - enable: True
 - watch:
 - file: /etc/httpd/conf/httpd.conf
 - require:
 - pkg: httpd
 - user: httpd
 - group: httpd
 file.managed:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://httpd/httpd.conf
 - require:
 - pkg: httpd
 user:
 - present
 group:
 - present

In this example the httpd service is only going to be started if the package,
user, group and file are executed successfully.

The Require Requisite

The foundation of the requisite system is the require requisite. The
require requisite ensures that the required state(s) are executed before the
requiring state. So, if a state is declared that sets down a vimrc, then it
would be pertinent to make sure that the vimrc file would only be set down if
the vim package has been installed:

vim:
 pkg:
 - installed
 file.managed:
 - source: salt://vim/vimrc
 - require:
 - pkg: vim

In this case, the vimrc file will only be applied by Salt if and after the vim
package is installed.

The Watch Requisite

The watch requisite is more advanced than the require requisite. The
watch requisite executes the same logic as require (therefore if something is
watched it does not need to also be required) with the addition of executing
logic if the required states have changed in some way.

The watch requisite checks to see if the watched states have returned any
changes. If the watched state returns changes, and the watched states execute
successfully, then the watching state will execute a function that reacts to
the changes in the watched states.

Perhaps an example can better explain the behavior:

redis:
 pkg:
 - latest
 file.managed:
 - source: salt://redis/redis.conf
 - name: /etc/redis.conf
 - require:
 - pkg: redis
 service.running:
 - enable: True
 - watch:
 - file: /etc/redis.conf
 - pkg: redis

In this example the redis service will only be started if the file
/etc/redis.conf is applied, and the file is only applied if the package is
installed. This is normal require behavior, but if the watched file changes,
or the watched package is installed or upgraded, then the redis service is
restarted.

Watch and the mod_watch Function

The watch requisite is based on the mod_watch function. Python state
modules can include a function called mod_watch which is then called
if the watch call is invoked. When mod_watch is called depends on the
execution of the watched state, which:

	If no changes then just run the watching state itself as usual.
mod_watch is not called. This behavior is same as using a require.

	If changes then run the watching state AND if that changes nothing then
react by calling mod_watch.

When reacting, in the case of the service module the underlying service is
restarted. In the case of the cmd state the command is executed.

The mod_watch function for the service state looks like this:

def mod_watch(name, sig=None, reload=False, full_restart=False):
 '''
 The service watcher, called to invoke the watch command.

 name
 The name of the init or rc script used to manage the service

 sig
 The string to search for when looking for the service process with ps
 '''
 if __salt__['service.status'](name, sig):
 if 'service.reload' in __salt__ and reload:
 restart_func = __salt__['service.reload']
 elif 'service.full_restart' in __salt__ and full_restart:
 restart_func = __salt__['service.full_restart']
 else:
 restart_func = __salt__['service.restart']
 else:
 restart_func = __salt__['service.start']

 result = restart_func(name)
 return {'name': name,
 'changes': {name: result},
 'result': result,
 'comment': 'Service restarted' if result else \
 'Failed to restart the service'
 }

The watch requisite only works if the state that is watching has a
mod_watch function written. If watch is set on a state that does not have
a mod_watch function (like pkg), then the listed states will behave only
as if they were under a require statement.

Also notice that a mod_watch may accept additional keyword arguments,
which, in the sls file, will be taken from the same set of arguments specified
for the state that includes the watch requisite. This means, for the
earlier service.running example above, you can tell the service to
reload instead of restart like this:

redis:

 # ... other state declarations omitted ...

 service.running:
 - enable: True
 - reload: True
 - watch:
 - file: /etc/redis.conf
 - pkg: redis

The Order Option

Before using the order option, remember that the majority of state ordering
should be done with a requisite declaration, and that a requisite
declaration will override an order option.

The order option is used by adding an order number to a state declaration
with the option order:

vim:
 pkg.installed:
 - order: 1

By adding the order option to 1 this ensures that the vim package will be
installed in tandem with any other state declaration set to the order 1.

Any state declared without an order option will be executed after all states
with order options are executed.

But this construct can only handle ordering states from the beginning.
Sometimes you may want to send a state to the end of the line. To do this,
set the order to last:

vim:
 pkg.installed:
 - order: last

Remember that requisite statements override the order option. So the order
option should be applied to the highest component of the requisite chain:

vim:
 pkg.installed:
 - order: last
 - require:
 - file: /etc/vimrc

/etc/vimrc:
 file.managed:
 - source: salt://edit/vimrc

OverState System

Often servers need to be set up and configured in a specific order, and systems
should only be set up if systems earlier in the sequence has been set up
without any issues.

The 0.11.0 release of Salt addresses this problem with a new layer in the state
system called the Over State. The concept of the Over State is managed on
the master, a series of state executions is controlled from the master and
executed in order. If an execution requires that another execution first run
without problems then the state executions will stop.

The Over State system is used to orchestrate deployment in a smooth and
reliable way across multiple systems in small to large environments.

The Over State SLS

The overstate system is managed by an sls file located in the root of an
environment. This file uses a data structure like all sls files.

The overstate sls file configures an unordered list of stages, each stage
defines the minions to execute on and can define what sls files to run
or to execute a state.highstate.

mysql:
 match: 'db*'
 sls:
 - mysql.server
 - drbd
webservers:
 match: 'web*'
 require:
 - mysql
all:
 match: '*'
 require:
 - mysql
 - webservers

The above defined over state will execute the mysql stage first because it is
required by the webservers stage. The webservers stage will then be executed
only if the mysql stage executes without any issues. The webservers stage
will execute state.highstate on the matched minions, while the mysql stage
will execute state.sls with the named sls files.

Finally the all stage will execute state.highstate on all systems only if the
mysql and webservers stages complete without failures. The overstate system
checks for any states that return a result of False, if the run has any
False returns then the overstate will quit.

Adding Functions To Overstate

In 0.15.0 the ability to execute module functions directly in the overstate
was added. Functions are called as a stage with the function key:

http:
 function:
 pkg.install:
 - http

The list of function arguments are passed after the declared function.
Requisites only functions properly if the given function supports returning
a custom return code.

Executing the Over State

The over state can be executed from the salt-run command, calling the
state.over runner function. The function will by default look in the base
environment for the overstate.sls file:

salt-run state.over

To specify the location of the overstate file and the environment to pull from
pass the arguments to the salt-run command:

salt-run state.over base /root/overstate.sls

Remember, that these calls are made on the master.

State Providers

New in version 0.9.8.

Salt predetermines what modules should be mapped to what uses based on the
properties of a system. These determinations are generally made for modules
that provide things like package and service management.

Sometimes in states, it may be necessary to use an alternative module to
provide the needed functionality. For instance, an older Arch Linux system may
not be running systemd, so instead of using the systemd service module, you can
revert to the default service module:

httpd:
 service.running:
 - enable: True
 - provider: service

In this instance, the basic service module (which
manages sysvinit-based services) will replace the
systemd module which is used by default on Arch Linux.

However, if it is necessary to make this override for most or every service,
it is better to just override the provider in the minion config file, as
described in the section below.

Setting a Provider in the Minion Config File

Sometimes, when running Salt on custom Linux spins, or distros that are derived
from other distros, Salt does not successfully detect providers. The providers
which are most likely to be affected by this are:

	pkg

	service

	user

	group

When something like this happens, rather than specifying the provider manually
in each state, it easier to use the providers parameter in the
minion config file to set the provider.

If you end up needing to override a provider because it was not detected,
please let us know! File an issue on the issue tracker [https://github.com/saltstack/salt/issues], and provide the
output from the grains.items function,
taking care to sanitize any sensitive information.

Below are tables that should help with deciding which provider to use if one
needs to be overridden.

Provider: pkg

	Execution Module
	Used for

	apt
	Debian/Ubuntu-based distros which use apt-get(8)
for package management

	brew
	Mac OS software management using Homebrew [http://brew.sh/]

	ebuild
	Gentoo-based systems (utilizes the portage python
module as well as emerge(1))

	freebsdpkg
	FreeBSD-based OSes using pkg_add(1)

	openbsdpkg
	OpenBSD-based OSes using pkg_add(1)

	pacman
	Arch Linux-based distros using pacman(8)

	pkgin
	NetBSD-based OSes using pkgin(1)

	pkgng
	FreeBSD-based OSes using pkg(8)

	pkgutil
	Solaris-based OSes using OpenCSW [http://www.opencsw.org/]'s pkgutil(1)

	solarispkg
	Solaris-based OSes using pkgadd(1M)

	win_pkg
	Windows

	yumpkg
	RedHat-based distros and derivatives (utilizes the
yum and rpmUtils modules)

	yumpkg5
	RedHat-based distros and derivatives (wraps yum(8))

	zypper
	SUSE-based distros using zypper(8)

Provider: service

	Execution Module
	Used for

	debian_service
	Debian Linux (non-systemd)

	freebsdservice
	FreeBSD-based OSes using service(8)

	gentoo_service
	Gentoo Linux using sysvinit and
rc-update(8)

	launchctl
	Mac OS hosts using launchctl(1)

	netbsdservice
	NetBSD-based OSes

	openbsdservice
	OpenBSD-based OSes

	rh_service
	RedHat-based distros and derivatives using
service(8) and chkconfig(8). Supports both
pure sysvinit and mixed sysvinit/upstart systems.

	service
	Fallback which simply wraps sysvinit scripts

	smf
	Solaris-based OSes which use SMF

	systemd
	Linux distros which use systemd

	upstart
	Ubuntu-based distros using upstart

	win_service
	Windows

Provider: user

	Execution Module
	Used for

	useradd
	Linux, NetBSD, and OpenBSD systems using
useradd(8), userdel(8), and usermod(8)

	pw_user
	FreeBSD-based OSes using pw(8)

	solaris_user
	Solaris-based OSes using useradd(1M),
userdel(1M), and usermod(1M)

	win_useradd
	Windows

Provider: group

	Execution Module
	Used for

	groupadd
	Linux, NetBSD, and OpenBSD systems using
groupadd(8), groupdel(8), and groupmod(8)

	pw_group
	FreeBSD-based OSes using pw(8)

	solaris_user
	Solaris-based OSes using groupadd(1M)

	win_groupadd
	Windows

Arbitrary Module Redirects

The provider statement can also be used for more powerful means, instead of
overwriting or extending the module used for the named service an arbitrary
module can be used to provide certain functionality.

emacs:
 pkg.installed:
 - provider:
 - pkg: yumpkg5
 - cmd: customcmd

In this example the default pkg module is being
redirected to use the yumpkg5 module (yum
via shelling out instead of via the yum Python API), but is also
using a custom module to invoke commands. This could be used to dramatically
change the behavior of a given state.

Requisites

The Salt requisite system is used to create relationships between states. The
core idea being that, when one state is dependent somehow on another, that
inter-dependency can be easily defined.

Requisites come in two types. Direct requisites, and requisite_ins. The
relationships are directional, so a requisite statement makes the requiring
state declaration depend on the required state declaration:

vim:
 pkg.installed

/etc/vimrc:
 file.managed:
 - source: salt://edit/vimrc
 - require:
 - pkg: vim

So in this example, the file /etc/vimrc depends on the vim package.

Requisite_in statements are the opposite, instead of saying "I depend on
something", requisite_ins say "Someone depends on me":

vim:
 pkg.installed:
 - require_in:
 - file: /etc/vimrc

/etc/vimrc:
 file.managed:
 - source: salt://edit/vimrc

So here, with a requisite_in, the same thing is accomplished, but just from
the other way around. The vim package is saying "/etc/vimrc depends on me".

In the end, a single dependency map is created and everything is executed in a
finite and predictable order.

Note

Requisite matching

Requisites match on both the ID Declaration and the name parameter.
This means that, in the example above, the require_in requisite would
also have been matched if the /etc/vimrc state was written as follows:

vimrc:
 file.managed:
 - name: /etc/vimrc
 - source: salt://edit/vimrc

Requisite and Requisite in types

There are three requisite statements that can be used in Salt. the require,
watch and use requisites. Each requisite also has a corresponding
requisite_in: require_in, watch_in and use_in. All of the
requisites define specific relationships and always work with the dependency
logic defined above.

Require

The most basic requisite statement is require. The behavior of require is
simple. Make sure that the dependent state is executed before the depending
state, and if the dependent state fails, don't run the depending state. So in
the above examples the file /etc/vimrc will only be applied after the vim
package is installed and only if the vim package is installed successfully.

Require an entire sls file

As of Salt 0.16.0, it is possible to require an entire sls file. Do this by first including
the sls file and then setting a state to require the included sls file.

include:
 - foo

bar:
 pkg.installed:
 - require:
 - sls: foo

Watch

The watch statement does everything the require statement does, but with a
little more. The watch statement looks into the state modules for a function
called mod_watch. If this function is not available in the corresponding
state module, then watch does the same thing as require. If the mod_watch
function is in the state module, then the watched state is checked to see if
it made any changes to the system, if it has, then mod_watch is called.

Perhaps the best example of using watch is with a service.running state. When a service watches a state, then
the service is reloaded/restarted when the watched state changes:

ntpd:
 service.running:
 - watch:
 - file: /etc/ntp.conf
 file.managed:
 - name: /etc/ntp.conf
 - source: salt://ntp/files/ntp.conf

Prereq

The prereq requisite is a powerful requisite added in 0.16.0. This
requisite allows for actions to be taken based on the expected results of
a state that has not yet been executed. In more practical terms, a service
can be shut down because the prereq knows that underlying code is going to
be updated and the service should be off-line while the update occurs.

The motivation to add this requisite was to allow for routines to remove a
system from a load balancer while code is being updated.

The prereq checks if the required state expects to have any changes by
running the single state with test=True. If the pre-required state returns
changes, then the state requiring it will execute.

graceful-down:
 cmd.run:
 - name: service apache graceful
 - prereq:
 - file: site-code

site-code:
 file.recurse:
 - name: /opt/site_code
 - source: salt://site/code

In this case the apache server will only be shutdown if the site-code state
expects to deploy fresh code via the file.recurse call, and the site-code
deployment will only be executed if the graceful-down run completes
successfully.

Use

The use requisite is used to inherit the arguments passed in another
id declaration. This is useful when many files need to have the same defaults.

The use statement was developed primarily for the networking states but
can be used on any states in Salt. This made sense for the networking state
because it can define a long list of options that need to be applied to
multiple network interfaces.

Require In

The require_in requisite is the literal reverse of require. If
a state declaration needs to be required by another state declaration then
require_in can accommodate it, so these two sls files would be the same in
the end:

Using require

httpd:
 pkg:
 - installed
 service:
 - running
 - require:
 - pkg: httpd

Using require_in

httpd:
 pkg:
 - installed
 - require_in:
 - service: httpd
 service:
 - running

The require_in statement is particularly useful when assigning a require
in a separate sls file. For instance it may be common for httpd to require
components used to set up PHP or mod_python, but the HTTP state does not need
to be aware of the additional components that require it when it is set up:

http.sls

httpd:
 pkg:
 - installed
 service:
 - running
 - require:
 - pkg: httpd

php.sls

include:
 - http

php:
 pkg:
 - installed
 - require_in:
 - service: httpd

mod_python.sls

include:
 - http

mod_python:
 pkg:
 - installed
 - require_in:
 - service: httpd

Now the httpd server will only start if php or mod_python are first verified to
be installed. Thus allowing for a requisite to be defined "after the fact".

Watch In

Watch in functions the same was as require in, but applies a watch statement
rather than a require statement to the external state declaration.

Prereq In

The prereq_in requisite in follows the same assignment logic as the
require_in requisite in. The prereq_in call simply assigns
prereq to the state referenced. The above example for prereq can
be modified to function in the same way using prereq_in:

graceful-down:
 cmd.run:
 - name: service apache graceful

site-code:
 file.recurse:
 - name: /opt/site_code
 - source: salt://site/code
 - prereq_in:
 - cmd: graceful-down

Startup States

Sometimes it may be desired that the salt minion execute a state run when it is
started. This alleviates the need for the master to initiate a state run on a
new minion and can make provisioning much easier.

As of Salt 0.10.3 the minion config reads options that allow for states to be
executed at startup. The options are startup_states, sls_list and
top_file.

The startup_states option can be passed one of a number of arguments to
define how to execute states. The available options are:

	highstate

	Execute state.highstate

	sls

	Read in the sls_list option and execute the named sls files

	top

	Read in the top_file option and execute states based on that top file
on the Salt Master

Examples:

Execute state.highstate when starting the minion:

startup_states: highstate

Execute the sls files edit.vim and hyper:

startup_states: sls

sls_list:
 - edit.vim
 - hyper

State Testing

Executing a Salt state run can potentially change many aspects of a system and
it may be desirable to first see what a state run is going to change before
applying the run.

Salt has a test interface to report on exactly what will be changed, this
interface can be invoked on any of the major state run functions:

salt '*' state.highstate test=True
salt '*' state.sls test=True
salt '*' state.single test=True

The test run is mandated by adding the test=True option to the states. The
return information will show states that will be applied in yellow and the
result is reported as None.

Default Test

If the value test is set to True in the minion configuration file then
states will default to being executed in test mode. If this value is set then
states can still be run by calling test=False:

salt '*' state.highstate test=False
salt '*' state.sls test=False
salt '*' state.single test=False

The Top File

The top file is used to map what SLS modules get loaded onto what minions via
the state system. The top file creates a few general abstractions. First it
maps what nodes should pull from which environments, next it defines which
matches systems should draw from.

Environments

	Environment

	A configuration that allows conceptually organizing state tree
directories. Environments can be made to be self-contained or state
trees can be made to bleed through environments.

The environments in the top file corresponds with the environments defined in
the file_roots variable. In a simple, single environment setup
you only have the base environment, and therefore only one state tree. Here
is a simple example of file_roots in the master configuration:

file_roots:
 base:
 - /srv/salt

This means that the top file will only have one environment to pull from,
here is a simple, single environment top file:

base:
 '*':
 - core
 - edit

This also means that /srv/salt has a state tree. But if you want to use
multiple environments, or partition the file server to serve more than
just the state tree, then the file_roots option can be expanded:

file_roots:
 base:
 - /srv/salt/base
 dev:
 - /srv/salt/dev
 qa:
 - /srv/salt/qa
 prod:
 - /srv/salt/prod

Then our top file could reference the environments:

dev:
 'webserver*dev*':
 - webserver
 'db*dev*':
 - db
qa:
 'webserver*qa*':
 - webserver
 'db*qa*':
 - db
prod:
 'webserver*prod*':
 - webserver
 'db*prod*':
 - db

In this setup we have state trees in three of the four environments, and no
state tree in the base environment. Notice that the targets for the minions
specify environment data. In Salt the master determines who is in what
environment, and many environments can be crossed together. For instance, a
separate global state tree could be added to the base environment if it
suits your deployment:

base:
 '*':
 - global
dev:
 'webserver*dev*':
 - webserver
 'db*dev*':
 - db
qa:
 'webserver*qa*':
 - webserver
 'db*qa*':
 - db
prod:
 'webserver*prod*':
 - webserver
 'db*prod*':
 - db

In this setup all systems will pull the global SLS from the base environment,
as well as pull from their respective environments. If you assign only one SLS
to a system, as in this example, a shorthand is also available:

base:
 '*': global
dev:
 'webserver*dev*': webserver
 'db*dev*': db
qa:
 'webserver*qa*': webserver
 'db*qa*': db
prod:
 'webserver*prod*': webserver
 'db*prod*': db

Note

The top files from all defined environments will be compiled into a single
top file for all states. Top files are environment agnostic.

Remember, that since everything is a file in Salt, the environments are
primarily file server environments, this means that environments that have
nothing to do with states can be defined and used to distribute other files.

A clean and recommended setup for multiple environments would look like this:

Master file_roots configuration:
file_roots:
 base:
 - /srv/salt/base
 dev:
 - /srv/salt/dev
 qa:
 - /srv/salt/qa
 prod:
 - /srv/salt/prod

Then only place state trees in the dev, qa and prod environments, leaving
the base environment open for generic file transfers. Then the top.sls file
would look something like this:

dev:
 'webserver*dev*':
 - webserver
 'db*dev*':
 - db
qa:
 'webserver*qa*':
 - webserver
 'db*qa*':
 - db
prod:
 'webserver*prod*':
 - webserver
 'db*prod*':
 - db

Other Ways of Targeting Minions

In addition to globs, minions can be specified in top files a few other
ways. Some common ones are compound matches
and node groups.

Here is a slightly more complex top file example, showing the different types
of matches you can perform:

base:
 '*':
 - ldap-client
 - networking
 - salt.minion

 'salt-master*':
 - salt.master

 '^(memcache|web).(qa|prod).loc$':
 - match: pcre
 - nagios.mon.web
 - apache.server

 'os:Ubuntu':
 - match: grain
 - repos.ubuntu

 'os:(RedHat|CentOS)':
 - match: grain_pcre
 - repos.epel

 'foo,bar,baz':
 - match: list
 - database

 'somekey:abc':
 - match: pillar
 - xyz

 'nag1* or G@role:monitoring':
 - match: compound
 - nagios.server

In this example top.sls, all minions get the ldap-client, networking and
salt.minion states. Any minion with an id matching the salt-master* glob
will get the salt.master state. Any minion with ids matching the regular
expression ^(memcache|web).(qa|prod).loc$ will get the nagios.mon.web and
apache.server states. All Ubuntu minions will receive the repos.ubuntu state,
while all RHEL and CentOS minions will receive the repos.epel state. The
minions foo, bar, and baz will receive the database state. Any
minion with a pillar named somekey, having a value of abc will receive
the xyz state. Finally, minions with ids matching the nag1* glob or with a
grain named role equal to monitoring will receive the nagios.server
state.

How Top Files Are Compiled

As mentioned earlier, the top files in the different environments are compiled
into a single set of data. The way in which this is done follows a few rules,
which are important to understand when arranging top files in different
environments. The examples below all assume that the file_roots
are set as in the above multi-environment example.

	The base environment's top file is processed first. Any environment which
is defined in the base top.sls as well as another environment's top file,
will use the instance of the environment configured in base and ignore
all other instances. In other words, the base top file is
authoritative when defining environments. Therefore, in the example below,
the dev section in /srv/salt/dev/top.sls would be completely
ignored.

/srv/salt/base/top.sls:

base:
 '*':
 - common
dev:
 'webserver*dev*':
 - webserver
 'db*dev*':
 - db

/srv/salt/dev/top.sls:

dev:
 '10.10.100.0/24':
 - match: ipcidr
 - deployments.dev.site1
 '10.10.101.0/24':
 - match: ipcidr
 - deployments.dev.site2

Note

The rules below assume that the environments being discussed were not
defined in the base top file.

	If, for some reason, the base environment is not configured in the
base environment's top file, then the other environments will be checked
in alphabetical order. The first top file found to contain a section for the
base environment wins, and the other top files' base sections are
ignored. So, provided there is no base section in the base top file,
with the below two top files the dev environment would win out, and the
common.centos SLS would not be applied to CentOS hosts.

/srv/salt/dev/top.sls:

base:
 'os:Ubuntu':
 - common.ubuntu
dev:
 'webserver*dev*':
 - webserver
 'db*dev*':
 - db

/srv/salt/qa/topsls:

base:
 'os:Ubuntu':
 - common.ubuntu
 'os:CentOS':
 - common.centos
qa:
 'webserver*qa*':
 - webserver
 'db*qa*':
 - db

	For environments other than base, the top file in a given environment
will be checked for a section matching the environment's name. If one is
found, then it is used. Otherwise, the remaining (non-base) environments
will be checked in alphabetical order. In the below example, the qa
section in /srv/salt/dev/top.sls will be ignored, but if
/srv/salt/qa/top.sls were cleared or removed, then the states configured
for the qa environment in /srv/salt/dev/top.sls will be applied.

/srv/salt/dev/top.sls:

dev:
 'webserver*dev*':
 - webserver
 'db*dev*':
 - db
qa:
 '10.10.200.0/24':
 - match: ipcidr
 - deployments.qa.site1
 '10.10.201.0/24':
 - match: ipcidr
 - deployments.qa.site2

/srv/salt/qa/top.sls:

qa:
 'webserver*qa*':
 - webserver
 'db*qa*':
 - db

Note

When in doubt, the simplest way to configure your states is with a single
top.sls in the base environment.

SLS Template Variable Reference

The template engines available to sls files and file templates come loaded
with a number of context variables. These variables contain information and
functions to assist in the generation of templates.

Salt

The salt variable is available to abstract the salt library functions. This
variable is a python dictionary containing all of the functions available to
the running salt minion:

{% for file in salt['cmd.run'](ls /opt/to_remove) %}
{{ file }}:
 file.absent
{% endfor %}

Opts

The opts variable abstracts the contents of the minion's configuration file
directly to the template. The opts variable is a dictionary.

{{ opts['cachedir'] }}

The config.get function also searches for values in the opts dictionary.

Pillar

The pillar dictionary can be referenced directly:

{{ pillar['key'] }}

Using the pillar.get function via the salt variable is generally
recommended since a default can be safely set in the event that the value
is not available in pillar and dictionaries can be traversed directly:

{{ salt['pillar.get']('key', 'failover_value') }}
{{ salt['pillar.get']('stuff:more:deeper') }}

Grains

The grains dictionary makes the minion's grains directly available:

{{ grains['os'] }}

The grains.get function can be used to traverse deeper grains and set
defaults:

{{ salt['grains.get']('os') }}

env

The env variable is available in sls files when gathering the sls from
an environment.

{{ env }}

sls

The sls variable contains the sls reference value. The sls reference value
is the value used to include the sls in top files or via the include option.

{{ sls }}

State Modules

State Modules are the components that map to actual enforcement and management
of Salt states.

States are Easy to Write!

State Modules should be easy to write and straightforward. The information
passed to the SLS data structures will map directly to the states modules.

Mapping the information from the SLS data is simple, this example should
illustrate:

/etc/salt/master: # maps to "name"
 file: # maps to State module filename e.g. https://github.com/saltstack/salt/blob/develop/salt/states/file.py
 - managed # maps to the managed function in the file State module
 - user: root # one of many options passed to the manage function
 - group: root
 - mode: 644
 - source: salt://salt/master

Therefore this SLS data can be directly linked to a module, function and
arguments passed to that function.

This does issue the burden, that function names, state names and function
arguments should be very human readable inside state modules, since they
directly define the user interface.

Keyword Arguments

Salt passes a number of keyword arguments to states when rendering them,
including the environment, a unique identifier for the state, and more.
Additionally, keep in mind that the requisites for a state are part of the
keyword arguments. Therefore, if you need to iterate through the keyword
arguments in a state, these must be considered and handled appropriately.
One such example is in the pkgrepo.managed state, which needs to be able to handle
arbitrary keyword arguments and pass them to module execution functions.
An example of how these keyword arguments can be handled can be found
here [https://github.com/saltstack/salt/blob/v0.16.2/salt/states/pkgrepo.py#L163-183].

Using Custom State Modules

Place your custom state modules inside a _states directory within the
file_roots specified by the master config file. These custom
state modules can then be distributed in a number of ways. Custom state modules
are distributed when state.highstate is
run, or by executing the saltutil.sync_states or saltutil.sync_all functions.

Any custom states which have been synced to a minion, that are named the
same as one of Salt's default set of states, will take the place of the default
state with the same name. Note that a state's default name is its filename
(i.e. foo.py becomes state foo), but that its name can be overridden
by using a __virtual__ function.

Cross Calling Modules

As with Execution Modules, State Modules can also make use of the __salt__
and __grains__ data.

It is important to note that the real work of state management should not be
done in the state module unless it is needed. A good example is the pkg state
module. This module does not do any package management work, it just calls the
pkg execution module. This makes the pkg state module completely generic, which
is why there is only one pkg state module and many backend pkg execution
modules.

On the other hand some modules will require that the logic be placed in the
state module, a good example of this is the file module. But in the vast
majority of cases this is not the best approach, and writing specific
execution modules to do the backend work will be the optimal solution.

Return Data

A State Module must return a dict containing the following keys/values:

	name: The same value passed to the state as "name".

	changes: A dict describing the changes made. Each thing changed should
be a key, with its value being another dict with keys called "old" and "new"
containing the old/new values. For example, the pkg state's changes dict
has one key for each package changed, with the "old" and "new" keys in its
sub-dict containing the old and new versions of the package.

	result: A boolean value. True if the action was successful, otherwise
False.

	comment: A string containing a summary of the result.

Test State

All states should check for and support test being passed in the options.
This will return data about what changes would occur if the state were actually
run. An example of such a check could look like this:

Return comment of changes if test.
if __opts__['test']:
 ret['result'] = None
 ret['comment'] = 'State Foo will execute with param {0}'.format(bar)
 return ret

Make sure to test and return before performing any real actions on the minion.

Watcher Function

If the state being written should support the watch requisite then a watcher
function needs to be declared. The watcher function is called whenever the
watch requisite is invoked and should be generic to the behavior of the state
itself.

The watcher function should accept all of the options that the normal state
functions accept (as they will be passed into the watcher function).

A watcher function typically is used to execute state specific reactive
behavior, for instance, the watcher for the service module restarts the
named service and makes it useful for the watcher to make the service
react to changes in the environment.

The watcher function also needs to return the same data that a normal state
function returns.

Mod_init Interface

Some states need to execute something only once to ensure that an environment
has been set up, or certain conditions global to the state behavior can be
predefined. This is the realm of the mod_init interface.

A state module can have a function called mod_init which executes when the
first state of this type is called. This interface was created primarily to
improve the pkg state. When packages are installed the package metadata needs
to be refreshed, but refreshing the package metadata every time a package is
installed is wasteful. The mod_init function for the pkg state sets a flag down
so that the first, and only the first, package installation attempt will refresh
the package database (the package database can of course be manually called to
refresh via the refresh option in the pkg state).

The mod_init function must accept the Low State Data for the given
executing state as an argument. The low state data is a dict and can be seen by
executing the state.show_lowstate function. Then the mod_init function must
return a bool. If the return value is True, then the mod_init function will not
be executed again, meaning that the needed behavior has been set up. Otherwise,
if the mod_init function returns False, then the function will be called the
next time.

A good example of the mod_init function is found in the pkg state module:

def mod_init(low):
 '''
 Refresh the package database here so that it only needs to happen once
 '''
 if low['fun'] == 'installed' or low['fun'] == 'latest':
 rtag = __gen_rtag()
 if not os.path.exists(rtag):
 open(rtag, 'w+').write('')
 return True
 else:
 return False

The mod_init function in the pkg state accepts the low state data as low
and then checks to see if the function being called is going to install
packages, if the function is not going to install packages then there is no
need to refresh the package database. Therefore if the package database is
prepared to refresh, then return True and the mod_init will not be called
the next time a pkg state is evaluated, otherwise return False and the mod_init
will be called next time a pkg state is evaluated.

Full list of builtin state modules

	alias
	Configuration of email aliases.

	alternatives
	Configuration of the alternatives system

	apt
	Package management operations specific to APT- and DEB-based systems

	augeas
	Configuration management using Augeas

	cmd
	Execution of arbitrary commands

	cron
	Management of cron, the Unix command scheduler.

	debconfmod
	Management of debconf selections.

	disk
	Disk monitoring state

	eselect
	Management of Gentoo configuration using eselect

	file
	Operations on regular files, special files, directories, and symlinks.

	gem
	Installation of Ruby modules packaged as gems.

	git
	Interaction with Git repositories.

	grains
	Manage grains on the minion.

	group
	Management of user groups.

	hg
	Interaction with Mercurial repositories.

	host
	Management of addresses and names in hosts file.

	iptables
	Management of iptables

	keyboard
	Management of keyboard layouts

	kmod
	Loading and unloading of kernel modules.

	layman
	Management of Gentoo Overlays using layman

	libvirt
	Manage libvirt certs.

	locale
	Management of languages/locales

	lvm
	Management of Linux logical volumes

	makeconf
	Management of Gentoo make.conf

	mdadm
	Managing software RAID with mdadm

	modjk_worker
	Send commands to a modjk load balancer via the peer system

	module
	Execution of Salt modules from within states.

	mongodb_database
	Management of Mongodb databases

	mongodb_user
	Management of Mongodb users

	mount
	Mounting of filesystems.

	mysql_database
	Management of MySQL databases (schemas).

	mysql_grants
	Management of MySQL grants (user permissions).

	mysql_user
	Management of MySQL users.

	network
	Configuration of network interfaces.

	npm
	Installation of NPM Packages

	pecl
	Installation of PHP Extensions Using pecl

	pip_state
	Installation of Python Packages Using pip

	pkg
	Installation of packages using OS package managers such as yum or apt-get

	pkgng
	Manage package remote repo using FreeBSD pkgng

	pkgrepo
	Management of package repos

	portage_config
	Management of Portage package configuration on Gentoo

	postgres_database
	Management of PostgreSQL databases.

	postgres_group
	Management of PostgreSQL groups (roles).

	postgres_user
	Management of PostgreSQL users (roles).

	quota
	Management of POSIX Quotas

	rabbitmq_user
	Manage RabbitMQ Users.

	rabbitmq_vhost
	Manage RabbitMQ Virtual Hosts.

	rbenv
	Managing Ruby installations with rbenv.

	rvm
	Managing Ruby installations and gemsets with Ruby Version Manager (RVM).

	selinux
	Management of SELinux rules.

	service
	Starting or restarting of services and daemons.

	ssh_auth
	Control of entries in SSH authorized_key files.

	ssh_known_hosts
	Control of SSH known_hosts entries.

	stateconf
	Stateconf System

	supervisord
	Interaction with the Supervisor daemon.

	svn
	Manage SVN repositories

	sysctl
	Configuration of the Linux kernel using sysctrl.

	timezone
	Management of timezones

	tomcat
	This state uses the manager webapp to manage Apache tomcat webapps

	user
	Management of user accounts.

	virtualenv_mod
	Setup of Python virtualenv sandboxes.

salt.states.alias

Configuration of email aliases.

The mail aliases file can be managed to contain definitions for specific email
aliases:

username:
 alias.present:
 - target: user@example.com

	
salt.states.alias.absent(name)

	Ensure that the named alias is absent

	name

	The alias to remove

	
salt.states.alias.present(name, target)

	Ensures that the named alias is present with the given target

	name

	The local user/address to assign an alias to

	target

	The forwarding address

salt.states.alternatives

Configuration of the alternatives system

Control the alternatives system

{% set my_hadoop_conf = '/opt/hadoop/conf' %}

{{ my_hadoop_conf }}:
 file.directory

hadoop-0.20-conf:
 alternatives.install:
 - name: hadoop-0.20-conf
 - link: /etc/hadoop-0.20/conf
 - path: {{ my_hadoop_conf }}
 - priority: 30
 - require:
 - file: {{ my_hadoop_conf }}

hadoop-0.20-conf:
 alternatives.remove:
 - name: hadoop-0.20-conf
 - path: {{ my_hadoop_conf }}

	
salt.states.alternatives.auto(name)

	
New in version 0.17.0.

Instruct alternatives to use the highest priority
path for <name>

	name

	is the master name for this link group
(e.g. pager)

	
salt.states.alternatives.install(name, link, path, priority)

	Install new alternative for defined <name>

	name

	is the master name for this link group
(e.g. pager)

	link

	is the symlink pointing to /etc/alternatives/<name>.
(e.g. /usr/bin/pager)

	path

	is the location of the new alternative target.
NB: This file / directory must already exist.
(e.g. /usr/bin/less)

	priority

	is an integer; options with higher numbers have higher priority in
automatic mode.

	
salt.states.alternatives.remove(name, path)

	Removes installed alternative for defined <name> and <path>
or fallback to default alternative, if some defined before.

	name

	is the master name for this link group
(e.g. pager)

	path

	is the location of one of the alternative target files.
(e.g. /usr/bin/less)

	
salt.states.alternatives.set_(name, path)

	
New in version 0.17.0.

Removes installed alternative for defined <name> and <path>
or fallback to default alternative, if some defined before.

	name

	is the master name for this link group
(e.g. pager)

	path

	is the location of one of the alternative target files.
(e.g. /usr/bin/less)

salt.states.apt

Package management operations specific to APT- and DEB-based systems

	
salt.states.apt.held(name)

	Set package in 'hold' state, meaning it will not be upgraded.

	name

	The name of the package, e.g., 'tmux'

salt.states.augeas

Configuration management using Augeas

NOTE: This state requires the augeas Python module.

Augeas [http://augeas.net/] can be used to manage configuration files. Currently only the set
command is supported via this state. The augeas module also has support for get, match, remove, etc.

Examples:

Set the first entry in /etc/hosts to localhost:

hosts:
 augeas.setvalue:
 - changes:
 - /files/etc/hosts/1/canonical: localhost

Add a new host to /etc/hosts with the IP address 192.168.1.1 and
hostname test:

hosts:
 augeas.setvalue:
 - changes:
 - /files/etc/hosts/2/ipaddr: 192.168.1.1
 - /files/etc/hosts/2/canonical: foo.bar.com
 - /files/etc/hosts/2/alias[1]: foosite
 - /files/etc/hosts/2/alias[2]: foo

You can also set a prefix if you want to avoid redundancy:

nginx-conf:
 augeas.setvalue:
 - prefix: /files/etc/nginx/nginx.conf
 - changes:
 - user: www-data
 - worker_processes: 2
 - http/server_tokens: off
 - http/keepalive_timeout: 65

	
salt.states.augeas.setvalue(name, prefix=None, changes=None, **kwargs)

	Set a value for a specific augeas path

salt.states.cmd

Execution of arbitrary commands

The cmd state module manages the enforcement of executed commands, this
state can tell a command to run under certain circumstances.

A simple example to execute a command:

date > /tmp/salt-run:
 cmd.run

Only run if another execution failed, in this case truncate syslog if there is
no disk space:

> /var/log/messages:
 cmd.run:
 - unless: echo 'foo' > /tmp/.test

Note that when executing a command or script, the state (i.e., changed or not)
of the command is unknown to Salt's state system. Therefore, by default, the
cmd state assumes that any command execution results in a changed state.

This means that if a cmd state is watched by another state then the
state that's watching will always be executed due to the changed state in
the cmd state.

Many state functions in this module now also accept a stateful argument.
If stateful is specified to be true then it is assumed that the command
or script will determine its own state and communicate it back by following
a simple protocol described below:

	If there's nothing in the stdout of the command, then assume no
changes. Otherwise, the stdout must be either in JSON or its last
non-empty line must be a string of key=value pairs delimited by spaces (no
spaces on either side of =).

	If it's JSON then it must be a JSON object (e.g., {}). If it's
key=value pairs then quoting may be used to include spaces. (Python's shlex
module is used to parse the key=value string)

Two special keys or attributes are recognized in the output:

changed: bool (i.e., 'yes', 'no', 'true', 'false', case-insensitive)
comment: str (i.e., any string)

So, only if changed is True then assume the command execution has
changed the state, and any other key values or attributes in the output will
be set as part of the changes.

	If there's a comment then it will be used as the comment of the
state.

Here's an example of how one might write a shell script for use with a
stateful command:

#!/bin/bash
#
echo "Working hard..."

writing the state line
echo # an empty line here so the next line will be the last.
echo "changed=yes comment='something has changed' whatever=123"

And an example SLS file using this module:

Run myscript:
 cmd.run:
 - name: /path/to/myscript
 - cwd: /
 - stateful: True

Run only if myscript changed something:
 cmd.wait:
 - name: echo hello
 - cwd: /
 - watch:
 - cmd: Run myscript

Note that if the cmd.wait state also specifies stateful: True it can
then be watched by some other states as well.

cmd.wait is not restricted to watching only cmd states. For example
it can also watch a git state for changes

Watch for changes to a git repo and rebuild the project on updates
my-project:
 git.latest:
 - name: git@github.com/repo/foo
 - target: /opt/foo
 - rev: master
 cmd.wait:
 - name: make install
 - cwd: /opt/foo
 - watch:
 - git: my-project

Should I use cmd.run or cmd.wait?

These two states are often confused. The important thing to remember about them
is that cmd.run states are run each time the SLS
file that contains them is applied. If it is more desirable to have a command
that only runs after some other state changes, then cmd.wait does just that. cmd.wait
is designed to watch other states, and is
executed when the state it is watching changes. Example:

/usr/local/bin/postinstall.sh:
 cmd:
 - wait
 - watch:
 - pkg: mycustompkg
 file:
 - managed
 - source: salt://utils/scripts/postinstall.sh

mycustompkg:
 pkg:
 - installed
 - require:
 - file: /usr/local/bin/postinstall.sh

	
salt.states.cmd.call(name, func, args=(), kws=None, onlyif=None, unless=None, **kwargs)

	Invoke a pre-defined Python function with arguments specified in the state
declaration. This function is mainly used by the
salt.renderers.pydsl renderer.

The interpretation of onlyif and unless arguments are identical to
those of salt.states.cmd.run(), and all other arguments(cwd,
runas, ...) allowed by cmd.run are allowed here, except that their
effects apply only to the commands specified in onlyif and unless
rather than to the function to be invoked.

In addition the stateful argument has no effects here.

The return value of the invoked function will be interpreted as follows.

If it's a dictionary then it will be passed through to the state system,
which expects it to have the usual structure returned by any salt state
function.

Otherwise, the return value(denoted as result in the code below) is
expected to be a JSON serializable object, and this dictionary is returned:

{ 'changes': { 'retval': result },
 'result': True if result is None else bool(result),
 'comment': result if isinstance(result, basestring) else ''
}

	
salt.states.cmd.mod_watch(name, **kwargs)

	Execute a cmd function based on a watch call

	
salt.states.cmd.run(name, onlyif=None, unless=None, cwd=None, user=None, group=None, shell=None, env=(), stateful=False, umask=None, quiet=False, timeout=None, **kwargs)

	Run a command if certain circumstances are met

	name

	The command to execute, remember that the command will execute with the
path and permissions of the salt-minion.

	onlyif

	A command to run as a check, run the named command only if the command
passed to the onlyif option returns true

	unless

	A command to run as a check, only run the named command if the command
passed to the unless option returns false

	cwd

	The current working directory to execute the command in, defaults to
/root

	user

	The user name to run the command as

	group

	The group context to run the command as

	shell

	The shell to use for execution, defaults to the shell grain

	env

	Pass in a list or dict of environment variables to be applied to the
command upon execution

	stateful

	The command being executed is expected to return data about executing
a state

	umask

	The umask (in octal) to use when running the command.

	quiet

	The command will be executed quietly, meaning no log entries of the
actual command or its return data

	timeout

	If the command has not terminated after timeout seconds, send the
subprocess sigterm, and if sigterm is ignored, follow up with sigkill

	
salt.states.cmd.script(name, source=None, template=None, onlyif=None, unless=None, cwd=None, user=None, group=None, shell=None, env=None, stateful=False, umask=None, timeout=None, __env__='base', **kwargs)

	Download a script from a remote source and execute it. The name can be the
source or the source value can be defined.

	source

	The source script being downloaded to the minion, this source script is
hosted on the salt master server. If the file is located on the master
in the directory named spam, and is called eggs, the source string is
salt://spam/eggs

	template

	If this setting is applied then the named templating engine will be
used to render the downloaded file, currently jinja, mako, and wempy
are supported

	name

	The command to execute, remember that the command will execute with the
path and permissions of the salt-minion.

	onlyif

	A command to run as a check, run the named command only if the command
passed to the onlyif option returns true

	unless

	A command to run as a check, only run the named command if the command
passed to the unless option returns false

	cwd

	The current working directory to execute the command in, defaults to
/root

	user

	The user name to run the command as

	group

	The group context to run the command as

	shell

	The shell to use for execution, defaults to the shell grain

	env

	Pass in a list or dict of environment variables to be applied to the
command upon execution

	umask

	The umask (in octal) to use when running the command.

	stateful

	The command being executed is expected to return data about executing
a state

	timeout

	If the command has not terminated after timeout seconds, send the
subprocess sigterm, and if sigterm is ignored, follow up with sigkill

	args

	String of command line args to pass to the script. Only used if no
args are specified as part of the name argument.

	__env__

	The root directory of the environment for the referencing script. The
environments are defined in the master config file.

	
salt.states.cmd.wait(name, onlyif=None, unless=None, cwd=None, user=None, group=None, shell=None, stateful=False, umask=None, **kwargs)

	Run the given command only if the watch statement calls it

	name

	The command to execute, remember that the command will execute with the
path and permissions of the salt-minion.

	onlyif

	A command to run as a check, run the named command only if the command
passed to the onlyif option returns true

	unless

	A command to run as a check, only run the named command if the command
passed to the unless option returns false

	cwd

	The current working directory to execute the command in, defaults to
/root

	user

	The user name to run the command as

	group

	The group context to run the command as

	shell

	The shell to use for execution, defaults to /bin/sh

	umask

	The umask (in octal) to use when running the command.

	stateful

	The command being executed is expected to return data about executing
a state

	
salt.states.cmd.wait_call(name, func, args=(), kws=None, onlyif=None, unless=None, stateful=False, **kwargs)

	

	
salt.states.cmd.wait_script(name, source=None, template=None, onlyif=None, unless=None, cwd=None, user=None, group=None, shell=None, env=None, stateful=False, umask=None, **kwargs)

	Download a script from a remote source and execute it only if a watch
statement calls it.

	source

	The source script being downloaded to the minion, this source script is
hosted on the salt master server. If the file is located on the master
in the directory named spam, and is called eggs, the source string is
salt://spam/eggs

	template

	If this setting is applied then the named templating engine will be
used to render the downloaded file, currently jinja, mako, and wempy
are supported

	name

	The command to execute, remember that the command will execute with the
path and permissions of the salt-minion.

	onlyif

	A command to run as a check, run the named command only if the command
passed to the onlyif option returns true

	unless

	A command to run as a check, only run the named command if the command
passed to the unless option returns false

	cwd

	The current working directory to execute the command in, defaults to
/root

	user

	The user name to run the command as

	group

	The group context to run the command as

	shell

	The shell to use for execution, defaults to the shell grain

	env

	The root directory of the environment for the referencing script. The
environments are defined in the master config file.

	umask

	The umask (in octal) to use when running the command.

	stateful

	The command being executed is expected to return data about executing
a state

salt.states.cron

Management of cron, the Unix command scheduler.

The cron state module allows for user crontabs to be cleanly managed.

Cron declarations require a number of parameters. The timing parameters need
to be declared: minute, hour, daymonth, month, and dayweek. The user whose
crontab is to be edited also needs to be defined.

By default, the timing arguments are all * and the user is root. When
making changes to an existing cron job, the name declaration is the unique
factor, so if an existing cron that looks like this:

date > /tmp/crontest:
 cron.present:
 - user: root
 - minute: 5

Is changed to this:

date > /tmp/crontest:
 cron.present:
 - user: root
 - minute: 7
 - hour: 2

Then the existing cron will be updated, but if the cron command is changed,
then a new cron job will be added to the user's crontab.

Additionally, the temporal parameters (minute, hour, etc.) can be randomized by
using random instead of using a specific value. For example, by using the
random keyword in the minute parameter of a cron state, the same cron
job can be pushed to hundreds or thousands of hosts, and they would each use a
randomly-generated minute. This can be helpful when the cron job accesses a
network resource, and it is not desirable for all hosts to run the job
concurrently.

/path/to/cron/script:
 cron.present:
 - user: root
 - minute: random
 - hour: 2

New in version 0.16.0.

Since Salt assumes a value of * for unspecified temporal parameters, adding
a parameter to the state and setting it to random will change that value
from * to a randomized numeric value. However, if that field in the cron
entry on the minion already contains a numeric value, then using the random
keyword will not modify it.

	
salt.states.cron.absent(name, user='root', **kwargs)

	Verifies that the specified cron job is absent for the specified user; only
the name is matched when removing a cron job.

	name

	The command that should be absent in the user crontab.

	user

	The name of the user who's crontab needs to be modified, defaults to
the root user

	
salt.states.cron.file(name, source_hash='', user='root', template=None, context=None, replace=True, defaults=None, env=None, backup='', **kwargs)

	Provides file.managed-like functionality (templating, etc.) for a pre-made
crontab file, to be assigned to a given user.

	name

	The source file to be used as the crontab. This source file can be
hosted on either the salt master server, or on an HTTP or FTP server.
For files hosted on the salt file server, if the file is located on
the master in the directory named spam, and is called eggs, the source
string is salt://spam/eggs.

If the file is hosted on a HTTP or FTP server then the source_hash
argument is also required

	source_hash

	This can be either a file which contains a source hash string for
the source, or a source hash string. The source hash string is the
hash algorithm followed by the hash of the file:
md5=e138491e9d5b97023cea823fe17bac22

	user

	The user to whom the crontab should be assigned. This defaults to
root.

	template

	If this setting is applied then the named templating engine will be
used to render the downloaded file. Currently, jinja and mako are
supported.

	context

	Overrides default context variables passed to the template.

	replace

	If the crontab should be replaced, if False then this command will
be ignored if a crontab exists for the specified user. Default is True.

	defaults

	Default context passed to the template.

	backup

	Overrides the default backup mode for the user's crontab.

	
salt.states.cron.present(name, user='root', minute='*', hour='*', daymonth='*', month='*', dayweek='*')

	Verifies that the specified cron job is present for the specified user.
For more advanced information about what exactly can be set in the cron
timing parameters, check your cron system's documentation. Most Unix-like
systems' cron documentation can be found via the crontab man page:
man 5 crontab.

	name

	The command that should be executed by the cron job.

	user

	The name of the user who's crontab needs to be modified, defaults to
the root user

	minute

	The information to be set into the minute section, this can be any
string supported by your cron system's the minute field. Default is
*

	hour

	The information to be set in the hour section. Default is *

	daymonth

	The information to be set in the day of month section. Default is *

	month

	The information to be set in the month section. Default is *

	dayweek

	The information to be set in the day of week section. Default is *

salt.states.debconfmod

Management of debconf selections.

The debconfmod state module manages the enforcement of debconf selections,
this state can set those selections prior to package installation.

Available Functions

The debconfmod state has two functions, the set and set_file functions

	set

	Set debconf selections from the state itself

	set_file

	Set debconf selections from a file

nullmailer-debconf:
 debconf.set:
 - name: nullmailer
 - data:
 'shared/mailname': {'type': 'string', 'value': 'server.domain.tld'}
 'nullmailer/relayhost': {'type': 'string', 'value': 'mail.domain.tld'}
ferm-debconf:
 debconf.set:
 - name: ferm
 - data:
 'ferm/enable': {'type': 'boolean', 'value': True}

Note

Due to how PyYAML imports nested dicts (see here), the values in the data
dict must be indented four spaces instead of two.

	
salt.states.debconfmod.set(name, data)

	Set debconf selections

<state_id>:
 debconf.set:
 - name: <name>
 - data:
 <question>: {'type': <type>, 'value': <value>}
 <question>: {'type': <type>, 'value': <value>}

<state_id>:
 debconf.set:
 - name: <name>
 - data:
 <question>: {'type': <type>, 'value': <value>}
 <question>: {'type': <type>, 'value': <value>}

	name:

	The package name to set answers for.

	data:

	A set of questions/answers for debconf. Note that everything under
this must be indented twice.

	question:

	The question the is being pre-answered

	type:

	The type of question that is being asked (string, boolean, select, etc.)

	value:

	The answer to the question

	
salt.states.debconfmod.set_file(name, source, **kwargs)

	Set debconf selections from a file

<state_id>:
 debconf.set_file:
 - source: salt://pathto/pkg.selections

<state_id>:
 debconf.set_file:
 - source: salt://pathto/pkg.selections?env=myenvironment

	source:

	The location of the file containing the package selections

salt.states.disk

Disk monitoring state

Monitor the state of disk resources

	
salt.states.disk.status(name, max=None, min=None)

	Return the current disk usage stats for the named device

salt.states.eselect

Management of Gentoo configuration using eselect

A state module to manage Gentoo configuration via eselect

profile:
 eselect.set:
 target: hardened/linux/amd64

	
salt.states.eselect.set_(name, target)

	Verify that the given module is set to the given target

	name

	The name of the module

salt.states.file

Operations on regular files, special files, directories, and symlinks.

Salt States can aggressively manipulate files on a system. There are a number
of ways in which files can be managed.

Regular files can be enforced with the managed function. This function
downloads files from the salt master and places them on the target system.
The downloaded files can be rendered as a jinja, mako, or wempy template,
adding a dynamic component to file management. An example of file.managed
which makes use of the jinja templating system would look like this:

/etc/http/conf/http.conf:
 file.managed:
 - source: salt://apache/http.conf
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - defaults:
 custom_var: "default value"
 other_var: 123
{% if grains['os'] == 'Ubuntu' %}
 - context:
 custom_var: "override"
{% endif %}

If using a template, any user-defined template variables in the file defined in
source must be passed in using the defaults and/or context
arguments. The general best practice is to place default values in
defaults, with conditional overrides going into context, as seen above.

The source parameter can be specified as a list. If this is done, then the
first file to be matched will be the one that is used. This allows you to have
a default file on which to fall back if the desired file does not exist on the
salt fileserver. Here's an example:

/etc/foo.conf:
 file.managed:
 - source:
 - salt://foo.conf.{{ grains['fqdn'] }}
 - salt://foo.conf.fallback
 - user: foo
 - group: users
 - mode: 644

The source parameter can also specify a file in another Salt environment.
In this example foo.conf in the dev environment will be used instead.

/etc/foo.conf:
 file.managed:
 - source:
 - salt://foo.conf?env=dev
 - user: foo
 - group: users
 - mode: '0644'

Warning

When using a mode that includes a leading zero you must wrap the
value in single quotes. If the value is not wrapped in quotes it
will be read by YAML as an integer and evaluated as an octal.

Special files can be managed via the mknod function. This function will
create and enforce the permissions on a special file. The function supports the
creation of character devices, block devices, and fifo pipes. The function will
create the directory structure up to the special file if it is needed on the
minion. The function will not overwrite or operate on (change major/minor
numbers) existing special files with the exception of user, group, and
permissions. In most cases the creation of some special files require root
permisisons on the minion. This would require that the minion to be run as the
root user. Here is an example of a character device:

/var/named/chroot/dev/random:
 file.mknod:
 - ntype: c
 - major: 1
 - minor: 8
 - user: named
 - group: named
 - mode: 660

Here is an example of a block device:

/var/named/chroot/dev/loop0:
 file.mknod:
 - ntype: b
 - major: 7
 - minor: 0
 - user: named
 - group: named
 - mode: 660

Here is an example of a fifo pipe:

/var/named/chroot/var/log/logfifo:
 file.mknod:
 - ntype: p
 - user: named
 - group: named
 - mode: 660

Directories can be managed via the directory function. This function can
create and enforce the permissions on a directory. A directory statement will
look like this:

/srv/stuff/substuf:
 file.directory:
 - user: fred
 - group: users
 - mode: 755
 - makedirs: True

If you need to enforce user and/or group ownership or permissions recursively
on the directory's contents, you can do so by adding a recurse directive:

/srv/stuff/substuf:
 file.directory:
 - user: fred
 - group: users
 - mode: 755
 - makedirs: True
 - recurse:
 - user
 - group
 - mode

As a default, mode will resolve to dir_mode and file_mode, to
specify both directory and file permissions, use this form:

/srv/stuff/substuf:
 file.directory:
 - user: fred
 - group: users
 - file_mode: 744
 - dir_mode: 755
 - makedirs: True
 - recurse:
 - user
 - group
 - mode

Symlinks can be easily created; the symlink function is very simple and only
takes a few arguments:

/etc/grub.conf:
 file.symlink:
 - target: /boot/grub/grub.conf

Recursive directory management can also be set via the recurse
function. Recursive directory management allows for a directory on the salt
master to be recursively copied down to the minion. This is a great tool for
deploying large code and configuration systems. A state using recurse
would look something like this:

/opt/code/flask:
 file.recurse:
 - source: salt://code/flask
 - include_empty: True

	
salt.states.file.absent(name)

	Verify that the named file or directory is absent, this will work to
reverse any of the functions in the file state module.

	name

	The path which should be deleted

	
salt.states.file.accumulated(name, filename, text, **kwargs)

	Prepare accumulator which can be used in template in file.managed state.
accumulator dictionary becomes available in template.

	name

	Accumulator name

	filename

	Filename which would receive this accumulator (see file.managed state
documentation about name)

	text

	String or list for adding in accumulator

	require_in / watch_in

	One of them required for sure we fill up accumulator before we manage
the file. Probably the same as filename

	
salt.states.file.append(name, text=None, makedirs=False, source=None, source_hash=None, __env__='base', template='jinja', sources=None, source_hashes=None, defaults=None, context=None)

	Ensure that some text appears at the end of a file

The text will not be appended again if it already exists in the file. You
may specify a single line of text or a list of lines to append.

Multi-line example:

/etc/motd:
 file.append:
 - text: |
 Thou hadst better eat salt with the Philosophers of Greece,
 than sugar with the Courtiers of Italy.
 - Benjamin Franklin

Multiple lines of text:

/etc/motd:
 file.append:
 - text:
 - Trust no one unless you have eaten much salt with him.
 - "Salt is born of the purest of parents: the sun and the sea."

Gather text from multiple template files:

/etc/motd:
 file:
 - append
 - template: jinja
 - sources:
 - salt://motd/devops-messages.tmpl
 - salt://motd/hr-messages.tmpl
 - salt://motd/general-messages.tmpl

New in version 0.9.5.

	
salt.states.file.comment(name, regex, char='#', backup='.bak')

	Comment out specified lines in a file.

	name

	The full path to the file to be edited

	regex

	A regular expression used to find the lines that are to be commented;
this pattern will be wrapped in parenthesis and will move any
preceding/trailing ^ or $ characters outside the parenthesis
(e.g., the pattern ^foo$ will be rewritten as ^(foo)$)
Note that you _need_ the leading ^, otherwise each time you run
highstate, another comment char will be inserted.

	char : #

	The character to be inserted at the beginning of a line in order to
comment it out

	backup : .bak

	The file will be backed up before edit with this file extension

Warning

This backup will be overwritten each time sed / comment /
uncomment is called. Meaning the backup will only be useful
after the first invocation.

Usage:

/etc/fstab:
 file.comment:
 - regex: ^bind 127.0.0.1

New in version 0.9.5.

	
salt.states.file.copy(name, source, force=False, makedirs=False)

	If the source file exists on the system, copy it to the named file. The
named file will not be overwritten if it already exists unless the force
option is set to True.

	name

	The location of the file to copy to

	source

	The location of the file to copy to the location specified with name

	force

	If the target location is present then the file will not be moved,
specify "force: True" to overwrite the target file

	makedirs

	If the target subdirectories don't exist create them

	
salt.states.file.directory(name, user=None, group=None, recurse=None, dir_mode=None, file_mode=None, makedirs=False, clean=False, require=None, exclude_pat=None, **kwargs)

	Ensure that a named directory is present and has the right perms

	name

	The location to create or manage a directory

	user

	The user to own the directory; this defaults to the user salt is
running as on the minion

	group

	The group ownership set for the directory; this defaults to the group
salt is running as on the minion

	recurse

	Enforce user/group ownership and mode of directory recursively. Accepts
a list of strings representing what you would like to recurse.
Example:

/var/log/httpd:
 file.directory:
 - user: root
 - group: root
 - dir_mode: 755
 - file_mode: 644
 - recurse:
 - user
 - group
 - mode

	dir_mode / mode

	The permissions mode to set any directories created.

	file_mode

	The permissions mode to set any files created if 'mode' is ran in
'recurse'. This defaults to dir_mode.

	makedirs

	If the directory is located in a path without a parent directory, then
the state will fail. If makedirs is set to True, then the parent
directories will be created to facilitate the creation of the named
file.

	clean

	Make sure that only files that are set up by salt and required by this
function are kept. If this option is set then everything in this
directory will be deleted unless it is required.

	require

	Require other resources such as packages or files

	exclude_pat

	When 'clean' is set to True, exclude this pattern from removal list
and preserve in the destination.

	
salt.states.file.exists(name)

	Verify that the named file or directory is present or exists.
Ensures pre-requisites outside of Salt's purview
(e.g., keytabs, private keys, etc.) have been previously satisfied before
deployment.

	name

	Absolute path which must exist

	
salt.states.file.managed(name, source=None, source_hash='', user=None, group=None, mode=None, template=None, makedirs=False, context=None, replace=True, defaults=None, env=None, backup='', show_diff=True, create=True, contents=None, contents_pillar=None, **kwargs)

	Manage a given file, this function allows for a file to be downloaded from
the salt master and potentially run through a templating system.

	name

	The location of the file to manage

	source

	The source file to download to the minion, this source file can be
hosted on either the salt master server, or on an HTTP or FTP server.
For files hosted on the salt file server, if the file is located on
the master in the directory named spam, and is called eggs, the source
string is salt://spam/eggs. If source is left blank or None, the file
will be created as an empty file and the content will not be managed

If the file is hosted on a HTTP or FTP server then the source_hash
argument is also required

	source_hash:

	This can be either a file which contains a source hash string for
the source, or a source hash string. The source hash string is the
hash algorithm followed by the hash of the file:
md5=e138491e9d5b97023cea823fe17bac22

The file can contain checksums for several files, in this case every
line must consist of full name of the file and checksum separated by
space:

Example:

/etc/rc.conf md5=ef6e82e4006dee563d98ada2a2a80a27
/etc/resolv.conf sha256=c8525aee419eb649f0233be91c151178b30f0dff8ebbdcc8de71b1d5c8bcc06a

	user

	The user to own the file, this defaults to the user salt is running as
on the minion

	group

	The group ownership set for the file, this defaults to the group salt
is running as on the minion

	mode

	The permissions to set on this file, aka 644, 0775, 4664

	template

	If this setting is applied then the named templating engine will be
used to render the downloaded file, currently jinja, mako, and wempy
are supported

	makedirs

	If the file is located in a path without a parent directory, then
the state will fail. If makedirs is set to True, then the parent
directories will be created to facilitate the creation of the named
file.

	replace

	If this file should be replaced. If false, this command will
not overwrite file contents but will enforce permissions if the file
exists already. Default is True.

	context

	Overrides default context variables passed to the template.

	defaults

	Default context passed to the template.

	backup

	Overrides the default backup mode for this specific file.

	show_diff

	If set to False, the diff will not be shown.

	create

	Default is True, if create is set to False then the file will only be
managed if the file already exists on the system.

	contents

	Default is None. If specified, will use the given string as the
contents of the file. Should not be used in conjunction with a source
file of any kind. Ignores hashes and does not use a templating engine.

	contents_pillar

	
New in version 0.17.

Operates like contents, but draws from a value stored in pillar,
using the pillar path syntax used in pillar.get. This is useful when the pillar value
contains newlines, as referencing a pillar variable using a jinja/mako
template can result in YAML formatting issues due to the newlines
causing indentation mismatches.

	
salt.states.file.missing(name)

	Verify that the named file or directory is missing, this returns True only
if the named file is missing but does not remove the file if it is present.

	name

	Absolute path which must NOT exist

	
salt.states.file.mknod(name, ntype, major=0, minor=0, user=None, group=None, mode='0600')

	Create a special file similar to the 'nix mknod command. The supported device types are
p (fifo pipe), c (character device), and b (block device). Provide the major and minor
numbers when specifying a character device or block device. A fifo pipe does not require
this information. The command will create the necessary dirs if needed. If a file of the
same name not of the same type/major/minor exists, it will not be overwritten or unlinked
(deleted). This is logically in place as a safety measure because you can really shoot
yourself in the foot here and it is the behavior of 'nix mknod. It is also important to
note that not just anyone can create special devices. Usually this is only done as root.
If the state is executed as none other than root on a minion, you may receive a permission
error.

	name

	name of the file

	ntype

	node type 'p' (fifo pipe), 'c' (character device), or 'b' (block device)

	major

	major number of the device
does not apply to a fifo pipe

	minor

	minor number of the device
does not apply to a fifo pipe

	user

	owning user of the device/pipe

	group

	owning group of the device/pipe

	mode

	permissions on the device/pipe

Usage:

 /dev/chr:
 file.mknod:
 - ntype: c
 - major: 180
 - minor: 31
 - user: root
 - group: root
 - mode: 660

 /dev/blk:
 file.mknod:
 - ntype: b
 - major: 8
 - minor: 999
 - user: root
 - group: root
 - mode: 660

/dev/fifo:
 file.mknod:
 - ntype: p
 - user: root
 - group: root
 - mode: 660

New in version 0.17.0.

	
salt.states.file.patch(name, source=None, hash=None, options='', dry_run_first=True, env='base')

	Apply a patch to a file. Note: a suitable patch executable must be
available on the minion when using this state function.

	name

	The file to with the patch will be applied.

	source

	The source patch to download to the minion, this source file must be
hosted on the salt master server. If the file is located in the
directory named spam, and is called eggs, the source string is
salt://spam/eggs. A source is required.

	hash

	Hash of the patched file. If the hash of the target file matches this
value then the patch is assumed to have been applied. The hash string
is the hash algorithm followed by the hash of the file:
md5=e138491e9d5b97023cea823fe17bac22

	options

	Extra options to pass to patch.

	dry_run_first : True

	Run patch with --dry-run first to check if it will apply cleanly.

Usage:

Equivalent to ``patch --forward /opt/file.txt file.patch``
/opt/file.txt:
 file.patch:
 - source: salt://file.patch
 - hash: md5=e138491e9d5b97023cea823fe17bac22

	
salt.states.file.recurse(name, source, clean=False, require=None, user=None, group=None, dir_mode=None, file_mode=None, template=None, context=None, defaults=None, env=None, include_empty=False, backup='', include_pat=None, exclude_pat=None, maxdepth=None, **kwargs)

	Recurse through a subdirectory on the master and copy said subdirectory
over to the specified path.

	name

	The directory to set the recursion in

	source

	The source directory, this directory is located on the salt master file
server and is specified with the salt:// protocol. If the directory is
located on the master in the directory named spam, and is called eggs,
the source string is salt://spam/eggs

	clean

	Make sure that only files that are set up by salt and required by this
function are kept. If this option is set then everything in this
directory will be deleted unless it is required.

	require

	Require other resources such as packages or files

	user

	The user to own the directory, this defaults to the user salt is
running as on the minion

	group

	The group ownership set for the directory, this defaults to the group
salt is running as on the minion

	dir_mode

	The permissions mode to set any directories created

	file_mode

	The permissions mode to set any files created

	template

	If this setting is applied then the named templating engine will be
used to render the downloaded file, currently jinja, mako, and wempy
are supported

	context

	Overrides default context variables passed to the template.

	defaults

	Default context passed to the template.

	include_empty

	Set this to True if empty directories should also be created
(default is False)

	include_pat

	When copying, include only this pattern from the source. Default
is glob match; if prefixed with 'E@', then regexp match.
Example:

- include_pat: hello* :: glob matches 'hello01', 'hello02'
 ... but not 'otherhello'
- include_pat: E@hello :: regexp matches 'otherhello',
 'hello01' ...

	exclude_pat

	When copying, exclude this pattern from the source. If both
include_pat and exclude_pat are supplied, then it will apply
conditions cumulatively. i.e. first select based on include_pat, and
then within that result apply exclude_pat.

Also, when 'clean=True', exclude this pattern from the removal
list and preserve in the destination.
Example:

- exclude_pat: APPDATA* :: glob matches APPDATA.01,
 APPDATA.02,.. for exclusion
- exclude_pat: E@(APPDATA)|(TEMPDATA) :: regexp matches APPDATA
 or TEMPDATA for exclusion

	maxdepth

	When copying, only copy paths which are depth maxdepth from the source
path.
Example:

- maxdepth: 0 :: Only include files located in the source
 directory
- maxdepth: 1 :: Only include files located in the source
 or immediate subdirectories

	
salt.states.file.rename(name, source, force=False, makedirs=False)

	If the source file exists on the system, rename it to the named file. The
named file will not be overwritten if it already exists unless the force
option is set to True.

	name

	The location of the file to rename to

	source

	The location of the file to move to the location specified with name

	force

	If the target location is present then the file will not be moved,
specify "force: True" to overwrite the target file

	makedirs

	If the target subdirectories don't exist create them

	
salt.states.file.replace(name, pattern, repl, count=0, flags=0, bufsize=1, backup='.bak', show_changes=True)

	Maintain an edit in a file

New in version 0.17.1.

Params are identical to replace().

	
salt.states.file.sed(name, before, after, limit='', backup='.bak', options='-r -e', flags='g', negate_match=False)

	
Deprecated since version 0.17.1: Use replace() instead.

Maintain a simple edit to a file

The file will be searched for the before pattern before making the
edit. In general the limit pattern should be as specific as possible
and before and after should contain the minimal text to be changed.

	before

	A pattern that should exist in the file before the edit.

	after

	A pattern that should exist in the file after the edit.

	limit

	An optional second pattern that can limit the scope of the before
pattern.

	backup : '.bak'

	The extension for the backed-up version of the file before the edit. If
no backups is desired, pass in the empty string: ''

	options : -r -e

	Any options to pass to the sed command. -r uses extended
regular expression syntax and -e denotes that what follows is an
expression that sed will execute.

	flags : g

	Any flags to append to the sed expression. g specifies the edit
should be made globally (and not stop after the first replacement).

	negate_match : False

	Negate the search command (!)

New in version 0.17.

Usage:

Disable the epel repo by default
/etc/yum.repos.d/epel.repo:
 file.sed:
 - before: 1
 - after: 0
 - limit: ^enabled=

Remove ldap from nsswitch
/etc/nsswitch.conf:
 file.sed:
 - before: 'ldap'
 - after: ''
 - limit: '^passwd:'

New in version 0.9.5.

	
salt.states.file.serialize(name, dataset, user=None, group=None, mode=None, env=None, backup='', show_diff=True, create=True, **kwargs)

	Serializes dataset and store it into managed file. Useful for sharing
simple configuration files.

	name

	The location of the symlink to create

	dataset

	the dataset that will be serialized

	formatter

	the formatter, currently only yaml and json are supported

	user

	The user to own the directory, this defaults to the user salt is
running as on the minion

	group

	The group ownership set for the directory, this defaults to the group
salt is running as on the minion

	mode

	The permissions to set on this file, aka 644, 0775, 4664

	backup

	Overrides the default backup mode for this specific file.

	show_diff

	If set to False, the diff will not be shown.

	create

	Default is True, if create is set to False then the file will only be
managed if the file already exists on the system.

For example, this state:

/etc/dummy/package.json:
 file.serialize:
 - dataset:
 name: naive
 description: A package using naive versioning
 author: A confused individual <iam@confused.com>
 dependencies:
 express: >= 1.2.0
 optimist: >= 0.1.0
 engine: node 0.4.1
 - formatter: json

will manages the file /etc/dummy/package.json:

{
 "author": "A confused individual <iam@confused.com>",
 "dependencies": {
 "express": ">= 1.2.0",
 "optimist": ">= 0.1.0"
 },
 "description": "A package using naive versioning",
 "engine": "node 0.4.1"
 "name": "naive",
}

	
salt.states.file.symlink(name, target, force=False, makedirs=False, user=None, group=None, mode=None, **kwargs)

	Create a symlink

If the file already exists and is a symlink pointing to any location other
than the specified target, the symlink will be replaced. If the symlink is
a regular file or directory then the state will return False. If the
regular file or directory is desired to be replaced with a symlink pass
force: True.

	name

	The location of the symlink to create

	target

	The location that the symlink points to

	force

	If the location of the symlink exists and is not a symlink then the
state will fail, set force to True and any file or directory in the way
of the symlink file will be deleted to make room for the symlink

	makedirs

	If the location of the symlink does not already have a parent directory
then the state will fail, setting makedirs to True will allow Salt to
create the parent directory

	
salt.states.file.touch(name, atime=None, mtime=None, makedirs=False)

	Replicate the 'nix "touch" command to create a new empty
file or update the atime and mtime of an existing file.

Note that if you just want to create a file and don't care about atime or
mtime, you should use file.managed instead, as it is more
feature-complete. (Just leave out the source/template/contents
arguments, and it will just create the file and/or check its permissions,
without messing with contents)

	name

	name of the file

	atime

	atime of the file

	mtime

	mtime of the file

	makedirs

	whether we should create the parent directory/directories in order to
touch the file

Usage:

/var/log/httpd/logrotate.empty:
 file.touch

New in version 0.9.5.

	
salt.states.file.uncomment(name, regex, char='#', backup='.bak')

	Uncomment specified commented lines in a file

	name

	The full path to the file to be edited

	regex

	A regular expression used to find the lines that are to be uncommented.
This regex should not include the comment character. A leading ^
character will be stripped for convenience (for easily switching
between comment() and uncomment()). The regex will be searched for
from the beginning of the line, ignoring leading spaces (we prepend
'^[t]*')

	char : #

	The character to remove in order to uncomment a line

	backup : .bak

	The file will be backed up before edit with this file extension;
WARNING: each time sed/comment/uncomment is called will
overwrite this backup

Usage:

/etc/adduser.conf:
 file.uncomment:
 - regex: EXTRA_GROUPS

New in version 0.9.5.

salt.states.gem

Installation of Ruby modules packaged as gems.

A state module to manage rubygems. Gems can be set up to be installed
or removed. This module will use RVM if it is installed. In that case,
you can specify what ruby version and gemset to target.

addressable:
 gem.installed:
 - user: rvm
 - ruby: jruby@jgemset

	
salt.states.gem.installed(name, ruby=None, runas=None, user=None, version=None, rdoc=False, ri=False)

	Make sure that a gem is installed.

	name

	The name of the gem to install

	ruby: None

	For RVM installations: the ruby version and gemset to target.

	runas: None

	The user to run gem as.

Deprecated since version 0.17.0.

	name: None

	The user to run gem as

New in version 0.17.0.

	version : None

	Specify the version to install for the gem.
Doesn't play nice with multiple gems at once

	rdoc : False

	Generate RDoc documentation for the gem(s).

	ri : False

	Generate RI documentation for the gem(s).

	
salt.states.gem.removed(name, ruby=None, runas=None, user=None)

	Make sure that a gem is not installed.

	name

	The name of the gem to uninstall

	ruby: None

	For RVM installations: the ruby version and gemset to target.

	runas: None

	The user to run gem as.

Deprecated since version 0.17.0.

	user: None

	The user to run gem as

New in version 0.17.0.

salt.states.git

Interaction with Git repositories.

NOTE: This module is under heavy development and the API is subject to change.
It may be replaced with a generic VCS module if this proves viable.

Important: Before using git over ssh, make sure your remote host fingerprint
exists in "~/.ssh/known_hosts" file. To avoid requiring password
authentication, it is also possible to pass private keys to use explicitly.

https://github.com/saltstack/salt.git:
 git.latest:
 - rev: develop
 - target: /tmp/salt

	
salt.states.git.latest(name, rev=None, target=None, runas=None, user=None, force=None, force_checkout=False, submodules=False, mirror=False, bare=False, remote_name='origin', always_fetch=False, identity=None, onlyif=False, unless=False)

	Make sure the repository is cloned to the given directory and is up to date

	name

	Address of the remote repository as passed to "git clone"

	rev

	The remote branch, tag, or revision ID to checkout after
clone / before update

	target

	Name of the target directory where repository is about to be cloned

	runas

	Name of the user performing repository management operations

Deprecated since version 0.17.0.

	user

	Name of the user performing repository management operations

New in version 0.17.0.

	force

	Force git to clone into pre-existing directories (deletes contents)

	force_checkout

	Force a checkout even if there might be overwritten changes
(Default: False)

	submodules

	Update submodules on clone or branch change (Default: False)

	mirror

	True if the repository is to be a mirror of the remote repository.
This implies bare, and thus is incompatible with rev.

	bare

	True if the repository is to be a bare clone of the remote repository.
This is incompatible with rev, as nothing will be checked out.

	remote_name

	defines a different remote name.
For the first clone the given name is set to the default remote,
else it is just a additional remote. (Default: 'origin')

	always_fetch

	If a tag or branch name is used as the rev a fetch will not occur
until the tag or branch name changes. Setting this to true will force
a fetch to occur. Only applies when rev is set. (Default: False)

	identity

	A path to a private key to use over SSH

	onlyif

	A command to run as a check, run the named command only if the command
passed to the onlyif option returns true

	unless

	A command to run as a check, only run the named command if the command
passed to the unless option returns false

	
salt.states.git.present(name, bare=True, runas=None, user=None, force=False)

	Make sure the repository is present in the given directory

	name

	Name of the directory where the repository is about to be created

	bare

	Create a bare repository (Default: True)

	runas

	Name of the user performing repository management operations

Deprecated since version 0.17.0.

	user

	Name of the user performing repository management operations

New in version 0.17.0.

	force

	Force-create a new repository into an pre-existing non-git directory
(deletes contents)

salt.states.grains

Manage grains on the minion.

This state allows for grains to be set. If a grain with the
given name exists, its value is updated to the new value. If
a grain does not yet exist, a new grain is set to the given
value. Grains set or altered this way are stored in the 'grains'
file on the minions, by default at: /etc/salt/grains

Note: This does NOT override any grains set in the minion file.

cheese:
 grains.present:
 - value: edam

	
salt.states.grains.present(name, value)

	Ensure that a grain is set

	name

	The grain name

	value

	The value to set on the grain

salt.states.group

Management of user groups.

The group module is used to create and manage unix group settings, groups
can be either present or absent:

cheese:
 group.present:
 - gid: 7648
 - system: True

	
salt.states.group.absent(name)

	Ensure that the named group is absent

	name

	The name of the group to remove

	
salt.states.group.present(name, gid=None, system=False)

	Ensure that a group is present

	name

	The name of the group to manage

	gid

	The group id to assign to the named group; if left empty, then the next
available group id will be assigned

	system

	Whether or not the named group is a system group. This is essentially
the '-r' option of 'groupadd'.

salt.states.hg

Interaction with Mercurial repositories.

NOTE: This module is currently experimental. Most of this code is copied from
git.py with changes to handle hg.

Before using hg over ssh, make sure the remote host fingerprint already exists
in ~/.ssh/known_hosts, and the remote host has this host's public key.

https://bitbucket.org/example_user/example_repo:
 hg.latest:
 - rev: tip
 - target: /tmp/example_repo

	
salt.states.hg.latest(name, rev=None, target=None, runas=None, user=None, force=False)

	Make sure the repository is cloned to the given directory and is up to date

	name

	Address of the remote repository as passed to "hg clone"

	rev

	The remote branch, tag, or revision hash to clone/pull

	target

	Name of the target directory where repository is about to be cloned

	runas

	Name of the user performing repository management operations

Deprecated since version 0.17.0.

	user

	Name of the user performing repository management operations

	force

	Force hg to clone into pre-existing directories (deletes contents)

salt.states.host

Management of addresses and names in hosts file.

The /etc/hosts file can be managed to contain definitions for specific hosts:

salt-master:
 host.present:
 - ip: 192.168.0.42

Or using the "names:" directive, you can put several names for the same IP.
(Do not try one name with space-separated values).

server1:
 host.present:
 - ip: 192.168.0.42
 - names:
 - server1
 - florida

NOTE: changing the name(s) in the present() function does not cause an
update to remove the old entry.

	
salt.states.host.absent(name, ip)

	Ensure that the named host is absent

	name

	The host to remove

	ip

	The ip addr of the host to remove

	
salt.states.host.present(name, ip)

	Ensures that the named host is present with the given ip

	name

	The host to assign an ip to

	ip

	The ip addr to apply to the host

salt.states.iptables

Management of iptables

This is an iptables-specific module designed to manage Linux firewalls. It is
expected that this state module, and other system-specific firewall states, may
at some point be deprecated in favor of a more generic firewall state.

httpd:
 iptables.append:
 - table: filter
 - chain: INPUT
 - jump: ACCEPT
 - match: state
 - connstate: NEW
 - dport: 80
 - proto: tcp
 - sport: 1025:65535

	
salt.states.iptables.append(name, **kwargs)

	Append a rule to a chain

	name

	A user-defined name to call this rule by in another part of a state or
formula. This should not be an actual rule.

All other arguments are passed in with the same name as the long option
that would normally be used for iptables, with one exception: --state is
specified as connstate instead of state (not to be confused with
ctstate).

salt.states.keyboard

Management of keyboard layouts

The keyboard layout can be managed for the system:

us:
 keyboard.system

Or it can be managed for XOrg:

us:
 keyboard.xorg

	
salt.states.keyboard.system(name)

	Set the keyboard layout for the system

	name

	The keyboard layout to use

	
salt.states.keyboard.xorg(name)

	Set the keyboard layout for XOrg

	layout

	The keyboard layout to use

salt.states.kmod

Loading and unloading of kernel modules.

The Kernel modules on a system can be managed cleanly with the kmod state
module:

kvm_amd:
 kmod.present
pcspkr:
 kmod.absent

	
salt.states.kmod.absent(name, persist=False, comment=True)

	Verify that the named kernel module is not loaded

	name

	The name of the kernel module to verify is not loaded

	persist

	Delete module from /etc/modules

	comment

	Don't remove module from /etc/modules, only comment it

	
salt.states.kmod.present(name, persist=False)

	Ensure that the specified kernel module is loaded

	name

	The name of the kernel module to verify is loaded

	persist

	Also add module to /etc/modules

salt.states.layman

Management of Gentoo Overlays using layman

A state module to manage Gentoo package overlays via layman

sunrise:
 layman.present

	
salt.states.layman.absent(name)

	Verify that the overlay is absent

	name

	The name of the overlay to delete

	
salt.states.layman.present(name)

	Verify that the overlay is present

	name

	The name of the overlay to add

salt.states.libvirt

Manage libvirt certs. This state uses the external pillar in the master to call
for the generation and signing of certificates for systems running libvirt:

libvirt_keys:
 libvirt.keys

	
salt.states.libvirt.keys(name, basepath='/etc/pki')

	Manage libvirt keys.

	name

	The name variable used to track the execution

	basepath

	Defaults to /etc/pki, this is the root location used for libvirt
keys on the hypervisor

salt.states.locale

Management of languages/locales
==============================+

The locale can be managed for the system:

en_US.UTF-8:
 locale.system

	
salt.states.locale.system(name)

	Set the locale for the system

	name

	The name of the locale to use

salt.states.lvm

Management of Linux logical volumes

A state module to manage LVMs

/dev/sda:
 lvm.pv_present

my_vg:
 lvm.vg_present:
 - devices: /dev/sda

lvroot:
 lvm.lv_present:
 - vgname: my_vg
 - size: 10G

	
salt.states.lvm.lv_absent(name, vgname=None)

	Remove a given existing logical volume from a named existing volume group

	name

	The logical volume to remove

	vgname

	The volume group name

	
salt.states.lvm.lv_present(name, vgname=None, size=None, extents=None, pv='')

	Create a new logical volume

	name

	The name of the logical volume

	vgname

	The volume group name for this logical volume

	size

	The initial size of the logical volume

	extents

	The number of logical extents to allocate

	pv

	The physical volume to use

	
salt.states.lvm.pv_present(name, **kwargs)

	Set a physical device to be used as an LVM physical volume

	name

	The device name to initialize.

	kwargs

	Any supported options to pvcreate. See
linux_lvm for more details.

	
salt.states.lvm.vg_absent(name)

	Remove an LVM volume group

	name

	The volume group to remove

	
salt.states.lvm.vg_present(name, devices=None, **kwargs)

	Create an LVM volume group

	name

	The volume group name to create

	devices

	A list of devices that will be added to the volume group

	kwargs

	Any supported options to vgcreate. See
linux_lvm for more details.

salt.states.makeconf

Management of Gentoo make.conf

A state module to manage Gentoo's make.conf file

makeopts:
 makeconf.present:
 - value: '-j3'

	
salt.states.makeconf.absent(name)

	Verify that the variable is not in the make.conf.

	name

	The variable name. This will automatically be converted to all Upper
Case since variables in make.conf are Upper Case

	
salt.states.makeconf.present(name, value=None, contains=None, excludes=None)

	Verify that the variable is in the make.conf and has the provided
settings. If value is set, contains and excludes will be ignored.

	name

	The variable name. This will automatically be converted to all Upper
Case since variables in make.conf are Upper Case

	value

	Enforce that the value of the variable is set to the provided value

	contains

	Enforce that the value of the variable contains the provided value

	excludes

	Enforce that the value of the variable does not contain the provided
value.

salt.states.mdadm

Managing software RAID with mdadm

A state module for creating or destroying software RAID devices.

/dev/md0:
 raid.present:
 - opts: level=1 chunk=256 raid-devices=2 /dev/xvdd /dev/xvde

	
salt.states.mdadm.absent(name)

	Verify that the raid is absent

	name

	The name of raid device to be destroyed

/dev/md0:
 raid:
 - absent

	
salt.states.mdadm.present(name, opts=None)

	Verify that the raid is present

	name

	The name of raid device to be created

	opts

	The mdadm options to use to create the raid. See
mdadm for more information.
Opts can be expressed as a single string of options.

/dev/md0:
 raid.present:
 - opts: level=1 chunk=256 raid-devices=2 /dev/xvdd /dev/xvde

Or as a list of options.

/dev/md0:
 raid.present:
 - opts:
 - level=1
 - chunk=256
 - raid-devices=2
 - /dev/xvdd
 - /dev/xvde

salt.states.modjk_worker

Send commands to a modjk load balancer via the peer system

This module can be used with the prereq
requisite to remove/add the worker from the load balancer before
deploying/restarting service

Mandatory Settings:

	The minion needs to have permission to publish the modjk.*
functions (see here here for information on configuring
peer publishing permissions)

	The modjk load balancer must be configured as stated in the modjk
execution module documentation

	
salt.states.modjk_worker.activate(name, lbn, target, profile='default', expr_form='glob')

	Activate the named worker from the lbn load balancers at the targeted
minions

Example:

disable-before-deploy:
 modjk_worker.activate:
 - name: {{ grains['id'] }}
 - lbn: application
 - target: 'roles:balancer'
 - expr_form: grain

	
salt.states.modjk_worker.disable(name, lbn, target, profile='default', expr_form='glob')

	Disable the named worker from the lbn load balancers at the targeted
minions.
The worker will get traffic only for current sessions and won't get new
ones.

Example:

disable-before-deploy:
 modjk_worker.disable:
 - name: {{ grains['id'] }}
 - lbn: application
 - target: 'roles:balancer'
 - expr_form: grain

	
salt.states.modjk_worker.stop(name, lbn, target, profile='default', expr_form='glob')

	Stop the named worker from the lbn load balancers at the targeted minions
The worker won't get any traffic from the lbn

Example:

disable-before-deploy:
 modjk_worker.stop:
 - name: {{ grains['id'] }}
 - lbn: application
 - target: 'roles:balancer'
 - expr_form: grain

salt.states.module

Execution of Salt modules from within states.

Individual module calls can be made via states. to call a single module
function use the run function.

One issue exists, since the name and fun arguments are present in the state
call data structure and is present in many modules, this argument will need
to be replaced in the sls data with the arguments m_name and m_fun.

	
salt.states.module.mod_watch(name, **kwargs)

	Run a single module function

	name

	The module function to execute

	returner

	Specify the returner to send the return of the module execution to

	**kwargs

	Pass any arguments needed to execute the function

	
salt.states.module.run(name, **kwargs)

	Run a single module function

	name

	The module function to execute

	returner

	Specify the returner to send the return of the module execution to

	**kwargs

	Pass any arguments needed to execute the function

	
salt.states.module.wait(name, **kwargs)

	Run a single module function only if the watch statement calls it

	name

	The module function to execute

	**kwargs

	Pass any arguments needed to execute the function

Note that this function actually does nothing -- however, if the watch
is satisfied, then mod_watch (defined at the bottom of this file) will be
run. In this case, mod_watch is an alias for run().

salt.states.mongodb_database

Management of Mongodb databases

Only deletion is supported, creation doesn't make sense
and can be done using mongodb_user.present

	
salt.states.mongodb_database.absent(name, user=None, password=None, host=None, port=None)

	Ensure that the named database is absent

	name

	The name of the database to remove

	user

	The user to connect as (must be able to create the user)

	password

	The password of the user

	host

	The host to connect to

	port

	The port to connect to

salt.states.mongodb_user

Management of Mongodb users

	
salt.states.mongodb_user.absent(name, user=None, password=None, host=None, port=None, database='admin')

	Ensure that the named user is absent

	name

	The name of the user to remove

	user

	The user to connect as (must be able to create the user)

	password

	The password of the user

	host

	The host to connect to

	port

	The port to connect to

	database

	The database to create the user in (if the db doesn't exist, it will be created)

	
salt.states.mongodb_user.present(name, passwd, database='admin', user=None, password=None, host=None, port=None)

	Ensure that the user is present with the specified properties

	name

	The name of the user to manage

	passwd

	The password of the user

	user

	The user to connect as (must be able to create the user)

	password

	The password of the user

	host

	The host to connect to

	port

	The port to connect to

	database

	The database to create the user in (if the db doesn't exist, it will be created)

salt.states.mount

Mounting of filesystems.

Mount any type of mountable filesystem with the mounted function:

/mnt/sdb:
 mount.mounted:
 - device: /dev/sdb1
 - fstype: ext4
 - mkmnt: True
 - opts:
 - defaults

	
salt.states.mount.mounted(name, device, fstype, mkmnt=False, opts=None, dump=0, pass_num=0, config='/etc/fstab', persist=True)

	Verify that a device is mounted

	name

	The path to the location where the device is to be mounted

	device

	The device name, typically the device node, such as /dev/sdb1

	fstype

	The filesystem type, this will be xfs, ext2/3/4 in the case of classic
filesystems, and fuse in the case of fuse mounts

	mkmnt

	If the mount point is not present then the state will fail, set mkmnt
to True to create the mount point if it is otherwise not present

	opts

	A list object of options or a comma delimited list

	dump

	The dump value to be passed into the fstab, default to 0

	pass_num

	The pass value to be passed into the fstab, default to 0

	config

	Set an alternative location for the fstab, default to /etc/fstab

	remount

	Set if the file system can be remounted with the remount option,
default to True

	persist

	Set if the mount should be saved in the fstab, default to True

	
salt.states.mount.swap(name, persist=True, config='/etc/fstab')

	Activates a swap device

/root/swapfile:
 mount.swap

	
salt.states.mount.unmounted(name, config='/etc/fstab', persist=False)

	
Note

This state will be available in verion 0.17.0.

Verify that a device is mounted

	name

	The path to the location where the device is to be unmounted from

	config

	Set an alternative location for the fstab, default to /etc/fstab

	persist

	Set if the mount should be purged from the fstab, default to False

salt.states.mysql_database

Management of MySQL databases (schemas).

	depends:	
	MySQLdb Python module

	configuration:	See salt.modules.mysql for setup instructions.

The mysql_database module is used to create and manage MySQL databases.
Databases can be set as either absent or present.

frank:
 mysql_database.present

	
salt.states.mysql_database.absent(name, **connection_args)

	Ensure that the named database is absent

	name

	The name of the database to remove

	
salt.states.mysql_database.present(name, **connection_args)

	Ensure that the named database is present with the specified properties

	name

	The name of the database to manage

salt.states.mysql_grants

Management of MySQL grants (user permissions).

	depends:	
	MySQLdb Python module

	configuration:	See salt.modules.mysql for setup instructions.

The mysql_grants module is used to grant and revoke MySQL permissions.

The name you pass in purely symbolic and does not have anything to do
with the grant itself.

The database parameter needs to specify a 'priv_level' in the same
specification as defined in the MySQL documentation:

	*

	.

	db_name.*

	db_name.tbl_name

	etc...

frank_exampledb:
 mysql_grants.present:
 - grant: select,insert,update
 - database: exampledb.*
 - user: frank
 - host: localhost

frank_otherdb:
 mysql_grants.present:
 - grant: all privileges
 - database: otherdb.*
 - user: frank

restricted_singletable:
 mysql_grants.present:
 - grant: select
 - database: somedb.sometable
 - user: joe

	
salt.states.mysql_grants.absent(name, grant=None, database=None, user=None, host='localhost', grant_option=False, escape=True, **connection_args)

	Ensure that the grant is absent

	name

	The name (key) of the grant to add

	grant

	The grant priv_type (i.e. select,insert,update OR all privileges)

	database

	The database priv_level (i.e. db.tbl OR db.*)

	user

	The user to apply the grant to

	host

	The network/host that the grant should apply to

	
salt.states.mysql_grants.present(name, grant=None, database=None, user=None, host='localhost', grant_option=False, escape=True, **connection_args)

	Ensure that the grant is present with the specified properties

	name

	The name (key) of the grant to add

	grant

	The grant priv_type (i.e. select,insert,update OR all privileges)

	database

	The database priv_level (ie. db.tbl OR db.*)

	user

	The user to apply the grant to

	host

	The network/host that the grant should apply to

	grant_option

	Adds the WITH GRANT OPTION to the defined grant. default: False

	escape

	Defines if the database value gets escaped or not. default: True

salt.states.mysql_user

Management of MySQL users.

	depends:	
	MySQLdb Python module

	configuration:	See salt.modules.mysql for setup instructions.

frank:
 mysql_user.present:
 - host: localhost
 - password: bobcat

New in version 0.16.2: Authentication overrides have been added.

The MySQL authentication information specified in the minion config file can be
overidden in states using the following arguments: connection_host,
connection_port, connection_user, connection_pass,
connection_db, connection_unix_socket, and connection_default_file.

frank:
 mysql_user.present:
 - host: localhost
 - password: bobcat
 - connection_user: someuser
 - connection_pass: somepass

	
salt.states.mysql_user.absent(name, host='localhost', **connection_args)

	Ensure that the named user is absent

	name

	The name of the user to remove

	
salt.states.mysql_user.present(name, host='localhost', password=None, password_hash=None, allow_passwordless=False, **connection_args)

	Ensure that the named user is present with the specified properties. A
passwordless user can be configured by omitting password and
password_hash, and setting allow_passwordless to True.

	name

	The name of the user to manage

	host

	Host for which this user/password combo applies

	password

	The password to use for this user. Will take precedence over the
password_hash option if both are specified.

	password_hash

	The password in hashed form. Be sure to quote the password because YAML
doesn't like the *. A password hash can be obtained from the mysql
command-line client like so:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
1 row in set (0.00 sec)

	allow_passwordless

	If True, then password and password_hash can be omitted to
permit a passwordless login.

Note

The allow_passwordless option will be available in version 0.16.2.

salt.states.network

Configuration of network interfaces.

The network module is used to create and manage network settings,
interfaces can be set as either managed or ignored. By default
all interfaces are ignored unless specified.

Please note that only Redhat-style networking is currently
supported. This module will therefore only work on RH/CentOS/Fedora.

system:
 network.system:
 - enabled: True
 - hostname: server1.example.com
 - gateway: 192.168.0.1
 - gatewaydev: eth0
 - nozeroconf: True
 - nisdomain: example.com
 - require_reboot: True

eth0:
 network.managed:
 - enabled: True
 - type: eth
 - proto: none
 - ipaddr: 10.1.0.1
 - netmask: 255.255.255.0
 - dns:
 - 8.8.8.8
 - 8.8.4.4

routes:
 network.routes:
 - name: eth0
 - routes:
 - name: secure_network
 ipaddr: 10.2.0.0
 netmask: 255.255.255.0
 gateway: 10.1.0.3
 - name: HQ_network
 ipaddr: 10.100.0.0
 netmask: 255.255.0.0
 gateway: 10.1.0.10

eth2:
 network.managed:
 - type: slave
 - master: bond0

eth3:
 network.managed:
 - type: slave
 - master: bond0

eth4:
 network.managed:
 - enabled: True
 - type: eth
 - proto: dhcp
 - bridge: br0

bond0:
 network.managed:
 - type: bond
 - ipaddr: 10.1.0.1
 - netmask: 255.255.255.0
 - dns:
 - 8.8.8.8
 - 8.8.4.4
 - ipv6:
 - enabled: False
 - use_in:
 - network: eth2
 - network: eth3
 - require:
 - network: eth2
 - network: eth3
 - mode: 802.3ad
 - miimon: 100
 - arp_interval: 250
 - downdelay: 200
 - lacp_rate: fast
 - max_bonds: 1
 - updelay: 0
 - use_carrier: on
 - xmit_hash_policy: layer2
 - mtu: 9000
 - autoneg: on
 - speed: 1000
 - duplex: full
 - rx: on
 - tx: off
 - sg: on
 - tso: off
 - ufo: off
 - gso: off
 - gro: off
 - lro: off

bond0.2:
 network.managed:
 - type: vlan
 - ipaddr: 10.1.0.2
 - use:
 - network: bond0
 - require:
 - network: bond0

bond0.3:
 network.managed:
 - type: vlan
 - ipaddr: 10.1.0.3
 - use:
 - network: bond0
 - require:
 - network: bond0

bond0.10:
 network.managed:
 - type: vlan
 - ipaddr: 10.1.0.4
 - use:
 - network: bond0
 - require:
 - network: bond0

bond0.12:
 network.managed:
 - type: vlan
 - ipaddr: 10.1.0.5
 - use:
 - network: bond0
 - require:
 - network: bond0
br0:
 network.managed:
 - enabled: True
 - type: bridge
 - proto: dhcp
 - bridge: br0
 - delay: 0
 - bypassfirewall: True
 - use:
 - network: eth4
 - require:
 - network: eth4

	
salt.states.network.managed(name, type, enabled=True, **kwargs)

	Ensure that the named interface is configured properly.

	name

	The name of the interface to manage

	type

	Type of interface and configuration.

	enabled

	Designates the state of this interface.

	kwargs

	The IP parameters for this interface.

	
salt.states.network.routes(name, **kwargs)

	Manage network interface static routes.

	name

	Interface name to apply the route to.

	kwargs

	Named routes

	
salt.states.network.system(name, **kwargs)

	Ensure that global network settings are configured properly.

	name

	Custom name to represent this configuration change.

	kwargs

	The global parameters for the system.

salt.states.npm

Installation of NPM Packages

These states manage the installed packages for node.js using the Node Package
Manager (npm). Note that npm must be installed for these states to be
available, so npm states should include a requisite to a pkg.installed state
for the package which provides npm (simply npm in most cases). Example:

npm:
 pkg.installed

yaml:
 npm.installed:
 - require:
 - pkg: npm

	
salt.states.npm.bootstrap(name, runas=None, user=None)

	Bootstraps a node.js application.

will execute npm install --json on the specified directory

	runas

	The user to run NPM with

Deprecated since version 0.17.0.

	user

	The user to run NPM with

New in version 0.17.0.

	
salt.states.npm.installed(name, dir=None, runas=None, user=None, force_reinstall=False, **kwargs)

	Verify that the given package is installed and is at the correct version
(if specified).

	dir

	The target directory in which to install the package, or None for
global installation

	runas

	The user to run NPM with

Deprecated since version 0.17.0.

	user

	The user to run NPM with

New in version 0.17.0.

	force_reinstall

	Install the package even if it is already installed

	
salt.states.npm.removed(name, dir=None, runas=None, user=None, **kwargs)

	Verify that the given package is not installed.

	dir

	The target directory in which to install the package, or None for
global installation

	runas

	The user to run NPM with

Deprecated since version 0.17.0.

	user

	The user to run NPM with

New in version 0.17.0.

salt.states.pecl

Installation of PHP Extensions Using pecl

These states manage the installed pecl extensions. Note that php-pear must be
installed for these states to be available, so pecl states should include a
requisite to a pkg.installed state for the package which provides pecl
(php-pear in most cases). Example:

php-pear:
 pkg.installed

mongo:
 pecl.installed:
 - require:
 - pkg: php-pear

	
salt.states.pecl.installed(name, version=None, defaults=False, force=False)

	Make sure that a pecl extension is installed.

	name

	The pecl extension name to install

	version

	The pecl extension version to install. This option may be
ignored to install the latest stable version.

	defaults

	Use default answers for extensions such as pecl_http which ask
questions before installation. Without this option, the pecl.installed
state will hang indefinitely when trying to install these extensions.

	force

	Whether to force the installed version or not

Note

The defaults option will be available in version 0.17.0.

	
salt.states.pecl.removed(name)

	Make sure that a pecl extension is not installed.

	name

	The pecl extension name to uninstall

salt.states.pip

Installation of Python Packages Using pip

These states manage system installed python packages. Note that pip must be
installed for these states to be available, so pip states should include a
requisite to a pkg.installed state for the package which provides pip
(python-pip in most cases). Example:

python-pip:
 pkg.installed

virtualenvwrapper:
 pip.installed:
 - require:
 - pkg: python-pip

	
salt.states.pip_state.installed(name, pip_bin=None, requirements=None, env=None, bin_env=None, use_wheel=False, log=None, proxy=None, timeout=None, repo=None, editable=None, find_links=None, index_url=None, extra_index_url=None, no_index=False, mirrors=None, build=None, target=None, download=None, download_cache=None, source=None, upgrade=False, force_reinstall=False, ignore_installed=False, exists_action=None, no_deps=False, no_install=False, no_download=False, install_options=None, user=None, runas=None, no_chown=False, cwd=None, pre_releases=False, __env__='base')

	Make sure the package is installed

	name

	The name of the python package to install

	user

	The user under which to run pip

	pip_bin : None

	Deprecated, use bin_env

	use_wheel : False

	Prefer wheel archives (requires pip>=1.4)

	env : None

	Deprecated, use bin_env

	bin_env : None

	the pip executable or virtualenv to use

Changed in version 0.17.0: use_wheel option added.

	
salt.states.pip_state.removed(name, requirements=None, bin_env=None, log=None, proxy=None, timeout=None, user=None, runas=None, cwd=None, __env__='base')

	Make sure that a package is not installed.

	name

	The name of the package to uninstall

	user

	The user under which to run pip

	bin_env : None

	the pip executable or virtualenenv to use

salt.states.pkg

Installation of packages using OS package managers such as yum or apt-get

Salt can manage software packages via the pkg state module, packages can be
set up to be installed, latest, removed and purged. Package management
declarations are typically rather simple:

vim:
 pkg.installed

A more involved example involves pulling from a custom repository.
Note that the pkgrepo has a require_in clause.
This is necessary and can not be replaced by a require clause in the pkg.

base:
 pkgrepo.managed:
 - humanname: Logstash PPA
 - name: deb http://ppa.launchpad.net/wolfnet/logstash/ubuntu precise main
 - dist: precise
 - file: /etc/apt/sources.list.d/logstash.list
 - keyid: 28B04E4A
 - keyserver: keyserver.ubuntu.com
 - require_in:
 - pkg: logstash

logstash:
 pkg.installed

	
salt.states.pkg.installed(name, version=None, refresh=False, fromrepo=None, skip_verify=False, pkgs=None, sources=None, **kwargs)

	Verify that the package is installed, and that it is the correct version
(if specified).

	name

	The name of the package to be installed. This parameter is ignored if
either "pkgs" or "sources" is used. Additionally, please note that this
option can only be used to install packages from a software repository.
To install a package file manually, use the "sources" option detailed
below.

	fromrepo

	Specify a repository from which to install

	skip_verify

	Skip the GPG verification check for the package to be installed

	version

	Install a specific version of a package. This option is ignored if
either "pkgs" or "sources" is used. Currently, this option is supported
for the following pkg providers: apt,
ebuild,
pacman,
yumpkg,
yumpkg5, and
zypper.

Usage:

httpd:
 pkg.installed:
 - fromrepo: mycustomrepo
 - skip_verify: True
 - version: 2.0.6~ubuntu3

Multiple Package Installation Options: (not supported in Windows or pkgng)

	pkgs

	A list of packages to install from a software repository.

Usage:

mypkgs:
 pkg.installed:
 - pkgs:
 - foo
 - bar
 - baz

NOTE: For apt,
ebuild,
pacman, yumpkg,
yumpkg5,
and zypper, version numbers can be specified
in the pkgs argument. Example:

mypkgs:
 pkg.installed:
 - pkgs:
 - foo
 - bar: 1.2.3-4
 - baz

Additionally, ebuild,
pacman and
zypper support the <, <=, >=, and
> operators for more control over what versions will be installed.
Example:

mypkgs:
 pkg.installed:
 - pkgs:
 - foo
 - bar: '>=1.2.3-4'
 - baz

NOTE: When using comparison operators, the expression must be enclosed
in quotes to avoid a YAML render error.

With ebuild is also possible to specify a use
flag list and/or if the given packages should be in package.accept_keywords
file and/or the overlay from which you want the package to be installed.
Example:

mypkgs:
 pkg.installed:
 - pkgs:
 - foo: '~'
 - bar: '~>=1.2:slot::overlay[use,-otheruse]'
 - baz

	sources

	A list of packages to install, along with the source URI or local path
from which to install each package. In the example below, foo,
bar, baz, etc. refer to the name of the package, as it would
appear in the output of the pkg.version or pkg.list_pkgs salt
CLI commands.

Usage:

mypkgs:
 pkg.installed:
 - sources:
 - foo: salt://rpms/foo.rpm
 - bar: http://somesite.org/bar.rpm
 - baz: ftp://someothersite.org/baz.rpm
 - qux: /minion/path/to/qux.rpm

	
salt.states.pkg.latest(name, refresh=False, fromrepo=None, skip_verify=False, pkgs=None, **kwargs)

	Verify that the named package is installed and the latest available
package. If the package can be updated this state function will update
the package. Generally it is better for the
installed function to be
used, as latest will update the package
whenever a new package is available.

	name

	The name of the package to maintain at the latest available version.
This parameter is ignored if "pkgs" is used.

	fromrepo

	Specify a repository from which to install

	skip_verify

	Skip the GPG verification check for the package to be installed

Multiple Package Installation Options:

(Not yet supported for: Windows, FreeBSD, OpenBSD, MacOS, and Solaris
pkgutil)

	pkgs

	A list of packages to maintain at the latest available version.

Usage:

mypkgs:
 pkg.latest:
 - pkgs:
 - foo
 - bar
 - baz

	
salt.states.pkg.purged(name, pkgs=None, **kwargs)

	Verify that a package is not installed, calling pkg.purge if necessary
to purge the package.

	name

	The name of the package to be purged.

Multiple Package Options:

	pkgs

	A list of packages to purge. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

	
salt.states.pkg.removed(name, pkgs=None, **kwargs)

	Verify that a package is not installed, calling pkg.remove if necessary
to remove the package.

	name

	The name of the package to be removed.

Multiple Package Options:

	pkgs

	A list of packages to remove. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

salt.states.pkgng

Manage package remote repo using FreeBSD pkgng

Salt can manage the URL pkgng pulls packages from.
ATM the state and module are small so use cases are
typically rather simple:

pkgng_clients:
 pkgng:
 - update_packaging_site
 - name: "http://192.168.0.2"

	
salt.states.pkgng.update_packaging_site(name)

	

salt.states.pkgrepo

Management of package repos

Package repositories can be managed with the pkgrepo state:

base:
 pkgrepo.managed:
 - humanname: CentOS-$releasever - Base
 - mirrorlist: http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&repo=os
 - comments:
 - '#http://mirror.centos.org/centos/$releasever/os/$basearch/'
 - gpgcheck: 1
 - gpgkey: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-6

	
salt.states.pkgrepo.absent(name, **kwargs)

	This function deletes the specified repo on the system, if it exists. It
is essentially a wrapper around pkg.del_repo.

	name

	The name of the package repo, as it would be referred to when running
the regular package manager commands.

	ppa

	On Ubuntu, you can take advantage of Personal Package Archives on
Launchpad simply by specifying the user and archive name.

EXAMPLE: ppa: wolfnet/logstash

	ppa_auth

	For Ubuntu PPAs there can be private PPAs that require authentication
to access. For these PPAs the username/password can be specified. This
is required for matching if the name format uses the "ppa:" specifier
and is private (requires username/password to access, which is encoded
in the URI)

EXAMPLE: ppa_auth: username:password

	
salt.states.pkgrepo.managed(name, **kwargs)

	This function manages the configuration on a system that points to the
repositories for the system's package manager.

	name

	The name of the package repo, as it would be referred to when running
the regular package manager commands.

For yum-based systems, take note of the following configuration values:

	humanname

	On yum-based systems, this is stored as the "name" value in the .repo
file in /etc/yum.repos.d/. On yum-based systems, this is required.

	baseurl

	On yum-based systems, baseurl refers to a direct URL to be used for
this yum repo.
One of baseurl or mirrorlist is required.

	mirrorlist

	a URL which contains a collection of baseurls to choose from. On
yum-based systems.
One of baseurl or mirrorlist is required.

	comments

	Sometimes you want to supply additional information, but not as
enabled configuration. Anything supplied for this list will be saved
in the repo configuration with a comment marker (#) in front.

Additional configuration values, such as gpgkey or gpgcheck, are used
verbatim to update the options for the yum repo in question.

For apt-based systems, take note of the following configuration values:

	ppa

	On Ubuntu, you can take advantage of Personal Package Archives on
Launchpad simply by specifying the user and archive name. The keyid
will be queried from launchpad and everything else is set
automatically. You can override any of the below settings by simply
setting them as you would normally.

EXAMPLE: ppa: wolfnet/logstash

	ppa_auth

	For Ubuntu PPAs there can be private PPAs that require authentication
to access. For these PPAs the username/password can be passed as an
HTTP Basic style username/password combination.

EXAMPLE: ppa_auth: username:password

	name

	On apt-based systems this must be the complete entry as it would be
seen in the sources.list file. This can have a limited subset of
components (i.e. 'main') which can be added/modified with the
"comps" option.

EXAMPLE: name: deb http://us.archive.ubuntu.com/ubuntu/ precise main

	disabled

	On apt-based systems, disabled toggles whether or not the repo is
used for resolving dependencies and/or installing packages

	comps

	On apt-based systems, comps dictate the types of packages to be
installed from the repository (e.g. main, nonfree, ...). For
purposes of this, comps should be a comma-separated list.

	file

	The filename for the .list that the repository is configured in.
It is important to include the full-path AND make sure it is in
a directory that APT will look in when handling packages

	dist

	This dictates the release of the distro the packages should be built
for. (e.g. unstable)

	keyid

	The KeyID of the GPG key to install. This option also requires
the 'keyserver' option to be set.

	keyserver

	This is the name of the keyserver to retrieve gpg keys from. The
keyid option must also be set for this option to work.

	key_url

	A web URL to retrieve the GPG key from.

	consolidate

	If set to true, this will consolidate all sources definitions to
the sources.list file, cleanup the now unused files, consolidate
components (e.g. main) for the same URI, type, and architecture
to a single line, and finally remove comments from the sources.list
file. The consolidate will run every time the state is processed. The
option only needs to be set on one repo managed by salt to take effect.

	require_in

	Set this to a list of pkg.installed or pkg.latest to trigger the
running of apt-get update prior to attempting to install these
packages. Setting a require in the pkg will not work for this.

salt.states.portage_config

Management of Portage package configuration on Gentoo

A state module to manage Portage configuration on Gentoo

salt:
 portage_config.flags:
 - use:
 - openssl

	
salt.states.portage_config.flags(name, use=None, accept_keywords=None, env=None, license=None, properties=None, unmask=False, mask=False)

	Enforce the given flags on the given package or DEPEND atom.
Please be warned that, in most cases, you need to rebuild the affected packages in
order to apply the changes.

	name

	The name of the package or his DEPEND atom

	use

	A list of use flags

	accept_keywords

	A list of keywords to accept. "~ARCH" means current host arch, and will
be translated in a line without keywords

	env

	A list of environment files

	license

	A list of accepted licenses

	properties

	A list of additional properties

	unmask

	A boolean to unmask the package

	mask

	A boolean to mask the package

salt.states.postgres_database

Management of PostgreSQL databases.

The postgres_database module is used to create and manage Postgres databases.
Databases can be set as either absent or present

frank:
 postgres_database.present

	
salt.states.postgres_database.absent(name, runas=None, user=None)

	Ensure that the named database is absent

	name

	The name of the database to remove

	runas

	System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

	user

	System user all operations should be performed on behalf of

New in version 0.17.0.

	
salt.states.postgres_database.present(name, tablespace=None, encoding=None, lc_collate=None, lc_ctype=None, owner=None, template=None, runas=None, user=None)

	Ensure that the named database is present with the specified properties.
For more information about all of these options see man createdb(1)

	name

	The name of the database to manage

	tablespace

	Default tablespace for the database

	encoding

	The character encoding scheme to be used in this database

	lc_collate

	The LC_COLLATE setting to be used in this database

	lc_ctype

	The LC_CTYPE setting to be used in this database

	owner

	The username of the database owner

	template

	The template database from which to build this database

	runas

	System user all operations should be performed on behalf of

	user

	System user all operations should be performed on behalf of

New in version 0.17.0.

salt.states.postgres_group

Management of PostgreSQL groups (roles).

The postgres_group module is used to create and manage Postgres groups.

frank:
 postgres_group.present

	
salt.states.postgres_group.absent(name, runas=None, user=None)

	Ensure that the named group is absent

	name

	The groupname of the group to remove

	runas

	System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

	user

	System user all operations should be performed on behalf of

New in version 0.17.0.

	
salt.states.postgres_group.present(name, createdb=False, createuser=False, encrypted=False, superuser=False, replication=False, password=None, groups=None, runas=None, user=None)

	Ensure that the named group is present with the specified privileges

	name

	The name of the group to manage

	createdb

	Is the group allowed to create databases?

	createuser

	Is the group allowed to create other users?

	encrypted

	Should the password be encrypted in the system catalog?

	superuser

	Should the new group be a "superuser"

	replication

	Should the new group be allowed to initiate streaming replication

	password

	The group's password

	groups

	A string of comma separated groups the group should be in

	runas

	System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

	user

	System user all operations should be performed on behalf of

New in version 0.17.0.

salt.states.postgres_user

Management of PostgreSQL users (roles).

The postgres_users module is used to create and manage Postgres users.

frank:
 postgres_user.present

	
salt.states.postgres_user.absent(name, runas=None, user=None)

	Ensure that the named user is absent

	name

	The username of the user to remove

	runas

	System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

	user

	System user all operations should be performed on behalf of

New in version 0.17.0.

	
salt.states.postgres_user.present(name, createdb=False, createuser=False, encrypted=False, superuser=False, replication=False, password=None, groups=None, runas=None, user=None)

	Ensure that the named user is present with the specified privileges

	name

	The name of the user to manage

	createdb

	Is the user allowed to create databases?

	createuser

	Is the user allowed to create other users?

	encrypted

	Should the password be encrypted in the system catalog?

	superuser

	Should the new user be a "superuser"

	replication

	Should the new user be allowed to initiate streaming replication

	password

	The user's password

	groups

	A string of comma separated groups the user should be in

	runas

	System user all operations should be performed on behalf of

Deprecated since version 0.17.0.

	user

	System user all operations should be performed on behalf of

New in version 0.17.0.

salt.states.quota

Management of POSIX Quotas

The quota can be managed for the system:

/:
 quota.mode:
 mode: off
 quotatype: user

	
salt.states.quota.mode(name, mode, quotatype)

	Set the quota for the system

	name

	The filesystem to set the quota mode on

	mode

	Whether the quota system is 'on' or 'off'

	quotatype

	Need to be 'user' or 'group'

salt.states.rabbitmq_user

Manage RabbitMQ Users.

rabbit_user:
 rabbitmq_user.present:
 - password: password
 - force: True

	
salt.states.rabbitmq_user.absent(name, runas=None)

	Ensure the named user is absent

	name

	The name of the user to remove

	runas

	User to run the command

	
salt.states.rabbitmq_user.present(name, password=None, force=False, runas=None)

	Ensure the RabbitMQ user exists.

	name

	User name

	password

	User's password, if one needs to be set

	force

	If user exists, forcibly change the password

	runas

	Name of the user to run the command

salt.states.rabbitmq_vhost

Manage RabbitMQ Virtual Hosts.

virtual_host:
 rabbitmq_vhost.present:
 - user: rabbit_user
 - conf: .*
 - write: .*
 - read: .*

	
salt.states.rabbitmq_vhost.absent(name, runas=None)

	Ensure the RabbitMQ Virtual Host is absent

	name

	Name of the Virtual Host to remove

	runas

	User to run the command

	
salt.states.rabbitmq_vhost.present(name, user=None, owner=None, conf=None, write=None, read=None, runas=None)

	Ensure the RabbitMQ VHost exists.

	name

	VHost name

	user

	Initial user permission to set on the VHost, if present
.. deprecated:: 0.17.0

	owner

	Initial owner permission to set on the VHost, if present

	conf

	Initial conf string to apply to the VHost and user. Defaults to .*

	write

	Initial write permissions to apply to the VHost and user.
Defaults to .*

	read

	Initial read permissions to apply to the VHost and user.
Defaults to .*

	runas

	Name of the user to run the command

salt.states.rbenv

Managing Ruby installations with rbenv.

This module is used to install and manage ruby installations with rbenv.
Different versions of ruby can be installed, and uninstalled. Rbenv will
be installed automatically the first time it is needed and can be updated
later. This module will not automatically install packages which rbenv
will need to compile the versions of ruby.

If rbenv is run as the root user then it will be installed to /usr/local/rbenv,
otherwise it will be installed to the users ~/.rbenv directory. To make
rbenv available in the shell you may need to add the rbenv/shims and rbenv/bin
directories to the users PATH. If you are installing as root and want other
users to be able to access rbenv then you will need to add RBENV_ROOT to
their environment.

This is how a state configuration could look like:

rbenv-deps:
 pkg.installed:
 - pkgs:
 - bash
 - git
 - openssl
 - gmake
 - curl

ruby-1.9.3-p392:
 rbenv.absent:
 - require:
 - pkg: rbenv-deps

ruby-1.9.3-p429:
 rbenv.installed:
 - default: True
 - require:
 - pkg: rbenv-deps

	
salt.states.rbenv.absent(name, runas=None, user=None)

	Verify that the specified ruby is not installed with rbenv. Rbenv
is installed if necessary.

	name

	The version of ruby to uninstall

	runas: None

	The user to run rbenv as.

Deprecated since version 0.17.0.

	user: None

	The user to run rbenv as.

New in version 0.17.0.

New in version 0.16.0.

	
salt.states.rbenv.installed(name, default=False, runas=None, user=None)

	Verify that the specified ruby is installed with rbenv. Rbenv is
installed if necessary.

	name

	The version of ruby to install

	default : False

	Whether to make this ruby the default.

	runas: None

	The user to run rbenv as.

Deprecated since version 0.17.0.

	user: None

	The user to run rbenv as.

New in version 0.17.0.

New in version 0.16.0.

salt.states.rvm

Managing Ruby installations and gemsets with Ruby Version Manager (RVM).

This module is used to install and manage ruby installations and
gemsets with RVM, the Ruby Version Manager. Different versions of ruby
can be installed and gemsets created. RVM itself will be installed
automatically if it's not present. This module will not automatically
install packages that RVM depends on or ones that are needed to build
ruby. If you want to run RVM as an unprivileged user (recommended) you
will have to create this user yourself. This is how a state
configuration could look like:

rvm:
 group:
 - present
 user.present:
 - gid: rvm
 - home: /home/rvm
 - require:
 - group: rvm

rvm-deps:
 pkg.installed:
 - names:
 - bash
 - coreutils
 - gzip
 - bzip2
 - gawk
 - sed
 - curl
 - git-core
 - subversion

mri-deps:
 pkg.installed:
 - names:
 - build-essential
 - openssl
 - libreadline6
 - libreadline6-dev
 - curl
 - git-core
 - zlib1g
 - zlib1g-dev
 - libssl-dev
 - libyaml-dev
 - libsqlite3-0
 - libsqlite3-dev
 - sqlite3
 - libxml2-dev
 - libxslt1-dev
 - autoconf
 - libc6-dev
 - libncurses5-dev
 - automake
 - libtool
 - bison
 - subversion
 - ruby

jruby-deps:
 pkg.installed:
 - names:
 - curl
 - g++
 - openjdk-6-jre-headless

ruby-1.9.2:
 rvm.installed:
 - default: True
 - user: rvm
 - require:
 - pkg: rvm-deps
 - pkg: mri-deps
 - user: rvm

jruby:
 rvm.installed:
 - user: rvm
 - require:
 - pkg: rvm-deps
 - pkg: jruby-deps
 - user: rvm

jgemset:
 rvm.gemset_present:
 - ruby: jruby
 - user: rvm
 - require:
 - rvm: jruby

mygemset:
 rvm.gemset_present:
 - ruby: ruby-1.9.2
 - user: rvm
 - require:
 - rvm: ruby-1.9.2

	
salt.states.rvm.gemset_present(name, ruby='default', runas=None, user=None)

	Verify that the gemset is present.

	name

	The name of the gemset.

	ruby: default

	The ruby version this gemset belongs to.

	runas: None

	The user to run rvm as.

Deprecated since version 0.17.0.

	user: None

	The user to run rvm as.

New in version 0.17.0.

	
salt.states.rvm.installed(name, default=False, runas=None, user=None)

	Verify that the specified ruby is installed with RVM. RVM is
installed when necessary.

	name

	The version of ruby to install

	default : False

	Whether to make this ruby the default.

	runas: None

	The user to run rvm as.

Deprecated since version 0.17.0.

	user: None

	The user to run rvm as.

..versionadded:: 0.17.0

salt.states.selinux

Management of SELinux rules.

If SELinux is available for the running system, the mode can be managed and
booleans can be set.

enforcing:
 selinux.mode

samba_create_home_dirs:
 selinux.boolean:
 - value: True
 - persist: True

Note

Use of these states require that the selinux
execution module is available.

	
salt.states.selinux.boolean(name, value, persist=False)

	Set up an SELinux boolean

	name

	The name of the boolean to set

	value

	The value to set on the boolean

	persist

	Defaults to False, set persist to true to make the boolean apply on a
reboot

	
salt.states.selinux.mode(name)

	Verifies the mode SELinux is running in, can be set to enforcing or
permissive

	name

	The mode to run SELinux in, permissive or enforcing

salt.states.service

Starting or restarting of services and daemons.

Services are defined as system daemons typically started with system init or
rc scripts, services can be defined as running or dead.

httpd:
 service:
 - running

The service can also be set to be started at runtime via the enable option:

openvpn:
 service:
 - running
 - enable: True

By default if a service is triggered to refresh due to a watch statement the
service is by default restarted. If the desired behaviour is to reload the
service, then set the reload value to True:

redis:
 service:
 - running
 - enable: True
 - reload: True
 - watch:
 - pkg: redis

	
salt.states.service.dead(name, enable=None, sig=None, **kwargs)

	Ensure that the named service is dead by stopping the service if it is running

	name

	The name of the init or rc script used to manage the service

	enable

	Set the service to be enabled at boot time, True sets the service to
be enabled, False sets the named service to be disabled. The default
is None, which does not enable or disable anything.

	sig

	The string to search for when looking for the service process with ps

	
salt.states.service.disabled(name, **kwargs)

	Verify that the service is disabled on boot, only use this state if you
don't want to manage the running process, remember that if you want to
disable a service to use the enable: False option for the running or dead
function.

	name

	The name of the init or rc script used to manage the service

	
salt.states.service.enabled(name, **kwargs)

	Verify that the service is enabled on boot, only use this state if you
don't want to manage the running process, remember that if you want to
enable a running service to use the enable: True option for the running
or dead function.

	name

	The name of the init or rc script used to manage the service

	
salt.states.service.mod_watch(name, sig=None, reload=False, full_restart=False)

	The service watcher, called to invoke the watch command.

	name

	The name of the init or rc script used to manage the service

	sig

	The string to search for when looking for the service process with ps

	
salt.states.service.running(name, enable=None, sig=None, **kwargs)

	Verify that the service is running

	name

	The name of the init or rc script used to manage the service

	enable

	Set the service to be enabled at boot time, True sets the service to
be enabled, False sets the named service to be disabled. The default
is None, which does not enable or disable anything.

	sig

	The string to search for when looking for the service process with ps

salt.states.ssh_auth

Control of entries in SSH authorized_key files.

The information stored in a user's ssh authorized key file can be easily
controlled via the ssh_auth state. Defaults can be set by the enc, options,
and comment keys. These defaults can be overridden by including them in the
name.

AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyY==:
 ssh_auth:
 - present
 - user: root
 - enc: ssh-dss

thatch:
 ssh_auth:
 - present
 - user: root
 - source: salt://ssh_keys/thatch.id_rsa.pub

sshkeys:
 ssh_auth:
 - present
 - user: root
 - enc: ssh-rsa
 - options:
 - option1="value1"
 - option2="value2 flag2"
 - comment: myuser
 - names:
 - AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyY==
 - ssh-dss AAAAB3NzaCL0sQ9fJ5bYTEyY== user@domain
 - option3="value3" ssh-dss AAAAB3NzaC1kcQ9J5bYTEyY== other@testdomain
 - AAAAB3NzaC1kcQ9fJFF435bYTEyY== newcomment

	
salt.states.ssh_auth.absent(name, user, config='.ssh/authorized_keys')

	Verifies that the specified ssh key is absent

	name

	The ssh key to manage

	user

	The user who owns the ssh authorized keys file to modify

	config

	The location of the authorized keys file relative to the user's home
directory, defaults to ".ssh/authorized_keys"

	
salt.states.ssh_auth.present(name, user, enc='ssh-rsa', comment='', source='', options=None, config='.ssh/authorized_keys', **kwargs)

	Verifies that the specified ssh key is present for the specified user

	name

	The ssh key to manage

	user

	The user who owns the ssh authorized keys file to modify

	enc

	Defines what type of key is being used, can be ecdsa ssh-rsa, ssh-dss

	comment

	The comment to be placed with the ssh public key

	source

	The source file for the key(s). Can contain any number of public keys,
in standard "authorized_keys" format. If this is set, comment, enc,
and options will be ignored.

Note

The source file must contain keys in the format <enc> <key>
<comment>. If you have generated a keypair using PuTTYgen, then you
will need to do the following to retrieve an OpenSSH-compatible public
key.

	In PuTTYgen, click Load, and select the private key file (not
the public key), and click Open.

	Copy the public key from the box labeled Public key for pasting
into OpenSSH authorized_keys file.

	Paste it into a new file.

	options

	The options passed to the key, pass a list object

	config

	The location of the authorized keys file relative to the user's home
directory, defaults to ".ssh/authorized_keys"

salt.states.ssh_known_hosts

Control of SSH known_hosts entries.

Manage the information stored in the known_hosts files

github.com:
 ssh_known_hosts:
 - present
 - user: root
 - fingerprint: 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48

example.com:
 ssh_known_hosts:
 - absent
 - user: root

	
salt.states.ssh_known_hosts.absent(name, user, config='.ssh/known_hosts')

	Verifies that the specified host is not known by the given user

	name

	The host name

	user

	The user who owns the ssh authorized keys file to modify

	config

	The location of the authorized keys file relative to the user's home
directory, defaults to ".ssh/known_hosts"

	
salt.states.ssh_known_hosts.present(name, user, fingerprint=None, port=None, enc=None, config='.ssh/known_hosts', hash_hostname=True)

	Verifies that the specified host is known by the specified user

On many systems, specifically those running with openssh 4 or older, the
enc option must be set, only openssh 5 and above can detect the key
type.

	name

	The name of the remote host (e.g. "github.com")

	user

	The user who owns the ssh authorized keys file to modify

	enc

	Defines what type of key is being used, can be ecdsa ssh-rsa or ssh-dss

	fingerprint

	The fingerprint of the key which must be presented in the known_hosts
file

	port

	optional parameter, denoting the port of the remote host, which will be
used in case, if the public key will be requested from it. By default
the port 22 is used.

	config

	The location of the authorized keys file relative to the user's home
directory, defaults to ".ssh/known_hosts"

	hash_hostname : True

	Hash all hostnames and addresses in the output.

salt.states.stateconf

Stateconf System

The stateconf system is intended for use only with the stateconf renderer. This
State module presents the set function. This function does not execute any
functionality, but is used to interact with the stateconf renderer.

	
salt.states.stateconf.context(name, **kwargs)

	No-op state to support state config via the stateconf renderer.

	
salt.states.stateconf.set(name, **kwargs)

	No-op state to support state config via the stateconf renderer.

salt.states.supervisord

Interaction with the Supervisor daemon.

wsgi_server:
 supervisord:
 - running
 - require:
 - pkg: supervisor
 - watch:
 - file.managed: /etc/nginx/sites-enabled/wsgi_server.conf

	
salt.states.supervisord.dead(name, user=None, runas=None, conf_file=None, bin_env=None)

	Ensure the named service is dead (not running).

	name

	Service name as defined in the supervisor configuration file

	runas

	Name of the user to run the supervisorctl command

Deprecated since version 0.17.0.

	user

	Name of the user to run the supervisorctl command

New in version 0.17.0.

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

	
salt.states.supervisord.mod_watch(name, restart=True, update=False, user=None, runas=None, conf_file=None, bin_env=None)

	

	
salt.states.supervisord.running(name, restart=False, update=False, user=None, runas=None, conf_file=None, bin_env=None)

	Ensure the named service is running.

	name

	Service name as defined in the supervisor configuration file

	restart

	Whether to force a restart

	update

	Whether to update the supervisor configuration.

	runas

	Name of the user to run the supervisorctl command

Deprecated since version 0.17.0.

	user

	Name of the user to run the supervisorctl command

New in version 0.17.0.

	conf_file

	path to supervisorctl config file

	bin_env

	path to supervisorctl bin or path to virtualenv with supervisor installed

salt.states.svn

Manage SVN repositories

Manage repositiry checkouts via the svn vcs system:

http://unladen-swallow.googlecode.com/svn/trunk/:
 svn.latest:
 - target: /tmp/swallow

	
salt.states.svn.dirty(name, target, user=None, username=None, password=None, ignore_unversioned=False)

	Determine if the working directory has been changed.

	
salt.states.svn.export(name, target=None, rev=None, user=None, username=None, password=None, force=False, externals=True, trust=False)

	Export a file or directory from an SVN repository

	name

	Address and path to the file or directory to be exported.

	target

	Name of the target directory where the checkout will put the working
directory

	rev : None

	The name revision number to checkout. Enable "force" if the directory
already exists.

	user : None

	Name of the user performing repository management operations

	username : None

	The user to access the name repository with. The svn default is the
current user

	password

	Connect to the Subversion server with this password

New in version 0.17.

	force : False

	Continue if conflicts are encountered

	externals : True

	Change to False to not checkout or update externals

	trust : False

	Automatically trust the remote server. SVN's --trust-server-cert

	
salt.states.svn.latest(name, target=None, rev=None, user=None, username=None, password=None, force=False, externals=True, trust=False)

	Checkout or update the working directory to the latest revision from the
remote repository.

	name

	Address of the name repository as passed to "svn checkout"

	target

	Name of the target directory where the checkout will put the working
directory

	rev : None

	The name revision number to checkout. Enable "force" if the directory
already exists.

	user : None

	Name of the user performing repository management operations

	username : None

	The user to access the name repository with. The svn default is the
current user

	password

	Connect to the Subversion server with this password

New in version 0.17.

	force : False

	Continue if conflicts are encountered

	externals : True

	Change to False to not checkout or update externals

	trust : False

	Automatically trust the remote server. SVN's --trust-server-cert

salt.states.sysctl

Configuration of the Linux kernel using sysctrl.

Control the kernel sysctl system

vm.swappiness:
 sysctl.present:
 - value: 20

	
salt.states.sysctl.present(name, value, config=None)

	Ensure that the named sysctl value is set in memory and persisted to the
named configuration file. The default sysctl configuration file is
/etc/sysctl.conf

	name

	The name of the sysctl value to edit

	value

	The sysctl value to apply

	config

	The location of the sysctl configuration file. If not specified, the
proper location will be detected based on platform.

salt.states.timezone

Management of timezones

The timezone can be managed for the system:

America/Denver:
 timezone.system

The system and the hardware clock are not necessarily set to the same time.
By default, the hardware clock is set to localtime, meaning it is set to the
same time as the system clock. If utc is set to True, then the hardware clock
will be set to UTC, and the system clock will be an offset of that.

America/Denver:
 timezone.system:
 - utc: True

The Ubuntu community documentation contains an explanation of this setting, as
it applies to systems that dual-boot with Windows.

http://tinyurl.com/5fjzmn

	
salt.states.timezone.system(name, utc='')

	Set the timezone for the system.

	name

	The name of the timezone to use (e.g.: America/Denver)

	utc

	Whether or not to set the hardware clock to UTC (default is True)

salt.states.tomcat

This state uses the manager webapp to manage Apache tomcat webapps
This state requires the manager webapp to be enabled

The following grains/pillar should be set:

tomcat-manager.user: admin user name
tomcat-manager.passwd: password

and also configure a user in the conf/tomcat-users.xml file:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager-script"/>
 <user username="tomcat" password="tomcat" roles="manager-script"/>
</tomcat-users>

Notes:

	Not supported multiple version on the same context path

	
	More information about tomcat manager:

	http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html

	
	if you use only this module for deployments you might want to restrict

	access to the manager so its only accessible via localhost
for more info: http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Configuring_Manager_Application_Access

	Tested on:

	JVM Vendor:

	Sun Microsystems Inc.

	JVM Version:

	1.6.0_43-b01

	OS Architecture:

	amd64

	OS Name:

	Linux

	OS Version:

	2.6.32-358.el6.x86_64

	Tomcat Version:

	Apache Tomcat/7.0.37

	
salt.states.tomcat.mod_watch(name, url='http://localhost:8080/manager', timeout=180)

	The tomcat watcher function.
When called it will reload the webapp in question

	
salt.states.tomcat.wait(name, url='http://localhost:8080/manager', timeout=180)

	Wait for the tomcat manager to load

Notice that if tomcat is not running we won't wait for it start and the
state will fail. This state can be required in the tomcat.war_deployed
state to make sure tomcat is running and that the manager is running as
well and ready for deployment

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request to the tomcat manager

Example:

tomcat-service:
 service:
 - running
 - name: tomcat
 - enable: True

wait-for-tomcatmanager:
 tomcat:
 - wait
 - timeout: 300
 - require:
 - service: tomcat-service

jenkins:
 tomcat:
 - war_deployed
 - name: /ran
 - war: salt://jenkins-1.2.4.war
 - require:
 - tomcat: wait-for-tomcatmanager

	
salt.states.tomcat.war_deployed(name, war, url='http://localhost:8080/manager', __env__='base', timeout=180)

	Enforce that the WAR will be deployed and started in the context path
it will make use of WAR versions

	for more info:

	http://tomcat.apache.org/tomcat-7.0-doc/config/context.html#Naming

	name

	the context path to deploy

	war

	absolute path to WAR file (should be accessible by the user running
tomcat) or a path supported by the salt.modules.cp.get_file function

	url : http://localhost:8080/manager

	the URL of the server manager webapp

	timeout : 180

	timeout for HTTP request to the tomcat manager

Example:

jenkins:
 tomcat.war_deployed:
 - name: /ran
 - war: salt://jenkins-1.2.4.war
 - require:
 - service: application-service

salt.states.user

Management of user accounts.

The user module is used to create and manage user settings, users can be set
as either absent or present

fred:
 user.present:
 - fullname: Fred Jones
 - shell: /bin/zsh
 - home: /home/fred
 - uid: 4000
 - gid: 4000
 - groups:
 - wheel
 - storage
 - games

testuser:
 user.absent

	
salt.states.user.absent(name, purge=False, force=False)

	Ensure that the named user is absent

	name

	The name of the user to remove

	purge

	Set purge to delete all of the user's files as well as the user

	force

	If the user is logged in the absent state will fail, set the force
option to True to remove the user even if they are logged in. Not
supported in FreeBSD and Solaris.

	
salt.states.user.present(name, uid=None, gid=None, gid_from_name=False, groups=None, optional_groups=None, remove_groups=True, home=None, createhome=True, password=None, enforce_password=True, shell=None, unique=True, system=False, fullname=None, roomnumber=None, workphone=None, homephone=None)

	Ensure that the named user is present with the specified properties

	name

	The name of the user to manage

	uid

	The user id to assign, if left empty then the next available user id
will be assigned

	gid

	The default group id

	gid_from_name

	If True, the default group id will be set to the id of the group with
the same name as the user.

	groups

	A list of groups to assign the user to, pass a list object. If a group
specified here does not exist on the minion, the state will fail.
If set to the empty list, the user will be removed from all groups
except the default group.

	optional_groups

	A list of groups to assign the user to, pass a list object. If a group
specified here does not exist on the minion, the state will silently
ignore it.

NOTE: If the same group is specified in both "groups" and
"optional_groups", then it will be assumed to be required and not optional.

	remove_groups

	Remove groups that the user is a member of that weren't specified in
the state, True by default

	home

	The location of the home directory to manage

	createhome

	If True, the home directory will be created if it doesn't exist.
Please note that directories leading up to the home directory
will NOT be created.

	password

	A password hash to set for the user. This field is only supported on
Linux, FreeBSD, NetBSD, OpenBSD, and Solaris.

Changed in version 0.16.0: BSD support added.

	enforce_password

	Set to False to keep the password from being changed if it has already
been set and the password hash differs from what is specified in the
"password" field. This option will be ignored if "password" is not
specified.

	shell

	The login shell, defaults to the system default shell

	unique

	Require a unique UID, True by default

	system

	Choose UID in the range of FIRST_SYSTEM_UID and LAST_SYSTEM_UID.

User comment field (GECOS) support (currently Linux, FreeBSD, and MacOS
only):

The below values should be specified as strings to avoid ambiguities when
the values are loaded. (Especially the phone and room number fields which
are likely to contain numeric data)

	fullname

	The user's full name

	roomnumber

	The user's room number (not supported in MacOS)

	workphone

	The user's work phone number (not supported in MacOS)

	homephone

	The user's home phone number (not supported in MacOS)

salt.states.virtualenv

Setup of Python virtualenv sandboxes.

	
salt.states.virtualenv_mod.managed(name, venv_bin='virtualenv', requirements=None, no_site_packages=None, system_site_packages=False, distribute=False, clear=False, python=None, extra_search_dir=None, never_download=None, prompt=None, __env__='base', user=None, runas=None, no_chown=False, cwd=None, index_url=None, extra_index_url=None, pre_releases=False)

	Create a virtualenv and optionally manage it with pip

	name

	Path to the virtualenv

	requirements

	Path to a pip requirements file. If the path begins with salt://
the file will be transferred from the master file server.

	cwd

	Path to the working directory where "pip install" is executed.

Also accepts any kwargs that the virtualenv module will.

/var/www/myvirtualenv.com:
 virtualenv.managed:
 - system_site_packages: False
 - requirements: salt://REQUIREMENTS.txt

Renderers

The Salt state system operates by gathering information from simple data
structures. The state system was designed in this way to make interacting with
it generic and simple. This also means that state files (SLS files) can be one
of many formats.

By default SLS files are rendered as Jinja templates and then parsed as YAML
documents. But since the only thing the state system cares about is raw data,
the SLS files can be any structured format that can be dreamed up.

Currently there is support for Jinja + YAML, Mako + YAML,
Wempy + YAML, Jinja + json Mako + json and Wempy + json. But
renderers can be written to support anything. This means that the Salt states
could be managed by XML files, HTML files, puppet files, or any format that
can be translated into the data structure used by the state system.

Multiple Renderers

When deploying a state tree a default renderer is selected in the master
configuration file with the renderer option. But multiple renderers can be
used inside the same state tree.

When rendering SLS files Salt checks for the presence of a Salt specific
shebang line. The shebang line syntax was chosen because it is familiar to
the target audience, the systems admin and systems engineer.

The shebang line directly calls the name of the renderer as it is specified
within Salt. One of the most common reasons to use multiple renderers in to
use the Python or py renderer:

#!py

def run():
 '''
 Install the python-mako package
 '''
 return {'include': ['python'],
 'python-mako': {'pkg': ['installed']}}

The first line is a shebang that references the py renderer.

Composing Renderers

A renderer can be composed from other renderers by connecting them in a series
of pipes(|). In fact, the default Jinja + YAML renderer is implemented
by combining a YAML renderer and a Jinja renderer. Such renderer configuration
is specified as: jinja | yaml.

Other renderer combinations are possible, here's a few examples:

	yaml

	i.e, just YAML, no templating.

	mako | yaml

	pass the input to the mako renderer, whose output is then fed into the
yaml renderer.

	jinja | mako | yaml

	This one allows you to use both jinja and mako templating syntax in the
input and then parse the final rendered output as YAML.

And here's a contrived example sls file using the jinja | mako | yaml renderer:

#!jinja|mako|yaml

An_Example:
 cmd.run:
 - name: |
 echo "Using Salt ${grains['saltversion']}" \
 "from path {{grains['saltpath']}}."
 - cwd: /

<%doc> ${...} is Mako's notation, and so is this comment. </%doc>
{# Similarly, {{...}} is Jinja's notation, and so is this comment. #}

For backward compatibility, jinja | yaml can also be written as
yaml_jinja, and similarly, the yaml_mako, yaml_wempy,
json_jinja, json_mako, and json_wempy renderers are all supported
as well.

Keep in mind that not all renderers can be used alone or with any other renderers.
For example, the template renderers shouldn't be used alone as their outputs are
just strings, which still need to be parsed by another renderer to turn them into
highstate data structures. Also, for example, it doesn't make sense to specify
yaml | jinja either, because the output of the yaml renderer is a highstate
data structure(a dict in Python), which cannot be used as the input to a template
renderer. Therefore, when combining renderers, you should know what each renderer
accepts as input and what it returns as output.

Writing Renderers

Writing a renderer is easy, all that is required is that a Python module is
placed in the rendered directory and that the module implements the render
function. The render function will be passed the path of the SLS file. In
the render function, parse the passed file and return the data structure
derived from the file. You can place your custom renderers in a _renderers
directory within the file_roots specified by the master config
file. These custom renderers are distributed when state.highstate is run, or by executing the
saltutil.sync_renderers or
saltutil.sync_all functions.

Any custom renderers which have been synced to a minion, that are named the
same as one of Salt's default set of renderers, will take the place of the
default renderer with the same name.

Examples

The best place to find examples of renderers is in the Salt source code. The
renderers included with Salt can be found here:

https://github.com/saltstack/salt/blob/develop/salt/renderers

Here is a simple YAML renderer example:

import yaml
def render(yaml_data, env='', sls='', **kws):
 if not isinstance(yaml_data, basestring):
 yaml_data = yaml_data.read()
 data = yaml.load(yaml_data)
 return data if data else {}

Full list of builtin renderer modules

	jinja
	

	json
	

	mako
	

	py
	Pure python state renderer

	pydsl
	A Python-based DSL

	stateconf
	A flexible renderer that takes a templating engine and a data format

	wempy
	

	yaml
	

salt.renderers.jinja

Jinja in States

The most basic usage of Jinja in state files is using control structures to wrap
conditional or redundant state elements:

{% if grains['os'] != 'FreeBSD' %}
tcsh:
 pkg:
 - installed
{% endif %}

motd:
 file.managed:
 {% if grains['os'] == 'FreeBSD' %}
 - name: /etc/motd
 {% elif grains['os'] == 'Debian' %}
 - name: /etc/motd.tail
 {% endif %}
 - source: salt://motd

In this example, the first if block will only be evaluated on minions that
aren't running FreeBSD, and the second block changes the file name based on the
os grain.

Writing if-else blocks can lead to very redundant state files however. In
this case, using pillars, or using a previously
defined variable might be easier:

{% set motd = ['/etc/motd'] %}
{% if grains['os'] == 'Debian' %}
 {% set motd = ['/etc/motd.tail', '/var/run/motd'] %}
{% endif %}

{% for motdfile in motd %}
{{ motdfile }}:
 file.managed:
 - source: salt://motd
{% endfor %}

Using a variable set by the template, the for loop [http://jinja.pocoo.org/docs/templates/#for] will iterate over the
list of MOTD files to update, adding a state block for each file.

Passing Variables

It is also possible to pass additional variable context directly into a
template, using the defaults and context mappings of the
file.managed state:

/etc/motd:
 file.managed:
 - source: salt://motd
 - template: jinja
 - defaults:
 message: 'Foo'
 {% if grains['os'] == 'FreeBSD' %}
 - context:
 message: 'Bar'
 {% endif %}

The template will receive a variable message, which would be accessed in the
template using {{ message }}. If the operating system is FreeBSD, the value
of the variable message would be Bar, otherwise it is the default
Foo

Include and Import

Includes and imports [http://jinja.pocoo.org/docs/templates/#import] can be used to share common, reusable state configuration
between state files and between files.

{% from 'lib.sls' import test %}

This would import the test template variable or macro, not the test
state element, from the file lib.sls. In the case that the included file
performs checks again grains, or something else that requires context, passing
the context into the included file is required:

{% from 'lib.sls' import test with context %}

Variable and block Serializers

Salt allows one to serialize any variable into json or yaml. For example
this variable:

data:
 foo: True
 bar: 42
 baz:
 - 1
 - 2
 - 3
 qux: 2.0

with this template:

yaml -> {{ data|yaml }}

json -> {{ data|json }}

will be rendered has:

yaml -> {bar: 42, baz: [1, 2, 3], foo: true, qux: 2.0}

json -> {"baz": [1, 2, 3], "foo": true, "bar": 42, "qux": 2.0}

Strings and variables can be deserialized with load_yaml and load_json
tags and filters. It allows one to manipulate data directly in templates, easily:

{%- set json_var = '{"foo": "bar", "baz": "qux"}'|load_json %}
My json_var foo is {{ json_var.foo }}

{%- set yaml_var = "{bar: baz: qux}"|load_yaml %}
My yaml_var bar.baz is {{ yaml_var.bar.baz }}

{%- load_json as json_block %}
 {
 "qux": {{ yaml_var|json }},
 }
{% endload %}
My json_block qux.bar.baz is {{ json_block.qux.bar.baz }}

{%- load_yaml as yaml_block %}
 bar:
 baz:
 qux
{% endload %}
My yaml_block bar.baz is {{ yaml2.bar.baz }}

will be rendered has:

My json_var foo is bar

My yaml_var bar.baz is qux

My json_block foo is quz

My yaml_block bar.baz is qux

Template Serializers

Salt implements import_yaml and import_json tags. They work like the
import tag [http://jinja.pocoo.org/docs/templates/#import], except that the document is also deserialized.

Imagine you have a generic state file in which you have the complete data of
your infrastucture:

everything.sls
users:
 foo:
 - john
 bar:
 - bob
 baz:
 - smith

But you don't want to expose everything to a minion. This state file:

specialized.sls
{% import_yaml "everything.sls" as all %}
my_admins:
 my_foo: {{ all.users.foo|yaml }}

will be rendered has:

my_admins:
 my_foo: [john]

Macros

Macros [http://jinja.pocoo.org/docs/templates/#macros] are helpful for eliminating redundant code, however stripping whitespace
from the template block, as well as contained blocks, may be necessary to
emulate a variable return from the macro.

init.sls
{% from 'lib.sls' import pythonpkg with context %}

python-virtualenv:
 pkg.installed:
 - name: {{ pythonpkg('virtualenv') }}

python-fabric:
 pkg.installed:
 - name: {{ pythonpkg('fabric') }}

lib.sls
{% macro pythonpkg(pkg) -%}
 {%- if grains['os'] == 'FreeBSD' -%}
 py27-{{ pkg }}
 {%- elif grains['os'] == 'Debian' -%}
 python-{{ pkg }}
 {%- endif -%}
{%- endmacro %}

This would define a macro [http://jinja.pocoo.org/docs/templates/#macros] that would return a string of the full package name,
depending on the packaging system's naming convention. The whitespace of the
macro was eliminated, so that the macro would return a string without line
breaks, using whitespace control [http://jinja.pocoo.org/docs/templates/#whitespace-control].

Template Inheritance

Template inheritance [http://jinja.pocoo.org/docs/templates/#template-inheritance] works fine from state files and files. The search path
starts at the root of the state tree or pillar.

Filters

Saltstack extends builtin filters [http://jinja.pocoo.org/docs/templates/##builtin-filters] with his custom filters:

	strftime

	Converts any time related object into a time based string. It requires a
valid strftime directives [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior]. An
exhaustive list [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior] can be found in
the official Python documentation. Fuzzy dates are parsed by timelib [https://github.com/pediapress/timelib/] python
module. Some exemples are available on this pages.

{{ "2002/12/25"|strftime("%y") }}
{{ "1040814000"|strftime("%Y-%m-%d") }}
{{ datetime|strftime("%u") }}
{{ "now"|strftime }}

Jinja in Files

Jinja [http://jinja.pocoo.org/docs/templates/] can be used in the same way in managed files:

redis.sls
/etc/redis/redis.conf:
 file.managed:
 - source: salt://redis.conf
 - template: jinja
 - context:
 bind: 127.0.0.1

lib.sls
{% set port = 6379 %}

redis.conf
{% from 'lib.sls' import port with context %}
port {{ port }}
bind {{ bind }}

As an example, configuration was pulled from the file context and from an
external template file.

Note

Macros and variables can be shared across templates. They should not be
starting with one or more underscores, and should be managed by one of the
following tags: macro, set, load_yaml, load_json, import_yaml and
import_json.

	
salt.renderers.jinja.render(template_file, env='', sls='', argline='', context=None, tmplpath=None, **kws)

	Render the template_file, passing the functions and grains into the
Jinja rendering system.

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

salt.renderers.json

	
salt.renderers.json.render(json_data, env='', sls='', **kws)

	Accepts JSON as a string or as a file object and runs it through the JSON
parser.

	Return type:	A Python data structure

salt.renderers.mako

	
salt.renderers.mako.render(template_file, env='', sls='', context=None, tmplpath=None, **kws)

	Render the template_file, passing the functions and grains into the
Mako rendering system.

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

salt.renderers.py

Pure python state renderer

The sls file should contain a function called run which returns high state
data

In this module, a few objects are defined for you, including the usual
(with``__`` added) __salt__ dictionary, __grains__,
__pillar__, __opts__, __env__, and __sls__.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	 #!py

 def run():
 config = {}

 if __grains__['os'] == 'Ubuntu':
 user = 'ubuntu'
 group = 'ubuntu'
 home = '/home/{0}'.format(user)
 else:
 user = 'root'
 group = 'root'
 home = '/root/'

 config['s3cmd'] = {
 'pkg': [
 'installed',
 {'name': 's3cmd'},
],
 }

 config[home + '/.s3cfg'} = {
 'file.managed': [{
 'source': 'salt://s3cfg/templates/s3cfg',
 'template': 'jinja',
 'user': user,
 'group': group,
 'mode': 600,
 'context': {
 'aws_key': __pillar__['AWS_ACCESS_KEY_ID'],
 'aws_secret_key': __pillar__['AWS_SECRET_ACCESS_KEY'],
 },
 }],
 }

 return config

	
salt.renderers.py.render(template, env='', sls='', tmplpath=None, **kws)

	Render the python module's components

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

salt.renderers.pydsl

A Python-based DSL

	maintainer:	Jack Kuan <kjkuan@gmail.com>

	maturity:	new

	platform:	all

The pydsl renderer allows one to author salt formulas(.sls files) in pure
Python using a DSL that's easy to write and easy to read. Here's an example:

	1
2
3
4
5
6
7
8
9

	 #!pydsl

 apache = state('apache')
 apache.pkg.installed()
 apache.service.running()
 state('/var/www/index.html') \
 .file('managed',
 source='salt://webserver/index.html') \
 .require(pkg='apache')

Notice that any Python code is allow in the file as it's really a Python
module, so you have the full power of Python at your disposal. In this module,
a few objects are defined for you, including the usual(with __ added)
__salt__ dictionary, __grains__, __pillar__, __opts__,
__env__, and __sls__, plus a few more:

__file__

local file system path to the sls module.

__pydsl__

Salt PyDSL object, useful for configuring DSL behavior per sls rendering.

include

Salt PyDSL function for creating include declaration's.

extend

Salt PyDSL function for creating extend declaration's.

state

Salt PyDSL function for creating ID declaration's.

A state ID declaration is created with a state(id) function call.
Subsequent state(id) call with the same id returns the same object. This
singleton access pattern applies to all declaration objects created with the DSL.

state('example')
assert state('example') is state('example')
assert state('example').cmd is state('example').cmd
assert state('example').cmd.running is state('example').cmd.running

The id argument is optional. If omitted, an UUID will be generated and used as
the id.

state(id) returns an object under which you can create a state declaration
object by accessing an attribute named after any state module available in Salt.

state('example').cmd
state('example').file
state('example').pkg
...

Then, a function declaration object can be created from a
state declaration object by one of the following two ways:

	by directly calling the attribute named for the state declaration, and
supplying the state function name as the first argument.

state('example').file('managed', ...)

	by calling a method named after the state function on the state declaration
object.

state('example').file.managed(...)

With either way of creating a function declaration object, any
function arg declaration's can be passed as keyword arguments to the call.
Subsequent calls of a function declaration will update the arg declarations.

state('example').file('managed', source='salt://webserver/index.html')
state('example').file.managed(source='salt://webserver/index.html')

As a shortcut, the special name argument can also be passed as the first(second if
calling using the first way) positional argument.

state('example').cmd('run', 'ls -la', cwd='/')
state('example').cmd.run('ls -la', cwd='/')

Finally, a requisite declaration object with its requisite reference's
can be created by invoking one of the requisite methods(require, watch, use,
require_in, watch_in, and use_in) on either a function declaration
object or a state declaration object. The return value of a requisite call is
also a function declaration object, so you can chain several requisite calls
together.

Arguments to a requisite call can be a list of state declaration objects and/or
a set of keyword arguments whose names are state modules and values are IDs of
ID declaration's or names of name declaration's.

apache2 = state('apache2')
apache2.pkg.installed()
state('libapache2-mod-wsgi').pkg.installed()

you can call requisites on function declaration
apache2.service.running() \
 .require(apache2.pkg,
 pkg='libapache2-mod-wsgi') \
 .watch(file='/etc/apache2/httpd.conf')

or you can call requisites on state declaration.
this actually creates an anonymous function declaration object
to add the requisites.
apache2.service.require(state('libapache2-mod-wsgi').pkg,
 pkg='apache2') \
 .watch(file='/etc/apache2/httpd.conf')

we still need to set the name of the function declaration.
apache2.service.running()

include declaration objects can be created with the include function,
while extend declaration objects can be created with the extend function,
whose arguments are just function declaration objects.

include('edit.vim', 'http.server')
extend(state('apache2').service.watch(file='/etc/httpd/httpd.conf')

The include function, by default, causes the included sls file to be rendered
as soon as the include function is called. It returns a list of rendered module
objects; sls files not rendered with the pydsl renderer return None's.
This behavior creates no include declaration's in the resulting high state
data structure.

import types

including multiple sls returns a list.
_, mod = include('a-non-pydsl-sls', 'a-pydsl-sls')

assert _ is None
assert isinstance(slsmods[1], types.ModuleType)

including a single sls returns a single object
mod = include('a-pydsl-sls')

myfunc is a function that calls state(...) to create more states.
mod.myfunc(1, 2, "three")

Notice how you can define a reusable function in your pydsl sls module and then
call it via the module returned by include.

It's still possible to do late includes by passing the delayed=True keyword
argument to include.

include('edit.vim', 'http.server', delayed=True)

Above will just create a include declaration in the rendered result, and
such call always returns None.

Special integration with the cmd state

Taking advantage of rendering a Python module, PyDSL allows you to declare a
state that calls a pre-defined Python function when the state is executed.

greeting = "hello world"
def helper(something, *args, **kws):
 print greeting # hello world
 print something, args, kws # test123 ['a', 'b', 'c'] {'x': 1, 'y': 2}

state().cmd.call(helper, "test123", 'a', 'b', 'c', x=1, y=2)

The cmd.call state function takes care of calling our helper function
with the arguments we specified in the states, and translates the return value
of our function into a structure expected by the state system.
See salt.states.cmd.call() for more information.

Implicit ordering of states

Salt states are explicitly ordered via requisite declaration's.
However, with pydsl it's possible to let the renderer track the order
of creation for function declaration objects, and implicitly add
require requisites for your states to enforce the ordering. This feature
is enabled by setting the ordered option on __pydsl__.

Note

this feature is only available if your minions are using Python >= 2.7.

include('some.sls.file')

A = state('A').cmd.run(cwd='/var/tmp')
extend(A)

__pydsl__.set(ordered=True)

for i in range(10):
 i = str(i)
 state(i).cmd.run('echo '+i, cwd='/')
state('1').cmd.run('echo one')
state('2').cmd.run(name='echo two')

Notice that the ordered option needs to be set after any extend calls.
This is to prevent pydsl from tracking the creation of a state function that's
passed to an extend call.

Above example should create states from 0 to 9 that will output 0,
one, two, 3, ... 9, in that order.

It's important to know that pydsl tracks the creations of
function declaration objects, and automatically adds a require requisite
to a function declaration object that requires the last
function declaration object created before it in the sls file.

This means later calls(perhaps to update the function's function arg declaration) to a previously created function declaration will not change the order.

Render time state execution

When Salt processes a salt formula file(.sls), the file is rendered to salt's
high state data representation by a renderer before the states can be executed.
In the case of the pydsl renderer, the .sls file is executed as a python module
as it is being rendered which makes it easy to execute a state at render time.
In pydsl, executing one or more states at render time can be done by calling a
configured ID declaration object.

#!pydsl

s = state() # save for later invocation

configure it
s.cmd.run('echo at render time', cwd='/')
s.file.managed('target.txt', source='salt://source.txt')

s() # execute the two states now

Once an ID declaration is called at render time it is detached from the
sls module as if it was never defined.

Note

If implicit ordering is enabled(ie, via __pydsl__.set(ordered=True)) then
the first invocation of a ID declaration object must be done before a
new function declaration is created.

Integration with the stateconf renderer

The salt.renderers.stateconf renderer offers a few interesting features that
can be leveraged by the pydsl renderer. In particular, when using with the pydsl
renderer, we are interested in stateconf's sls namespacing feature(via dot-prefixed
id declarations), as well as, the automatic start and goal states generation.

Now you can use pydsl with stateconf like this:

#!pydsl|stateconf -ps

include('xxx', 'yyy')

ensure that states in xxx run BEFORE states in this file.
extend(state('.start').stateconf.require(stateconf='xxx::goal'))

ensure that states in yyy run AFTER states in this file.
extend(state('.goal').stateconf.require_in(stateconf='yyy::start'))

__pydsl__.set(ordered=True)

...

-s enables the generation of a stateconf start state, and -p lets us pipe
high state data rendered by pydsl to stateconf. This example shows that by
require-ing or require_in-ing the included sls' start or goal states,
it's possible to ensure that the included sls files can be made to execute before
or after a state in the including sls file.

	
salt.renderers.pydsl.render(template, env='', sls='', tmplpath=None, rendered_sls=None, **kws)

	

salt.renderers.stateconf

	maintainer:	Jack Kuan <kjkuan@gmail.com>

	maturity:	new

	platform:	all

This module provides a custom renderer that processes a salt file with a
specified templating engine (e.g., Jinja) and a chosen data renderer (e.g., YAML),
extracts arguments for any stateconf.set state, and provides the extracted
arguments (including Salt-specific args, such as require, etc) as template
context. The goal is to make writing reusable/configurable/parameterized
salt files easier and cleaner.

To use this renderer, either set it as the default renderer via the
renderer option in master/minion's config, or use the shebang line in each
individual sls file, like so: #!stateconf. Note, due to the way this
renderer works, it must be specified as the first renderer in a render
pipeline. That is, you cannot specify #!mako|yaml|stateconf, for example.
Instead, you specify them as renderer arguments: #!stateconf mako . yaml.

Here's a list of features enabled by this renderer.

	Prefixes any state id (declaration or reference) that starts with a dot (.)
to avoid duplicated state ids when the salt file is included by other salt
files.

For example, in the salt://some/file.sls, a state id such as .sls_params
will be turned into some.file::sls_params. Example:

#!stateconf yaml . jinja

.vim:
 pkg.installed

Above will be translated into:

some.file::vim:
 pkg.installed:
 - name: vim

Notice how that if a state under a dot-prefixed state id has no name
argument then one will be added automatically by using the state id with
the leading dot stripped off.

The leading dot trick can be used with extending state ids as well,
so you can include relatively and extend relatively. For example, when
extending a state in salt://some/other_file.sls, e.g.,:

#!stateconf yaml . jinja

include:
 - .file

extend:
 .file::sls_params:
 stateconf.set:
 - name1: something

Above will be pre-processed into:

include:
 - some.file

extend:
 some.file::sls_params:
 stateconf.set:
 - name1: something

	Adds a sls_dir context variable that expands to the directory containing
the rendering salt file. So, you can write salt://{{sls_dir}}/... to
reference templates files used by your salt file.

	Recognizes the special state function, stateconf.set, that configures a
default list of named arguments usable within the template context of
the salt file. Example:

#!stateconf yaml . jinja

.sls_params:
 stateconf.set:
 - name1: value1
 - name2: value2
 - name3:
 - value1
 - value2
 - value3
 - require_in:
 - cmd: output

--- end of state config ---

.output:
 cmd.run:
 - name: |
 echo 'name1={{sls_params.name1}}
 name2={{sls_params.name2}}
 name3[1]={{sls_params.name3[1]}}
 '

This even works with include + extend so that you can override
the default configured arguments by including the salt file and then
extend the stateconf.set states that come from the included salt
file. (IMPORTANT: Both the included and the extending sls files must use the
stateconf renderer for this ``extend`` to work!)

Notice that the end of configuration marker (# --- end of state config --)
is needed to separate the use of 'stateconf.set' form the rest of your salt
file. The regex that matches such marker can be configured via the
stateconf_end_marker option in your master or minion config file.

Sometimes, you'd like to set a default argument value that's based on
earlier arguments in the same stateconf.set. For example, you may be
tempted to do something like this:

#!stateconf yaml . jinja

.apache:
 stateconf.set:
 - host: localhost
 - port: 1234
 - url: 'http://{{host}}:{{port}}/'

--- end of state config ---

.test:
 cmd.run:
 - name: echo '{{apache.url}}'
 - cwd: /

However, this won't work, but can be worked around like so:

#!stateconf yaml . jinja

.apache:
 stateconf.set:
 - host: localhost
 - port: 1234
{# - url: 'http://{{host}}:{{port}}/' #}

--- end of state config ---
{{ apache.setdefault('url', "http://%(host)s:%(port)s/" % apache) }}

.test:
 cmd.run:
 - name: echo '{{apache.url}}'
 - cwd: /

	Adds support for relative include and exclude of .sls files. Example:

#!stateconf yaml . jinja

include:
 - .apache
 - .db.mysql

exclude:
 - sls: .users

If the above is written in a salt file at salt://some/where.sls then
it will include salt://some/apache.sls and salt://some/db/mysql.sls,
and exclude salt://some/users.ssl. Actually, it does that by rewriting
the above include and exclude into:

include:
 - some.apache
 - some.db.mysql

exclude:
 - sls: some.users

	Optionally (enabled by default, disable via the -G renderer option,
e.g., in the shebang line: #!stateconf -G), generates a
stateconf.set goal state (state id named as .goal by default,
configurable via the master/minion config option, stateconf_goal_state)
that requires all other states in the salt file. Note, the .goal
state id is subject to dot-prefix rename rule mentioned earlier.

Such goal state is intended to be required by some state in an including
salt file. For example, in your webapp salt file, if you include a
sls file that is supposed to setup Tomcat, you might want to make sure that
all states in the Tomcat sls file will be executed before some state in
the webapp sls file.

	Optionally (enable via the -o renderer option, e.g., in the shebang line:
#!stateconf -o), orders the states in a sls file by adding a
require requisite to each state such that every state requires the
state defined just before it. The order of the states here is the order
they are defined in the sls file. (Note: this feature is only available
if your minions are using Python >= 2.7. For Python2.6, it should also
work if you install the ordereddict module from PyPI)

By enabling this feature, you are basically agreeing to author your sls
files in a way that gives up the explicit (or implicit?) ordering imposed
by the use of require, watch, require_in or watch_in
requisites, and instead, you rely on the order of states you define in
the sls files. This may or may not be a better way for you. However, if
there are many states defined in a sls file, then it tends to be easier
to see the order they will be executed with this feature.

You are still allowed to use all the requisites, with a few restrictions.
You cannot require or watch a state defined after the current
state. Similarly, in a state, you cannot require_in or watch_in
a state defined before it. Breaking any of the two restrictions above
will result in a state loop. The renderer will check for such incorrect
uses if this feature is enabled.

Additionally, names declarations cannot be used with this feature
because the way they are compiled into low states make it impossible to
guarantee the order in which they will be executed. This is also checked
by the renderer. As a workaround for not being able to use names,
you can achieve the same effect, by generate your states with the
template engine available within your sls file.

Finally, with the use of this feature, it becomes possible to easily make
an included sls file execute all its states after some state (say, with
id X) in the including sls file. All you have to do is to make state,
X, require_in the first state defined in the included sls file.

When writing sls files with this renderer, you should avoid using what can be
defined in a name argument of a state as the state's id. That is, avoid
writing your states like this:

/path/to/some/file:
 file.managed:
 - source: salt://some/file

cp /path/to/some/file file2:
 cmd.run:
 - cwd: /
 - require:
 - file: /path/to/some/file

Instead, you should define the state id and the name argument separately
for each state, and the id should be something meaningful and easy to reference
within a requisite (which I think is a good habit anyway, and such extra
indirection would also makes your sls file easier to modify later). Thus, the
above states should be written like this:

add-some-file:
 file.managed:
 - name: /path/to/some/file
 - source: salt://some/file

copy-files:
 cmd.run:
 - name: cp /path/to/some/file file2
 - cwd: /
 - require:
 - file: add-some-file

Moreover, when referencing a state from a requisite, you should reference the
state's id plus the state name rather than the state name plus its name
argument. (Yes, in the above example, you can actually require the
file: /path/to/some/file, instead of the file: add-some-file). The
reason is that this renderer will re-write or rename state id's and their
references for state id's prefixed with .. So, if you reference name
then there's no way to reliably rewrite such reference.

salt.renderers.wempy

	
salt.renderers.wempy.render(template_file, env='', sls='', argline='', context=None, **kws)

	Render the data passing the functions and grains into the rendering system

	Return type:	string [https://docs.python.org/3/library/string.html#module-string]

salt.renderers.yaml

	
salt.renderers.yaml.get_yaml_loader(argline)

	Return the ordered dict yaml loader

	
salt.renderers.yaml.render(yaml_data, env='', sls='', argline='', **kws)

	Accepts YAML as a string or as a file object and runs it through the YAML
parser.

	Return type:	A Python data structure

Pillars

Salt includes a number of built-in external pillars, listed at
Full list of builtin pillar modules.

You may also wish to look at the standard pillar documentation, at
Pillar Configuration

The source for the built-in Salt pillars can be found here:
https://github.com/saltstack/salt/blob/develop/salt/pillar

Full list of builtin pillar modules

	cmd_json
	Execute a command and read the output as JSON.

	cmd_yaml
	Execute a command and read the output as YAML.

	cobbler
	Cobbler Pillar ============== A pillar module to pull data from Cobbler via its API into the pillar dictionary.

	django_orm
	Generate pillar data from Django models through the Django ORM

	git_pillar
	Clone a remote git repository and use the filesystem as a pillar directory.

	hiera
	Take in a hiera configuration file location and execute it.

	libvirt
	Load up the libvirt keys into pillar for a given minion if said keys have been generated using the libvirt key runner.

	mongo
	Read pillar data from a mongodb collection.

	pillar_ldap
	This pillar module parses a config file (specified in the salt master config), and executes a series of LDAP searches based on that config.

	puppet
	Execute an unmodified puppet_node_classifier and read the output as YAML.

	reclass_adapter
	

salt.pillar.cmd_json

Execute a command and read the output as JSON. The JSON data is then directly
overlaid onto the minion's pillar data

	
salt.pillar.cmd_json.ext_pillar(minion_id, pillar, command)

	Execute a command and read the output as JSON

salt.pillar.cmd_yaml

Execute a command and read the output as YAML. The YAML data is then directly
overlaid onto the minion's pillar data

	
salt.pillar.cmd_yaml.ext_pillar(minion_id, pillar, command)

	Execute a command and read the output as YAML

salt.pillar.cobbler

Cobbler Pillar

A pillar module to pull data from Cobbler via its API into the pillar dictionary.

Configuring the Cobbler ext_pillar

The same cobbler.* parameters are used for both the Cobbler tops and Cobbler pillar
modules.

ext_pillar:
- cobbler:
 - key: cobbler # Nest results within this key. By default, values are not nested.
 - only: [parameters] # Add only these keys to pillar.

cobbler.url: https://example.com/cobbler_api #default is http://localhost/cobbler_api
cobbler.user: username # default is no username
cobbler.password: password # default is no password

Module Documentation

	
salt.pillar.cobbler.ext_pillar(minion_id, pillar, key=None, only=())

	Read pillar data from Cobbler via its API.

salt.pillar.django_orm

Generate pillar data from Django models through the Django ORM

	maintainer:	Micah Hausler <micah.hausler@gmail.com>

	maturity:	new

Configuring the django_orm ext_pillar

To use this module, your Django project must be on the salt master server with
database access. This assumes you are using virtualenv with all the project's
requirements installed.

ext_pillar:
 - django_orm:
 pillar_name: my_application
 env: /path/to/virtualenv/
 project_path: /path/to/project/
 env_file: /path/to/env/file.sh
 settings_module: my_application.settings

 django_app:

 # Required: the app that is included in INSTALLED_APPS
 my_application.clients:

 # Required: the model name
 Client:

 # Required: model field to use as a name in the
 # rendered pillar, should be unique
 name: shortname

 # Optional:
 # See Django's QuerySet documentation for how to use .filter()
 filter: {'kw': 'args'}

 # Required: a list of field names
 fields:
 - field_1
 - field_2

This would return pillar data that would look like

my_application:
 my_application.clients:
 Client:
 client_1:
 field_1: data_from_field_1
 field_2: data_from_field_2
 client_2:
 field_1: data_from_field_1
 field_2: data_from_field_2

Module Documentation

	
salt.pillar.django_orm.ext_pillar(pillar, pillar_name, env, project_path, settings_module, django_app, env_file=None, *args, **kwargs)

	Connect to a Django database through the ORM and retrieve model fields

	Parameters:

	
	pillar_name: The name of the pillar to be returned

	env: The full path to the virtualenv for your Django project

	project_path: The full path to your Django project (the directory
manage.py is in.)

	settings_module: The settings module for your project. This can be
found in your manage.py file.

	django_app: A dictionary containing your apps, models, and fields

	env_file: A bash file that sets up your environment. The file is
run in a subprocess and the changed variables are then added.

salt.pillar.git_pillar

Clone a remote git repository and use the filesystem as a pillar directory.

This looks like:

	ext_pillar:

	
	git: master git://gitserver/git-pillar.git

	
salt.pillar.git_pillar.envs(branch, repo_location)

	Return a list of refs that can be used as environments

	
salt.pillar.git_pillar.ext_pillar(minion_id, pillar, repo_string)

	Execute a command and read the output as YAML

	
salt.pillar.git_pillar.init(branch, repo_location)

	Return the git repo object for this session

	
salt.pillar.git_pillar.update(branch, repo_location)

	Ensure you are on the right branch, and execute a git pull

return boolean wether it worked

salt.pillar.hiera

Take in a hiera configuration file location and execute it.
Adds the hiera data to pillar

	
salt.pillar.hiera.ext_pillar(minion_id, pillar, conf)

	Execute hiera and return the data

salt.pillar.libvirt

Load up the libvirt keys into pillar for a given minion if said keys have
been generated using the libvirt key runner.

	
salt.pillar.libvirt.ext_pillar(minion_id, pillar, command)

	Read in the generated libvirt keys

	
salt.pillar.libvirt.gen_hyper_keys(minion_id, country='US', state='Utah', locality='Salt Lake City', organization='Salted')

	Generate the keys to be used by libvirt hypervisors, this routine gens
the keys and applies them to the pillar for the hypervisor minions

salt.pillar.mongo

Read pillar data from a mongodb collection.

This module will load a node-specific pillar dictionary from a mongo
collection. It uses the node's id for lookups and can load either the whole
document, or just a specific field from that
document as the pillar dictionary.

Salt Master Mongo Configuration

The module shares the same base mongo connection variables as
salt.returners.mongo_return. These variables go in your master
config file.

	mongo.db - The mongo database to connect to. Defaults to 'salt'.

	mongo.host - The mongo host to connect to. Supports replica sets by
specifying all hosts in the set, comma-delimited. Defaults to 'salt'.

	mongo.port - The port that the mongo database is running on. Defaults
to 27017.

	mongo.user - The username for connecting to mongo. Only required if
you are using mongo authentication. Defaults to ''.

	mongo.password - The password for connecting to mongo. Only required
if you are using mongo authentication. Defaults to ''.

Configuring the Mongo ext_pillar

The Mongo ext_pillar takes advantage of the fact that the Salt Master
configuration file is yaml. It uses a sub-dictionary of values to adjust
specific features of the pillar. This is the explicit single-line dictionary
notation for yaml. One may be able to get the easier-to-read multine dict to
work correctly with some experimentation.

ext_pillar:
 - mongo: {collection: vm, id_field: name, re_pattern: \.example\.com, fields: [customer_id, software, apache_vhosts]}

In the example above, we've decided to use the vm collection in the
database to store the data. Minion ids are stored in the name field on
documents in that collection. And, since minion ids are FQDNs in most cases,
we'll need to trim the domain name in order to find the minion by hostname in
the collection. When we find a minion, return only the customer_id,
software, and apache_vhosts fields, as that will contain the data we
want for a given node. They will be available directly inside the pillar
dict in your SLS templates.

Module Documentation

	
salt.pillar.mongo.ext_pillar(minion_id, pillar, collection='pillar', id_field='_id', re_pattern=None, re_replace='', fields=None)

	Connect to a mongo database and read per-node pillar information.

	Parameters:

	
	collection: The mongodb collection to read data from. Defaults to
'pillar'.

	id_field: The field in the collection that represents an individual
minion id. Defaults to '_id'.

	re_pattern: If your naming convention in the collection is shorter
than the minion id, you can use this to trim the name.
re_pattern will be used to match the name, and re_replace will
be used to replace it. Backrefs are supported as they are in the
Python standard library. If None, no mangling of the name will
be performed - the collection will be searched with the entire
minion id. Defaults to None.

	re_replace: Use as the replacement value in node ids matched with
re_pattern. Defaults to ''. Feel free to use backreferences here.

	fields: The specific fields in the document to use for the pillar
data. If None, will use the entire document. If using the
entire document, the _id field will be converted to string. Be
careful with other fields in the document as they must be string
serializable. Defaults to None.

salt.pillar.pillar_ldap

This pillar module parses a config file (specified in the salt master config),
and executes a series of LDAP searches based on that config. Data returned by
these searches is aggregated, with data items found later in the LDAP search
order overriding data found earlier on.
The final result set is merged with the pillar data.

	
salt.pillar.pillar_ldap.ext_pillar(minion_id, pillar, config_file)

	Execute LDAP searches and return the aggregated data

salt.pillar.puppet

Execute an unmodified puppet_node_classifier and read the output as YAML.
The YAML data is then directly overlaid onto the minion's pillar data.

	
salt.pillar.puppet.ext_pillar(minion_id, pillar, command)

	Execute an unmodified puppet_node_classifier and read the output as YAML

salt.pillar.reclass_adapter

This ext_pillar plugin provides access to the reclass database, such
that Pillar data for a specific minion are fetched using reclass.

You can find more information about reclass at
http://reclass.pantsfullofunix.net.

To use the plugin, add it to the ext_pillar list in the Salt master config
and tell reclass by way of a few options how and where to find the
inventory:

ext_pillar:
 - reclass:
 storage_type: yaml_fs
 base_inventory_uri: /srv/salt

This would cause reclass to read the inventory from YAML files in
/srv/salt/nodes and /srv/salt/classes.

If you are also using reclass as master_tops plugin, and you want to
avoid having to specify the same information for both, use YAML anchors (take
note of the differing data types for ext_pillar and master_tops):

reclass: &reclass
 storage_type: yaml_fs
 base_inventory_uri: /srv/salt
 reclass_source_path: ~/code/reclass

ext_pillar:
 - reclass: *reclass

master_tops:
 reclass: *reclass

If you want to run reclass from source, rather than installing it, you can
either let the master know via the PYTHONPATH environment variable, or by
setting the configuration option, like in the example above.

	
salt.pillar.reclass_adapter.ext_pillar(minion_id, pillar, **kwargs)

	Obtain the Pillar data from reclass for the given minion_id.

Master Tops

Salt includes a number of built-in subsystems to generate top file data, they
are listed listed at
Full list of builtin master tops modules.

The source for the built-in Salt master tops can be found here:
https://github.com/saltstack/salt/blob/develop/salt/tops

Full list of builtin master tops modules

	cobbler
	Cobbler Tops

	ext_nodes
	External Nodes Classifier

	mongo
	Read tops data from a mongodb collection.

	reclass_adapter
	

salt.tops.cobbler

Cobbler Tops

Cobbler Tops is a master tops subsystem used to look up mapping information
from Cobbler via its API. The same cobbler.* parameters are used for both
the Cobbler tops and Cobbler pillar modules.

master_tops:
 cobbler: {}
cobbler.url: https://example.com/cobbler_api #default is http://localhost/cobbler_api
cobbler.user: username # default is no username
cobbler.password: password # default is no password

Module Documentation

	
salt.tops.cobbler.top(**kwargs)

	Look up top data in Cobbler for a minion.

salt.tops.ext_nodes

External Nodes Classifier

The External Nodes Classifier is a master tops subsystem used to hook into
systems used to provide mapping information used by major configuration
management systems. One of the most common external nodes classification
system is provided by Cobbler and is called cobbler-ext-nodes.

The cobbler-ext-nodes command can be used with this configuration:

master_tops:
 ext_nodes: cobbler-ext-nodes

It is noteworthy that the Salt system does not directly ingest the data
sent from the cobbler-ext-nodes command, but converts the data into
information that is used by a Salt top file.

	
salt.tops.ext_nodes.top(**kwargs)

	Run the command configured

salt.tops.mongo

Read tops data from a mongodb collection.

This module will load tops data from a mongo collection. It uses the node's id
for lookups.

Salt Master Mongo Configuration

The module shares the same base mongo connection variables as
salt.returners.mongo_return. These variables go in your master
config file.

	mongo.db - The mongo database to connect to. Defaults to 'salt'.

	mongo.host - The mongo host to connect to. Supports replica sets by
specifying all hosts in the set, comma-delimited. Defaults to 'salt'.

	mongo.port - The port that the mongo database is running on. Defaults
to 27017.

	mongo.user - The username for connecting to mongo. Only required if
you are using mongo authentication. Defaults to ''.

	mongo.password - The password for connecting to mongo. Only required
if you are using mongo authentication. Defaults to ''.

Configuring the Mongo Tops Subsystem

master_tops:
 mongo:
 collection: tops
 id_field: _id
 re_replace: ""
 re_pattern: \.example\.com
 states_field: states
 environment_field: environment

Module Documentation

	
salt.tops.mongo.top(**kwargs)

	Connect to a mongo database and read per-node tops data.

	Parameters:

	
	collection: The mongodb collection to read data from. Defaults to
'tops'.

	id_field: The field in the collection that represents an individual
minion id. Defaults to '_id'.

	re_pattern: If your naming convention in the collection is shorter
than the minion id, you can use this to trim the name.
re_pattern will be used to match the name, and re_replace will
be used to replace it. Backrefs are supported as they are in the
Python standard library. If None, no mangling of the name will
be performed - the collection will be searched with the entire
minion id. Defaults to None.

	re_replace: Use as the replacement value in node ids matched with
re_pattern. Defaults to ''. Feel free to use backreferences here.

	states_field: The name of the field providing a list of states.

	environment_field: The name of the field providing the environment.
Defaults to environment.

salt.tops.reclass_adapter

This master_tops plugin provides access to
the reclass database, such that state information (top data) are retrieved
from reclass.

You can find more information about reclass at
http://reclass.pantsfullofunix.net.

To use the plugin, add it to the master_tops list in the Salt master config
and tell reclass by way of a few options how and where to find the
inventory:

master_tops:
 reclass:
 storage_type: yaml_fs
 base_inventory_uri: /srv/salt

This would cause reclass to read the inventory from YAML files in
/srv/salt/nodes and /srv/salt/classes.

If you are also using reclass as ext_pillar plugin, and you want to
avoid having to specify the same information for both, use YAML anchors (take
note of the differing data types for ext_pillar and master_tops):

reclass: &reclass
 storage_type: yaml_fs
 base_inventory_uri: /srv/salt
 reclass_source_path: ~/code/reclass

ext_pillar:
 - reclass: *reclass

master_tops:
 reclass: *reclass

If you want to run reclass from source, rather than installing it, you can
either let the master know via the PYTHONPATH environment variable, or by
setting the configuration option, like in the example above.

	
salt.tops.reclass_adapter.top(**kwargs)

	Query reclass for the top data (states of the minions).

Salt Runners

See also

The full list of runners

Salt runners are convenience applications executed with the salt-run command.
Where as salt modules are sent out to minions for execution, salt runners are
executed on the salt master.

A Salt runner can be a simple client call, or a complex application.

The use for a Salt runner is to build a frontend hook for running sets of
commands via Salt or creating special formatted output.

Writing Salt Runners

Salt runners can be easily written, the work in a similar way to Salt modules
except they run on the server side.

A runner is a Python module that contains functions, each public function is
a runner that can be executed via the salt-run command.

If a Python module named test.py is created in the runners directory and
contains a function called foo then the function could be called with:

salt-run test.foo

Examples

The best examples of runners can be found in the Salt source:

https://github.com/saltstack/salt/blob/develop/salt/runners

A simple runner that returns a well-formatted list of the minions that are
responding to Salt calls would look like this:

Import salt modules
import salt.client

def up():
 '''
 Print a list of all of the minions that are up
 '''
 client = salt.client.LocalClient(__opts__['conf_file'])
 minions = client.cmd('*', 'test.ping', timeout=1)
 for minion in sorted(minions):
 print minion

Full list of runner modules

	cache
	Return cached data from minions

	doc
	A runner module to collect and display the inline documentation from the

	fileserver
	Directly manage the salt fileserver plugins

	jobs
	A convenience system to manage jobs, both active and already run

	launchd
	

	manage
	General management functions for salt, tools like seeing what hosts are up

	network
	Network tools to run from the Master

	search
	Runner frontend to search system

	state
	Execute overstate functions

	virt
	Control virtual machines via Salt

	winrepo
	Runner to manage Windows software repo

salt.runners.cache

Return cached data from minions

	
salt.runners.cache.clear_all(tgt=None, expr_form='glob')

	Clear the cached pillar, grains, and mine data of the targeted minions

CLI Example:

salt-run cache.clear_all

	
salt.runners.cache.clear_grains(tgt=None, expr_form='glob')

	Clear the cached grains data of the targeted minions

CLI Example:

salt-run cache.clear_grains

	
salt.runners.cache.clear_mine(tgt=None, expr_form='glob')

	Clear the cached mine data of the targeted minions

CLI Example:

salt-run cache.clear_mine

	
salt.runners.cache.clear_mine_func(tgt=None, expr_form='glob', clear_mine_func=None)

	Clear the cached mine function data of the targeted minions

CLI Example:

salt-run cache.clear_mine_func tgt='*',clear_mine_func='network.interfaces'

	
salt.runners.cache.clear_pillar(tgt, expr_form='glob')

	Clear the cached pillar data of the targeted minions

CLI Example:

salt-run cache.clear_pillar

	
salt.runners.cache.grains(tgt=None, expr_form='glob', **kwargs)

	Return cached grains of the targeted minions

CLI Example:

salt-run cache.grains

	
salt.runners.cache.pillar(tgt=None, expr_form='glob', **kwargs)

	Return cached pillars of the targeted minions

CLI Example:

salt-run cache.pillar

salt.runners.doc

A runner module to collect and display the inline documentation from the
various module types

	
salt.runners.doc.execution()

	Collect all the sys.doc output from each minion and return the aggregate

CLI Example:

salt-run doc.execution

	
salt.runners.doc.runner()

	Return all inline documetation for runner modules

CLI Example:

salt-run doc.runner

	
salt.runners.doc.wheel()

	Return all inline documentation for wheel modules

CLI Example:

salt-run doc.wheel

salt.runners.fileserver

Directly manage the salt fileserver plugins

	
salt.runners.fileserver.update()

	Execute an update for all of the configured fileserver backends

CLI Example:

salt-run fileserver.update

salt.runners.jobs

A convenience system to manage jobs, both active and already run

	
salt.runners.jobs.active()

	Return a report on all actively running jobs from a job id centric
perspective

CLI Example:

salt-run jobs.active

	
salt.runners.jobs.list_jobs()

	List all detectable jobs and associated functions

CLI Example:

salt-run jobs.list_jobs

	
salt.runners.jobs.lookup_jid(jid, ext_source=None)

	Return the printout from a previously executed job

CLI Example:

salt-run jobs.lookup_jid 20130916125524463507

	
salt.runners.jobs.print_job(job_id)

	Print job available details, including return data.

CLI Example:

salt-run jobs.print_job

salt.runners.launchd

	
salt.runners.launchd.write_launchd_plist(program)

	Write a launchd plist for managing salt-master or salt-minion

CLI Example:

salt-run launchd.write_launchd_plist salt-master

salt.runners.manage

General management functions for salt, tools like seeing what hosts are up
and what hosts are down

	
salt.runners.manage.down()

	Print a list of all the down or unresponsive salt minions

CLI Example:

salt-run manage.down

	
salt.runners.manage.key_regen()

	This routine is used to regenerate all keys in an environment. This is
invasive! ALL KEYS IN THE SALT ENVIRONMENT WILL BE REGENERATED!!

The key_regen routine sends a command out to minions to revoke the master
key and remove all minion keys, it then removes all keys from the master
and prompts the user to restart the master. The minions will all reconnect
and keys will be placed in pending.

After the master is restarted and minion keys are in the pending directory
execute a salt-key -A command to accept the regenerated minion keys.

The master must be restarted within 60 seconds of running this command or
the minions will think there is something wrong with the keys and abort.

Only Execute this runner after upgrading minions and master to 0.15.1 or
higher!

CLI Example:

salt-run manage.key_regen

	
salt.runners.manage.status(output=True)

	Print the status of all known salt minions

CLI Example:

salt-run manage.status

	
salt.runners.manage.up()

	Print a list of all of the minions that are up

CLI Example:

salt-run manage.up

	
salt.runners.manage.versions()

	Check the version of active minions

CLI Example:

salt-run manage.versions

salt.runners.network

Network tools to run from the Master

	
salt.runners.network.wol(mac, bcast='255.255.255.255', destport=9)

	Send a "Magic Packet" to wake up a Minion

CLI Example:

salt-run network.wol 08-00-27-13-69-77
salt-run network.wol 080027136977 255.255.255.255 7
salt-run network.wol 08:00:27:13:69:77 255.255.255.255 7

	
salt.runners.network.wollist(maclist, bcast='255.255.255.255', destport=9)

	Send a "Magic Packet" to wake up a list of Minions.
This list must contain one MAC hardware address per line

CLI Example:

salt-run network.wollist '/path/to/maclist'
salt-run network.wollist '/path/to/maclist' 255.255.255.255 7
salt-run network.wollist '/path/to/maclist' 255.255.255.255 7

salt.runners.search

Runner frontend to search system

	
salt.runners.search.query(term)

	Query the search system

CLI Example:

salt-run search.query foo

salt.runners.state

Execute overstate functions

	
salt.runners.state.over(env='base', os_fn=None)

	Execute an overstate sequence to orchestrate the executing of states
over a group of systems

CLI Examples:

salt-run state.over
salt-run state.over env=dev /root/overstate.sls

	
salt.runners.state.show_stages(env='base', os_fn=None)

	Display the stage data to be executed

CLI Examples:

salt-run state.show_stages
salt-run state.show_stages env=dev /root/overstate.sls

	
salt.runners.state.sls(mods, env='base', test=None, exclude=None)

	Execute a state run from the master, used as a powerful orchestration
system.

CLI Examples:

salt-run state.sls webserver
salt-run state.sls webserver env=dev test=True

salt.runners.virt

Control virtual machines via Salt

	
salt.runners.virt.force_off(name)

	Force power down the named virtual machine

	
salt.runners.virt.hyper_info(hyper=None)

	Return information about the hypervisors connected to this master

	
salt.runners.virt.init(name, cpu, mem, image, hyper=None, seed=True, nic='default', install=True)

	Initialize a new vm

	
salt.runners.virt.list(hyper=None, quiet=False)

	List the virtual machines on each hyper

	
salt.runners.virt.migrate(name, target='')

	Migrate a vm from one hypervisor to another. This routine will just start
the migration and display information on how to look up the progress

	
salt.runners.virt.next_hyper()

	Return the hypervisor to use for the next autodeployed vm

	
salt.runners.virt.pause(name)

	Pause the named vm

	
salt.runners.virt.purge(name)

	Destroy the named vm

	
salt.runners.virt.query(hyper=None, quiet=False)

	Query the virtual machines

	
salt.runners.virt.reset(name)

	Force power down and restart an existing vm

	
salt.runners.virt.resume(name)

	Resume a paused vm

	
salt.runners.virt.start(name)

	Start a named virtual machine

	
salt.runners.virt.vm_info(name, quiet=False)

	Return the information on the named vm

salt.runners.winrepo

Runner to manage Windows software repo

	
salt.runners.winrepo.genrepo()

	Generate win_repo_cachefile based on sls files in the win_repo

CLI Example:

salt-run winrepo.genrepo

	
salt.runners.winrepo.update_git_repos()

	Checkout git repos containing Windows Software Package Definitions

CLI Example:

salt-run winrepo.update_git_repos

Full list of builtin wheel modules

	config
	Manage the master configuration file

	file_roots
	Read in files from the file_root and save files to the file root

	key
	Wheel system wrapper for key system

	pillar_roots
	The pillar_roots wheel module is used to manage files under the pillar roots directories on the master server.

salt.wheel.config

Manage the master configuration file

	
salt.wheel.config.apply(key, value)

	Set a single key

Note

This will strip comments from your config file

	
salt.wheel.config.values()

	Return the raw values of the config file

salt.wheel.file_roots

Read in files from the file_root and save files to the file root

	
salt.wheel.file_roots.find(path, env='base')

	Return a dict of the files located with the given path and environment

	
salt.wheel.file_roots.list_env(env='base')

	Return all of the file paths found in an environment

	
salt.wheel.file_roots.list_roots()

	Return all of the files names in all available environments

	
salt.wheel.file_roots.read(path, env='base')

	Read the contents of a text file, if the file is binary then

	
salt.wheel.file_roots.write(data, path, env='base', index=0)

	Write the named file, by default the first file found is written, but the
index of the file can be specified to write to a lower priority file root

salt.wheel.key

Wheel system wrapper for key system

	
salt.wheel.key.accept(match)

	Accept keys based on a glob match

	
salt.wheel.key.delete(match)

	Delete keys based on a glob match

	
salt.wheel.key.finger(match)

	Return the matching key fingerprints

	
salt.wheel.key.key_str(match)

	Return the key strings

	
salt.wheel.key.list_(match)

	List all the keys under a named status

	
salt.wheel.key.list_all()

	List all the keys

	
salt.wheel.key.reject(match)

	Delete keys based on a glob match

salt.wheel.pillar_roots

The pillar_roots wheel module is used to manage files under the pillar roots
directories on the master server.

	
salt.wheel.pillar_roots.find(path, env='base')

	Return a dict of the files located with the given path and environment

	
salt.wheel.pillar_roots.list_env(env='base')

	Return all of the file paths found in an environment

	
salt.wheel.pillar_roots.list_roots()

	Return all of the files names in all available environments

	
salt.wheel.pillar_roots.read(path, env='base')

	Read the contents of a text file, if the file is binary then

	
salt.wheel.pillar_roots.write(data, path, env='base', index=0)

	Write the named file, by default the first file found is written, but the
index of the file can be specified to write to a lower priority file root

Full list of builtin auth modules

	keystone
	Provide authentication using OpenStack Keystone

	ldap
	Provide authentication using simple LDAP binds

	pam
	Authenticate against PAM

	stormpath_mod
	Salt Stormpath Authentication

salt.auth.keystone

Provide authentication using OpenStack Keystone

	depends:	
	keystoneclient Python module

	
salt.auth.keystone.auth(username, password)

	Try and authenticate

	
salt.auth.keystone.get_auth_url()

	Try and get the URL from the config, else return localhost

salt.auth.ldap

Provide authentication using simple LDAP binds

	depends:	
	ldap Python module

	
salt.auth.ldap.auth(username, password)

	Authenticate via an LDAP bind

salt.auth.pam

Authenticate against PAM

Provides an authenticate function that will allow the caller to authenticate
a user against the Pluggable Authentication Modules (PAM) on the system.

Implemented using ctypes, so no compilation is necessary.

	
class salt.auth.pam.PamConv

	Wrapper class for pam_conv structure

	
appdata_ptr

	Structure/Union member

	
conv

	Structure/Union member

	
class salt.auth.pam.PamHandle

	Wrapper class for pam_handle_t

	
handle

	Structure/Union member

	
class salt.auth.pam.PamMessage

	Wrapper class for pam_message structure

	
msg

	Structure/Union member

	
msg_style

	Structure/Union member

	
class salt.auth.pam.PamResponse

	Wrapper class for pam_response structure

	
resp

	Structure/Union member

	
resp_retcode

	Structure/Union member

	
salt.auth.pam.auth(username, password, **kwargs)

	Authenticate via pam

	
salt.auth.pam.authenticate(username, password, service='login')

	Returns True if the given username and password authenticate for the
given service. Returns False otherwise

username: the username to authenticate

password: the password in plain text

	service: the PAM service to authenticate against.

	Defaults to 'login'

salt.auth.stormpath_mod

Salt Stormpath Authentication

Module to provide authentication using Stormpath as the backend.

	depends:	
	stormpath-sdk Python module

	configuration:	This module requires the development branch of the
stormpath-sdk which can be found here:
https://github.com/stormpath/stormpath-sdk-python

The following config items are required in the master config:

stormpath.api_key_file: <path/to/apiKey.properties>
stormpath.app_url: <Rest url of your Stormpath application>

Ensure that your apiKey.properties is readable by the user the Salt Master
is running as, but not readable by other system users.

	
salt.auth.stormpath_mod.auth(username, password)

	Try and authenticate

Full list of builtin output modules

	grains
	Special outputter for grains

	highstate
	The return data from the Highstate command is a standard data structure which is parsed by the highstate outputter to deliver a clean and readable set of information about the HighState run on minions.

	json_out
	The JSON output module converts the return data into JSON.

	key
	Salt Key makes use of the outputter system to format information sent to the salt-key command.

	nested
	Recursively display nested data, this is the default outputter.

	no_out
	Display no output.

	no_return
	Display output for minions that did not return

	overstatestage
	Display clean output of an overstate stage

	pprint_out
	The python pretty print system was the default outputter.

	raw
	The raw outputter outputs the data via the python print function and is shown in a raw state.

	txt
	The txt outputter has been developed to make the output from shell commands on minions appear as they do when the command is executed on the minion.

	virt_query
	virt.query outputter

	yaml_out
	Output data in YAML, this outputter defaults to printing in YAML block mode for better readability.

salt.output.grains

Special outputter for grains

	
salt.output.grains.output(grains)

	Output the grains in a clean way

salt.output.highstate

The return data from the Highstate command is a standard data structure
which is parsed by the highstate outputter to deliver a clean and readable
set of information about the HighState run on minions.

Two configurations can be set to modify the highstate outputter. These values
can be set in the master config to change the output of the salt command or
set in the minion config to change the output of the salt-call command.

	state_verbose:

	By default state_verbose is set to True, setting this to False will
instruct the highstate outputter to omit displaying anything in green, this
means that nothing with a result of True and no changes will not be printed

	state_output:

	The highstate outputter has three output modes, full, terse, and
mixed. The default is set to full, which will display many lines of
detailed information for each executed chunk. If the state_output option
is set to terse then the output is greatly simplified and shown in only
one line. If mixed is used, then terse output will be used unless a
state failed, in which case full output will be used.

	
salt.output.highstate.output(data)

	The HighState Outputter is only meant to
be used with the state.highstate function, or a function that returns
highstate return data.

salt.output.json_out

The JSON output module converts the return data into JSON.

	
salt.output.json_out.output(data)

	Print the output data in JSON

salt.output.key

Salt Key makes use of the outputter system to format information sent to the
salt-key command. This outputter is geared towards ingesting very specific
data and should only be used with the salt-key command.

	
salt.output.key.output(data)

	Read in the dict structure generated by the salt key API methods and
print the structure.

salt.output.nested

Recursively display nested data, this is the default outputter.

	
class salt.output.nested.NestDisplay

	Manage the nested display contents

	
display(ret, indent, prefix, out)

	Recursively iterate down through data structures to determine output

	
salt.output.nested.output(ret)

	Display ret data

salt.output.no_out

Display no output.

	
salt.output.no_out.output(ret)

	Don't display data. Used when you only are interested in the
return.

salt.output.no_return

Display output for minions that did not return

	
class salt.output.no_return.NestDisplay

	Create generator for nested output

	
display(ret, indent, prefix, out)

	Recursively iterate down through data structures to determine output

	
salt.output.no_return.output(ret)

	Display ret data

salt.output.overstatestage

Display clean output of an overstate stage

	
salt.output.overstatestage.output(data)

	Format the data for printing stage information from the overstate system

salt.output.pprint_out

The python pretty print system was the default outputter. This outputter
simply passed the data passed into it through the pprint module.

	
salt.output.pprint_out.output(data)

	Print out via pretty print

salt.output.raw

The raw outputter outputs the data via the python print function and is shown
in a raw state. This was the original outputter used by Salt before the
outputter system was developed.

	
salt.output.raw.output(data)

	Rather basic....

salt.output.txt

The txt outputter has been developed to make the output from shell
commands on minions appear as they do when the command is executed
on the minion.

	
salt.output.txt.output(data)

	Output the data in lines, very nice for running commands

salt.output.virt_query

virt.query outputter

	
salt.output.virt_query.output(data)

	Display output for the salt-run virt.query function

salt.output.yaml_out

Output data in YAML, this outputter defaults to printing in YAML block mode
for better readability.

	
salt.output.yaml_out.output(data)

	Print out YAML using the block mode

Python client API

Salt is written to be completely API centric, Salt minions and master can be
built directly into third party applications as a communication layer. The Salt
client API is very straightforward.

A number of client command methods are available depending on the exact
behavior desired.

LocalClient

	
class salt.client.LocalClient(c_path='/etc/salt/master', mopts=None)

	LocalClient is the same interface used by the salt
command-line tool on the Salt Master. LocalClient is used to send a
command to Salt minions to execute execution modules and return the results to the Salt Master.

Importing and using LocalClient must be done on the same machine as the
Salt Master and it must be done using the same user that the Salt Master is
running as (unless external_auth is configured and
authentication credentials are included in the execution.

	
cmd(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='', kwarg=None, **kwargs)

	The cmd method will execute and wait for the timeout period for all
minions to reply, then it will return all minion data at once.

Usage:

import salt.client
client = salt.client.LocalClient()
ret = client.cmd('*', 'cmd.run', ['whoami'])

With authentication:

Master config
...
external_auth:
 pam:
 fred:
 - test.*
...

ret = client.cmd('*', 'test.ping', [], username='fred', password='pw', eauth='pam')

Compound command usage:

ret = client.cmd('*', ['grains.items', 'cmd.run'], [[], ['whoami']])

	Parameters:	
	tgt (string [https://docs.python.org/3/library/string.html#module-string] or list) -- Which minions to target for the execution. Default is shell
glob. Modified by the expr_form option.

	fun (string [https://docs.python.org/3/library/string.html#module-string] or list of strings) -- The module and function to call on the specified minions of
the form module.function. For example test.ping or
grains.items.

	Compound commands

	Multiple functions may be called in a single publish by
passing a list of commands. This can dramatically lower
overhead and speed up the application communicating with Salt.This requires that the arg param is a list of lists. The
fun list and the arg list must correlate by index
meaning a function that does not take arguments must still have
a corresponding empty list at the expected index.

	arg (list or list-of-lists) -- A list of arguments to pass to the remote function. If the
function takes no arguments arg may be omitted except when
executing a compound command.

	timeout -- Seconds to wait after the last minion returns but
before all minions return.

	expr_form -- The type of tgt. Allowed values:

	glob - Bash glob completion - Default

	pcre - Perl style regular expression

	list - Python list of hosts

	grain - Match based on a grain comparison

	grain_pcre - Grain comparison with a regex

	pillar - Pillar data comparison

	nodegroup - Match on nodegroup

	range - Use a Range server for matching

	compound - Pass a compound match string

	ret -- The returner to use. The value passed can be single
returner, or a comma delimited list of returners to call in order
on the minions

	kwargs -- Optional keyword arguments.

Authentication credentials may be passed when using
external_auth.

	eauth - the external_auth backend

	username and password

	token

	Returns:	A dictionary with the result of the execution, keyed by
minion ID. A compound command will return a sub-dictionary keyed by
function name.

	
cmd_async(tgt, fun, arg=(), expr_form='glob', ret='', kwarg=None, **kwargs)

	Execute a command and get back the jid, don't wait for anything

The function signature is the same as cmd() with the
following exceptions.

	Returns:	A job ID

	
cmd_cli(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='', verbose=False, kwarg=None, **kwargs)

	Used by the salt CLI. This method returns minion returns as
the come back and attempts to block until all minions return.

The function signature is the same as cmd() with the
following exceptions.

	Parameters:	verbose -- Print extra information about the running command

	Returns:	A generator

	
cmd_iter(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='', kwarg=None, **kwargs)

	Yields the individual minion returns as they come in

The function signature is the same as cmd() with the
following exceptions.

	
cmd_iter_no_block(tgt, fun, arg=(), timeout=None, expr_form='glob', ret='', kwarg=None, **kwargs)

	Blocks while waiting for individual minions to return.

The function signature is the same as cmd() with the
following exceptions.

	Returns:	None until the next minion returns. This allows for actions
to be injected in between minion returns.

Salt Caller

	
class salt.client.Caller(c_path='/etc/salt/minion')

	Caller is the same interface used by the salt-call
command-line tool on the Salt Minion.

Importing and using LocalClient must be done on the same machine as a
Salt Minion and it must be done using the same user that the Salt Minion is
running as.

Usage:

import salt.client
caller = salt.client.Caller()
caller.function('test.ping')

Or call objects directly
caller.sminion.functions['cmd.run']('ls -l')

	
function(fun, *args, **kwargs)

	Call a single salt function

RunnerClient

	
class salt.runner.RunnerClient(opts)

	RunnerClient is the same interface used by the salt-run
command-line tool on the Salt Master. It executes runner modules which run on the Salt Master.

Importing and using RunnerClient must be done on the same machine as
the Salt Master and it must be done using the same user that the Salt
Master is running as.

	
cmd(fun, arg, kwarg=None)

	Execute a runner with the given arguments

	
low(fun, low)

	Pass in the runner function name and the low data structure

WheelClient

	
class salt.wheel.Wheel(opts)

	WheelClient is an interface to Salt's wheel modules. Wheel modules interact with various parts of the Salt
Master.

Importing and using WheelClient must be done on the same machine as the
Salt Master and it must be done using the same user that the Salt Master is
running as.

	
call_func(fun, **kwargs)

	Execute a master control function

	
master_call(**kwargs)

	Send a function call to a wheel module through the master network interface
Expects that one of the kwargs is key 'fun' whose value is the namestring
of the function to call

Peer Communication

Salt 0.9.0 introduced the capability for Salt minions to publish commands. The
intent of this feature is not for Salt minions to act as independent brokers
one with another, but to allow Salt minions to pass commands to each other.

In Salt 0.10.0 the ability to execute runners from the master was added. This
allows for the master to return collective data from runners back to the
minions via the peer interface.

The peer interface is configured through two options in the master
configuration file. For minions to send commands from the master the peer
configuration is used. To allow for minions to execute runners from the master
the peer_run configuration is used.

Since this presents a viable security risk by allowing minions access to the
master publisher the capability is turned off by default. The minions can be
allowed access to the master publisher on a per minion basis based on regular
expressions. Minions with specific ids can be allowed access to certain Salt
modules and functions.

Peer Configuration

The configuration is done under the peer setting in the Salt master
configuration file, here are a number of configuration possibilities.

The simplest approach is to enable all communication for all minions, this is
only recommended for very secure environments.

peer:
 .*:
 - .*

This configuration will allow minions with IDs ending in example.com access
to the test, ps, and pkg module functions.

peer:
 .*example.com:
 - test.*
 - ps.*
 - pkg.*

The configuration logic is simple, a regular expression is passed for matching
minion ids, and then a list of expressions matching minion functions is
associated with the named minion. For instance, this configuration will also
allow minions ending with foo.org access to the publisher.

peer:
 .*example.com:
 - test.*
 - ps.*
 - pkg.*
 .*foo.org:
 - test.*
 - ps.*
 - pkg.*

Peer Runner Communication

Configuration to allow minions to execute runners from the master is done via
the peer_run option on the master. The peer_run configuration follows
the same logic as the peer option. The only difference is that access is
granted to runner modules.

To open up access to all minions to all runners:

peer_run:
 .*:
 - .*

This configuration will allow minions with IDs ending in example.com access
to the manage and jobs runner functions.

peer_run:
 .*example.com:
 - manage.*
 - jobs.*

Using Peer Communication

The publish module was created to manage peer communication. The publish module
comes with a number of functions to execute peer communication in different
ways. Currently there are three functions in the publish module. These examples
will show how to test the peer system via the salt-call command.

To execute test.ping on all minions:

salt-call publish.publish * test.ping

To execute the manage.up runner:

salt-call publish.runner manage.up

To match minions using other matchers, use expr_form:

salt-call publish.publish 'webserv* and not G@os:Ubuntu' test.ping expr_form='compound'

Client ACL system

The salt client ACL system is a means to allow system users other than root to
have access to execute select salt commands on minions from the master.

The client ACL system is configured in the master configuration file via the
client_acl configuration option. Under the client_acl configuration
option the users open to send commands are specified and then a list of regular
expressions which specify the minion functions which will be made available to
specified user. This configuration is much like the peer configuration:

Allow thatch to execute anything and allow fred to use ping and pkg
client_acl:
 thatch:
 - .*
 fred:
 - ping.*
 - pkg.*

Permission Issues

Directories required for client_acl must be modified to be readable by the
users specified:

chmod 755 /var/cache/salt /var/cache/salt/jobs /var/run/salt

If you are upgrading from earlier versions of salt you must also remove any
existing user keys and re-start the Salt master:

rm /var/cache/salt/.*key
service salt-master restart

Salt Syndic

The Salt Syndic interface is a powerful tool which allows for the construction
of Salt command topologies. A basic Salt setup has a Salt Master commanding a
group of Salt Minions. The Syndic interface is a special passthrough
minion, it is run on a master and connects to another master, then the master
that the Syndic minion is listening to can control the minions attached to
the master running the syndic.

The intent for supporting many layouts is not presented with the intent of
supposing the use of any single topology, but to allow a more flexible method
of controlling many systems.

Configuring the Syndic

Since the Syndic only needs to be attached to a higher level master the
configuration is very simple. On a master that is running a syndic to connect
to a higher level master the syndic_master option needs to be set in the
master config file. The syndic_master option contains the hostname or IP
address of the master server that can control the master that the syndic is
running on.

The master that the syndic connects to sees the syndic as an ordinary minion,
and treats it as such. the higher level master will need to accept the syndic's
minion key like any other minion. This master will also need to set the
order_masters value in the configuration to True. The order_masters option in
the config on the higher level master is very important, to control a syndic
extra information needs to be sent with the publications, the order_masters
option makes sure that the extra data is sent out.

To sum up, you have those configuration options available on the master side:

	syndic_master: MasterOfMaster ip/address

	syndic_master_port: MasterOfMaster ret_port

	syndic_log_file: path to the logfile (absolute or not)

	syndic_pidfile: path to the pidfile (absolute or not)

Running the Syndic

The Syndic is a separate daemon that needs to be started on the master that is
controlled by a higher master. Starting the Syndic daemon is the same as
starting the other Salt daemons.

salt-syndic

File Server Backends

Salt version 0.12.0 introduced the ability for the Salt Master to integrate
different file server backends. File server backends allows the Salt file
server to act as a transparent bridge to external resources. The primary
example of this is the git backend which allows for all of the Salt formulas
and files to be maintained in a remote git repository.

The fileserver backend system can accept multiple backends as well. This makes
it possible to have the environments listed in the file_roots configuration
available in addition to other backends, or the ability to mix multiple
backends.

This feature is managed by the fileserver_backend option in the master
config. The desired backend systems are listed in order of search priority:

fileserver_backend:
 - roots
 - git

If this configuration the environments and files defined in the file_roots
configuration will be searched first, if the referenced environment and file
is not found then the git backend will be searched.

Environments

The concept of environments is followed in all backend systems. The
environments in the classic roots backend are defined in the file_roots
option. Environments map differently based on the backend, for instance the
git backend translated branches and tags in git to environments. This makes
it easy to define environments in git by just setting a tag or forking a
branch.

Dynamic Module Distribution

New in version 0.9.5.

Salt Python modules can be distributed automatically via the Salt file server.
Under the root of any environment defined via the file_roots
option on the master server directories corresponding to the type of module can
be used.

	Module sync

	Automatically transfer and load modules, grains, renderers, returners,
states, etc from the master to the minions.

The directories are prepended with an underscore:

	_modules

	_grains

	_renderers

	_returners

	_states

The contents of these directories need to be synced over to the minions after
Python modules have been created in them. There are a number of ways to sync
the modules.

Sync Via States

The minion configuration contains an option autoload_dynamic_modules
which defaults to True. This option makes the state system refresh all
dynamic modules when states are run. To disable this behavior set
autoload_dynamic_modules to False in the minion config.

When dynamic modules are autoloaded via states, modules only pertinent to
the environments matched in the master's top file are downloaded.

This is important to remember, because modules can be manually loaded from
any specific environment that environment specific modules will be loaded
when a state run is executed.

Sync Via the saltutil Module

The saltutil module has a number of functions that can be used to sync all
or specific dynamic modules. The saltutil module function saltutil.sync_all
will sync all module types over to a minion. For more information see:
salt.modules.saltutil

File Server Configuration

The Salt file server is a high performance file server written in ZeroMQ. It
manages large files quickly and with little overhead, and has been optimized
to handle small files in an extremely efficient manner.

The Salt file server is an environment aware file server. This means that
files can be allocated within many root directories and accessed by
specifying both the file path and the environment to search. The
individual environments can span across multiple directory roots
to create overlays and to allow for files to be organized in many flexible
ways.

Environments

The Salt file server defaults to the mandatory base environment. This
environment MUST be defined and is used to download files when no
environment is specified.

Environments allow for files and sls data to be logically separated, but
environments are not isolated from each other. This allows for logical
isolation of environments by the engineer using Salt, but also allows
for information to be used in multiple environments.

Directory Overlay

The environment setting is a list of directories to publish files from.
These directories are searched in order to find the specified file and the
first file found is returned.

This means that directory data is prioritized based on the order in which they
are listed. In the case of this file_roots configuration:

file_roots:
 base:
 - /srv/salt/base
 - /srv/salt/failover

If a file's URI is salt://httpd/httpd.conf, it will first search for the
file at /srv/salt/base/httpd/httpd.conf. If the file is found there it
will be returned. If the file is not found there, then
/srv/salt/failover/httpd/httpd.conf will be used for the source.

This allows for directories to be overlaid and prioritized based on the order
they are defined in the configuration.

Local File Server

New in version 0.9.8.

The file server can be rerouted to run from the minion. This is primarily to
enable running Salt states without a Salt master. To use the local file server
interface, copy the file server data to the minion and set the file_roots
option on the minion to point to the directories copied from the master.
Once the minion file_roots option has been set, change the file_client
option to local to make sure that the local file server interface is used.

Salt File Server

Salt comes with a simple file server suitable for distributing files to the
Salt minions. The file server is a stateless ZeroMQ server that is built into
the Salt master.

The main intent of the Salt file server is to present files for use in the
Salt state system. With this said, the Salt file server can be used for any
general file transfer from the master to the minions.

The cp Module

The cp module is the home of minion side file server operations. The cp module
is used by the Salt state system, salt-cp and can be used to distribute files
presented by the Salt file server.

Environments

Since the file server is made to work with the Salt state system, it supports
environments. The environments are defined in the master config file and
when referencing an environment the file specified will be based on the root
directory of the environment.

get_file

The cp.get_file function can be used on the minion to download a file from
the master, the syntax looks like this:

salt '*' cp.get_file salt://vimrc /etc/vimrc

This will instruct all Salt minions to download the vimrc file and copy it
to /etc/vimrc

Template rendering can be enabled on both the source and destination file names
like so:

salt '*' cp.get_file "salt://{{grains.os}}/vimrc" /etc/vimrc template=jinja

This example would instruct all Salt minions to download the vimrc from a
directory with the same name as their OS grain and copy it to /etc/vimrc

For larger files, the cp.get_file module also supports gzip compression.
Because gzip is CPU-intensive, this should only be used in
scenarios where the compression ratio is very high (e.g. pretty-printed JSON
or YAML files).

Use the gzip named argument to enable it. Valid values are 1..9,
where 1 is the lightest compression and 9 the heaviest. 1 uses the least CPU
on the master (and minion), 9 uses the most.

salt '*' cp.get_file salt://vimrc /etc/vimrc gzip=5

Finally, note that by default cp.get_file does not create new destination
directories if they do not exist. To change this, use the makedirs argument:

salt '*' cp.get_file salt://vimrc /etc/vim/vimrc makedirs=True

In this example, /etc/vim/ would be created if it didn't already exist.

get_dir

The cp.get_dir function can be used on the minion to download an entire
directory from the master. The syntax is very similar to get_file:

salt '*' cp.get_dir salt://etc/apache2 /etc

cp.get_dir supports template rendering and gzip compression arguments just
like get_file:

salt '*' cp.get_dir salt://etc/{{pillar.webserver}} /etc gzip=5 template=jinja

File Server Client API

A client API is available which allows for modules and applications to be
written which make use of the Salt file server.

The file server uses the same authentication and encryption used by the rest
of the Salt system for network communication.

FileClient Class

The FileClient class is used to set up the communication from the minion to
the master. When creating a FileClient object the minion configuration needs
to be passed in. When using the FileClient from within a minion module the
built in __opts__ data can be passed:

import salt.minion

def get_file(path, dest, env='base'):
 '''
 Used to get a single file from the Salt master

 CLI Example:
 salt '*' cp.get_file salt://vimrc /etc/vimrc
 '''
 # Create the FileClient object
 client = salt.minion.FileClient(__opts__)
 # Call get_file
 return client.get_file(path, dest, False, env)

Using the FileClient class outside of a minion module where the __opts__
data is not available, it needs to be generated:

import salt.minion
import salt.config

def get_file(path, dest, env='base'):
 '''
 Used to get a single file from the Salt master
 '''
 # Get the configuration data
 opts = salt.config.minion_config('/etc/salt/minion')
 # Create the FileClient object
 client = salt.minion.FileClient(opts)
 # Call get_file
 return client.get_file(path, dest, False, env)

Full list of builtin fileserver modules

	gitfs
	The backend for the git based file server system.

	hgfs
	The backed for the mercurial based file server system.

	roots
	The default file server backend

	s3fs
	The backend for a fileserver based on Amazon S3

salt.fileserver.gitfs

The backend for the git based file server system.

After enabling this backend, branches and tags in a remote git repository
are exposed to salt as different environments. This feature is managed by
the fileserver_backend option in the salt master config.

	depends:	
	gitpython Python module

	
salt.fileserver.gitfs.dir_list(load)

	Return a list of all directories on the master

	
salt.fileserver.gitfs.envs()

	Return a list of refs that can be used as environments

	
salt.fileserver.gitfs.file_hash(load, fnd)

	Return a file hash, the hash type is set in the master config file

	
salt.fileserver.gitfs.file_list(load)

	Return a list of all files on the file server in a specified
environment

	
salt.fileserver.gitfs.file_list_emptydirs(load)

	Return a list of all empty directories on the master

	
salt.fileserver.gitfs.find_file(path, short='base', **kwargs)

	Find the first file to match the path and ref, read the file out of git
and send the path to the newly cached file

	
salt.fileserver.gitfs.init()

	Return the git repo object for this session

	
salt.fileserver.gitfs.serve_file(load, fnd)

	Return a chunk from a file based on the data received

	
salt.fileserver.gitfs.update()

	Execute a git pull on all of the repos

salt.fileserver.hgfs

The backed for the mercurial based file server system.

After enabling this backend, branches, bookmarks, and tags in a remote
mercurial repository are exposed to salt as different environments. This
feature is managed by the fileserver_backend option in the salt master config.

This fileserver has an additional option hgfs_branch_method that will set
the desired branch method. Possible values are: branches, bookmarks, or
mixed. If using branches or mixed, the default branch will be
mapped to base.

	depends:	
	mercurial

	
salt.fileserver.hgfs.dir_list(load)

	Return a list of all directories on the master

	
salt.fileserver.hgfs.envs()

	Return a list of refs that can be used as environments

	
salt.fileserver.hgfs.file_hash(load, fnd)

	Return a file hash, the hash type is set in the master config file

	
salt.fileserver.hgfs.file_list(load)

	Return a list of all files on the file server in a specified
environment

	
salt.fileserver.hgfs.file_list_emptydirs(load)

	Return a list of all empty directories on the master

	
salt.fileserver.hgfs.find_file(path, short='base', **kwargs)

	Find the first file to match the path and ref, read the file out of hg
and send the path to the newly cached file

	
salt.fileserver.hgfs.init()

	Return the hg repo object for this session

	
salt.fileserver.hgfs.serve_file(load, fnd)

	Return a chunk from a file based on the data received

	
salt.fileserver.hgfs.update()

	Execute a hg pull on all of the repos

salt.fileserver.roots

The default file server backend

Based on the environments in the file_roots configuration
option.

	
salt.fileserver.roots.dir_list(load)

	Return a list of all directories on the master

	
salt.fileserver.roots.envs()

	Return the file server environments

	
salt.fileserver.roots.file_hash(load, fnd)

	Return a file hash, the hash type is set in the master config file

	
salt.fileserver.roots.file_list(load)

	Return a list of all files on the file server in a specified
environment

	
salt.fileserver.roots.file_list_emptydirs(load)

	Return a list of all empty directories on the master

	
salt.fileserver.roots.find_file(path, env='base', **kwargs)

	Search the environment for the relative path

	
salt.fileserver.roots.serve_file(load, fnd)

	Return a chunk from a file based on the data received

	
salt.fileserver.roots.update()

	When we are asked to update (regular interval) lets reap the cache

salt.fileserver.s3fs

The backend for a fileserver based on Amazon S3

See also

Salt File Server

This backend exposes directories in S3 buckets as Salt environments. This
feature is managed by the fileserver_backend option in the Salt
Master config.

	configuration:	S3 credentials can be either set in the master file using:

S3 credentials can be set in the master config file with:

s3.keyid: GKTADJGHEIQSXMKKRBJ08H
s3.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Alternatively, if on EC2 these credentials can be automatically loaded from
instance metadata.

This fileserver supports two modes of operation for the buckets:

	A single bucket per environment:

s3.buckets:
 production:
 - bucket1
 - bucket2
 staging:
 - bucket3
 - bucket4

	Or multiple environments per bucket:

s3.buckets:
 - bucket1
 - bucket2
 - bucket3
 - bucket4

Note that bucket names must be all lowercase both in the AWS console
and in Salt, otherwise you may encounter "SignatureDoesNotMatch" errors.

A multiple environment bucket must adhere to the following root directory
structure:

s3://<bucket name>/<environment>/<files>

	
salt.fileserver.s3fs.dir_list(load)

	Return a list of all directories on the master

	
salt.fileserver.s3fs.envs()

	Return a list of directories within the bucket that can be
used as environments.

	
salt.fileserver.s3fs.file_hash(load, fnd)

	Return an MD5 file hash

	
salt.fileserver.s3fs.file_list(load)

	Return a list of all files on the file server in a specified environment

	
salt.fileserver.s3fs.file_list_emptydirs(load)

	Return a list of all empty directories on the master

	
salt.fileserver.s3fs.find_file(path, env='base', **kwargs)

	Look through the buckets cache file for a match.
If the field is found, it is retrieved from S3 only if its cached version
is missing, or if the MD5 does not match.

	
salt.fileserver.s3fs.serve_file(load, fnd)

	Return a chunk from a file based on the data received

	
salt.fileserver.s3fs.update()

	Update the cache file for the bucket.

Configuration file examples

	Example master configuration file

	Example minion configuration file

Example master configuration file

Primary configuration settings
##
This configuration file is used to manage the behavior of the Salt Master
Values that are commented out but have no space after the comment are
defaults that need not be set in the config. If there is a space after the
comment that the value is presented as an example and is not the default.

Per default, the master will automatically include all config files
from master.d/*.conf (master.d is a directory in the same directory
as the main master config file)
#default_include: master.d/*.conf

The address of the interface to bind to
#interface: 0.0.0.0

Whether the master should listen for IPv6 connections. If this is set to True,
the interface option must be adjusted too (for example: "interface: '::'")
#ipv6: False

The tcp port used by the publisher
#publish_port: 4505

The user to run the salt-master as. Salt will update all permissions to
allow the specified user to run the master. If the modified files cause
conflicts set verify_env to False.
#user: root

Max open files
Each minion connecting to the master uses AT LEAST one file descriptor, the
master subscription connection. If enough minions connect you might start
seeing on the console(and then salt-master crashes):
Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)
#
By default this value will be the one of `ulimit -Hn`, ie, the hard limit for
max open files.
#
If you wish to set a different value than the default one, uncomment and
configure this setting. Remember that this value CANNOT be higher than the
hard limit. Raising the hard limit depends on your OS and/or distribution,
a good way to find the limit is to search the internet for(for example):
raise max open files hard limit debian
#
#max_open_files: 100000

The number of worker threads to start, these threads are used to manage
return calls made from minions to the master, if the master seems to be
running slowly, increase the number of threads
#worker_threads: 5

The port used by the communication interface. The ret (return) port is the
interface used for the file server, authentication, job returnes, etc.
#ret_port: 4506

Specify the location of the daemon process ID file
#pidfile: /var/run/salt-master.pid

The root directory prepended to these options: pki_dir, cachedir,
sock_dir, log_file, autosign_file, extension_modules, key_logfile, pidfile.
#root_dir: /

Directory used to store public key data
#pki_dir: /etc/salt/pki/master

Directory to store job and cache data
#cachedir: /var/cache/salt/master

Verify and set permissions on configuration directories at startup
#verify_env: True

Set the number of hours to keep old job information in the job cache
#keep_jobs: 24

Set the default timeout for the salt command and api, the default is 5
seconds
#timeout: 5

The loop_interval option controls the seconds for the master's maintinance
process check cycle. This process updates file server backends, cleans the
job cache and executes the scheduler.
#loop_interval: 60

Set the default outputter used by the salt command. The default is "nested"
#output: nested

By default output is colored, to disable colored output set the color value
to False
#color: True

Set the directory used to hold unix sockets
#sock_dir: /var/run/salt/master

The master maintains a job cache, while this is a great addition it can be
a burden on the master for larger deployments (over 5000 minions).
Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended.
#
#job_cache: True

Cache minion grains and pillar data in the cachedir.
#minion_data_cache: True

The master can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main master configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the master will log a warning message.
#
#
Include a config file from some other path:
#include: /etc/salt/extra_config
#
Include config from several files and directories:
#include:
- /etc/salt/extra_config

Security settings
##
Enable "open mode", this mode still maintains encryption, but turns off
authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!
#open_mode: False

Enable auto_accept, this setting will automatically accept all incoming
public keys from the minions. Note that this is insecure.
#auto_accept: False

If the autosign_file is specified only incoming keys specified in
the autosign_file will be automatically accepted. This is insecure.
Regular expressions as well as globing lines are supported.
#autosign_file: /etc/salt/autosign.conf

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
If an autosign_file is specified, enabling permissive_pki_access will allow group access
to that specific file.
#permissive_pki_access: False

Allow users on the master access to execute specific commands on minions.
This setting should be treated with care since it opens up execution
capabilities to non root users. By default this capability is completely
disabled.
#
#client_acl:
larry:
- test.ping
- network.*
#

Blacklist any of the following users or modules
#
This example would blacklist all non sudo users, including root from
running any commands. It would also blacklist any use of the "cmd"
module.
This is completely disabled by default.
#
#client_acl_blacklist:
users:
- root
- '^(?!sudo_).*$' # all non sudo users
modules:
- cmd

The external auth system uses the Salt auth modules to authenticate and
validate users to access areas of the Salt system.
#
#external_auth:
pam:
fred:
- test.*
#

Time (in seconds) for a newly generated token to live. Default: 12 hours
#token_expire: 43200

Allow minions to push files to the master. This is disabled by default, for
security purposes.
#file_recv: False

Master Module Management
##
Manage how master side modules are loaded

Add any additional locations to look for master runners
#runner_dirs: []

Enable Cython for master side modules
#cython_enable: False

State System settings
##
The state system uses a "top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the
root of the base environment as defined in "File Server settings" below.
#state_top: top.sls

The master_tops option replaces the external_nodes option by creating
a plugable system for the generation of external top data. The external_nodes
option is deprecated by the master_tops option.
To gain the capabilities of the classic external_nodes system, use the
following configuration:
master_tops:
ext_nodes: <Shell command which returns yaml>
#
#master_tops: {}

The external_nodes option allows Salt to gather data that would normally be
placed in a top file. The external_nodes option is the executable that will
return the ENC data. Remember that Salt will look for external nodes AND top
files and combine the results if both are enabled!
#external_nodes: None

The renderer to use on the minions to render the state data
#renderer: yaml_jinja

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution, defaults to False
#failhard: False

The state_verbose and state_output settings can be used to change the way
state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False
all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting changes if the output is the full multi line
output for each changed state if set to 'full', but if set to 'terse'
the output will be shortened to a single line. If set to 'mixed', the output
will be terse unless a state failed, in which case that output will be full.
#state_output: full

File Server settings
##
Salt runs a lightweight file server written in zeromq to deliver files to
minions. This file server is built into the master daemon and does not
require a dedicated port.

The file server works on environments passed to the master, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

#file_roots:
base:
- /srv/salt

The hash_type is the hash to use when discovering the hash of a file on
the master server. The default is md5, but sha1, sha224, sha256, sha384
and sha512 are also supported.
#hash_type: md5

The buffer size in the file server can be adjusted here:
#file_buffer_size: 1048576

A regular expression (or a list of expressions) that will be matched
against the file path before syncing the modules and states to the minions.
This includes files affected by the file.recurse state.
For example, if you manage your custom modules and states in subversion
and don't want all the '.svn' folders and content synced to your minions,
you could set this to '/\.svn($|/)'. By default nothing is ignored.
#
#file_ignore_regex:
- '/\.svn($|/)'
- '/\.git($|/)'

A file glob (or list of file globs) that will be matched against the file
path before syncing the modules and states to the minions. This is similar
to file_ignore_regex above, but works on globs instead of regex. By default
nothing is ignored.
#
file_ignore_glob:
- '*.pyc'
- '*/somefolder/*.bak'
- '*.swp'

File Server Backend
Salt supports a modular fileserver backend system, this system allows
the salt master to link directly to third party systems to gather and
manage the files available to minions. Multiple backends can be
configured and will be searched for the requested file in the order in which
they are defined here. The default setting only enables the standard backend
"roots" which uses the "file_roots" option.
#
#fileserver_backend:
- roots
#
To use multiple backends list them in the order they are searched:
#
#fileserver_backend:
- git
- roots

Git fileserver backend configuration
When using the git fileserver backend at least one git remote needs to be
defined. The user running the salt master will need read access to the repo.
#
#gitfs_remotes:
- git://github.com/saltstack/salt-states.git
- file:///var/git/saltmaster
#
The repos will be searched in order to find the file requested by a client
and the first repo to have the file will return it.
When using the git backend branches and tags are translated into salt
environments.
Note: file:// repos will be treated as a remote, so refs you want used must
exist in that repo as *local* refs.

The gitfs_root option gives the ability to serve files from a subdirectory
within the repository. The path is defined relative to the root of the
repository and defaults to the repository root.
#gitfs_root: somefolder/otherfolder

Pillar settings
##
Salt Pillars allow for the building of global data that can be made selectively
available to different minions based on minion grain filtering. The Salt
Pillar is laid out in the same fashion as the file server, with environments,
a top file and sls files. However, pillar data does not need to be in the
highstate format, and is generally just key/value pairs.

#pillar_roots:
base:
- /srv/pillar

#ext_pillar:
- hiera: /etc/hiera.yaml
- cmd_yaml: cat /etc/salt/yaml

The pillar_opts option adds the master configuration file data to a dict in
the pillar called "master". This is used to set simple configurations in the
master config file that can then be used on minions.
#pillar_opts: True

Syndic settings
##
The Salt syndic is used to pass commands through a master from a higher
master. Using the syndic is simple, if this is a master that will have
syndic servers(s) below it set the "order_masters" setting to True, if this
is a master that will be running a syndic daemon for passthrough the
"syndic_master" setting needs to be set to the location of the master server
to receive commands from.

Set the order_masters setting to True if this master will command lower
masters' syndic interfaces.
#order_masters: False

If this master will be running a salt syndic daemon, syndic_master tells
this master where to receive commands from.
#syndic_master: masterofmaster

This is the 'ret_port' of the MasterOfMaster
#syndic_master_port: 4506

PID file of the syndic daemon
#syndic_pidfile: /var/run/salt-syndic.pid

LOG file of the syndic daemon
#syndic_log_file: syndic.log

Peer Publish settings
##
Salt minions can send commands to other minions, but only if the minion is
allowed to. By default "Peer Publication" is disabled, and when enabled it
is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

The configuration uses regular expressions to match minions and then a list
of regular expressions to match functions. The following will allow the
minion authenticated as foo.example.com to execute functions from the test
and pkg modules.
#
#peer:
foo.example.com:
- test.*
- pkg.*
#
This will allow all minions to execute all commands:
#
#peer:
.*:
- .*
#
This is not recommended, since it would allow anyone who gets root on any
single minion to instantly have root on all of the minions!

Minions can also be allowed to execute runners from the salt master.
Since executing a runner from the minion could be considered a security risk,
it needs to be enabled. This setting functions just like the peer setting
except that it opens up runners instead of module functions.
#
All peer runner support is turned off by default and must be enabled before
using. This will enable all peer runners for all minions:
#
#peer_run:
.*:
- .*
#
To enable just the manage.up runner for the minion foo.example.com:
#
#peer_run:
foo.example.com:
- manage.up

Logging settings
##
The location of the master log file
The master log can be sent to a regular file, local path name, or network
location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
``file:///dev/log``), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/master
#log_file: file:///dev/log
#log_file: udp://loghost:10514

#log_file: /var/log/salt/master
#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
#log_level: warning

The level of messages to send to the log file.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
#log_level_logfile: warning

The date and time format used in log messages. Allowed date/time formating
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S'
#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#log_fmt_console: '[%(levelname)-8s] %(message)s'
#log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:
log_granular_levels:
'salt': 'warning',
'salt.modules': 'debug'
#
#log_granular_levels: {}

Node Groups
##
Node groups allow for logical groupings of minion nodes.
A group consists of a group name and a compound target.
#
#nodegroups:
group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com and bl*.domain.com'
group2: 'G@os:Debian and foo.domain.com'

Range Cluster settings
##
The range server (and optional port) that serves your cluster information
https://github.com/grierj/range/wiki/Introduction-to-Range-with-YAML-files
#
#range_server: range:80

Windows Software Repo settings
##
Location of the repo on the master
#win_repo: '/srv/salt/win/repo'

Location of the master's repo cache file
#win_repo_mastercachefile: '/srv/salt/win/repo/winrepo.p'

List of git repositories to include with the local repo
#win_gitrepos:
- 'https://github.com/saltstack/salt-winrepo.git'

Example minion configuration file

Primary configuration settings
##

Per default the minion will automatically include all config files
from minion.d/*.conf (minion.d is a directory in the same directory
as the main minion config file).
#default_include: minion.d/*.conf

Set the location of the salt master server, if the master server cannot be
resolved, then the minion will fail to start.
#master: salt

Set whether the minion should connect to the master via IPv6
#ipv6: False

Set the number of seconds to wait before attempting to resolve
the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.
retry_dns: 30

Set the port used by the master reply and authentication server
#master_port: 4506

The user to run salt
#user: root

Specify the location of the daemon process ID file
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The directory to store the pki information in
#pki_dir: /etc/salt/pki/minion

Explicitly declare the id for this minion to use, if left commented the id
will be the hostname as returned by the python call: socket.getfqdn()
Since salt uses detached ids it is possible to run multiple minions on the
same machine but with different ids, this can be useful for salt compute
clusters.
#id:

Append a domain to a hostname in the event that it does not exist. This is
useful for systems where socket.getfqdn() does not actually result in a
FQDN (for instance, Solaris).
#append_domain:

Custom static grains for this minion can be specified here and used in SLS
files just like all other grains. This example sets 4 custom grains, with
the 'roles' grain having two values that can be matched against:
#grains:
roles:
- webserver
- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

Where cache data goes
#cachedir: /var/cache/salt/minion

Verify and set permissions on configuration directories at startup
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this
can be a good way to keep track of jobs the minion has executed
(on the minion side). By default this feature is disabled, to enable
set cache_jobs to True
#cache_jobs: False

set the directory used to hold unix sockets
#sock_dir: /var/run/salt/minion

Set the default outputter used by the salt-call command. The default is
"nested"
#output: nested
#
By default output is colored, to disable colored output set the color value
to False
#color: True

Backup files that are replaced by file.managed and file.recurse under
'cachedir'/file_backups relative to their original location and appended
with a timestamp. The only valid setting is "minion". Disabled by default.
#
Alternatively this can be specified for each file in state files:
#
/etc/ssh/sshd_config:
file.managed:
- source: salt://ssh/sshd_config
- backup: minion
#
#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the time, in
seconds, between those reconnection attempts.
#acceptance_wait_time: 10

If this is nonzero, the time between reconnection attempts will increase by
acceptance_wait_time seconds per iteration, up to this maximum. If this is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0

When the master key changes, the minion will try to re-auth itself to receive
the new master key. In larger environments this can cause a SYN flood on the
master because all minions try to re-auth immediately. To prevent this and
have a minion wait for a random amount of time, use this optional parameter.
The wait-time will be a random number of seconds between
0 and the defined value.
#random_reauth_delay: 60

If you don't have any problems with syn-floods, dont bother with the
three recon_* settings described below, just leave the defaults!
#
The ZeroMQ pull-socket that binds to the masters publishing interface tries
to reconnect immediately, if the socket is disconnected (for example if
the master processes are restarted). In large setups this will have all
minions reconnect immediately which might flood the master (the ZeroMQ-default
is usually a 100ms delay). To prevent this, these three recon_* settings
can be used.
#
recon_default: the interval in milliseconds that the socket should wait before
trying to reconnect to the master (100ms = 1 second)
#
recon_max: the maximum time a socket should wait. each interval the time to wait
is calculated by doubling the previous time. if recon_max is reached,
it starts again at recon_default. Short example:
#
reconnect 1: the socket will wait 'recon_default' milliseconds
reconnect 2: 'recon_default' * 2
reconnect 3: ('recon_default' * 2) * 2
reconnect 4: value from previous interval * 2
reconnect 5: value from previous interval * 2
reconnect x: if value >= recon_max, it starts again with recon_default
#
recon_randomize: generate a random wait time on minion start. The wait time will
be a random value between recon_default and recon_default +
recon_max. Having all minions reconnect with the same recon_default
and recon_max value kind of defeats the purpose of being able to
change these settings. If all minions have the same values and your
setup is quite large (several thousand minions), they will still
flood the master. The desired behaviour is to have timeframe within
all minions try to reconnect.

Example on how to use these settings:
The goal: have all minions reconnect within a 60 second timeframe on a disconnect
#
The settings:
#recon_default: 1000
#recon_max: 59000
#recon_randomize: True
#
Each minion will have a randomized reconnect value between 'recon_default'
and 'recon_default + recon_max', which in this example means between 1000ms
60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random
value is 11 seconds (or 11000ms).
#
reconnect 1: wait 11 seconds
reconnect 2: wait 22 seconds
reconnect 3: wait 33 seconds
reconnect 4: wait 44 seconds
reconnect 5: wait 55 seconds
reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect 7: wait 11 seconds
reconnect 8: wait 22 seconds
reconnect 9: wait 33 seconds
reconnect x: etc.
#
In a setup with ~6000 thousand hosts these settings would average the reconnects
to about 100 per second and all hosts would be reconnected within 60 seconds.
#recon_default: 100
#recon_max: 5000
#recon_randomize: False

The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to a
sane 60 seconds, but if the minion scheduler needs to be evaluated more
often lower this value
#loop_interval: 60

When healing, a dns_check is run. This is to make sure that the originally
resolved dns has not changed. If this is something that does not happen in
your environment, set this value to False.
#dns_check: True

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: ipc
#
Overwrite the default tcp ports used by the minion when in tcp mode
#tcp_pub_port: 4510
#tcp_pull_port: 4511

The minion can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.
#
#
Include a config file from some other path:
include: /etc/salt/extra_config
#
Include config from several files and directories:
#include:
- /etc/salt/extra_config
- /etc/roles/webserver

Minion module management
##
Disable specific modules. This allows the admin to limit the level of
access the master has to the minion
#disable_modules: [cmd,test]
#disable_returners: []
#
Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.
Specify a list of extra directories to search for minion modules and
returners. These paths must be fully qualified!
#module_dirs: []
#returner_dirs: []
#states_dirs: []
#render_dirs: []
#
A module provider can be statically overwritten or extended for the minion
via the providers option, in this case the default module will be
overwritten by the specified module. In this example the pkg module will
be provided by the yumpkg5 module instead of the system default.
#
#providers:
pkg: yumpkg5
#
Enable Cython modules searching and loading. (Default: False)
#cython_enable: False
#

State Management Settings
###
The state management system executes all of the state templates on the minion
to enable more granular control of system state management. The type of
template and serialization used for state management needs to be configured
on the minion, the default renderer is yaml_jinja. This is a yaml file
rendered from a jinja template, the available options are:
yaml_jinja
yaml_mako
yaml_wempy
json_jinja
json_mako
json_wempy
#
#renderer: yaml_jinja
#
The failhard option tells the minions to stop immediately after the first
failure detected in the state execution, defaults to False
#failhard: False
#
autoload_dynamic_modules Turns on automatic loading of modules found in the
environments on the master. This is turned on by default, to turn of
autoloading modules when states run set this value to False
#autoload_dynamic_modules: True
#
clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module is
not on the master it will be deleted from the minion. By default this is
enabled and can be disabled by changing this value to False
#clean_dynamic_modules: True
#
Normally the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.
#environment: None
#
If using the local file directory, then the state top file name needs to be
defined, by default this is top.sls.
#state_top: top.sls
#
Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate
'sls' -- Read in the sls_list option and execute the named sls files
'top' -- Read top_file option and execute based on that file on the Master
#startup_states: ''
#
list of states to run when the minion starts up if startup_states is 'sls'
#sls_list:
- edit.vim
- hyper
#
top file to execute if startup_states is 'top'
#top_file: ''

File Directory Settings
##
The Salt Minion can redirect all file server operations to a local directory,
this allows for the same state tree that is on the master to be used if
copied completely onto the minion. This is a literal copy of the settings on
the master but used to reference a local directory on the minion.

Set the file client. The client defaults to looking on the master server for
files, but can be directed to look at the local file directory setting
defined below by setting it to local.
#file_client: remote

The file directory works on environments passed to the minion, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states
#
#file_roots:
base:
- /srv/salt

The hash_type is the hash to use when discovering the hash of a file in
the local fileserver. The default is md5, but sha1, sha224, sha256, sha384
and sha512 are also supported.
#hash_type: md5

The Salt pillar is searched for locally if file_client is set to local. If
this is the case, and pillar data is defined, then the pillar_roots need to
also be configured on the minion:
#pillar_roots:
base:
- /srv/pillar

Security settings
###
Enable "open mode", this mode still maintains encryption, but turns off
authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!
#open_mode: False

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
#permissive_pki_access: False

The state_verbose and state_output settings can be used to change the way
state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False
all data that has a result of True and no changes will be suppressed.
#state_verbose: True
#
The state_output setting changes if the output is the full multi line
output for each changed state if set to 'full', but if set to 'terse'
the output will be shortened to a single line.
#state_output: full
#
Fingerprint of the master public key to double verify the master is valid,
the master fingerprint can be found by running "salt-key -F master" on the
salt master.
#master_finger: ''

Thread settings
###
Disable multiprocessing support, by default when a minion receives a
publication a new process is spawned and the command is executed therein.
#multiprocessing: True

Logging settings
##
The location of the minion log file
The minion log can be sent to a regular file, local path name, or network
location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
``file:///dev/log``), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/minion
#log_file: file:///dev/log
#log_file: udp://loghost:10514
#
#log_file: /var/log/salt/minion
#key_logfile: /var/log/salt/key
#
The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
Default: 'warning'
#log_level: warning
#
The level of messages to send to the log file.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
Default: 'warning'
#log_level_logfile:

The date and time format used in log messages. Allowed date/time formating
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S'
#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'
#
The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#log_fmt_console: '[%(levelname)-8s] %(message)s'
#log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'
#
This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:
log_granular_levels:
'salt': 'warning',
'salt.modules': 'debug'
#
#log_granular_levels: {}

Module configuration
###
Salt allows for modules to be passed arbitrary configuration data, any data
passed here in valid yaml format will be passed on to the salt minion modules
for use. It is STRONGLY recommended that a naming convention be used in which
the module name is followed by a . and then the value. Also, all top level
data must be applied via the yaml dict construct, some examples:
#
You can specify that all modules should run in test mode:
#test: True
#
A simple value for the test module:
#test.foo: foo
#
A list for the test module:
#test.bar: [baz,quo]
#
A dict for the test module:
#test.baz: {spam: sausage, cheese: bread}

Update settings
###
Using the features in Esky, a salt minion can both run as a frozen app and
be updated on the fly. These options control how the update process
(saltutil.update()) behaves.
#
The url for finding and downloading updates. Disabled by default.
#update_url: False
#
The list of services to restart after a successful update. Empty by default.
#update_restart_services: []

Keepalive settings
##
ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the OS. If connections between the minion and the master pass through
a state tracking device such as a firewall or VPN gateway, there is
the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.
#
Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the OS defaults (-1), on Linux, typically disabled. Default True, enabled.
#tcp_keepalive: True
#
How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, OS default (-1) is typically 7200 seconds
on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.
#tcp_keepalive_idle: 300
#
How many lost probes are needed to consider the connection lost. Default -1
to use OS defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_probes.
#tcp_keepalive_cnt: -1
#
How often, in seconds, to send keepalives after the first one. Default -1 to
use OS defaults, typically 75 seconds on Linux, see
/proc/sys/net/ipv4/tcp_keepalive_intvl.
#tcp_keepalive_intvl: -1

Windows Software settings
##
Location of the repository cache file on the master
#win_repo_cachefile: 'salt://win/repo/winrepo.p'

Configuring the Salt Master

The Salt system is amazingly simple and easy to configure, the two components
of the Salt system each have a respective configuration file. The
salt-master is configured via the master configuration file, and the
salt-minion is configured via the minion configuration file.

See also

example master configuration file

The configuration file for the salt-master is located at
/etc/salt/master. The available options are as follows:

Primary Master Configuration

interface

Default: 0.0.0.0 (all interfaces)

The local interface to bind to.

interface: 192.168.0.1

publish_port

Default: 4505

The network port to set up the publication interface

publish_port: 4505

user

Default: root

The user to run the Salt processes

user: root

max_open_files

Default: max_open_files

Each minion connecting to the master uses AT LEAST one file descriptor, the
master subscription connection. If enough minions connect you might start
seeing on the console(and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)

By default this value will be the one of ulimit -Hn, i.e., the hard limit for
max open files.

If you wish to set a different value than the default one, uncomment and
configure this setting. Remember that this value CANNOT be higher than the
hard limit. Raising the hard limit depends on your OS and/or distribution,
a good way to find the limit is to search the internet for(for example):

raise max open files hard limit debian

max_open_files: 100000

worker_threads

Default: 5

The number of threads to start for receiving commands and replies from minions.
If minions are stalling on replies because you have many minions, raise the
worker_threads value.

Worker threads should not be put below 3 when using the peer system, but can
drop down to 1 worker otherwise.

worker_threads: 5

ret_port

Default: 4506

The port used by the return server, this is the server used by Salt to receive
execution returns and command executions.

ret_port: 4506

pidfile

Default: /var/run/salt-master.pid

Specify the location of the master pidfile

pidfile: /var/run/salt-master.pid

root_dir

Default: /

The system root directory to operate from, change this to make Salt run from
an alternative root

root_dir: /

pki_dir

Default: /etc/salt/pki

The directory to store the pki authentication keys.

pki_dir: /etc/salt/pki

cachedir

Default: /var/cache/salt

The location used to store cache information, particularly the job information
for executed salt commands.

cachedir: /var/cache/salt

keep_jobs

Default: 24

Set the number of hours to keep old job information

job_cache

Default: True

The master maintains a job cache, while this is a great addition it can be
a burden on the master for larger deployments (over 5000 minions).
Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended. Normally it is wise to make
sure the master has access to a faster IO system or a tmpfs is mounted to the
jobs dir

ext_job_cache

Default: ''

Used to specify a default returner for all minions, when this option is set
the specified returner needs to be properly configured and the minions will
always default to sending returns to this returner. This will also disable the
local job cache on the master

ext_job_cache: redis

minion_data_cache

Default: True

The minion data cache is a cache of information about the minions stored on the
master, this information is primarily the pillar and grains data. The data is
cached in the Master cachedir under the name of the minion and used to pre
determine what minions are expected to reply from executions.

minion_cache_dir: True

enforce_mine_cache

Default: False

By-default when disabling the minion_data_cache mine will stop working since
it is based on cached data, by enabling this option we explicitly enabling
only the cache for the mine system.

enforce_mine_cache: False

sock_dir

Default:: /tmp/salt-unix

Set the location to use for creating Unix sockets for master process
communication

Master Security Settings

open_mode

Default: False

Open mode is a dangerous security feature. One problem encountered with pki
authentication systems is that keys can become "mixed up" and authentication
begins to fail. Open mode turns off authentication and tells the master to
accept all authentication. This will clean up the pki keys received from the
minions. Open mode should not be turned on for general use. Open mode should
only be used for a short period of time to clean up pki keys. To turn on open
mode set this value to True.

open_mode: False

auto_accept

Default: False

Enable auto_accept. This setting will automatically accept all incoming
public keys from the minions

auto_accept: False

autosign_file

Default not defined

If the autosign_file is specified incoming keys specified in the autosign_file
will be automatically accepted. Matches will be searched for first by string
comparison, then by globbing, then by full-string regex matching. This is
insecure!

client_acl

Default: {}

Enable user accounts on the master to execute specific modules. These modules
can be expressed as regular expressions

client_acl:
 fred:
 - test.ping
 - pkg.*

client_acl_blacklist

Default: {}

Blacklist users or modules

This example would blacklist all non sudo users, including root from
running any commands. It would also blacklist any use of the "cmd"
module.

This is completely disabled by default.

client_acl_blacklist:
 users:
 - root
 - '^(?!sudo_).*$' # all non sudo users
 modules:
 - cmd

external_auth

Default: {}

The external auth system uses the Salt auth modules to authenticate and
validate users to access areas of the Salt system.

external_auth:
 pam:
 fred:
 - test.*

token_expire

Default: 43200

Time (in seconds) for a newly generated token to live. Default: 12 hours

token_expire: 43200

file_recv

Default: False

Allow minions to push files to the master. This is disabled by default, for
security purposes.

file_recv: False

Master Module Management

runner_dirs

Default: []

Set additional directories to search for runner modules

cython_enable

Default: False

Set to true to enable cython modules (.pyx files) to be compiled on the fly on
the Salt master

cython_enable: False

Master State System Settings

state_verbose

Default: False

state_verbose allows for the data returned from the minion to be more
verbose. Normally only states that fail or states that have changes are
returned, but setting state_verbose to True will return all states that
were checked

state_verbose: True

state_output

Default: full

The state_output setting changes if the output is the full multi line
output for each changed state if set to 'full', but if set to 'terse'
the output will be shortened to a single line. If set to 'mixed', the output
will be terse unless a state failed, in which case that output will be full.
If set to 'changes', the output will be full unless the state didn't change.

state_output: full

state_top

Default: top.sls

The state system uses a "top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the
root of the base environment

state_top: top.sls

external_nodes

Default: None

The external_nodes option allows Salt to gather data that would normally be
placed in a top file from and external node controller. The external_nodes
option is the executable that will return the ENC data. Remember that Salt
will look for external nodes AND top files and combine the results if both
are enabled and available!

external_nodes: cobbler-ext-nodes

renderer

Default: yaml_jinja

The renderer to use on the minions to render the state data

renderer: yaml_jinja

failhard

Default:: False

Set the global failhard flag, this informs all states to stop running states
at the moment a single state fails

failhard: False

test

Default:: False

Set all state calls to only test if they are going to actually make changes
or just post what changes are going to be made

test: False

Master File Server Settings

file_roots

Default:

base:
 - /srv/salt

Salt runs a lightweight file server written in ZeroMQ to deliver files to
minions. This file server is built into the master daemon and does not
require a dedicated port.

The file server works on environments passed to the master. Each environment
can have multiple root directories. The subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:

file_roots:
 base:
 - /srv/salt
 dev:
 - /srv/salt/dev/services
 - /srv/salt/dev/states
 prod:
 - /srv/salt/prod/services
 - /srv/salt/prod/states

hash_type

Default: md5

The hash_type is the hash to use when discovering the hash of a file on
the master server. The default is md5, but sha1, sha224, sha256, sha384
and sha512 are also supported.

hash_type: md5

file_buffer_size

Default: 1048576

The buffer size in the file server in bytes

file_buffer_size: 1048576

Pillar Configuration

pillar_roots

Default:

base:
 - /srv/pillar

Set the environments and directories used to hold pillar sls data. This
configuration is the same as file_roots:

pillar_roots:
 base:
 - /srv/pillar
 dev:
 - /srv/pillar/dev
 prod:
 - /srv/pillar/prod

ext_pillar

The ext_pillar option allows for any number of external pillar interfaces to be
called when populating pillar data. The configuration is based on ext_pillar
functions. The available ext_pillar functions are: hiera, cmd_yaml. By default
the ext_pillar interface is not configured to run.

Default:: None

ext_pillar:
 - hiera: /etc/hiera.yaml
 - cmd_yaml: cat /etc/salt/yaml
 - reclass:
 inventory_base_uri: /etc/reclass

There are additional details at Pillars

Syndic Server Settings

A Salt syndic is a Salt master used to pass commands from a higher Salt master to
minions below the syndic. Using the syndic is simple. If this is a master that
will have syndic servers(s) below it, set the "order_masters" setting to True. If this
is a master that will be running a syndic daemon for passthrough the
"syndic_master" setting needs to be set to the location of the master server

Do not not forget that in other word it means that it shares with the local minion it's ID and PKI_DIR.

order_masters

Default: False

Extra data needs to be sent with publications if the master is controlling a
lower level master via a syndic minion. If this is the case the order_masters
value must be set to True

order_masters: False

syndic_master

Default: None

If this master will be running a salt-syndic to connect to a higher level
master, specify the higher level master with this configuration value

syndic_master: masterofmasters

syndic_master_port

Default: 4506

If this master will be running a salt-syndic to connect to a higher level
master, specify the higher level master port with this configuration value

syndic_master_port: 4506

syndic_log_file

Default: syndic.log

If this master will be running a salt-syndic to connect to a higher level
master, specify the log_file of the syndic daemon.

syndic_log_file: salt-syndic.log

syndic_pidfile

Default: salt-syndic.pid

If this master will be running a salt-syndic to connect to a higher level
master, specify the pidfile of the syndic daemon.

syndic_pidfile: syndic.pid

Peer Publish Settings

Salt minions can send commands to other minions, but only if the minion is
allowed to. By default "Peer Publication" is disabled, and when enabled it
is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

peer

Default: {}

The configuration uses regular expressions to match minions and then a list
of regular expressions to match functions. The following will allow the
minion authenticated as foo.example.com to execute functions from the test
and pkg modules

peer:
 foo.example.com:
 - test.*
 - pkg.*

This will allow all minions to execute all commands:

peer:
 .*:
 - .*

This is not recommended, since it would allow anyone who gets root on any
single minion to instantly have root on all of the minions!

peer_run

Default: {}

The peer_run option is used to open up runners on the master to access from the
minions. The peer_run configuration matches the format of the peer
configuration.

The following example would allow foo.example.com to execute the manage.up
runner:

peer_run:
 foo.example.com:
 - manage.up

Node Groups

Default: {}

Node groups allow for logical groupings of minion nodes.
A group consists of a group name and a compound target.

nodegroups:
 group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
 group2: 'G@os:Debian and foo.domain.com'

Master Logging Settings

log_file

Default: /var/log/salt/master

The master log can be sent to a regular file, local path name, or network
location. See also log_file.

Examples:

log_file: /var/log/salt/master

log_file: file:///dev/log

log_file: udp://loghost:10514

log_level

Default: warning

The level of messages to send to the console. See also log_level.

log_level: warning

log_level_logfile

Default: warning

The level of messages to send to the log file. See also
log_level_logfile.

log_level_logfile: warning

log_datefmt

Default: %H:%M:%S

The date and time format used in console log messages. See also
log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also
log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also
log_fmt_console.

log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also
log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also
log_granular_levels.

Include Configuration

default_include

Default: master.d/*.conf

The master can include configuration from other files. Per default the
master will automatically include all config files from master.d/*.conf
where master.d is relative to the directory of the master configuration
file.

include

Default: not defined

The master can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in. Paths can make use of
shell-style globbing. If no files are matched by a path passed to this
option then the master will log a warning message.

Include files from a master.d directory in the same
directory as the master config file
include: master.d/*

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the master.d directory
include:
 - extra_config
 - master.d/*
 - /etc/roles/webserver

Configuring the Salt Minion

The Salt system is amazingly simple and easy to configure, the two components
of the Salt system each have a respective configuration file. The
salt-master is configured via the master configuration file, and the
salt-minion is configured via the minion configuration file.

See also

example minion configuration file

The Salt Minion configuration is very simple, typically the only value that
needs to be set is the master value so the minion can find its master.

Minion Primary Configuration

master

Default: salt

The hostname or ipv4 of the master.

master: salt

master_port

Default: 4506

The port of the master ret server, this needs to coincide with the ret_port
option on the Salt master.

master_port: 4506

user

Default: root

The user to run the Salt processes

user: root

pidfile

Default: /var/run/salt-minion.pid

The location of the daemon's process ID file

pidfile: /var/run/salt-minion.pid

root_dir

Default: /

This directory is prepended to the following options: pki_dir,
cachedir, log_file, sock_dir, and
pidfile.

root_dir: /

pki_dir

Default: /etc/salt/pki

The directory used to store the minion's public and private keys.

pki_dir: /etc/salt/pki

id

Default: the system's hostname

See also

Salt Walkthrough

The Setting up a Salt Minion section contains detailed
information on how the hostname is determined.

Explicitly declare the id for this minion to use. Since Salt uses detached ids
it is possible to run multiple minions on the same machine but with different
ids. This can be useful for Salt compute clusters.

id: foo.bar.com

append_domain

Default: None

Append a domain to a hostname in the event that it does not exist. This is
useful for systems where socket.getfqdn() does not actually result in a
FQDN (for instance, Solaris).

append_domain: foo.org

cachedir

Default: /var/cache/salt

The location for minion cache data.

cachedir: /var/cache/salt

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

cache_jobs

Default: False

The minion can locally cache the return data from jobs sent to it, this can be
a good way to keep track of the minion side of the jobs the minion has
executed. By default this feature is disabled, to enable set cache_jobs to
True.

cache_jobs: False

sock_dir

Default: /var/run/salt/minion

The directory where Unix sockets will be kept.

sock_dir: /var/run/salt/minion

backup_mode

Default: []

Backup files replaced by file.managed and file.recurse under cachedir.

backup_mode: minion

acceptance_wait_time

Default: 10

The number of seconds to wait until attempting to re-authenticate with the
master.

acceptance_wait_time: 10

random_reauth_delay

When the master key changes, the minion will try to re-auth itself to
receive the new master key. In larger environments this can cause a syn-flood
on the master because all minions try to re-auth immediately. To prevent this
and have a minion wait for a random amount of time, use this optional
parameter. The wait-time will be a random number of seconds between
0 and the defined value.

random_reauth_delay: 60

acceptance_wait_time_max

Default: None

The maximum number of seconds to wait until attempting to re-authenticate
with the master. If set, the wait will increase by acceptance_wait_time
seconds each iteration.

acceptance_wait_time_max: None

dns_check

Default: True

When healing, a dns_check is run. This is to make sure that the originally
resolved dns has not changed. If this is something that does not happen in your
environment, set this value to False.

dns_check: True

ipc_mode

Default: ipc

Windows platforms lack POSIX IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to tcp on such systems.

ipc_mode: ipc

tcp_pub_port

Default: 4510

Publish port used when ipc_mode is set to tcp.

tcp_pub_port: 4510

tcp_pull_port

Default: 4511

Pull port used when ipc_mode is set to tcp.

tcp_pull_port: 4511

Minion Module Management

disable_modules

Default: [] (all modules are enabled by default)

The event may occur in which the administrator desires that a minion should not
be able to execute a certain module. The sys module is built into the minion
and cannot be disabled.

This setting can also tune the minion, as all modules are loaded into ram
disabling modules will lover the minion's ram footprint.

disable_modules:
 - test
 - solr

disable_returners

Default: [] (all returners are enabled by default)

If certain returners should be disabled, this is the place

disable_returners:
 - mongo_return

module_dirs

Default: []

A list of extra directories to search for Salt modules

module_dirs:
 - /var/lib/salt/modules

returner_dirs

Default: []

A list of extra directories to search for Salt returners

returners_dirs:
 - /var/lib/salt/returners

states_dirs

Default: []

A list of extra directories to search for Salt states

states_dirs:
 - /var/lib/salt/states

render_dirs

Default: []

A list of extra directories to search for Salt renderers

render_dirs:
 - /var/lib/salt/renderers

cython_enable

Default: False

Set this value to true to enable auto-loading and compiling of .pyx modules,
This setting requires that gcc and cython are installed on the minion

cython_enable: False

providers

Default: (empty)

A module provider can be statically overwritten or extended for the minion via
the providers option. This can be done on an individual basis in an
SLS file, or globally here in the minion config, like
below.

providers:
 pkg: yumpkg5
 service: systemd

State Management Settings

renderer

Default: yaml_jinja

The default renderer used for local state executions

renderer: yaml_jinja

state_verbose

Default: False

state_verbose allows for the data returned from the minion to be more
verbose. Normally only states that fail or states that have changes are
returned, but setting state_verbose to True will return all states that
were checked

state_verbose: True

state_output

Default: full

The state_output setting changes if the output is the full multi line
output for each changed state if set to 'full', but if set to 'terse'
the output will be shortened to a single line.

state_output: full

autoload_dynamic_modules

Default: True

autoload_dynamic_modules Turns on automatic loading of modules found in the
environments on the master. This is turned on by default, to turn of
auto-loading modules when states run set this value to False

autoload_dynamic_modules: True

Default: True

clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module is
not on the master it will be deleted from the minion. By default this is
enabled and can be disabled by changing this value to False

clean_dynamic_modules: True

environment

Default: None

Normally the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.

environment: None

File Directory Settings

file_client

Default: remote

The client defaults to looking on the master server for files, but can be
directed to look on the minion by setting this parameter to local.

file_client: remote

file_roots

Default:

base:
 - /srv/salt

When using a local file_client, this parameter is used to setup
the fileserver's environments. This parameter operates identically to the
master config parameter of the same name.

file_roots:
 base:
 - /srv/salt
 dev:
 - /srv/salt/dev/services
 - /srv/salt/dev/states
 prod:
 - /srv/salt/prod/services
 - /srv/salt/prod/states

hash_type

Default: md5

The hash_type is the hash to use when discovering the hash of a file on the
local fileserver. The default is md5, but sha1, sha224, sha256, sha384 and
sha512 are also supported.

hash_type: md5

pillar_roots

Default:

base:
 - /srv/pillar

When using a local file_client, this parameter is used to setup
the pillar environments.

pillar_roots:
 base:
 - /srv/pillar
 dev:
 - /srv/pillar/dev
 prod:
 - /srv/pillar/prod

Security Settings

open_mode

Default: False

Open mode can be used to clean out the PKI key received from the Salt master,
turn on open mode, restart the minion, then turn off open mode and restart the
minion to clean the keys.

open_mode: False

Thread Settings

Default: True

Disable multiprocessing support by default when a minion receives a
publication a new process is spawned and the command is executed therein.

multiprocessing: True

Minion Logging Settings

log_file

Default: /var/log/salt/minion

The minion log can be sent to a regular file, local path name, or network
location. See also log_file.

Examples:

log_file: /var/log/salt/minion

log_file: file:///dev/log

log_file: udp://loghost:10514

log_level

Default: warning

The level of messages to send to the console. See also log_level.

log_level: warning

log_level_logfile

Default: warning

The level of messages to send to the log file. See also
log_level_logfile.

log_level_logfile: warning

log_datefmt

Default: %H:%M:%S

The date and time format used in console log messages. See also
log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also
log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also
log_fmt_console.

log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also
log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also
log_granular_levels.

Include Configuration

default_include

Default: minion.d/*.conf

The minion can include configuration from other files. Per default the
minion will automatically include all config files from minion.d/*.conf
where minion.d is relative to the directory of the minion configuration
file.

include

Default: not defined

The minion can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in. Paths can make use of
shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include files from a minion.d directory in the same
directory as the minion config file
include: minion.d/*

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the minion.d directory
include:
 - extra_config
 - minion.d/*
 - /etc/roles/webserver

Frozen Build Update Settings

These options control how salt.modules.saltutil.update() works with esky
frozen apps. For more information look at https://github.com/cloudmatrix/esky/.

update_url

Default: False (Update feature is disabled)

The url to use when looking for application updates. Esky depends on directory
listings to search for new versions. A webserver running on your Master is a
good starting point for most setups.

update_url: 'http://salt.example.com/minion-updates'

update_restart_services

Default: [] (service restarting on update is disabled)

A list of services to restart when the minion software is updated. This would
typically just be a list containing the minion's service name, but you may
have other services that need to go with it.

update_restart_services: ['salt-minion']

Salt code and internals

Reference documentation on Salt's internal code.

Contents

	Exceptions
	salt.exceptions

	salt.exceptions

Exceptions

Salt-specific exceptions should be thrown as often as possible so the various
interfaces to Salt (CLI, API, etc) can handle those errors appropriately and
display error messages appropriately.

	salt.exceptions
	This module is a central location for all salt exceptions

salt.exceptions

This module is a central location for all salt exceptions

	
exception salt.exceptions.AuthenticationError

	If sha256 signature fails during decryption

	
exception salt.exceptions.CommandExecutionError

	Used when a module runs a command which returns an error and wants
to show the user the output gracefully instead of dying

	
exception salt.exceptions.CommandNotFoundError

	Used in modules or grains when a required binary is not available

	
exception salt.exceptions.EauthAuthenticationError

	Thrown when eauth authentication fails

	
exception salt.exceptions.LoaderError

	Problems loading the right renderer

	
exception salt.exceptions.MasterExit

	Rise when the master exits

	
exception salt.exceptions.MinionError

	Minion problems reading uris such as salt:// or http://

	
exception salt.exceptions.PkgParseError

	Used when of the pkg modules cannot correctly parse the output from
the CLI tool (pacman, yum, apt, aptitude, etc)

	
exception salt.exceptions.SaltClientError

	Problem reading the master root key

	
exception salt.exceptions.SaltException

	Base exception class; all Salt-specific exceptions should subclass this

	
exception salt.exceptions.SaltInvocationError

	Used when the wrong number of arguments are sent to modules or invalid
arguments are specified on the command line

	
exception salt.exceptions.SaltMasterError

	Problem reading the master root key

	
exception salt.exceptions.SaltRenderError

	Used when a renderer needs to raise an explicit error

	
exception salt.exceptions.SaltReqTimeoutError

	Thrown when a salt master request call fails to return within the timeout

	
exception salt.exceptions.SaltSystemExit(code=0, msg=None)

	This exception is raised when an unsolvable problem is found. There's
nothing else to do, salt should just exit.

	
exception salt.exceptions.TimedProcTimeoutError

	Thrown when a timed subprocess does not terminate within the timeout,
or if the specified timeout is not an int or a float

salt.exceptions

This module is a central location for all salt exceptions

	
exception salt.exceptions.AuthenticationError

	If sha256 signature fails during decryption

	
exception salt.exceptions.CommandExecutionError

	Used when a module runs a command which returns an error and wants
to show the user the output gracefully instead of dying

	
exception salt.exceptions.CommandNotFoundError

	Used in modules or grains when a required binary is not available

	
exception salt.exceptions.EauthAuthenticationError

	Thrown when eauth authentication fails

	
exception salt.exceptions.LoaderError

	Problems loading the right renderer

	
exception salt.exceptions.MasterExit

	Rise when the master exits

	
exception salt.exceptions.MinionError

	Minion problems reading uris such as salt:// or http://

	
exception salt.exceptions.PkgParseError

	Used when of the pkg modules cannot correctly parse the output from
the CLI tool (pacman, yum, apt, aptitude, etc)

	
exception salt.exceptions.SaltClientError

	Problem reading the master root key

	
exception salt.exceptions.SaltException

	Base exception class; all Salt-specific exceptions should subclass this

	
exception salt.exceptions.SaltInvocationError

	Used when the wrong number of arguments are sent to modules or invalid
arguments are specified on the command line

	
exception salt.exceptions.SaltMasterError

	Problem reading the master root key

	
exception salt.exceptions.SaltRenderError

	Used when a renderer needs to raise an explicit error

	
exception salt.exceptions.SaltReqTimeoutError

	Thrown when a salt master request call fails to return within the timeout

	
exception salt.exceptions.SaltSystemExit(code=0, msg=None)

	This exception is raised when an unsolvable problem is found. There's
nothing else to do, salt should just exit.

	
exception salt.exceptions.TimedProcTimeoutError

	Thrown when a timed subprocess does not terminate within the timeout,
or if the specified timeout is not an int or a float

Network Topology

Salt is based on a powerful, asynchronous, network topology using ZeroMQ. Many
ZeroMQ systems are in place to enable communication. The central idea is to
have the fastest communication possible.

Servers

The Salt Master runs 2 network services. First is the ZeroMQ PUB system. This
service by default runs on port 4505 and can be configured via the
publish_port option in the master configuration.

Second is the ZeroMQ REP system. This is a separate interface used for all
bi-directional communication with minions. By default this system binds to
port 4506 and can be configured via the ret_port option in the master.

PUB/SUB

The commands sent out via the salt client are broadcast out to the minions via
ZeroMQ PUB/SUB. This is done by allowing the minions to maintain a connection
back to the Salt Master and then all connections are informed to download the
command data at once. The command data is kept extremely small (usually less
than 1K) so it is not a burden on the network.

Return

The PUB/SUB system is a one way communication, so once a publish is sent out
the PUB interface on the master has no further communication with the minion.
The minion, after running the command, then sends the command's return data
back to the master via the ret_port.

Windows Software Repository

The Salt Windows Software Repository provides a package manager and software
repository similar to what is provided by yum and apt on Linux.

It permits the installation of software using the installers on remote
windows machines. In many senses, the operation is similar to that of
the other package managers salt is aware of:

	the pkg.installed and similar states work on Windows.

	the pkg.install and similar module functions work on Windows.

	each windows machine needs to have pkg.refresh_db executed
against it to pick up the latest version of the package database.

High level differences to yum and apt are:

	The repository metadata (sls files) is hosted through either salt or
git.

	Packages can be downloaded from within the salt repository, a git
repository or from http(s) or ftp urls.

	No dependencies are managed. Dependencies between packages needs to
be managed manually.

Operation

The install state/module function of the windows package manager works
roughly as follows:

	Execute pkg.list_pkgs and store the result

	Check if any action needs to be taken. (ie compare required package
and version against pkg.list_pkgs results)

	If so, run the installer command.

	Execute pkg.list_pkgs and compare to the result stored from
before installation.

	Sucess/Failure/Changes will be reported based on the differences
between the original and final pkg.list_pkgs results.

If there are any problems in using the package manager it is likely to
be due to the data in your sls files not matching the difference
between the pre and post pkg.list_pkgs results.

Usage

By default, the Windows software repository is found at /srv/salt/win/repo
This can be changed in the master config file (default location is
/etc/salt/master) by modifying the win_repo variable. Each piece of
software should have its own directory which contains the installers and a
package definition file. This package definition file is a YAML file named
init.sls.

The package definition file should look similar to this example for Firefox:
/srv/salt/win/repo/firefox/init.sls

firefox:
 17.0.1:
 installer: 'salt://win/repo/firefox/English/Firefox Setup 17.0.1.exe'
 full_name: Mozilla Firefox 17.0.1 (x86 en-US)
 locale: en_US
 reboot: False
 install_flags: ' -ms'
 uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
 uninstall_flags: ' /S'
 16.0.2:
 installer: 'salt://win/repo/firefox/English/Firefox Setup 16.0.2.exe'
 full_name: Mozilla Firefox 16.0.2 (x86 en-US)
 locale: en_US
 reboot: False
 install_flags: ' -ms'
 uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
 uninstall_flags: ' /S'
 15.0.1:
 installer: 'salt://win/repo/firefox/English/Firefox Setup 15.0.1.exe'
 full_name: Mozilla Firefox 15.0.1 (x86 en-US)
 locale: en_US
 reboot: False
 install_flags: ' -ms'
 uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
 uninstall_flags: ' /S'

More examples can be found here: https://github.com/saltstack/salt-winrepo

The version number and full_name need to match the output from pkg.list_pkgs
so that the status can be verfied when running highstate.
Note: It is still possible to successfully install packages using pkg.install
even if they don't match which can make this hard to troubleshoot.

salt 'test-2008' pkg.list_pkgs
test-2008

 7-Zip 9.20 (x64 edition):
 9.20.00.0
 Microsoft .NET Framework 4 Client Profile:
 4.0.30319,4.0.30319
 Microsoft .NET Framework 4 Extended:
 4.0.30319,4.0.30319
 Microsoft Visual C++ 2008 Redistributable - x64 9.0.21022:
 9.0.21022
 Mozilla Firefox 17.0.1 (x86 en-US):
 17.0.1
 Mozilla Maintenance Service:
 17.0.1
 NSClient++ (x64):
 0.3.8.76
 Notepad++:
 6.4.2
 Salt Minion 0.16.0:
 0.16.0

If any of these preinstalled packages already exist in winrepo the full_name
will be automatically renamed to their package name during the next update
(running highstate or installing another package).

test-2008:

 7zip:
 9.20.00.0
 Microsoft .NET Framework 4 Client Profile:
 4.0.30319,4.0.30319
 Microsoft .NET Framework 4 Extended:
 4.0.30319,4.0.30319
 Microsoft Visual C++ 2008 Redistributable - x64 9.0.21022:
 9.0.21022
 Mozilla Maintenance Service:
 17.0.1
 Notepad++:
 6.4.2
 Salt Minion 0.16.0:
 0.16.0
 firefox:
 17.0.1
 nsclient:
 0.3.9.328

Add msiexec: True if using an MSI installer requiring the use of msiexec
/i to install and msiexec /x to uninstall.

The install_flags and uninstall_flags are flags passed to the software
installer to cause it to perform a silent install. These can often be found by
adding /? or /h when running the installer from the command line. A
great resource for finding these silent install flags can be found on the WPKG
project's wiki [http://wpkg.org/Category:Silent_Installers]:

7zip:
 9.20.00.0:
 installer: salt://win/repo/7zip/7z920-x64.msi
 full_name: 7-Zip 9.20 (x64 edition)
 reboot: False
 install_flags: ' /q '
 msiexec: True
 uninstaller: salt://win/repo/7zip/7z920-x64.msi
 uninstall_flags: ' /qn'

Generate Repo Cache File

Once the sls file has been created, generate the repository cache file with the winrepo runner:

salt-run winrepo.genrepo

Then update the repository cache file on your minions, exactly how it's done for the Linux package managers:

salt '*' pkg.refresh_db

Install Windows Software

Now you can query the available version of Firefox using the Salt pkg module.

salt '*' pkg.available_version firefox

{'davewindows': {'15.0.1': 'Mozilla Firefox 15.0.1 (x86 en-US)',
 '16.0.2': 'Mozilla Firefox 16.0.2 (x86 en-US)',
 '17.0.1': 'Mozilla Firefox 17.0.1 (x86 en-US)'}}

As you can see, there are three versions of Firefox available for installation.

salt '*' pkg.install firefox

The above line will install the latest version of Firefox.

salt '*' pkg.install firefox version=16.0.2

The above line will install version 16.0.2 of Firefox.

If a different version of the package is already installed it will
be replaced with the version in winrepo (only if the package itself supports
live updating)

Uninstall Windows Software

Uninstall software using the pkg module:

salt '*' pkg.remove firefox

salt '*' pkg.purge firefox

pkg.purge just executes pkg.remove on Windows. At some point in the
future pkg.purge may direct the installer to remove all configs and
settings for software packages that support that option.

Standalone Minion Salt Windows Repo Module

In order to facilitate managing a Salt Windows software repo with Salt on a
Standalone Minion on Windows, a new module named winrepo has been added to
Salt. wirepo matches what is available in the salt runner and allows you to
manage the Windows software repo contents. Example: salt '*'
winrepo.genrepo

Git Hosted Repo

Windows software package definitions can also be hosted in one or more git
repositories. The default repo is one hosted on Github.com by SaltStack,Inc., which
includes package definitions for open source software. This repo points to the
HTTP or ftp locations of the installer files. Anyone is welcome to send a pull
request to this repo to add new package definitions. Browse the repo
here: https://github.com/saltstack/salt-winrepo .

Configure which git repos the master can search for package definitions by
modifying or extending the win_gitrepos configuration option list in the
master config.

Checkout each git repo in win_gitrepos, compile your package repository
cache and then refresh each minion's package cache:

salt-run winrepo.update_git_repos
salt-run winrepo.genrepo
salt '*' pkg.refresh_db

Troubleshooting

Incorrect name/version

If the package seems to install properly, but salt reports a failure
then it is likely you have a version or full_name mismatch.

Check the exact full_name and version used by the package. Use
pkg.list_pkgs to check that the names and version exactly match
what is installed.

Changes to sls files not being picked up

Ensure you have (re)generated the repository cache file and then
updated the repository cache on the relevant minions:

salt-run winrepo.genrepo
salt 'MINION' pkg.refresh_db

Packages management under Windows 2003

On windows server 2003, you need to install optional windows component
"wmi windows installer provider" to have full list of installed packages.
If you don't have this, salt-minion can't report some installed software.

Command Line Reference

Salt can be controlled by a command line client by the root user on the Salt
master. The Salt command line client uses the Salt client API to communicate
with the Salt master server. The Salt client is straightforward and simple
to use.

Using the Salt client commands can be easily sent to the minions.

Each of these commands accepts an explicit --config option to point to either
the master or minion configuration file. If this option is not provided and
the default configuration file does not exist then Salt falls back to use the
environment variables SALT_MASTER_CONFIG and SALT_MINION_CONFIG.

See also

Configuring Salt

Using the Salt Command

The Salt command needs a few components to send information to the Salt
minions. The target minions need to be defined, the function to call and any
arguments the function requires.

Defining the Target Minions

The first argument passed to salt, defines the target minions, the target
minions are accessed via their hostname. The default target type is a bash
glob:

salt '*foo.com' sys.doc

Salt can also define the target minions with regular expressions:

salt -E '.*' cmd.run 'ls -l | grep foo'

Or to explicitly list hosts, salt can take a list:

salt -L foo.bar.baz,quo.qux cmd.run 'ps aux | grep foo'

More Powerful Targets

The simple target specifications, glob, regex and list will cover many use
cases, and for some will cover all use cases, but more powerful options exist.

Targeting with Grains

The Grains interface was built into Salt to allow minions to be targeted by
system properties. So minions running on a particular operating system can
be called to execute a function, or a specific kernel.

Calling via a grain is done by passing the -G option to salt, specifying
a grain and a glob expression to match the value of the grain. The syntax for
the target is the grain key followed by a globexpression: "os:Arch*".

salt -G 'os:Fedora' test.ping

Will return True from all of the minions running Fedora.

To discover what grains are available and what the values are, execute the
grains.item salt function:

salt '*' grains.items

Targeting with Executions

As of 0.8.8 targeting with executions is still under heavy development and this
documentation is written to reference the behavior of execution matching in the
future.

Execution matching allows for a primary function to be executed, and then based
on the return of the primary function the main function is executed.

Execution matching allows for matching minions based on any arbitrary running
data on the minions.

Compound Targeting

New in version 0.9.5.

Multiple target interfaces can be used in conjunction to determine the command
targets. These targets can then be combined using and or or statements. This
is well defined with an example:

salt -C 'G@os:Debian and webser* or E@db.*' test.ping

In this example any minion who's id starts with webser and is running
Debian, or any minion who's id starts with db will be matched.

The type of matcher defaults to glob, but can be specified with the
corresponding letter followed by the @ symbol. In the above example a grain
is used with G@ as well as a regular expression with E@. The
webser* target does not need to be prefaced with a target type specifier
because it is a glob.

Node Group Targeting

New in version 0.9.5.

Often the convenience of having a predefined group of minions to execute
targets on is desired. This can be accomplished with the new nodegroups
feature. Nodegroups allow for predefined compound targets to be declared in
the master configuration file:

nodegroups:
 group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com and bl*.domain.com'
 group2: 'G@os:Debian and foo.domain.com'

Calling the Function

The function to call on the specified target is placed after the target
specification.

New in version 0.9.8.

Functions may also accept arguments, space-delimited:

salt '*' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

salt '*' pip.install salt timeout=5 upgrade=True

They are always in the form of kwarg=argument.

Arguments are formatted as YAML:

salt '*' cmd.run 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "Joe"}'

Note: dictionaries must have curly braces around them (like the env
keyword argument above). This was changed in 0.15.1: in the above example,
the first argument used to be parsed as the dictionary
{'echo "Hello': '$FIRST_NAME"'}. This was generally not the expected
behavior.

If you want to test what parameters are actually passed to a module, use the
test.arg_repr command:

salt '*' test.arg_repr 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "Joe"}'

Finding available minion functions

The Salt functions are self documenting, all of the function documentation can
be retried from the minions via the sys.doc() function:

salt '*' sys.doc

Compound Command Execution

If a series of commands needs to be sent to a single target specification then
the commands can be sent in a single publish. This can make gathering
groups of information faster, and lowers the stress on the network for repeated
commands.

Compound command execution works by sending a list of functions and arguments
instead of sending a single function and argument. The functions are executed
on the minion in the order they are defined on the command line, and then the
data from all of the commands are returned in a dictionary. This means that
the set of commands are called in a predictable way, and the returned data can
be easily interpreted.

Executing compound commands if done by passing a comma delimited list of
functions, followed by a comma delimited list of arguments:

salt '*' cmd.run,test.ping,test.echo 'cat /proc/cpuinfo',,foo

The trick to look out for here, is that if a function is being passed no
arguments, then there needs to be a placeholder for the absent arguments. This
is why in the above example, there are two commas right next to each other.
test.ping takes no arguments, so we need to add another comma, otherwise
Salt would attempt to pass "foo" to test.ping.

If you need to pass arguments that include commas, then make sure you add
spaces around the commas that separate arguments. For example:

salt '*' cmd.run,test.ping,test.echo 'echo "1,2,3"' , , foo

You may change the arguments separator using the --args-separator option:

salt --args-separator=:: '*' some.fun,test.echo params with , comma :: foo

salt

Synopsis

salt '*' [options] sys.doc

salt -E '.*' [options] sys.doc cmd

salt -G 'os:Arch.*' [options] test.ping

salt -C 'G@os:Arch.* and webserv* or G@kernel:FreeBSD' [options] test.ping

Description

Salt allows for commands to be executed across a swath of remote systems in
parallel. This means that remote systems can be both controlled and queried
with ease.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-t TIMEOUT, --timeout=TIMEOUT

	The timeout in seconds to wait for replies from the Salt minions. The
timeout number specifies how long the command line client will wait to
query the minions and check on running jobs. Default: 5

	
-s, --static

	By default as of version 0.9.8 the salt command returns data to the
console as it is received from minions, but previous releases would return
data only after all data was received. To only return the data with a hard
timeout and after all minions have returned then use the static option.

	
--async

	Instead of waiting for the job to run on minions only print the jod id of
the started execution and complete.

	
--state-output=STATE_OUTPUT

	
New in version 0.17.

Override the configured state_output value for minion output. Default:
full

	
--subset=SUBSET

	Execute the routine on a random subset of the targeted minions. The
minions will be verified that they have the named function before
executing.

	
-v VERBOSE, --verbose

	Turn on verbosity for the salt call, this will cause the salt command to
print out extra data like the job id.

	
-b BATCH, --batch-size=BATCH

	Instead of executing on all targeted minions at once, execute on a
progressive set of minions. This option takes an argument in the form of
an explicit number of minions to execute at once, or a percentage of
minions to execute on.

	
-a EAUTH, --auth=EAUTH

	Pass in an external authentication medium to validate against. The
credentials will be prompted for. Can be used with the -T option.

	
-T, --make-token

	Used in conjunction with the -a option. This creates a token that allows
for the authenticated user to send commands without needing to
re-authenticate.

	
--return=RETURNER

	Chose an alternative returner to call on the minion, if an alternative
returner is used then the return will not come back to the command line
but will be sent to the specified return system.

	
-d, --doc, --documentation

	Return the documentation for the module functions available on the minions

	
--args-separator=ARGS_SEPARATOR

	Set the special argument used as a delimiter between command arguments of
compound commands. This is useful when one wants to pass commas as
arguments to some of the commands in a compound command.

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Target Selection

	
-E, --pcre

	The target expression will be interpreted as a PCRE regular expression
rather than a shell glob.

	
-L, --list

	The target expression will be interpreted as a comma-delimited list;
example: server1.foo.bar,server2.foo.bar,example7.quo.qux

	
-G, --grain

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<glob
expression>'; example: 'os:Arch*'

This was changed in version 0.9.8 to accept glob expressions instead of
regular expression. To use regular expression matching with grains, use
the --grain-pcre option.

	
--grain-pcre

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<
regular expression>'; example: 'os:Arch.*'

	
-N, --nodegroup

	Use a predefined compound target defined in the Salt master configuration
file.

	
-R, --range

	Instead of using shell globs to evaluate the target, use a range expression
to identify targets. Range expressions look like %cluster.

Using the Range option requires that a range server is set up and the
location of the range server is referenced in the master configuration
file.

	
-C, --compound

	Utilize many target definitions to make the call very granular. This option
takes a group of targets separated by and or or. The default matcher is a
glob as usual. If something other than a glob is used, preface it with the
letter denoting the type; example: 'webserv* and G@os:Debian or E@db*'
Make sure that the compound target is encapsulated in quotes.

	
-X, --exsel

	Instead of using shell globs, use the return code of a function.

	
-I, --pillar

	Instead of using shell globs to evaluate the target, use a pillar value to
identify targets. The syntax for the target is the pillar key followed by
a glob expression: "role:production*"

	
-S, --ipcidr

	Match based on Subnet (CIDR notation) or IPv4 address.

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outputters are formatted only for data returned from specific
functions; for instance, the grains outputter will not work for non-grains
data.

If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

Note

If using --out=json, you will probably want --static as well.
Without the static option, you will get a JSON string for each minion.
This is due to using an iterative outputter. So if you want to feed it
to a JSON parser, use --static as well.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

See also

salt(7)
salt-master(1)
salt-minion(1)

salt-master

The Salt master daemon, used to control the Salt minions

Synopsis

salt-master [options]

Description

The master daemon controls the Salt minions

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-u USER, --user=USER

	Specify user to run salt-master

	
-d, --daemon

	Run salt-master as a daemon

	
--pid-file PIDFILE

	Specify the location of the pidfile. Default: /var/run/salt-master.pid

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt(7)
salt-minion(1)

salt-minion

The Salt minion daemon, receives commands from a remote Salt master.

Synopsis

salt-minion [options]

Description

The Salt minion receives commands from the central Salt master and replies with
the results of said commands.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-u USER, --user=USER

	Specify user to run salt-minion

	
-d, --daemon

	Run salt-minion as a daemon

	
--pid-file PIDFILE

	Specify the location of the pidfile. Default: /var/run/salt-minion.pid

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/minion.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt(7)
salt-master(1)

salt-key

Synopsis

salt-key [options]

Description

Salt-key executes simple management of Salt server public keys used for
authentication.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-q, --quiet

	Suppress output

	
-y, --yes

	Answer 'Yes' to all questions presented, defaults to False

Logging Options

Logging options which override any settings defined on the configuration files.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/minion.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outputters are formatted only for data returned from specific
functions; for instance, the grains outputter will not work for non-grains
data.

If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

Note

If using --out=json, you will probably want --static as well.
Without the static option, you will get a JSON string for each minion.
This is due to using an iterative outputter. So if you want to feed it
to a JSON parser, use --static as well.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

Actions

	
-l ARG, --list=ARG

	List the public keys. The args "pre", "un", and "unaccepted" will list
unaccepted/unsigned keys. "acc" or "accepted" will list accepted/signed
keys. "rej" or "rejected" will list rejected keys. Finally, "all" will list
all keys.

	
-L, --list-all

	List all public keys on this Salt master: accepted, pending,
and rejected.

	
-a ACCEPT, --accept=ACCEPT

	Accept the named minion public key for command execution.

	
-A, --accept-all

	Accepts all pending public keys.

	
-r REJECT, --reject=REJECT

	Reject the named minion public key.

	
-R, --reject-all

	Rejects all pending public keys.

	
-p PRINT, --print=PRINT

	Print the specified public key

	
-P, --print-all

	Print all public keys

	
-d DELETE, --delete=DELETE

	Delete the named minion key or minion keys matching a glob for command
execution.

	
-D, --delete-all

	Delete all keys

	
-f FINGER, --finger=FINGER

	Print the named key's fingerprint

	
-F, --finger-all

	Print all key's fingerprints

Key Generation Options

	
--gen-keys=GEN_KEYS

	Set a name to generate a keypair for use with salt

	
--gen-keys-dir=GEN_KEYS_DIR

	Set the directory to save the generated keypair. Only works
with 'gen_keys_dir' option; default is the current directory.

	
--keysize=KEYSIZE

	Set the keysize for the generated key, only works with
the '--gen-keys' option, the key size must be 2048 or
higher, otherwise it will be rounded up to 2048. The
default is 2048.

See also

salt(7)
salt-master(1)
salt-minion(1)

salt-cp

Copy a file to a set of systems

Synopsis

salt-cp '*' [options] SOURCE DEST

salt-cp -E '.*' [options] SOURCE DEST

salt-cp -G 'os:Arch.*' [options] SOURCE DEST

Description

Salt copy copies a local file out to all of the Salt minions matched by the
given target.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-t TIMEOUT, --timeout=TIMEOUT

	The timeout in seconds to wait for replies from the Salt minions. The
timeout number specifies how long the command line client will wait to
query the minions and check on running jobs. Default: 5

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Target Selection

	
-E, --pcre

	The target expression will be interpreted as a PCRE regular expression
rather than a shell glob.

	
-L, --list

	The target expression will be interpreted as a comma-delimited list;
example: server1.foo.bar,server2.foo.bar,example7.quo.qux

	
-G, --grain

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<glob
expression>'; example: 'os:Arch*'

This was changed in version 0.9.8 to accept glob expressions instead of
regular expression. To use regular expression matching with grains, use
the --grain-pcre option.

	
--grain-pcre

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<
regular expression>'; example: 'os:Arch.*'

	
-N, --nodegroup

	Use a predefined compound target defined in the Salt master configuration
file.

	
-R, --range

	Instead of using shell globs to evaluate the target, use a range expression
to identify targets. Range expressions look like %cluster.

Using the Range option requires that a range server is set up and the
location of the range server is referenced in the master configuration
file.

See also

salt(1)
salt-master(1)
salt-minion(1)

salt-call

Synopsis

salt-call [options]

Description

The salt-call command is used to run module functions locally on a minion
instead of executing them from the master.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-g, --grains

	Return the information generated by the Salt grains

	
-m MODULE_DIRS, --module-dirs=MODULE_DIRS

	Specify an additional directories to pull modules from, multiple
directories can be delimited by commas

	
-d, --doc, --documentation

	Return the documentation for the specified module or for all modules if
none are specified

	
--master=MASTER

	Specify the master to use. The minion must be authenticated with the
master. If this option is omitted, the master options from the minion
config will be used. If multi masters are set up the first listed master
that responds will be used.

	
--return RETURNER

	Set salt-call to pass the return data to one or many returner interfaces.
To use many returner interfaces specify a comma delimited list of
returners.

	
--local

	Run salt-call locally, as if there was no master running.

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
info.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/minion.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
info.

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outputters are formatted only for data returned from specific
functions; for instance, the grains outputter will not work for non-grains
data.

If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

Note

If using --out=json, you will probably want --static as well.
Without the static option, you will get a JSON string for each minion.
This is due to using an iterative outputter. So if you want to feed it
to a JSON parser, use --static as well.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

See also

salt(1)
salt-master(1)
salt-minion(1)

salt-run

Execute a Salt runner

Synopsis

salt-run RUNNER

Description

salt-run is the frontend command for executing Salt Runners.
Salt runners are simple modules used to execute convenience functions on the
master

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-t TIMEOUT, --timeout=TIMEOUT

	The timeout in seconds to wait for replies from the Salt minions. The
timeout number specifies how long the command line client will wait to
query the minions and check on running jobs. Default: 1

	
-d, --doc, --documentation

	Display documentation for runners, pass a module or a runner to see
documentation on only that module/runner.

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt-master(1)
salt-minion(1)

salt-ssh

Synopsis

salt-ssh '*' [options] sys.doc

salt-ssh -E '.*' [options] sys.doc cmd

Description

Salt ssh allows for salt routines to be executed using only ssh for transport

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

Target Selection

	
-E, --pcre

	The target expression will be interpreted as a PCRE regular expression
rather than a shell glob.

	
-L, --list

	The target expression will be interpreted as a comma-delimited list;
example: server1.foo.bar,server2.foo.bar,example7.quo.qux

	
-G, --grain

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<glob
expression>'; example: 'os:Arch*'

This was changed in version 0.9.8 to accept glob expressions instead of
regular expression. To use regular expression matching with grains, use
the --grain-pcre option.

	
--grain-pcre

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<
regular expression>'; example: 'os:Arch.*'

	
-N, --nodegroup

	Use a predefined compound target defined in the Salt master configuration
file.

	
-R, --range

	Instead of using shell globs to evaluate the target, use a range expression
to identify targets. Range expressions look like %cluster.

Using the Range option requires that a range server is set up and the
location of the range server is referenced in the master configuration
file.

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/ssh.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outputters are formatted only for data returned from specific
functions; for instance, the grains outputter will not work for non-grains
data.

If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

Note

If using --out=json, you will probably want --static as well.
Without the static option, you will get a JSON string for each minion.
This is due to using an iterative outputter. So if you want to feed it
to a JSON parser, use --static as well.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

See also

salt(7)
salt-master(1)
salt-minion(1)

salt-syndic

The Salt syndic daemon, a special minion that passes through commands from a
higher master

Synopsis

salt-syndic [options]

Description

The Salt syndic daemon, a special minion that passes through commands from a
higher master.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-u USER, --user=USER

	Specify user to run salt-syndic

	
-d, --daemon

	Run salt-syndic as a daemon

	
--pid-file PIDFILE

	Specify the location of the pidfile. Default: /var/run/salt-syndic.pid

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt-master(1)
salt-minion(1)

Release notes and upgrade instructions

	Salt 0.17.0 Release Notes

	Salt 0.16.4 Release Notes

	Salt 0.16.3 Release Notes

	Salt 0.16.2 Release Notes

	Salt 0.16.0 Release Notes

	Salt 0.15.1 Release Notes

	Salt 0.15.0 Release Notes

	Salt 0.14.0 Release Notes

	Salt 0.13.0 Release Notes

	Salt 0.12.0 Release Notes

	Salt 0.11.0 Release Notes

	Salt 0.10.5 Release Notes

	Salt 0.10.4 Release Notes

	Salt 0.10.3 Release Notes

	Salt 0.10.2 Release Notes

	Salt 0.10.0 Release Notes

	Salt 0.9.9 Release Notes

	Salt 0.9.8 Release Notes

	Salt 0.9.7 Release Notes

	Salt 0.9.6 Release Notes

	Salt 0.9.5 Release Notes

	Salt 0.9.4 Release Notes

	Salt 0.9.3 Release Notes

	Salt 0.9.2 Release Notes

	Salt 0.9.0 Release Notes

	Salt 0.8.9 Release Notes

	Salt 0.8.8 release notes

	Salt 0.8.7 release notes

	Salt 0.8.0 release notes

	Salt 0.7.0 release notes

	Salt 0.6.0 release notes

Salt 0.17.0 Release Notes

The 0.17.0 release is a very exciting release of Salt, this brings to Salt
some very powerful new features and advances. The advances range from the
state system to the test suite, covering new transport capabilities and
making states easier and more powerful, to extending Salt Virt and much more!

The 0.17.0 release will also be the last release of Salt to follow the old
0.XX.X numbering system, the next release of Salt will change the numbering to
be date based following this format:

<Year>.<Month>.<Minor>

So if the release happens in November of 2013 the number will be 13.11.0, the
first bugfix release will be 13.11.1 and so forth.

Major Features

Halite

The new Halite web GUI is now available, a great deal of work has been put into
Halite to make it fully event driven and amazingly fast. The Halite UI can be
started from within the Salt Master, or standalone, and does not require an
external database to run, it is very lightweight!

This initial release of Halite is primarily the framework for the UI and the
communication systems making it easy to extend and build the UI up. It
presently supports watching the event bus and firing commands over Salt.

Halite is, like the rest of Salt, Open Source!

Much more will be coming in the future of Halite!

Salt SSH

The new salt-ssh command has been added to Salt. This system allows for
remote execution and states to be run over ssh. The benefit here being, that
salt can run relying only on the ssh agent, rather than requiring a minion
to be deployed.

The salt-ssh system runs states in a compatible way as Salt and states
created and run with salt-ssh can be moved over to a standard salt deployment
without modification.

Since this is the initial release of salt-ssh, there is plenty of room for
improvement, but it is fully operational, not just a bootstrap tool.

Rosters

Salt is designed to have the minions be aware of the master and the master does
not need to be aware of the location of the minions. The new salt roster system
was created and designed to facilitate listing the targets for salt-ssh.

The roster system, like most of Salt, is a plugin system, allowing for the list
of systems to target to be derived from any pluggable backend. The rosters
shipping with 0.17.0 are flat and scan. Flat is a file which is read in via the
salt render system and the scan roster does simple network scanning to discover
ssh servers.

State Auto Order

This is a major change in how states are evaluated in Salt. State Auto Order
is a new feature that makes states get evaluated and executed in the order in
which they are defined in the sls file. This feature makes it very easy to
see the finite order in which things will be executed, making Salt now, fully
imperative AND fully declarative.

The requisite system still takes precedence over the order in which states are
defined, so no existing states should break with this change. But this new
feature can be turned off by setting state_auto_order: False in the master
config, thus reverting to the old lexicographical order.

state.sls Runner

The state.sls runner has been created to allow for a more powerful system
for orchestrating state runs and function calls across the salt minions. This
new system uses the state system for organizing executions.

This allows for states to be defined that are executed on the master to call
states on minions via salt-run state.sls.

Event Namespacing

Events have been updated to be much more flexible. The tags in events have all
been namespaced allowing easier tracking of event names.

Mercurial Fileserver Backend

The popular git fileserver backend has been joined by the mercurial fileserver
backend, allowing the state tree to be managed entirely via mercurial.

External Logging Handlers

The external logging handler system allows for Salt to directly hook into any
external logging system. Currently supported are sentry and logstash.

Jenkins Testing

The testing systems in Salt have been greatly enhanced, tests for salt are now
executed, via jenkins.saltstack.com, across many supported platforms. Jenkins
calls out to salt-cloud to create virtual machines on Rackspace, then the
minion on the virtual machine checks into the master running on Jenkins where
a state run is executed that sets up the minion to run tests and executes the
test suite.

This now automates the sequence of running platform tests and allows for
continuous destructive tests to be run.

Salt Testing Project

The testing libraries for salt have been moved out of the main salt code base
and into a standalone codebase. This has been done to ease the use of the
testing systems being used in salt based projects other than Salt itself.

StormPath External Authentication

The external auth system now supports the fantastic Stormpath cloud based
authentication system.

LXC Support

Extensive additions have been added to Salt for LXC support. This included
the backend libs for managing LXC containers. Addition into the salt-virt
system is still in the works.

Mac OS X User/Group Support

Salt is now able to manage users and groups on Minions running Mac OS X.
However, at this time user passwords cannot be managed.

Django ORM External Pillar

Pillar data can now be derived from Django managed databases.

Fixes from RC to release

	Multiple documentation fixes

	Add multiple source files + templating for file.append (issue 6905 [https://github.com/saltstack/salt/issues/6905])

	Support sysctl configuration files in systemd>=207 (issue 7351 [https://github.com/saltstack/salt/issues/7351])

	Add file.search and file.replace

	Fix cross-calling execution functions in provider overrides

	Fix locale override for postgres (issue 4543 [https://github.com/saltstack/salt/issues/4543])

	Fix Raspbian identification for service/pkg support (issue 7371 [https://github.com/saltstack/salt/issues/7371])

	Fix cp.push file corruption (issue 6495 [https://github.com/saltstack/salt/issues/6495])

	Fix ALT Linux password hash specification (issue 3474 [https://github.com/saltstack/salt/issues/3474])

	Multiple salt-ssh-related fixes and improvements

Salt 0.16.4 Release Notes

Version 0.16.4 is another bugfix release for 0.16.0, likely to be the last before 0.17.0 is released.
The changes include:

	Multiple documentation improvements/additions

	Added the osfinger and osarch grains

	Properly handle 32-bit packages for debian32 on x86_64 (issue 6607 [https://github.com/saltstack/salt/issues/6607])

	Fix regression in yum package installation in CentOS 5 (issue 6677 [https://github.com/saltstack/salt/issues/6677])

	Fix bug in hg.latest state that would
erroneously delete directories (issue 6661 [https://github.com/saltstack/salt/issues/6661])

	Fix bug related to pid not existing for ps.top
(issue 6679 [https://github.com/saltstack/salt/issues/6679])

	Fix regression in MySQL returner
(issue 6695 [https://github.com/saltstack/salt/issues/6695])

	Fix IP addresses grains (ipv4 and ipv6) to include all addresses
(issue 6656 [https://github.com/saltstack/salt/issues/6656])

	Fix regression preventing authenticated FTP (issue 6733 [https://github.com/saltstack/salt/issues/6733])

	Fix setting password for windows users (issue 6824 [https://github.com/saltstack/salt/issues/6824])

	Fix file.contains on values YAML parses
as non-string (issue 6817 [https://github.com/saltstack/salt/issues/6817])

	Fix file.get_gid, file.get_uid, and file.chown
for broken symlinks (issue 6826 [https://github.com/saltstack/salt/issues/6826])

	Fix comment for service reloads in service state (issue 6851 [https://github.com/saltstack/salt/issues/6851])

Salt 0.16.3 Release Notes

Version 0.16.3 is another bugfix release for 0.16.0. The changes include:

	Various documentation fixes

	Fix proc directory regression (issue 6502 [https://github.com/saltstack/salt/issues/6502])

	Properly detect Linaro [http://www.linaro.org/] Linux (issue 6496 [https://github.com/saltstack/salt/issues/6496])

	Fix regressions in mount.mounted
(issue 6522 [https://github.com/saltstack/salt/issues/6522], issue 6545 [https://github.com/saltstack/salt/issues/6545])

	Skip malformed state requisites (issue 6521 [https://github.com/saltstack/salt/issues/6521])

	Fix regression in gitfs from bad import

	Fix for watching prereq states (including recursive requisite error)
(issue 6057 [https://github.com/saltstack/salt/issues/6057])

	Fix mod_watch not overriding prereq (issue 6520 [https://github.com/saltstack/salt/issues/6520])

	Don't allow functions which compile states to be called within states
(issue 5623 [https://github.com/saltstack/salt/issues/5623])

	Return error for malformed top.sls (issue 6544 [https://github.com/saltstack/salt/issues/6544])

	Fix traceback in mysql.query

	Fix regression in binary package installation for 64-bit packages
on Debian-based Linux distros (issue 6563 [https://github.com/saltstack/salt/issues/6563])

	Fix traceback caused by running cp.push without
having set file_recv in the master config file

	Fix scheduler configuration in pillar (issue 6201 [https://github.com/saltstack/salt/issues/6201])

Salt 0.16.2 Release Notes

Version 0.16.2 is a bugfix release for 0.16.0,
and contains a number of fixes.

Windows

	Only allow Administrator's group and SYSTEM user access to C:\salt. This
eliminates a race condition where a non-admin user could modify a template or
managed file before it is executed by the minion (which is running as an
elevated user), thus avoiding a potential escalation of privileges. (issue 6361 [https://github.com/saltstack/salt/issues/6361])

Grains

	Fixed detection of virtual grain on OpenVZ hardware nodes

	Gracefully handle lsb_release data when it is enclosed in quotes

	LSB grains are now prefixed with lsb_distrib_ instead of simply lsb_.
The old naming is not preserved, so SLS may be affected.

	Improved grains detection on MacOS

Pillar

	Don't try to load git_pillar
if not enabled in master config (issue 6052 [https://github.com/saltstack/salt/issues/6052])

	Functions pillar.item and
pillar.items added for parity with
grains.item/grains.items. The old function pillar.data is preserved
for backwards compatibility.

	Fixed minion traceback when Pillar SLS is malformed (issue 5910 [https://github.com/saltstack/salt/issues/5910])

Peer Publishing

	More gracefully handle improperly quoted publish commands (issue 5958 [https://github.com/saltstack/salt/issues/5958])

	Fixed traceback when timeout specified via the CLI fo publish.publish, publish.full_data (issue 5959 [https://github.com/saltstack/salt/issues/5959])

	Fixed unintended change in output of publish.publish (issue 5928 [https://github.com/saltstack/salt/issues/5928])

Minion

	Fixed salt-key usage in minionswarm script

	Quieted warning about SALT_MINION_CONFIG environment variable on
minion startup and for CLI commands run via salt-call (issue 5956 [https://github.com/saltstack/salt/issues/5956])

	Added minion config parameter random_reauth_delay to stagger
re-auth attempts when the minion is waiting for the master to approve its
public key. This helps prevent SYN flooding in larger environments.

User/Group Management

	Implement previously-ignored unique option for user.present states in FreeBSD

	Report in state output when a group.present state attempts to use a gid in use by another
group

	Fixed regression that prevents a user.present state to set the password hash to the system
default (i.e. an unset password)

	Fixed multiple group.present states with
the same group (issue 6439 [https://github.com/saltstack/salt/issues/6439])

File Management

	Fixed file.mkdir setting incorrect permissions (issue 6033 [https://github.com/saltstack/salt/issues/6033])

	Fixed cleanup of source files for templates when /tmp is in file_roots
(issue 6118 [https://github.com/saltstack/salt/issues/6118])

	Fixed caching of zero-byte files when a non-empty file was previously cached
at the same path

	Added HTTP authentication support to the cp module (issue 5641 [https://github.com/saltstack/salt/issues/5641])

	Diffs are now suppressed when binary files are changed

Package/Repository Management

	Fixed traceback when there is only one target for pkg.latest states

	Fixed regression in detection of virtual packages (apt)

	Limit number of pkg database refreshes to once per state.sls/state.highstate

	YUM: Allow 32-bit packages with arches other than i686 to be managed on
64-bit systems (issue 6299 [https://github.com/saltstack/salt/issues/6299])

	Fixed incorrect reporting in pkgrepo.managed states (issue 5517 [https://github.com/saltstack/salt/issues/5517])

	Fixed 32-bit binary package installs on 64-bit RHEL-based distros, and added
proper support for 32-bit packages on 64-bit Debian-based distros
(issue 6303 [https://github.com/saltstack/salt/issues/6303])

	Fixed issue where requisites were inadvertently being put into YUM repo files
(issue 6471 [https://github.com/saltstack/salt/issues/6471])

Service Management

	Fixed inaccurate reporting of results in service.running states when the service fails to start
(issue 5894 [https://github.com/saltstack/salt/issues/5894])

	Fixed handling of custom initscripts in RHEL-based distros so that they are
immediately available, negating the need for a second state run to manage the
service that the initscript controls

Networking

	Function network.hwaddr renamed to network.hw_addr to match network.ip_addrs and network.ip_addrs6. All three functions also now work without
the underscore in the name, as well.

	Fixed traceback in bridge.show when
interface is not present (issue 6326 [https://github.com/saltstack/salt/issues/6326])

SSH

	Fixed incorrect result reporting for some ssh_known_hosts.present states

	Fixed inaccurate reporting when ssh_auth.present states are run with test=True, when
rsa/dss is used for the enc param instead of ssh-rsa/ssh-dss
(issue 5374 [https://github.com/saltstack/salt/issues/5374])

pip

	Properly handle -f lines in pip freeze output

	Fixed regression in pip.installed states with specifying a requirements file
(issue 6003 [https://github.com/saltstack/salt/issues/6003])

	Fixed use of editable argument in pip.installed states (issue 6025 [https://github.com/saltstack/salt/issues/6025])

	Deprecated runas parameter in execution function calls, in favor of
user

MySQL

	Allow specification of MySQL
connection arguments via the CLI, overriding/bypassing minion config params

	Allow mysql_user.present states to
set a passwordless login (issue 5550 [https://github.com/saltstack/salt/issues/5550])

	Fixed endless loop when mysql.processlist is run (issue 6297 [https://github.com/saltstack/salt/issues/6297])

PostgreSQL

	Fixed traceback in postgres.user_list (issue 6352 [https://github.com/saltstack/salt/issues/6352])

Miscellaneous

	Don't allow npm states to be used if
npm module is not available

	Fixed alternatives.install states
for which the target is a symlink (issue 6162 [https://github.com/saltstack/salt/issues/6162])

	Fixed traceback in sysbench module (issue 6175 [https://github.com/saltstack/salt/issues/6175])

	Fixed traceback in job cache

	Fixed tempfile cleanup for windows

	Fixed issue where SLS files using the pydsl renderer were not being run

	Fixed issue where returners were being passed incorrect information
(issue 5518 [https://github.com/saltstack/salt/issues/5518])

	Fixed traceback when numeric args are passed to cmd.script states

	Fixed bug causing cp.get_dir to return more
directories than expected (issue 6048 [https://github.com/saltstack/salt/issues/6048])

	Fixed traceback when supervisord.running states are run with test=True
(issue 6053 [https://github.com/saltstack/salt/issues/6053])

	Fixed tracebacks when Salt encounters problems running rbenv (issue 5888 [https://github.com/saltstack/salt/issues/5888])

	Only make the monit module
available if monit binary is present (issue 5871 [https://github.com/saltstack/salt/issues/5871])

	Fixed incorrect behavior of img.mount_image

	Fixed traceback in tomcat.deploy_war
in Windows

	Don't re-write /etc/fstab if mount fails

	Fixed tracebacks when Salt encounters problems running gem (issue 5886 [https://github.com/saltstack/salt/issues/5886])

	Fixed incorrect behavior of selinux.boolean states (issue 5912 [https://github.com/saltstack/salt/issues/5912])

	RabbitMQ: Quote passwords to
avoid symbols being interpolated by the shell (issue 6338 [https://github.com/saltstack/salt/issues/6338])

	Fixed tracebacks in extfs.mkfs and
extfs.tune (issue 6462 [https://github.com/saltstack/salt/issues/6462])

	Fixed a regression with the module.run state
where the m_name and m_fun arguments were being ignored (issue 6464 [https://github.com/saltstack/salt/issues/6464])

Salt 0.16.0 Release Notes

The 0.16.0 release is an exciting one, with new features in master redundancy,
and a new, powerful requisite.

Major Features

Multi-Master

This new capability allows for a minion to be actively connected to multiple
salt masters at the same time. This allows for multiple masters to send out commands
to minions and for minions to automatically reconnect to masters that have gone
down. A tutorial is available to help get started here:

Multi Master Tutorial

Prereq, the New Requisite

The new prereq requisite is very powerful! It allows for states to execute
based on a state that is expected to make changes in the future. This allows
for a change on the system to be preempted by another execution. A good example
is needing to shut down a service before modifying files associated with it,
allowing, for instance, a webserver to be shut down allowing a load balancer to
stop sending requests while server side code is updated. In this case, the
prereq will only run if changes are expected to happen in the prerequired
state, and the prerequired state will always run after the prereq state and
only if the prereq state succeeds.

Peer System Improvements

The peer system has been revamped to make it more reliable, faster, and like
the rest of Salt, async. The peer calls when an updated minion and master are
used together will be much faster!

Relative Includes

The ability to include an sls relative to the defined sls has been added, the
new syntax id documented here:

Includes

More State Output Options

The state_output option in the past only supported full and terse,
0.16.0 add the mixed and changes modes further refining how states are sent
to users' eyes.

Improved Windows Support

Support for Salt on Windows continues to improve. Software management on
Windows has become more seamless with Linux/UNIX/BSD software management.
Installed software is now recognized by the short names defined in the
repository SLS. This makes it possible to
run salt '*' pkg.version firefox and get back results from Windows and
non-Windows minions alike.

When templating files on Windows, Salt will now correctly use Windows
appropriate line endings. This makes it much easier to edit and consume files
on Windows.

When using the cmd state the shell option now allows for specifying
Windows Powershell as an alternate shell to execute cmd.run and cmd.script.
This opens up Salt to all the power of Windows Powershell and its advanced
Windows management capabilities.

Several fixes and optimizations were added for the Windows networking modules,
especially when working with IPv6.

A system module was added that makes it easy to restart and shutdown Windows
minions.

The Salt Minion will now look for its config file in c:\salt\conf by
default. This means that it's no longer necessary to specify the -c option
to specify the location of the config file when starting the Salt Minion on
Windows in a terminal.

Muliple Targets for pkg.removed, pkg.purged States

Both pkg.removed and pkg.purged now support the pkgs argument, which allow for
multiple packages to be targeted in a single state. This, as in
pkg.installed, helps speed up these
states by reducing the number of times that the package management tools (apt,
yum, etc.) need to be run.

Random Times in Cron States

The temporal parameters in cron.present
states (minute, hour, etc.) can now be randomized by using random instead
of a specific value. For example, by using the random keyword in the
minute parameter of a cron state, the same cron job can be pushed to
hundreds or thousands of hosts, and they would each use a randomly-generated
minute. This can be helpful when the cron job accesses a network resource, and
it is not desirable for all hosts to run the job concurrently.

/path/to/cron/script:
 cron.present:
 - user: root
 - minute: random
 - hour: 2

Since Salt assumes a value of * for unspecified temporal parameters, adding
a parameter to the state and setting it to random will change that value
from * to a randomized numeric value. However, if that field in the cron
entry on the minion already contains a numeric value, then using the random
keyword will not modify it.

Confirmation Prompt on Key Acceptance

When accepting new keys with salt-key -a minion-id or salt-key -A,
there is now a prompt that will show the affected keys and ask for confirmation
before proceeding. This prompt can be bypassed using the -y or --yes
command line argument, as with other salt-key commands.

Support for Setting Password Hashes on BSD Minions

FreeBSD, NetBSD, and OpenBSD all now support setting passwords in
user.present states.

Salt 0.15.1 Release Notes

The 0.15.1 release has been posted, this release includes fixes to a number of
bugs in 0.15.1 and a three security patches.

Security Updates

A number of security issues have been resolved via the 0.15.1 release.

Path Injection in Minion IDs

Salt masters did not properly validate the id of a connecting minion. This can
lead to an attacker uploading files to the master in arbitrary locations.
In particular this can be used to bypass the manual validation of new unknown
minions. Exploiting this vulnerability does not require authentication.

This issue affects all known versions of Salt.

This issue was reported by Ronald Volgers.

Patch

The issue is fixed in Salt 0.15.1. Updated packages are available in the usual
locations.

Specific commits:

https://github.com/saltstack/salt/commit/5427b9438e452a5a8910d9128c6aafb45d8fd5d3

https://github.com/saltstack/salt/commit/7560908ee62351769c3cd43b03d74c1ca772cc52

https://github.com/saltstack/salt/commit/e200b8a7ff53780124e08d2bdefde7587e52bfca

RSA Key Generation Fault

RSA key generation was done incorrectly, leading to very insecure keys. It is
recommended to regenerate all RSA keys.

This issue can be used to impersonate Salt masters or minions, or decrypt any
transferred data.

This issue can only be exploited by attackers who are able to observe or modify
traffic between Salt minions and the legitimate Salt master.

A tool was included in 0.15.1 to assist in mass key regeneration, the
manage.regen_keys runner.

This issue affects all known versions of Salt.

This issue was reported by Ronald Volgers.

Patch

The issue is fixed in Salt 0.15.1. Updated packages are available in the usual
locations.

Specific commits:

https://github.com/saltstack/salt/commit/5dd304276ba5745ec21fc1e6686a0b28da29e6fc

Command Injection Via ext_pillar

Arbitrary shell commands could be executed on the master by an authenticated
minion through options passed when requesting a pillar.

Ext pillar options have been restricted to only allow safe external pillars to
be called when prompted by the minion.

This issue affects Salt versions from 0.14.0 to 0.15.0.

This issue was reported by Ronald Volgers.

Patch

The issue is fixed in Salt 0.15.1. Updated packages are available in the usual locations.

Specific commits:

https://github.com/saltstack/salt/commit/43d8c16bd26159d827d1a945c83ac28159ec5865

Salt 0.15.0 Release Notes

The many new features of Salt 0.15.0 have arrived! Salt 0.15.0 comes with many
smaller features and a few larger ones.

These features range from better debugging tools to the new Salt Mine system.

Major Features

The Salt Mine

First there was the peer system, allowing for commands to be executed from a
minion to other minions to gather data live. Then there was the external job
cache for storing and accessing long term data. Now the middle ground is being
filled in with the Salt Mine. The Salt Mine is a system used to execute
functions on a regular basis on minions and then store only the most recent
data from the functions on the master, then the data is looked up via targets.

The mine caches data that is public to all minions, so when a minion posts
data to the mine all other minions can see it.

IPV6 Support

0.13.0 saw the addition of initial IPV6 support but errors were encountered and
it needed to be stripped out. This time the code covers more cases and must be
explicitly enabled. But the support is much more extensive than before.

Copy Files From Minions to the Master

Minions have long been able to copy files down from the master file server, but
until now files could not be easily copied from the minion up to the master.

A new function called cp.push can push files from the minions up to the
master server. The uploaded files are then cached on the master in the master
cachedir for each minion.

Better Template Debugging

Template errors have long been a burden when writing states and pillar. 0.15.0
will now send the compiled template data to the debug log, this makes tracking
down the intermittent stage templates much easier. So running state.sls or
state.highstate with -l debug will now print out the rendered templates in
the debug information.

State Event Firing

The state system is now more closely tied to the master's event bus. Now when
a state fails the failure will be fired on the master event bus so that the
reactor can respond to it.

Major Syndic Updates

The Syndic system has been basically re-written. Now it runs in a completely
asynchronous way and functions primarily as an event broker. This means that
the events fired on the syndic are now pushed up to the higher level master
instead of the old method used which waited for the client libraries to
return.

This makes the syndic much more accurate and powerful, it also means that
all events fired on the syndic master make it up the pipe as well making a
reactor on the higher level master able to react to minions further
downstream.

Peer System Updates

The Peer System has been updated to run using the client libraries instead
of firing directly over the publish bus. This makes the peer system much more
consistent and reliable.

Minion Key Revocation

In the past when a minion was decommissioned the key needed to be manually
deleted on the master, but now a function on the minion can be used to revoke
the calling minion's key:

$ salt-call saltutil.revoke_auth

Function Return Codes

Functions can now be assigned numeric return codes to determine if the function
executed successfully. While not all functions have been given return codes,
many have and it is an ongoing effort to fill out all functions that might
return a non-zero return code.

Functions in Overstate

The overstate system was originally created to just manage the execution of
states, but with the addition of return codes to functions, requisite logic can
now be used with respect to the overstate. This means that an overstate stage
can now run single functions instead of just state executions.

Pillar Error Reporting

Previously if errors surfaced in pillar, then the pillar would consist of only
an empty dict. Now all data that was successfully rendered stays in pillar and
the render error is also made available. If errors are found in the pillar,
states will refuse to run.

Using Cached State Data

Sometimes states are executed purely to maintain a specific state rather than
to update states with new configs. This is grounds for the new cached state
system. By adding cache=True to a state call the state will not be generated
fresh from the master but the last state data to be generated will be used.
If no previous state data is available then fresh data will be generated.

Monitoring States

The new monitoring states system has been started. This is very young but
allows for states to be used to configure monitoring routines. So far only one
monitoring state is available, the disk.status state. As more capabilities
are added to Salt UI the monitoring capabilities of Salt will continue to be
expanded.

Salt 0.14.0 Release Notes

Salt 0.14.0 is here! This release was held up primarily by PyCon, Scale and
illness, but has arrived! 0.14.0 comes with many new features and is breaking
ground for Salt in the area of cloud management with the introduction of Salt
providing basic cloud controller functionality.

Major Features

Salt - As a Cloud Controller

This is the first primitive inroad to using Salt as a cloud controller is
available in 0.14.0. Be advised that this is alpha, only tested in a few very
small environments.

The cloud controller is built using kvm and libvirt for the hypervisors.
Hypervisors are autodetected as minions and only need to have libvirt running
and kvm installed to function. The features of the Salt cloud controller are
as follows:

	Basic vm discovery and reporting

	Creation of new virtual machines

	Seeding virtual machines with Salt via qemu-nbd or libguestfs

	Live migration (shared and non shared storage)

	Delete existing VMs

It is noteworthy that this feature is still Alpha, meaning that all rights
are reserved to change the interface if needs be in future releases!

Libvirt State

One of the problems with libvirt is management of certificates needed for live
migration and cross communication between hypervisors. The new libvirt
state makes the Salt Master hold a CA and manage the signing and distribution
of keys onto hypervisors, just add a call to the libvirt state in the sls
formulas used to set up a hypervisor:

libvirt_keys:
 libvirt.keys

New get Functions

An easier way to manage data has been introduced. The pillar, grains and config
execution modules have been extended with the new get function. This
function works much in the same way as the get method in a python dict, but with
an enhancement, nested dict components can be extracted using a : delimiter.

If a structure like this is in pillar:

foo:
 bar:
 baz: quo

Extracting it from the raw pillar in an sls formula or file template is done
this way:

{{ pillar['foo']['bar']['baz'] }}

Now with the new get function the data can be safely gathered and a default
can be set allowing the template to fall back if the value is not available:

{{ salt['pillar.get']('foo:bar:baz', 'qux') }}

This makes handling nested structures much easier, and defaults can be cleanly
set. This new function is being used extensively in the new formulae repository
of salt sls formulas.

Salt 0.13.0 Release Notes

The lucky number 13 has turned the corner! From CLI notifications when quitting
a salt command, to substantial improvements on Windows, Salt 0.13.0 has
arrived!

Major Features

Improved file.recurse Performance

The file.recurse system has been deployed and used in a vast array of
situations. Fixes to the file state and module have led towards opening up
new ways of running file.recurse to make it faster. Now the file.recurse
state will download fewer files and will run substantially faster.

Windows Improvements

Minion stability on Windows has improved. Many file operations, including
file.recurse, have been fixed and improved. The network module works better, to
include network.interfaces. Both 32bit and 64bit installers are now available.

Nodegroup Targeting in Peer System

In the past, nodegroups were not available for targeting via the peer system.
This has been fixed, allowing the new nodegroup expr_form argument for the
publish.publish function:

salt-call publish.publish group1 test.ping expr_form=nodegroup

Blacklist Additions

Additions allowing more granular blacklisting are available in 0.13.0. The
ability to blacklist users and functions in client_acl have been added, as
well as the ability to exclude state formulas from the command line.

Command Line Pillar Embedding

Pillar data can now be embedded on the command line when calling state.sls
and state.highstate. This allows for on the fly changes or settings to
pillar and makes parameterizing state formulas even easier. This is done via
the keyword argument:

salt '*' state.highstate pillar='{"cheese": "spam"}'

The above example will extend the existing pillar to hold the cheese key
with a value of spam. If the cheese key is already specified in the
minion's pillar then it will be overwritten.

CLI Notifications

In the past hitting ctrl-C and quitting from the salt command would just
drop to a shell prompt, this caused confusion with users who expected the
remote executions to also quit. Now a message is displayed showing what
command can be used to track the execution and what the job id is for the
execution.

Version Specification in Multiple-Package States

Versions can now be specified within multiple-package pkg.installed states. An example can be found below:

mypkgs:
 pkg.installed:
 - pkgs:
 - foo
 - bar: 1.2.3-4
 - baz

Noteworthy Changes

The configuration subsystem in Salt has been overhauled to make the opts
dict used by Salt applications more portable, the problem is that this is an
incompatible change with salt-cloud, and salt-cloud will need to be updated
to the latest git to work with Salt 0.13.0. Salt Cloud 0.8.5 will also require
Salt 0.13.0 or later to function.

The Salt Stack team is sorry for the inconvenience here, we work hard to make
sure these sorts of things do not happen, but sometimes hard changes get in.

Salt 0.12.0 Release Notes

Another feature release of Salt is here! Some exciting additions are included
with more ways to make salt modular and even easier management of the salt
file server.

Major Features

Modular Fileserver Backend

The new modular fileserver backend allows for any external system to be used as
a salt file server. The main benefit here is that it is now possible to tell
the master to directly use a git remote location, or many git remote locations,
automatically mapping git branches and tags to salt environments.

Windows is First Class!

A new Salt Windows installer is now available! Much work has been put in to
improve Windows support. With this much easier method of getting Salt on your
Windows machines, we hope even more development and progress will occur. Please
file bug reports on the Salt GitHub repo issue tracker so we can continue
improving.

One thing that is missing on Windows that Salt uses extensively is a software
package manager and a software package repository. The Salt pkg state allows
sys admins to install software across their infrastructure and across operating
systems. Software on Windows can now be managed in the same way. The SaltStack
team built a package manager that interfaces with the standard Salt pkg module
to allow for installing and removing software on Windows. In addition, a
software package repository has been built on top of the Salt fileserver. A
small YAML file provides the information necessary for the package manager to
install and remove software.

An interesting feature of the new Salt Windows software package repository is
that one or more remote git repositories can supplement the master's local
repository. The repository can point to software on the master's fileserver or
on an HTTP, HTTPS, or ftp server.

New Default Outputter

Salt displays data to the terminal via the outputter system. For a long time
the default outputter for Salt has been the python pretty print library. While
this has been a generally reasonable outputter, it did have many failings. The
new default outputter is called "nested", it recursively scans return data
structures and prints them out cleanly.

If the result of the new nested outputter is not desired any other outputter
can be used via the --out option, or the output option can be set in the master
and minion configs to change the default outputter.

Internal Scheduler

The internal Salt scheduler is a new capability which allows for functions to
be executed at given intervals on the minion, and for runners to be executed
at given intervals on the master. The scheduler allows for sequences
such as executing state runs (locally on the minion or remotely via an
overstate) or continually gathering system data to be run at given intervals.

The configuration is simple, add the schedule option to the master or minion
config and specify jobs to run, this in the master config will execute the
state.over runner every 60 minutes:

schedule:
 overstate:
 function: state.over
 minutes: 60

This example for the minion configuration will execute a highstate every 30
minutes:

schedule:
 highstate:
 function: state.highstate
 minutes: 30

Optional DSL for SLS Formulas

Jack Kuan, our renderer expert, has created something that is astonishing.
Salt, now comes with an optional Python based DSL, this is a very powerful
interface that makes writing SLS files in pure python easier than it was
with the raw py renderer. As usual this can be used with the renderer shebang
line, so a single sls can be written with the DSL if pure python power is
needed while keeping other sls files simple with YAML.

Set Grains Remotely

A new execution function and state module have been added that allows for
grains to be set on the minion. Now grains can be set via a remote execution or
via states. Use the grains.present state or the grains.setval execution
functions.

Gentoo Additions

Major additions to Gentoo specific components have been made. The encompasses
executions modules and states ranging from supporting the make.conf file to
tools like layman.

Salt 0.11.0 Release Notes

Salt 0.11.0 is here, with some highly sought after and exciting features.
These features include the new overstate system, the reactor system, a new
state run scope component called __context__, the beginning of the search
system (still needs a great deal of work), multiple package states, the MySQL
returner and a better system to arbitrarily reference outputters.

It is also noteworthy that we are changing how we mark release numbers. For the
life of the project we have been pushing every release with features and fixes
as point releases. We will now be releasing point releases for only bug fixes
on a more regular basis and major feature releases on a slightly less regular
basis. This means that the next release will be a bugfix only release with a
version number of 0.11.1. The next feature release will be named 0.12.0 and
will mark the end of life for the 0.11 series.

Major Features

OverState

The overstate system is a simple way to manage rolling state executions across
many minions. The overstate allows for a state to depend on the successful
completion of another state.

Reactor System

The new reactor system allows for a reactive logic engine to be created which
can respond to events within a salted environment. The reactor system uses sls
files to match events fired on the master with actions, enabling Salt
to react to problems in an infrastructure.

Your load-balanced group of webservers is under extra load? Spin up a new VM
and add it to the group. Your fileserver is filling up? Send a notification to
your sysadmin on call. The possibilities are endless!

Module Context

A new component has been added to the module loader system. The module context
is a data structure that can hold objects for a given scope within the module.

This allows for components that are initialized to be stored in a persistent
context which can greatly speed up ongoing connections. Right now the best
example can be found in the cp execution module.

Multiple Package Management

A long desired feature has been added to package management. By definition Salt
States have always installed packages one at a time. On most platforms this is
not the fastest way to install packages. Erik Johnson, aka terminalmage, has
modified the package modules for many providers and added new capabilities to
install groups of packages. These package groups can be defined as a list of
packages available in repository servers:

python_pkgs:
 pkg.installed:
 - pkgs:
 - python-mako
 - whoosh
 - python-git

or specify based on the location of specific packages:

python_pkgs:
 pkg.installed:
 - sources:
 - python-mako: http://some-rpms.org/python-mako.rpm
 - whoosh: salt://whoosh/whoosh.rpm
 - python-git: ftp://companyserver.net/python-git.rpm

Search System

The bones to the search system have been added. This is a very basic interface
that allows for search backends to be added as search modules. The first
supported search module is the whoosh search backend. Right now only the basic
paths for the search system are in place, making this very experimental.
Further development will involve improving the search routines and index
routines for whoosh and other search backends.

The search system has been made to allow for searching through all of the state
and pillar files, configuration files and all return data from minion
executions.

Notable Changes

All previous versions of Salt have shared many directories between the master
and minion. The default locations for keys, cached data and sockets has been
shared by master and minion. This has created serious problems with running a
master and a minion on the same systems. 0.11.0 changes the defaults to be
separate directories. Salt will also attempt to migrate all of the old key data
into the correct new directories, but if it is not successful it may need to be
done manually. If your keys exhibit issues after updating make sure that they
have been moved from /etc/salt/pki to /etc/salt/pki/{master,minion}.

The old setup will look like this:

/etc/salt/pki
|-- master.pem
|-- master.pub
|-- minions
| `-- ragnarok.saltstack.net
|-- minions_pre
|-- minion.pem
|-- minion.pub
|-- minion_master.pub
|-- minions_pre
`-- minions_rejected

With the accepted minion keys in /etc/salt/pki/minions, the new setup
places the accepted minion keys in /etc/salt/pki/master/minions.

/etc/salt/pki
|-- master
| |-- master.pem
| |-- master.pub
| |-- minions
| | `-- ragnarok.saltstack.net
| |-- minions_pre
| `-- minions_rejected
|-- minion
| |-- minion.pem
| |-- minion.pub
| `-- minion_master.pub

Salt 0.10.5 Release Notes

Salt 0.10.5 is ready, and comes with some great new features. A few more
interfaces have been modularized, like the outputter system. The job cache
system has been made more powerful and can now store and retrieve jobs archived
in external databases. The returner system has been extended to allow minions
to easily retrieve data from a returner interface.

As usual, this is an exciting release, with many noteworthy additions!

Major Features

External Job Cache

The external job cache is a system which allows for a returner interface to
also act as a job cache. This system is intended to allow users to store
job information in a central location for longer periods of time and to make
the act of looking up information from jobs executed on other minions easier.

Currently the external job cache is supported via the mongo and redis
returners:

ext_job_cache: redis
redis.host: salt

Once the external job cache is turned on the new ret module can be used on
the minions to retrieve return information from the job cache. This can be a
great way for minions to respond and react to other minions.

OpenStack Additions

OpenStack integration with Salt has been moving forward at a blistering pace.
The new nova, glance and keystone modules represent the beginning of
ongoing OpenStack integration.

The Salt team has had many conversations with core OpenStack developers and
is working on linking to OpenStack in powerful new ways.

Wheel System

A new API was added to the Salt Master which allows the master to be managed
via an external API. This new system allows Salt API to easily hook into the
Salt Master and manage configs, modify the state tree, manage the pillar and
more. The main motivation for the wheel system is to enable features needed
in the upcoming web UI so users can manage the master just as easily as they
manage minions.

The wheel system has also been hooked into the external auth system. This
allows specific users to have granular access to manage components of the
Salt Master.

Render Pipes

Jack Kuan has added a substantial new feature. The render pipes system allows
Salt to treat the render system like unix pipes. This new system enables sls
files to be passed through specific render engines. While the default renderer
is still recommended, different engines can now be more easily merged. So to
pipe the output of Mako used in YAML use this shebang line:

#!mako|yaml

Salt Key Overhaul

The Salt Key system was originally developed as only a CLI interface, but as
time went on it was pressed into becoming a clumsy API. This release marks a
complete overhaul of Salt Key. Salt Key has been rewritten to function purely
from an API and to use the outputter system. The benefit here is that the
outputter system works much more cleanly with Salt Key now, and the internals
of Salt Key can be used much more cleanly.

Modular Outputters

The outputter system is now loaded in a modular way. This means that output
systems can be more easily added by dropping a python file down on the master
that contains the function output.

Gzip from Fileserver

Gzip compression has been added as an option to the cp.get_file and cp.get_dir
commands. This will make file transfers more efficient and faster, especially
over slower network links.

Unified Module Configuration

In past releases of Salt, the minions needed to be configured for certain
modules to function. This was difficult because it required pre-configuring the
minions. 0.10.5 changes this by making all module configs on minions search the
master config file for values.

Now if a single database server is needed, then it can be defined in the master
config and all minions will become aware of the configuration value.

Salt Call Enhancements

The salt-call command has been updated in a few ways. Now, salt-call
can take the --return option to send the data to a returner. Also,
salt-call now reports executions in the minion proc system, this allows the
master to be aware of the operation salt-call is running.

Death to pub_refresh and sub_timeout

The old configuration values pub_refresh and sub_timeout have been removed.
These options were in place to alleviate problems found in earlier versions of
ZeroMQ which have since been fixed. The continued use of these options has
proven to cause problems with message passing and have been completely removed.

Git Revision Versions

When running Salt directly from git (for testing or development, of course)
it has been difficult to know exactly what code is being executed. The new
versioning system will detect the git revision when building and how many
commits have been made since the last release. A release from git will look
like this:

0.10.4-736-gec74d69

Svn Module Addition

Anthony Cornehl (twinshadow) contributed a module that adds Subversion support
to Salt. This great addition helps round out Salt's VCS support.

Noteworthy Changes

Arch Linux Defaults to Systemd

Arch Linux recently changed to use systemd by default and discontinued support
for init scripts. Salt has followed suit and defaults to systemd now for
managing services in Arch.

Salt, Salt Cloud and Openstack

With the releases of Salt 0.10.5 and Salt Cloud 0.8.2, OpenStack becomes the
first (non-OS) piece of software to include support both on the user level
(with Salt Cloud) and the admin level (with Salt). We are excited to continue
to extend support of other platforms at this level.

Salt 0.10.4 Release Notes

Salt 0.10.4 is a monumental release for the Salt team, with two new module
systems, many additions to allow granular access to Salt, improved platform
support and much more.

This release is also exciting because we have been able to shorten the release
cycle back to under a month. We are working hard to keep up the aggressive pace
and look forward to having releases happen more frequently!

This release also includes a serious security fix and all users are very
strongly recommended to upgrade. As usual, upgrade the master first, and then
the minion to ensure that the process is smooth.

Major Features

External Authentication System

The new external authentication system allows for Salt to pass through
authentication to any authentication system to determine if a user has
permission to execute a Salt command. The Unix PAM system is the first
supported system with more to come!

The external authentication system allows for specific users to be granted
access to execute specific functions on specific minions. Access is configured
in the master configuration file, and uses the new access control system:

external_auth:
 pam:
 thatch:
 - 'web*':
 - test.*
 - network.*

The configuration above allows the user thatch to execute functions in the
test and network modules on minions that match the web* target.

Access Control System

All Salt systems can now be configured to grant access to non-administrative
users in a granular way. The old configuration continues to work. Specific
functions can be opened up to specific minions from specific users in the case
of external auth and client ACLs, and for specific minions in the case of the
peer system.

Access controls are configured like this:

client_acl:
 fred:
 - web*:
 - pkg.list_pkgs
 - test.*
 - apache.*

Target by Network

A new matcher has been added to the system which allows for minions to be
targeted by network. This new matcher can be called with the -S flag on the
command line and is available in all places that the matcher system is
available. Using it is simple:

$ salt -S '192.168.1.0/24' test.ping
$ salt -S '192.168.1.100' test.ping

Nodegroup Nesting

Previously a nodegroup was limited by not being able to include another
nodegroup, this restraint has been lifted and now nodegroups will be expanded
within other nodegroups with the N@ classifier.

Salt Key Delete by Glob

The ability to delete minion keys by glob has been added to salt-key. To
delete all minion keys whose minion name starts with 'web':

$ salt-key -d 'web*'

Master Tops System

The external_nodes system has been upgraded to allow for modular subsystems
to be used to generate the top file data for a highstate run.

The external_nodes option still works but will be deprecated in the future in
favor of the new master_tops option.

Example of using master_tops:

master_tops:
 ext_nodes: cobbler-external-nodes

Next Level Solaris Support

A lot of work has been put into improved Solaris support by Romeo Theriault.
Packaging modules (pkgadd/pkgrm and pkgutil) and states, cron support and user
and group management have all been added and improved upon. These additions
along with SMF (Service Management Facility) service support and improved
Solaris grain detection in 0.10.3 add up to Salt becoming a great tool
to manage Solaris servers with.

Security

A vulnerability in the security handshake was found and has been repaired, old
minions should be able to connect to a new master, so as usual, the master
should be updated first and then the minions.

Pillar Updates

The pillar communication has been updated to add some extra levels of
verification so that the intended minion is the only one allowed to gather the
data. Once all minions and the master are updated to salt 0.10.4 please
activate pillar 2 by changing the pillar_version in the master config to
2. This will be set to 2 by default in a future release.

Salt 0.10.3 Release Notes

The latest taste of Salt has come, this release has many fixes and feature
additions. Modifications have been made to make ZeroMQ connections more
reliable, the beginning of the ACL system is in place, a new command line
parsing system has been added, dynamic module distribution has become more
environment aware, the new master_finger option and many more!

Major Features

ACL System

The new ACL system has been introduced. The ACL system allows for system users
other than root to execute salt commands. Users can be allowed to execute
specific commands in the same way that minions are opened up to the peer
system.

The configuration value to open up the ACL system is called client_acl
and is configured like so:

client_acl:
 fred:
 - test..*
 - pkg.list_pkgs

Where fred is allowed access to functions in the test module and to the
pkg.list_pkgs function.

Master Finger Option

The master_finger option has been added to improve the security of minion
provisioning. The master_finger option allows for the fingerprint of the
master public key to be set in the configuration file to double verify that the
master is valid. This option was added in response to a motivation to
pre-authenticate the master when provisioning new minions to help prevent
man in the middle attacks in some situations.

Salt Key Fingerprint Generation

The ability to generate fingerprints of keys used by Salt has been added to
salt-key. The new option finger accepts the name of the key to generate
and display a fingerprint for.

salt-key -F master

Will display the fingerprints for the master public and private keys.

Parsing System

Pedro Algavio, aka s0undt3ch, has added a substantial update to the command
line parsing system that makes the help message output much cleaner and easier
to search through. Salt parsers now have --versions-report besides usual
--version info which you can provide when reporting any issues found.

Key Generation

We have reduced the requirements needed for salt-key to generate minion keys.
You're no longer required to have salt configured and it's common directories
created just to generate keys. This might prove useful if you're batch creating
keys to pre-load on minions.

Startup States

A few configuration options have been added which allow for states to be run
when the minion daemon starts. This can be a great advantage when deploying
with Salt because the minion can apply states right when it first runs. To
use startup states set the startup_states configuration option on the
minion to highstate.

New Exclude Declaration

Some users have asked about adding the ability to ensure that other sls files
or ids are excluded from a state run. The exclude statement will delete all of
the data loaded from the specified sls file or will delete the specified id:

exclude:
 - sls: http
 - id: /etc/vimrc

Max Open Files

While we're currently unable to properly handle ZeroMQ's abort signals when the
max open files is reached, due to the way that's handled on ZeroMQ's, we have
minimized the chances of this happening without at least warning the user.

More State Output Options

Some major changes have been made to the state output system. In the past state
return data was printed in a very verbose fashion and only states that failed
or made changes were printed by default. Now two options can be passed to the
master and minion configuration files to change the behavior of the state
output. State output can be set to verbose (default) or non-verbose with the
state_verbose option:

state_verbose: False

It is noteworthy that the state_verbose option used to be set to False by
default but has been changed to True by default in 0.10.3 due to many
requests for the change.

Te next option to be aware of new and called state_output. This option
allows for the state output to be set to full (default) or terse.

The full output is the standard state output, but the new terse output
will print only one line per state making the output much easier to follow when
executing a large state system.

state_output: terse

state.file.append Improvements

The salt state file.append() tries not to append existing text. Previously
the matching check was being made line by line. While this kind of check might
be enough for most cases, if the text being appended was multi-line, the check
would not work properly. This issue is now properly handled, the match is done
as a whole ignoring any white space addition or removal except inside commas.
For those thinking that, in order to properly match over multiple lines, salt
will load the whole file into memory, that's not true. For most cases this is
not important but an erroneous order to read a 4GB file, if not properly
handled, like salt does, could make salt chew that amount of memory. Salt has
a buffered file reader which will keep in memory a maximum of 256KB and
iterates over the file in chunks of 32KB to test for the match, more than
enough, if not, explain your usage on a ticket. With this change, also
salt.modules.file.contains(), salt.modules.file.contains_regex(),
salt.modules.file.contains_glob() and salt.utils.find now do the searching
and/or matching using the buffered chunks approach explained above.

Two new keyword arguments were also added, makedirs and source.
The first, makedirs will create the necessary directories in order to append
to the specified file, of course, it only applies if we're trying to append to
a non-existing file on a non-existing directory:

/tmp/salttest/file-append-makedirs:
 file.append:
 text: foo
 makedirs: True

The second, source, allows one to append the contents of a file instead of
specifying the text.

/tmp/salttest/file-append-source:

file.append:
 - source: salt://testfile

Security Fix

A timing vulnerability was uncovered in the code which decrypts the AES
messages sent over the network. This has been fixed and upgrading is
strongly recommended.

Salt 0.10.2 Release Notes

0.10.2 is out! This release comes with enhancements to the pillar interface,
cleaner ways to access the salt-call capabilities in the API, minion data
caching and the event system has been added to salt minions.

There have also been updates to the ZeroMQ functions, many more tests
(thanks to sponsors, the code sprint and many contributors) and a swath
of bug fixes.

Major Features

Ext Pillar Modules

The ranks of available Salt modules directories sees a new member in 0.10.2.
With the popularity of pillar a higher demand has arisen for ext_pillar
interfaces to be more like regular Salt module additions. Now ext_pillar
interfaces can be added in the same way as other modules, just drop it into
the pillar directory in the salt source.

Minion Events

In 0.10.0 an event system was added to the Salt master. 0.10.2 adds the event
system to the minions as well. Now event can be published on a local minion
as well.

The minions can also send events back up to the master. This means that Salt is
able to communicate individual events from the minions back up to the Master
which are not associated with command.

Minion Data Caching

When pillar was introduced the landscape for available data was greatly
enhanced. The minion's began sending grain data back to the master on a
regular basis.

The new config option on the master called minion_data_cache instructs the
Salt master to maintain a cache of the minion's grains and pillar data in the
cachedir. This option is turned off by default to avoid hitting the disk more,
but when enabled the cache is used to make grain matching from the salt command
more powerful, since the minions that will match can be predetermined.

Backup Files

By default all files replaced by the file.managed and file.recurse states we
simply deleted. 0.10.2 adds a new option. By setting the backup option to
minion the files are backed up before they are replaced.

The backed up files are located in the cachedir under the file_backup
directory. On a default system this will be at:
/var/cache/salt/file_backup

Configuration files

salt-master and salt-minion automatically load additional configuration
files from master.d/*.conf respective minion.d/*.conf where
master.d/minion.d is a directory in the same directory as the main
configuration file.

Salt Key Verification

A number of users complained that they had inadvertently deleted the wrong salt
authentication keys. 0.10.2 now displays what keys are going to be deleted
and verifies that they are the keys that are intended for deletion.

Key auto-signing

If autosign_file is specified in the configuration file incoming keys
will be compared to the list of keynames in autosign_file. Regular
expressions as well as globbing is supported.

The file must only be writable by the user otherwise the file will be
ignored. To relax the permission and allow group write access set the
permissive_pki_access option.

Module changes

Improved OpenBSD support

New modules for managing services and packages were provided by Joshua
Elsasser to further improve the support for OpenBSD.

Existing modules like the disk module were also improved to support
OpenBSD.

SQL Modules

The MySQL and PostgreSQL modules have both received a number of additions thanks
to the work of Avi Marcus and Roman Imankulov.

ZFS Support on FreeBSD

A new ZFS module has been added by Kurtis Velarde for FreeBSD supporting
various ZFS operations like creating, extending or removing zpools.

Augeas

A new Augeas module by Ulrich Dangel for editing and verifying config files.

Native Debian Service module

The support for the Debian was further improved with an new service module
for Debian by Ahmad Khayyat supporting disable and enable.

Cassandra

Cassandra support has been added by Adam Garside. Currently only
status and diagnostic information are supported.

Networking

The networking support for RHEL has been improved and supports bonding
support as well as zeroconf configuration.

Monit

Basic monit support by Kurtis Velarde to control services via monit.

nzbget

Basic support for controlling nzbget by Joseph Hall

Bluetooth

Baisc bluez support for managing and controlling Bluetooth devices.
Supports scanning as well as pairing/unpairing by Joseph Hall.

Test Updates

Consistency Testing

Another testing script has been added. A bug was found in pillar when many
minions generated pillar data at the same time. The new consist.py script
is the tests directory was created to reproduce bugs where data should always
be consistent.

Many Fixes

To get a good idea for the number of bugfixes this release offers take a look
at the closed tickets for 0.10.2, this is a very substantial update:

https://github.com/saltstack/salt/issues?milestone=24&page=1&state=closed

Master and Minion Stability Fixes

As Salt deployments grow new ways to break Salt are discovered. 0.10.2 comes
with a number of fixes for the minions and master greatly improving Salt
stability.

Salt 0.10.0 Release Notes

0.10.0 has arrived! This release comes with MANY bug fixes, and new
capabilities which greatly enhance performance and reliability. This
release is primarily a bug fix release with many new tests and many repaired
bugs. This release also introduces a few new key features which were brought
in primarily to repair bugs and some limitations found in some of the
components of the original architecture.

Major Features

Event System

The Salt Master now comes equipped with a new event system. This event system
has replaced some of the back end of the Salt client and offers the beginning of
a system which will make plugging external applications into Salt. The event
system relies on a local ZeroMQ publish socket and other processes can connect
to this socket and listen for events. The new events can be easily managed via
Salt's event library.

Unprivileged User Updates

Some enhancements have been added to Salt for running as a user other than
root. These new additions should make switching the user that the Salt Master
is running as very painless, simply change the user option in the master
configuration and restart the master, Salt will take care of all of the
particulars for you.

Peer Runner Execution

Salt has long had the peer communication system used to allow minions to send
commands via the salt master. 0.10.0 adds a new capability here, now the
master can be configured to allow for minions to execute Salt runners via
the peer_run option in the salt master configuration.

YAML Parsing Updates

In the past the YAML parser for sls files would return the incorrect numbers
when the file mode was set with a preceding 0. The YAML parser used in Salt
has been modified to no longer convert these number into octal but to keep
them as the correct value so that sls files can be a little cleaner to write.

State Call Data Files

It was requested that the minion keep a local cache of the most recent executed
state run. This has been added and now with state runs the data is stored in a
msgpack file in the minion's cachedir.

Turning Off the Job Cache

A new option has been added to the master configuration file. In previous
releases the Salt client would look over the Salt job cache to read in
the minion return data. With the addition of the event system the Salt client
can now watch for events directly from the master worker processes.

This means that the job cache is no longer a hard requirement. Keep in mind
though, that turning off the job cache means that historic job execution data
cannot be retrieved.

Test Updates

Minion Swarms Are Faster

To continue our efforts with testing Salt's ability to scale the minionswarm
script has been updated. The minionswarm can now start up minions much faster
than it could before and comes with a new feature allowing modules to be
disabled, thus lowering the minion's footprint when making a swarm. These new
updates have allows us to test

python minionswarm.py -m 20 --master salt-master

Many Fixes

To get a good idea for the number of bugfixes this release offers take a look
at the closed tickets for 0.10.0, this is a very substantial update:

https://github.com/saltstack/salt/issues?milestone=12&state=closed

Master and Minion Stability Fixes

As Salt deployments grow new ways to break Salt are discovered. 0.10.0 comes
with a number of fixes for the minions and master greatly improving Salt
stability.

Salt 0.9.9 Release Notes

0.9.9 is out and comes with some serious bug fixes and even more serious
features. This release is the last major feature release before 1.0.0 and
could be considered the 1.0.0 release candidate.

A few updates include more advanced kwargs support, the ability for salt
states to more safely configure a running salt minion, better job directory
management and the new state test interface.

Many new tests have been added as well, including the new minion swarm test
that allows for easier testing of Salt working with large groups of minions.
This means that if you have experienced stability issues with Salt before,
particularly in larger deployments, that these bugs have been tested for,
found, and killed.

Major Features

State Test Interface

Until 0.9.9 the only option when running states to see what was going to be
changed was to print out the highstate with state.show_highstate and manually
look it over. But now states can be run to discover what is going to be
changed.

Passing the option test=True to many of the state functions will now cause
the salt state system to only check for what is going to be changed and report
on those changes.

salt '*' state.highstate test=True

Now states that would have made changes report them back in yellow.

State Syntax Update

A shorthand syntax has been added to sls files, and it will be the default
syntax in documentation going forward. The old syntax is still fully supported
and will not be deprecated, but it is recommended to move to the new syntax in
the future. This change moves the state function up into the state name using
a dot notation. This is in-line with how state functions are generally referred
to as well:

The new way:

/etc/sudoers:
 file.present:
 - source: salt://sudo/sudoers
 - user: root
 - mode: 400

Use and Use_in Requisites

Two new requisite statements are available in 0.9.9. The use and use_in
requisite and requisite-in allow for the transparent duplication of data
between states. When a state "uses" another state it copies the other state's
arguments as defaults. This was created in direct response to the new network
state, and allows for many network interfaces to be configured in the same way
easily. A simple example:

root_file:
 file.absent:
 - name: /tmp/nothing
 - user: root
 - mode: 644
 - group: root
 - use_in:
 - file: /etc/vimrc

fred_file:
 file.absent:
 - name: /tmp/nothing
 - user: fred
 - group: marketing
 - mode: 660

/files/marketing/district7.rst:
 file.present:
 - source: salt://marketing/district7.rst
 - template: jinja
 - use:
 - file: fred_file

/etc/vimrc:
 file.present:
 - source: salt://edit/vimrc

This makes the 2 lower state decs inherit the options from their respectively
"used" state decs.

Network State

The new network state allows for the configuration of network devices via salt
states and the ip salt module. This addition has been given to the project by
Jeff Hutchins and Bret Palsson from Jive Communications.

Currently the only network configuration backend available is for Red Hat
based systems, like Red Hat Enterprise, CentOS, and Fedora.

Exponential Jobs

Originally the jobs executed were stored on the master in the format:
<cachedir>/jobs/jid/{minion ids}
But this format restricted the number of jobs in the cache to the number of
subdirectories allowed on the filesystem. Ext3 for instance limits
subdirectories to 32000. To combat this the new format for 0.9.9 is:
<cachedir>/jobs/jid_hash[:2]/jid_hash[2:]/{minion ids}
So that now the number of maximum jobs that can be run before the cleanup
cycle hits the job directory is substantially higher.

ssh_auth Additions

The original ssh_auth state was limited to accepting only arguments to apply
to a public key, and the key itself. This was restrictive due to the way the
we learned that many people were using the state, so the key section has been
expanded to accept options and arguments to the key that over ride arguments
passed in the state. This gives substantial power to using ssh_auth with names:

sshkeys:
 ssh_auth:
 - present
 - user: backup
 - enc: ssh-dss
 - options:
 - option1="value1"
 - option2="value2 flag2"
 - comment: backup
 - names:
 - AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0111==
 - AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0222== override
 - ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0333== override
 - ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0444==
 - option3="value3",option4="value4 flag4" ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0555== override
 - option3="value3" ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAlyE26SMFFVY5YJvnL7AF5CRTPtAigSW1U887ASfBt6FDa7Qr1YdO5ochiLoz8aSiMKd5h4dhB6ymHbmntMPjQena29jQjXAK4AK0500rMShG1Y1HYEjTXjQxIy/SMjq2aycHI+abiVDn3sciQjsLsNW59t48Udivl2RjWG7Eo+LYiB17MKD5M40r5CP2K4B8nuL+r4oAZEHKOJUF3rzA20MZXHRQuki7vVeWcW7ie8JHNBcq8iObVSoruylXav4aKG02d/I4bz/l0UdGh18SpMB8zVnT3YF5nukQQ/ATspmhpU66s4ntMehULC+ljLvZL40ByNmF0TZc2sdSkA0666==

LocalClient Additions

To follow up the recent additions in 0.9.8 of additional kwargs support,
0.9.9 also adds the capability to send kwargs into commands via a dict.
This addition to the LocalClient api can be used like so:

import salt.client

client = salt.client.LocalClient('/etc/salt/master')
ret = client.cmd('*', 'cmd.run', ['ls -l'], kwarg={'cwd': '/etc'})

This update has been added to all cmd methods in the LocalClient class.

Better Self Salting

One problem faced with running Salt states, is that it has been difficult
to manage the Salt minion via states, this is due to the fact that if the
minion is called to restart while a state run is happening then the state
run would be killed. 0.9.9 slightly changes the process scope of the state
runs, so now when salt is executing states it can safely restart the
salt-minion daemon.

In addition to daemonizing the state run, the apt module also daemonizes.
This update makes it possible to cleanly update the salt-minion package on
Debian/Ubuntu systems without leaving apt in an inconsistent state or killing
the active minion process mid-execution.

Wildcards for SLS Modules

Now, when including sls modules in include statements or in the top file,
shell globs can be used. This can greatly simplify listing matched sls
modules in the top file and include statements:

base:
 '*':
 - files*
 - core*

include:
 - users.dev.*
 - apache.ser*

External Pillar

Since the pillar data is just, data, it does not need to come expressly from
the pillar interface. The external pillar system allows for hooks to be added
making it possible to extract pillar data from any arbitrary external
interface. The external pillar interface is configured via the ext_pillar
option. Currently interfaces exist to gather external pillar data via hiera
or via a shell command that sends yaml data to the terminal:

ext_pillar:
 - cmd_yaml: cat /etc/salt/ext.yaml
 - hiera: /etc/hirea.yaml

The initial external pillar interfaces and extra interfaces can be added to
the file salt/pillar.py, it is planned to add more external pillar interfaces.
If the need arises a new module loader interface will be created in the future
to manage external pillar interfaces.

Single State Executions

The new state.single function allows for single states to be cleanly executed.
This is a great tool for setting up a small group of states on a system or for
testing out the behavior of single states:

salt '*' state.single user.present name=wade uid=2000

The test interface functions here as well, so changes can also be tested
against as:

salt '*' state.single user.present name=wade uid=2000 test=True

New Tests

A few exciting new test interfaces have been added, the minion swarm allows
not only testing of larger loads, but also allows users to see how Salt behaves
with large groups of minions without having to create a large deployment.

Minion Swarm

The minion swarm test system allows for large groups of minions to be tested
against easily without requiring large numbers of servers or virtual
machines. The minion swarm creates as many minions as a system can handle and
roots them in the /tmp directory and connects them to a master.

The benefit here is that we were able to replicate issues that happen only
when there are large numbers of minions. A number of elusive bugs which were
causing stability issues in masters and minions have since been hunted down.
Bugs that used to take careful watch by users over several days can now be
reliably replicated in minutes, and fixed in minutes.

Using the swarm is easy, make sure a master is up for the swarm to connect to,
and then use the minionswarm.py script in the tests directory to spin up
as many minions as you want. Remember, this is a fork bomb, don't spin up more
than your hardware can handle!

python minionswarm.py -m 20 --master salt-master

Shell Tests

The new Shell testing system allows us to test the behavior of commands
executed from a high level. This allows for the high level testing of salt
runners and commands like salt-key.

Client Tests

Tests have been added to test the aspects of the client APIs and ensure that
the client calls work, and that they manage passed data, in a desirable way.

Salt 0.9.8 Release Notes

Salt 0.9.8 is a big step forward, with many additions and enhancements, as
well as a number of precursors to advanced future developments.

This version of Salt adds much more power to the command line, making the
old hard timeout issues a thing of the past and adds keyword argument
support. These additions are also available in the salt client API, making
the available API tools much more powerful.

The new pillar system allows for data to be stored on the master and
assigned to minions in a granular way similar to the state system. It also
allows flexibility for users who want to keep data out of their state tree
similar to 'external lookup' functionality in other tools.

A new way to extend requisites was added, the "requisite in" statement.
This makes adding requires or watch statements to external state decs
much easier.

Additions to requisites making them much more powerful have been added as well
as improved error checking for sls files in the state system. A new provider
system has been added to allow for redirecting what modules run in the
background for individual states.

Support for OpenSUSE has been added and support for Solaris has begun
serious development. Windows support has been significantly enhanced as well.

The matcher and target systems have received a great deal of attention. The
default behavior of grain matching has changed slightly to reflect the rest
of salt and the compound matcher system has been refined.

A number of impressive features with keyword arguments have been added to both
the CLI and to the state system. This makes states much more powerful and
flexible while maintaining the simple configuration everyone loves.

The new batch size capability allows for executions to be rolled through a
group of targeted minions a percentage or specific number at a time. This
was added to prevent the "thundering herd" problem when targeting large
numbers of minions for things like service restarts or file downloads.

Upgrade Considerations

Upgrade Issues

There was a previously missed oversight which could cause a newer minion to
crash an older master. That oversight has been resolved so the version
incompatibility issue will no longer occur. When upgrading to 0.9.8 make
sure to upgrade the master first, followed by the minions.

Debian/Ubuntu Packages

The original Debian/Ubuntu packages were called salt and included all salt
applications. New packages in the ppa are split by function. If an old salt
package is installed then it should be manually removed and the new split
packages need to be freshly installed.

On the master:

apt-get purge salt
apt-get install salt-{master,minion}

On the minions:

apt-get purge salt
apt-get install salt-minion

And on any Syndics:

apt-get install salt-syndic

The official salt stack ppa for Ubuntu is located at:
https://launchpad.net/~saltstack/+archive/salt

Major Features

Pillar

Pillar offers an interface to declare variable data on the master that is then
assigned to the minions. The pillar data is made available to all modules,
states, sls files etc. It is compiled on the master and is declared using the
existing renderer system. This means that learning pillar should be fairly
trivial to those already familiar with salt states.

CLI Additions

The salt command has received a serious overhaul and is more powerful
than ever. Data is returned to the terminal as it is received, and the salt
command will now wait for all running minions to return data before stopping.
This makes adding very large --timeout arguments completely unnecessary and
gets rid of long running operations returning empty {} when the timeout is
exceeded.

When calling salt via sudo, the user originally running salt is saved to the
log for auditing purposes. This makes it easy to see who ran what by just
looking through the minion logs.

The salt-key command gained the -D and --delete-all arguments for
removing all keys. Be careful with this one!

Running States Without a Master

The addition of running states without a salt-master has been added
to 0.9.8. This feature allows for the unmodified salt state tree to be
read locally from a minion. The result is that the UNMODIFIED state tree
has just become portable, allowing minions to have a local copy of states
or to manage states without a master entirely.

This is accomplished via the new file client interface in Salt that allows
for the salt:// URI to be redirected to custom interfaces. This means that
there are now two interfaces for the salt file server, calling the master
or looking in a local, minion defined file_roots.

This new feature can be used by modifying the minion config to point to a
local file_roots and setting the file_client option to local.

Keyword Arguments and States

State modules now accept the **kwargs argument. This results in all data
in a sls file assigned to a state being made available to the state function.

This passes data in a transparent way back to the modules executing the logic.
In particular, this allows adding arguments to the pkg.install module that
enable more advanced and granular controls with respect to what the state is
capable of.

An example of this along with the new debconf module for installing ldap
client packages on Debian:

ldap-client-packages:
 pkg:
 - debconf: salt://debconf/ldap-client.ans
 - installed
 - names:
 - nslcd
 - libpam-ldapd
 - libnss-ldapd

Keyword Arguments and the CLI

In the past it was required that all arguments be passed in the proper order to
the salt and salt-call commands. As of 0.9.8, keyword arguments can be
passed in the form of kwarg=argument.

salt -G 'type:dev' git.clone \
 repository=https://github.com/saltstack/salt.git cwd=/tmp/salt user=jeff

Matcher Refinements and Changes

A number of fixes and changes have been applied to the Matcher system. The
most noteworthy is the change in the grain matcher. The grain matcher used to
use a regular expression to match the passed data to a grain, but now defaults
to a shell glob like the majority of match interfaces in Salt. A new option
is available that still uses the old style regex matching to grain data called
grain-pcre. To use regex matching in compound matches use the letter P.

For example, this would match any ArchLinux or Fedora minions:

salt --grain-pcre 'os:(Arch:Fed).*' test.ping

And the associated compound matcher suitable for top.sls is P:

P@os:(Arch|Fed).*

NOTE: Changing the grains matcher from pcre to glob is backwards
incompatible.

Support has been added for matching minions with Yahoo's range library. This
is handled by passing range syntax with -R or --range arguments to salt.

More information at:
https://github.com/grierj/range/wiki/Introduction-to-Range-with-YAML-files

Requisite "in"

A new means to updating requisite statements has been added to make adding
watchers and requires to external states easier. Before 0.9.8 the only way
to extend the states that were watched by a state outside of the sls was to
use an extend statement:

include:
 - http
extend:
 apache:
 service:
 - watch:
 - pkg: tomcat

tomcat:
 pkg:
 - installed

But the new Requisite in statement allows for easier extends for
requisites:

include:
 - http

tomcat:
 pkg:
 - installed
 - watch_in:
 - service: apache

Requisite in is part of the extend system, so still remember to always include
the sls that is being extended!

Providers

Salt predetermines what modules should be mapped to what uses based on the
properties of a system. These determinations are generally made for modules
that provide things like package and service management. The apt module
maps to pkg on Debian and the yum module maps to pkg on Fedora for instance.

Sometimes in states, it may be necessary for a non-default module to be used
for the desired functionality. For instance, an Arch Linux system may have
been set up with systemd support. Instead of using the default service module
detected for Arch Linux, the systemd module can be used:

http:
 service:
 - running
 - enable: True
 - provider: systemd

Default providers can also be defined in the minion config file:

providers:
 pkg: yumpkg5
 service: systemd

When default providers are passed in the minion config, then those providers
will be applied to all functionality in Salt, this means that the functions
called by the minion will use these modules, as well as states.

Requisite Glob Matching

Requisites can now be defined with glob expansion. This means that if there are
many requisites, they can be defined on a single line.

To watch all files in a directory:

http:
 service:
 - running
 - enable: True
 - watch:
 - file: /etc/http/conf.d/*

This example will watch all defined files that match the glob
/etc/http/conf.d/*

Batch Size

The new batch size option allows commands to be executed while maintaining that
only so many hosts are executing the command at one time. This option can
take a percentage or a finite number:

salt '*' -b 10 test.ping

salt -G 'os:RedHat' --batch-size 25% apache.signal restart

This will only run test.ping on 10 of the targeted minions at a time and then
restart apache on 25% of the minions matching os:RedHat at a time and work
through them all until the task is complete. This makes jobs like rolling web
server restarts behind a load balancer or doing maintenance on BSD firewalls
using carp much easier with salt.

Module Updates

This is a list of notable, but non-exhaustive updates with new and existing
modules.

Windows support has seen a flurry of support this release cycle. We've gained
all new file,
network, and
shadow modules. Please note
that these are still a work in progress.

For our ruby users, new rvm and
gem modules have been added along
with the associated
states

The virt module gained basic Xen support.

The yum
pkg modules gained Scientific
Linux support.

The pkg module on Debian, Ubuntu,
and derivatives force apt to run in a non-interactive mode. This prevents
issues when package installation waits for confirmation.

A pkg module for OpenSUSE's
zypper was added.

The service module on Ubuntu
natively supports upstart.

A new debconf module was
contributed by our community for more advanced control over deb package
deployments on Debian based distributions.

The mysql.user state and
mysql module gained a
password_hash argument.

The cmd module and state gained
a shell keyword argument for specifying a shell other than /bin/sh on
Linux / Unix systems.

New git and
mercurial modules have been added
for fans of distributed version control.

In Progress Development

Master Side State Compiling

While we feel strongly that the advantages gained with minion side state
compiling are very critical, it does prevent certain features that may be
desired. 0.9.8 has support for initial master side state compiling, but many
more components still need to be developed, it is hoped that these can be
finished for 0.9.9.

The goal is that states can be compiled on both the master and the minion
allowing for compilation to be split between master and minion. Why will
this be great? It will allow storing sensitive data on the master and sending
it to some minions without all minions having access to it. This will be
good for handling ssl certificates on front-end web servers for instance.

Solaris Support

Salt 0.9.8 sees the introduction of basic Solaris support. The daemon runs
well, but grains and more of the modules need updating and testing.

Windows Support

Salt states on windows are now much more viable thanks to contributions from
our community! States for file, service, local user, and local group management are more fully
fleshed out along with network and disk modules. Windows users can also now manage
registry entries using the new "reg" module.

Salt 0.9.7 Release Notes

Salt 0.9.7 is here! The latest iteration of Salt brings more features and many
fixes. This release is a great refinement over 0.9.6, adding many conveniences
under the hood, as well as some features that make working with Salt much
better.

A few highlights include the new Job system, refinements to the requisite
system in states, the mod_init interface for states, external node
classification, search path to managed files in the file state, and refinements
and additions to dynamic module loading.

0.9.7 also introduces the long developed (and oft changed) unit test framework
and the initial unit tests.

Major Features

Salt Jobs Interface

The new jobs interface makes the management of running executions much cleaner
and more transparent. Building on the existing execution framework the jobs
system allows clear introspection into the active running state of the
running Salt interface.

The Jobs interface is centered in the new minion side proc system. The
minions now store msgpack serialized files under /var/cache/salt/proc.
These files keep track of the active state of processes on the minion.

Functions in the saltutil Module

A number of functions have been added to the saltutil module to manage and
view the jobs:

running - Returns the data of all running jobs that are found in the proc
directory.

find_job - Returns specific data about a certain job based on job id.

signal_job - Allows for a given jid to be sent a signal.

term_job - Sends a termination signal (SIGTERM, 15) to the process
controlling the specified job.

kill_job Sends a kill signal (SIGKILL, 9) to the process controlling the
specified job.

The jobs Runner

A convenience runner front end and reporting system has been added as well.
The jobs runner contains functions to make viewing data easier and cleaner.

The jobs runner contains a number of functions...

active

The active function runs saltutil.running on all minions and formats the
return data about all running jobs in a much more usable and compact format.
The active function will also compare jobs that have returned and jobs that
are still running, making it easier to see what systems have completed a job
and what systems are still being waited on.

lookup_jid

When jobs are executed the return data is sent back to the master and cached.
By default is is cached for 24 hours, but this can be configured via the
keep_jobs option in the master configuration.

Using the lookup_jid runner will display the same return data that the
initial job invocation with the salt command would display.

list_jobs

Before finding a historic job, it may be required to find the job id.
list_jobs will parse the cached execution data and display all of the job
data for jobs that have already, or partially returned.

External Node Classification

Salt can now use external node classifiers like Cobbler's
cobbler-ext-nodes.

Salt uses specific data from the external node classifier. In particular the
classes value denotes which sls modules to run, and the environment value sets
to another environment.

An external node classification can be set in the master configuration file via
the external_nodes option:
http://salt.readthedocs.org/en/latest/ref/configuration/master.html#external-nodes

External nodes are loaded in addition to the top files. If it is intended to
only use external nodes, do not deploy any top files.

State Mod Init System

An issue arose with the pkg state. Every time a package was run Salt would
need to refresh the package database. This made systems with slower package
metadata refresh speeds much slower to work with. To alleviate this issue the
mod_init interface has been added to salt states.

The mod_init interface is a function that can be added to a state file.
This function is called with the first state called. In the case of the pkg
state, the mod_init function sets up a tag which makes the package database
only refresh on the first attempt to install a package.

In a nutshell, the mod_init interface allows a state to run any command that
only needs to be run once, or can be used to set up an environment for working
with the state.

Source File Search Path

The file state continues to be refined, adding speed and capabilities. This
release adds the ability to pass a list to the source option. This list is then
iterated over until the source file is found, and the first found file is used.

The new syntax looks like this:

/etc/httpd/conf/httpd.conf:
 file:
 - managed
 - source:
 - salt://httpd/httpd.conf
 - http://myserver/httpd.conf: md5=8c1fe119e6f1fd96bc06614473509bf1

The source option can take sources in the list from the salt file server
as well as an arbitrary web source. If using an arbitrary web source the
checksum needs to be passed as well for file verification.

Refinements to the Requisite System

A few discrepancies were still lingering in the requisite system, in
particular, it was not possible to have a require and a watch requisite
declared in the same state declaration.

This issue has been alleviated, as well as making the requisite system run
more quickly.

Initial Unit Testing Framework

Because of the module system, and the need to test real scenarios, the
development of a viable unit testing system has been difficult, but unit
testing has finally arrived. Only a small amount of unit testing coverage
has been developed, much more coverage will be in place soon.

A huge thanks goes out to those who have helped with unit testing, and the
contributions that have been made to get us where we are. Without these
contributions unit tests would still be in the dark.

Compound Targets Expanded

Originally only support for and and or were available in the compound
target. 0.9.7 adds the capability to negate compound targets with not.

Nodegroups in the Top File

Previously the nodegroups defined in the master configuration file could not
be used to match nodes for states. The nodegroups support has been expanded
and the nodegroups defined in the master configuration can now be used to
match minions in the top file.

Salt 0.9.6 Release Notes

Salt 0.9.6 is a release targeting a few bugs and changes. This is primarily
targeting an issue found in the names declaration in the state system. But a
few other bugs were also repaired, like missing support for grains in extmods.

Due to a conflict in distribution packaging msgpack will no longer be bundled
with Salt, and is required as a dependency.

New Features

HTTP and ftp support in files.managed

Now under the source option in the file.managed state a HTTP or ftp address
can be used instead of a file located on the salt master.

Allow Multiple Returners

Now the returner interface can define multiple returners, and will also return
data back to the master, making the process less ambiguous.

Minion Memory Improvements

A number of modules have been taken out of the minion if the underlying
systems required by said modules are not present on the minion system.
A number of other modules need to be stripped out in this same way which
should continue to make the minion more efficient.

Minions Can Locally Cache Return Data

A new option, cache_jobs, has been added to the minion to allow for all of the
historically run jobs to cache on the minion, allowing for looking up historic
returns. By default cache_jobs is set to False.

Pure Python Template Support For file.managed

Templates in the file.managed state can now be defined in a Python script.
This script needs to have a run function that returns the string that needs to
be in the named file.

Salt 0.9.5 Release Notes

Salt 0.9.5 is one of the largest steps forward in the development of Salt.

0.9.5 comes with many milestones, this release has seen the community of
developers grow out to an international team of 46 code contributors and has
many feature additions, feature enhancements, bug fixes and speed improvements.

Warning

Be sure to read the upgrade instructions about the
switch to msgpack before upgrading!

Community

Nothing has proven to have more value to the development of Salt that the
outstanding community that has been growing at such a great pace around Salt.
This has proven not only that Salt has great value, but also the
expandability of Salt is as exponential as I originally intended.

0.9.5 has received over 600 additional commits since 0.9.4 with a swath of new
committers. The following individuals have contributed to the development of
0.9.5:

	Aaron Bull Schaefer

	Antti Kaihola

	Bas Tichelaar

	Brad Barden

	Brian Wagner

	Byron Clark

	Chris Scheller

	Christer Edwards

	Clint Savage

	Corey Quinn

	David Boucha

	Eivind Uggedal

	Eric Poelke

	Evan Borgstrom

	Jed Glazner

	Jeff Schroeder

	Jeffrey C. Ollie

	Jonas Buckner

	Kent Tenney

	Martin Schnabel

	Maxim Burgerhout

	Mitch Anderson

	Nathaniel Whiteinge

	Seth House

	Thomas S Hatch

	Thomas Schreiber

	Tor Hveem

	lzyeval

	syphernl

This makes 21 new developers since 0.9.4 was released!

To keep up with the growing community follow Salt on Ohloh
(http://www.ohloh.net/p/salt), to join the Salt development community, fork
Salt on Github, and get coding (https://github.com/saltstack/salt)!

Major Features

SPEED! Pickle to msgpack

For a few months now we have been talking about moving away from Python
pickles for network serialization, but a preferred serialization format
had not yet been found. After an extensive performance testing period
involving everything from JSON to protocol buffers, a clear winner emerged.
Message Pack (http://msgpack.org/) proved to not only be the fastest and most
compact, but also the most "salt like". Message Pack is simple, and the code
involved is very small. The msgpack library for Python has been added directly
to Salt.

This move introduces a few changes to Salt. First off, Salt is no longer a
"noarch" package, since the msgpack lib is written in C. Salt 0.9.5 will also
have compatibility issues with 0.9.4 with the default configuration.

We have gone through great lengths to avoid backwards compatibility issues with
Salt, but changing the serialization medium was going to create issues
regardless. Salt 0.9.5 is somewhat backwards compatible with earlier minions. A
0.9.5 master can command older minions, but only if the serial
config value in the master is set to pickle. This will tell the master to
publish messages in pickle format and will allow the master to receive messages
in both msgpack and pickle formats.

Therefore the suggested methods for upgrading are either to just upgrade
everything at once, or:

	Upgrade the master to 0.9.5

	Set serial to pickle in the master config

	Upgrade the minions

	Remove the serial option from the master config

Since pickles can be used as a security exploit the ability for a master to
accept pickles from minions at all will be removed in a future release.

C Bindings for YAML

All of the YAML rendering is now done with the YAML C bindings. This speeds up
all of the sls files when running states.

Experimental Windows Support

David Boucha has worked tirelessly to bring initial support to Salt for
Microsoft Windows operating systems. Right now the Salt Minion can run as a
native Windows service and accept commands.

In the weeks and months to come Windows will receive the full treatment and
will have support for Salt States and more robust support for managing Windows
systems. This is a big step forward for Salt to move entirely outside of the
Unix world, and proves Salt is a viable cross platform solution. Big Thanks
to Dave for his contribution here!

Dynamic Module Distribution

Many Salt users have expressed the desire to have Salt distribute in-house
modules, states, renderers, returners, and grains. This support has been added
in a number of ways:

Modules via States

Now when salt modules are deployed to a minion via the state system as a file,
then the modules will be automatically loaded into the active running minion
- no restart required - and into the active running state. So custom state
modules can be deployed and used in the same state run.

Modules via Module Environment Directories

Under the file_roots each environment can now have directories that are used
to deploy large groups of modules. These directories sync modules at the
beginning of a state run on the minion, or can be manually synced via the Salt
module salt.modules.saltutil.sync_all.

The directories are named:

	_modules

	_states

	_grains

	_renderers

	_returners

The modules are pushed to their respective scopes on the minions.

Module Reloading

Modules can now be reloaded without restarting the minion, this is done by
calling the salt.modules.sys.reload_modules function.

But wait, there's more! Now when a salt module of any type is added via
states the modules will be automatically reloaded, allowing for modules to be
laid down with states and then immediately used.

Finally, all modules are reloaded when modules are dynamically distributed
from the salt master.

Enable / Disable Added to Service

A great deal of demand has existed for adding the capability to set services
to be started at boot in the service module. This feature also comes with an
overhaul of the service modules and initial systemd support.

This means that the service state can now
accept - enable: True to make sure a service is enabled at boot, and -
enable: False to make sure it is disabled.

Compound Target

A new target type has been added to the lineup, the compound target. In
previous versions the desired minions could only be targeted via a single
specific target type, but now many target specifications can be declared.

These targets can also be separated by and/or operators, so certain properties
can be used to omit a node:

salt -C 'webserv* and G@os:Debian or E@db.*' test.ping

will match all minions with ids starting with webserv via a glob and minions
matching the os:Debian grain. Or minions that match the db.* regular
expression.

Node Groups

Often the convenience of having a predefined group of minions to execute
targets on is desired. This can be accomplished with the new nodegroups
feature. Nodegroups allow for predefined compound targets to be declared in
the master configuration file:

nodegroups:
 group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com and bl*.domain.com'
 group2: 'G@os:Debian and foo.domain.com'

And then used via the -N option:

salt -N group1 test.ping

Minion Side Data Store

The data module introduces the initial approach into storing persistent data on
the minions, specific to the minions. This allows for data to be stored on
minions that can be accessed from the master or from the minion.

The Minion datastore is young, and will eventually provide an interface similar
to a more mature key/value pair server.

Major Grains Improvement

The Salt grains have been overhauled to include a massive amount of extra data.
this includes hardware data, os data and salt specific data.

Salt -Q is Useful Now

In the past the salt query system, which would display the data from recent
executions would be displayed in pure Python, and it was unreadable.

0.9.5 has added the outputter system to the -Q option, thus enabling the
salt query system to return readable output.

Packaging Updates

Huge strides have been made in packaging Salt for distributions. These
additions are thanks to our wonderful community where the work to set up
packages has proceeded tirelessly.

FreeBSD

Salt on FreeBSD? There a port for that:

http://www.freebsd.org/cgi/cvsweb.cgi/ports/sysutils/salt/pkg-descr

This port was developed and added by Christer Edwards. This also marks the
first time Salt has been included in an upstream packaging system!

Fedora and Red Hat Enterprise

Salt packages have been prepared for inclusion in the Fedora Project and in
EPEL for Red Hat Enterprise 5 and 6. These packages are the result of the
efforts made by Clint Savage (herlo).

Debian/Ubuntu

A team of many contributors have assisted in developing packages for Debian
and Ubuntu. Salt is still actively seeking inclusion in upstream Debian and
Ubuntu and the package data that has been prepared is being pushed through
the needed channels for inclusion.

These packages have been prepared with the help of:

	Corey

	Aaron Toponce

	and`

More to Come

We are actively seeking inclusion in more distributions. Primarily getting
Salt into Gentoo, SUSE, OpenBSD and preparing Solaris support are all turning
into higher priorities.

Refinement

Salt continues to be refined into a faster, more stable and more usable
application. 0.9.5 comes with more debug logging, more bug fixes and more
complete support.

More Testing, More BugFixes

0.9.5 comes with more bugfixes due to more testing than any previous release.
The growing community and the introduction a a dedicated QA environment have
unearthed many issues that were hiding under the covers. This has further
refined and cleaned the state interface, taking care of things from minor
visual issues to repairing misleading data.

Custom Exceptions

A custom exception module has been added to throw salt specific exceptions.
This allows Salt to give much more granular error information.

New Modules

data

The new data module manages a persistent datastore on the minion.
Big thanks to bastichelaar for his help refining this module

freebsdkmod

FreeBSD kernel modules can now be managed in the same way Salt handles Linux
kernel modules.

This module was contributed thanks to the efforts of Christer Edwards

gentoo_service

Support has been added for managing services in Gentoo. Now Gentoo services
can be started, stopped, restarted, enabled, disabled and viewed.

pip

The pip module introduces management for pip installed applications.
Thanks goes to whitinge for the addition of the pip module

rh_service

The rh_service module enables Red Hat and Fedora specific service management.
Now Red Hat like systems come with extensive management of the classic init
system used by Red Hat

saltutil

The saltutil module has been added as a place to hold functions used in the
maintenance and management of salt itself. Saltutil is used to salt the salt
minion. The saltutil module is presently used only to sync extension modules
from the master server.

systemd

Systemd support has been added to Salt, now systems using this next generation
init system are supported on systems running systemd.

virtualenv

The virtualenv module has been added to allow salt to create virtual Python
environments.
Thanks goes to whitinge for the addition of the virtualenv module

win_disk

Support for gathering disk information on Microsoft Windows minions
The windows modules come courtesy of Utah_Dave

win_service

The win_service module adds service support to Salt for Microsoft Windows
services

win_useradd

Salt can now manage local users on Microsoft Windows Systems

yumpkg5

The yumpkg module introduces in 0.9.4 uses the yum API to interact with the
yum package manager. Unfortunately, on Red Hat 5 systems salt does not have
access to the yum API because the yum API is running under Python 2.4 and Salt
needs to run under Python 2.6.

The yumpkg5 module bypasses this issue by shelling out to yum on systems where
the yum API is not available.

New States

mysql_database

The new mysql_database state adds the ability to systems running a mysql
server to manage the existence of mysql databases.

The mysql states are thanks to syphernl

mysql_user

The mysql_user state enables mysql user management.

virtualenv

The virtualenv state can manage the state of Python virtual environments.
Thanks to Whitinge for the virtualenv state

New Returners

cassandra_returner

A returner allowing Salt to send data to a cassandra server.
Thanks to Byron Clark for contributing this returner

Salt 0.9.4 Release Notes

Salt 0.9.4 has arrived. This is a critical update that repairs a number of
key bugs found in 0.9.3. But this update is not without feature additions
as well! 0.9.4 adds support for Gentoo portage to the pkg module and state
system. Also there are 2 major new state additions, the failhard option and
the ability to set up finite state ordering with the order option.

This release also sees our largest increase in community contributions.
These contributors have and continue to be the life blood of the Salt
project, and the team continues to grow. I want to put out a big thanks to
our new and existing contributors.

Download!

The Salt source can be downloaded from the salt GitHub site:

https://github.com/downloads/saltstack/salt/salt-0.9.4.tar.gz

Or from PyPI:

http://pypi.python.org/packages/source/s/salt/salt-0.9.4.tar.gz

For instructions on how to set up Salt please see the Installation
instructions.

New Features

Failhard State Option

Normally, when a state fails Salt continues to execute the remainder of the
defined states and will only refuse to execute states that require the failed
state.

But the situation may exist, where you would want all state execution to stop
if a single state execution fails. The capability to do this is called
failing hard.

State Level Failhard

A single state can have a failhard set, this means that if this individual
state fails that all state execution will immediately stop. This is a great
thing to do if there is a state that sets up a critical config file and
setting a require for each state that reads the config would be cumbersome.
A good example of this would be setting up a package manager early on:

/etc/yum.repos.d/company.repo:
 file:
 - managed
 - source: salt://company/yumrepo.conf
 - user: root
 - group: root
 - mode: 644
 - order: 1
 - failhard: True

In this situation, the yum repo is going to be configured before other states,
and if it fails to lay down the config file, than no other states will be
executed.

Global Failhard

It may be desired to have failhard be applied to every state that is executed,
if this is the case, then failhard can be set in the master configuration
file. Setting failhard in the master configuration file will result in failing
hard when any minion gathering states from the master have a state fail.

This is NOT the default behavior, normally Salt will only fail states that
require a failed state.

Using the global failhard is generally not recommended, since it can result
in states not being executed or even checked. It can also be confusing to
see states failhard if an admin is not actively aware that the failhard has
been set.

To use the global failhard set failhard: True in the master configuration

Finite Ordering of State Execution

When creating salt sls files, it is often important to ensure that they run in
a specific order. While states will always execute in the same order, that
order is not necessarily defined the way you want it.

A few tools exist in Salt to set up the correct state ordering, these tools
consist of requisite declarations and order options.

The Order Option

Before using the order option, remember that the majority of state ordering
should be done with requisite statements, and that a requisite statement
will override an order option.

The order option is used by adding an order number to a state declaration
with the option order:

vim:
 pkg:
 - installed
 - order: 1

By adding the order option to 1 this ensures that the vim package will be
installed in tandem with any other state declaration set to the order 1.

Any state declared without an order option will be executed after all states
with order options are executed.

But this construct can only handle ordering states from the beginning.
Sometimes you may want to send a state to the end of the line, to do this
set the order to last:

vim:
 pkg:
 - installed
 - order: last

Substantial testing has gone into the state system and it is ready for real
world usage. A great deal has been added to the documentation for states and
the modules and functions available to states have been cleanly documented.

A number of State System bugs have also been founds and repaired, the output
from the state system has also been refined to be extremely clear and concise.

Error reporting has also been introduced, issues found in sls files will now
be clearly reported when executing Salt States.

Gentoo Support

Additional experimental support has been added for Gentoo. This is found in
the contribution from Doug Renn, aka nestegg.

Salt 0.9.3 Release Notes

Salt 0.9.3 is finally arrived. This is another big step forward for Salt, new
features range from proper FreeBSD support to fixing issues seen when
attaching a minion to a master over the Internet.

The biggest improvements in 0.9.3 though can be found in the state system, it
has progressed from something ready for early testers to a system ready to
compete with platforms such as Puppet and Chef. The backbone of the state
system has been greatly refined and many new features are available.

Download!

The Salt source can be downloaded from the salt GitHub site:

https://github.com/downloads/saltstack/salt/salt-0.9.3.tar.gz

Or from PyPI:

http://pypi.python.org/packages/source/s/salt/salt-0.9.3.tar.gz

For instructions on how to set up Salt please see the Installation
instructions.

New Features

WAN Support

Recently more people have been testing Salt minions connecting to Salt Masters
over the Internet. It was found that Minions would commonly loose their
connection to the master when working over the internet. The minions can now
detect if the connection has been lost and reconnect to the master, making
WAN connections much more reliable.

State System Fixes

Substantial testing has gone into the state system and it is ready for real
world usage. A great deal has been added to the documentation for states and
the modules and functions available to states have been cleanly documented.

A number of State System bugs have also been founds and repaired, the output
from the state system has also been refined to be extremely clear and concise.

Error reporting has also been introduced, issues found in sls files will now
be clearly reported when executing Salt States.

Extend Declaration

The Salt States have also gained the extend declaration. This declaration
allows for states to be cleanly modified in a post environment. Simply said,
if there is an apache.sls file that declares the apache service, then another
sls can include apache and then extend it:

include:
 - apache

extend:
 apache:
 service:
 - require:
 - pkg: mod_python

mod_python:
 pkg:
 - installed

The notable behavior with the extend functionality is that it literally extends
or overwrites a declaration set up in another sls module. This means that Salt
will behave as though the modifications were made directly to the apache sls.
This ensures that the apache service in this example is directly tied to all
requirements.

Highstate Structure Specification

This release comes with a clear specification of the Highstate data structure
that is used to declare Salt States. This specification explains everything
that can be declared in the Salt SLS modules.

The specification is extremely simple, and illustrates how Salt has been able
to fulfill the requirements of a central configuration manager within a simple
and easy to understand format and specification.

SheBang Renderer Switch

It came to our attention that having many renderers means that there may be a
situation where more than one State Renderer should be available within a
single State Tree.

The method chosen to accomplish this was something already familiar to
developers and systems administrators, a SheBang. The Python State Renderer
displays this new capability.

Python State Renderer

Until now Salt States could only be declared in yaml or json using Jinja or
Mako. A new, very powerful, renderer has been added, making it possible to
write Salt States in pure Python:

#!py

def run():
 '''
 Install the python-mako package
 '''
 return {'include': ['python'],
 'python-mako': {'pkg': ['installed']}}

This renderer is used by making a run function that returns the Highstate data
structure. Any capabilities of Python can be used in pure Python sls modules.

This example of a pure Python sls module is the same as this example in yaml:

include:
 - python

python-mako:
 pkg:
 - installed

FreeBSD Support

Additional support has been added for FreeBSD, this is Salt's first branch out
of the Linux world and proves the viability of Salt on non-Linux platforms.

Salt remote execution already worked on FreeBSD, and should work without issue
on any Unix-like platform. But this support comes in the form of package
management and user support, so Salt States also work on FreeBSD now.

The new freebsdpkg module provides package management support for FreeBSD
and the new pw_user and pw_group provide user and group management.

Module and State Additions

Cron Support

Support for managing the system crontab has been added, declaring a cron state
can be done easily:

date > /tmp/datestamp:
 cron:
 - present
 - user: fred
 - minute: 5
 - hour: 3

File State Additions

The file state has been given a number of new features, primarily the
directory, recurse, symlink and absent functions.

	file.directory

	Make sure that a directory exists and has the right permissions.

/srv/foo:
 file:
 - directory
 - user: root
 - group: root
 - mode: 1755

	file.symlink

	Make a symlink.

/var/lib/www:
 file:
 - symlink
 - target: /srv/www
 - force: True

	file.recurse

	The recurse state function will recursively download a directory on the
master file server and place it on the minion. Any change in the files on
the master will be pushed to the minion. The recurse function is very
powerful and has been tested by pushing out the full Linux kernel source.

/opt/code:
 file:
 - recurse
 - source: salt://linux

	file.absent

	Make sure that the file is not on the system, recursively deletes
directories, files and symlinks.

/etc/httpd/conf.d/somebogusfile.conf:
 file:
 - absent

Sysctl Module and State

The sysctl module and state allows for sysctl components in the kernel to be
managed easily. the sysctl module contains the following functions:

	sysctl.show

	Return a list of sysctl parameters for this minion

	sysctl.get

	Return a single sysctl parameter for this minion

	sysctl.assign

	Assign a single sysctl parameter for this minion

	sysctl.persist

	Assign and persist a simple sysctl parameter for this minion

The sysctl state allows for sysctl parameters to be assigned:

vm.swappiness:
 sysctl:
 - present
 - value: 20

Kernel Module Management

A module for managing Linux kernel modules has been added. The new functions
are as follows:

	kmod.available

	Return a list of all available kernel modules

	kmod.check_available

	Check to see if the specified kernel module is available

	kmod.lsmod

	Return a dict containing information about currently loaded modules

	kmod.load

	Load the specified kernel module

	kmod.remove

	Unload the specified kernel module

The kmod state can enforce modules be either present or absent:

kvm_intel:
 kmod:
 - present

Ssh Authorized Keys

The ssh_auth state can distribute ssh authorized keys out to minions. Ssh
authorized keys can be present or absent.

AAAAB3NzaC1kc3MAAACBAL0sQ9fJ5bYTEyYvlRBsJdDOo49CNfhlWHWXQRqul6rwL4KIuPrhY7hBw0tV7UNC7J9IZRNO4iGod9C+OYutuWGJ2x5YNf7P4uGhH9AhBQGQ4LKOLxhDyT1OrDKXVFw3wgY3rHiJYAbd1PXNuclJHOKL27QZCRFjWSEaSrUOoczvAAAAFQD9d4jp2dCJSIseSkk4Lez3LqFcqQAAAIAmovHIVSrbLbXAXQE8eyPoL9x5C+x2GRpEcA7AeMH6bGx/xw6NtnQZVMcmZIre5Elrw3OKgxcDNomjYFNHuOYaQLBBMosyO++tJe1KTAr3A2zGj2xbWO9JhEzu8xvSdF8jRu0N5SRXPpzSyU4o1WGIPLVZSeSq1VFTHRT4lXB7PQAAAIBXUz6ZO0bregF5xtJRuxUN583HlfQkXvxLqHAGY8WSEVlTnuG/x75wolBDbVzeTlxWxgxhafj7P6Ncdv25Wz9wvc6ko/puww0b3rcLNqK+XCNJlsM/7lB8Q26iK5mRZzNsGeGwGTyzNIMBekGYQ5MRdIcPv5dBIP/1M6fQDEsAXQ==:
 ssh_auth:
 - present
 - user: frank
 - enc: dsa
 - comment: 'Frank's key'

Salt 0.9.2 Release Notes

Salt 0.9.2 has arrived! 0.9.2 is primarily a bugfix release, the exciting
component in 0.9.2 is greatly improved support for salt states. All of the
salt states interfaces have been more thoroughly tested and the new salt-states
git repo is growing with example of how to use states.

This release introduces salt states for early developers and testers to start
helping us clean up the states interface and make it ready for the world!

0.9.2 also fixes a number of bugs found on Python 2.6.

Download!

The Salt source can be downloaded from the salt GitHub site:

https://github.com/downloads/saltstack/salt/salt-0.9.2.tar.gz

Or from PyPI:

http://pypi.python.org/packages/source/s/salt/salt-0.9.2.tar.gz

For instructions on how to set up Salt please see the Installation
instructions.

New Features

Salt-Call Additions

The salt-call command has received an overhaul, it now hooks into the outputter
system so command output looks clean, and the logging system has been hooked
into salt-call, so the -l option allows the logging output from salt minion
functions to be displayed.

The end result is that the salt-call command can execute the state system and
return clean output:

salt-call state.highstate

State System Fixes

The state system has been tested and better refined. As of this release the
state system is ready for early testers to start playing with. If you are
interested in working with the state system please check out the (still very
small) salt-states GitHub repo:

https://github.com/thatch45/salt-states

This git repo is the active development branch for determining how a clean
salt-state database should look and act. Since the salt state system is still
very young a lot of help is still needed here. Please fork the salt-states
repo and help us develop a truly large and scalable system for configuration
management!

Notable Bug Fixes

Python 2.6 String Formatting

Python 2.6 does not support format strings without an index identifier, all of
them have been repaired.

Cython Loading Disabled by Default

Cython loading requires a development tool chain to be installed on the minion,
requiring this by default can cause problems for most Salt deployments. If
Cython auto loading is desired it will need to be turned on in the minion
config.

Salt 0.9.0 Release Notes

Salt 0.9.0 is here. This is an exciting release, 0.9.0 includes the new network
topology features allowing peer salt commands and masters of masters via the
syndic interface.

0.9.0 also introduces many more modules, improvements to the API and
improvements to the ZeroMQ systems.

Download!

The Salt source can be downloaded from the salt GitHub site:

https://github.com/downloads/saltstack/salt/salt-0.9.0.tar.gz

Or from PyPI:

http://pypi.python.org/packages/source/s/salt/salt-0.9.0.tar.gz

Here is the md5sum:

9a925da04981e65a0f237f2e77ddab37

For instructions on how to set up Salt please see the Installation
instructions.

New Features

Salt Syndic

The new Syndic interface allows a master to be commanded via another higher
level salt master. This is a powerful solution allowing a master control
structure to exist, allowing salt to scale to much larger levels then before.

Peer Communication

0.9.0 introduces the capability for a minion to call a publication on the
master and receive the return from another set of minions. This allows salt
to act as a communication channel between minions and as a general
infrastructure message bus.

Peer communication is turned off by default but can be enabled via the peer
option in the master configuration file. Documentation on the new Peer
interface.

Easily Extensible API

The minion and master classes have been redesigned to allow for specialized
minion and master servers to be easily created. An example on how this is done
for the master can be found in the master.py salt module:

https://github.com/saltstack/salt/blob/develop/salt/master.py

The Master class extends the SMaster class and set up the main master
server.

The minion functions can now also be easily added to another application via
the SMinion class, this class can be found in the minion.py module:

https://github.com/saltstack/salt/blob/develop/salt/minion.py

Cleaner Key Management

This release changes some of the key naming to allow for multiple master keys
to be held based on the type of minion gathering the master key.

The -d option has also been added to the salt-key command allowing for easy
removal of accepted public keys.

The --gen-keys option is now available as well for salt-key, this allows
for a salt specific RSA key pair to be easily generated from the command line.

Improved 0MQ Master Workers

The 0MQ worker system has been further refined to be faster and more robust.
This new system has been able to handle a much larger load than the previous
setup. The new system uses the IPC protocol in 0MQ instead of TCP.

New Modules

Quite a few new modules have been made.

New Minion Modules

apache

Work directly with apache servers, great for managing balanced web servers

cron

Read out the contents of a systems crontabs

mdadm

Module to manage raid devices in Linux, appears as the raid module

mysql

Gather simple data from MySQL databases

ps

Extensive utilities for managing processes

publish

Used by the peer interface to allow minions to make publications

Salt 0.8.9 Release Notes

Salt 0.8.9 has finally arrived! Unfortunately this is much later than I had
hoped to release 0.8.9, life has been very crazy over the last month. But
despite challenges, Salt has moved forward!

This release, as expected, adds few new features and many refinements. One
of the most exciting aspect of this release is that the development community
for salt has grown a great deal and much of the code is from contributors.

Also, I have filled out the documentation a great deal. So information on
States is properly documented, and much of the documentation that was out of
date has been filled in.

Download!

The Salt source can be downloaded from the salt GitHub site:

https://github.com/downloads/saltstack/salt/salt-0.8.9.tar.gz

Or from PyPI:

http://pypi.python.org/packages/source/s/salt/salt-0.8.9.tar.gz

Here s the md5sum:

7d5aca4633bc22f59045f59e82f43b56

For instructions on how to set up Salt please see the Installation
instructions.

New Features

Salt Run

A big feature is the addition of Salt run, the salt-run command allows for
master side execution modules to be made that gather specific information or
execute custom routines from the master.

Documentation for salt-run can be found here:

http://saltstack.org/ref/runners.html

Refined Outputters

One problem often complained about in salt was the fact that the output was
so messy. Thanks to help from Jeff Schroeder a cleaner interface for the
command output for the Salt CLI has been made. This new interface makes
adding new printout formats easy and additions to the capabilities of minion
modules makes it possible to set the printout mode or outputter for
functions in minion modules.

Cross Calling Salt Modules

Salt modules can now call each other, the __salt__ dict has been added to
the predefined references in minion modules. This new feature is documented in
the modules documentation:

http://saltstack.org/ref/modules/index.html

Watch Option Added to Salt State System

Now in Salt states you can set the watch option, this will allow watch enabled
states to change based on a change in the other defined states. This is similar
to subscribe and notify statements in puppet.

Root Dir Option

Travis Cline has added the ability to define the option root_dir which
allows the salt minion to operate in a subdir. This is a strong move in
supporting the minion running as an unprivileged user

Config Files Defined in Variables

Thanks again to Travis Cline, the master and minion configuration file locations
can be defined in environment variables now.

New Modules

Quite a few new modules, states, returners and runners have been made.

New Minion Modules

apt

Support for apt-get has been added, this adds greatly improved Debian and
Ubuntu support to Salt!

useradd and groupadd

Support for manipulating users and groups on Unix-like systems.

moosefs

Initial support for reporting on aspects of the distributed file system,
MooseFS. For more information on MooseFS please see: http://moosefs.org

Thanks to Joseph Hall for his work on MooseFS support.

mount

Manage mounts and the fstab.

puppet

Execute puppet on remote systems.

shadow

Manipulate and manage the user password file.

ssh

Interact with ssh keys.

New States

user and group

Support for managing users and groups in Salt States.

mount

Enforce mounts and the fstab.

New Returners

mongo_return

Send the return information to a MongoDB server.

New Runners

manage

Display minions that are up or down.

Salt 0.8.8 release notes

Salt 0.8.8 is here! This release adds a great deal of code and some serious new
features. The latest release can be downloaded here:
https://github.com/downloads/saltstack/salt/salt-0.8.8.tar.gz

Improved Documentation has been set up for salt using sphinx thanks to the
efforts of Seth House. This new documentation system will act as the back end
to the salt website which is still under heavy development. The new sphinx
documentation system has also been used to greatly clean up the salt manpages.
The salt 7 manpage in particular now contains extensive information which was
previously only in the wiki. The new documentation can be found at:
http://thatch45.github.com/salt-www/
We still have a lot to add, and when the domain is set up I will post another
announcement.

More additions have been made to the ZeroMQ setup, particularly in the realm
of file transfers. Salt 0.8.8 introduces a built in, stateless, encrypted file
server which allows salt minions to download files from the salt master using
the same encryption system used for all other salt communications. The main
motivation for the salt file server has been to facilitate the new salt state
system.

Much of the salt code has been cleaned up and a new cleaner logging system has
been introduced thanks to the efforts of Pedro Algarvio. These additions will
allow for much more flexible logging to be executed by salt, and fixed a great
deal of my poor spelling in the salt docstrings! Pedro Algarvio has also
cleaned up the API, making it easier to embed salt into another application.

The biggest addition to salt found in 0.8.8 is the new state system. The salt
module system has received a new front end which allows salt to be used as a
configuration management system. The configuration management system allows for
system configuration to be defined in data structures. The configuration
management system, or as it is called in salt, the “salt state system” supports
many of the features found in other configuration managers, but allows for
system states to be written in a far simpler format, executes at blazing speeds,
and operates via the salt minion matching system. The state system also operates
within the normal scope of salt, and requires no additional configuration to
use.

The salt state system can enforce the following states with many more to come:
Packages
Files
Services
Executing commands
Hosts

The system used to define the salt states is based on a data structure, the
data structure used to define the salt states has been made to be as easy to
use as possible. The data structure is defined by default using a YAML file
rendered via a Jinja template. This means that the state definition language
supports all of the data structures that YAML supports, and all of the
programming constructs and logic that Jinja supports. If the user does not
like YAML or Jinja the states can be defined in yaml-mako, json-jinja, or
json-mako. The system used to render the states is completely dynamic, and any
rendering system can be added to the capabilities of Salt, this means that a
rendering system that renders XML data in a cheetah template, or whatever you
can imagine, can be easily added to the capabilities of salt.

The salt state system also supports isolated environments, as well as matching
code from several environments to a single salt minion.

The feature base for Salt has grown quite a bit since my last serious
documentation push. As we approach 0.9.0 the goals are becoming very clear, and
the documentation needs a lot of work. The main goals for 0.9.0 are to further
refine the state system, fix any bugs we find, get Salt running on as many
platforms as we can, and get the documentation filled out. There is a lot more
to come as Salt moves forward to encapsulate a much larger scope, while
maintaining supreme usability and simplicity.

If you would like a more complete overview of Salt please watch the Salt
presentation:
Flash Video:
http://blip.tv/thomas-s-hatch/salt-0-8-7-presentation-5180182
OGV Video Download:
http://blip.tv/file/get/Thatch45-Salt087Presentation416.ogv
Slides:
https://github.com/downloads/saltstack/salt/Salt.pdf

-Thomas S Hatch

Salt 0.8.7 release notes

It has been a month since salt 0.8.0, and it has been a long month! But Salt is
still coming along strong. 0.8.7 has a lot of changes and a lot of updates.
This update makes Salt’s ZeroMQ back end better, strips Facter from the
dependencies, and introduces interfaces to handle more capabilities.

Many of the major updates are in the background, but the changes should shine
through to the surface. A number of the new features are still a little thin,
but the back end to support expansion is in place.

I also recently gave a presentation to the Utah Python users group in Salt Lake
City, the slides from this presentation are available here:
https://github.com/downloads/saltstack/salt/Salt.pdf

The video from this presentation will be available shortly.

The major new features and changes in Salt 0.8.7 are:

	Revamp ZeroMQ topology on the master for better scalability

	State enforcement

	Dynamic state enforcement managers

	Extract the module loader into salt.loader

	Make Job ids more granular

	Replace Facter functionality with the new salt grains interface

	Support for “virtual” salt modules

	Introduce the salt-call command

	Better debugging for minion modules

The new ZeroMQ topology allows for better scalability, this will be required by
the need to execute massive file transfers to multiple machines in parallel and
state management. The new ZeroMQ topology is available in the aforementioned
presentation.

0.8.7 introduces the capability to declare states, this is similar to the
capabilities of Puppet. States in salt are declared via state data structures.
This system is very young, but the core feature set is available. Salt states
work around rendering files which represent Salt high data. More on the Salt
state system will be documented in the near future.

The system for loading salt modules has been pulled out of the minion class to
be a standalone module, this has enabled more dynamic loading of Salt modules
and enables many of the updates in 0.8.7 –

https://github.com/saltstack/salt/blob/develop/salt/loader.py

Salt Job ids are now microsecond precise, this was needed to repair a race
condition unveiled by the speed improvements in the new ZeroMQ topology.

The new grains interface replaces the functionality of Facter, the idea behind
grains differs from Facter in that the grains are only used for static system
data, dynamic data needs to be derived from a call to a salt module. This makes
grains much faster to use, since the grains data is generated when the minion
starts.

Virtual salt modules allows for a salt module to be presented as something
other than its module name. The idea here is that based on information from the
minion decisions about which module should be presented can be made. The best
example is the pacman module. The pacman module will only load on Arch Linux
minions, and will be called pkg. Similarly the yum module will be presented as
pkg when the minion starts on a Fedora/RedHat system.

The new salt-call command allows for minion modules to be executed from the
minion. This means that on the minion a salt module can be executed, this is a
great tool for testing Salt modules. The salt-call command can also be used to
view the grains data.

In previous releases when a minion module threw an exception very little data
was returned to the master. Now the stack trace from the failure is returned
making debugging of minion modules MUCH easier.

Salt is nearing the goal of 1.0, where the core feature set and capability is
complete!

Salt 0.8.7 can be downloaded from GitHub here:
https://github.com/downloads/saltstack/salt/salt-0.8.7.tar.gz

-Thomas S Hatch

Salt 0.8.0 release notes

Salt 0.8.0 is ready for general consumption!
The source tarball is available on GitHub for download:

https://github.com/downloads/saltstack/salt/salt-0.8.0.tar.gz

A lot of work has gone into salt since the last release just 2 weeks ago, and
salt has improved a great deal. A swath of new features are here along with
performance and threading improvements!

The main new features of salt 0.8.0 are:

Salt-cp

Cython minion modules

Dynamic returners

Faster return handling

Lowered required Python version to 2.6

Advanced minion threading

Configurable minion modules

Salt-cp -

The salt-cp command introduces the ability to copy simple files via salt to
targeted servers. Using salt-cp is very simple, just call salt-cp with a target
specification, the source file(s) and where to copy the files on the minions.
For instance:

salt-cp ‘*’ /etc/hosts /etc/hosts

Will copy the local /etc/hosts file to all of the minions.

Salt-cp is very young, in the future more advanced features will be added, and
the functionality will much more closely resemble the cp command.

Cython minion modules -

Cython is an amazing tool used to compile Python modules down to c. This is
arguably the fastest way to run Python code, and since pyzmq requires cython,
adding support to salt for cython adds no new dependencies.

Cython minion modules allow minion modules to be written in cython and
therefore executed in compiled c. Simply write the salt module in cython and
use the file extension “.pyx” and the minion module will be compiled when
the minion is started. An example cython module is included in the main
distribution called cytest.pyx:

https://github.com/saltstack/salt/blob/develop/salt/modules/cytest.pyx

Dynamic Returners -

By default salt returns command data back to the salt master, but now salt can
return command data to any system. This is enabled via the new returners
modules feature for salt. The returners modules take the return data and sends
it to a specific module. The returner modules work like minion modules, so any
returner can be added to the minions.

This means that a custom data returner can be added to communicate the return
data so anything from MySQL, Redis, MongoDB and more!

There are 2 simple stock returners in the returners directory:

https://github.com/saltstack/salt/blob/develop/salt/returners

The documentation on writing returners will be added to the wiki shortly, and
returners can be written in pure Python, or in cython.

Configurable Minion Modules -

Minion modules may need to be configured, now the options passed to the minion
configuration file can be accessed inside of the minion modules via the __opt__
dict.

Information on how to use this simple addition has been added to the wiki:
https://github.com/thatch45/salt/wiki/Writing-Salt-Modules

The test module has an example of using the __opts__ dict, and how to set
default options:

https://github.com/saltstack/salt/blob/develop/salt/modules/test.py

Advanced Minion Threading:

In 0.7.0 the minion would block after receiving a command from the master, now
the minion will spawn a thread or multiprocess. By default Python threads are
used because for general use they have proved to be faster, but the minion can
now be configured to use the Python multiprocessing module instead. Using
multiprocessing will cause executions that are CPU bound or would otherwise
exploit the negative aspects of the Python GIL to run faster and more reliably,
but simple calls will still be faster with Python threading.
The configuration option can be found in the minion configuration file:

https://github.com/saltstack/salt/blob/develop/conf/minion

Lowered Supported Python to 2.6 -

The requirement for Python 2.7 has been removed to support Python 2.6. I have
received requests to take the minimum Python version back to 2.4, but
unfortunately this will not be possible, since the ZeroMQ Python bindings do
not support Python 2.4.

Salt 0.8.0 is a very major update, it also changes the network protocol slightly
which makes communication with older salt daemons impossible, your master and
minions need to be upgraded together!
I could use some help bringing salt to the people! Right now I only have
packages for Arch Linux, Fedora 14 and Gentoo. We need packages for Debian and
people willing to help test on more platforms. We also need help writing more
minion modules and returner modules. If you want to contribute to salt please
hop on the mailing list and send in patches, make a fork on GitHub and send in
pull requests! If you want to help but are not sure where you can, please email
me directly or post tot he mailing list!

I hope you enjoy salt, while it is not yet 1.0 salt is completely viable and
usable!

-Thomas S. Hatch

Salt 0.7.0 release notes

I am pleased to announce the release of Salt 0.7.0!

This release marks what is the first stable release of salt, 0.7.0 should be
suitable for general use.

0.7.0 Brings the following new features to Salt:

	Integration with Facter data from puppet labs

	Allow for matching minions from the salt client via Facter information

	Minion job threading, many jobs can be executed from the master at once

	Preview of master clustering support - Still experimental

	Introduce new minion modules for stats, virtualization, service management and more

	Add extensive logging to the master and minion daemons

	Add sys.reload_functions for dynamic function reloading

	Greatly improve authentication

	Introduce the saltkey command for managing public keys

	Begin backend development preparatory to introducing butter

	Addition of man pages for the core commands

	Extended and cleaned configuration

0.7.0 Fixes the following major bugs:

	Fix crash in minions when matching failed

	Fix configuration file lookups for the local client

	Repair communication bugs in encryption

	Numerous fixes in the minion modules

The next release of Salt should see the following features:

	Stabilize the cluster support

	Introduce a remote client for salt command tiers

	salt-ftp system for distributed file copies

	Initial support for "butter"

Coming up next is a higher level management framework for salt called
Butter. I want salt to stay as a simple and effective communication
framework, and allow for more complicated executions to be managed via
Butter.

Right now Butter is being developed to act as a cloud controller using salt
as the communication layer, but features like system monitoring and advanced
configuration control (a puppet manager) are also in the pipe.

Special thanks to Joseph Hall for the status and network modules, and thanks
to Matthias Teege for tracking down some configuration bugs!

Salt can be downloaded from the following locations;

Source Tarball:

https://github.com/downloads/saltstack/salt/salt-0.7.0.tar.gz

Arch Linux Package:

https://aur.archlinux.org/packages.php?ID=47512

Please enjoy the latest Salt release!

Salt 0.6.0 release notes

The Salt remote execution manager has reached initial functionality! Salt is a
management application which can be used to execute commands on remote sets of
servers.

The whole idea behind Salt is to create a system where a group of servers can
be remotely controlled from a single master, not only can commands be executed
on remote systems, but salt can also be used to gather information about your
server environment.

Unlike similar systems, like Func and MCollective, Salt is extremely simple to
setup and use, the entire application is contained in a single package, and the
master and minion daemons require no running dependencies in the way that Func
requires Certmaster and MCollective requires activeMQ.

Salt also manages authentication and encryption. Rather than using SSL for
encryption, salt manages encryption on a payload level, so the data sent across
the network is encrypted with fast AES encryption, and authentication uses RSA
keys. This means that Salt is fast, secure, and very efficient.

Messaging in Salt is executed with ZeroMQ, so the message passing interface is
built into salt and does not require an external ZeroMQ server. This also adds
speed to Salt since there is no additional bloat on the networking layer, and
ZeroMQ has already proven itself as a very fast networking system.

The remote execution in Salt is "Lazy Execution", in that once the command is
sent the requesting network connection is closed. This makes it easier to
detach the execution from the calling process on the master, it also means that
replies are cached, so that information gathered from historic commands can be
queried in the future.

Salt also allows users to make execution modules in Python. Writers of these
modules should also be pleased to know that they have access to the impressive
information gathered from PuppetLabs' Facter application, making Salt module
more flexible. In the future I hope to also allow Salt to group servers based
on Facter information as well.

All in all Salt is fast, efficient and clean, can be used from a simple command
line client or through an API, uses message queue technology to make network
execution extremely fast, and encryption is handled in a very fast and
efficient manner. Salt is also VERY easy to use and VERY easy to extend.

You can find the source code for Salt on my GitHub page, I have also set up a
few wiki pages explaining how to use and set up Salt. If you are using Arch
Linux there is a package available in the Arch Linux AUR.

Salt 0.6.0 Source: https://github.com/downloads/saltstack/salt/salt-0.6.0.tar.gz

GitHub page: https://github.com/saltstack/salt

Wiki: https://github.com/saltstack/salt/wiki

Arch Linux Package: https://aur.archlinux.org/packages.php?ID=47512

I am very open to contributions, for instance I need packages for more Linux
distributions as well as BSD packages and testers.

Give Salt a try, this is the initial release and is not a 1.0 quality release,
but it has been working well for me! I am eager to get your feedback!

 Python Module Index

 a |
 e |
 f |
 l |
 m |
 o |
 p |
 r |
 s |
 t |
 w

 		 	

 		
 a	

 	[image: -]
 	
 salt.auth	

 	
 	
 salt.auth.keystone	

 	
 	
 salt.auth.ldap	

 	
 	
 salt.auth.pam	

 	
 	
 salt.auth.stormpath_mod	

 		 	

 		
 e	

 	
 	
 salt.exceptions	

 		 	

 		
 f	

 	[image: -]
 	
 salt.fileserver	

 	
 	
 salt.fileserver.gitfs	

 	
 	
 salt.fileserver.hgfs	

 	
 	
 salt.fileserver.roots	

 	
 	
 salt.fileserver.s3fs	

 		 	

 		
 l	

 	[image: -]
 	
 salt.log	

 	
 	
 salt.log.handlers.logstash_mod	

 	
 	
 salt.log.handlers.sentry_mod	

 		 	

 		
 m	

 	[image: -]
 	
 salt.modules	

 	
 	
 salt.modules.aliases	

 	
 	
 salt.modules.alternatives	

 	
 	
 salt.modules.apache	

 	
 	
 salt.modules.apt	

 	
 	
 salt.modules.archive	

 	
 	
 salt.modules.at	

 	
 	
 salt.modules.augeas_cfg	

 	
 	
 salt.modules.bluez	

 	
 	
 salt.modules.brew	

 	
 	
 salt.modules.bridge	

 	
 	
 salt.modules.bsd_shadow	

 	
 	
 salt.modules.cassandra	

 	
 	
 salt.modules.cmdmod	

 	
 	
 salt.modules.config	

 	
 	
 salt.modules.cp	

 	
 	
 salt.modules.cron	

 	
 	
 salt.modules.daemontools	

 	
 	
 salt.modules.darwin_sysctl	

 	
 	
 salt.modules.data	

 	
 	
 salt.modules.ddns	

 	
 	
 salt.modules.debconfmod	

 	
 	
 salt.modules.debian_service	

 	
 	
 salt.modules.dig	

 	
 	
 salt.modules.disk	

 	
 	
 salt.modules.djangomod	

 	
 	
 salt.modules.dnsmasq	

 	
 	
 salt.modules.dnsutil	

 	
 	
 salt.modules.dpkg	

 	
 	
 salt.modules.ebuild	

 	
 	
 salt.modules.eix	

 	
 	
 salt.modules.eselect	

 	
 	
 salt.modules.event	

 	
 	
 salt.modules.extfs	

 	
 	
 salt.modules.file	

 	
 	
 salt.modules.freebsd_sysctl	

 	
 	
 salt.modules.freebsdjail	

 	
 	
 salt.modules.freebsdkmod	

 	
 	
 salt.modules.freebsdpkg	

 	
 	
 salt.modules.freebsdservice	

 	
 	
 salt.modules.gem	

 	
 	
 salt.modules.gentoo_service	

 	
 	
 salt.modules.gentoolkitmod	

 	
 	
 salt.modules.git	

 	
 	
 salt.modules.glance	

 	
 	
 salt.modules.grains	

 	
 	
 salt.modules.groupadd	

 	
 	
 salt.modules.grub_legacy	

 	
 	
 salt.modules.guestfs	

 	
 	
 salt.modules.hg	

 	
 	
 salt.modules.hosts	

 	
 	
 salt.modules.img	

 	
 	
 salt.modules.iptables	

 	
 	
 salt.modules.key	

 	
 	
 salt.modules.keyboard	

 	
 	
 salt.modules.keystone	

 	
 	
 salt.modules.kmod	

 	
 	
 salt.modules.launchctl	

 	
 	
 salt.modules.layman	

 	
 	
 salt.modules.ldapmod	

 	
 	
 salt.modules.linux_acl	

 	
 	
 salt.modules.linux_lvm	

 	
 	
 salt.modules.linux_sysctl	

 	
 	
 salt.modules.localemod	

 	
 	
 salt.modules.locate	

 	
 	
 salt.modules.logrotate	

 	
 	
 salt.modules.lxc	

 	
 	
 salt.modules.makeconf	

 	
 	
 salt.modules.match	

 	
 	
 salt.modules.mdadm	

 	
 	
 salt.modules.mine	

 	
 	
 salt.modules.modjk	

 	
 	
 salt.modules.mongodb	

 	
 	
 salt.modules.monit	

 	
 	
 salt.modules.moosefs	

 	
 	
 salt.modules.mount	

 	
 	
 salt.modules.munin	

 	
 	
 salt.modules.mysql	

 	
 	
 salt.modules.netbsd_sysctl	

 	
 	
 salt.modules.netbsdservice	

 	
 	
 salt.modules.network	

 	
 	
 salt.modules.nfs3	

 	
 	
 salt.modules.nginx	

 	
 	
 salt.modules.nova	

 	
 	
 salt.modules.npm	

 	
 	
 salt.modules.nzbget	

 	
 	
 salt.modules.openbsdpkg	

 	
 	
 salt.modules.openbsdservice	

 	
 	
 salt.modules.osxdesktop	

 	
 	
 salt.modules.pacman	

 	
 	
 salt.modules.pam	

 	
 	
 salt.modules.parted	

 	
 	
 salt.modules.pecl	

 	
 	
 salt.modules.pillar	

 	
 	
 salt.modules.pip	

 	
 	
 salt.modules.pkg	
 A virtual module for installing software packages

 	
 	
 salt.modules.pkg_resource	

 	
 	
 salt.modules.pkgin	

 	
 	
 salt.modules.pkgng	

 	
 	
 salt.modules.pkgutil	

 	
 	
 salt.modules.portage_config	

 	
 	
 salt.modules.postgres	

 	
 	
 salt.modules.poudriere	

 	
 	
 salt.modules.ps	

 	
 	
 salt.modules.publish	

 	
 	
 salt.modules.puppet	

 	
 	
 salt.modules.pw_group	

 	
 	
 salt.modules.pw_user	

 	
 	
 salt.modules.qemu_img	

 	
 	
 salt.modules.qemu_nbd	

 	
 	
 salt.modules.quota	

 	
 	
 salt.modules.rabbitmq	

 	
 	
 salt.modules.rbenv	

 	
 	
 salt.modules.reg	

 	
 	
 salt.modules.ret	

 	
 	
 salt.modules.rh_ip	

 	
 	
 salt.modules.rh_service	

 	
 	
 salt.modules.rpm	

 	
 	
 salt.modules.rvm	

 	
 	
 salt.modules.s3	

 	
 	
 salt.modules.saltutil	

 	
 	
 salt.modules.seed	

 	
 	
 salt.modules.selinux	

 	
 	
 salt.modules.service	

 	
 	
 salt.modules.shadow	

 	
 	
 salt.modules.smartos_imgadm	

 	
 	
 salt.modules.smartos_vmadm	

 	
 	
 salt.modules.smf	

 	
 	
 salt.modules.solaris_group	

 	
 	
 salt.modules.solaris_shadow	

 	
 	
 salt.modules.solaris_user	

 	
 	
 salt.modules.solarispkg	

 	
 	
 salt.modules.solr	

 	
 	
 salt.modules.sqlite3	

 	
 	
 salt.modules.ssh	

 	
 	
 salt.modules.state	

 	
 	
 salt.modules.status	

 	
 	
 salt.modules.supervisord	

 	
 	
 salt.modules.svn	

 	
 	
 salt.modules.sys	

 	
 	
 salt.modules.sysbench	

 	
 	
 salt.modules.sysmod	

 	
 	
 salt.modules.system	

 	
 	
 salt.modules.systemd	

 	
 	
 salt.modules.test	

 	
 	
 salt.modules.timezone	

 	
 	
 salt.modules.tls	

 	
 	
 salt.modules.tomcat	

 	
 	
 salt.modules.upstart	

 	
 	
 salt.modules.useradd	

 	
 	
 salt.modules.virt	

 	
 	
 salt.modules.virtualenv_mod	

 	
 	
 salt.modules.win_disk	

 	
 	
 salt.modules.win_file	

 	
 	
 salt.modules.win_groupadd	

 	
 	
 salt.modules.win_network	

 	
 	
 salt.modules.win_pkg	

 	
 	
 salt.modules.win_service	

 	
 	
 salt.modules.win_shadow	

 	
 	
 salt.modules.win_status	

 	
 	
 salt.modules.win_system	

 	
 	
 salt.modules.win_useradd	

 	
 	
 salt.modules.xapi	

 	
 	
 salt.modules.yumpkg	

 	
 	
 salt.modules.yumpkg5	

 	
 	
 salt.modules.zfs	

 	
 	
 salt.modules.zpool	

 	
 	
 salt.modules.zypper	

 		 	

 		
 o	

 	[image: -]
 	
 salt.output	

 	
 	
 salt.output.grains	

 	
 	
 salt.output.highstate	

 	
 	
 salt.output.json_out	

 	
 	
 salt.output.key	

 	
 	
 salt.output.nested	

 	
 	
 salt.output.no_out	

 	
 	
 salt.output.no_return	

 	
 	
 salt.output.overstatestage	

 	
 	
 salt.output.pprint_out	

 	
 	
 salt.output.raw	

 	
 	
 salt.output.txt	

 	
 	
 salt.output.virt_query	

 	
 	
 salt.output.yaml_out	

 		 	

 		
 p	

 	[image: -]
 	
 salt.pillar	

 	
 	
 salt.pillar.cmd_json	

 	
 	
 salt.pillar.cmd_yaml	

 	
 	
 salt.pillar.cobbler	

 	
 	
 salt.pillar.django_orm	

 	
 	
 salt.pillar.git_pillar	

 	
 	
 salt.pillar.hiera	

 	
 	
 salt.pillar.libvirt	

 	
 	
 salt.pillar.mongo	

 	
 	
 salt.pillar.pillar_ldap	

 	
 	
 salt.pillar.puppet	

 	
 	
 salt.pillar.reclass_adapter	

 		 	

 		
 r	

 	[image: -]
 	
 salt.renderers	

 	
 	
 salt.renderers.jinja	

 	
 	
 salt.renderers.json	

 	
 	
 salt.renderers.mako	

 	
 	
 salt.renderers.py	

 	
 	
 salt.renderers.pydsl	

 	
 	
 salt.renderers.stateconf	

 	
 	
 salt.renderers.wempy	

 	
 	
 salt.renderers.yaml	

 	[image: -]
 	
 salt.returners	

 	
 	
 salt.returners.carbon_return	

 	
 	
 salt.returners.cassandra_return	

 	
 	
 salt.returners.local	

 	
 	
 salt.returners.mongo_future_return	

 	
 	
 salt.returners.mongo_return	

 	
 	
 salt.returners.mysql	

 	
 	
 salt.returners.postgres	

 	
 	
 salt.returners.redis_return	

 	
 	
 salt.returners.sentry_return	

 	
 	
 salt.returners.smtp_return	

 	
 	
 salt.returners.sqlite3_return	

 	
 	
 salt.returners.syslog_return	

 	[image: -]
 	
 salt.runners	

 	
 	
 salt.runners.cache	

 	
 	
 salt.runners.doc	

 	
 	
 salt.runners.fileserver	

 	
 	
 salt.runners.jobs	

 	
 	
 salt.runners.launchd	

 	
 	
 salt.runners.manage	

 	
 	
 salt.runners.network	

 	
 	
 salt.runners.search	

 	
 	
 salt.runners.state	

 	
 	
 salt.runners.virt	

 	
 	
 salt.runners.winrepo	

 		 	

 		
 s	

 	[image: -]
 	
 salt.states	

 	
 	
 salt.states.alias	

 	
 	
 salt.states.alternatives	

 	
 	
 salt.states.apt	

 	
 	
 salt.states.augeas	

 	
 	
 salt.states.cmd	

 	
 	
 salt.states.cron	

 	
 	
 salt.states.debconfmod	

 	
 	
 salt.states.disk	

 	
 	
 salt.states.eselect	

 	
 	
 salt.states.file	

 	
 	
 salt.states.gem	

 	
 	
 salt.states.git	

 	
 	
 salt.states.grains	

 	
 	
 salt.states.group	

 	
 	
 salt.states.hg	

 	
 	
 salt.states.host	

 	
 	
 salt.states.iptables	

 	
 	
 salt.states.keyboard	

 	
 	
 salt.states.kmod	

 	
 	
 salt.states.layman	

 	
 	
 salt.states.libvirt	

 	
 	
 salt.states.locale	

 	
 	
 salt.states.lvm	

 	
 	
 salt.states.makeconf	

 	
 	
 salt.states.mdadm	

 	
 	
 salt.states.modjk_worker	

 	
 	
 salt.states.module	

 	
 	
 salt.states.mongodb_database	

 	
 	
 salt.states.mongodb_user	

 	
 	
 salt.states.mount	

 	
 	
 salt.states.mysql_database	

 	
 	
 salt.states.mysql_grants	

 	
 	
 salt.states.mysql_user	

 	
 	
 salt.states.network	

 	
 	
 salt.states.npm	

 	
 	
 salt.states.pecl	

 	
 	
 salt.states.pip_state	

 	
 	
 salt.states.pkg	

 	
 	
 salt.states.pkgng	

 	
 	
 salt.states.pkgrepo	

 	
 	
 salt.states.portage_config	

 	
 	
 salt.states.postgres_database	

 	
 	
 salt.states.postgres_group	

 	
 	
 salt.states.postgres_user	

 	
 	
 salt.states.quota	

 	
 	
 salt.states.rabbitmq_user	

 	
 	
 salt.states.rabbitmq_vhost	

 	
 	
 salt.states.rbenv	

 	
 	
 salt.states.rvm	

 	
 	
 salt.states.selinux	

 	
 	
 salt.states.service	

 	
 	
 salt.states.ssh_auth	

 	
 	
 salt.states.ssh_known_hosts	

 	
 	
 salt.states.stateconf	

 	
 	
 salt.states.supervisord	

 	
 	
 salt.states.svn	

 	
 	
 salt.states.sysctl	

 	
 	
 salt.states.timezone	

 	
 	
 salt.states.tomcat	

 	
 	
 salt.states.user	

 	
 	
 salt.states.virtualenv_mod	

 		 	

 		
 t	

 	[image: -]
 	
 salt.tops	

 	
 	
 salt.tops.cobbler	

 	
 	
 salt.tops.ext_nodes	

 	
 	
 salt.tops.mongo	

 	
 	
 salt.tops.reclass_adapter	

 		 	

 		
 w	

 	[image: -]
 	
 salt.wheel	

 	
 	
 salt.wheel.config	

 	
 	
 salt.wheel.file_roots	

 	
 	
 salt.wheel.key	

 	
 	
 salt.wheel.pillar_roots	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

Symbols

 	
 	
 --args-separator=ARGS_SEPARATOR

 	salt command line option

 	
 --async

 	salt command line option

 	
 --force-color

 	salt command line option, [1]

 	salt-call command line option

 	salt-key command line option

 	
 --gen-keys-dir=GEN_KEYS_DIR

 	salt-key command line option

 	
 --gen-keys=GEN_KEYS

 	salt-key command line option

 	
 --grain-pcre

 	salt command line option, [1]

 	salt-cp command line option

 	
 --keysize=KEYSIZE

 	salt-key command line option

 	
 --local

 	salt-call command line option

 	
 --log-file-level=LOG_LEVEL_LOGFILE

 	salt command line option, [1]

 	salt-call command line option

 	salt-cp command line option

 	salt-key command line option

 	salt-master command line option

 	salt-minion command line option

 	salt-run command line option

 	salt-syndic command line option

 	
 --log-file=LOG_FILE

 	salt command line option, [1]

 	salt-call command line option

 	salt-cp command line option

 	salt-key command line option

 	salt-master command line option

 	salt-minion command line option

 	salt-run command line option

 	salt-syndic command line option

 	
 --master=MASTER

 	salt-call command line option

 	
 --no-color

 	salt command line option, [1]

 	salt-call command line option

 	salt-key command line option

 	
 --out

 	salt command line option, [1]

 	salt-call command line option

 	salt-key command line option

 	
 --out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

 	salt command line option, [1]

 	salt-call command line option

 	salt-key command line option

 	
 --out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

 	salt command line option, [1]

 	salt-call command line option

 	salt-key command line option

 	
 --pid-file PIDFILE

 	salt-master command line option

 	salt-minion command line option

 	salt-syndic command line option

 	
 --return RETURNER

 	salt-call command line option

 	
 --return=RETURNER

 	salt command line option

 	
 --state-output=STATE_OUTPUT

 	salt command line option

 	
 --subset=SUBSET

 	salt command line option

 	
 --version

 	salt command line option, [1]

 	salt-call command line option

 	salt-cp command line option

 	salt-key command line option

 	salt-master command line option

 	salt-minion command line option

 	salt-run command line option

 	salt-syndic command line option

 	
 --versions-report

 	salt command line option, [1]

 	salt-call command line option

 	salt-cp command line option

 	salt-key command line option

 	salt-master command line option

 	salt-minion command line option

 	salt-run command line option

 	salt-syndic command line option

 	
 -a ACCEPT, --accept=ACCEPT

 	salt-key command line option

 	
 -a EAUTH, --auth=EAUTH

 	salt command line option

 	
 -A, --accept-all

 	salt-key command line option

 	
 -b BATCH, --batch-size=BATCH

 	salt command line option

 	
 -c CONFIG_DIR, --config-dir=CONFIG_dir

 	salt command line option, [1]

 	salt-call command line option

 	salt-cp command line option

 	salt-key command line option

 	salt-master command line option

 	salt-minion command line option

 	salt-run command line option

 	salt-syndic command line option

 	
 	
 -C, --compound

 	salt command line option

 	
 -d DELETE, --delete=DELETE

 	salt-key command line option

 	
 -d, --daemon

 	salt-master command line option

 	salt-minion command line option

 	salt-syndic command line option

 	
 -D, --delete-all

 	salt-key command line option

 	
 -d, --doc, --documentation

 	salt command line option

 	salt-call command line option

 	salt-run command line option

 	
 -E, --pcre

 	salt command line option, [1]

 	salt-cp command line option

 	
 -f FINGER, --finger=FINGER

 	salt-key command line option

 	
 -F, --finger-all

 	salt-key command line option

 	
 -G, --grain

 	salt command line option, [1]

 	salt-cp command line option

 	
 -g, --grains

 	salt-call command line option

 	
 -h, --help

 	salt command line option, [1]

 	salt-call command line option

 	salt-cp command line option

 	salt-key command line option

 	salt-master command line option

 	salt-minion command line option

 	salt-run command line option

 	salt-syndic command line option

 	
 -I, --pillar

 	salt command line option

 	
 -l ARG, --list=ARG

 	salt-key command line option

 	
 -l LOG_LEVEL, --log-level=LOG_LEVEL

 	salt command line option, [1]

 	salt-call command line option

 	salt-cp command line option

 	salt-master command line option

 	salt-minion command line option

 	salt-run command line option

 	salt-syndic command line option

 	
 -L, --list

 	salt command line option, [1]

 	salt-cp command line option

 	
 -L, --list-all

 	salt-key command line option

 	
 -m MODULE_DIRS, --module-dirs=MODULE_DIRS

 	salt-call command line option

 	
 -N, --nodegroup

 	salt command line option, [1]

 	salt-cp command line option

 	
 -p PRINT, --print=PRINT

 	salt-key command line option

 	
 -P, --print-all

 	salt-key command line option

 	
 -q, --quiet

 	salt-key command line option

 	
 -r REJECT, --reject=REJECT

 	salt-key command line option

 	
 -R, --range

 	salt command line option, [1]

 	salt-cp command line option

 	
 -R, --reject-all

 	salt-key command line option

 	
 -S, --ipcidr

 	salt command line option

 	
 -s, --static

 	salt command line option

 	
 -t TIMEOUT, --timeout=TIMEOUT

 	salt command line option

 	salt-cp command line option

 	salt-run command line option

 	
 -T, --make-token

 	salt command line option

 	
 -u USER, --user=USER

 	salt-master command line option

 	salt-minion command line option

 	salt-syndic command line option

 	
 -v VERBOSE, --verbose

 	salt command line option

 	
 -X, --exsel

 	salt command line option

 	
 -y, --yes

 	salt-key command line option

A

 	
 	A() (in module salt.modules.dig)

 	(in module salt.modules.dnsutil)

 	a2dissite() (in module salt.modules.apache)

 	a2ensite() (in module salt.modules.apache)

 	abort_import() (in module salt.modules.solr)

 	absent() (in module salt.states.alias)

 	(in module salt.states.cron)

 	(in module salt.states.file)

 	(in module salt.states.group)

 	(in module salt.states.host)

 	(in module salt.states.kmod)

 	(in module salt.states.layman)

 	(in module salt.states.makeconf)

 	(in module salt.states.mdadm)

 	(in module salt.states.mongodb_database)

 	(in module salt.states.mongodb_user)

 	(in module salt.states.mysql_database)

 	(in module salt.states.mysql_grants)

 	(in module salt.states.mysql_user)

 	(in module salt.states.pkgrepo)

 	(in module salt.states.postgres_database)

 	(in module salt.states.postgres_group)

 	(in module salt.states.postgres_user)

 	(in module salt.states.rabbitmq_user)

 	(in module salt.states.rabbitmq_vhost)

 	(in module salt.states.rbenv)

 	(in module salt.states.ssh_auth)

 	(in module salt.states.ssh_known_hosts)

 	(in module salt.states.user)

 	accept() (in module salt.wheel.key)

 	
 acceptance_wait_time

 	conf/minion

 	
 acceptance_wait_time_max

 	conf/minion

 	accumulated() (in module salt.states.file)

 	activate() (in module salt.states.modjk_worker)

 	active() (in module salt.modules.mount)

 	(in module salt.runners.jobs)

 	add() (in module salt.modules.bridge)

 	(in module salt.modules.git)

 	(in module salt.modules.groupadd)

 	(in module salt.modules.layman)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.pw_group)

 	(in module salt.modules.pw_user)

 	(in module salt.modules.solaris_group)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.supervisord)

 	(in module salt.modules.svn)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_groupadd)

 	(in module salt.modules.win_useradd)

 	(in module salt.modules.zpool)

 	add_host() (in module salt.modules.ddns)

 	(in module salt.modules.hosts)

 	add_pkg() (in module salt.modules.pkg_resource)

 	add_user() (in module salt.modules.rabbitmq)

 	add_vhost() (in module salt.modules.rabbitmq)

 	addgroup() (in module salt.modules.win_useradd)

 	addif() (in module salt.modules.bridge)

 	address_() (in module salt.modules.bluez)

 	align_check() (in module salt.modules.parted)

 	
 	all_status() (in module salt.modules.status)

 	appdata_ptr (salt.auth.pam.PamConv attribute)

 	append() (in module salt.modules.file)

 	(in module salt.modules.grains)

 	(in module salt.modules.iptables)

 	(in module salt.states.file)

 	(in module salt.states.iptables)

 	append_cflags() (in module salt.modules.makeconf)

 	append_cxxflags() (in module salt.modules.makeconf)

 	
 append_domain

 	conf/minion

 	append_emerge_default_opts() (in module salt.modules.makeconf)

 	append_features() (in module salt.modules.makeconf)

 	append_gentoo_mirrors() (in module salt.modules.makeconf)

 	append_makeopts() (in module salt.modules.makeconf)

 	append_to_package_conf() (in module salt.modules.portage_config)

 	append_use_flags() (in module salt.modules.portage_config)

 	append_var() (in module salt.modules.makeconf)

 	apply() (in module salt.wheel.config)

 	apply_() (in module salt.modules.seed)

 	apply_network_settings() (in module salt.modules.rh_ip)

 	archive() (in module salt.modules.git)

 	(in module salt.modules.hg)

 	arg() (in module salt.modules.test)

 	arg_repr() (in module salt.modules.test)

 	argspec() (in module salt.modules.sysmod)

 	arp() (in module salt.modules.network)

 	assign() (in module salt.modules.darwin_sysctl)

 	(in module salt.modules.freebsd_sysctl)

 	(in module salt.modules.linux_sysctl)

 	(in module salt.modules.netbsd_sysctl)

 	at() (in module salt.modules.at)

 	atc() (in module salt.modules.at)

 	atq() (in module salt.modules.at)

 	atrm() (in module salt.modules.at)

 	attributes() (in module salt.modules.extfs)

 	audit() (in module salt.modules.pkgng)

 	auth() (in module salt.auth.keystone)

 	(in module salt.auth.ldap)

 	(in module salt.auth.pam)

 	(in module salt.auth.stormpath_mod)

 	(in module salt.modules.keystone)

 	auth_keys() (in module salt.modules.ssh)

 	authenticate() (in module salt.auth.pam)

 	AuthenticationError

 	auto() (in module salt.modules.alternatives)

 	(in module salt.states.alternatives)

 	
 auto_accept

 	conf/master

 	
 autoload_dynamic_modules

 	conf/minion

 	autoremove() (in module salt.modules.pkgng)

 	
 autosign_file

 	conf/master

 	avail() (in module salt.modules.smartos_imgadm)

 	available() (in module salt.modules.freebsdkmod)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.kmod)

 	(in module salt.modules.launchctl)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.service)

 	(in module salt.modules.systemd)

 	available_version() (in module salt.modules.pkgin)

B

 	
 	backup() (in module salt.modules.pkgng)

 	(in module salt.modules.solr)

 	
 backup_mode

 	conf/minion

 	backup_mode() (in module salt.modules.config)

 	block() (in module salt.modules.bluez)

 	blocks() (in module salt.modules.extfs)

 	boolean() (in module salt.states.selinux)

 	boot() (in module salt.modules.nova)

 	boot_time() (in module salt.modules.ps)

 	bootstrap() (in module salt.modules.img)

 	(in module salt.states.npm)

 	
 	build_bond() (in module salt.modules.rh_ip)

 	build_interface() (in module salt.modules.rh_ip)

 	build_network_settings() (in module salt.modules.rh_ip)

 	build_routes() (in module salt.modules.rh_ip)

 	build_rule() (in module salt.modules.iptables)

 	bulk_activate() (in module salt.modules.modjk)

 	bulk_build() (in module salt.modules.poudriere)

 	bulk_disable() (in module salt.modules.modjk)

 	bulk_recover() (in module salt.modules.modjk)

 	bulk_stop() (in module salt.modules.modjk)

C

 	
 	cache_dir() (in module salt.modules.cp)

 	cache_file() (in module salt.modules.cp)

 	cache_files() (in module salt.modules.cp)

 	
 cache_jobs

 	conf/minion

 	cache_local_file() (in module salt.modules.cp)

 	cache_master() (in module salt.modules.cp)

 	cached_physical_memory() (in module salt.modules.ps)

 	
 cachedir

 	conf/master

 	conf/minion

 	call() (in module salt.states.cmd)

 	call_func() (salt.wheel.Wheel method)

 	Caller (class in salt.client)

 	cas() (in module salt.modules.data)

 	cflags_contains() (in module salt.modules.makeconf)

 	change_password() (in module salt.modules.rabbitmq)

 	check() (in module salt.modules.iptables)

 	(in module salt.modules.parted)

 	(in module salt.modules.pkgng)

 	check_available() (in module salt.modules.freebsdkmod)

 	(in module salt.modules.kmod)

 	check_db() (in module salt.modules.ebuild)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	check_extra_requirements() (in module salt.modules.ebuild)

 	(in module salt.modules.pkg_resource)

 	check_file_meta() (in module salt.modules.file)

 	check_hash() (in module salt.modules.file)

 	check_installed() (in module salt.modules.alternatives)

 	check_ip() (in module salt.modules.dig)

 	(in module salt.modules.dnsutil)

 	check_key() (in module salt.modules.ssh)

 	check_key_file() (in module salt.modules.ssh)

 	check_known_host() (in module salt.modules.ssh)

 	check_managed() (in module salt.modules.file)

 	check_perms() (in module salt.modules.file)

 	check_site_enabled() (in module salt.modules.apache)

 	checkout() (in module salt.modules.git)

 	(in module salt.modules.svn)

 	chfullname() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_useradd)

 	chgid() (in module salt.modules.groupadd)

 	(in module salt.modules.pw_group)

 	(in module salt.modules.pw_user)

 	(in module salt.modules.solaris_group)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	chgroups() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_useradd)

 	chgrp() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	chhome() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_useradd)

 	chhomephone() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	chost_contains() (in module salt.modules.makeconf)

 	chown() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	chprofile() (in module salt.modules.win_useradd)

 	chroomnumber() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	chshell() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	chuid() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	chworkphone() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	clean() (in module salt.modules.pkgng)

 	
 clean_dynamic_modules

 	conf/minion

 	clean_metadata() (in module salt.modules.yumpkg)

 	clear() (in module salt.modules.data)

 	(in module salt.modules.qemu_nbd)

 	clear_all() (in module salt.runners.cache)

 	clear_cache() (in module salt.modules.state)

 	clear_grains() (in module salt.runners.cache)

 	clear_mine() (in module salt.runners.cache)

 	clear_mine_func() (in module salt.runners.cache)

 	clear_password() (in module salt.modules.rabbitmq)

 	clear_pillar() (in module salt.runners.cache)

 	
 client_acl

 	conf/master

 	
 client_acl_blacklist

 	conf/master

 	clone() (in module salt.modules.git)

 	(in module salt.modules.hg)

 	cluster_status() (in module salt.modules.rabbitmq)

 	cmd() (in module salt.modules.saltutil)

 	(salt.client.LocalClient method)

 	(salt.runner.RunnerClient method)

 	cmd_async() (salt.client.LocalClient method)

 	cmd_cli() (salt.client.LocalClient method)

 	cmd_iter() (in module salt.modules.saltutil)

 	(salt.client.LocalClient method)

 	cmd_iter_no_block() (salt.client.LocalClient method)

 	collatz() (in module salt.modules.test)

 	collectstatic() (in module salt.modules.djangomod)

 	column_families() (in module salt.modules.cassandra)

 	column_family_definition() (in module salt.modules.cassandra)

 	command() (in module salt.modules.djangomod)

 	CommandExecutionError

 	CommandNotFoundError

 	comment() (in module salt.modules.file)

 	(in module salt.states.file)

 	commit() (in module salt.modules.git)

 	(in module salt.modules.svn)

 	compactionstats() (in module salt.modules.cassandra)

 	Compound matcher

 	compound() (in module salt.modules.match)

 	conf() (in module salt.modules.grub_legacy)

 	
 conf/logging

 	external-logging-handlers

 	log_datefmt

 	log_datefmt_logfile

 	log_file

 	log_fmt_console

 	log_fmt_logfile

 	log_granular_levels

 	log_level

 	log_level_logfile

 	
 conf/master

 	auto_accept

 	autosign_file

 	cachedir

 	client_acl

 	client_acl_blacklist

 	cython_enable

 	default_include

 	enforce_mine_cache

 	ext_job_cache

 	ext_pillar

 	external_auth

 	external_nodes

 	failhard

 	file_buffer_size

 	file_recv

 	file_roots

 	hash_type, [1]

 	include

 	interface

 	job_cache

 	keep_jobs

 	log_datefmt

 	log_datefmt_logfile

 	log_file

 	log_fmt_console

 	log_fmt_logfile

 	log_granular_levels

 	log_level

 	log_level_logfile

 	max_open_files

 	minion_data_cache

 	nodegroups

 	open_mode

 	order_masters

 	peer

 	peer_run

 	pidfile

 	pillar_roots

 	pki_dir

 	publish_port

 	renderer

 	ret_port

 	root_dir

 	runner_dirs

 	sock_dir

 	state_output

 	state_top

 	state_verbose

 	syndic_log_file

 	syndic_master

 	syndic_master_log_file

 	syndic_master_port

 	test

 	token_expire

 	user

 	worker_threads

 	
 	
 conf/minion

 	acceptance_wait_time

 	acceptance_wait_time_max

 	append_domain

 	autoload_dynamic_modules

 	backup_mode

 	cache_jobs

 	cachedir

 	clean_dynamic_modules

 	cython_enable

 	disable_modules

 	disable_returners

 	dns_check

 	environment

 	file_client

 	file_roots

 	id

 	include

 	ipc_mode

 	log_datefmt

 	log_datefmt_logfile

 	log_file

 	log_fmt_console

 	log_fmt_logfile

 	log_granular_levels

 	log_level

 	log_level_logfile

 	master

 	master_port

 	module_dirs

 	multiprocessing

 	open_mode

 	pidfile

 	pillar_roots

 	pki_dir

 	providers

 	random_reauth_delay

 	render_dirs

 	renderer

 	returner_dirs

 	root_dir

 	sock_dir

 	state_output

 	state_verbose

 	states_dirs

 	tcp_pub_port

 	tcp_pull_port

 	update_restart_services

 	update_url

 	user

 	verify_env

 	conf_test() (in module salt.modules.test)

 	config_get() (in module salt.modules.git)

 	config_set() (in module salt.modules.git)

 	configtest() (in module salt.modules.nginx)

 	connect() (in module salt.modules.qemu_nbd)

 	contains() (in module salt.modules.file)

 	contains_glob() (in module salt.modules.file)

 	contains_regex() (in module salt.modules.file)

 	contains_regex_multiline() (in module salt.modules.file)

 	context() (in module salt.states.stateconf)

 	conv (salt.auth.pam.PamConv attribute)

 	copy() (in module salt.modules.file)

 	(in module salt.states.file)

 	core_status() (in module salt.modules.solr)

 	cp() (in module salt.modules.parted)

 	cpu() (in module salt.modules.sysbench)

 	cpu_percent() (in module salt.modules.ps)

 	cpu_times() (in module salt.modules.ps)

 	cpuinfo() (in module salt.modules.status)

 	cpustats() (in module salt.modules.status)

 	create() (in module salt.modules.lxc)

 	(in module salt.modules.mdadm)

 	(in module salt.modules.virt)

 	(in module salt.modules.virtualenv_mod)

 	(in module salt.modules.xapi)

 	(in module salt.modules.zpool)

 	create_ca() (in module salt.modules.tls)

 	create_ca_signed_cert() (in module salt.modules.tls)

 	create_csr() (in module salt.modules.tls)

 	create_file_vdev() (in module salt.modules.zpool)

 	create_jail() (in module salt.modules.poudriere)

 	create_key() (in module salt.modules.reg)

 	create_pkcs12() (in module salt.modules.tls)

 	create_ports_tree() (in module salt.modules.poudriere)

 	create_self_signed_cert() (in module salt.modules.tls)

 	create_xml_path() (in module salt.modules.virt)

 	create_xml_str() (in module salt.modules.virt)

 	createsuperuser() (in module salt.modules.djangomod)

 	cross_test() (in module salt.modules.test)

 	ctrl_alt_del() (in module salt.modules.virt)

 	current_branch() (in module salt.modules.git)

 	custom() (in module salt.modules.status)

 	(in module salt.modules.supervisord)

 	cxxflags_contains() (in module salt.modules.makeconf)

 	
 cython_enable

 	conf/master

 	conf/minion

D

 	
 	data() (in module salt.modules.match)

 	db_alter() (in module salt.modules.postgres)

 	db_check() (in module salt.modules.mysql)

 	db_create() (in module salt.modules.mysql)

 	(in module salt.modules.postgres)

 	db_exists() (in module salt.modules.mongodb)

 	(in module salt.modules.mysql)

 	(in module salt.modules.postgres)

 	db_list() (in module salt.modules.mongodb)

 	(in module salt.modules.mysql)

 	(in module salt.modules.postgres)

 	db_optimize() (in module salt.modules.mysql)

 	db_remove() (in module salt.modules.mongodb)

 	(in module salt.modules.mysql)

 	(in module salt.modules.postgres)

 	db_repair() (in module salt.modules.mysql)

 	db_tables() (in module salt.modules.mysql)

 	dead() (in module salt.states.service)

 	(in module salt.states.supervisord)

 	default() (in module salt.modules.rbenv)

 	default_config() (in module salt.modules.linux_sysctl)

 	default_hash() (in module salt.modules.bsd_shadow)

 	(in module salt.modules.shadow)

 	(in module salt.modules.solaris_shadow)

 	
 default_include

 	conf/master

 	define_vol_xml_path() (in module salt.modules.virt)

 	define_vol_xml_str() (in module salt.modules.virt)

 	define_xml_path() (in module salt.modules.virt)

 	define_xml_str() (in module salt.modules.virt)

 	del_export() (in module salt.modules.nfs3)

 	del_repo() (in module salt.modules.apt)

 	(in module salt.modules.yumpkg)

 	delete() (in module salt.modules.bridge)

 	(in module salt.modules.ddns)

 	(in module salt.modules.groupadd)

 	(in module salt.modules.iptables)

 	(in module salt.modules.layman)

 	(in module salt.modules.mine)

 	(in module salt.modules.nova)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.pw_group)

 	(in module salt.modules.pw_user)

 	(in module salt.modules.s3)

 	(in module salt.modules.smartos_imgadm)

 	(in module salt.modules.solaris_group)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_groupadd)

 	(in module salt.modules.win_useradd)

 	(in module salt.wheel.key)

 	delete_backup() (in module salt.modules.file)

 	delete_host() (in module salt.modules.ddns)

 	delete_jail() (in module salt.modules.poudriere)

 	delete_key() (in module salt.modules.reg)

 	delete_policy() (in module salt.modules.rabbitmq)

 	delete_user() (in module salt.modules.rabbitmq)

 	delete_vhost() (in module salt.modules.rabbitmq)

 	delfacl() (in module salt.modules.linux_acl)

 	delif() (in module salt.modules.bridge)

 	delta_import() (in module salt.modules.solr)

 	delval() (in module salt.modules.grains)

 	depclean() (in module salt.modules.ebuild)

 	deploy_war() (in module salt.modules.tomcat)

 	describe() (in module salt.modules.git)

 	(in module salt.modules.hg)

 	
 	destroy() (in module salt.modules.lxc)

 	(in module salt.modules.mdadm)

 	(in module salt.modules.smartos_vmadm)

 	(in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	(in module salt.modules.zpool)

 	detail() (in module salt.modules.mdadm)

 	diff() (in module salt.modules.svn)

 	dig() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	dir_list() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.fileserver.roots)

 	(in module salt.fileserver.s3fs)

 	directives() (in module salt.modules.apache)

 	directory() (in module salt.states.file)

 	directory_exists() (in module salt.modules.file)

 	dirinfo() (in module salt.modules.moosefs)

 	dirty() (in module salt.states.svn)

 	disable() (in module salt.modules.debian_service)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.smf)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	(in module salt.states.modjk_worker)

 	
 disable_modules

 	conf/minion

 	
 disable_returners

 	conf/minion

 	disabled() (in module salt.modules.debian_service)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.smf)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	(in module salt.states.service)

 	discoverable() (in module salt.modules.bluez)

 	disk_io_counters() (in module salt.modules.ps)

 	disk_partition_usage() (in module salt.modules.ps)

 	disk_partitions() (in module salt.modules.ps)

 	disk_usage() (in module salt.modules.ps)

 	diskstats() (in module salt.modules.status)

 	diskusage() (in module salt.modules.status)

 	display() (in module salt.modules.alternatives)

 	(salt.output.nested.NestDisplay method)

 	(salt.output.no_return.NestDisplay method)

 	
 dns_check

 	conf/minion

 	do() (in module salt.modules.rvm)

 	doc() (in module salt.modules.sys)

 	(in module salt.modules.sysmod)

 	dot_vals() (in module salt.modules.config)

 	down() (in module salt.modules.rh_ip)

 	(in module salt.runners.manage)

 	dump() (in module salt.modules.data)

 	(in module salt.modules.extfs)

 	dump_config() (in module salt.modules.modjk)

E

 	
 	EauthAuthenticationError

 	ec2_credentials_create() (in module salt.modules.keystone)

 	ec2_credentials_delete() (in module salt.modules.keystone)

 	ec2_credentials_get() (in module salt.modules.keystone)

 	ec2_credentials_list() (in module salt.modules.keystone)

 	echo() (in module salt.modules.test)

 	eclean_dist() (in module salt.modules.gentoolkitmod)

 	eclean_pkg() (in module salt.modules.gentoolkitmod)

 	emerge_default_opts_contains() (in module salt.modules.makeconf)

 	enable() (in module salt.modules.debian_service)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.smf)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	enabled() (in module salt.modules.debian_service)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.smf)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	(in module salt.states.service)

 	endpoint_get() (in module salt.modules.keystone)

 	endpoint_list() (in module salt.modules.keystone)

 	
 enforce_mine_cache

 	conf/master

 	enforce_nice_config() (in module salt.modules.portage_config)

 	Environment

 	
 environment

 	conf/minion

 	envs() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.fileserver.roots)

 	(in module salt.fileserver.s3fs)

 	(in module salt.pillar.git_pillar)

 	
 	ex_mod_init() (in module salt.modules.ebuild)

 	exec_action() (in module salt.modules.eselect)

 	exec_code() (in module salt.modules.cmdmod)

 	execution() (in module salt.runners.doc)

 	exists() (in module salt.modules.lxc)

 	(in module salt.modules.zpool)

 	(in module salt.states.file)

 	expand_repo_def() (in module salt.modules.apt)

 	(in module salt.modules.yumpkg)

 	export() (in module salt.modules.svn)

 	(in module salt.states.svn)

 	ext() (in module salt.modules.pillar)

 	
 ext_job_cache

 	conf/master

 	
 ext_pillar

 	conf/master

 	ext_pillar() (in module salt.pillar.cmd_json)

 	(in module salt.pillar.cmd_yaml)

 	(in module salt.pillar.cobbler)

 	(in module salt.pillar.django_orm)

 	(in module salt.pillar.git_pillar)

 	(in module salt.pillar.hiera)

 	(in module salt.pillar.libvirt)

 	(in module salt.pillar.mongo)

 	(in module salt.pillar.pillar_ldap)

 	(in module salt.pillar.puppet)

 	(in module salt.pillar.reclass_adapter)

 	Extend declaration

 	
 external-logging-handlers

 	conf/logging

 	
 external_auth

 	conf/master

 	
 external_nodes

 	conf/master

F

 	
 	fact() (in module salt.modules.puppet)

 	facts() (in module salt.modules.puppet)

 	
 failhard

 	conf/master

 	features_contains() (in module salt.modules.makeconf)

 	fetch() (in module salt.modules.git)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.sqlite3)

 	fib() (in module salt.modules.test)

 	file() (in module salt.states.cron)

 	
 file_buffer_size

 	conf/master

 	
 file_client

 	conf/minion

 	file_dict() (in module salt.modules.apt)

 	(in module salt.modules.dpkg)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.rpm)

 	(in module salt.modules.yumpkg)

 	file_exists() (in module salt.modules.file)

 	file_hash() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.fileserver.roots)

 	(in module salt.fileserver.s3fs)

 	file_list() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.fileserver.roots)

 	(in module salt.fileserver.s3fs)

 	(in module salt.modules.apt)

 	(in module salt.modules.dpkg)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.rpm)

 	(in module salt.modules.yumpkg)

 	file_list_emptydirs() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.fileserver.roots)

 	(in module salt.fileserver.s3fs)

 	
 file_recv

 	conf/master

 	
 file_roots

 	conf/master

 	conf/minion

 	fileinfo() (in module salt.modules.moosefs)

 	fileio() (in module salt.modules.sysbench)

 	
 	filter_by() (in module salt.modules.grains)

 	find() (in module salt.modules.file)

 	(in module salt.wheel.file_roots)

 	(in module salt.wheel.pillar_roots)

 	find_changes() (in module salt.modules.pkg_resource)

 	find_file() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.fileserver.roots)

 	(in module salt.fileserver.s3fs)

 	find_interfaces() (in module salt.modules.bridge)

 	find_job() (in module salt.modules.saltutil)

 	finger() (in module salt.modules.key)

 	(in module salt.wheel.key)

 	fire() (in module salt.modules.event)

 	fire_master() (in module salt.modules.event)

 	flags() (in module salt.states.portage_config)

 	flavor_create() (in module salt.modules.nova)

 	flavor_delete() (in module salt.modules.nova)

 	flavor_list() (in module salt.modules.nova)

 	flush() (in module salt.modules.iptables)

 	(in module salt.modules.mine)

 	force_off() (in module salt.runners.virt)

 	force_reload() (in module salt.modules.debian_service)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	force_reset() (in module salt.modules.rabbitmq)

 	free_slave() (in module salt.modules.mysql)

 	freecpu() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	freemem() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	freeze() (in module salt.modules.lxc)

 	(in module salt.modules.pip)

 	fstab() (in module salt.modules.freebsdjail)

 	(in module salt.modules.mount)

 	full_data() (in module salt.modules.publish)

 	full_import() (in module salt.modules.solr)

 	full_info() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	full_restart() (in module salt.modules.daemontools)

 	(in module salt.modules.upstart)

 	fullversion() (in module salt.modules.apache)

 	(in module salt.modules.dnsmasq)

 	(in module salt.modules.linux_lvm)

 	(in module salt.modules.tomcat)

 	Function arg declaration

 	Function declaration

 	function() (salt.client.Caller method)

G

 	
 	gather_bootstrap_script() (in module salt.modules.config)

 	gemset_copy() (in module salt.modules.rvm)

 	gemset_create() (in module salt.modules.rvm)

 	gemset_delete() (in module salt.modules.rvm)

 	gemset_empty() (in module salt.modules.rvm)

 	gemset_list() (in module salt.modules.rvm)

 	gemset_list_all() (in module salt.modules.rvm)

 	gemset_present() (in module salt.states.rvm)

 	gen_hyper_keys() (in module salt.pillar.libvirt)

 	genrepo() (in module salt.runners.winrepo)

 	gentoo_mirrors_contains() (in module salt.modules.makeconf)

 	get() (in module salt.modules.augeas_cfg)

 	(in module salt.modules.config)

 	(in module salt.modules.darwin_sysctl)

 	(in module salt.modules.freebsd_sysctl)

 	(in module salt.modules.grains)

 	(in module salt.modules.linux_sysctl)

 	(in module salt.modules.mine)

 	(in module salt.modules.netbsd_sysctl)

 	(in module salt.modules.pillar)

 	(in module salt.modules.rvm)

 	(in module salt.modules.s3)

 	(in module salt.modules.smartos_imgadm)

 	get_alias() (in module salt.modules.hosts)

 	get_all() (in module salt.modules.daemontools)

 	(in module salt.modules.debian_service)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.launchctl)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.service)

 	(in module salt.modules.smf)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	get_auth_url() (in module salt.auth.keystone)

 	get_bond() (in module salt.modules.rh_ip)

 	get_cflags() (in module salt.modules.makeconf)

 	get_chost() (in module salt.modules.makeconf)

 	get_config() (in module salt.modules.dnsmasq)

 	get_current_target() (in module salt.modules.eselect)

 	get_cxxflags() (in module salt.modules.makeconf)

 	get_devmm() (in module salt.modules.file)

 	get_diff() (in module salt.modules.file)

 	get_dir() (in module salt.modules.cp)

 	get_disabled() (in module salt.modules.debian_service)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.smf)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	get_disks() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	get_emerge_default_opts() (in module salt.modules.makeconf)

 	get_enabled() (in module salt.modules.debian_service)

 	(in module salt.modules.freebsdjail)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.smf)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	get_features() (in module salt.modules.makeconf)

 	get_file() (in module salt.modules.cp)

 	get_file_str() (in module salt.modules.cp)

 	get_flags_from_package_conf() (in module salt.modules.portage_config)

 	get_fun() (in module salt.modules.ret)

 	(in module salt.returners.mongo_future_return)

 	(in module salt.returners.mongo_return)

 	(in module salt.returners.mysql)

 	(in module salt.returners.postgres)

 	(in module salt.returners.redis_return)

 	(in module salt.returners.sqlite3_return)

 	get_gentoo_mirrors() (in module salt.modules.makeconf)

 	get_gid() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	get_graphics() (in module salt.modules.virt)

 	get_group() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	get_hash() (in module salt.modules.file)

 	get_hwclock() (in module salt.modules.timezone)

 	get_id() (in module salt.modules.parted)

 	get_interface() (in module salt.modules.rh_ip)

 	get_ip() (in module salt.modules.hosts)

 	get_jid() (in module salt.modules.ret)

 	(in module salt.returners.mongo_future_return)

 	(in module salt.returners.mongo_return)

 	(in module salt.returners.mysql)

 	(in module salt.returners.postgres)

 	(in module salt.returners.redis_return)

 	(in module salt.returners.sqlite3_return)

 	get_jids() (in module salt.modules.ret)

 	(in module salt.returners.mongo_future_return)

 	(in module salt.returners.mysql)

 	(in module salt.returners.postgres)

 	(in module salt.returners.redis_return)

 	(in module salt.returners.sqlite3_return)

 	
 	get_known_host() (in module salt.modules.ssh)

 	get_load() (in module salt.returners.mongo_future_return)

 	(in module salt.returners.mysql)

 	(in module salt.returners.postgres)

 	(in module salt.returners.redis_return)

 	(in module salt.returners.sqlite3_return)

 	get_locale() (in module salt.modules.localemod)

 	get_macs() (in module salt.modules.smartos_vmadm)

 	(in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	get_makeopts() (in module salt.modules.makeconf)

 	get_managed() (in module salt.modules.file)

 	get_master_status() (in module salt.modules.mysql)

 	get_minions() (in module salt.modules.ret)

 	(in module salt.returners.mongo_future_return)

 	(in module salt.returners.mysql)

 	(in module salt.returners.postgres)

 	(in module salt.returners.redis_return)

 	(in module salt.returners.sqlite3_return)

 	get_missing_flags() (in module salt.modules.portage_config)

 	get_mode() (in module salt.modules.file)

 	(in module salt.modules.quota)

 	(in module salt.modules.win_file)

 	get_modules() (in module salt.modules.eselect)

 	get_network_settings() (in module salt.modules.rh_ip)

 	get_nics() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	get_offset() (in module salt.modules.timezone)

 	get_opts() (in module salt.modules.test)

 	get_output_volume() (in module salt.modules.osxdesktop)

 	get_pid_list() (in module salt.modules.ps)

 	get_policy() (in module salt.modules.iptables)

 	get_repo() (in module salt.modules.apt)

 	(in module salt.modules.yumpkg)

 	get_repo_data() (in module salt.modules.win_pkg)

 	get_routes() (in module salt.modules.rh_ip)

 	get_rules() (in module salt.modules.iptables)

 	get_running() (in module salt.modules.modjk)

 	get_saved_policy() (in module salt.modules.iptables)

 	get_saved_rules() (in module salt.modules.iptables)

 	get_selections() (in module salt.modules.apt)

 	(in module salt.modules.debconfmod)

 	get_selinux_context() (in module salt.modules.file)

 	get_service_name() (in module salt.modules.win_service)

 	get_site_packages() (in module salt.modules.virtualenv_mod)

 	get_slave_status() (in module salt.modules.mysql)

 	get_sum() (in module salt.modules.file)

 	get_sync() (in module salt.modules.makeconf)

 	get_sys() (in module salt.modules.keyboard)

 	get_target() (in module salt.modules.aliases)

 	get_target_list() (in module salt.modules.eselect)

 	get_template() (in module salt.modules.cp)

 	get_uid() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	get_url() (in module salt.modules.cp)

 	get_user() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	get_var() (in module salt.modules.makeconf)

 	get_x() (in module salt.modules.keyboard)

 	get_xml() (in module salt.modules.virt)

 	get_yaml_loader() (in module salt.renderers.yaml)

 	get_zone() (in module salt.modules.timezone)

 	get_zonecode() (in module salt.modules.timezone)

 	getenforce() (in module salt.modules.selinux)

 	getent() (in module salt.modules.groupadd)

 	(in module salt.modules.pw_group)

 	(in module salt.modules.pw_user)

 	(in module salt.modules.solaris_group)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_groupadd)

 	(in module salt.modules.win_useradd)

 	getfacl() (in module salt.modules.linux_acl)

 	getgoal() (in module salt.modules.moosefs)

 	getsebool() (in module salt.modules.selinux)

 	getsid() (in module salt.modules.win_service)

 	getval() (in module salt.modules.data)

 	getvals() (in module salt.modules.data)

 	gid_to_group() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	glob() (in module salt.modules.match)

 	glsa_check_list() (in module salt.modules.gentoolkitmod)

 	grain() (in module salt.modules.match)

 	grain_pcre() (in module salt.modules.match)

 	Grains

 	grains() (in module salt.runners.cache)

 	grant_add() (in module salt.modules.mysql)

 	grant_exists() (in module salt.modules.mysql)

 	grant_revoke() (in module salt.modules.mysql)

 	group_create() (in module salt.modules.postgres)

 	group_diff() (in module salt.modules.yumpkg)

 	group_info() (in module salt.modules.yumpkg)

 	group_install() (in module salt.modules.yumpkg)

 	group_list() (in module salt.modules.yumpkg)

 	group_remove() (in module salt.modules.postgres)

 	group_to_gid() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	group_update() (in module salt.modules.postgres)

 	gunzip() (in module salt.modules.archive)

 	gzip() (in module salt.modules.archive)

H

 	
 	halt() (in module salt.modules.system)

 	(in module salt.modules.win_system)

 	handle (salt.auth.pam.PamHandle attribute)

 	has_exec() (in module salt.modules.cmdmod)

 	has_flag() (in module salt.modules.portage_config)

 	has_pair() (in module salt.modules.hosts)

 	has_target() (in module salt.modules.aliases)

 	has_use() (in module salt.modules.portage_config)

 	hash_file() (in module salt.modules.cp)

 	
 hash_type

 	conf/master, [1]

 	
 	head() (in module salt.modules.s3)

 	held() (in module salt.states.apt)

 	high() (in module salt.modules.state)

 	highstate() (in module salt.modules.state)

 	host_keys() (in module salt.modules.ssh)

 	hosts_append() (in module salt.modules.dnsutil)

 	hosts_remove() (in module salt.modules.dnsutil)

 	hw_addr() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	hwaddr() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	hyper_info() (in module salt.runners.virt)

I

 	
 	
 id

 	conf/minion

 	ID declaration

 	image_create() (in module salt.modules.glance)

 	image_delete() (in module salt.modules.glance)

 	image_list() (in module salt.modules.glance)

 	(in module salt.modules.nova)

 	image_meta_delete() (in module salt.modules.nova)

 	image_meta_set() (in module salt.modules.nova)

 	image_show() (in module salt.modules.glance)

 	import_image() (in module salt.modules.smartos_imgadm)

 	import_status() (in module salt.modules.solr)

 	in_subnet() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	
 include

 	conf/master

 	conf/minion

 	Include declaration

 	indexes() (in module salt.modules.sqlite3)

 	indices() (in module salt.modules.sqlite3)

 	info() (in module salt.modules.bsd_shadow)

 	(in module salt.modules.cassandra)

 	(in module salt.modules.groupadd)

 	(in module salt.modules.lxc)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.pw_group)

 	(in module salt.modules.pw_user)

 	(in module salt.modules.shadow)

 	(in module salt.modules.solaris_group)

 	(in module salt.modules.solaris_shadow)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.svn)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_groupadd)

 	(in module salt.modules.win_shadow)

 	(in module salt.modules.win_useradd)

 	init() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.modules.git)

 	(in module salt.modules.lxc)

 	(in module salt.modules.qemu_nbd)

 	(in module salt.modules.smartos_vmadm)

 	(in module salt.modules.system)

 	(in module salt.modules.virt)

 	(in module salt.modules.win_system)

 	(in module salt.pillar.git_pillar)

 	(in module salt.runners.virt)

 	inodeusage() (in module salt.modules.disk)

 	insert() (in module salt.modules.iptables)

 	install() (in module salt.modules.alternatives)

 	(in module salt.modules.apt)

 	(in module salt.modules.brew)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.gem)

 	(in module salt.modules.npm)

 	(in module salt.modules.openbsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pecl)

 	(in module salt.modules.pip)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.rbenv)

 	(in module salt.modules.rvm)

 	(in module salt.modules.solarispkg)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	(in module salt.states.alternatives)

 	
 	install_ruby() (in module salt.modules.rbenv)

 	(in module salt.modules.rvm)

 	installed() (in module salt.states.gem)

 	(in module salt.states.npm)

 	(in module salt.states.pecl)

 	(in module salt.states.pip_state)

 	(in module salt.states.pkg)

 	(in module salt.states.rbenv)

 	(in module salt.states.rvm)

 	
 interface

 	conf/master

 	interfaces() (in module salt.modules.bridge)

 	(in module salt.modules.network)

 	(in module salt.modules.win_network)

 	iostat() (in module salt.modules.zpool)

 	ip_addrs() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	ip_addrs6() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	ipaddrs() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	ipaddrs6() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	
 ipc_mode

 	conf/minion

 	ipcidr() (in module salt.modules.match)

 	is_blkdev() (in module salt.modules.file)

 	is_cached() (in module salt.modules.cp)

 	is_chrdev() (in module salt.modules.file)

 	is_enabled() (in module salt.modules.freebsdjail)

 	is_fifo() (in module salt.modules.file)

 	is_fuse_exec() (in module salt.modules.mount)

 	is_hyper() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	is_installed() (in module salt.modules.rbenv)

 	(in module salt.modules.rvm)

 	is_jail() (in module salt.modules.poudriere)

 	is_kvm_hyper() (in module salt.modules.virt)

 	is_loaded() (in module salt.modules.kmod)

 	is_present() (in module salt.modules.portage_config)

 	is_replication_enabled() (in module salt.modules.solr)

 	is_running() (in module salt.modules.saltutil)

 	is_xen_hyper() (in module salt.modules.virt)

 	item() (in module salt.modules.grains)

 	(in module salt.modules.pillar)

 	items() (in module salt.modules.grains)

 	(in module salt.modules.pillar)

J

 	
 	
 job_cache

 	conf/master

K

 	
 	
 keep_jobs

 	conf/master

 	key_regen() (in module salt.runners.manage)

 	key_str() (in module salt.wheel.key)

 	keypair_add() (in module salt.modules.nova)

 	keypair_delete() (in module salt.modules.nova)

 	
 	keypair_list() (in module salt.modules.nova)

 	keys() (in module salt.states.libvirt)

 	keyspaces() (in module salt.modules.cassandra)

 	kill_job() (in module salt.modules.saltutil)

 	kill_pid() (in module salt.modules.ps)

 	kwarg() (in module salt.modules.test)

L

 	
 	latest() (in module salt.states.git)

 	(in module salt.states.hg)

 	(in module salt.states.pkg)

 	(in module salt.states.svn)

 	latest_version() (in module salt.modules.apt)

 	(in module salt.modules.brew)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.openbsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.solarispkg)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	lb_edit() (in module salt.modules.modjk)

 	leaks() (in module salt.modules.tomcat)

 	list() (in module salt.runners.virt)

 	list_() (in module salt.modules.bridge)

 	(in module salt.modules.gem)

 	(in module salt.modules.lxc)

 	(in module salt.modules.match)

 	(in module salt.modules.mdadm)

 	(in module salt.modules.nova)

 	(in module salt.modules.npm)

 	(in module salt.modules.nzbget)

 	(in module salt.modules.pecl)

 	(in module salt.modules.pip)

 	(in module salt.modules.rbenv)

 	(in module salt.modules.rvm)

 	(in module salt.wheel.key)

 	list_active_vms() (in module salt.modules.smartos_vmadm)

 	(in module salt.modules.virt)

 	list_aliases() (in module salt.modules.aliases)

 	list_all() (in module salt.wheel.key)

 	list_avail() (in module salt.modules.localemod)

 	list_available() (in module salt.modules.win_pkg)

 	list_backups() (in module salt.modules.file)

 	list_configured_members() (in module salt.modules.modjk)

 	list_env() (in module salt.wheel.file_roots)

 	(in module salt.wheel.pillar_roots)

 	list_exports() (in module salt.modules.nfs3)

 	list_functions() (in module salt.modules.sys)

 	(in module salt.modules.sysmod)

 	list_groups() (in module salt.modules.pw_user)

 	(in module salt.modules.solaris_user)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_useradd)

 	list_hosts() (in module salt.modules.hosts)

 	list_inactive_vms() (in module salt.modules.smartos_vmadm)

 	(in module salt.modules.virt)

 	list_installed() (in module salt.modules.smartos_imgadm)

 	list_jails() (in module salt.modules.poudriere)

 	list_jobs() (in module salt.runners.jobs)

 	list_local() (in module salt.modules.layman)

 	list_master() (in module salt.modules.cp)

 	list_master_dirs() (in module salt.modules.cp)

 	list_minion() (in module salt.modules.cp)

 	list_modules() (in module salt.modules.sys)

 	(in module salt.modules.sysmod)

 	list_pkgs() (in module salt.modules.apt)

 	(in module salt.modules.brew)

 	(in module salt.modules.dpkg)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.openbsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.rpm)

 	(in module salt.modules.solarispkg)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	list_plugins() (in module salt.modules.munin)

 	list_policies() (in module salt.modules.rabbitmq)

 	list_ports() (in module salt.modules.poudriere)

 	
 	list_queues() (in module salt.modules.rabbitmq)

 	list_queues_vhost() (in module salt.modules.rabbitmq)

 	list_repos() (in module salt.modules.apt)

 	(in module salt.modules.yumpkg)

 	list_roots() (in module salt.wheel.file_roots)

 	(in module salt.wheel.pillar_roots)

 	list_sebool() (in module salt.modules.selinux)

 	list_states() (in module salt.modules.cp)

 	list_tab() (in module salt.modules.cron)

 	list_upgrades() (in module salt.modules.apt)

 	(in module salt.modules.brew)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	list_user_permissions() (in module salt.modules.rabbitmq)

 	list_users() (in module salt.modules.rabbitmq)

 	(in module salt.modules.useradd)

 	(in module salt.modules.win_useradd)

 	list_vhosts() (in module salt.modules.rabbitmq)

 	list_vms() (in module salt.modules.smartos_vmadm)

 	(in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	load() (in module salt.modules.data)

 	(in module salt.modules.freebsdkmod)

 	(in module salt.modules.kmod)

 	loadavg() (in module salt.modules.status)

 	loaddata() (in module salt.modules.djangomod)

 	LoaderError

 	LocalClient (class in salt.client)

 	locate() (in module salt.modules.locate)

 	lock() (in module salt.modules.osxdesktop)

 	
 log_datefmt

 	conf/logging

 	conf/master

 	conf/minion

 	
 log_datefmt_logfile

 	conf/logging

 	conf/master

 	conf/minion

 	
 log_file

 	conf/logging

 	conf/master

 	conf/minion

 	
 log_fmt_console

 	conf/logging

 	conf/master

 	conf/minion

 	
 log_fmt_logfile

 	conf/logging

 	conf/master

 	conf/minion

 	
 log_granular_levels

 	conf/logging

 	conf/master

 	conf/minion

 	
 log_level

 	conf/logging

 	conf/master

 	conf/minion

 	
 log_level_logfile

 	conf/logging

 	conf/master

 	conf/minion

 	lookup_jid() (in module salt.runners.jobs)

 	low() (in module salt.modules.state)

 	(salt.runner.RunnerClient method)

 	ls() (in module salt.modules.augeas_cfg)

 	(in module salt.modules.cron)

 	(in module salt.modules.grains)

 	(in module salt.modules.tomcat)

 	lsmod() (in module salt.modules.freebsdkmod)

 	(in module salt.modules.kmod)

 	lucene_version() (in module salt.modules.solr)

 	lv_absent() (in module salt.states.lvm)

 	lv_present() (in module salt.states.lvm)

 	lvcreate() (in module salt.modules.linux_lvm)

 	lvdisplay() (in module salt.modules.linux_lvm)

 	lvremove() (in module salt.modules.linux_lvm)

M

 	
 	make_image() (in module salt.modules.qemu_img)

 	make_pkgng_aware() (in module salt.modules.poudriere)

 	makedirs() (in module salt.modules.file)

 	makedirs_perms() (in module salt.modules.file)

 	makeopts_contains() (in module salt.modules.makeconf)

 	manage_file() (in module salt.modules.file)

 	manage_mode() (in module salt.modules.config)

 	managed() (in module salt.states.file)

 	(in module salt.states.network)

 	(in module salt.states.pkgrepo)

 	(in module salt.states.virtualenv_mod)

 	master

 	conf/minion

 	master_call() (salt.wheel.Wheel method)

 	
 master_port

 	conf/minion

 	MasterExit

 	match() (in module salt.modules.augeas_cfg)

 	match_index_versions() (in module salt.modules.solr)

 	
 max_open_files

 	conf/master

 	meminfo() (in module salt.modules.status)

 	memory() (in module salt.modules.sysbench)

 	merge() (in module salt.modules.config)

 	(in module salt.modules.git)

 	migrate() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	(in module salt.runners.virt)

 	migrate_non_shared() (in module salt.modules.virt)

 	migrate_non_shared_inc() (in module salt.modules.virt)

 	minion

 	minion id

 	
 minion_data_cache

 	conf/master

 	MinionError

 	missing() (in module salt.states.file)

 	mkdir() (in module salt.modules.file)

 	mkfs() (in module salt.modules.extfs)

 	(in module salt.modules.parted)

 	
 	mklabel() (in module salt.modules.parted)

 	mknod() (in module salt.modules.file)

 	(in module salt.states.file)

 	mknod_blkdev() (in module salt.modules.file)

 	mknod_chrdev() (in module salt.modules.file)

 	mknod_fifo() (in module salt.modules.file)

 	mkpart() (in module salt.modules.parted)

 	mkpartfs() (in module salt.modules.parted)

 	mnt_image() (in module salt.modules.img)

 	mod_list() (in module salt.modules.kmod)

 	mod_repo() (in module salt.modules.apt)

 	(in module salt.modules.yumpkg)

 	mod_watch() (in module salt.states.cmd)

 	(in module salt.states.module)

 	(in module salt.states.service)

 	(in module salt.states.supervisord)

 	(in module salt.states.tomcat)

 	mode() (in module salt.states.quota)

 	(in module salt.states.selinux)

 	modfacl() (in module salt.modules.linux_acl)

 	modify() (in module salt.modules.sqlite3)

 	Module reference

 	Module sync

 	
 module_dirs

 	conf/minion

 	modules() (in module salt.modules.apache)

 	monitor() (in module salt.modules.monit)

 	mount() (in module salt.modules.guestfs)

 	(in module salt.modules.mount)

 	(in module salt.modules.qemu_nbd)

 	mount_image() (in module salt.modules.img)

 	mounted() (in module salt.states.mount)

 	mounts() (in module salt.modules.moosefs)

 	msg (salt.auth.pam.PamMessage attribute)

 	msg_style (salt.auth.pam.PamMessage attribute)

 	
 multiprocessing

 	conf/minion

 	mutex() (in module salt.modules.sysbench)

 	MX() (in module salt.modules.dig)

 	(in module salt.modules.dnsutil)

N

 	
 	Name declaration

 	name() (in module salt.modules.parted)

 	Names declaration

 	NestDisplay (class in salt.output.nested)

 	(class in salt.output.no_return)

 	netdev() (in module salt.modules.status)

 	netstat() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	netstats() (in module salt.modules.cassandra)

 	(in module salt.modules.status)

 	network_io_counters() (in module salt.modules.ps)

 	next_hyper() (in module salt.runners.virt)

 	
 	Node group

 	node_info() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	
 nodegroups

 	conf/master

 	noop() (in module salt.modules.puppet)

 	noscan() (in module salt.modules.bluez)

 	not_loaded() (in module salt.modules.test)

 	NS() (in module salt.modules.dig)

 	(in module salt.modules.dnsutil)

 	nslookup() (in module salt.modules.win_network)

 	num_cpus() (in module salt.modules.ps)

O

 	
 	off() (in module salt.modules.quota)

 	on() (in module salt.modules.quota)

 	
 open_mode

 	conf/master

 	conf/minion

 	optimize() (in module salt.modules.solr)

 	option() (in module salt.modules.config)

 	opts_pkg() (in module salt.modules.test)

 	
 order_masters

 	conf/master

 	output() (in module salt.output.grains)

 	(in module salt.output.highstate)

 	(in module salt.output.json_out)

 	(in module salt.output.key)

 	(in module salt.output.nested)

 	(in module salt.output.no_out)

 	(in module salt.output.no_return)

 	(in module salt.output.overstatestage)

 	(in module salt.output.pprint_out)

 	(in module salt.output.raw)

 	(in module salt.output.txt)

 	(in module salt.output.virt_query)

 	(in module salt.output.yaml_out)

 	
 	outputter() (in module salt.modules.test)

 	over() (in module salt.runners.state)

 	owner_to() (in module salt.modules.postgres)

P

 	
 	pack_pkgs() (in module salt.modules.pkg_resource)

 	pack_sources() (in module salt.modules.pkg_resource)

 	pair() (in module salt.modules.bluez)

 	PamConv (class in salt.auth.pam)

 	PamHandle (class in salt.auth.pam)

 	PamMessage (class in salt.auth.pam)

 	PamResponse (class in salt.auth.pam)

 	parse_config() (in module salt.modules.pkgng)

 	(in module salt.modules.poudriere)

 	parse_hosts() (in module salt.modules.dnsutil)

 	parse_targets() (in module salt.modules.pkg_resource)

 	parse_zone() (in module salt.modules.dnsutil)

 	part_list() (in module salt.modules.parted)

 	passwd() (in module salt.modules.tomcat)

 	patch() (in module salt.modules.file)

 	(in module salt.states.file)

 	pause() (in module salt.modules.nzbget)

 	(in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	(in module salt.runners.virt)

 	pcre() (in module salt.modules.match)

 	
 peer

 	conf/master

 	
 peer_run

 	conf/master

 	persist() (in module salt.modules.darwin_sysctl)

 	(in module salt.modules.freebsd_sysctl)

 	(in module salt.modules.linux_sysctl)

 	(in module salt.modules.netbsd_sysctl)

 	pgrep() (in module salt.modules.ps)

 	physical_memory_buffers() (in module salt.modules.ps)

 	physical_memory_usage() (in module salt.modules.ps)

 	pid() (in module salt.modules.status)

 	
 pidfile

 	conf/master

 	conf/minion

 	pillar() (in module salt.modules.match)

 	(in module salt.runners.cache)

 	
 pillar_roots

 	conf/master

 	conf/minion

 	ping() (in module salt.modules.network)

 	(in module salt.modules.solr)

 	(in module salt.modules.sysbench)

 	(in module salt.modules.test)

 	(in module salt.modules.win_network)

 	pkg() (in module salt.modules.state)

 	PkgParseError

 	
 pki_dir

 	conf/master

 	conf/minion

 	pkill() (in module salt.modules.ps)

 	policy_exists() (in module salt.modules.rabbitmq)

 	porttree_matches() (in module salt.modules.ebuild)

 	power() (in module salt.modules.bluez)

 	poweroff() (in module salt.modules.system)

 	(in module salt.modules.win_system)

 	present() (in module salt.states.alias)

 	(in module salt.states.cron)

 	(in module salt.states.git)

 	(in module salt.states.grains)

 	(in module salt.states.group)

 	(in module salt.states.host)

 	(in module salt.states.kmod)

 	(in module salt.states.layman)

 	(in module salt.states.makeconf)

 	(in module salt.states.mdadm)

 	(in module salt.states.mongodb_user)

 	(in module salt.states.mysql_database)

 	(in module salt.states.mysql_grants)

 	(in module salt.states.mysql_user)

 	(in module salt.states.postgres_database)

 	(in module salt.states.postgres_group)

 	(in module salt.states.postgres_user)

 	(in module salt.states.rabbitmq_user)

 	(in module salt.states.rabbitmq_vhost)

 	(in module salt.states.ssh_auth)

 	(in module salt.states.ssh_known_hosts)

 	(in module salt.states.sysctl)

 	(in module salt.states.user)

 	
 	print_job() (in module salt.runners.jobs)

 	probe() (in module salt.modules.parted)

 	processlist() (in module salt.modules.mysql)

 	procs() (in module salt.modules.status)

 	(in module salt.modules.win_status)

 	provider() (in module salt.modules.test)

 	
 providers

 	conf/minion

 	providers() (in module salt.modules.test)

 	psed() (in module salt.modules.file)

 	psql_query() (in module salt.modules.postgres)

 	publish() (in module salt.modules.publish)

 	
 publish_port

 	conf/master

 	pull() (in module salt.modules.git)

 	(in module salt.modules.hg)

 	purge() (in module salt.modules.apt)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.openbsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.solarispkg)

 	(in module salt.modules.virt)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	(in module salt.runners.virt)

 	purged() (in module salt.states.pkg)

 	push() (in module salt.modules.cp)

 	(in module salt.modules.git)

 	put() (in module salt.modules.s3)

 	pv_present() (in module salt.states.lvm)

 	pvcreate() (in module salt.modules.linux_lvm)

 	pvdisplay() (in module salt.modules.linux_lvm)

Q

 	
 	query() (in module salt.modules.mysql)

 	(in module salt.runners.search)

 	(in module salt.runners.virt)

R

 	
 	rand_sleep() (in module salt.modules.test)

 	
 random_reauth_delay

 	conf/minion

 	rar() (in module salt.modules.archive)

 	raw() (in module salt.modules.pillar)

 	raw_cron() (in module salt.modules.cron)

 	read() (in module salt.wheel.file_roots)

 	(in module salt.wheel.pillar_roots)

 	read_file() (in module salt.modules.pam)

 	read_key() (in module salt.modules.reg)

 	rebase() (in module salt.modules.git)

 	reboot() (in module salt.modules.smartos_vmadm)

 	(in module salt.modules.system)

 	(in module salt.modules.virt)

 	(in module salt.modules.win_system)

 	(in module salt.modules.xapi)

 	recover_all() (in module salt.modules.modjk)

 	recurse() (in module salt.states.file)

 	recv() (in module salt.modules.cp)

 	recv_known_host() (in module salt.modules.ssh)

 	refresh_db() (in module salt.modules.apt)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	refresh_modules() (in module salt.modules.saltutil)

 	refresh_pillar() (in module salt.modules.saltutil)

 	regen_keys() (in module salt.modules.saltutil)

 	Registry (class in salt.modules.reg)

 	rehash() (in module salt.modules.freebsdpkg)

 	(in module salt.modules.pkgin)

 	reinstall_ruby() (in module salt.modules.rvm)

 	reject() (in module salt.wheel.key)

 	reload_() (in module salt.modules.daemontools)

 	(in module salt.modules.debian_service)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.service)

 	(in module salt.modules.smf)

 	(in module salt.modules.systemd)

 	(in module salt.modules.tomcat)

 	(in module salt.modules.upstart)

 	reload_core() (in module salt.modules.solr)

 	reload_import_config() (in module salt.modules.solr)

 	reload_modules() (in module salt.modules.sys)

 	(in module salt.modules.sysmod)

 	remote_get() (in module salt.modules.git)

 	remote_set() (in module salt.modules.git)

 	remotes() (in module salt.modules.git)

 	remount() (in module salt.modules.mount)

 	remove() (in module salt.modules.alternatives)

 	(in module salt.modules.apt)

 	(in module salt.modules.augeas_cfg)

 	(in module salt.modules.brew)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.file)

 	(in module salt.modules.freebsdkmod)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.grains)

 	(in module salt.modules.kmod)

 	(in module salt.modules.openbsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.solarispkg)

 	(in module salt.modules.supervisord)

 	(in module salt.modules.svn)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	(in module salt.states.alternatives)

 	remove_var() (in module salt.modules.makeconf)

 	removed() (in module salt.states.gem)

 	(in module salt.states.npm)

 	(in module salt.states.pecl)

 	(in module salt.states.pip_state)

 	(in module salt.states.pkg)

 	removegroup() (in module salt.modules.win_useradd)

 	rename() (in module salt.modules.file)

 	(in module salt.states.file)

 	render() (in module salt.renderers.jinja)

 	(in module salt.renderers.json)

 	(in module salt.renderers.mako)

 	(in module salt.renderers.py)

 	(in module salt.renderers.pydsl)

 	(in module salt.renderers.wempy)

 	(in module salt.renderers.yaml)

 	
 render_dirs

 	conf/minion

 	
 renderer

 	conf/master

 	conf/minion

 	
 	replace() (in module salt.modules.file)

 	(in module salt.modules.zpool)

 	(in module salt.states.file)

 	replication_details() (in module salt.modules.solr)

 	report() (in module salt.modules.quota)

 	Requisite declaration

 	Requisite reference

 	reread() (in module salt.modules.supervisord)

 	rescue() (in module salt.modules.parted)

 	reset() (in module salt.modules.git)

 	(in module salt.modules.rabbitmq)

 	(in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	(in module salt.runners.virt)

 	reset_stats() (in module salt.modules.modjk)

 	resize() (in module salt.modules.parted)

 	resp (salt.auth.pam.PamResponse attribute)

 	resp_retcode (salt.auth.pam.PamResponse attribute)

 	restart() (in module salt.modules.daemontools)

 	(in module salt.modules.debian_service)

 	(in module salt.modules.freebsdjail)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.launchctl)

 	(in module salt.modules.monit)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.openbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.service)

 	(in module salt.modules.smf)

 	(in module salt.modules.supervisord)

 	(in module salt.modules.systemd)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	restore() (in module salt.modules.pkgng)

 	restore_backup() (in module salt.modules.file)

 	restorecon() (in module salt.modules.file)

 	resume() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	(in module salt.runners.virt)

 	
 ret_port

 	conf/master

 	retcode() (in module salt.modules.cmdmod)

 	(in module salt.modules.test)

 	returner() (in module salt.returners.carbon_return)

 	(in module salt.returners.cassandra_return)

 	(in module salt.returners.local)

 	(in module salt.returners.mongo_future_return)

 	(in module salt.returners.mongo_return)

 	(in module salt.returners.mysql)

 	(in module salt.returners.postgres)

 	(in module salt.returners.redis_return)

 	(in module salt.returners.sentry_return)

 	(in module salt.returners.smtp_return)

 	(in module salt.returners.sqlite3_return)

 	(in module salt.returners.syslog_return)

 	
 returner_dirs

 	conf/minion

 	revdep_rebuild() (in module salt.modules.gentoolkitmod)

 	revision() (in module salt.modules.git)

 	(in module salt.modules.hg)

 	revoke_auth() (in module salt.modules.saltutil)

 	ring() (in module salt.modules.cassandra)

 	rm() (in module salt.modules.cron)

 	(in module salt.modules.git)

 	(in module salt.modules.parted)

 	rm_alias() (in module salt.modules.aliases)

 	rm_auth_key() (in module salt.modules.ssh)

 	rm_env() (in module salt.modules.cron)

 	rm_fstab() (in module salt.modules.mount)

 	rm_host() (in module salt.modules.hosts)

 	rm_job() (in module salt.modules.cron)

 	rm_known_host() (in module salt.modules.ssh)

 	role_create() (in module salt.modules.keystone)

 	role_delete() (in module salt.modules.keystone)

 	role_get() (in module salt.modules.keystone)

 	role_list() (in module salt.modules.keystone)

 	
 root_dir

 	conf/master

 	conf/minion

 	routes() (in module salt.states.network)

 	rubygems() (in module salt.modules.rvm)

 	run() (in module salt.modules.cmdmod)

 	(in module salt.modules.munin)

 	(in module salt.modules.puppet)

 	(in module salt.states.cmd)

 	(in module salt.states.module)

 	run_all() (in module salt.modules.cmdmod)

 	(in module salt.modules.munin)

 	run_stderr() (in module salt.modules.cmdmod)

 	run_stdout() (in module salt.modules.cmdmod)

 	runner() (in module salt.modules.publish)

 	(in module salt.runners.doc)

 	
 runner_dirs

 	conf/master

 	RunnerClient (class in salt.runner)

 	running() (in module salt.modules.saltutil)

 	(in module salt.modules.state)

 	(in module salt.states.service)

 	(in module salt.states.supervisord)

S

 	
 	
 salt command line option

 	--args-separator=ARGS_SEPARATOR

 	--async

 	--force-color, [1]

 	--grain-pcre, [1]

 	--log-file-level=LOG_LEVEL_LOGFILE, [1]

 	--log-file=LOG_FILE, [1]

 	--no-color, [1]

 	--out, [1]

 	--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE, [1]

 	--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT, [1]

 	--return=RETURNER

 	--state-output=STATE_OUTPUT

 	--subset=SUBSET

 	--version, [1]

 	--versions-report, [1]

 	-C, --compound

 	-E, --pcre, [1]

 	-G, --grain, [1]

 	-I, --pillar

 	-L, --list, [1]

 	-N, --nodegroup, [1]

 	-R, --range, [1]

 	-S, --ipcidr

 	-T, --make-token

 	-X, --exsel

 	-a EAUTH, --auth=EAUTH

 	-b BATCH, --batch-size=BATCH

 	-c CONFIG_DIR, --config-dir=CONFIG_dir, [1]

 	-d, --doc, --documentation

 	-h, --help, [1]

 	-l LOG_LEVEL, --log-level=LOG_LEVEL, [1]

 	-s, --static

 	-t TIMEOUT, --timeout=TIMEOUT

 	-v VERBOSE, --verbose

 	
 salt-call command line option

 	--force-color

 	--local

 	--log-file-level=LOG_LEVEL_LOGFILE

 	--log-file=LOG_FILE

 	--master=MASTER

 	--no-color

 	--out

 	--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

 	--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

 	--return RETURNER

 	--version

 	--versions-report

 	-c CONFIG_DIR, --config-dir=CONFIG_dir

 	-d, --doc, --documentation

 	-g, --grains

 	-h, --help

 	-l LOG_LEVEL, --log-level=LOG_LEVEL

 	-m MODULE_DIRS, --module-dirs=MODULE_DIRS

 	
 salt-cp command line option

 	--grain-pcre

 	--log-file-level=LOG_LEVEL_LOGFILE

 	--log-file=LOG_FILE

 	--version

 	--versions-report

 	-E, --pcre

 	-G, --grain

 	-L, --list

 	-N, --nodegroup

 	-R, --range

 	-c CONFIG_DIR, --config-dir=CONFIG_dir

 	-h, --help

 	-l LOG_LEVEL, --log-level=LOG_LEVEL

 	-t TIMEOUT, --timeout=TIMEOUT

 	
 salt-key command line option

 	--force-color

 	--gen-keys-dir=GEN_KEYS_DIR

 	--gen-keys=GEN_KEYS

 	--keysize=KEYSIZE

 	--log-file-level=LOG_LEVEL_LOGFILE

 	--log-file=LOG_FILE

 	--no-color

 	--out

 	--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

 	--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

 	--version

 	--versions-report

 	-A, --accept-all

 	-D, --delete-all

 	-F, --finger-all

 	-L, --list-all

 	-P, --print-all

 	-R, --reject-all

 	-a ACCEPT, --accept=ACCEPT

 	-c CONFIG_DIR, --config-dir=CONFIG_dir

 	-d DELETE, --delete=DELETE

 	-f FINGER, --finger=FINGER

 	-h, --help

 	-l ARG, --list=ARG

 	-p PRINT, --print=PRINT

 	-q, --quiet

 	-r REJECT, --reject=REJECT

 	-y, --yes

 	
 salt-master command line option

 	--log-file-level=LOG_LEVEL_LOGFILE

 	--log-file=LOG_FILE

 	--pid-file PIDFILE

 	--version

 	--versions-report

 	-c CONFIG_DIR, --config-dir=CONFIG_dir

 	-d, --daemon

 	-h, --help

 	-l LOG_LEVEL, --log-level=LOG_LEVEL

 	-u USER, --user=USER

 	
 salt-minion command line option

 	--log-file-level=LOG_LEVEL_LOGFILE

 	--log-file=LOG_FILE

 	--pid-file PIDFILE

 	--version

 	--versions-report

 	-c CONFIG_DIR, --config-dir=CONFIG_dir

 	-d, --daemon

 	-h, --help

 	-l LOG_LEVEL, --log-level=LOG_LEVEL

 	-u USER, --user=USER

 	
 salt-run command line option

 	--log-file-level=LOG_LEVEL_LOGFILE

 	--log-file=LOG_FILE

 	--version

 	--versions-report

 	-c CONFIG_DIR, --config-dir=CONFIG_dir

 	-d, --doc, --documentation

 	-h, --help

 	-l LOG_LEVEL, --log-level=LOG_LEVEL

 	-t TIMEOUT, --timeout=TIMEOUT

 	
 salt-syndic command line option

 	--log-file-level=LOG_LEVEL_LOGFILE

 	--log-file=LOG_FILE

 	--pid-file PIDFILE

 	--version

 	--versions-report

 	-c CONFIG_DIR, --config-dir=CONFIG_dir

 	-d, --daemon

 	-h, --help

 	-l LOG_LEVEL, --log-level=LOG_LEVEL

 	-u USER, --user=USER

 	salt.auth.keystone (module)

 	salt.auth.ldap (module)

 	salt.auth.pam (module)

 	salt.auth.stormpath_mod (module)

 	salt.exceptions (module)

 	salt.fileserver.gitfs (module)

 	salt.fileserver.hgfs (module)

 	salt.fileserver.roots (module)

 	salt.fileserver.s3fs (module)

 	salt.log.handlers.logstash_mod (module)

 	salt.log.handlers.sentry_mod (module)

 	salt.modules.aliases (module)

 	salt.modules.alternatives (module)

 	salt.modules.apache (module)

 	salt.modules.apt (module)

 	salt.modules.archive (module)

 	salt.modules.at (module)

 	salt.modules.augeas_cfg (module)

 	salt.modules.bluez (module)

 	salt.modules.brew (module)

 	salt.modules.bridge (module)

 	salt.modules.bsd_shadow (module)

 	salt.modules.cassandra (module)

 	salt.modules.cmdmod (module)

 	salt.modules.config (module)

 	salt.modules.cp (module)

 	salt.modules.cron (module)

 	salt.modules.daemontools (module)

 	salt.modules.darwin_sysctl (module)

 	salt.modules.data (module)

 	salt.modules.ddns (module)

 	salt.modules.debconfmod (module)

 	salt.modules.debian_service (module)

 	salt.modules.dig (module)

 	salt.modules.disk (module)

 	salt.modules.djangomod (module)

 	salt.modules.dnsmasq (module)

 	salt.modules.dnsutil (module)

 	salt.modules.dpkg (module)

 	salt.modules.ebuild (module)

 	salt.modules.eix (module)

 	salt.modules.eselect (module)

 	salt.modules.event (module)

 	salt.modules.extfs (module)

 	salt.modules.file (module)

 	salt.modules.freebsd_sysctl (module)

 	salt.modules.freebsdjail (module)

 	salt.modules.freebsdkmod (module)

 	salt.modules.freebsdpkg (module)

 	salt.modules.freebsdservice (module)

 	salt.modules.gem (module)

 	salt.modules.gentoo_service (module)

 	salt.modules.gentoolkitmod (module)

 	salt.modules.git (module)

 	salt.modules.glance (module)

 	salt.modules.grains (module)

 	salt.modules.groupadd (module)

 	salt.modules.grub_legacy (module)

 	salt.modules.guestfs (module)

 	salt.modules.hg (module)

 	salt.modules.hosts (module)

 	salt.modules.img (module)

 	salt.modules.iptables (module)

 	salt.modules.key (module)

 	salt.modules.keyboard (module)

 	salt.modules.keystone (module)

 	salt.modules.kmod (module)

 	salt.modules.launchctl (module)

 	salt.modules.layman (module)

 	salt.modules.ldapmod (module)

 	salt.modules.linux_acl (module)

 	salt.modules.linux_lvm (module)

 	salt.modules.linux_sysctl (module)

 	salt.modules.localemod (module)

 	salt.modules.locate (module)

 	salt.modules.logrotate (module)

 	salt.modules.lxc (module)

 	salt.modules.makeconf (module)

 	salt.modules.match (module)

 	salt.modules.mdadm (module)

 	salt.modules.mine (module)

 	salt.modules.modjk (module)

 	salt.modules.mongodb (module)

 	salt.modules.monit (module)

 	salt.modules.moosefs (module)

 	salt.modules.mount (module)

 	salt.modules.munin (module)

 	salt.modules.mysql (module)

 	salt.modules.netbsd_sysctl (module)

 	salt.modules.netbsdservice (module)

 	salt.modules.network (module)

 	salt.modules.nfs3 (module)

 	salt.modules.nginx (module)

 	salt.modules.nova (module)

 	salt.modules.npm (module)

 	salt.modules.nzbget (module)

 	salt.modules.openbsdpkg (module)

 	salt.modules.openbsdservice (module)

 	salt.modules.osxdesktop (module)

 	salt.modules.pacman (module)

 	salt.modules.pam (module)

 	salt.modules.parted (module)

 	salt.modules.pecl (module)

 	salt.modules.pillar (module)

 	salt.modules.pip (module)

 	salt.modules.pkg (module)

 	salt.modules.pkg_resource (module)

 	salt.modules.pkgin (module)

 	salt.modules.pkgng (module)

 	salt.modules.pkgutil (module)

 	salt.modules.portage_config (module)

 	salt.modules.postgres (module)

 	salt.modules.poudriere (module)

 	salt.modules.ps (module)

 	salt.modules.publish (module)

 	salt.modules.puppet (module)

 	salt.modules.pw_group (module)

 	salt.modules.pw_user (module)

 	salt.modules.qemu_img (module)

 	salt.modules.qemu_nbd (module)

 	salt.modules.quota (module)

 	salt.modules.rabbitmq (module)

 	salt.modules.rbenv (module)

 	salt.modules.reg (module)

 	salt.modules.ret (module)

 	salt.modules.rh_ip (module)

 	salt.modules.rh_service (module)

 	salt.modules.rpm (module)

 	salt.modules.rvm (module)

 	salt.modules.s3 (module)

 	salt.modules.saltutil (module)

 	salt.modules.seed (module)

 	salt.modules.selinux (module)

 	salt.modules.service (module)

 	salt.modules.shadow (module)

 	salt.modules.smartos_imgadm (module)

 	salt.modules.smartos_vmadm (module)

 	salt.modules.smf (module)

 	salt.modules.solaris_group (module)

 	salt.modules.solaris_shadow (module)

 	salt.modules.solaris_user (module)

 	salt.modules.solarispkg (module)

 	salt.modules.solr (module)

 	salt.modules.sqlite3 (module)

 	salt.modules.ssh (module)

 	salt.modules.state (module)

 	salt.modules.status (module)

 	salt.modules.supervisord (module)

 	salt.modules.svn (module)

 	salt.modules.sys (module)

 	salt.modules.sysbench (module)

 	salt.modules.sysmod (module)

 	salt.modules.system (module)

 	salt.modules.systemd (module)

 	salt.modules.test (module)

 	salt.modules.timezone (module)

 	salt.modules.tls (module)

 	salt.modules.tomcat (module)

 	salt.modules.upstart (module)

 	salt.modules.useradd (module)

 	salt.modules.virt (module)

 	salt.modules.virtualenv_mod (module)

 	salt.modules.win_disk (module)

 	salt.modules.win_file (module)

 	salt.modules.win_groupadd (module)

 	salt.modules.win_network (module)

 	salt.modules.win_pkg (module)

 	salt.modules.win_service (module)

 	salt.modules.win_shadow (module)

 	salt.modules.win_status (module)

 	salt.modules.win_system (module)

 	salt.modules.win_useradd (module)

 	salt.modules.xapi (module)

 	salt.modules.yumpkg (module)

 	salt.modules.yumpkg5 (module)

 	salt.modules.zfs (module)

 	salt.modules.zpool (module)

 	salt.modules.zypper (module)

 	salt.output.grains (module)

 	salt.output.highstate (module)

 	salt.output.json_out (module)

 	salt.output.key (module)

 	salt.output.nested (module)

 	salt.output.no_out (module)

 	salt.output.no_return (module)

 	salt.output.overstatestage (module)

 	salt.output.pprint_out (module)

 	salt.output.raw (module)

 	salt.output.txt (module)

 	salt.output.virt_query (module)

 	salt.output.yaml_out (module)

 	salt.pillar.cmd_json (module)

 	salt.pillar.cmd_yaml (module)

 	salt.pillar.cobbler (module)

 	salt.pillar.django_orm (module)

 	salt.pillar.git_pillar (module)

 	salt.pillar.hiera (module)

 	salt.pillar.libvirt (module)

 	salt.pillar.mongo (module)

 	salt.pillar.pillar_ldap (module)

 	salt.pillar.puppet (module)

 	salt.pillar.reclass_adapter (module)

 	salt.renderers.jinja (module)

 	salt.renderers.json (module)

 	salt.renderers.mako (module)

 	salt.renderers.py (module)

 	salt.renderers.pydsl (module)

 	salt.renderers.stateconf (module)

 	salt.renderers.wempy (module)

 	salt.renderers.yaml (module)

 	salt.returners.carbon_return (module)

 	salt.returners.cassandra_return (module)

 	salt.returners.local (module)

 	salt.returners.mongo_future_return (module)

 	salt.returners.mongo_return (module)

 	salt.returners.mysql (module)

 	salt.returners.postgres (module)

 	salt.returners.redis_return (module)

 	salt.returners.sentry_return (module)

 	salt.returners.smtp_return (module)

 	salt.returners.sqlite3_return (module)

 	salt.returners.syslog_return (module)

 	salt.runners.cache (module)

 	salt.runners.doc (module)

 	salt.runners.fileserver (module)

 	salt.runners.jobs (module)

 	salt.runners.launchd (module)

 	salt.runners.manage (module)

 	
 	salt.runners.network (module)

 	salt.runners.search (module)

 	salt.runners.state (module)

 	salt.runners.virt (module)

 	salt.runners.winrepo (module)

 	salt.states.alias (module)

 	salt.states.alternatives (module)

 	salt.states.apt (module)

 	salt.states.augeas (module)

 	salt.states.cmd (module)

 	salt.states.cron (module)

 	salt.states.debconfmod (module)

 	salt.states.disk (module)

 	salt.states.eselect (module)

 	salt.states.file (module)

 	salt.states.gem (module)

 	salt.states.git (module)

 	salt.states.grains (module)

 	salt.states.group (module)

 	salt.states.hg (module)

 	salt.states.host (module)

 	salt.states.iptables (module)

 	salt.states.keyboard (module)

 	salt.states.kmod (module)

 	salt.states.layman (module)

 	salt.states.libvirt (module)

 	salt.states.locale (module)

 	salt.states.lvm (module)

 	salt.states.makeconf (module)

 	salt.states.mdadm (module)

 	salt.states.modjk_worker (module)

 	salt.states.module (module)

 	salt.states.mongodb_database (module)

 	salt.states.mongodb_user (module)

 	salt.states.mount (module)

 	salt.states.mysql_database (module)

 	salt.states.mysql_grants (module)

 	salt.states.mysql_user (module)

 	salt.states.network (module)

 	salt.states.npm (module)

 	salt.states.pecl (module)

 	salt.states.pip_state (module)

 	salt.states.pkg (module)

 	salt.states.pkgng (module)

 	salt.states.pkgrepo (module)

 	salt.states.portage_config (module)

 	salt.states.postgres_database (module)

 	salt.states.postgres_group (module)

 	salt.states.postgres_user (module)

 	salt.states.quota (module)

 	salt.states.rabbitmq_user (module)

 	salt.states.rabbitmq_vhost (module)

 	salt.states.rbenv (module)

 	salt.states.rvm (module)

 	salt.states.selinux (module)

 	salt.states.service (module)

 	salt.states.ssh_auth (module)

 	salt.states.ssh_known_hosts (module)

 	salt.states.stateconf (module)

 	salt.states.supervisord (module)

 	salt.states.svn (module)

 	salt.states.sysctl (module)

 	salt.states.timezone (module)

 	salt.states.tomcat (module)

 	salt.states.user (module)

 	salt.states.virtualenv_mod (module)

 	salt.tops.cobbler (module)

 	salt.tops.ext_nodes (module)

 	salt.tops.mongo (module)

 	salt.tops.reclass_adapter (module)

 	salt.wheel.config (module)

 	salt.wheel.file_roots (module)

 	salt.wheel.key (module)

 	salt.wheel.pillar_roots (module)

 	SaltClientError

 	SaltException

 	SaltInvocationError

 	SaltMasterError

 	SaltRenderError

 	SaltReqTimeoutError

 	SaltSystemExit

 	save() (in module salt.modules.iptables)

 	save_load() (in module salt.returners.mongo_future_return)

 	(in module salt.returners.mysql)

 	(in module salt.returners.postgres)

 	(in module salt.returners.redis_return)

 	(in module salt.returners.sqlite3_return)

 	say() (in module salt.modules.osxdesktop)

 	scan() (in module salt.modules.bluez)

 	screensaver() (in module salt.modules.osxdesktop)

 	script() (in module salt.modules.cmdmod)

 	(in module salt.states.cmd)

 	script_retcode() (in module salt.modules.cmdmod)

 	scrub() (in module salt.modules.zpool)

 	search() (in module salt.modules.file)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.ldapmod)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgng)

 	secgroup_create() (in module salt.modules.nova)

 	secgroup_delete() (in module salt.modules.nova)

 	secgroup_list() (in module salt.modules.nova)

 	sed() (in module salt.modules.file)

 	(in module salt.states.file)

 	sed_contains() (in module salt.modules.file)

 	seed_non_shared_migrate() (in module salt.modules.virt)

 	selinux_fs_path() (in module salt.modules.selinux)

 	send() (in module salt.modules.mine)

 	serialize() (in module salt.states.file)

 	serve_file() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.fileserver.roots)

 	(in module salt.fileserver.s3fs)

 	server_list() (in module salt.modules.nova)

 	server_show() (in module salt.modules.nova)

 	server_status() (in module salt.modules.apache)

 	serverinfo() (in module salt.modules.tomcat)

 	servermods() (in module salt.modules.apache)

 	serverversion() (in module salt.modules.nzbget)

 	service_create() (in module salt.modules.keystone)

 	service_delete() (in module salt.modules.keystone)

 	service_get() (in module salt.modules.keystone)

 	service_list() (in module salt.modules.keystone)

 	sessions() (in module salt.modules.tomcat)

 	set() (in module salt.states.debconfmod)

 	(in module salt.states.stateconf)

 	set_() (in module salt.modules.alternatives)

 	(in module salt.modules.debconfmod)

 	(in module salt.modules.logrotate)

 	(in module salt.modules.parted)

 	(in module salt.modules.quota)

 	(in module salt.states.alternatives)

 	(in module salt.states.eselect)

 	set_auth_key() (in module salt.modules.ssh)

 	set_auth_key_from_file() (in module salt.modules.ssh)

 	set_autostart() (in module salt.modules.virt)

 	set_cflags() (in module salt.modules.makeconf)

 	set_chost() (in module salt.modules.makeconf)

 	set_config() (in module salt.modules.dnsmasq)

 	set_cxxflags() (in module salt.modules.makeconf)

 	set_date() (in module salt.modules.shadow)

 	set_default() (in module salt.modules.rvm)

 	set_emerge_default_opts() (in module salt.modules.makeconf)

 	set_env() (in module salt.modules.cron)

 	set_file() (in module salt.modules.debconfmod)

 	(in module salt.states.debconfmod)

 	set_fstab() (in module salt.modules.mount)

 	set_gentoo_mirrors() (in module salt.modules.makeconf)

 	set_host() (in module salt.modules.hosts)

 	set_hwclock() (in module salt.modules.timezone)

 	set_id() (in module salt.modules.parted)

 	set_inactdays() (in module salt.modules.shadow)

 	set_is_polling() (in module salt.modules.solr)

 	set_job() (in module salt.modules.cron)

 	set_key() (in module salt.modules.reg)

 	set_known_host() (in module salt.modules.ssh)

 	set_locale() (in module salt.modules.localemod)

 	set_makeopts() (in module salt.modules.makeconf)

 	set_maxdays() (in module salt.modules.shadow)

 	(in module salt.modules.solaris_shadow)

 	set_mindays() (in module salt.modules.shadow)

 	(in module salt.modules.solaris_shadow)

 	set_mode() (in module salt.modules.file)

 	set_output_volume() (in module salt.modules.osxdesktop)

 	set_password() (in module salt.modules.bsd_shadow)

 	(in module salt.modules.shadow)

 	(in module salt.modules.solaris_shadow)

 	(in module salt.modules.win_shadow)

 	set_permissions() (in module salt.modules.rabbitmq)

 	set_policy() (in module salt.modules.iptables)

 	(in module salt.modules.rabbitmq)

 	set_replication_enabled() (in module salt.modules.solr)

 	set_selections() (in module salt.modules.apt)

 	set_selinux_context() (in module salt.modules.file)

 	set_special() (in module salt.modules.cron)

 	set_sync() (in module salt.modules.makeconf)

 	set_sys() (in module salt.modules.keyboard)

 	set_target() (in module salt.modules.aliases)

 	(in module salt.modules.eselect)

 	set_var() (in module salt.modules.makeconf)

 	set_warndays() (in module salt.modules.shadow)

 	(in module salt.modules.solaris_shadow)

 	set_x() (in module salt.modules.keyboard)

 	set_zone() (in module salt.modules.timezone)

 	setenforce() (in module salt.modules.selinux)

 	setmem() (in module salt.modules.smartos_vmadm)

 	(in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	setpassword() (in module salt.modules.win_useradd)

 	setsebool() (in module salt.modules.selinux)

 	setsebools() (in module salt.modules.selinux)

 	setval() (in module salt.modules.grains)

 	setvalue() (in module salt.modules.augeas_cfg)

 	(in module salt.states.augeas)

 	setvcpus() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	show() (in module salt.modules.bridge)

 	(in module salt.modules.darwin_sysctl)

 	(in module salt.modules.debconfmod)

 	(in module salt.modules.freebsd_sysctl)

 	(in module salt.modules.linux_sysctl)

 	(in module salt.modules.netbsd_sysctl)

 	(in module salt.modules.nova)

 	(in module salt.modules.smartos_imgadm)

 	show_conf() (in module salt.modules.logrotate)

 	show_config() (in module salt.modules.freebsdjail)

 	show_current() (in module salt.modules.alternatives)

 	show_highstate() (in module salt.modules.state)

 	show_lowstate() (in module salt.modules.state)

 	show_sls() (in module salt.modules.state)

 	show_stages() (in module salt.runners.state)

 	show_top() (in module salt.modules.state)

 	shutdown() (in module salt.modules.smartos_vmadm)

 	(in module salt.modules.system)

 	(in module salt.modules.virt)

 	(in module salt.modules.win_system)

 	(in module salt.modules.xapi)

 	shutdown_hard() (in module salt.modules.win_system)

 	signal() (in module salt.modules.apache)

 	(in module salt.modules.nginx)

 	(in module salt.modules.solr)

 	(in module salt.modules.tomcat)

 	signal_job() (in module salt.modules.saltutil)

 	single() (in module salt.modules.state)

 	slave_lag() (in module salt.modules.mysql)

 	sleep() (in module salt.modules.test)

 	SLS

 	sls() (in module salt.modules.state)

 	(in module salt.runners.state)

 	
 sock_dir

 	conf/master

 	conf/minion

 	sort_pkglist() (in module salt.modules.pkg_resource)

 	source_list() (in module salt.modules.file)

 	sources_add() (in module salt.modules.gem)

 	sources_list() (in module salt.modules.gem)

 	sources_remove() (in module salt.modules.gem)

 	SPF() (in module salt.modules.dig)

 	(in module salt.modules.dnsutil)

 	sqlite_version() (in module salt.modules.sqlite3)

 	start() (in module salt.modules.bluez)

 	(in module salt.modules.daemontools)

 	(in module salt.modules.debian_service)

 	(in module salt.modules.freebsdjail)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.launchctl)

 	(in module salt.modules.lxc)

 	(in module salt.modules.monit)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.nzbget)

 	(in module salt.modules.openbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.service)

 	(in module salt.modules.smartos_vmadm)

 	(in module salt.modules.smf)

 	(in module salt.modules.supervisord)

 	(in module salt.modules.systemd)

 	(in module salt.modules.tomcat)

 	(in module salt.modules.upstart)

 	(in module salt.modules.virt)

 	(in module salt.modules.win_service)

 	(in module salt.modules.xapi)

 	(in module salt.runners.virt)

 	start_app() (in module salt.modules.rabbitmq)

 	stash() (in module salt.modules.git)

 	State declaration

 	State tree

 	state() (in module salt.modules.lxc)

 	
 state_output

 	conf/master

 	conf/minion

 	
 state_top

 	conf/master

 	
 state_verbose

 	conf/master

 	conf/minion

 	
 states_dirs

 	conf/minion

 	stats() (in module salt.modules.file)

 	(in module salt.modules.locate)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.quota)

 	(in module salt.modules.win_file)

 	status() (in module salt.modules.daemontools)

 	(in module salt.modules.debian_service)

 	(in module salt.modules.freebsdjail)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.git)

 	(in module salt.modules.launchctl)

 	(in module salt.modules.mysql)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.openbsdservice)

 	(in module salt.modules.rabbitmq)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.service)

 	(in module salt.modules.smf)

 	(in module salt.modules.supervisord)

 	(in module salt.modules.svn)

 	(in module salt.modules.systemd)

 	(in module salt.modules.tomcat)

 	(in module salt.modules.upstart)

 	(in module salt.modules.win_service)

 	(in module salt.modules.zpool)

 	(in module salt.runners.manage)

 	(in module salt.states.disk)

 	status_raw() (in module salt.modules.supervisord)

 	status_webapp() (in module salt.modules.tomcat)

 	stop() (in module salt.modules.bluez)

 	(in module salt.modules.daemontools)

 	(in module salt.modules.debian_service)

 	(in module salt.modules.freebsdjail)

 	(in module salt.modules.freebsdservice)

 	(in module salt.modules.gentoo_service)

 	(in module salt.modules.launchctl)

 	(in module salt.modules.lxc)

 	(in module salt.modules.monit)

 	(in module salt.modules.netbsdservice)

 	(in module salt.modules.nzbget)

 	(in module salt.modules.openbsdservice)

 	(in module salt.modules.rh_service)

 	(in module salt.modules.service)

 	(in module salt.modules.smf)

 	(in module salt.modules.supervisord)

 	(in module salt.modules.systemd)

 	(in module salt.modules.tomcat)

 	(in module salt.modules.upstart)

 	(in module salt.modules.virt)

 	(in module salt.modules.win_service)

 	(in module salt.states.modjk_worker)

 	stop_app() (in module salt.modules.rabbitmq)

 	stp() (in module salt.modules.bridge)

 	stringify() (in module salt.modules.pkg_resource)

 	submodule() (in module salt.modules.git)

 	subnets() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	summary() (in module salt.modules.monit)

 	swap() (in module salt.states.mount)

 	swapoff() (in module salt.modules.mount)

 	swapon() (in module salt.modules.mount)

 	swaps() (in module salt.modules.mount)

 	symlink() (in module salt.modules.file)

 	(in module salt.states.file)

 	sync() (in module salt.modules.eix)

 	(in module salt.modules.layman)

 	sync_all() (in module salt.modules.saltutil)

 	sync_contains() (in module salt.modules.makeconf)

 	sync_grains() (in module salt.modules.saltutil)

 	sync_modules() (in module salt.modules.saltutil)

 	sync_outputters() (in module salt.modules.saltutil)

 	sync_renderers() (in module salt.modules.saltutil)

 	sync_returners() (in module salt.modules.saltutil)

 	sync_states() (in module salt.modules.saltutil)

 	syncdb() (in module salt.modules.djangomod)

 	
 syndic_log_file

 	conf/master

 	
 syndic_master

 	conf/master

 	
 syndic_master_log_file

 	conf/master

 	
 syndic_master_port

 	conf/master

 	sysctl() (in module salt.modules.freebsdjail)

 	system() (in module salt.states.keyboard)

 	(in module salt.states.locale)

 	(in module salt.states.network)

 	(in module salt.states.timezone)

 	systemctl_reload() (in module salt.modules.systemd)

T

 	
 	tables() (in module salt.modules.sqlite3)

 	tar() (in module salt.modules.archive)

 	Targeting

 	
 tcp_pub_port

 	conf/minion

 	
 tcp_pull_port

 	conf/minion

 	template() (in module salt.modules.state)

 	template_str() (in module salt.modules.state)

 	tenant_create() (in module salt.modules.keystone)

 	tenant_delete() (in module salt.modules.keystone)

 	tenant_get() (in module salt.modules.keystone)

 	tenant_list() (in module salt.modules.keystone)

 	tenant_update() (in module salt.modules.keystone)

 	term() (in module salt.modules.daemontools)

 	term_job() (in module salt.modules.saltutil)

 	
 test

 	conf/master

 	threads() (in module salt.modules.sysbench)

 	TimedProcTimeoutError

 	toggle() (in module salt.modules.parted)

 	
 token_expire

 	conf/master

 	
 	token_get() (in module salt.modules.keystone)

 	Top file

 	top() (in module salt.modules.ps)

 	(in module salt.modules.state)

 	(in module salt.tops.cobbler)

 	(in module salt.tops.ext_nodes)

 	(in module salt.tops.mongo)

 	(in module salt.tops.reclass_adapter)

 	total_physical_memory() (in module salt.modules.ps)

 	touch() (in module salt.modules.file)

 	(in module salt.states.file)

 	tpstats() (in module salt.modules.cassandra)

 	traceroute() (in module salt.modules.network)

 	(in module salt.modules.win_network)

 	tree() (in module salt.modules.augeas_cfg)

 	trim_cflags() (in module salt.modules.makeconf)

 	trim_cxxflags() (in module salt.modules.makeconf)

 	trim_emerge_default_opts() (in module salt.modules.makeconf)

 	trim_features() (in module salt.modules.makeconf)

 	trim_gentoo_mirrors() (in module salt.modules.makeconf)

 	trim_makeopts() (in module salt.modules.makeconf)

 	trim_var() (in module salt.modules.makeconf)

 	tty() (in module salt.modules.test)

 	tune() (in module salt.modules.extfs)

U

 	
 	uid_to_user() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	umount() (in module salt.modules.mount)

 	umount_image() (in module salt.modules.img)

 	unblock() (in module salt.modules.bluez)

 	uncomment() (in module salt.modules.file)

 	(in module salt.states.file)

 	undefine() (in module salt.modules.virt)

 	undeploy() (in module salt.modules.tomcat)

 	unfreeze() (in module salt.modules.lxc)

 	uninstall() (in module salt.modules.gem)

 	(in module salt.modules.npm)

 	(in module salt.modules.pecl)

 	(in module salt.modules.pip)

 	uninstall_ruby() (in module salt.modules.rbenv)

 	unmonitor() (in module salt.modules.monit)

 	unmounted() (in module salt.states.mount)

 	unpair() (in module salt.modules.bluez)

 	unpause() (in module salt.modules.nzbget)

 	unrar() (in module salt.modules.archive)

 	unzip() (in module salt.modules.archive)

 	up() (in module salt.modules.rh_ip)

 	(in module salt.runners.manage)

 	update() (in module salt.fileserver.gitfs)

 	(in module salt.fileserver.hgfs)

 	(in module salt.fileserver.roots)

 	(in module salt.fileserver.s3fs)

 	(in module salt.modules.data)

 	(in module salt.modules.ddns)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.eix)

 	(in module salt.modules.gem)

 	(in module salt.modules.hg)

 	(in module salt.modules.mine)

 	(in module salt.modules.pecl)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.rbenv)

 	(in module salt.modules.saltutil)

 	(in module salt.modules.supervisord)

 	(in module salt.modules.svn)

 	(in module salt.pillar.git_pillar)

 	(in module salt.runners.fileserver)

 	update_git_repos() (in module salt.runners.winrepo)

 	update_installed() (in module salt.modules.smartos_imgadm)

 	update_package_site() (in module salt.modules.pkgng)

 	update_packaging_site() (in module salt.states.pkgng)

 	
 update_restart_services

 	conf/minion

 	update_system() (in module salt.modules.gem)

 	
 update_url

 	conf/minion

 	updatedb() (in module salt.modules.locate)

 	updating() (in module salt.modules.pkgng)

 	upgrade() (in module salt.modules.apt)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	
 	upgrade_available() (in module salt.modules.apt)

 	(in module salt.modules.brew)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.solarispkg)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	uptime() (in module salt.modules.status)

 	usage() (in module salt.modules.disk)

 	(in module salt.modules.win_disk)

 	
 user

 	conf/master

 	conf/minion

 	user_chpass() (in module salt.modules.mysql)

 	user_create() (in module salt.modules.keystone)

 	(in module salt.modules.mongodb)

 	(in module salt.modules.mysql)

 	(in module salt.modules.postgres)

 	user_delete() (in module salt.modules.keystone)

 	user_exists() (in module salt.modules.mongodb)

 	(in module salt.modules.mysql)

 	(in module salt.modules.postgres)

 	(in module salt.modules.rabbitmq)

 	user_get() (in module salt.modules.keystone)

 	user_grants() (in module salt.modules.mysql)

 	user_info() (in module salt.modules.mysql)

 	user_list() (in module salt.modules.keystone)

 	(in module salt.modules.mongodb)

 	(in module salt.modules.mysql)

 	(in module salt.modules.postgres)

 	user_password_update() (in module salt.modules.keystone)

 	user_remove() (in module salt.modules.mongodb)

 	(in module salt.modules.mysql)

 	(in module salt.modules.postgres)

 	user_role_add() (in module salt.modules.keystone)

 	user_role_list() (in module salt.modules.keystone)

 	user_role_remove() (in module salt.modules.keystone)

 	user_to_uid() (in module salt.modules.file)

 	(in module salt.modules.win_file)

 	user_update() (in module salt.modules.keystone)

 	(in module salt.modules.postgres)

 	user_verify_password() (in module salt.modules.keystone)

 	useradd() (in module salt.modules.apache)

 	userdel() (in module salt.modules.apache)

V

 	
 	valid_fileproto() (in module salt.modules.config)

 	values() (in module salt.wheel.config)

 	var_contains() (in module salt.modules.makeconf)

 	vcpu_pin() (in module salt.modules.xapi)

 	verify() (in module salt.modules.rpm)

 	(in module salt.modules.yumpkg)

 	
 verify_env

 	conf/minion

 	version() (in module salt.modules.apache)

 	(in module salt.modules.apt)

 	(in module salt.modules.bluez)

 	(in module salt.modules.brew)

 	(in module salt.modules.cassandra)

 	(in module salt.modules.dnsmasq)

 	(in module salt.modules.ebuild)

 	(in module salt.modules.freebsdpkg)

 	(in module salt.modules.grub_legacy)

 	(in module salt.modules.iptables)

 	(in module salt.modules.linux_acl)

 	(in module salt.modules.linux_lvm)

 	(in module salt.modules.locate)

 	(in module salt.modules.modjk)

 	(in module salt.modules.mysql)

 	(in module salt.modules.nginx)

 	(in module salt.modules.nzbget)

 	(in module salt.modules.openbsdpkg)

 	(in module salt.modules.pacman)

 	(in module salt.modules.pip)

 	(in module salt.modules.pkg_resource)

 	(in module salt.modules.pkgin)

 	(in module salt.modules.pkgng)

 	(in module salt.modules.pkgutil)

 	(in module salt.modules.postgres)

 	(in module salt.modules.poudriere)

 	(in module salt.modules.smartos_imgadm)

 	(in module salt.modules.solarispkg)

 	(in module salt.modules.solr)

 	(in module salt.modules.sqlite3)

 	(in module salt.modules.test)

 	(in module salt.modules.tomcat)

 	(in module salt.modules.win_pkg)

 	(in module salt.modules.yumpkg)

 	(in module salt.modules.yumpkg5)

 	(in module salt.modules.zypper)

 	
 	version_clean() (in module salt.modules.ebuild)

 	(in module salt.modules.pkg_resource)

 	version_cmp() (in module salt.modules.apt)

 	(in module salt.modules.ebuild)

 	versions() (in module salt.modules.rbenv)

 	(in module salt.runners.manage)

 	versions_information() (in module salt.modules.test)

 	versions_report() (in module salt.modules.test)

 	vg_absent() (in module salt.states.lvm)

 	vg_present() (in module salt.states.lvm)

 	vgcreate() (in module salt.modules.linux_lvm)

 	vgdisplay() (in module salt.modules.linux_lvm)

 	vgremove() (in module salt.modules.linux_lvm)

 	vhost_exists() (in module salt.modules.rabbitmq)

 	vhosts() (in module salt.modules.apache)

 	virt_type() (in module salt.modules.virt)

 	virtual_memory_usage() (in module salt.modules.ps)

 	vm_cputime() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	vm_diskstats() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	vm_info() (in module salt.modules.smartos_vmadm)

 	(in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	(in module salt.runners.virt)

 	vm_netstats() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	vm_state() (in module salt.modules.virt)

 	(in module salt.modules.xapi)

 	vm_virt_type() (in module salt.modules.smartos_vmadm)

 	vmstats() (in module salt.modules.status)

W

 	
 	w() (in module salt.modules.status)

 	wait() (in module salt.states.cmd)

 	(in module salt.states.module)

 	(in module salt.states.tomcat)

 	wait_call() (in module salt.states.cmd)

 	wait_script() (in module salt.states.cmd)

 	war_deployed() (in module salt.states.tomcat)

 	warn() (in module salt.modules.quota)

 	Wheel (class in salt.wheel)

 	wheel() (in module salt.runners.doc)

 	which() (in module salt.modules.cmdmod)

 	(in module salt.modules.pkgng)

 	which_bin() (in module salt.modules.cmdmod)

 	wipefacls() (in module salt.modules.linux_acl)

 	wol() (in module salt.runners.network)

 	
 	wollist() (in module salt.runners.network)

 	worker_activate() (in module salt.modules.modjk)

 	worker_disable() (in module salt.modules.modjk)

 	worker_edit() (in module salt.modules.modjk)

 	worker_recover() (in module salt.modules.modjk)

 	worker_status() (in module salt.modules.modjk)

 	worker_stop() (in module salt.modules.modjk)

 	
 worker_threads

 	conf/master

 	workers() (in module salt.modules.modjk)

 	wrapper() (in module salt.modules.rvm)

 	write() (in module salt.wheel.file_roots)

 	(in module salt.wheel.pillar_roots)

 	write_cron_file() (in module salt.modules.cron)

 	write_cron_file_verbose() (in module salt.modules.cron)

 	write_launchd_plist() (in module salt.runners.launchd)

X

 	
 	xorg() (in module salt.states.keyboard)

Z

 	
 	zip_() (in module salt.modules.archive)

 	
 	zone_compare() (in module salt.modules.timezone)

 	zpool_list() (in module salt.modules.zpool)

What is Salt Stack?

Salt is a new approach to infrastructure management. Easy enough to get
running in minutes, scalable enough to manage tens of thousands of servers,
and fast enough to communicate with them in seconds.

Salt delivers a dynamic communication bus for infrastructures that can be used
for orchestration, remote execution, configuration management and much more.

See also

Offline documentation

Download a copy of the Salt documentation:

	PDF [https://media.readthedocs.org/pdf/salt/latest/salt.pdf]

	ePub [https://media.readthedocs.org/epub/salt/latest/salt.epub]

Download

Salt source releases are available for download via PyPI:

https://pypi.python.org/pypi/salt

The installation documents outline where to obtain packages and installation
specifics for platforms:

Installation

The Salt Bootstrap project is a single shell script which aims to automate
the install correctly on platforms:

https://github.com/saltstack/salt-bootstrap

Getting Started

This walkthrough is made to help individuals get started quickly and gain a
foundational knowledge of Salt:

Official Salt Walkthrough

Additional tutorials are available when getting started with Salt

	States - Configuration Management with Salt:

	
	Getting Started with States

	Basic config management

	Less basic config management

	Advanced techniques

	Salt Fileserver Path Inheritance

	Masterless Quickstart:

	Salt Quickstart

	A list of all tutorials can be found here:

	All Salt tutorials

Salt in depth

Setting up and using Salt is a simple task but its capabilities run much, much
deeper. These documents will lead to a greater understating of how Salt will
empower infrastructure management.

Remote execution

Remote execution is the core function of Salt. Running pre-defined or
arbitrary commands on remote hosts.

	Modules

	Salt modules are the core of remote execution. They provide
functionality such as installing packages, restarting a service,
running a remote command, transferring files, and infinitely more.

	Full list of modules

	The giant list of core modules that ship with Salt

	Writing modules

	A guide on how to write Salt modules.

	Returners

	Salt returners allow saving minion responses in various datastores or
to various locations in addition to display at the CLI.

	Full list of returners

	Store minion responses in Redis, Mongo, Cassandra, SQL or more.

	Writing returners

	Extending Salt to communicate with more interfaces is easy, new
databases can be supported or custom interfaces can be easily
communicated with.

Targeting

Targeting is specifying which minions
should execute commands or manage server configuration.

	Globbing and regex

	Match minions using globbing and regular expressions.

	Grains

	Match minions using bits of static information about the minion such as
OS, software versions, virtualization, CPU, memory, and much more.

	Node groups

	Statically define groups of minions.

	Compound matchers

	Combine the above matchers as a single target.

	Batching execution

	Loop through all matching minions so that only a subset are executing a
command at one time.

Configuration management

Building on the remote execution core is a robust and flexible configuration
management framework. Execution happens on the minions allowing effortless,
simultaneous configuration of tens of thousands of hosts.

	States

	Express the state of a host using small, easy to read, easy to
understand configuration files. No programming required.

	Full list of states

	Install packages, create users, transfer files, start services, and
much more.

	Pillar System

	Salt's Pillar system

	States Overview

	An overview of States and some of the core components.

	Highstate data structure

	A dry vocabulary and technical representation of the configuration
format that states represent.

	Writing states

	A guide on how to write Salt state modules. Extending Salt to directly
manage in more software is easy.

	Renderers

	Write state configuration files in the language, templating engine, or
file type of choice. Salt's configuration management system is, under the
hood, language agnostic.

	Full list of renderers

	YAML is not the only choice, many systems are available, from
alternative templating engines to the PyDSL language for rendering
sls formulas.

	Renderers

	Salt states are only concerned with the ultimate highstate data
structure. How that data structure is created is not important.

Miscellaneous topics

Salt is many splendid things.

	File Server

	Salt can easily and quickly transfer files (in fact, that's how Salt
States work). Even under heavy load, files are chunked and served.

	Syndic

	A seamless master of masters. Scale Salt to tens of thousands of hosts or
across many different networks.

	Peer Communication

	Allow minions to communicate amongst themselves. For example, configure
one minion by querying live data from all the others. With great power
comes great responsibility.

	Reactor System

	The reactor system allows for Salt to create a self aware environment
by hooking infrastructure events into actions.

	Firewall Settings and Salt

	A tutorial covering how to properly firewall a Salt Master server.

	Scheduling Executions (like states)

	The schedule system in Salt allows for executions to be run of all sorts
from the master or minion at automatic intervals.

	Network topology

	At it's core, Salt is a highly scalable communication layer built on
top of ZeroMQ that enables remote execution and configuration
management. The possibilities are endless and Salt's future looks
bright.

	Testing Salt

	A howto for writing unit tests and integration tests.

	Python API interface

	Use Salt programmatically from scripts and programs easily and
simply via import salt.

	Automatic Updates and Frozen Binary Deployments

	Use a frozen install to make deployments easier (Even on Windows!). Or
take advantage of automatic updates to keep minions running the latest
builds.

	Windows Software Manager / Package Repository

	Looking for an easy way to manage software on Windows machines?
Search no more! Salt has an integrated software package manager for
Windows machines! Install software hosted on the master, somewhere on the
network, or any HTTP, HTTPS, or ftp server.

Reference

	Command-line interface

	Read the Salt manpages.

	Full list of master settings

	Read through the heavily-commented master configuration file.

	Full list of minion settings

	Read through the heavily-commented minion configuration file.

	Full table of contents

	Dense but complete.

FAQ

See here for a list of Frequently Asked Questions.

More information about the project

	Release notes

	Living history of Salt Stack.

	Community

	How to get involved.

	Salt Development

	Information for Hacking on Salt

404: Page not found

The page you are requesting cannot be found. Please try one of the following
pages instead:

 	Home page

 	Community

 	Search

 	Salt module index

 	Salt Documentation

Python client API

See also

Moved to Python client API

 nav.xhtml

 Table of Contents

 		Full Table of Contents

 		Frequently Asked Questions

 		Is Salt open-core?

 		What ports should I open on my firewall?

 		My script runs every time I run a state.highstate. Why?

 		When I run test.ping, why don't the Minions that aren't responding return anything? Returning False would be helpful.

 		How does Salt determine the Minion's id?

 		I'm using gitfs and my custom modules/states/etc are not syncing. Why?

 		Why aren't my custom modules/states/etc. available on my Minions?

 		Module X isn't available, even though the shell command it uses is installed. Why?

 		Introduction to Salt

 		The 30 second summary

 		Simplicity

 		Parallel execution

 		Building on proven technology

 		Python client interface

 		Fast, flexible, scalable

 		Open

 		Installation

 		Quick Install

 		Platform-specific installation instructions

 		Arch Linux

 		Debian Installation

 		Fedora

 		FreeBSD

 		Gentoo

 		OS X

 		RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

 		Solaris

 		Ubuntu Installation

 		Windows

 		SUSE Installation

 		Dependencies

 		Optional Dependencies

 		Configuring Salt

 		Master Configuration

 		Minion Configuration

 		Running Salt

 		Key Management

 		Sending Commands

 		What's Next?

 		Developing Salt

 		Sending a GitHub pull request

 		Keeping Salt Forks in Sync

 		Posting patches to the mailing list

 		Installing Salt for development

 		Running a self-contained development version

 		Using easy_install to Install Salt

 		Running the tests

 		Editing and previewing the documentation

 		Targeting

 		Matching the minion id

 		Globbing

 		Regular Expressions

 		Lists

 		Grains

 		Listing Grains

 		Grains in the Minion Config

 		Grains in /etc/salt/grains

 		Grains in Top file

 		Writing Grains

 		Node groups

 		Compound matchers

 		Batch Size

 		Salt tutorials

 		Bootstrapping Salt on Linux EC2 with Cloud-Init

 		Used With Boto

 		Additional Notes

 		Salt as a Cloud Controller

 		Setting up Hypervisors

 		Getting Virtual Machine Images Ready

 		Using Salt Virt

 		Using cron with Salt

 		Use cron to initiate a highstate

 		Automatic Updates / Frozen Deployments

 		Getting Started

 		Building and Freezing

 		Using the Frozen Build

 		Gotchas

 		Opening the Firewall up for Salt

 		RHEL 6 / CENTOS 6

 		openSUSE

 		iptables

 		pf.conf

 		GitFS Backend Walkthrough

 		Simple Configuration

 		Multiple Remotes

 		Serving from a Subdirectory

 		Multiple Backends

 		Branches, environments and top.sls files

 		GitFS Remotes over SSH

 		Why aren't my custom modules/states/etc. syncing to my Minions?

 		Remote execution tutorial

 		Order your minions around

 		Multi Master Tutorial

 		Summary of Steps

 		Prepping a Redundant Master

 		Configure Minions

 		Sharing Files Between Masters

 		Pillar Walkthrough

 		Setting Up Pillar

 		Paramaterizing States With Pillar

 		Pillar Makes Simple States Grow Easily

 		More On Pillar

 		Preseed Minion with Accepted Key

 		Salt Masterless Quickstart

 		Bootstrap Salt Minion

 		Create State Tree

 		Standalone Minion

 		Telling Salt Call to Run Masterless

 		Running States Masterless

 		How Do I Use Salt States?

 		It is All Just Data

 		Default Data - YAML

 		Adding Configs and Users

 		Moving Beyond a Single SLS

 		Extending Included SLS Data

 		Understanding the Render System

 		Next Reading

 		States tutorial, part 1

 		Setting up the Salt State Tree

 		Preparing the Top File

 		Create an sls module

 		Install the package

 		Next steps

 		States tutorial, part 2

 		Call multiple States

 		Expand the SLS module

 		Require other states

 		Next steps

 		States tutorial, part 3

 		Templating SLS modules

 		Using Grains in SLS modules

 		Calling Salt modules from templates

 		Advanced SLS module syntax

 		Next steps

 		States tutorial, part 4

 		Salt fileserver path inheritance

 		Environment configuration

 		Practical Example

 		Continue learning

 		Salt Stack Walkthrough

 		Welcome!

 		Getting Started

 		Salt States

 		So Much More!

 		Access Control System

 		External Authentication System

 		Tokens

 		Pillar of Salt

 		Declaring the Master Pillar

 		Pillar namespace flattened

 		Including Other Pillars

 		Viewing Minion Pillar

 		Pillar “get” Function

 		Refreshing Pillar Data

 		Targeting with Pillar

 		Master Config In Pillar

 		Master Tops System

 		Job Management

 		The Minion proc System

 		Functions in the saltutil Module

 		The jobs Runner

 		active

 		lookup_jid

 		list_jobs

 		Salt Scheduling

 		Scheduler With Returner

 		Running the Salt Master as Unprivileged User

 		Troubleshooting

 		Running in the Foreground

 		What Ports do the Master and Minion Need Open?

 		Using salt-call

 		Too many open files

 		Salt Master Stops Responding

 		Salt and SELinux

 		Red Hat Enterprise Linux 5

 		Common YAML Gotchas

 		Live Python Debug Output

 		YAML Idiosyncrasies

 		Spaces vs Tabs

 		Indentation

 		Nested Dicts (key=value)

 		True/False, Yes/No, On/Off

 		Integers are Parsed as Integers

 		YAML does not like “Double Short Decs”

 		YAML support only plain ASCII

 		Underscores stripped in Integer Definitions

 		Community

 		Mailing List

 		IRC

 		Salt development

 		Follow on Github

 		The Red45 Blog

 		Example Salt States

 		Follow on ohloh

 		Other community links

 		Developing Salt

 		Sending a GitHub pull request

 		Keeping Salt Forks in Sync

 		Posting patches to the mailing list

 		Installing Salt for development

 		Using easy_install to Install Salt

 		Editing and previewing the documentation

 		Salt Based Projects

 		Salt Sandbox

 		Salt Event System

 		Listening for Events

 		Firing Events

 		Firing Events From Code

 		The Salt Mine

 		Mine Functions

 		Mine Interval

 		Salt Virt - The Salt Stack Cloud Controller

 		Salt Virt Tutorial

 		The Salt Virt Runner

 		Based on Live State Data

 		Virtual Machine Network Profiles

 		Define More Profiles

 		Salt SSH

 		Salt SSH Roster

 		Calling Salt SSH

 		Raw Shell Calls

 		States Via Salt SSH

 		Targeting with Salt SSH

 		Salt Rosters

 		How Rosters Work

 		Targets Data

 		Running The Tests

 		Writing Tests

 		Integration Tests

 		Unit Tests

 		Integration Tests

 		Integration Classes

 		ModuleCase

 		SyndicCase

 		ShellCase

 		Examples

 		Module Example via ModuleCase Class

 		Shell Example via ShellCase

 		Reactor System

 		Event System

 		Mapping Events to Reactor SLS Files

 		Fire an event

 		Understanding the Structure of Reactor Formulas

 		Salt Formulas

 		Installation

 		Adding a Formula as a GitFS remote

 		Adding a Formula directory manually

 		Usage

 		Including a Formula in an existing State tree

 		Including a Formula from a Top File

 		Configuring Formula using Pillar

 		Modifying default Formula behavior

 		Reporting problems & making additions

 		Writing Formulas

 		Repository structure

 		README.rst

 		map.jinja

 		SLS files

 		Configuration and parameterization

 		Scripting

 		Versioning

 		Testing Formulas

 		Salt Conventions

 		Salt Formulas

 		Installation

 		Usage

 		Writing Formulas

 		Salt Release Process

 		Feature Release Process

 		Maintenance and Bugfix Releases

 		Salt Coding Style

 		Strings

 		Imports

 		Vertical is Better

 		Indenting

 		Code Churn

 		Salt Release Process

 		Feature Release Process

 		Maintenance and Bugfix Releases

 		Salt Coding Style

 		Strings

 		Single Quotes

 		Formatting Strings

 		Docstring Conventions

 		Imports

 		Absolute Imports

 		Vertical is Better

 		Indenting

 		Code Churn

 		Salt Stack Git Policy

 		New Code Entry

 		Release Branching

 		Feature Release Branching

 		Point Releases

 		Salt Development Guidelines

 		Deprecating Code

 		Dunder Dictionaries

 		__context__

 		External Pillars

 		Location

 		Configuration

 		The Module

 		Imports and Logging

 		Options

 		Initialization

 		__virtual__

 		ext_pillar

 		Example configuration

 		Logging Internals

 		Modular Systems

 		Execution Modules

 		State Modules

 		Auth

 		Fileserver

 		Grains

 		Output

 		Pillar

 		Renderers

 		Returners

 		Runners

 		Tops

 		Wheel

 		Package Providers

 		Package Functions

 		Package Repo Functions

 		Low-Package Functions

 		Logging

 		Available Configuration Settings

 		log_file

 		log_level

 		log_level_logfile

 		log_datefmt

 		log_datefmt_logfile

 		log_fmt_console

 		log_fmt_logfile

 		log_granular_levels

 		External Logging Handlers

 		External Logging Handlers

 		Logstash Logging Handler

 		UDP Logging Handler

 		ZeroMQ Logging Handler

 		Sentry Logging Handler

 		Threaded Transports

 		Logstash Logging Handler

 		UDP Logging Handler

 		ZeroMQ Logging Handler

 		Log Level

 		HWM

 		Sentry Logging Handler

 		Threaded Transports

 		Introduction to Extending Salt

 		Client API

 		Adding Loadable Plugins

 		Minion Execution Modules

 		Grains

 		States

 		Renderers

 		Returners

 		Runners

 		Modules

 		Modules Are Easy to Write!

 		Cross Calling Modules

 		Preloaded Modules Data

 		Grains Data

 		Module Configuration

 		Printout Configuration

 		Virtual Modules

 		Documentation

 		Adding Documentation to Salt Modules

 		Add Module metadata

 		How Functions are Read

 		Objects Loaded Into the Salt Minion

 		Objects NOT Loaded into the Salt Minion

 		Useful Decorators for Modules

 		Depends Decorator

 		Examples of Salt Modules

 		Full list of builtin execution modules

 		salt.modules.pkg

 		salt.modules.sys

 		salt.modules.aliases

 		salt.modules.alternatives

 		salt.modules.apache

 		salt.modules.apt

 		salt.modules.archive

 		salt.modules.at

 		salt.modules.augeas_cfg

 		salt.modules.bluez

 		salt.modules.brew

 		salt.modules.bridge

 		salt.modules.bsd_shadow

 		salt.modules.cassandra

 		salt.modules.cmdmod

 		salt.modules.config

 		salt.modules.cp

 		salt.modules.cron

 		salt.modules.daemontools

 		salt.modules.darwin_sysctl

 		salt.modules.data

 		salt.modules.ddns

 		salt.modules.debconfmod

 		salt.modules.debian_service

 		salt.modules.dig

 		salt.modules.disk

 		salt.modules.djangomod

 		salt.modules.dnsmasq

 		salt.modules.dnsutil

 		salt.modules.dpkg

 		salt.modules.ebuild

 		salt.modules.eix

 		salt.modules.eselect

 		salt.modules.event

 		salt.modules.extfs

 		salt.modules.file

 		salt.modules.freebsd_sysctl

 		salt.modules.freebsdjail

 		salt.modules.freebsdkmod

 		salt.modules.freebsdpkg

 		salt.modules.freebsdservice

 		salt.modules.gem

 		salt.modules.gentoo_service

 		salt.modules.gentoolkitmod

 		salt.modules.git

 		salt.modules.glance

 		salt.modules.grains

 		salt.modules.groupadd

 		salt.modules.grub_legacy

 		salt.modules.guestfs

 		salt.modules.hg

 		salt.modules.hosts

 		salt.modules.img

 		salt.modules.iptables

 		salt.modules.key

 		salt.modules.keyboard

 		salt.modules.keystone

 		salt.modules.kmod

 		salt.modules.launchctl

 		salt.modules.layman

 		salt.modules.ldapmod

 		salt.modules.linux_acl

 		salt.modules.linux_lvm

 		salt.modules.linux_sysctl

 		salt.modules.localemod

 		salt.modules.locate

 		salt.modules.logrotate

 		salt.modules.lxc

 		salt.modules.makeconf

 		salt.modules.match

 		salt.modules.mdadm

 		salt.modules.mine

 		salt.modules.modjk

 		salt.modules.mongodb

 		salt.modules.monit

 		salt.modules.moosefs

 		salt.modules.mount

 		salt.modules.munin

 		salt.modules.mysql

 		salt.modules.netbsd_sysctl

 		salt.modules.netbsdservice

 		salt.modules.network

 		salt.modules.nfs3

 		salt.modules.nginx

 		salt.modules.nova

 		salt.modules.npm

 		salt.modules.nzbget

 		salt.modules.openbsdpkg

 		salt.modules.openbsdservice

 		salt.modules.osxdesktop

 		salt.modules.pacman

 		salt.modules.pam

 		salt.modules.parted

 		salt.modules.pecl

 		salt.modules.pillar

 		salt.modules.pip

 		salt.modules.pkg_resource

 		salt.modules.pkgin

 		salt.modules.pkgng

 		salt.modules.pkgutil

 		salt.modules.portage_config

 		salt.modules.postgres

 		salt.modules.poudriere

 		salt.modules.ps

 		salt.modules.publish

 		salt.modules.puppet

 		salt.modules.pw_group

 		salt.modules.pw_user

 		salt.modules.qemu_img

 		Qemu-img Command Wrapper

 		salt.modules.qemu_nbd

 		Qemu Command Wrapper

 		salt.modules.quota

 		salt.modules.rabbitmq

 		salt.modules.rbenv

 		salt.modules.reg

 		salt.modules.ret

 		salt.modules.rh_ip

 		salt.modules.rh_service

 		salt.modules.rpm

 		salt.modules.rvm

 		salt.modules.s3

 		salt.modules.saltutil

 		salt.modules.seed

 		salt.modules.selinux

 		salt.modules.service

 		salt.modules.shadow

 		salt.modules.smartos_imgadm

 		salt.modules.smartos_vmadm

 		salt.modules.smf

 		salt.modules.solaris_group

 		salt.modules.solaris_shadow

 		salt.modules.solaris_user

 		salt.modules.solarispkg

 		salt.modules.solr

 		Apache Solr Salt Module

 		salt.modules.sqlite3

 		salt.modules.ssh

 		salt.modules.state

 		salt.modules.status

 		salt.modules.supervisord

 		salt.modules.svn

 		salt.modules.sysbench

 		salt.modules.sysmod

 		salt.modules.system

 		salt.modules.systemd

 		salt.modules.test

 		salt.modules.timezone

 		salt.modules.tls

 		salt.modules.tomcat

 		salt.modules.upstart

 		salt.modules.useradd

 		salt.modules.virt

 		salt.modules.virtualenv

 		salt.modules.win_disk

 		salt.modules.win_file

 		salt.modules.win_groupadd

 		salt.modules.win_network

 		salt.modules.win_pkg

 		salt.modules.win_service

 		salt.modules.win_shadow

 		salt.modules.win_status

 		salt.modules.win_system

 		salt.modules.win_useradd

 		salt.modules.xapi

 		salt.modules.yumpkg

 		salt.modules.yumpkg5

 		salt.modules.zfs

 		salt.modules.zpool

 		salt.modules.zypper

 		Returners

 		Using Returners

 		Writing a Returner

 		Examples

 		Full list of builtin returner modules

 		salt.returners.carbon_return

 		salt.returners.cassandra_return

 		salt.returners.local

 		salt.returners.mongo_future_return

 		salt.returners.mongo_return

 		salt.returners.mysql

 		salt.returners.postgres

 		salt.returners.redis_return

 		salt.returners.sentry_return

 		salt.returners.smtp_return

 		salt.returners.sqlite3

 		salt.returners.syslog_return

 		File State Backups

 		Backed-up Files

 		Interacting with Backups

 		Listing

 		Restoring

 		Deleting

 		Extending External SLS Data

 		The Extend Declaration

 		Extend is a Top Level Declaration

 		The Requisite “in” Statement

 		Rules to Extend By

 		Failhard Global Option

 		State Level Failhard

 		Global Failhard

 		Highstate data structure definitions

 		The Salt State Tree

 		Include declaration

 		Module reference

 		ID declaration

 		Extend declaration

 		State declaration

 		Requisite declaration

 		Requisite reference

 		Function declaration

 		Function arg declaration

 		Name declaration

 		Names declaration

 		Large example

 		Include and Exclude

 		Include

 		Relative Include

 		Exclude

 		State Enforcement

 		State management

 		Understanding the Salt State System Components

 		Salt SLS System

 		Renderer System

 		Reloading Modules

 		State System Layers

 		Function Call

 		Low Chunk

 		Low State

 		High Data

 		SLS

 		HighState

 		OverState

 		Remote Control States

 		Creating States Trigger Remote Executions

 		Calling Multiple State Runs

 		Ordering States

 		State Auto Ordering

 		Requisite Statements

 		Multiple Requisites

 		The Require Requisite

 		The Watch Requisite

 		Watch and the mod_watch Function

 		The Order Option

 		OverState System

 		The Over State SLS

 		Adding Functions To Overstate

 		Executing the Over State

 		State Providers

 		Setting a Provider in the Minion Config File

 		Provider: pkg

 		Provider: service

 		Provider: user

 		Provider: group

 		Arbitrary Module Redirects

 		Requisites

 		Requisite and Requisite in types

 		Require

 		Require an entire sls file

 		Watch

 		Prereq

 		Use

 		Require In

 		Watch In

 		Prereq In

 		Startup States

 		Examples:

 		State Testing

 		Default Test

 		The Top File

 		Environments

 		Other Ways of Targeting Minions

 		How Top Files Are Compiled

 		SLS Template Variable Reference

 		Salt

 		Opts

 		Pillar

 		Grains

 		env

 		sls

 		State Modules

 		States are Easy to Write!

 		Using Custom State Modules

 		Cross Calling Modules

 		Return Data

 		Test State

 		Watcher Function

 		Mod_init Interface

 		Full list of builtin state modules

 		salt.states.alias

 		Configuration of email aliases.

 		salt.states.alternatives

 		Configuration of the alternatives system

 		salt.states.apt

 		Package management operations specific to APT- and DEB-based systems

 		salt.states.augeas

 		Configuration management using Augeas

 		salt.states.cmd

 		Execution of arbitrary commands

 		salt.states.cron

 		Management of cron, the Unix command scheduler.

 		salt.states.debconfmod

 		Management of debconf selections.

 		salt.states.disk

 		salt.states.eselect

 		Management of Gentoo configuration using eselect

 		salt.states.file

 		Operations on regular files, special files, directories, and symlinks.

 		salt.states.gem

 		Installation of Ruby modules packaged as gems.

 		salt.states.git

 		Interaction with Git repositories.

 		salt.states.grains

 		Manage grains on the minion.

 		salt.states.group

 		Management of user groups.

 		salt.states.hg

 		Interaction with Mercurial repositories.

 		salt.states.host

 		Management of addresses and names in hosts file.

 		salt.states.iptables

 		Management of iptables

 		salt.states.keyboard

 		Management of keyboard layouts

 		salt.states.kmod

 		Loading and unloading of kernel modules.

 		salt.states.layman

 		Management of Gentoo Overlays using layman

 		salt.states.libvirt

 		salt.states.locale

 		salt.states.lvm

 		Management of Linux logical volumes

 		salt.states.makeconf

 		Management of Gentoo make.conf

 		salt.states.mdadm

 		Managing software RAID with mdadm

 		salt.states.modjk_worker

 		salt.states.module

 		Execution of Salt modules from within states.

 		salt.states.mongodb_database

 		salt.states.mongodb_user

 		Management of Mongodb users

 		salt.states.mount

 		Mounting of filesystems.

 		salt.states.mysql_database

 		Management of MySQL databases (schemas).

 		salt.states.mysql_grants

 		Management of MySQL grants (user permissions).

 		salt.states.mysql_user

 		Management of MySQL users.

 		salt.states.network

 		Configuration of network interfaces.

 		salt.states.npm

 		Installation of NPM Packages

 		salt.states.pecl

 		Installation of PHP Extensions Using pecl

 		salt.states.pip

 		Installation of Python Packages Using pip

 		salt.states.pkg

 		Installation of packages using OS package managers such as yum or apt-get

 		salt.states.pkgng

 		Manage package remote repo using FreeBSD pkgng

 		salt.states.pkgrepo

 		Management of package repos

 		salt.states.portage_config

 		Management of Portage package configuration on Gentoo

 		salt.states.postgres_database

 		Management of PostgreSQL databases.

 		salt.states.postgres_group

 		Management of PostgreSQL groups (roles).

 		salt.states.postgres_user

 		Management of PostgreSQL users (roles).

 		salt.states.quota

 		Management of POSIX Quotas

 		salt.states.rabbitmq_user

 		salt.states.rabbitmq_vhost

 		salt.states.rbenv

 		Managing Ruby installations with rbenv.

 		salt.states.rvm

 		Managing Ruby installations and gemsets with Ruby Version Manager (RVM).

 		salt.states.selinux

 		Management of SELinux rules.

 		salt.states.service

 		Starting or restarting of services and daemons.

 		salt.states.ssh_auth

 		Control of entries in SSH authorized_key files.

 		salt.states.ssh_known_hosts

 		Control of SSH known_hosts entries.

 		salt.states.stateconf

 		Stateconf System

 		salt.states.supervisord

 		Interaction with the Supervisor daemon.

 		salt.states.svn

 		Manage SVN repositories

 		salt.states.sysctl

 		Configuration of the Linux kernel using sysctrl.

 		salt.states.timezone

 		Management of timezones

 		salt.states.tomcat

 		salt.states.user

 		Management of user accounts.

 		salt.states.virtualenv

 		Setup of Python virtualenv sandboxes.

 		Renderers

 		Multiple Renderers

 		Composing Renderers

 		Writing Renderers

 		Examples

 		Full list of builtin renderer modules

 		salt.renderers.jinja

 		Jinja in States

 		Passing Variables

 		Include and Import

 		Variable and block Serializers

 		Template Serializers

 		Macros

 		Template Inheritance

 		Filters

 		Jinja in Files

 		salt.renderers.json

 		salt.renderers.mako

 		salt.renderers.py

 		salt.renderers.pydsl

 		Special integration with the cmd state

 		Implicit ordering of states

 		Render time state execution

 		Integration with the stateconf renderer

 		salt.renderers.stateconf

 		salt.renderers.wempy

 		salt.renderers.yaml

 		Pillars

 		Full list of builtin pillar modules

 		salt.pillar.cmd_json

 		salt.pillar.cmd_yaml

 		salt.pillar.cobbler

 		Cobbler Pillar

 		Configuring the Cobbler ext_pillar

 		Module Documentation

 		salt.pillar.django_orm

 		Configuring the django_orm ext_pillar

 		Module Documentation

 		salt.pillar.git_pillar

 		salt.pillar.hiera

 		salt.pillar.libvirt

 		salt.pillar.mongo

 		Salt Master Mongo Configuration

 		Configuring the Mongo ext_pillar

 		Module Documentation

 		salt.pillar.pillar_ldap

 		salt.pillar.puppet

 		salt.pillar.reclass_adapter

 		Master Tops

 		Full list of builtin master tops modules

 		salt.tops.cobbler

 		Cobbler Tops

 		Module Documentation

 		salt.tops.ext_nodes

 		External Nodes Classifier

 		salt.tops.mongo

 		Salt Master Mongo Configuration

 		Configuring the Mongo Tops Subsystem

 		Module Documentation

 		salt.tops.reclass_adapter

 		Salt Runners

 		Writing Salt Runners

 		Examples

 		Full list of runner modules

 		salt.runners.cache

 		salt.runners.doc

 		salt.runners.fileserver

 		salt.runners.jobs

 		salt.runners.launchd

 		salt.runners.manage

 		salt.runners.network

 		salt.runners.search

 		salt.runners.state

 		salt.runners.virt

 		salt.runners.winrepo

 		Full list of builtin wheel modules

 		salt.wheel.config

 		salt.wheel.file_roots

 		salt.wheel.key

 		salt.wheel.pillar_roots

 		Full list of builtin auth modules

 		salt.auth.keystone

 		salt.auth.ldap

 		salt.auth.pam

 		salt.auth.stormpath_mod

 		Full list of builtin output modules

 		salt.output.grains

 		salt.output.highstate

 		salt.output.json_out

 		salt.output.key

 		salt.output.nested

 		salt.output.no_out

 		salt.output.no_return

 		salt.output.overstatestage

 		salt.output.pprint_out

 		salt.output.raw

 		salt.output.txt

 		salt.output.virt_query

 		salt.output.yaml_out

 		Python client API

 		LocalClient

 		Salt Caller

 		RunnerClient

 		WheelClient

 		Peer Communication

 		Peer Configuration

 		Peer Runner Communication

 		Using Peer Communication

 		Client ACL system

 		Permission Issues

 		Salt Syndic

 		Configuring the Syndic

 		Running the Syndic

 		File Server Backends

 		Environments

 		Dynamic Module Distribution

 		Sync Via States

 		Sync Via the saltutil Module

 		File Server Configuration

 		Environments

 		Directory Overlay

 		Local File Server

 		Salt File Server

 		The cp Module

 		Environments

 		get_file

 		get_dir

 		File Server Client API

 		FileClient Class

 		Full list of builtin fileserver modules

 		salt.fileserver.gitfs

 		salt.fileserver.hgfs

 		salt.fileserver.roots

 		salt.fileserver.s3fs

 		Configuration file examples

 		Example master configuration file

 		Example minion configuration file

 		Configuring the Salt Master

 		Primary Master Configuration

 		interface

 		publish_port

 		user

 		max_open_files

 		worker_threads

 		ret_port

 		pidfile

 		root_dir

 		pki_dir

 		cachedir

 		keep_jobs

 		job_cache

 		ext_job_cache

 		minion_data_cache

 		enforce_mine_cache

 		sock_dir

 		Master Security Settings

 		open_mode

 		auto_accept

 		autosign_file

 		client_acl

 		client_acl_blacklist

 		external_auth

 		token_expire

 		file_recv

 		Master Module Management

 		runner_dirs

 		cython_enable

 		Master State System Settings

 		state_verbose

 		state_output

 		state_top

 		external_nodes

 		renderer

 		failhard

 		test

 		Master File Server Settings

 		file_roots

 		hash_type

 		file_buffer_size

 		Pillar Configuration

 		pillar_roots

 		ext_pillar

 		Syndic Server Settings

 		order_masters

 		syndic_master

 		syndic_master_port

 		syndic_log_file

 		syndic_pidfile

 		Peer Publish Settings

 		peer

 		peer_run

 		Node Groups

 		Master Logging Settings

 		log_file

 		log_level

 		log_level_logfile

 		log_datefmt

 		log_datefmt_logfile

 		log_fmt_console

 		log_fmt_logfile

 		log_granular_levels

 		Include Configuration

 		default_include

 		include

 		Configuring the Salt Minion

 		Minion Primary Configuration

 		master

 		master_port

 		user

 		pidfile

 		root_dir

 		pki_dir

 		id

 		append_domain

 		cachedir

 		verify_env

 		cache_jobs

 		sock_dir

 		backup_mode

 		acceptance_wait_time

 		random_reauth_delay

 		acceptance_wait_time_max

 		dns_check

 		ipc_mode

 		tcp_pub_port

 		tcp_pull_port

 		Minion Module Management

 		disable_modules

 		disable_returners

 		module_dirs

 		returner_dirs

 		states_dirs

 		render_dirs

 		cython_enable

 		providers

 		State Management Settings

 		renderer

 		state_verbose

 		state_output

 		autoload_dynamic_modules

 		environment

 		File Directory Settings

 		file_client

 		file_roots

 		hash_type

 		pillar_roots

 		Security Settings

 		open_mode

 		Thread Settings

 		Minion Logging Settings

 		log_file

 		log_level

 		log_level_logfile

 		log_datefmt

 		log_datefmt_logfile

 		log_fmt_console

 		log_fmt_logfile

 		log_granular_levels

 		Include Configuration

 		default_include

 		include

 		Frozen Build Update Settings

 		update_url

 		update_restart_services

 		Salt code and internals

 		Contents

 		Exceptions

 		salt.exceptions

 		Network Topology

 		Servers

 		PUB/SUB

 		Return

 		Windows Software Repository

 		Operation

 		Usage

 		Generate Repo Cache File

 		Install Windows Software

 		Uninstall Windows Software

 		Standalone Minion Salt Windows Repo Module

 		Git Hosted Repo

 		Troubleshooting

 		Incorrect name/version

 		Changes to sls files not being picked up

 		Packages management under Windows 2003

 		Command Line Reference

 		Using the Salt Command

 		Defining the Target Minions

 		More Powerful Targets

 		Calling the Function

 		Compound Command Execution

 		salt

 		Synopsis

 		Description

 		Options

 		Logging Options

 		Target Selection

 		Output Options

 		See also

 		salt-master

 		Synopsis

 		Description

 		Options

 		Logging Options

 		See also

 		salt-minion

 		Synopsis

 		Description

 		Options

 		Logging Options

 		See also

 		salt-key

 		Synopsis

 		Description

 		Options

 		Logging Options

 		Output Options

 		Actions

 		Key Generation Options

 		See also

 		salt-cp

 		Synopsis

 		Description

 		Options

 		Logging Options

 		Target Selection

 		See also

 		salt-call

 		Synopsis

 		Description

 		Options

 		Logging Options

 		Output Options

 		See also

 		salt-run

 		Synopsis

 		Description

 		Options

 		Logging Options

 		See also

 		salt-ssh

 		Synopsis

 		Description

 		Options

 		Target Selection

 		Logging Options

 		Output Options

 		See also

 		salt-syndic

 		Synopsis

 		Description

 		Options

 		Logging Options

 		See also

 		Release notes and upgrade instructions

 		Salt 0.17.0 Release Notes

 		Major Features

 		Salt 0.16.4 Release Notes

 		Salt 0.16.3 Release Notes

 		Salt 0.16.2 Release Notes

 		Windows

 		Grains

 		Pillar

 		Peer Publishing

 		Minion

 		User/Group Management

 		File Management

 		Package/Repository Management

 		Service Management

 		Networking

 		SSH

 		pip

 		MySQL

 		PostgreSQL

 		Miscellaneous

 		Salt 0.16.0 Release Notes

 		Major Features

 		Salt 0.15.1 Release Notes

 		Security Updates

 		Salt 0.15.0 Release Notes

 		Major Features

 		Salt 0.14.0 Release Notes

 		Major Features

 		Salt 0.13.0 Release Notes

 		Major Features

 		Noteworthy Changes

 		Salt 0.12.0 Release Notes

 		Major Features

 		Salt 0.11.0 Release Notes

 		Major Features

 		Notable Changes

 		Salt 0.10.5 Release Notes

 		Major Features

 		Noteworthy Changes

 		Salt 0.10.4 Release Notes

 		Major Features

 		Security

 		Salt 0.10.3 Release Notes

 		Major Features

 		Security Fix

 		Salt 0.10.2 Release Notes

 		Major Features

 		Test Updates

 		Many Fixes

 		Salt 0.10.0 Release Notes

 		Major Features

 		State Call Data Files

 		Turning Off the Job Cache

 		Test Updates

 		Many Fixes

 		Salt 0.9.9 Release Notes

 		Major Features

 		New Tests

 		Salt 0.9.8 Release Notes

 		Upgrade Considerations

 		Major Features

 		In Progress Development

 		Salt 0.9.7 Release Notes

 		Major Features

 		Salt 0.9.6 Release Notes

 		New Features

 		Salt 0.9.5 Release Notes

 		Community

 		Major Features

 		Packaging Updates

 		Refinement

 		Salt 0.9.4 Release Notes

 		Download!

 		New Features

 		Salt 0.9.3 Release Notes

 		Download!

 		New Features

 		Module and State Additions

 		Salt 0.9.2 Release Notes

 		Download!

 		New Features

 		Notable Bug Fixes

 		Salt 0.9.0 Release Notes

 		Download!

 		New Features

 		New Modules

 		Salt 0.8.9 Release Notes

 		Download!

 		New Features

 		New Modules

 		Salt 0.8.8 release notes

 		Salt 0.8.7 release notes

 		Salt 0.8.0 release notes

 		Salt-cp -

 		Cython minion modules -

 		Dynamic Returners -

 		Configurable Minion Modules -

 		Advanced Minion Threading:

 		Salt 0.7.0 release notes

 		Salt 0.6.0 release notes

_static/book_open.png

_static/up-pressed.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/page_white_acrobat.png

_static/ajax-loader.gif

_static/file.png

_static/saltstack_logo.png
& SALTSTACK

_static/up.png

_static/down.png

_static/comment-close.png

_static/film_link.png

_static/salt-vert.png

_static/comment-bright.png

