
Sagan User Guide Documentation
Release 1.2.2

Champ Clark III

Sep 30, 2021

Contents

1 What is Sagan? 1
1.1 License . 1

2 Installation 3
2.1 libpcre (Regular Expressions) . 3
2.2 libyaml (YAML configuration files) . 3
2.3 Other dependencies . 4
2.4 liblognorm (Normalization) . 4
2.5 libfastjson (JSON) . 4
2.6 libesmtp (SMTP) . 5
2.7 libmaxminddb (GeoIP) . 5
2.8 hiredis (Redis) . 5
2.9 libpcap (Sniffing logs) . 6

3 Compiling Sagan 7
3.1 Quick start from source . 7
3.2 A more complete quick start . 8
3.3 Prerequisites . 8
3.4 Common configure options . 8
3.5 Post-installation setup and testing . 10

4 Syslog Configuration 13
4.1 rsyslog - “pipe” mode . 13
4.2 rsyslog - JSON mode . 14
4.3 syslog-ng - “pipe” mode . 16
4.4 syslog-ng - JSON mode . 16
4.5 nxlog . 17
4.6 other sources . 17

5 Sagan Configuration 19
5.1 Sagan with JSON input . 19

6 vars 23

7 sagan-core 27
7.1 core . 27
7.2 parse_ip . 32

i

7.3 selector . 32
7.4 redis-server (experimental) . 32
7.5 mmap-ipc . 33
7.6 ignore_list . 33
7.7 liblognorm . 34
7.8 plog . 35

8 processors 37
8.1 track-clients . 37
8.2 rule-tracking . 37
8.3 perfmonitor . 38
8.4 blacklist . 38
8.5 bluedot . 39
8.6 zeek-intel (formally “bro-intel”) . 39
8.7 dynamic-load . 40

9 outputs 41
9.1 eve-log . 41
9.2 alert . 42
9.3 fast . 42
9.4 smtp . 42
9.5 syslog . 42

10 rule-files 45

11 Rule syntax 51

12 Rule Keywords 53
12.1 after . 53
12.2 alert_time . 53
12.3 append_program . 54
12.4 blacklist . 54
12.5 bluedot . 54
12.6 classtype . 55
12.7 content . 55
12.8 country_code . 55
12.9 default_proto . 56
12.10 default_dst_port . 56
12.11 default_src_port . 56
12.12 depth . 57
12.13 distance . 57
12.14 dynamic_load . 57
12.15 email . 57
12.16 event_id . 58
12.17 external . 58
12.18 syslog_facility . 58
12.19 flexbits . 58
12.20 flexbits_pause . 59
12.21 json_content . 60
12.22 json_nocase . 60
12.23 json_contains . 60
12.24 json_pcre . 60
12.25 json_meta_content . 60
12.26 json_meta_nocase . 61
12.27 json_meta_contains . 61

ii

12.28 syslog_level . 61
12.29 meta_content . 61
12.30 meta_depth . 62
12.31 meta_distance . 62
12.32 meta_offset . 62
12.33 meta_nocase . 63
12.34 meta_within . 63
12.35 msg . 63
12.36 nocase . 63
12.37 normalize . 63
12.38 offset . 64
12.39 parse_dst_ip . 64
12.40 parse_port . 64
12.41 parse_proto . 64
12.42 parse_proto_program . 64
12.43 parse_hash . 65
12.44 parse_src_ip . 65
12.45 pcre . 65
12.46 priority . 65
12.47 program . 65
12.48 reference . 66
12.49 rev . 66
12.50 sid . 66
12.51 syslog_tag . 66
12.52 threshold . 66
12.53 within . 67
12.54 xbits . 67
12.55 xbits_pause . 68
12.56 xbits_upause . 68
12.57 zeek-intel . 68

13 Sagan Peek 71
13.1 What is “saganpeek” . 71
13.2 Building “saganpeek” . 71

14 Sagan & JSON 73
14.1 Why JSON? . 73
14.2 Different method of JSON input . 73
14.3 JSON “mapping” . 74
14.4 How JSON nest are processed . 74
14.5 When mapping is not needed . 74
14.6 Mappable JSON Fields . 75
14.7 JSON via named pipe (FIFO) . 76
14.8 JSON via syslog message field . 77

15 Journald 79
15.1 What is “journald”? . 79
15.2 Analyzing journald logs locally . 79
15.3 Analyzing journald logs remotely . 79

16 High Performance Considerations 81
16.1 batch-size . 81
16.2 Rule sets . 82
16.3 Rule order of execution . 82

iii

17 Contributing & Coding Style 83
17.1 How to contribute to Sagan . 83
17.2 Coding guidelines and style . 84

18 Sagan Blogs 87
18.1 Dynamic Rules with Sagan. 87
18.2 What the Sagan Log Analysis Engine Is. . . and What It Is Not. 88
18.3 Sagan 1.0.0 log analysis engine released! . 90
18.4 Sagan output to other SIEMs . 91
18.5 Sagan Flowbit . 92

19 Articles about Sagan 97
19.1 Reading . 97
19.2 Audio/Video . 97
19.3 Presentations/Papers . 97

20 Getting help 99

21 TODO 101

Index 103

iv

CHAPTER 1

What is Sagan?

Sagan is a log analysis engine. It was designed with a Security Operations Center (SOC) in mind. This makes Sagan’s
operations different from most log analysis tools. Sagan is designed and meant to analyze logs across many different
platforms in many different locations. A driving principle behind Sagan is for it to do the “heavy lifting” analysis
before putting the event in front of a human. Another driving principle is to do all analysis of logs in “real time”. This
is also a differentiating factor of Sagan. In a SOC environment, waiting for hours for analysis simply isn’t an option.
Delaying analysis gives an attacker an advantage in that they will have been in your network undetected during that
lag time. If you are a security professional reading this, you likely understand the real-time aspects of packet analysis.
For example, security professionals would never accept prolonged delays in our Intrusion Detection and Intrusion
Prevention engines. Nor would reasonable security professionals find it acceptable to analyze packet data the next day
for security related events. With this in mind, we demand our packet analysis engines to work in real time or close to
it. This premise is how projects like Snort (https://snort.org) and Suricata (https://suricata-ids.org) function.

Sagan treats log data similar to how IDS or IPS treats packet data. In fact, Sagan treats the data so similarly, that Sagan
rules can confuse even the most seasoned security professionals.

1.1 License

Sagan is licensed under the GNU/GPL version 2.

1

https://snort.org
https://suricata-ids.org

Sagan User Guide Documentation, Release 1.2.2

2 Chapter 1. What is Sagan?

CHAPTER 2

Installation

Before Sagan can be used it has to be installed. Sagan can be installed on various distributions using binary packages;
however, these are typically out of date. Check your distribution to verify if the latest version of Sagan is available.

For people familiar with compiling their own software, the Source method is recommended.

2.1 libpcre (Regular Expressions)

Sagan uses libpcre to use ‘Perl Compatible Regular Expressions‘. This is used in many Sagan signatures and is a
required dependency.

To install libpcre on Debian/Ubuntu:

sudo apt-get install libpcre3-dev libpcre3

To install libpcre on Redhat/CentOS:

sudo yum install pcre-devel

To install libpcre on FreeBSD/OpenBSD:

cd /usr/ports/devel/pcre && make && sudo make install

To install libpcre on Gentoo:

emerge -av libpcre

2.2 libyaml (YAML configuration files)

Sagan uses libyaml to read in configurations files. This is a required dependency.

To install lbyaml on Debian/Ubuntue:

apt-get install libyaml-dev

To install libyaml on Redhat/CentOS:

3

Sagan User Guide Documentation, Release 1.2.2

yum install libyaml-devel

To install libyaml on FreeBSD/OpenBSD:

cd /usr/ports/textproc/libyaml/ && sudo make install

To install libyaml on Gentoo:

emerge -av libyaml

2.3 Other dependencies

While libpcre and libyaml are required Sagan dependencies, you’ll likely want Sagan to perform other functions
like parsing JSON data or writing data out in various formats. While these prerequisites are not required, you should
look them over for further functionality.

2.4 liblognorm (Normalization)

While not a required dependency, it is recommended that you install liblognorm. This library can be used by Sagan
to extract useful data from incoming log data. liblognorm is part of the rsyslog daemon. Note: Installing
liblognorm will automatically install libfastjson.

More information about liblognorm can be found at the LibLogNorm <https://FIXME>_ web site.

To install liblognorm on Debian/Ubuntu:

apt-get install liblognorm-dev liblognorm2

To install liblognorm on Redhat/Centos:

yum install liblognorm

To build liblognorm from source code, see ADD THIS IN

2.5 libfastjson (JSON)

If you install liblognorm, you do not need to install libfastjson as it is part of the liblognorm package.
The library is a fork of json-c by the rsyslog team. It has improvements which make parsing and building JSON
data faster and more efficent.

To install libfastjson on Debian/Ubuntu:

LOOK THIS UP

To install liblfastjson on Redhat/Centos:

LOOK THIS UP

To install libfastjson on FreeBSD/OpenBSD:

LOOK THIS UP

To install libjson on Gentoo:

LOOK THIS UP

To build libjson from source code, see ADD THIS IN

4 Chapter 2. Installation

Sagan User Guide Documentation, Release 1.2.2

2.6 libesmtp (SMTP)

Sagan has the ability as an output-plugin to send alerts via e-mail. If you would like this type of functionality,
you will need to install libesmtp.

To install libesmtp on Debian/Ubuntu:

apt-get install libesmtp-dev

To install libesmtp on FreeBSD/OpenBSD:

cd /usr/ports/mail/libesmtp && make && sudo make install

To install libesmtp on Gentoo:

emerge -av libesmtp

2.7 libmaxminddb (GeoIP)

Sagan can do GeoIP lookups of Internet Addresses. Rules that use this functionality are part of the -geoip.rules
rule sets. While not required, the data can be very useful.

To install libmaxminddb on Debian/Ubuntu:

apt-get install libmaxminddb0 libmaxminddb-dev geoip-database-contrib geoipupdate

To install libmaxminddb on Redhat/CentOS:

yum install GeoIP GeoIP-devel GeoIP-data

From time to time you will need to update your MaxMind GeoIP Lite Databases . Typcially, you’ll need to do
something like this:

Basic Maxmind GeoIP2 Country Code updates:

cd /usr/local/share/GeoIP2
sudo wget http://geolite.maxmind.com/download/geoip/database/GeoLite2-Country.tar.gz
sudo gzip -d GeoLite2-Country.tar.gz

2.8 hiredis (Redis)

Sagan has the ability to store flexbit data in a Redis database. This allows data to be shared over a distributed
enviornment. This feature is considered beta. To use this functionality you will need to install the hiredis library.

To install hiredis on Debian/Ubuntu:

apt-get install libhiredis-dev

To install hiredis on Redhat/CentOS:

sudo yum install redis

To install hiredis from source, see the Hiredis Github Page .

2.6. libesmtp (SMTP) 5

https://dev.maxmind.com/geoip/geoip2/geolite2/
https://redis.oi
https://github.com/redis/hiredis

Sagan User Guide Documentation, Release 1.2.2

2.9 libpcap (Sniffing logs)

By using the libpcap library, Sagan has the ability to ‘sniff’ unencrypted logs ‘off the wire’ and process them.
This can be useful for capturing logs in transit to a centralized log server. It can also be useful for testing Sagan’s
effectiveness before doing a full deployment. You will need a method to ‘capture’ the traffic off the wire. This is
typically done via a span port or a network tap.

To install libpcap on Debian/Ubuntu:

apt-get install libpcap-dev

To install libpcap on Redhat/CentOS:

yum install libpcap

To install libpcap on Gentoo:

emerge -av libpcap

6 Chapter 2. Installation

CHAPTER 3

Compiling Sagan

Installation from source distributions files.

Basic steps:

git clone https://github.com/beave/sagan
cd sagan
./autogen.sh
./configure
make
sudo make install

By default, Sagan builds with the --enable-lognorm (See liblognorm above) option enabled. Any other
options need to be manually enabled or disabled.

3.1 Quick start from source

The first example installs Sagan with the basics (all prerequisites and liblognorm).

Quick start with the bare basics:

sudo apt-get install libpcre3-dev libpcre3 libyaml-dev liblognorm-dev
wget https://quadrantsec.com/download/sagan-current.tar.gz
cd sagan-1.2.1
./configure
make
sudo make install

This example Quick start installs Sagan with more features including the required prerequisites, libognorm (log nor-
malization), libesmtp (e-mail support), libmaxminddb (GeoIP), hiredis (Redis), libpcap (sniffing logs).

7

Sagan User Guide Documentation, Release 1.2.2

3.2 A more complete quick start

This example installs Sagan with the most common and useful prerequisites.

A more complete quick start:

sudo apt-get install build-essential libpcre3-dev libpcre3 libyaml-dev liblognorm-dev
→˓libesmtp-dev libmaxminddb0 libmaxminddb-dev libhiredis-dev libpcap-dev liblognorm-
→˓dev libfastjson-dev libestr-dev
wget https://quadrantsec.com/download/sagan-1.x.x.tar.gz
tar -xvzf sagan-1.x.x.tar.gz
cd sagan-1.x.x
./configure --enable-geoip --enable-esmtp --enable-libpcap --enable-redis
make
sudo make install

3.3 Prerequisites

Before compiling and installing Sagan, your system will need some supporting libraries installed. The primary prereq-
uisites are libpcre, libyaml and libpthreads (note: most systems have libpthread installed by default).
While there are no other required dependencies other than these, you should look over the others for expanded func-
tionality. For example, liblognorm is not required but highly recommended.

3.4 Common configure options

--prefix=/usr/
Installs the Sagan binary in the /usr/bin. The default is /usr/local/bin.

--sysconfdir=/etc
Installs the Meer configuration file (meer.yaml) in the /etc directory. The default is /usr/local/etc/.

--with-libyaml_libraries
This option points Sagan to where the libyaml files reside.

--with-libyaml-includes
This option points Sagan to where the libyaml header files reside.

--disable-snortsam
This option disables Snortsam <http://www.snortsam.net/>_ support. Snortsam is a firewall blocking agent for
Snort.

--enable-esmtp
This option enabled Sagan’s ability to send data and alerts via e-mail. In order to use this functionality, you will
need libesmtp support (see above).

--with-esmtp-includes=DIR
This points configure to the libesmtp header files (see --enable-esmtp).

--with-esmtp-libraries=DIR
This points configure to the library location of libesmtp (see --enable-esmtp).

--enable-geoip
This option allows Sagan to do GeoIP lookups of TCP/IP addresses via the Maxmind GeoIP2 Lite to determine
countries of origin or destination.

8 Chapter 3. Compiling Sagan

https://dev.maxmind.com/geoip/geoip2/geolite2/

Sagan User Guide Documentation, Release 1.2.2

--with-geoip-includes=DIR
This points configure to the Maxmind GeoIP header data (see --enable-geoip).

--with-geoip-libraries=DIR
This points configure to the Maxmind GeoIP library location (see --enable-geoip).

--disable-syslog
By default, Sagan can send alerts to syslog. This option disables this feature.

--enable-system-strstr
By default, Sagan uses a built in assembly version of the C function strstr() for rule content checks. This
code is CPU specific and may cause issues on non-x86 hardware. This option disables Sagans built in strstr
and uses the default operating system’s strstr. This option is useful when building Sagan on embedded
systems.

--enable-redis
Sagan has the ability to store flexbits in a Redis database. This option enables this Redis feature. You need
the libhiredis library installed (see libhiredis above).

--disable-lognorm
Sagan uses liblognorm to ‘normalize’ log data. This disables that feature.

--with-lognorm-includes=DIR
Points configure to the liblognorm header files.

--with-lognorm-libraries=DIR
Points configure to the liblognorm library.

--enable-libpcap
This option enables Sagan to ‘sniff’ logs off the network. The libpcap library needs to be installed (see
libpcap above).

--with-libpcap-includes=DIR
Points configure to the libpcap header files.

--with-libpcap-libraries=DIR
Points configure to the libpcap library directory (see libpcap above).

--disable-libfastjson
This option disables processing and producting JSON output. Note: Using liblognorm automatically enables
this feature. You probably don’t want to do with

--with-libfastjson-includes=DIR
Points configure to the libfastjson header files.

--with-libfastjson-libraries=DIR
Points configure to the libfastjson library directory.

--enable-bluedot
Bluedot is <Quadrant Information Security’s <https://quadrantsec.com>‘_ ‘Threat Intelligence’ plateform. This
allows Sagan to perform lookups of TCP/IP addresses, file hashes, etc. Note: You likely do not need this
option as the API is not publically available at this time.

--with-libpthread-includes=DIR
Points configure to the libpthread header files.

--with-libpthread-libraries=DIR
Points configure to the libpthread library directory.

--with-libyaml-includes=DIR
Points configure to the libyaml header files.

3.4. Common configure options 9

https://quadrantsec.com

Sagan User Guide Documentation, Release 1.2.2

--with-libyaml-libraries=DIR
Points configure to the libyaml library directory.

--with-libpcre-includes=DIR
Points configure to the libpcre header files.

--with-libpcre-libraries=DIR
Points configure to the libpcre library directory.

3.5 Post-installation setup and testing

Create a “sagan” user and related directories:

sudo useradd --system -d /var/sagan -s /bin/false sagan
sudo mkdir -p /var/sagan/fifo /var/log/sagan /var/run/sagan
sudo mkfifo /var/sagan/fifo/sagan.fifo
sudo chmod 420 /var/sagan/fifo/sagan.fifo
sudo chown -R sagan:sagan /var/sagan /var/log/sagan /var/run/sagan

Checkout the “sagan-rules” repository into /usr/local/etc/sagan-rules:

cd /usr/local/etc
sudo git clone https://github.com/beave/sagan-rules

To test, run sagan --debug syslog,engine as the root user. It will switch to the sagan user when ready, and
remain running in the foreground.

Manually generate a test syslog message in “pipe” format:

echo "192.0.2.1|local0|info|info|sshd|2001-01-01|00:00:00|sshd| User ubuntu not
→˓allowed because shell /etc/passwd is not executable" |
sudo tee /var/sagan/fifo/sagan.fifo

From the sagan process, you should see the syslog message received and rules triggered:

[D] [processor.c, line 168] **[Parsed Syslog]*********************************
[D] [processor.c, line 169] Host: 192.0.2.1 | Program: sshd | Facility: local0 |
→˓Priority: info | Level: info | Tag: sshd | Date: 2001-01-01 | Time: 00:00:00
[D] [processor.c, line 170] Parsed message: User ubuntu not allowed because shell /
→˓etc/passwd is not executable
[D] [processors/engine.c, line 1543] **[Trigger]*********************************
[D] [processors/engine.c, line 1544] Program: sshd | Facility: local0 | Priority:
→˓info | Level: info | Tag: sshd
[D] [processors/engine.c, line 1545] Threshold flag: 0 | After flag: 0 | Flexbit
→˓Flag: 0 | Flexbit status: 0
[D] [processors/engine.c, line 1546] Triggering Message: User ubuntu not allowed
→˓because shell /etc/passwd is not executable
[D] [processors/engine.c, line 1543] **[Trigger]*********************************
[D] [processors/engine.c, line 1544] Program: sshd | Facility: local0 | Priority:
→˓info | Level: info | Tag: sshd
[D] [processors/engine.c, line 1545] Threshold flag: 0 | After flag: 0 | Flexbit
→˓Flag: 0 | Flexbit status: 0
[D] [processors/engine.c, line 1546] Triggering Message: User ubuntu not allowed
→˓because shell /etc/passwd is not executable

The alert data is written to /var/log/sagan/alert.log:

10 Chapter 3. Compiling Sagan

Sagan User Guide Documentation, Release 1.2.2

[**] [1:5000020:4] [OPENSSH] Not executable shell - login attempt [**]
[Classification: unsuccessful-user] [Priority: 1] [192.0.2.1]
[Alert Time: 10-28-2019 15:25:44.584658]
2001-01-01 00:00:00 192.0.2.1:514 -> 192.0.2.1:22 local0 info sshd
Message: User ubuntu not allowed because shell /etc/passwd is not executable
[Xref => http://wiki.quadrantsec.com/bin/view/Main/5000020]

[**] [1:5000077:3] [OPENSSH] Attempt to login using a denied user [**]
[Classification: unsuccessful-user] [Priority: 1] [192.0.2.1]
[Alert Time: 10-28-2019 15:25:44.584658]
2001-01-01 00:00:00 192.0.2.1:514 -> 192.0.2.1:22 local0 info sshd
Message: User ubuntu not allowed because shell /etc/passwd is not executable
[Xref => http://wiki.quadrantsec.com/bin/view/Main/5000077]

Notice that this particular message triggers two rules - you can find them both in /usr/local/etc/
sagan-rules/openssh.rules by searching for the rule IDs.

Finally, configure the system to run the daemon in the background. Create /etc/systemd/system/sagan.
service containing:

[Unit]
Description=Sagan daemon
Documentation=https://sagan.readthedocs.io/
Before=rsyslog.service syslog-ng.service

[Service]
User=sagan
Group=sagan
EnvironmentFile=-/etc/default/sagan
ExecStart=/usr/local/sbin/sagan $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
Restart=on-failure

[Install]
WantedBy=multi-user.target

Then load and start it:

sudo systemctl daemon-reload
sudo systemctl start sagan
sudo systemctl enable sagan

3.5. Post-installation setup and testing 11

Sagan User Guide Documentation, Release 1.2.2

12 Chapter 3. Compiling Sagan

CHAPTER 4

Syslog Configuration

Sagan typically receives its data from a third party daemon. This is typically something like rsyslog, syslog-ng
or nxlog. The first step is to get one of those systems set up.

4.1 rsyslog - “pipe” mode

Below is a simple rsyslog configuration to output to Sagan in a legacy “pipe” delimited format. The Sagan
input-type (set in the sagan.yaml) will need to be set to pipe. For more information, consult the rsyslog
documentation for templates, properties and the property replacer.

Example rsyslog “pipe” configuration, can be installed as /etc/rsyslog.d/10-sagan.conf:

template(name="SaganPipe" type="list") {
property(name="fromhost-ip")
constant(value="|")
property(name="syslogfacility-text")
constant(value="|")
property(name="pri")
constant(value="|")
property(name="syslogseverity-text")
constant(value="|")
property(name="syslogtag")
constant(value="|")
property(name="timereported" dateformat="year")
constant(value="-")
property(name="timereported" dateformat="month")
constant(value="-")
property(name="timereported" dateformat="day")
constant(value="|")
property(name="timereported" dateformat="hour")
constant(value=":")
property(name="timereported" dateformat="minute")
constant(value=":")

(continues on next page)

13

https://www.rsyslog.com/doc/v8-stable/configuration/
https://www.rsyslog.com/doc/v8-stable/configuration/templates.html
https://www.rsyslog.com/doc/v8-stable/configuration/properties.html
https://www.rsyslog.com/doc/v8-stable/configuration/property_replacer.html

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

property(name="timereported" dateformat="second")
constant(value="|")
property(name="programname")
constant(value="|")
Note: already escaped if EscapecontrolCharactersOnReceive is on (default)
property(name="msg" controlcharacters="escape")
constant(value="\n")

}

. action(type="ompipe" pipe="/var/sagan/fifo/sagan.fifo" template="SaganPipe")

NOTE: rsyslog’s “msg” property includes the space after the colon. This is important because Sagan’s liblognorm
rules also expect the leading space.

To receive over UDP you’ll also need to uncomment these lines in /etc/rsyslog.conf:

provides UDP syslog reception
module(load="imudp")
input(type="imudp" port="514")

Set appropriate permissions on the fifo before restarting rsyslog. (Beware: if you run sagan as root, it will reset them
back again):

sudo chown sagan:syslog /var/sagan/fifo/sagan.fifo
sudo chmod 420 /var/sagan/fifo/sagan.fifo
sudo systemctl restart rsyslog

To test:

logger -t sshd "User ubuntu not allowed because shell /etc/passwd is not executable"

4.2 rsyslog - JSON mode

Below is a simple rsyslog configuration to output to Sagan in a “JSON” format. The Sagan input-type (set in the
sagan.yaml) will need to be set to json. You will also need to set your json-software to rsyslog.

This uses rsyslog’s standard JSON output:

template(name="SaganJson" type="list") {
property(name="jsonmesg")
constant(value="\n")

}

. action(type="ompipe" pipe="/var/sagan/fifo/sagan.fifo" template="SaganJson")

It formats messages as per the following sample:

{
"msg": " Stopping System Logging Service...",
"rawmsg": "<30>Oct 28 16:32:13 systemd[1]: Stopping System Logging Service...",
"timereported": "2019-10-28T16:32:13.970608+00:00",
"hostname": "sagan",
"syslogtag": "systemd[1]:",
"inputname": "imuxsock",

(continues on next page)

14 Chapter 4. Syslog Configuration

https://www.rsyslog.com/log-normalization-and-the-leading-space/
https://github.com/beave/sagan/issues/145
https://github.com/beave/sagan/issues/145
https://www.rsyslog.com/doc/v8-stable/configuration/

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

"fromhost": "sagan",
"fromhost-ip": "127.0.0.1",
"pri": "30",
"syslogfacility": "3",
"syslogseverity": "6",
"timegenerated": "2019-10-28T16:32:13.970608+00:00",
"programname": "systemd",
"protocol-version": "0",
"structured-data": "-",
"app-name": "systemd",
"procid": "1",
"msgid": "-",
"uuid": null,
"$!": null

}

Unfortunately it does not include the text versions of the facility and severity, nor format the date and time the way
Sagan expects. So an alternative approach is to build up the JSON message explicitly containing the required fields:

template(name="SaganJson" type="list") {
constant(value="{")
property(name="fromhost-ip" format="jsonf")
constant(value=",")
property(name="syslogfacility-text" format="jsonf")
constant(value=",")
property(name="pri" format="jsonf")
constant(value=",")
property(name="syslogseverity-text" format="jsonf")
constant(value=",")
property(name="syslogtag" format="jsonf")
constant(value=",\"date\":\"")
property(name="timereported" dateformat="year")
constant(value="-")
property(name="timereported" dateformat="month")
constant(value="-")
property(name="timereported" dateformat="day")
constant(value="\",\"time\":\"")
property(name="timereported" dateformat="hour")
constant(value=":")
property(name="timereported" dateformat="minute")
constant(value=":")
property(name="timereported" dateformat="second")
constant(value="\",")
property(name="programname" format="jsonf")
constant(value=",")
property(name="msg" format="jsonf")
constant(value="}\n")

}

. action(type="ompipe" pipe="/var/sagan/fifo/sagan.fifo" template="SaganJson")

To use this, set your json-software to rsyslog-alt.

4.2. rsyslog - JSON mode 15

Sagan User Guide Documentation, Release 1.2.2

4.3 syslog-ng - “pipe” mode

Below is a simple Syslog-NG configuration to output to Sagan in a legacy “pipe” delimited format. For more complex
configurations, please consult the syslog-ng documentation. The Sagan input-type (set in the sagan.yaml)
will need to be set to pipe.

Example syslog-ng “pipe” configuration:

Sources of log data.

source s_src { system(); internal(); }; # Internal
source syslog_in { udp(port(514)); }; # UDP port 514

A "destination" to send log data to. In our case, a named pipe (FIFO)

destination sagan_fifo {
pipe("/var/sagan/sagan.fifo"
template("$SOURCEIP|$FACILITY|$PRIORITY|$LEVEL|$TAG|$YEAR-$MONTH-$DAY|$HOUR:$MIN:

→˓$SEC|$PROGRAM| $MSG\n")
template-escape(no)
);

};

This line ties the sources and destinations together.

log { source(s_src); destination(sagan_fifo); };
log { source(syslog_in); destination(sagan_fifo); };

4.4 syslog-ng - JSON mode

Below is a simple Syslog-NG configuration to output to Sagan in a “JSON” format. For more complex configurations,
please consult the syslog-ng documentation. The Sagan input-type (set in the sagan.yaml) will need to be
set to json. You will also need to set your json-software to syslog-ng.

Using the Sagan JSON format allows for more flexibility with the log data and is recommended.

Example syslog-ng JSON configuration:

Sources of log data.

source s_src { system(); internal(); }; # Internal
source syslog_in { udp(port(514)); }; # UDP port 514

A "destination" to send log data to. In our case, a named pipe (FIFO)

destination sagan_fifo {
pipe("/var/sagan/sagan.fifo"
template("$(format-json --scope selected_macros --scope nv_pairs)\n"));
};

This line ties the sources and destinations together.

log { source(s_src); destination(sagan_fifo); };
log { source(syslog_in); destination(sagan_fifo); };

16 Chapter 4. Syslog Configuration

https://www.syslog-ng.com/
https://www.syslog-ng.com/

Sagan User Guide Documentation, Release 1.2.2

4.5 nxlog

4.6 other sources

4.5. nxlog 17

Sagan User Guide Documentation, Release 1.2.2

18 Chapter 4. Syslog Configuration

CHAPTER 5

Sagan Configuration

The primary Sagan configuration file is sagan.yaml. Its default location is the /usr/local/etc directory.

Comments within the sagan.yaml file start with a ‘#’. Stand-alone comments (on lines of their own) and comments
after statements are valid.

The sagan.yaml is broken up in several parts. Those parts are vars, sagan-core, processors, outputs
and rule-files.

5.1 Sagan with JSON input

Sagan reads data from your favorite syslog daemon (rsyslog, syslog-ng, nxlog, etc) via a “named pipe” (also known
as a FIFO). A named pipe operates similarly to a file but with the writer (your syslog daemon) and a reader (Sagan).
Rather than the contents being written to a disk or file, the data is stored in kernel memory. This data will wait in
kernel memory until a process (Sagan) reads it. Named pipes (FIFOs) allow for separate processes to communicate
with each other. Since this happens in kernel memory, the communications is extremely fast.

In order for the writer (syslog daemon) and reader (Sagan) to be able to share data, there has to be a standard between
the two. Traditionally, Sagan required the syslog daemon to write data to the file in a very specific format. This was
done by a delimiting the data via the ‘|’ (pipe) symbol. This format was similar to a CSV file.

A newer and more flexible way for the writer (syslog daemon) and reader (Sagan) to share data is via JSON. Many
modern day syslog daemons offer a JSON output format. This is the ideal method of sharing data as it allows the data
to be more dynamic.

Sagan-core configurations for JSON

In the sagan-core section, in the sub section core is where you can set the input-type. There are two valid
options. The legacy pipe format or json. If you are using the legacy pipe format, as long as both the syslog
daemon can write to the named pipe in the proper format (see Syslog Configuations), there are no other
configurations.

If you want to use the input-type of json, you’ll need to specify the mapping type. Below is an example section
of the input-type

19

Sagan User Guide Documentation, Release 1.2.2

input-type: json # pipe or json
json-map: "$RULE_PATH/json-input.map" # mapping file if input-type: json
json-software: syslog-ng # by "software" type.

The json-map is a mapping file to assist Sagan in decoding JSON supplied by your syslog daemon. The
json-software configures Sagan “what” JSON map to use in the json-map.

For example, let’s say your syslog daemon is Syslog-NG configured to send JSON to the named pipe (JSON). The
data going into the pipe might look similar to this:

{"TAGS":".source.s_src","SOURCEIP":"127.0.0.1","SEQNUM":"3341","PROGRAM":"sshd",
→˓"PRIORITY":"info","PID":"23233","MESSAGE":"Failed password for root from 218.92.0.
→˓190 port 34979 ssh2","LEGACY_MSGHDR":"sshd[23233]: ","HOST_FROM":"dev-2","HOST":
→˓"dev-2","FACILITY":"auth","DATE":"Apr 3 03:00:46"}

Sagan needs to be able to identify the fields within the Syslog-NG formated JSON data. Within the json-map file,
we have this line:

{"software":"syslog-ng","syslog-source-ip":"SOURCEIP","facility":"FACILITY","level":
→˓"PRIORITY","priority":"PRIORITY","time":"DATE","date":"DATE","program":"PROGRAM",
→˓"message":"MESSAGE"}

This maps the Syslog-NG fields to internal fields for Sagan to understand. For example, Sagan expects a “message”
field. Syslog-NG has this field named “MESSAGE”. This mapping maps “message” = “MESSAGE”. Sagan’s internal
“syslog-source-ip” is mapped the Syslog-NG “SOURCEIP” field, and so on.

Take special note of the “software” at the beginning of the JSON input mapping file. This is the name of the “mapping”
which is set in the sagan.yaml. In our example, the json-software field is set to syslog-ng. The mapping
file contains mappings for multiple software types (syslog-ng, rsyslog, nxlog, etc). The json-software tells Sagan
which mapping you want to use.

5.1.1 Sagan JSON variables

"software": "{software type}"
This is the name of the mapping. This is used in the Sagan YAML json-software type.

5.1.2 Mappings:

“syslog-source-ip”
TCP/IP address of where the log originated from. Typically the syslog server.

"facility"
Syslog facility.

"level"
Syslog level.

"priority"
Syslog priority.

"time"
Syslog timestamp.

"date"
Syslog date.

20 Chapter 5. Sagan Configuration

Sagan User Guide Documentation, Release 1.2.2

"message"
Syslog “message” field. This is the only required option.

5.1. Sagan with JSON input 21

Sagan User Guide Documentation, Release 1.2.2

22 Chapter 5. Sagan Configuration

CHAPTER 6

vars

The var section of the sagan.yaml is a place reserved for declaring variables for the Sagan system to use. Using
variables can be useful when you have multiple rules that use semi dynamic content. For example, let’s say you have
a signature that looks for a combination of users. In the vars area, you might set up a variable like this:

USERSNAME "bob, frank, mary, david"

Within a signature, you would then reference $USERNAME to have access to the values in that variable. If at a later
date you wish to add or remove values from that variable, all signatures will adopt the new variable’s values.

Variables can also be used within the sagan.yaml file. For example, when you set the RULE_PATH variable, it
can be used within signatures but also within the sagan.yaml. By doing this, it allows you one location to make
changes across multiple configuration options or signatures.

The vars section of the sagan.yaml is broken into subsections. These subsections are sagan-groups,
address-groups, port-groups, geoip-groups, aetas-groups, mmap-groups, misc-groups.
Each group has its own purpose and function. In the majority of cases, if you want to define variables of your own,
you would put them in the misc-groups subsection.

The sagan-groups section is reserved for core Sagan function. For example, where to store lock files, where the
FIFO (named pipe) is located for Sagan to read data from, where to store logs, etc.

Example sagan-groups subsection:

vars:

'Core' variables used by Sagan.

sagan-groups:

FIFO: "/var/sagan/fifo/sagan.fifo"
RULE_PATH: "/usr/local/etc/sagan-rules"
LOCKFILE: "/var/run/sagan/sagan.pid"
LOG_PATH: "/var/log/sagan"

The address-groups is an area to define your network. This is where you define values like $HOME_NETWORK
and $EXTERNAL_NETWORK. In the majority of cases, you’ll likely want to leave these any and any. You can

23

Sagan User Guide Documentation, Release 1.2.2

create your own separate network groups here. For example, you could create a new variable INTERNAL_NETWORK.
Addresses in this group are in the standard CIDR network notation. For example:

INTERNAL_NETWORK [10.0.0.0/8, 192.168.0.0/16]

Example address-groups subsection:

HOME_NET and EXTERNAL_NET function similar to Suricata/Snort. However,
it's rare you'll want to set them. In most situations leaving it set
to "any" is best.

address-groups:

HOME_NET: "any"
EXTERNAL_NET: "any"

The port-groups is an area to define common ports and protocols. This section allows you to tailor ports used
within your organization. For example, you might run SSH port TCP port 2222 rather than port 22. If you modified
the variable in this section, it will be adopted by the rest of the rules.

Example port-groups subsection:

Common ports used by common protocols. These variables are used by
rule sets.

port-groups:

SSH_PORT: 22
HTTP_PORT: 80
HTTPS_PORT: 443
TELNET_PORT: 23
DNS_PORT: 53
SNMP_PORT: 161
POP3_PORT: 110
IMAP_PORT: 143
SMTP_PORT: 25
MYSQL_PORT: 3306
MSSQL_PORT: 1433
NTP_PORT: 123
OPENVPN_PORT: 1194
PPTP_PORT: 1723
FTP_PORT: 21
RSYNC_PORT: 873
SQUID_PORT: 3128

The geoip-groups relate to the *-geoip.rules sets. This allows you to set your organization’s locations. The
*-geoip.rules can then monitor for usage within your network from outside of your HOME_COUNTRY.

Example geoip-groups subsection:

If you are using the -geoip rule sets & Sagan is compile with Maxmind
GeoIP2 support (https://github.com/maxmind/libmaxminddb/releases),
you'll want to define your $HOME_COUNTRY. ISO GeoIP country codes can
be found at http://dev.maxmind.com/geoip/legacy/codes/iso3166/

geoip-groups:

HOME_COUNTRY: "US,CA"

24 Chapter 6. vars

Sagan User Guide Documentation, Release 1.2.2

The aetas-groups relate to the *-aetas.rules sets. This allows you to define your organization’s normal
“work” hours. The *-aetas.rules can then monitor network usage and tool usage at defined hours of the day.

Example aetas-groups subsection:

If you want to use -aetas, also known as time based rule sets, you'll
want to define the $SAGAN_HOURS and $SAGAN_DAYS variables. $SAGAN_HOURS is
considered "normal" hours in a 24 hour clock format from "start time" to
"end time". $SAGAN_DAYS is the day of the week (0 == Sunday ->
Saturday). For more information, see:

aetas-groups:

SAGAN_HOURS: "0700-1800"
SAGAN_DAYS: "12345"

The mmap-groups allow you to set variables used later in the sagan.yaml to set storage sizes for mmap() files.
These variables are used later in the sagan-core section.

Example mmap-groups subsection:

Variable for the max number of entries Sagan will retain via IPC.

mmap-groups:

MMAP_DEFAULT: 10000

The misc-groups is a generic area to add variables. If you want to add a variable to the sagan.yaml file, this is
likely the area you want to add them to.

Example misc-groups subsection:

misc-groups:

CREDIT_CARD_PREFIXES: "4,34,37,300,301,302,303,304,305,2014,2149,309,36,38,39,54,55,
→˓6011,6221,6222, 6223,6224,6225,6226,\

6227,6228,6229,644,645,646,647,648,649,65,636,637,638,639,22,
→˓23,24,25,26,27,51,52,53,53,55"

RFC1918: "10.,192.168.,172.16.,172.17.,172.18.,172.19.,172.20.,172.21.,172.22.,172.
→˓23.,172.24.,172.25.,172.26.,172.27.,\

172.28.,172.29.,172.30.,172.31."

$WINDOWS_DOMAINS is used by some Windows rule sets to determine if a log
message contains or does not contain a valid DOMAIN for your organization.
For more information, see:
#
https://quadrantsec.com/about/blog/detecting_pass_the_hash_attacks_with_sagan_in_

→˓real_time/

WINDOWS_DOMAINS: "MYCOMPANYDOMAIN,EXAMPLEDOMAIN,ANOTHER_DOMAIN"

Known valid Microsoft PSExec MD5 sums. Versions v1.98, v2.00, v2.10, v2.11, v2.
→˓11 (2016).

PSEXEC_MD5: "CD23B7C9E0EDEF184930BC8E0CA2264F0608BCB3,
→˓9A46E577206D306D9D2B2AB2F72689E4F5F38FB1,\

2EDEEFB431663F20A36A63C853108E083F4DA895,
→˓B5C62D79EDA4F7E4B60A9CAA5736A3FDC2F1B27E,\

(continues on next page)

25

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

A7F7A0F74C8B48F1699858B3B6C11EDA"

26 Chapter 6. vars

CHAPTER 7

sagan-core

The sagan-core section defines internal Sagan core functionality. In this section, you can setup Sagan to receive
data in different formats, how different data parsers work, tuning and other items.

The sagan-core is broken into subsections. They are core, parse_ip, selector, redis-server,
mmap-ipc, ignore_list, geoip, liblognorm and plog.

7.1 core

The core subsection defines and sets some important information in the sagan.yaml configuration. Items
like the default-host are used for when Sagan cannot normalize or find IP addresses it needs. The default
default-port and default-proto are used for similar purposes.

One important item is the max-threads. This directly controls how much data Sagan can process at any given time.
If you find yourself in a situation where Sagan is dropping logs, you likely need to increase this value.

The core is also the area where you can point Sagan to external data. For example, the classifications file
assigns priority numbers to different classification levels. The references is a pointer to addresses that Sagan can
point users to find more information about an alert.

The flexbit-storage tells Sagan “how” to store flexbit information. In most cases, you’ll want to leave this
default (mmap).

The input-type tells what format Sagan will receive data via the named PIPE (FIFO). Traditionally, Sagan uses
a “pipe” delimited format. Sagan is increasingly moving to a JSON format and the JSON format will become the
default. See the Syslog Configuration portion of this document for more information.

Example core subsection:

core:

sensor-name: "default_sensor_name" # Unique name for this sensor (no spaces)
default-host: 192.168.2.1
default-port: 514

(continues on next page)

27

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

default-proto: udp
dns-warnings: disabled
source-lookup: disabled
fifo-size: 1048576 # System must support F_GETPIPE_SZ/F_SETPIPE_SZ.
max-threads: 100
classification: "$RULE_PATH/classification.config"
reference: "$RULE_PATH/reference.config"
gen-msg-map: "$RULE_PATH/gen-msg.map"
protocol-map: "$RULE_PATH/protocol.map"
flexbit-storage: mmap # flexbit storage engine. ("mmap" or "redis")
xbit-storage: mmap # xbit storage engine. ("mmap" or "redis")

Sagan can sends logs in "batches" for performance reasons. In most
environments, you'll likely want to set this to 10. For more busy
environments you may want to set this to 100. This should allow Sagan
to comfortably process up to 5k events per/second (EPS). If you are
looking at rates higher than 5k EPS, please read:
#
https://sagan.readthedocs.io/en/latest/high-performance.html
#
The default setting is 1 which doesn't lead to the best performance.
If you get more than 10 events per/second, you might want to increase
the batch-size to 10.

batch-size: 1

Controls how data is read from the FIFO. The "pipe" setting is the traditional
way Sagan reads in events and is the default. "json" is more flexible and
will become the default in the future. If "pipe" is set, "json-map"
and "json-software" have no function.

input-type: pipe # pipe or json
json-map: "$RULE_PATH/json-input.map" # mapping file if input-type: json
json-software: syslog-ng # by "software" type.

"parse-json-message" allows Sagan to detect and decode JSON within a
syslog "message" field. If a decoder/mapping is found, then Sagan will
extract the JSON values within the messages. The "parse-json-program"
tells Sagan to start looking for JSON within the "program" field. Some
systems (i.e. - Splunk) start JSON within the "program" field and
into the "message" field. This option tells Sagan to "append" the
strings together (program+message) and then decode. The "json-message-map"
tells Sagan how to decode JSON values when they are encountered.

parse-json-message: disable
parse-json-program: disable
json-message-map: "$RULE_PATH/json-message.map"

7.1.1 sensor-name

The sensor-name is a unique human readable name of the Sagan instances. This is used to identify data sources.
For example, Sagan can write flexbits to a shared database. The sensor-name can help identify which Sagan
instance wrote which flexbit.

28 Chapter 7. sagan-core

Sagan User Guide Documentation, Release 1.2.2

7.1.2 default-host

The default-host is the TCP/IP address of the Sagan system. This is used in cases where Sagan is unable to
normalize data. Set this to your local IP addess.

7.1.3 default-port

The default-port is used when Sagan cannot normalize the destination port from a log message. When that
happens, this value is used.

7.1.4 default-proto

The default-proto is the default protocol Sagan uses when the protocol cannot be normalized from a log message.
Valid types are udp, tcp` and ``icmp.

7.1.5 dns-warnings

If Sagan receives a hostname rather than an IP address from a syslog server, Sagan has the ability to do an “A record”
lookup. If Sagan is unable to do a DNS lookup, it will emit a DNS warning message. The dns-warnings option
disables those warnings. The source-lookup option must be enabled for this to have any effect. By default, this
option is disabled.

7.1.6 source-lookup

If enabled, the source-lookup option will force Sagan to do a DNS A record lookup when it encounters a hostname
rather than an IP address. Sagan performs some internal DNS caching but there is a performance penalty when this
option is enabled. Also see dns-warnings. This option is disabled by default.

7.1.7 fifo-size

The fifo-size lets Sagan adjust the size of the named pipe (FIFO). The named pipe is how Sagan gets logs from
syslog daemons like rsyslog, syslog-ng and nxlog. By default, most systems set the named pipe size at 63356
bytes. For performance reasons, we set the named pipe to the largest size possible. That size is 1048576 bytes, which
is what Sagan defaults to. Valid values are 65536, 131072, 262144, 524288 and 1048576.

7.1.8 max-threads

The max-threads allows you to adjust how many worker threads Sagan spawns. Threads are what do the bulk of
the log and data analysis work. Threads are used for CPU intensive analysis along with high latency operations. The
busier the system is, the more threads you will need. Threads are also dependent on the type of processors enabled.
Some processors, such as threat intelligence lookups require more time to complete. These require idle threads to
do those lookups. The proper number of threads is largely dependent on several factors. Start at 100 and monitor the
system’s performance. While running Sagan in the foreground, monitor the Thread Exhaustion statistics. This
will let you know if Sagan is running out of threads. If this number goes up, increase the number of threads available
to Sagan. The default max-threads is set to 100.

7.1. core 29

Sagan User Guide Documentation, Release 1.2.2

7.1.9 classification

This points Sagan to the classications.config. The classifications.config is a file that maps clas-
sification types (ie - “attempted recon”) to a priority level (ie - “1”). This data is used in rules via the classtype
keyword.

https://github.com/beave/sagan-rules/blob/master/classification.config

7.1.10 gen-msg-map

The gen-msg-map is used to point processors to their “generator id”. The Sagan engine uses an ID of “1”. This
file is used to assign other processors other IDs.

https://github.com/beave/sagan-rules/blob/master/gen-msg.map

7.1.11 reference

The reference option points Sagan to where the reference.config file is located on the file system. This file
is used with the reference rule keyword.

https://github.com/beave/sagan-rules/blob/master/reference.config

7.1.12 protocol-map

The protocol-map is a simple method that Sagan can use to assign a TCP/IP protocol to a log message. The
protocol-map contains either keywords to search for within a log “message” or within a “program” field. For
example, if Sagan sees that the program “sshd” is in use, it will assign a TCP/IP protocol of TCP because the protocol
SSH uses SSH. Another example might be a router log that contains the term “TCP” or “icmp” in it. Sagan will “see”
this and assign the protocol within the log message internally. The protocol-map is used by the parse_proto
rule keyword.

https://github.com/beave/sagan-rules/blob/master/protocol.map

7.1.13 flexbit-storage

The flexbit-storage tells Sagan how to store flexbit data. The default is mmap (memory mapped files).
Sagan can also store flexbit data in a Redis database. To use the Redis value, Sagan will need to be compiled with
hiredis support.

7.1.14 xbit-storage

The xbit-storage tells Sagan how to store xbit data. The default is mmap (memory mapped files). Sagan can
also store xbit data in a Redis database. To use the Redis value, Sagan will need to be compiled with hiredis
support.

7.1.15 batch-size

The batch-size option lets you set how much data can be passed from Sagan’s master/main thread to “worker”
threads (set by max-threads). This option can be very important in performance tuning in high data processing
environments. The number specified in this option represents how many “log lines” will be passed. By default, it is
set to 1. This means every time that Sagan gets a log line, it will pass it to a worker threads. This isn’t very efficient

30 Chapter 7. sagan-core

https://github.com/beave/sagan-rules/blob/master/classification.config
https://github.com/beave/sagan-rules/blob/master/gen-msg.map
https://github.com/beave/sagan-rules/blob/master/reference.config
https://github.com/beave/sagan-rules/blob/master/protocol.map
https://redis.io
https://redis.io

Sagan User Guide Documentation, Release 1.2.2

and there is a performance penalty. If you are in an environment where you expect to process more than 10 events
per/second (10 EPS), consider bumping this up to 10 or even the max of 100. If you are processing 50k EPS or more,
see the “High Performance Considerations” of this document.

7.1.16 input-type

The input-type tells Sagan how to decode data it receives from the named pipe. There are two option; pipe or
json. The pipe format is a legacy Sagan format. Data is received in the named pipe in a CSV format seperated by
the ‘|’ symbol. The newer json option tells Sagan to decode the data from the named pipe in a JSON format. When
using the json, you will also need to set the json-map and json-software. If you are using the pipe value,
no other options are needed. To use the json option, Sagan will need to be compiled with the libfastjson or
liblognorm.

7.1.17 json-map

The json-map works in conjuction with the input-type of json. The json-nap tells Sagan where to load
a mapping table of different software types (ie - rsyslog, syslog-ng, etc) and their associated JSON decode
mappings. The data in this file is used with the json-software option to tell Sagan how do decode incoming JSON
data from the named pipe. To use the json-map option, Sagan will need to be compiled with the libfastjson or
liblognorm.

https://github.com/beave/sagan-rules/blob/master/json-input.map

7.1.18 json-sofware

The json-software tells Sagan which “map” to use from the json-map file that has been loaded. This mapping
tells Sagan how to decode JSON data from the named pipe.

To use the json-software option, Sagan will need to be compiled with the libfastjson or
liblognorm.

7.1.19 parse-json-message:

The parse-json-message allows Sagan to automatically detect and decode JSON data within a “message” field
of a log line. The option is used in conjuction with parse-message-map and requires that Sagan be compiled with
libfastjson or liblognorm support.

7.1.20 parse-json-program:

The parse-json-program allows Sagan to detect JSON that starts within the “program” section of a log message.
In certain situations, some systems start JSON within the “program” field rather than within the “message” field. When
this happens, Sagan detects it and joins the “program” and “message” fields together (as one data source). Once that
is done, the data can be decoded. This option is used in conjunction with parse-message-map and requires that
Sagan be compiled with libfastjson or liblognorm support.

7.1.21 json-message-map:

The json-message-map logs a mapping table for use with parse-json-message and
parse-json-program. When Sagan detects JSON via parse-json-message and/or via
parse-json-program, it will attempt to apply mappings from this file. The “best mapping” wins. That

7.1. core 31

https://github.com/beave/sagan-rules/blob/master/json-input.map

Sagan User Guide Documentation, Release 1.2.2

is, the mapping with the most fields identified will “win” and Sagan will use that mapping with the log message. This
can be useful for directly processing Suricata EVE logs and Splunk forwarded logs.

https://github.com/beave/sagan-rules/blob/master/json-input.map

7.2 parse_ip

The parse_ip subsection controls how the Sagan rule keywords parse_src_ip and parse_dst_ip function
from within rules. The ipv4-mapped-ipv6 determines how Sagan will work with IPv4 addresses mapped as IPv6.
If ipv4-mapped-ipv6 is enabled, Sagan will re-write IPv6 mapped addresses (for example ffff::192.168.1.1) to
normal IPv4 notation (192.168.1.1).

Example parse_ip subsection:

This controls how "parse_src_ip" and "parse_dst_ip" function within a rule.

parse-ip:
ipv6: enabled # Parse IPv6 Addresses
ipv4-mapped-ipv6: disabled # Map ffff::192.168.1.1 back to 192.168.1.1

7.3 selector

The selector can be used in “multi-tenant” environments. This can be useful if you have multiple organizational
logs going into one named pipe (FIFO) and you wish to apply rule logic on a per sensor/organization level. The name
is the keyword that identifies the selector.

Example selector subsection:

The "selector" adds "multi-tenancy" into Sagan. Using the "selector" allows Sagan
→˓to
track IP source, IP destinations, etc. in order to ensure overlapping logs from
→˓different
environments are tracked separately.

selector:
enabled: no
name: "selector name" # Log entry must be normalized and this value must

be present in the normalized result

7.4 redis-server (experimental)

The redis-server is a beta feature that allows Sagan to store flexbits in a Redis database rather than a
mmap() file. This can be useful in sharing flexbits across multiple platforms within a network. The server is
the network address of your Redis server. The port is the network port address of the Redis server. The password
is the Redis server’s password. The writer_threads is how many Redis write threads Sagan should spawn to deal
with Redis write operations.

Example redis-server subsection:

32 Chapter 7. sagan-core

https://github.com/beave/sagan-rules/blob/master/json-input.map

Sagan User Guide Documentation, Release 1.2.2

Redis configuration. Redis can be used to act as a global storage engine for
flexbits. This allows Sagan to "share" flexbit data across a network
→˓infrastructure.
This is experimental!

redis-server:

enabled: no
server: 127.0.0.1
port: 6379
#password: "mypassword" # Comment out to disable authentication.
writer_threads: 10

7.5 mmap-ipc

The mmacp-ipc subsection tells Sagan how much data to store in mmap() files and where to store it. The
ipc-directory is where Sagan should store mmap() file. This is set to /dev/shm by default. On Linux
systems /dev/shm is a ram drive. If you want to store mmap() files in a more permanent location, change the
ipc-directory. Keep in mind, this may affect mmap() performance. The flexbit, after, threshold
and track-clients are the max items that can be stored in mmap(). This typically defaults to 10,000 via the
$MMAP_DEFAULT variable.

Example mmap-ipc subsection:

Sagan creates "memory mapped" files to keep track of flexbits, thresholds,
and afters. This allows Sagan to "remember" threshold, flexbits and after
data between system restarts (including system reboots!).

This also allows Sagan to share information with other Sagan processes.
For exampe, if one Sagan instance is monitoring "Linux" logs & another is
monitoring "Windows" logs, Sagan can communicate between the two Sagan
processes using these memory mapped files. A "flexbit" that is "set" by the
"Linux" process is accessible and "known" to the Windows instance.

The storage is pre-allocated when the memory mapped files are created
The values can be increased/decreased by altering the $MMAP_DEFAULT
variable. 10,000 entries is the system default.

The default ipc-directory is /dev/shm (ram drive) for performance reasons.

mmap-ipc:

ipc-directory: /dev/shm
flexbit: $MMAP_DEFAULT
after: $MMAP_DEFAULT
threshold: $MMAP_DEFAULT
track-clients: $MMAP_DEFAULT

7.6 ignore_list

The ignore_list subsection is a simple short circuit list of keywords. If Sagan encounters any keywords in this
list, it is immediately dropped and not passed through the rest of the Sagan engine. In high throughput environments,
this can save CPU time. The ignore_file is the location and file to load as an “ignore” list.

7.5. mmap-ipc 33

Sagan User Guide Documentation, Release 1.2.2

Example ignore_list subsection:

A "short circuit" list of terms or strings to ignore. If the the string
is found in pre-processing a log message, it will be dropped. This can
be useful when you have log messages repeating without any useful
information & you don't want to burn CPU cycles analyzing them. Items
that match will be "short circuit" in pre-processing before rules &
processors are applied.

ignore_list:

enabled: no
ignore_file: "$RULE_PATH/sagan-ignore-list.txt"

7.6.1 geoip

The geoip subsection where you can configure Maxminds GeoIP settings. This includes enabling GeoIP lookups,
where to find the Maxmind data files and what networks to “skip” GeoIP lookups. The country_database
is the Maxmind database to load. The skip_networks option tells Sagan what networks not to lookup. The
lookup_all_alerts forces Sagan to add GeoIP information to all alerts. When disabled, GeoIP information is
only added to alerts when signatures with country_code is triggered.

Example geoip subsection:

Maxmind GeoIP2 support allows Sagan to categorize events by their country
code. For example, a rule can be created to track "authentication
successes" & associate the country where the successful login came from. If the
successful login is from outside your country code, via the $HOME_COUNTRY
variable, an alert can be generated. Sagan will need to be compiled with
--enable-geoip2 flag.
#
Maxmind GeoLite2 Free database:
http://dev.maxmind.com/geoip/geoip2/geolite2/
#
Country code (ISO3166):
http://dev.maxmind.com/geoip/legacy/codes/iso3166/
#
More information about Sagan & GeoIP, see:
https://quadrantsec.com/about/blog/detecting_adversary_with_sagan_geoip/

geoip:

enabled: no
country_database: "/usr/local/share/GeoIP2/GeoLite2-Country.mmdb"
lookup_all_alerts: true
skip_networks: "8.8.8.8/32, 8.8.4.4/32"

7.7 liblognorm

liblognorm is a way that Sagan can extract useful information from a log file. For example, liblognorm is
used to extract source and destination IP addresses, user names, MAC addresses, etc from log data. This option al-
lows you to enable/disable the liblognorm functionality and where to load normalization rulebase files from (see
normalize_rulebase). The normalize_rulebase is a mapping file that lets Sagan extract useful informa-
tion from logs.

34 Chapter 7. sagan-core

https://github.com/maxmind/libmaxminddb/releases

Sagan User Guide Documentation, Release 1.2.2

More information about liblognorm can be found in the Prerequisites section of the Sagan User Guide and the
LibLogNorm <https://FIXME>_ web site.

Example liblognorm subsection:

Liblognorm is a fast sample-based log normalization library. Sagan uses
this library to rapidly extract useful data (IP address, hashes, etc) from
log messages. While this library is not required it is recommended that
Sagan be built with liblognorm enabled. For more information, see:
#
https://wiki.quadrantsec.com/bin/view/Main/LibLogNorm
#
The normalize_rulebase are the samples to use to normalize log messages
Sagan receives.

liblognorm:

enabled: yes
normalize_rulebase: "$RULE_PATH/normalization.rulebase"

7.8 plog

The plog functionality use to “sniff” syslog messages “off the wire”. If you already have a centralized syslog server
you are sending data, the data is not encrypted and is UDP, this option can be used to “sniff” logs while they are in
transit to your centralized logging system. In order to “sniff” the logs, you will need a “span” port or “tap”. This
option can be useful when testing Sagan’s functionality. This should not be used in production environments since the
robustness of “sniffing” varies. The interface option is the network device you want to “sniff” traffic on. the bpf
(Berkely Packet Filter) is the filter to use to extract logs from the network. The log-device is where Sagan will
inject logs after they are “sniffed” off the network. The promiscuous option puts the network interface Sagan is
using in “promiscious mode” or not.

Example plog subsection:

'plog', the promiscuous syslog injector, allows Sagan to 'listen' on a
network interface and 'suck' UDP syslog messages off the wire. When a
syslog packet is detected, it is injected into /dev/log. This is based
on work by Marcus J. Ranum in 2004 with his permission.
#
For more information, please see:
#
https://raw.githubusercontent.com/beave/sagan/master/src/sagan-plog.c

plog:

enabled: no
interface: eth0
bpf-filter: "port 514"
log-device: /dev/log # Where to inject sniffed logs.
promiscuous: yes

7.8. plog 35

Sagan User Guide Documentation, Release 1.2.2

36 Chapter 7. sagan-core

CHAPTER 8

processors

Sagan processors are methods of detection outside of the Sagan rule engine.

8.1 track-clients

The track-clients processor is used to detect when a syslog client has stopped or restarted sending logs to
Sagan. This can be useful for detecting systems where logging has been disabled. In the event a syslog client stops
sending logs, Sagan generates an alert for notification purposes. When the syslog client comes back online, Sagan will
generate another alert for notification purposes. The time is how long a syslog client has not sent a log message to
be considered “down”.

Example track-clients subsection:

The "tracking clients" processor keeps track of the systems (IP addresses),
reporting to Sagan. If Sagan stops receiving logs from a client for a
specified amount of time ("timeout"), an alert/notification is created.
When the system comes back online, another alert/notification is
created.

- track-clients:
enabled: no
timeout: 1440 # In minutes

8.2 rule-tracking

The rule-tracking processor is used to detect unused rule sets. This can be useful for detecting when rules are
loaded which do not need to be. Rules that are loaded that are not used waste CPU cycles. This assists with rule tuning.
The console option allows for rule tracking statistics to the console when Sagan is being run in the foreground. The
syslog option tells Sagan to send rule tracking statistics to syslog. The time option tells Sagan how often to record
rule tracking statistics (in minutes).

37

Sagan User Guide Documentation, Release 1.2.2

Example rule-tracking subsection:

This reports on rule sets that have and have not "fired". This can be
useful in tuning Sagan.

- rule-tracking:
enabled: yes
console: disabled
syslog: enabled
time: 1440 # In minutes

8.3 perfmonitor

** PERFMON has been deperciated for JSON stats as of 2.0.1 **

The perfmonitor processor records Sagan statistics to a CSV file. This can provide useful data about detection
and the performance of Sagan. The time option sets how often Sagan should record perfmonitor data.

Example perfmonitor subsection:

The "perfmonitor" processor writes statistical information every specified
number of seconds ("time") to a CSV file. This data can be useful for
tracking the performance of Sagan. This data can also be used with
RRDTool to generate graphs.

- perfmonitor:
enabled: no
time: 600
filename: "$LOG_PATH/stats/sagan.stats"

8.4 blacklist

The blacklist processor reads in a file at load time (or reload) that contains IP addresses you wish to alert on.
Detection is controlled by the *-blacklist.rules rule sets. The idea is to load IP addresses of interest into this
list and Sagan can monitor for them. The list is a file containing IP and network addresses in a CIDR format (ie -
192.168.1.0/24, 10.0.0.0/8).

Example perfmonitor subsection:

The "blacklist" process reads in a list of hosts/networks that are
considered "bad". For example, you might pull down a list like SANS
DShield (http://feeds.dshield.org/block.txt) for Sagan to use. If Sagan
identifies any hosts/networks in a log message from the list, an alert
will be generated. The list can be in a IP (192.168.1.1) or CIDR format
(192.168.1.0/24). Rules identified as -blacklist.rules use this data.
You can load multiple blacklists by separating them with commas. For
example; filename: "$RULE_PATH/list1.txt, $RULE_PATH/list2.txt".

- blacklist:
enabled: no
filename: "$RULE_PATH/blacklist.txt"

38 Chapter 8. processors

Sagan User Guide Documentation, Release 1.2.2

8.5 bluedot

The bluedot processor looks up data in the Quadrant Information Security “Bluedot” Threat Intelligence database.
This is done over a http session. Access to this database is not public at this time.

Example bluedot subsection:

The "bluedot" processor extracts information from logs (URLs, file hashes,
IP address) and queries the Quadrant Information Security "Bluedot" threat
intelligence database. This database is 'closed' at this time. For more
information, please contact Quadrant Information Security @ 1-800-538-9357
(+1-904-296-9100) or e-mail info@quadrantsec.com for more information.
Rules identified with the -bluedot.rules extension use this data.

- bluedot:
enabled: no
device-id: "Device_ID"
cache-timeout: 120
categories: "$RULE_PATH/bluedot-categories.conf"

max-ip-cache: 300000
max-hash-cache: 10000
max-url-cache: 20000
max-filename-cache: 1000

ip-queue: 1000
hash-queue: 100
url-queue: 1000
filename-queue: 1000

host: "bluedot.qis.io"
ttl: 86400
uri: "q.php?qipapikey=APIKEYHERE"

skip_networks: "8.8.8.8/32, 8.8.4.4/32"

8.6 zeek-intel (formally “bro-intel”)

The zeek-intel (formally known as bro-intel) allows Sagan to load files from the “Zeek (Bro) intelligence
framwork”. This allows Sagan to lookup IP address, hashes and other data from Zeek Intelligence data.

Example zeek-intel subsection:

The "zeek-intel" (formally "bro-intel") processor allows Sagan to use
threat intelligence data from the "Zeek (Bro) Intelligence Framework".
Rules identified with the # -brointel.rules use this data. For more information
about this processor, see:
#
https://quadrantsec.com/about/blog/using_sagan_with_bro_intelligence_feeds/
https://wiki.quadrantsec.com/bin/view/Main/SaganRuleReference#bro_intel_src_ipaddr_
→˓dst_ipaddr
http://blog.bro.org/2014/01/intelligence-data-and-bro_4980.html
https://www.bro.org/sphinx-git/frameworks/intel.html
#
A good aggregate source of Bro Intelligence data is at:

(continues on next page)

8.5. bluedot 39

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

#
https://intel.criticalstack.com/

- zeek-intel:
enabled: no
filename: "/opt/critical-stack/frameworks/intel/master-public.bro.dat"

8.7 dynamic-load

The dynamic-load processor will detect new logs entering the Sagan engine and can either automatically load rules
or send an alert about new logs being detected. The idea here is to have Sagan assist with the detection of network and
hardware changes. This rule is tied to the dynamic.rules rule set. The dynamic.rules rule set has signatures
used to detect new log data entering the Sagan engine. The sample-date controls how often to look for new logs
entering the Sagan engine. The higher the sample-rate the less CPU is used but the longer it will take to detect
new data. The lower the sample-rate the faster Sagan can detect new data but at a higher cost to the CPU. The
type can be dynamic_load or log_only. If set to dynamic_load, when new data is detected, Sagan will
automatically load the associated rule from the dynamic.rules. If set to log_only, Sagan will not load any data
and only generate an alert that new data was detected.

Example dynamic-load subsection:

The 'dynamic_load' processor uses rules with the "dynamic_load" rule option
enabled. These rules tell Sagan to load additional rules when new log
traffic is detected. For example, if Sagan does not have 'proftpd.rules'
enabled but detects 'proftp' log traffic, a dynamic rule can automatically
load the 'proftpd.rules' for you. Dynamic detection rules are named
'dynamic.rules' in the Sagan rule set. The "sample-rate" limits amount of
CPU to dedicated to detection new logs. The "type" informs the process
"what" to do. Valid types are "dynamic_load" (load & alert when new rules
are loaded), "log_only" (only writes detection to the sagan.log file) and
"alert" (creates an alert about new logs being detected).

- dynamic-load:
enabled: no
sample-rate: 100 # How often to test for new samples.
type: dynamic_load # What to do on detection of new logs.

40 Chapter 8. processors

CHAPTER 9

outputs

Sagan supports writing data in various formats. Some formats may be more suitable for humans to read, while others
might be better for outputing to databases like Elasticsearch and MySQL.

9.1 eve-log

Sagan can write to Suricata’s “Extensible Event Format”, better known as “EVE”. This is a JSON format in which
events (alerts, etc) are written to. This data can then be used to transport data into Elasticsearch (using software like
Logstash) or Meer (for MySQL/MariaDB/PostgreSQL) output. If you are looking to get alert data into any database
back end, you’ll likely want to enable this output plugin.

Example eve-log subsection:

outputs:

EVE alerts can be loaded into software like Elasticsearch and is a good
replacement for "unified2" with software like "Meer". For more
information on Meer, Check out:
#
https://github.com/beave/meer

- eve-log:
enabled: no
interface: logs
alerts: yes # Logs alerts
logs: no # Send all logs to EVE.
filename: "$LOG_PATH/eve.json"

41

https://suricata-ids.io
https://meer.readthedocs.org

Sagan User Guide Documentation, Release 1.2.2

9.2 alert

The alert format is a simple, multiline human readable format. The output is similar to that of traditional Snort
alert log.

Example alert subsection:

The 'alert' output format allows Sagan to write alerts, in detail, in a
traditional Snort style "alert log" ASCII format.

- alert:
enabled: yes
filename: "$LOG_PATH/alert.log"

9.3 fast

The fast format is a simple, single line human readable format. The output is similar to the traditional Snort “fast”
log.

Example fast subsection:

The 'fast' output format allows Sagan to write alerts in a format similar
to Snort's 'fast' output format.

- fast:
enabled: no
filename: "$LOG_PATH/fast.log"

9.4 smtp

The smtp output allows Sagan to send alerts via e-mail.

Example smtp subsection:

The 'smtp' output allows Sagan to e-mail alerts that trigger. The rules
you want e-mailed need to contain the 'email' rule option and Sagan must
be compiled with libesmtp support.

- smtp:
enabled: no
from: sagan-alert@example.com
server: 192.168.0.1:25
subject: "** Sagan Alert **"

9.5 syslog

The syslog output plugin writes alerts to the system’s syslog that Sagan is running on. This can be useful for
forwarding Sagan alert data to other SIEMs.

Example syslog subsection:

42 Chapter 9. outputs

Sagan User Guide Documentation, Release 1.2.2

The 'syslog' output allows Sagan to send alerts to syslog. The syslog
output format used is exactly the same as Snort's. This means that your
SIEMs Snort log parsers should work with Sagan.

- syslog:
enabled: no
facility: LOG_AUTH
priority: LOG_ALERT
extra: LOG_PID

9.5. syslog 43

Sagan User Guide Documentation, Release 1.2.2

44 Chapter 9. outputs

CHAPTER 10

rule-files

The rule-files section tells Sagan what “rules” to load. This can be a list of files or rules that can be broken out
into seperate include.

Example rule-files subsection:

rules-files:

###
Dynamic rules - Only use if you have the 'dynamic_load' processor enabled
###

#- $RULE_PATH/dynamic.rules

###
GeoIP rules - Only use if you have $HOME_COUNTRY and 'geoip' core enabled
###

#- $RULE_PATH/cisco-geoip.rules
#- $RULE_PATH/citrix-geoip.rules
#- $RULE_PATH/courier-geoip.rules
#- $RULE_PATH/f5-big-ip-geoip.rules
#- $RULE_PATH/fatpipe-geoip.rules
#- $RULE_PATH/fortinet-geoip.rules
#- $RULE_PATH/imapd-geoip.rules
#- $RULE_PATH/juniper-geoip.rules
#- $RULE_PATH/openssh-geoip.rules
#- $RULE_PATH/proftpd-geoip.rules
#- $RULE_PATH/riverbed-geoip.rules
#- $RULE_PATH/snort-geoip.rules
#- $RULE_PATH/ssh-tectia-server-geoip.rules
#- $RULE_PATH/vmware-geoip.rules
#- $RULE_PATH/vsftpd-geoip.rules
#- $RULE_PATH/windows-geoip.rules
#- $RULE_PATH/windows-owa-geoip.rules
#- $RULE_PATH/zimbra-geoip.rules

(continues on next page)

45

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

###
Aetas rules - Only use if $SAGAN_HOUR/$SAGAN_DAY is defined!
###

#- $RULE_PATH/cisco-aetas.rules
#- $RULE_PATH/fatpipe-aetas.rules
#- $RULE_PATH/fortinet-aetas.rules
#- $RULE_PATH/juniper-aetas.rules
#- $RULE_PATH/openssh-aetas.rules
#- $RULE_PATH/proftpd-aetas.rules
#- $RULE_PATH/riverbed-aetas.rules
#- $RULE_PATH/ssh-tectia-server-aetas.rules
#- $RULE_PATH/windows-aetas.rules

###
Malware rules - Rules useful for detecting malware.
###

#- $RULE_PATH/cisco-malware.rules
#- $RULE_PATH/fortinet-malware.rules
#- $RULE_PATH/nfcapd-malware.rules
#- $RULE_PATH/proxy-malware.rules
#- $RULE_PATH/windows-malware.rules

###
Bro Intel rules - Make sure the 'bro-intel processor is enabled!
###

#- $RULE_PATH/cisco-brointel.rules
#- $RULE_PATH/citrix-brointel.rules
#- $RULE_PATH/windows-brointel.rules
#- $RULE_PATH/windows-owa-brointel.rules
#- $RULE_PATH/bro-intel.rules

###
Bluedot rules - Make sure the 'bluedot' processor is enabled!
###

#- $RULE_PATH/bluedot.rules
#- $RULE_PATH/bro-bluedot.rules
#- $RULE_PATH/cisco-bluedot.rules
#- $RULE_PATH/citrix-bluedot.rules
#- $RULE_PATH/courier-bluedot.rules
#- $RULE_PATH/f5-big-ip-bluedot.rules
#- $RULE_PATH/fatpipe-bluedot.rules
#- $RULE_PATH/fortinet-bluedot.rules
#- $RULE_PATH/imapd-bluedot.rules
#- $RULE_PATH/juniper-bluedot.rules
#- $RULE_PATH/openssh-bluedot.rules
#- $RULE_PATH/proftpd-bluedot.rules
#- $RULE_PATH/riverbed-bluedot.rules
#- $RULE_PATH/snort-bluedot.rules
#- $RULE_PATH/ssh-tectia-server-bluedot.rules
#- $RULE_PATH/vmware-bluedot.rules
#- $RULE_PATH/vsftpd-bluedot.rules
#- $RULE_PATH/windows-bluedot.rules

(continues on next page)

46 Chapter 10. rule-files

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

#- $RULE_PATH/windows-owa-bluedot.rules

###
Correlated rules - Rules that use xbits/flexbit to detect malicious behavior
###

- $RULE_PATH/cisco-correlated.rules
- $RULE_PATH/citrix-correlated.rules
- $RULE_PATH/courier-correlated.rules
- $RULE_PATH/fatpipe-correlated.rules
- $RULE_PATH/fortinet-correlated.rules
- $RULE_PATH/imapd-correlated.rules
- $RULE_PATH/openssh-correlated.rules
- $RULE_PATH/ssh-tectia-server-correlated.rules
- $RULE_PATH/vmware-correlated.rules
- $RULE_PATH/vsftpd-correlated.rules
- $RULE_PATH/windows-correlated.rules
- $RULE_PATH/windows-owa-correlated.rules

###
Standard rules - Rules that do not require any dependencies.
###

#- $RULE_PATH/as400.rules
- $RULE_PATH/adtran.rules
- $RULE_PATH/apache.rules
- $RULE_PATH/apc-emu.rules
- $RULE_PATH/arp.rules
#- $RULE_PATH/artillery.rules
- $RULE_PATH/asterisk.rules
- $RULE_PATH/attack.rules
- $RULE_PATH/barracuda.rules
- $RULE_PATH/bash.rules
- $RULE_PATH/bind.rules
- $RULE_PATH/carbonblack.rules
- $RULE_PATH/bonding.rules
- $RULE_PATH/bro-ids.rules
- $RULE_PATH/cacti-thold.rules
#- $RULE_PATH/cisco-acs.rules
- $RULE_PATH/cisco-ise.rules
- $RULE_PATH/cisco-cucm.rules
- $RULE_PATH/cisco-ios.rules
- $RULE_PATH/cisco-meraki.rules
- $RULE_PATH/cisco-pixasa.rules
#- $RULE_PATH/cisco-prime.rules
- $RULE_PATH/cisco-wlc.rules
- $RULE_PATH/citrix.rules
- $RULE_PATH/courier.rules
- $RULE_PATH/cylance.rules
#- $RULE_PATH/deleted.rules
#- $RULE_PATH/digitalpersona.rules
- $RULE_PATH/dovecot.rules
- $RULE_PATH/f5-big-ip.rules
- $RULE_PATH/fatpipe.rules
- $RULE_PATH/fipaypin.rules
- $RULE_PATH/fortinet.rules
- $RULE_PATH/ftpd.rules

(continues on next page)

47

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

- $RULE_PATH/grsec.rules
- $RULE_PATH/honeyd.rules
#- $RULE_PATH/hordeimp.rules
#- $RULE_PATH/hostapd.rules
- $RULE_PATH/huawei.rules
- $RULE_PATH/imapd.rules
- $RULE_PATH/ipop3d.rules
- $RULE_PATH/juniper.rules
#- $RULE_PATH/kismet.rules
- $RULE_PATH/knockd.rules
- $RULE_PATH/linux-kernel.rules
- $RULE_PATH/milter.rules
- $RULE_PATH/mongodb.rules
- $RULE_PATH/mysql.rules
- $RULE_PATH/nexpose.rules
- $RULE_PATH/nfcapd.rules
- $RULE_PATH/nginx.rules
- $RULE_PATH/ntp.rules
- $RULE_PATH/openssh.rules
- $RULE_PATH/openvpn.rules
- $RULE_PATH/oracle.rules
- $RULE_PATH/palo-alto.rules
- $RULE_PATH/php.rules
- $RULE_PATH/postfix.rules
- $RULE_PATH/postgresql.rules
- $RULE_PATH/pptp.rules
- $RULE_PATH/procurve.rules
- $RULE_PATH/proftpd.rules
- $RULE_PATH/pure-ftpd.rules
- $RULE_PATH/racoon.rules
- $RULE_PATH/riverbed.rules
- $RULE_PATH/roundcube.rules
- $RULE_PATH/rsync.rules
- $RULE_PATH/samba.rules
- $RULE_PATH/sendmail.rules
- $RULE_PATH/snort.rules
- $RULE_PATH/solaris.rules
- $RULE_PATH/sonicwall.rules
- $RULE_PATH/squid.rules
- $RULE_PATH/ssh-tectia-server.rules
- $RULE_PATH/su.rules
- $RULE_PATH/symantec-ems.rules
- $RULE_PATH/syslog.rules
- $RULE_PATH/tcp.rules
- $RULE_PATH/telnet.rules
- $RULE_PATH/trendmicro.rules
- $RULE_PATH/tripwire.rules
- $RULE_PATH/vmpop3d.rules
- $RULE_PATH/vmware.rules
- $RULE_PATH/vpopmail.rules
- $RULE_PATH/vsftpd.rules
- $RULE_PATH/web-attack.rules
#- $RULE_PATH/weblabrinth.rules
- $RULE_PATH/windows-applocker.rules
- $RULE_PATH/windows-auth.rules
- $RULE_PATH/windows-emet.rules
- $RULE_PATH/windows-misc.rules

(continues on next page)

48 Chapter 10. rule-files

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

- $RULE_PATH/windows-mssql.rules
- $RULE_PATH/windows-security.rules
- $RULE_PATH/windows-owa.rules
- $RULE_PATH/windows.rules
- $RULE_PATH/windows-sysmon.rules
- $RULE_PATH/wordpress.rules
- $RULE_PATH/xinetd.rules
- $RULE_PATH/yubikey.rules
- $RULE_PATH/zeus.rules
- $RULE_PATH/zimbra.rules

#
Include other configs
#

Includes. Files included here will be handled as if they were
included in this configuration file.

#include: "/usr/local/etc/include1.yaml"
#include: "$RULE_PATH/include2.yaml"

49

Sagan User Guide Documentation, Release 1.2.2

50 Chapter 10. rule-files

CHAPTER 11

Rule syntax

Sagan rule syntax is very similar to that of Suricata <https://suricata-ids.org>_ or Snort . This is was intentionally
done to maintain compatibility with rule management software like oinkmaster and pulledpork and allows
Sagan to correlate log events with your Snort/Suricata IDS/IPS system.

This also means that if you are already familiar with signature writing in Suricata and Snort, you already understand
the Sagan syntax!

To understand the basic Sagan rule syntax, we will be using the following simple rule. This section of the Sagan user
guide only covers up to the first rule option. That is, this section will cover up to the msg portion of this rule only. The
rest of the rule is considered rule options.

Basic Sagan rule:

alert any $EXTERNAL_NET any -> $HOME_NET any (msg: "[SYSLOG] System out of disk space
→˓"; pcre: "/file system full|No space left on device/i"; classtype: hardware-event;
→˓threshold: type limit, track by_src, count 1, seconds 300; reference: url,wiki.
→˓quadrantsec.com/bin/view/Main/5000116; sid:5000116; rev:2;)

alert

This informs Sagan how to flag the event. Valid options are alert or drop.

any

Valid options for this field are any, tcp, udp or icmp. In most cases, you will likely want to specify any. The
protocal is determined by the parse_proto or parse_program_proto rule options.

$EXTERNAL_NET

This informs Sagan where the source IP address or addresses must be coming from in order to trigger. By default
the variable $EXTERAL_NET is used. This is set in the sagan.yaml configurations file and defaults to any. most
cases, “any” (any source) is what you want. In other cases, you might want the signature to trigger when it is from a
particular host. For example:

192.168.1.1

Makes Sagan only trigger if the source of the event is from the address 192.168.1.1 (/32 is automatically assumed).
You can also apply multiple networks. For example:

51

https://snort.org

Sagan User Guide Documentation, Release 1.2.2

[192.168.1.0/24, 10.0.0.0/24]

Is valid and will only trigger if the network address is within 192.168.1.0/24 or 10.0.0.0/24. You can also apply not
logic to the addresses. For example.

!192.168.1.1/32

This will only trigger when the IP address is not 192.168.1.1.

This filed is populated by whatever the source IP address within the log might be. For example, if the signature
lacks parse_src_ip or normalize (see rule options), then the syslog source is adopted. If parse_src_ip or
normalize rule option is used, then data (if any) that is extracted from the log is used.

any

The next any is the source port. If the normalize or default_src_port rule option is used, it will be applied
here. This can be useful in filtering out certain subnets or syslog clients.

->

This would be the direction. From the $EXTERNAL_NET -> $HOME_NETWORK.

$HOME_NETWORK

This works similarly to how $EXTERNAL_NET functions. Rather than being the source of the traffic, this is the
destination of the traffic. Like $EXTERNAL_NET, this is set in the sagan.yaml configuration file and defaults to
any. Also like the $EXTERNAL_NET, network CIDR notation can be used (ie - 192.168.1.0). Data from this is
populated by the parse_dst_ip and normalize rule options.

any

The final rule option is the destination port. If the normalize or default_dst_port rule option is used, it will
be applied here. This can be useful in filtering out events from certain subnets.

52 Chapter 11. Rule syntax

CHAPTER 12

Rule Keywords

12.1 after

after: track {by_src|by_dst|by_username|by_string}, count {number of event}, seconds {number of seconds};

“after” is used to trigger an alert “after” a number of events have happened within a specific amount of time. “after”
tracks by the source or destination IP address of the event. The example would track events by the source IP address.
If the event is triggered more than 10 times within 300 seconds (5 minutes), an alert is triggered.

after: track by_src, count 10, seconds 300;

After can be tracked by multiple ‘track’ options. For example:

after: track by_src&by_username, count 5, seconds 300;

The above would track by the source IP address and by the username.

12.2 alert_time

alert_time: days {days}, hours {hours};

“alert_time” allows a rule to only trigger on certain days and/or certain hours. For example, let’s assume that Windows
RDP (Remote Desktop Protocol) is normal between the hours of 0800 (8 AM) to 1800 (6 PM). However, RDP sessions
outside of that time-frame would be considered suspicious. This allows you to build a rule that will trigger outside of
the “normal RDP” times.

Days are represented via digits 0 - 6. 0 = Sunday, 1 Monday, 2 Tuesday, 3 Wednesday, 4 Thursday, 5 Friday, 6 =
Saturday.

Hours are represented by the 24 hour clock.

alert_time: days 0123456, hours 0800-1800;

The example above would cause a rule to trigger every day of the week between the hours of 0800 (8:00 AM) to 1800
(6:00 PM). One caveat is with “between” days. For example, if you wanted to create an alert_time rule that stretches
from Monday 2300 (11 PM) to Tuesday 0700 (7 AM). The format would be:

53

Sagan User Guide Documentation, Release 1.2.2

alert_time: days 1, hours 2300-0800;

You do not need to include Tuesday (2) in the “days” option. Since the times stretch between two days, Sagan will
automatically take this into consideration and make the adjustments. If you were to include “days 12”, this would
cause Sagan to alert on Monday-Tuesday between 2300 - 0800 and Tuesday-Wednesday 2300-0800.

alert_time can also be used with sagan.yaml variables. For example, if you have “SAGAN_DAYS: 12345” and
“SAGAN_HOURS: 0800-1300” in your sagan.yaml (see “aetas-groups” in your sagan.yaml), you could then create a
rule like this:

alert_time: days $SAGAN_DAYS, hours $SAGAN_HOURS;

12.3 append_program

append_program;

The append_program rule option forces the syslog program field to be appended to the syslog message. This can
be useful when the program fields are unpredictable. An example of this are Cisco ASAs with ‘Emblem’ enabled or
disabled. When Cisco “Emblem” is disabled, the syslog “program” field will contain the Cisco ASA ‘status’ code
(i.e - ‘%ASA-3-114006’). However, when Cisco Emblem is enabled, the syslog “program” field gets shifted up in
order and becomes part of the syslog “message”. The result is signatures that do not fire despite the status code being
present.

The append_program option will append the program field to the end of the syslog message. This way, the rule
writer can use rule options like content, pcre, etc to detect the status code regardless of if the syslog program has
been shifted or not.

Sagan will append the syslog program as “syslog message | syslog program”.

12.4 blacklist

blacklist {by_src|by_dst|both|all};

This looks up the TCP/IP address that was parsed via normalize, parse_src_ip or parse_dst_ip from a
“blacklist” file. The “blacklist” file is a file that contains IPv4 and IPv6 addresses in CIDR notation from that file. In
order to use this option the sagan.yaml processors blacklist must be enabled.

blacklist: by_src; parse_src_ip: 1;

12.5 bluedot

bluedot: type {ip_reputation},track {src|dst|both|all},{none|mdate_effective_period|cdate_effective_period},{category};

bluedot: type {file_hash|url|filename},{category};

Bluedot is Quadrant Information Security’s Threat Intelligence database that Sagan can query. In order to use this
functionality you will need a Quadrant Information Security API key and have the bluedot processors enabled.

As Sagan extracts data like IP addresses, file hashes, URLs and filenames, Sagan can query the Bluedot database to
determine if they are hostile or not. These types of lookups can be incorporated into signatures. For example:

bluedot: type ip_reputation, track by_src, none, Malicious,Tor,Honeypot,Proxy;

This will lookup the source IP out of the Bluedot database for Malicious, Tor, Honeypot or Proxy activity. If the source
IP address is found in any of these categories, the option will fire.

54 Chapter 12. Rule Keywords

Sagan User Guide Documentation, Release 1.2.2

In some cases, you might not want to trigger on older IoCs. To filter out older data from Bluedot you can use the
mdate_effective_period (last modification of the IoC) or cdate_effective_period (creation date of
the IoC). For example:

bluedot: type ip_reputation, track all, mdate_effective_period 1 months, Malicious,Tor,Proxy;

This will query all TCP/IP addresses found in a log line and query for Malicious, Tor and Proxy addresses that are no
older than one month old. If the time is set to none, then any IoCs found for a TCP/IP address are returned regardless
of mdate_effective_period or cdate_effective_period.

Below is an example of querying a file hash in Bluedot

bluedot: type file_hash,Malicious; parse_hash: sha1;

12.6 classtype

classtype: {classification}

This links the rule to a classification. Classification can be used to determine priority level. For example:

classtype: exploit-attempt;

A “exploit-attempt” classification is a priority 1 (highest) level event. For a complete list of classification types, see
http://github.com/beave/sagan-rules/blob/master/classification.config

12.7 content

content is a simple means of determining if the {search} string is in an event/syslog message. For example:

content: “authentication failure”;

Will search a log message for the term “authentication failure”. content can also be used as part of a NOT statement.
For example:

content:!”frank”;

This means that the message does NOT contain the term “frank”. Tied together, we can make statements like:

content: “authentication failure”; content:!”frank”;

If the term “authentication failure” is found and does NOT contain the term “frank”, then the rule will trigger. Other-
wise, the event is ignored.

content: “User Agent|3a| Testing”;

This tells content to search for “User Agent: Testing”. The |3a| is a hex encoded option for a “:”. You can use multiple
hex encoded options. For example, “|3a 3b 3c|”. Hex values can also be broken up. For example, “This |3a| is a testing
with |3b| in it”.

12.8 country_code

country_code: track {by_src|by_dst}, {is|isnot} {ISO3166 Country Codes}

Used to track events from specific countries.

country_code: track by_src, isnot US;

12.6. classtype 55

http://github.com/beave/sagan-rules/blob/master/classification.config

Sagan User Guide Documentation, Release 1.2.2

The example above means, “track by the source address of the event. If the GeoIP 2 location is not from the United
States, trigger the rule”.

country_code: track by_dst, is [CN,RU,HK];

The example above means, “track by the destination address of the event. If the GeoIP 2 location is going to China,
Russia or Hong Kong, trigger the rule”.

Country codes are based on ISO3166. See http://dev.maxmind.com/geoip/legacy/codes/iso3166/ for the full listing.

Typically, country codes are tied to the sagan.yaml variable $HOME_COUNTRY (See “geoip-groups” in the
sagan.yaml). For example:

country_code: track by_src, isnot $HOME_COUNTRY;

Note: This requires GeoIP2 support to be compiled into Sagan

12.9 default_proto

default_proto: {tcp/udp/icmp}

The default_proto sets the default protocol in the event normalization fails. For example, OpenSSH uses the TCP proto-
col. However, OpenSSH log messages do not specify the protocol in use. By using the rule option default_proto, Sagan
will assign the protocol specified by the rule writer when triggered. This option can be overridden by parse_proto or
liblognorm (if used).

Valid values are icmp, tcp and udp or defined variables (ie - “$PROTOCOL”). Defaults to the Sagan YAML “default-
proto”.

12.10 default_dst_port

default_dst_port: {port number}

The default_dst_port sets the default port number in the event normalization fails. For example, OpenSSH typically
uses port 22. However, OpenSSH log messages do not specify the port being used. By using the rule option de-
fault_dst_port, Sagan will assign the port specified by the rule writer when triggered. This option can be overridden
by liblognorm.

Valid values are integers (1-63556) or defined variables (ie - “$SSH_PORT”). Defaults to the Sagan YAML “default-
port”.

12.11 default_src_port

default_src_port: {port number}

The default_src_port sets the default port number in the event normalization fails. For example, if a log message does
not contain the source port, this value is used instead. This can be overridden by liblognorm.

Valid values are integers (1-63556) or defined variables (ie - “$SOURCE_PORT). Defaults to the Sagan YAML
“default-port”.

Note: This requires GeoIP support to be compiled into Sagan

56 Chapter 12. Rule Keywords

http://dev.maxmind.com/geoip/legacy/codes/iso3166/

Sagan User Guide Documentation, Release 1.2.2

12.12 depth

depth: {depth value}

The depth keyword allows the rule writer to specify how far into a log line Sagan should search for the specified pattern
from a given offset.

For example:

content: “bob”; depth: 10;

This would start searching at the beginning of the log line (default offset: 0) and search only 10 bytes deep for the
term “bob”.

Example with offset and depth used together:

content: “bob”; offset: 5; depth: 10;

Sagan will start searching for the term “bob” when it gets to 5 bytes into the log line (see offset). It will only search
for “bob” after the offset for 10 bytes.

This function is identical to Snort’s “depth” rule option. For more information see: http://blog.joelesler.net/2010/03/
offset-depth-distance-and-within.html

12.13 distance

distance: {distance value}

The distance keyword allows the rule writer to specify how far into a log line Sagan should ignore before starting to
search for the specified pattern relative to the end of the previous pattern match.

For example:

content:”GET”; depth:3; content:”downloads”; distance:10;

This will cause Sagan to look for the word “GET” within the first 3 bytes (depth) of the log line. The next content will
start looking for the term “downloads” 10 bytes away from the previous depth. The above would match on the term
“GET /content/downloads” but not “GET /download”. The ” /content/” (10 bytes) is skipped over in the distance.

This function is identical to Snort’s “distance” rule option. For more information see: http://blog.joelesler.net/2010/
03/offset-depth-distance-and-within.html

12.14 dynamic_load

{dynamic_load: /path/to/rules/to/load}

This option works in conjunction with the sagan.yaml dynamic_load configuration. When a rule is triggered
with this option enabled, Sagan will dynamically load the rules. This is useful for detecting new logs introduced to the
system where rules are not enabled. For more information, see https://quadrantsec.com/about/blog/dynamic_rules_
with_sagan/

dynamic_load: $RULE_PATH/oracle.rules;

12.15 email

email: {email address}

12.12. depth 57

http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
https://quadrantsec.com/about/blog/dynamic_rules_with_sagan/
https://quadrantsec.com/about/blog/dynamic_rules_with_sagan/

Sagan User Guide Documentation, Release 1.2.2

If present in a rule, Sagan will e-mail the event to the email address supplied.

email: bob@example.org;

Note: This requires Sagan to be compiled with libesmtp support.

12.16 event_id

event_id: {id},{id},{id}...;

This option attempts to locate an “Event ID” in a syslog message or within JSON data. This is typically used with
Microsoft Windows event IDs but is not limited to this. When searching log data, the event_id option essentially
acts like the following.

meta_content: ” %sagan%: “, {id}, {id}, {id}. . . ; meta_depth: 10;

event_id does this because most Windows agents (NXLog, etc) put the “event ID” at the beginning of the message.

The the data that is being processed is JSON and an “event ID” is found and properly mapped, the JSON data is used.
For more information about using Sagan with JSON data, see Sagan & JSON.

12.17 external

external: {path/and/program};

When a signature triggers with the external option, the external target is executed. The external program
can be in any language you desire. Data is passed from Sagan via stdin to the external program. The information
that is passed is the signature ID, the message (msg), the classtype, drop, priority, data, time, source IP, source
port, destination IP, destination port, facility, syslog priority, liblognorm JSON and the syslog message.

external: /usr/local/bin/myprogram.py

12.18 syslog_facility

syslog_facility: {syslog facility}

Searches only messages from a specified facility. This can be multiple facilities when separated with an ‘|’ (or) symbol.

facility: daemon;

12.19 flexbits

flexbits: set, {flexbit name}, {expire time};

Note: flexbits are similar to xbits but can deal with more complex conditions (tracking ports, reverse direction
tracking, etc). However, in most cases you’ll likely want to use xbits which are more simple and are likely to do
what you need.

The flexbits option is used in conjunction with unset, isset, isnotset. This allows Sagan to “track”
through multiple log events to trigger an alert. For example, lets say you want to detect when “anti-virus” has been
disabled but is not related to a system reboot. Using the flexbit set you can turn on a flexbit when a system is being
rebooted. Our flexbit set would look like this:

flexbits: set, windows_reboot, 30;

58 Chapter 12. Rule Keywords

Sagan User Guide Documentation, Release 1.2.2

We are “setting” a flexbit named “windows_reboot” for 30 seconds. This means that the “windows_reboot” flexbit will
“expire” in 30 seconds. The flexbit set automatically records the source and destination of the message that triggered
the event. It is important to point out, the source and destination addresses are what Sagan has normalized through
parse_src_ip, parse_dst_ip or liblognorm.

flexbits: {unset|isset|isnotset},{by_src|by_dst|both|reverse|username|none},{flexbit name}

This option works in conjunction with the flexbit set option. In the flexbit set example above, we are trying to detect
when a system’s “anti-virus” has been disabled and is not related to a system reboot. If Sagan detects a system reboot,
it will set flexbit “windows_reboot”. Another rule can use the presence, or lack thereof, to trigger an event. For
example:

flexbits: isnotset, by_src, windows_reboot;

This means, if the “windows_reboot” flexbit is not set (ie - it did not see any systems rebooting), trigger an event. The
by_src tells Sagan that the trigger (isnotset) is to be tracked by the “source” IP address. by_src, by_dst, both and none
are valid options.

More examples:

flexbits: isset, both, myflexbit;

If the flexbit “myflexbit” “isset”, then trigger an event/alert. Track by the source of the log message.

flexbits: isnotset, both, myflexbit;

If the flexbit “myflexbit” “isnotset”, then trigger an event/alert. Track by both the source and destination of the
message.

flexbits: unset, both, myflexbit;

This unset removes a flexbit from memory. In this example, unset is removing a flexbit “myflexbit” if the source and
destination match (both).

Example of flexbit use can be found in the rules https://wiki.quadrantsec.com/twiki/bin/view/Main/5001880 and
https://wiki.quadrantsec.com/twiki/bin/view/Main/5001881 . The first rule (5001880) “sets” a flexbit is a Microsoft
Windows account is “created”. The second rule (5001881) alerts an account is “enabled”, but the flexbit has not (is-
notset) set. In this example, it’s normal for a user’s account to be “created and then enabled”. However, there might
be an anomaly if an account goes from a “disabled” and then “enabled” state without being “created”.

flexbits: {noalert|noeve}

This tells Sagan to not record certain types of data with flexbits when a condition is met. For example, you might
not want to generate an alert when a xbits is set.

12.20 flexbits_pause

flexbits_pause: {seconds};

This tells the flexbit isset or isnotset to ‘wait’ for a specified number of seconds before checking the flexbit
state. flexbits_upause —————

flexbits_upause: {microseconds};

This tells the flexbit isset or isnotset to ‘wait’ for a specified number of microseconds before checking the
flexbit state.

12.20. flexbits_pause 59

https://wiki.quadrantsec.com/twiki/bin/view/Main/5001880
https://wiki.quadrantsec.com/twiki/bin/view/Main/5001881

Sagan User Guide Documentation, Release 1.2.2

12.21 json_content

json_content: "{key}", "{search}";

This functions similar to content but works on JSON key/value data. This option does _not_ depend on JSON
mapping and can be used on any located key. For example:

json_content: “sni”, “www.quadrantsec.net”;

Similar to content, the not operator (!) can also be used:

json_content:! “sni”, “www.google.com”;

12.22 json_nocase

json_nocase;

This makes the previous json_content case insensitive (similar to the nocase option for content).

12.23 json_contains

json_contains;

Normally json_content will search for a literal match to a key/value pair. The json_contains makes the
previous json_content do a full string search for a value. For example:

json_content: “name”, “example”; json_contains;

This will search the key “name” for the word “example”. Without the json_contains the search is a literal match.
With the json_contains rule option, it will search for the presences of “example” within “name”. For example,
with json_contains, this would trigger on terms like “this is an example of data” or “example test”. Without the
json_contains, it would not trigger because it would be a literal search.

12.24 json_pcre

json_pcre: "key", "/regularexpression/";

This functions similar to pcre but works on JSON key/value data. This option does _not_ depend on JSON mapping
and can be used on any located key. For example:

json_pcre: “sni”, “/www.quadrantsec.com/i”;

12.25 json_meta_content

json_meta_content: "key", value1,value2,value3... ;

This functions similar to meta_content but works on a JSON key/value data. This option does _not_ depend on
JSON mapping and can be used with any located key. For example:

json_meta_content: “threat”,medium,low;

This function can also be used with the not (!) operator.

json_meta_content: !”threat”,informational,low;

60 Chapter 12. Rule Keywords

Sagan User Guide Documentation, Release 1.2.2

12.26 json_meta_nocase

json_meta_nocase;

This makes the previous json_meta_content case insensitive (similar to the nocase option for content).

12.27 json_meta_contains

json_meta_contains;

This is similar to json_contains but works on the json_meta_content rule option.

Normally json_meta_content will search for a literal match to a key/value pair (strcmp). This option makes the
previous json_meta_content do a full string search for the value (strstr).

12.28 syslog_level

syslog_level: {syslog level};

Searches only messages from a specified syslog level. This can be multiple levels when separated by a ‘|’ (or) symbol.

level: notice;

12.29 meta_content

meta_content: "string %sagan% string",$VAR;

This option allows you to create a content like rule option that functions with variable content. For example, let’s
say you want to trigger on the strings “Username: bob”, “Username: frank” and “Username: mary”. Without
meta_content, this example would require three separate rules with content keywords. The meta_content allows you
to make one rule option with multiple variables. For example:

meta_content: “Username|3a| %sagan%”, $USERS;

Note: The |3a| is the hexadecimal representation of a ‘:’ .

The %sagan% variable is populated with the values in $USERS. To populate the $USER variable, the sagan.conf
would have the following variable declaration:

var USERS [bob, frank, mary]

If Sagan detects “Username: bob”, “Username: frank” or “Username: mary”, an event will be triggered.

Like content the ! can be applied. The ! is a “not” operator. For example:

meta_content:!”Username|3a| %sagan%”, $USERS;

This will only trigger an event if the content is not “Username: bob”, “Username: frank” or “Username: mary”. That
is, the content must not have any of the values.

The %sagan% portion of meta_content is used to specify “where” to put the $USERS defined variable. For example:

meta_content: “Username|3a| %sagan% is correct”, $USERS;

Will look for “Username: bob is correct”, “Username: frank is correct” and “Username: mary is correct”.

12.26. json_meta_nocase 61

Sagan User Guide Documentation, Release 1.2.2

12.30 meta_depth

meta_depth: {depth value}

Functions the same as depth for content but for meta_content. The meta_depth keyword allows the rule writer to
specify how far into a log line Sagan should search for the specified patterns from a given offset.

For example, if $VAR is set to “mary, frank, bob”:

meta_content: “%sagan%”, $VAR; meta_depth: 10;

This would start searching at the beginning of the log line (default meta_ offset: 0) and search only 10 bytes deep for
the term “mary”, “frank” or “bob”.

Example with offset and depth used together:

meta_content: “bob”; meta_offset: 5; meta_depth: 10;

Sagan will start searching for the term “mary”, “frank” or “bob” when it gets to 5 bytes into the log line (see
meta_offset). It will only search for “mary”, “frank” or “bob” after the offset for 10 bytes.

This function is identical to Snort’s “depth” rule option. For more information see: http://blog.joelesler.net/2010/03/
offset-depth-distance-and-within.html

12.31 meta_distance

meta_distance: {distance value}

Functions the same as distance for content but for meta_content. The meta_distance keyword allows the rule writer to
specify how far into a log line Sagan should ignore before starting to search for the specified patterns relative to the
end of the previous pattern match.

For example, if $VAR1 is set to “GET” and “POST” and $VAR2 is set to “download” and “upload”:

meta_content:”%sagan%”, $VAR1; meta_depth: 4; meta_content:”%sagan%”, $VAR2; meta_distance:10;

This will cause Sagan to look for the word “GET” or “POST” within the first 4 bytes (meta_depth) of the log line. The
next meta_content will start looking for the term “download” or “upload” 10 bytes away from the previous meta_depth.
The above would match on the term “GET /content/downloads” but not “GET /download”. The ” /content/” (10 bytes)
is skipped over in the distance.

This function is identical to Snort’s “distance” rule option. For more information see: http://blog.joelesler.net/2010/
03/offset-depth-distance-and-within.html

12.32 meta_offset

meta_offset: {offset value};

Functions the same as offset for content but for meta_content. The meta_offset keyword allows the rule writer to
specify where to start searching for a pattern within a log line. This is used in conjunction with content.

For example, $VAR is set to “mary”, “frank” and “bob”.

meta_content: “%sagan%”, $VAR; meta_offset: 5;

This informs meta_content to start searching for the term “mary”, “frank” or “bob” after it is 5 bytes into the log line.

This function is identical to Snort’s “offset” rule option. For more information see: http://blog.joelesler.net/2010/03/
offset-depth-distance-and-within.html

62 Chapter 12. Rule Keywords

http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html

Sagan User Guide Documentation, Release 1.2.2

12.33 meta_nocase

This makes the previous meta_content option case insensitive.

meta_content: “Username: “, $USERS; meta_nocase;

If $USERS is populated with “bob”, “frank” and “mary”, meta_content will ignore the case. That is, “Username:
mary” and “Username: MARY” will be detected. Without the meta_nocase, meta_content is case sensitive.

12.34 meta_within

meta_within: {within value};

Functions the same as within for content but for meta_content. The within keyword is a meta_content modifier that
makes sure that at most N bytes are between pattern matches using the meta_content keyword.

For example, $VAR1 is set to “GET” and “POST”, while $VAR2 is set to “downloads” and “uploads”;

meta_content:”%sagan”, $VAR1; meta_depth:4; meta_content:”%sagan%”, $VAR2; meta_distance:10;
meta_within:9;

The first meta_content would only match on the world “GET” or “POST” if it is contained within the first 4 bytes of
the log line. The second meta_content looks for the term “downloads” or “uploads” if it is a meta_distance of 10 bytes
away from the meta_depth. From the meta_distance, only the first 9 bytes are examined for the term “downloads” or
“uploads” (which is 9 bytes).

This function is identical to Snort’s “within” rule option. For more information see: http://blog.joelesler.net/2010/03/
offset-depth-distance-and-within.html

12.35 msg

msg: "human readable message";

The “human readable” message or description of the signature.

msg: “Invalid Password”;

12.36 nocase

nocase

Used after and in conjunction with the “content” option. This forces the previous content to search for the {search}
string regardless of case.

content: “sagan”; nocase;

This would search for the term “sagan” regardless of its case (ie - Sagan, SAGAN, etc).

12.37 normalize

normalize;

Informs Sagan to “normalize” the syslog message using the LibLogNorm library and Sagan “rulebase” data.

12.33. meta_nocase 63

http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html

Sagan User Guide Documentation, Release 1.2.2

12.38 offset

offset: {offset value};

The offset keyword allows the rule writer to specify where to start searching for a pattern within a log line. This is
used in conjunction with content.

For example:

content: “bob”; offset: 5;

This informs content to start searching for the term “bob” after it is 5 bytes into the log line.

This function is identical to Snort’s “offset” rule option. For more information see: http://blog.joelesler.net/2010/03/
offset-depth-distance-and-within.html

12.39 parse_dst_ip

parse_dst_ip: {destination position}

Uses Sagan’s dynamic IP parsing to locate the “destination” address within a syslog message.

parse_dst_ip: 2;

The second IP address found within the syslog message will be used as the destination address. This is useful when
LibLogNorm fails, is too difficult to use, or the syslog message is dynamic.

12.40 parse_port

parse_port;

Attempts to determine the “source port” used from the contents of a syslog message. For example, Bind/DNS messages
look something like; “client 32.97.110.50#22865”. The “22865” is the source port. Sagan will attempt to extract and
normalize this information.

12.41 parse_proto

parse_proto;

Attempts to determine the protocol in the syslog message. If the syslog message contains terms in the “protocol.map”
(for example, ICMP, UDP, TCP, etc), Sagan assigns the protocol to the assigned value. See fields assigned as “mes-
sage” in the protocol.map.

12.42 parse_proto_program

Attempts to determine the protocol by the program generating the message. Values are assigned from the “proto-
col.map” (program fields). For example, if the program is “sshd” and the parse_proto_program option is used, TCP is
assigned.

64 Chapter 12. Rule Keywords

http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html

Sagan User Guide Documentation, Release 1.2.2

12.43 parse_hash

parse_hash: {md5|sha1|sha256};

Parses a hash out of a log message.

parse_hash: sha256;

12.44 parse_src_ip

parse_src_ip: {source position};

Uses Sagan’s dynamic IP parsing to locate the “source” address within a syslog message.

parse_src_ip: 1;

The first IP address found within the syslog message will be used as the source address. This is useful when LibLog-
Norm fails, is too difficult to use, or the syslog message is dynamic.

12.45 pcre

pcre: "{regular expression}"

“Perl Compatible Regular Expressions” (pcre) lets Sagan search syslog messages using “regular expressions”. While
regular expressions are powerful, they do require slightly more CPU to use. When possible, use the “content” option.

pcre: “/broken system|breaking system/i”;

Looks for the term “broken system” or “breaking system” regardless of the strings case.

12.46 priority

priority: {priority};

Sets the probity of an alert/signature.

priority: 1;

If priority is set, it will override the classtype priority.

12.47 program

program: {program name|another program name}

Search only message that are from the {program}. For example:

program: sshd;

This will search the syslog message when it is from “sshd”. This option can be used with multiple OR’s. For example:

program: sshd|openssh;

This will search the syslog message when the program that generated it is “sshd” OR “openssh”.

12.43. parse_hash 65

Sagan User Guide Documentation, Release 1.2.2

12.48 reference

reference: {reference name}, {reference url}

Sets a reference for the signature/alert. These can be pointers to documentation that will provide more information
regarding the alert.

reference: url, www.quadrantsec.com;

If the signature/alert is triggered, the reference will be “http://www.quadrantsec.com”.

reference: cve,999-0531;

Will lookup CVE 999-0531 from http://cve.mitre.org/cgi-bin/cvename.cgi (from the references.config file).

12.49 rev

rev: {revision number};

Revision number of the rule. Increment this when a rule is changed.

rev: 5;

Revision number 5 of the rule.

12.50 sid

sid: {signature id};

“sid” is the signature ID. This has to be unique per signature.

sid: 5001021;

Sagan signatures start at 5000000. To view the “last used” signature, see https://github.com/beave/sagan-rules/blob/
master/.last_used_sid

12.51 syslog_tag

syslog_tag: {syslog tag};

Informs Sagan to only search syslog messages with the specified tag. This can be multiple tags when separated with
an ‘|’ (or) symbol.

tag: 2d;

12.52 threshold

threshold: type {limit|suppress}, track {by_src|by_dst|by_username|by_string}, count {number of event}, seconds {number of seconds}

This allows Sagan to threshold alerts based on the volume of alerts over a specified amount of time.

threshold: type suppress, track by_src, count 5, seconds 300;

Sagan will suppress the amount of alerts via the source IP address if they exceed a count of 5 within a 300 second (5
minute) period. Every time an event happens that meets the threshold criteria, Sagan’s internal timer for this threshold

66 Chapter 12. Rule Keywords

http://www.quadrantsec.com
http://cve.mitre.org/cgi-bin/cvename.cgi
https://github.com/beave/sagan-rules/blob/master/.last_used_sid
https://github.com/beave/sagan-rules/blob/master/.last_used_sid

Sagan User Guide Documentation, Release 1.2.2

will be reset. This means that the event will _not_ trigger again until the alert criteria has stopped for at least a
300 second period. If the event does stop for greater than 300 seconds, the threshold will generate 5 events and the
process will start over. An example usage might be for a “brute force” attack. Lets say that the attacker is attempting
10000 passwords every second. Only the first 5 attempts would generate an alert. The threshold would apply to the
remaining 9995 attempts. After the attacker tries 10000 passwords, they take a break for 20 minutes. At this point, the
“suppress” threshold would time out. This means that if the attackers starts another “brute force” attack, it would trip
off a maximum of 5 alerts and start thresholding again.

You can also ‘track’ by multiple types. For example:

threshold: type suppress, track by_src&by_username, count 5, seconds 300;

The above would threshold by the source IP address and by the username.

threshold: type limit, track by_src, count 10, seconds 3600;

The above will threshold an alert after a count of 10 within 3600 seconds (1 hour). Unlike suppress the limit
option does not reset Sagan’s internal counter for this threshold. This means that 10 alerts will be generated every hour
as long as the attack occurs.

12.53 within

within: {within value};

The within keyword is a content modifier that makes sure that at most N bytes are between pattern matches using the
content keyword.

For example:

content:”GET”; depth:3; content:”downloads”; distance:10; within:9;

The first content would only match on the word “GET” if it is contained within the first 3 bytes of the log line. The
second content looks for the term “downloads” if it is a distance of 10 bytes away from the depth. From the distance,
only the first 9 bytes are examined for the term “downloads” (which is 9 bytes).

This function is identical to Snort’s “within” rule option. For more information see: http://blog.joelesler.net/2010/03/
offset-depth-distance-and-within.html

12.54 xbits

xbits:{set|unset|isset},{name},track {ip_src|ip_dst|ip_pair} [,expire <seconds>];

The xbits rule keyword allows you to track and correlate events between multiple logs. This is done by detecting an
event and using the set for Sagan to “remember” an event. Later, if another event is detected, xbit can be tested via
isset or isnotset to determine if an event happened earlier. For example, lets say you would like to detect when
anti-virus is being shutdown but not if it is related to a system reboot or shutdown.

When Sagan detects a shutdown/reboot, Sagan can set an xbit. For this example, we will name the xbit being set
‘system.reboot’. When Sagan sees the anti-virus being shutdown, Sagan can test to see if the xbit ‘system.reboot’ is
set (isset) or is not set (isnotset). In our case, if the xbit named ‘system.reboot’ isnotset, we know that the
anti-virus is being shutdown and is NOT related to a system reboot/shutdown.

Using xbits can be useful in detecting successful attacks. Another example would be the Sagan ‘brute_force’ xbit.
Sagan monitors “brute force” attacks and sets an xbit associated to the source IP address (the ‘brute_force’ xbit).
If Sagan later detects a successful login, we can test via the xbit (isset) to determine if the IP address has been
associated with brute force attacks in the past.

Below is an example to set an xbit by the source IP address.

12.53. within 67

http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html

Sagan User Guide Documentation, Release 1.2.2

xbits: set,brute_force,track ip_src, expire 21600;

This will set an xbit named ‘brute_force’ by the source address. The xbit will expire in 21000 seconds (6 hours).

To check the xbit later, use the isset or isnotset condition. For example:

xbits: isset,brute_force,track ip_src;

If the xbit ‘brute_force’ was already set and is within the expire time, the isset will return “true” (and fire). The
“track ip_src” on the isset or isnotset will compare the ip_src or the isset or isnotset rule with the set
condition.

In certain situations, you may want to have a rule unset an xbit. This effectively “clears” the xbit. For example:

xbits: unset,brute_force,track ip_src;

In some situations, you might not want Sagan to record data when a xbit condition is met. For example, if you set
an xbit, you might not want to generate an alert. To disable certain types of output, you can do this:

xbits: {noalert|noeve}

12.55 xbits_pause

xbits_pause: {seconds};

This tells the xbit isset or isnotset to ‘wait’ for a specified number of seconds before checking the xbit state.

12.56 xbits_upause

xbits_upause: {microseconds};

This tells the xbit isset or isnotset to ‘wait’ for a specified number of microseconds before checking the xbit
state.

12.57 zeek-intel

zeek-intel: {src_ipaddr},{dst_ipaddr},{both_ipaddr},{all_ipaddr},{file_hash},{url},{software},{email},{user_name},{file_name},{cert_hash};

Note: This option used to be known as “bro-intel”

This keyword allows Sagan to look up malicious IP addresses, file hashes, URLs, software, email, user names, and
certificate hashes from Bro Intelligence feeds.

In order for the processors to be used, they must be enabled in your sagan.yaml file.

The following is a simple example within a Sagan rule:

zeek-intel: src_ipaddr;

This informs Sagan to look up the parsed source address from the Bro Intel::ADDR data. The parsed source address
is extracted via liblognorm or parse_src_ip.

Multiple keywords can be used. For example:

zeek-intel: both_ipaddr, domain, url;

68 Chapter 12. Rule Keywords

Sagan User Guide Documentation, Release 1.2.2

This instructs Sagan to look up the parsed source and destination from the Bro Intel::ADDR data. It also looks up the
Intel::DOMAIN and Intel::URL. If any of the “zeek-intel” lookups return with a positive hit, the zeek-intel option is
triggered. Consider the following example:

content: “thisisatest”; zeek-intel: src_ipaddr;

If a log message contains the term “thisisatest” but the parsed source IP address is not found in the Bro Intelligence
feeds, the rule will not trigger. If the log message “thisisatest” is found and the src_ipaddr is found, the rule will
trigger.

Sagan “zeek-intel” types:

src_ipaddr Intel::ADDR Look up the parsed source address
dst_ipaddr Intel::ADDR Look up the parsed destination address
all_ipaddr Intel::ADDR Search all IP addresses in a log message and
→˓look them up
both_ipaddr Intel::ADDR Look up the parsed source & destination address
file_hash Intel::FILE_HASH Search message content for malicious file hash
url Intel::URL Search message content for malicious URL
software Intel::SOFTWARE Search message content for malicious software
email Intel::EMAIL Search message content for malicious email
user_name Intel::USER_NAME Search message content for malicious user names
file_nasm Intel::FILE_NAME Search message content for malicious file names
cert_has Intel::CERT_HASH Search message content for malicious certificate
→˓hashes

12.57. zeek-intel 69

Sagan User Guide Documentation, Release 1.2.2

70 Chapter 12. Rule Keywords

CHAPTER 13

Sagan Peek

13.1 What is “saganpeek”

saganpeek is a utility that allows you to “peek” into Sagan memory. The utility reads the Sagan mmap() files. It
displays the data Sagan is currently using for after, threshold, flexbits and xbits. This information can
be useful in debugging Sagan or simply to view what values are currently in memory. Running saganpeek from the
command line without any flags will show all “active” data in memory.

** Note: saganpeek will not display data in Redis. For example, if you are using Redis for xbits or flexbits,
this data will not be displayed**

saganpeek –help flags:

--[saganpeek help]---

-t, --type threshold, after, xbit, track, all (default: all)
-h, --help This screen.
-i, --ipc IPC source directory. (default: /var/sagan/ipc)

13.2 Building “saganpeek”

After building Sagan, simply change into the tools/ directory and run make and then make install.

71

Sagan User Guide Documentation, Release 1.2.2

72 Chapter 13. Sagan Peek

CHAPTER 14

Sagan & JSON

14.1 Why JSON?

Sagan has traditionally been a syslog analysis and parsing engine. Over time, more and more platforms have been
switching to JSON as an output option. Not just traditional syslog data sources but non-traditional sources like APIs
and “cloud” platforms. The good side of this is the data becomes more structured and now has more context. Unfor-
tunately, traditional Sagan rules weren’t built to process this data.

The goal of Sagan is to keep the traditional syslog parsing in place and to add on JSON keyword rule options and
functionality. Sagan is about processing log data, regardless of the source. This means that in many cases it is
important for Sagan to properly handle JSON.

14.2 Different method of JSON input

Sagan can interpret JSON from two locations. From the named pipe (FIFO) or from a “syslog message”.

The first methods is that Sagan reads incoming JSON data from a named pipe (FIFO). Traditionally, this data
is in a “pipe” (|) delimited format. The “pipe” delimitation greatly limits the types of data Sagan can pro-
cess. As of Sagan 2.0.0, Sagan can read JSON data via the named pipe. Most modern day syslog en-
gines (Rsyslog, Syslog-NX, NXlog, etc) support JSON output. See sections 4.2. rsyslog - JSON mode
<https://https://sagan.readthedocs.io/en/latest/configuration.html#rsyslog-json-modeg>_ or 4.4. syslog-ng - JSON
mode for more information about configuration of various log daemons.

With this in mind, this means that Sagan can collect data from non-syslog sources. For example, the IDS engine
Suricata (https://suricata-ids.org) produces a lot of JSON data. Various security tool APIs like Cisco Umbrella, AWS
Cloudtrail, CrowdStrike Falcon Cloud, etc. also generate a lot of JSON output. These all become possible “sources”
for Sagan data processing.

The second method of JSON data collection is via the syslog “message” field. Some syslog “forwarders” use this
method to send SIEMs data. The idea is that the data is transferred via the traditional syslog transport but the message
contains the JSON data. Sagan can interpret that data for alerting purposes.

73

https://sagan.readthedocs.io/en/latest/configuration.html#syslog-ng-json-mode
https://sagan.readthedocs.io/en/latest/configuration.html#syslog-ng-json-mode
https://suricata-ids.org

Sagan User Guide Documentation, Release 1.2.2

14.3 JSON “mapping”

Either method you decide to receive the JSON data in, it is likely you will want to “map” the data so that Sagan
can properly process it. You can think of mapping this way; When Sagan receives JSON data, it doesn’t know what
is “important” and what isn’t. “Mapping” allows you to assign values to the data so the engine can process it and
signatures can be used. It is also important to understand that different platforms label key/value pairs differently. For
example, a source IP address on one platform might be “src_ip”, while on another platform it might be “source_ip”.
Mapping allows you to assign the “source” IP value from the JSON.

“Mapping” allows you to use signature keys words like content, pcre, meta_content, etc. and features like
threshold, after, xbits, etc.

Simply put, “Mapping” allows you to assign JSON “key” data to specific internal Sagan values.

Within the Sagan rules are two files. One is json-input.map and the other is json-message.map. These are
the mapping files that are used depending on your method of input. These files can be altered to support the JSON
mapping you might need and come with some example mapping.

In some cases, “mapping” might be over kill and can be skipped. See When mapping is not needed.

14.4 How JSON nest are processed

Sagan will automatically “flatten” nests. For example, let say you want to process the

following JSON format.

{“timestamp”:”2019-11-19T20:50:02.856040+0000”,”flow_id”:1221352694083219,”in_iface”:”eth0”,”event_type”:”alert”,”src_ip”:”12.12.12.12”,”dest_ip”:”13.13.13.13”,”proto”:”ICMP”,”icmp_type”:8,”icmp_code”:0,”alert”:{“action”:”allowed”,”gid”:1,”signature_id”:20000004,”rev”:1,”signature”:”QUADRANT
Ping Packet [ICMP]”,”category”:”Not Suspicious Traffic”,”severity”:3},”flow”:{“pkts_toserver”:2,”pkts_toclient”:0,”bytes_toserver”:196,”bytes_toclient”:0,”start”:”2019-
11-19T20:50:01.847507+0000”},”payload”:”elXUXQAAAACtDw0AAAAAAE9GVFdJTkstUElOR9raU09GVFdJTkstUElOR9raU09GVFdJTkstUEk=”,”stream”:0,”packet”:”VDloD8YYADAYyy0NCABFAABUkEpAAEABniMMnwIKDJHxAQgAk9tJcwACelXUXQAAAACtDw0AAAAAAE9GVFdJTkstUElOR9raU09GVFdJTkstUElOR9raU09GVFdJTkstUEk=”,”packet_info”:{“linktype”:1},”host”:”firewall”}

All nest, including the top nest, start with a .. For example, the JSON key “timestamp” will become
.timestamp

internally to Sagan. The “event_type” and “src_ip” would become .event_type and .src_ip. For nested objects
like “alert”, you would access the “signature_id” as .alert.signature_id. This structure is similar to JSON
processing commands like jq.

There is no limitations on nest depths. This logic applies for JSON “mapping” and Sagan signature
keywords like json_content,

json_pcre and json_meta_content.

14.5 When mapping is not needed

In most cases, you’ll likely want to performing mapping for your JSON data. However, there are some instances where
mapping might not be required. Keep in mind, without mapping things like threshold, after, xbits might not
perform properly.

Regardless of whether Sagan properly maps the JSON, it will internally still split the key/value pairs in real time.
While you won’t be able to use the standard Sagan rule operators (ie - content, pcre, etc) you will be able use
some JSON specific operators.

These are json_content, json_pcre and json_meta_content. With these, you can specify the key you
want to process and then what you are searching for.

This can be useful when used in conjunction with mapping. This way you can use traditional Sagan keywords
(threshold, after, content, etc) along with JSON specific (json_content, json_pcre, etc) rule options.

74 Chapter 14. Sagan & JSON

Sagan User Guide Documentation, Release 1.2.2

14.6 Mappable JSON Fields

While not all JSON field can be internally mapped, these are the Sagan internal fields that should be consider. Each
field has different functionality internally to Sagan. For example, if you want to apply rule operators like threshold
or after in a signature, you’ll likely want to map src_ip and/or dst_ip. The following are internal Sagan
variables/mappings to consider for mapping.

Fields to consider for internal JSON mappings are as follows.

src_ip

This value will become source IP address of the event. This will apply to rule options like threshold, after,
xbits, flexbits, etc.

dst_ip

This value will become the destination IP address of the event. This can also be represented as dest_ip. This will
apply to rule options like threshold, after, xbits, flexbits, etc.

src_port

JSON data for this will become the source port of the event. This will apply to rule options like flexbits.

dst_port

JSON data for this will become the destination port for the event. This will apply to rule options like flexbits.
This can also be represented as dest_port.

message

The JSON for this value will becoming the syslog message. This will apply to rule options like content, pcre,
meta_content, parse_src_ip, parse_dst_ip, parse_hash, etc.

event_id

The JSON data will be applied to the event_id rule option.

proto

This will represent the protocol. Valid options are TCP, UDP and ICMP (case insensitive).

facility

The JSON data will be mapped to the syslog facility. This will apply to the rule option facility.

level

The JSON data will be mapped to the internal Sagan variable level. This will apply to the rule option level.

tag.

The JSON data will be mapped to the internal Sagan variable of tag. This will apply to the rule option tag.

syslog-source-ip

The JSON data will be mapped to the internally to Sagan’s syslog source. This should not be confused with src_ip.
If src_ip is not present, the syslog-source-ip become the src-ip. This might apply to threshold and
after is src_ip is not populated.

event_type

The JSON data extracted will be applied internally to the Sagan variable of “program”. event_type is simply an
alias for program and both can be interchanged. This applies to rule options like program and event_type.

program

14.6. Mappable JSON Fields 75

Sagan User Guide Documentation, Release 1.2.2

The JSON data extracted will be applied internally to the Sagan variable of “program”. program is simply an alias
for event_type and both can be interchanged. This applies to rule options like program and event_type.

time

The JSON data extracted will be applied internally to the syslog “time” stamp. This option is recorded but is not used
in any rule options.

date

The JSON data extracted will be applied internally to the syslog “date” stamp. This option is recorded but is not used
in any rule options.

14.7 JSON via named pipe (FIFO)

Mapping for JSON data coming in via the named pipe (FIFO) is configured in the sagan-core section under
input-type. Two types are available, json and pipe. If pipe is used, the sections below (json-map &
json-software) are ignored.

Controls how data is read from the FIFO. The "pipe" setting is the traditional
way Sagan reads in events and is default. "json" is more flexible and
will become the default in the future. If "pipe" is set, "json-map"
and "json-software" have no function.::

input-type: json # pipe or json
json-map: "$RULE_PATH/json-input.map" # mapping file if input-type: json
json-software: syslog-ng # by "software" type.

The json-map function informs the Sagan engine where to locate the mapping file. This is a file that is shipped
with the Sagan rule set and already has some mappings within it. The next option is the json-software type.
The json-input.map typically contains more than one mapping type. The json-software tells Sagan which
mapping to use from that file. A typically mapping for Syslog-NG looks like this:

{"software":"syslog-ng","syslog-source-ip":".SOURCEIP","facility":".FACILITY","level":
→˓".PRIORITY","priority":".PRIORITY","time":".DATE","date":".DATE","program":".PROGRAM
→˓","message":".MESSAGE"}

These are key/value pairs. The first option (ie - message, program, etc) is the internal Sagan engine value. The
value to the key is what Syslog-NG names the key.

When Sagan starts up, it will parse the json-input.map for the software type of “syslog-ng”. If the software
of “syslog-ng” is not found, Sagan will abort.

When located, Sagan will expect data via the named pipe to be in the mapped JSON format. Data that is not in this
format will be dropped. To understand mapping better, below is an example of JSON via the named pipe that Sagan
might receive:

{"TAGS":".source.s_src","SOURCEIP":"127.0.0.1","SEQNUM":"437","PROGRAM":"sshd",
→˓"PRIORITY":"notice","Authentication failures; logname= uid=0 euid=0 tty=ssh ruser=
→˓rhost=49.88.112.77 user=root","LEGACY_M"dev-2","HOST":"dev-2","FACILITY":"authpriv
→˓","DATE":"Jan 2 20:12:36"}

As we can see, Syslog-NG maps the syslog “message” field as “.MESSAGE”. The Sagan engine takes that data and
internally maps it to the “message” value. It repeats this through the rest of the mapping.

Mapping this way becomes a more convient and flexible method of getting data into Sagan than the old “pipe delim-
ited” format.

76 Chapter 14. Sagan & JSON

Sagan User Guide Documentation, Release 1.2.2

Note: When processing JSON via the named pipe, only one mapping can be used at a time.

14.8 JSON via syslog message field

The mapping concept for Sagan when receiving JSON data via the syslog “message” is similar to JSON data via the
named pipe.

Unlike JSON data via the named pipe, when receiving data via a syslog “message” multiple maps can be applied. The
idea is that your Sagan system might be receiving different types of JSON data from different systems.

To determine which “map” works best, the Sagan engine does an internal “scoring” of each map. Sagan will then
apply the best map that matches the most fields. This means that you might want to “map” fields event if you don’t
plan on using them. This ensures that the proper “map” will “win” (score the highest).

To enabled JSON syslog message processing, you will need to enable the following fields within the sagan-core
part of the sagan.yaml.

"parse-json-message" allows Sagan to detect and decode JSON within a
syslog "message" field. If a decoder/mapping is found, then Sagan will
extract the JSON values within the messages. The "parse-json-program"
tells Sagan to start looking for JSON within the "program" field. Some
systems (i.e. - Splunk) start JSON within the "program" field and
into the "message" field. This option tells Sagan to "append" the
strings together (program+message) and then decode. The "json-message-map"
tells Sagan how to decode JSON values when they are encountered.

parse-json-message: enabled
parse-json-program: enabled
json-message-map: "$RULE_PATH/json-message.map"

The parse-json-message configures Sagan to automatically detect JSON within the syslog “message” field. The
parse-json-program configures Sagan to automatically detect JSON within the syslog “program” field.

Some applications will send the start of the JSON within the “program” field and it will overflow into the “message”
field. The parse-json-program option configures Sagan to look for JSON within the “program” field and append
the “program” and “message” field if JSON detected.

The json-message-map contains the mappings for systems that might be sending you JSON. As with the
json-input.map, the Sagan rule sets come with a json-message.map.

An example mapping:

{ "software":"suricata", "syslog-source-ip":".src_ip","src_ip":".src_ip","dest_ip":".
→˓dest_ip","src_port":".src_port","dest_port":".dest_port","message":".alert.
→˓signature,.alert_category,.alert.severity","event_type":".hash","time":".timestamp",
→˓"date":".timestamp", "proto":".proto" }

Unlike named pipe JSON mapping, the “software” name is not used other than for debugging. When Sagan receives
JSON data, it will apply all mapping to found in the json-message.map file.

Note of the “message” field. This shows the “message” being assigned multiple key values. In this case the key
“.alert.signature”,”.alert.category” and “.alert.severity” will be become the “message”. Internally to Sagan, the “mes-
sage” will become “key:value,key:value,key:value”. For example, let say the JSON Sagan is processing is the follow
Suricata JSON line:

{“timestamp”:”2020-01-03T18:20:05.716295+0000”,”flow_id”:812614352473482,”in_iface”:”eth0”,”event_type”:”alert”,”src_ip”:”12.12.12.12”,”dest_ip”:”13.13.13.13”,”proto”:”ICMP”,”icmp_type”:8,”icmp_code”:0,”alert”:{“action”:”allowed”,”gid”:1,”signature_id”:20000004,”rev”:1,”signature”:”QUADRANT
Ping Packet [ICMP]”,”category”:”Not Suspicious Traffic”,”severity”:3},”flow”:{“pkts_toserver”:5,”pkts_toclient”:0,”bytes_toserver”:490,”bytes_toclient”:0,”start”:”2020-
01-03T18:20:01.691594+0000”},”payload”:”1YUPXgAAAADM7QoAAAAAAE9GVFdJTkstUElOR9raU09GVFdJTkstUElOR9raU09GVFdJTkstUEk=”,”stream”:0,”packet”:”VDloD8YYADAYyy0NCABFAABUCshAAEABI6YMnwIKDJHxAQgAHoELvAAF1YUPXgAAAADM7QoAAAAAAE9GVFdJTkstUElOR9raU09GVFdJTkstUElOR9raU09GVFdJTkstUEk=”,”packet_info”:{“linktype”:1},”host”:”firewall”}

14.8. JSON via syslog message field 77

Sagan User Guide Documentation, Release 1.2.2

Internally to Sagan the “message” will become:

.alerts.ignature:QUADRANT Ping Packet [ICMP],.alert.category:Not Suspicious Traffic,
→˓alert.severity:3

This means any signatures you are going to create will need to take this format into account. In cases where you would
like the entire JSON string to become the message, simply make the “message” mapping %JSON%. This tells Sagan
that the entire JSON string should be considered the “message”.

78 Chapter 14. Sagan & JSON

CHAPTER 15

Journald

15.1 What is “journald”?

Journald is a system for collecting logs and data from devices running “systemd”. Many distributions have moved
away standard syslog services in favor of “journald”. The concept is to replace standard “text” base logging for a more
“database” binary logging approach.

While this method has advantages, there are several limitations. Software like “Sagan” doesn’t natively read “journald”
files. Journald also lacks the ability to send logs to a remote host. Journald relies on services like syslog-ng and
rsyslog to send logs to a remote host. While there are some methods to send logs to a remote host via Journald,
most are not mature and more of a “proof of concept” than a solution. This makes using a service like syslog-ng
or rsyslog the best method to send logs generated by Journald.

15.2 Analyzing journald logs locally

Using the “Journald” command journalctl, it is possible to create a JSON stream representing Journald data. Us-
ing Sagan built in JSON processing, it is possible to analyze this data. As Journald writes log data, the journalctl
converts it to JSON and sends it to stdout. This can be redirected to a named pipe (FIFO). For example,
journalctl -f -o json > /var/sagan/fifo/journald.fifo will direct log data to a named pipe
which Sagan can read. Within the Sagan configuration file, you would want to set the following options:

input-type: json # pipe or json
json-map: "$RULE_PATH/json-input.map" # mapping file if input-type: json
json-software: journald # by "software" type.

15.3 Analyzing journald logs remotely

In situations where syslog-ng or rsyslog is not an option, you can using journalctl to send logs to a remote
host in raw JSON. For example, journalctl -f -o json | nc 192.168.1.1 1514. This would using

79

Sagan User Guide Documentation, Release 1.2.2

netcat to send logs to 192.168.1.1 on port 1514. Your receiver would need to be configuration to accepts incoming
connection and date in a __raw__ format (non-syslog). Sagan could then be used on the receiving side to analyze data
from various devices. You would likely want to wrap the “journalctl” in a script and infinite loop so journalctl
will automatically restart if the TCP log connection is broken.

80 Chapter 15. Journald

CHAPTER 16

High Performance Considerations

Depending on your hardware, Sagan can operate comfortably up to about 5k “events per/second” (EPS) using default
configurations. When you hit this level and higher, there are a few configuration options to take into consideration.

16.1 batch-size

The most important thing is the batch-size sagan.yaml configuration option. By default, when Sagan receives a
log line, the data is sent to any available thread. Due to memory protections (pthread mutex lock/unlock), this isn’t
efficient. The system starts to spend more time protecting the memory location of the single line of log data than
processing the log line.

The batch-size allows Sagan to send more data to worker threads and use less “locks”. For example, with a
batch-size of 10, Sagan can send 10 times more data with only one “lock” being applied. At even higher rates,
you may want to consider setting the batch-size to 100.

The default batch sizes are 1 to 100. On very high performance systems (100k+ EPS or more), you may want to
consider rebuilding to handleeven larger batches. To do this, you would edit the sagan-defs.h and change the following.

#define MAX_SYSLOG_BATCH 100

To

#define MAX_SYSLOG_BATCH 1000

Then rebuild Sagan and set your batch-size to 1000. While you will save CPU, Sagan will use more memory. If
you sent the MAX_SYSLOG_BATCH to 1000 and only set the batch-size to 100, Sagan will still allocate memory
for 1000 log lines. In fact, it will do the per-thread! Think of it this way:

:: (MAX_SYSLOG_BATCH * 10240 bytes) * Threads = Total memory usage.

The default allocation per log line is 10240 bytes.

81

Sagan User Guide Documentation, Release 1.2.2

16.2 Rule sets

At high rates, consideration should be given to the rules that you are loading. Unneeded and unused rules waste CPU.

If you are writing rules, make sure you use simple rule keywords first (content, meta_content, program, etc)
before moving to more complex rule options like pcre. The more simple rule keywords can be used to “short circuit”
a rule before it has to do more complex operations.

Software like Snort attempts to arrange the rule set in memory to be more efficient. For example, when Snort
detects multiple content modifiers, it shifts the shortest lenght content to the front (first searched). Regardless of
the content rule keywords placement within a rule.

Because logs are inherently different than packets, Sagan does not do this! If you have multiple content keywords,
Sagan will use them in the order they are placed in the rule. You will want to use the least matched keywords as the
first content. For example:

::

This will use more CPU because "login" is common.

content: "login"; content: "mary";

This will use less CPU because "mary" is likely less common.

content: "mary"; content: "login";

The same login applied to pcre and meta_content.

16.3 Rule order of execution

Sagan attempts to use the least CPU intensive rule options first. This means that if a Sagan rule has multiple
content keywords and multiple pcre keywords, the content rule keywords are processed first. If the content
keywords do not match, then there is no need to process the pcre keywords. The order of execution within a rule is
as follows:

The program field is the very first thing to be evaluated.

The content is the next option Sagan takes into consideration.

The meta_content is next.

Finally the pcre option, which is consided the heaviest, is the last.

82 Chapter 16. High Performance Considerations

CHAPTER 17

Contributing & Coding Style

17.1 How to contribute to Sagan

17.1.1 Rules & Signatures

Sagan signatures are the life-blood of Sagan! It is probably one of the most valuable ways that you can contribute to
Sagan. If you understand the basics of how Suricata IDS or Snort <https://snort.org>_ signatures function, then you
already know how to construct Sagan rules. If you want to add to a rule set or create an entirely new rule set, this is a
huge way to contribute!

17.1.2 Code

Are you a C programmer and want to add some functionality to Sagan? That’s great! You might want to share
your idea with the Sagan coding team. This way, if it is not an idea that will fit with Sagan or it is a duplicated
effort, you’ll know before you dive in. The best way to contact the Sagan team is via the Sagan mailing list (https:
//groups.google.com/forum/#!forum/sagan-users).

Also, check the Coding guidelines and style section of this page.

17.1.3 Documentation

Code is great but it is almost worthless without proper documentation. Do you see something in our documentation
that is incorrect? Perhaps something that could be better written or explained? Feel free to contribute!

The Sagan documentation is part of the Sagan source tree. We use the Python Sphinx system and “readthedocs.org”
for publication.

** MORE ABOUT HOW TO CONTIBUTE DOCS HERE! **

83

https://suricata-ids.org
https://groups.google.com/forum/#!forum/sagan-users
https://groups.google.com/forum/#!forum/sagan-users

Sagan User Guide Documentation, Release 1.2.2

17.1.4 Blogs & articles

Tell us, and better yet, the world, how you are using Sagan. We are always interested to see who and how our software
is being used. In return, we will link to your articles from within our Sagan ReadTheDocs.org documentation page!
This help spread the word about Sagan and we truly appreciate it!

17.2 Coding guidelines and style

17.2.1 Coding style

Sagan development is primarily done in C. We use the gnu “artistic style”. If you are not familiar with the gnu artistic
style, that is okay. We use tools like astyle to keep code consistent. Using tools like astyle allows you to write
code in the style you are most comfortable with and then convert it before committing. In fact, it is pretty rare that the
main contributors manually follow these guidelines!

To install astyle, as root:

apt-get install astyle

Before committing your code, simply run the following command within your source tree:

astyle --style=gnu --suffix=none --verbose *.c *.h

17.2.2 Coding Guidelines

While everyone has their own set styles and methods of coding, there are a few things that we prefer to see in the
Sagan code. The biggest thing is consistency. Not only by the coding “style” (see Coding Style) but also logical
formatting.

Consistency with “if” statement is required. For example:

/* Incorrect */

if (0 == variable)
{
...
}

Will be rejected. The proper coding format with Sagan would be:

/* Correct */

if (variable == 0)
{
...
}

When using boolean operators, be sure and use the stdbool.h true and false. For example:

/* Correct */

if (variable == true)
{

(continues on next page)

84 Chapter 17. Contributing & Coding Style

https://sagan.readthedocs.org

Sagan User Guide Documentation, Release 1.2.2

(continued from previous page)

...
}

/* Incorrect */

if (variable == 1)
{
...
}

Your code should contain comments that are clear. Proper comment syntax is desired as well. For example:

// Example incorrect comment

if (x == y) /* Incorrect comment */
{
...
}

/* Example correct comment */

if (x == y) // This is acceptable
{
...
}

The { and } are converted in the GNU “artistic style”. Even if you do not prefer this formatting, programs like
astyle can correct them before you commit. For example:

/* Incorrect */

if (x == y) {
...
}

/* Correct */

if (x == y)
{
...
}

/* Incorrect */

if (x == y)
b = a;

/* Correct */

if (x == y)
{

b = a;
}

These are a few simple rules to consider before contributing code. In many cases astyle will address them for you.

17.2. Coding guidelines and style 85

Sagan User Guide Documentation, Release 1.2.2

86 Chapter 17. Contributing & Coding Style

CHAPTER 18

Sagan Blogs

18.1 Dynamic Rules with Sagan.

Posted by Champ Clark on November 14, 2016

One of the biggest problems faced with log monitoring is ensuring that the proper rules are loaded. Just like with
packet based IDS systems, during the installation and setup process, you typically enable the rules that you think are
relevant to your environment. The problem is, environments change over time and we might neglect to go back and
determine if the original rules we enabled are still relevant. The idea behind “dynamic rules” is to detect changes in
the logging infrastructure and make adjustments by “dynamically” loading rules and letting you and your staff know.

It is pretty common for networks to change over time. For example, let’s say that during deployment of Sagan in
your network it was analyzing Linux, Windows, and Palo Alto firewall logs. Two years later, your organization
decides to replace its Palo Altos with Cisco ASA firewalls; have you made the appropriate changes to your monitoring
infrastructure to take into account the Palo Alto to Cisco ASA Switch? It’s an easy thing to forget and miss.

The idea is to have Sagan “see” the changes and “dynamically” load the rules and alert you to the fact.

To detect the change, we have created a “dynamic.rules” rule set that utilizes the power of the Sagan rule structure. The
idea is that we can create rules that will “detect” when Sagan “sees” new logs entering the system. The “dynamic.rules”
watches for characteristics of various log types and when they are detected, responds by loading the rules and alerting
your staff.

One thing we don’t want to do is take away CPU cycles from normal analysis to detect “new” logs. Think of it this
way, the more “signatures” you feed Sagan, or any IDS system, the more CPU it takes to process data through them.
Increasing your total signature size increases your load.

We have gotten around the CPU load problem by creating a “sample” rate. We don’t necessarily want to examine
every log received to determine if it’s “new” to the system or not. With a “sample” rate, we tell Sagan to only examine
every X log for “new” content. This is done by utilizing the “dynamic_load” processor with the “dynamic.rules”. The
“processor” line looks like this in your “sagan.conf”:

processor dynamic_load: sample_rate=100 type=dynamic_load******

The sample_rate is set to 100. This means that every 100th log line received, Sagan will examine it for “new”
characteristics. If the log line is determined to be “new” to the system via the “dynamic.rules”, dynamic_load (via the

87

Sagan User Guide Documentation, Release 1.2.2

“type=”) tells Sagan to load the associated rule set. Possible options for “types” are dynamic_load, which logs and
writes a unified2 record and loads the associated rule set. The log_only type tells Sagan to simply write out to the
sagan.log file that it has detected a new log type. The alert tells Sagan to create a single unified2 record (an alert) that
it has detected a new log type.

The use of the sample_rate greatly reduces the CPU load and allows for the amount of fine-tuning that you feel
comfortable with. A sample_rate of 100 means you’ll use 1/100 CPU time for new log detection. You could increase
the sample_rate but then it might take longer to detect “new” logs entering the system. Alternatively, you could
decrease the sample_rate, which will detect new logs entering Sagan faster, but use more CPU.

For the time being and for the purposes of our testing, a default of 100 seems to be a good starting place.

Now that we’ve determined the amount of data we want to process for “new” logs, let’s look into an example of
“dynamic.rules”:

alert syslog $EXTERNAL_NET any -> $HOME_NET any (msg: “[DYNAMIC] Cisco ASA logs detected
via program.”; program: %ASA*|%FWSM*; dynamic_load: $RULE_PATH/cisco-pixasa.rules; classtype:
dynamic-rules; reference: url,wiki.quadrantsec.com/bin/view/Main/5002967; sid:5002967; rev:2;)

Note the new dynamic_load rule option. This tells Sagan that this is a “dynamic” rule that should follow the configu-
rations set by the “dynamic_load” processor. It also informs Sagan “what” to load when a “new” log type is detected.
Note that you can use sagan.conf configuration variables within the rule (i.e. - $RULE_PATH).

The rest of the rule works like a normal Sagan rule. In this simple example, we know that Cisco ASA’s typically uses
the “program” of %ASA-{number-code}. If Sagan sees a log line with a program of %ASA-* and Sagan has not
previously loaded the “cisco-pixasa.rules”, it will automatically load them and trigger a log/unified2 alert.

One interesting result we’ve seen in testing is using “dynamic.rules” to tell the user what rules to load! For example,
we could start Sagan without any normal non-dynamic rules enabled. That is, the only rules enabled would be “dy-
namic.rules”. Sagan could then inform the user what rules it would load. With that data, the user could manually load
those and other associated rules (geoip rules, malware rules, etc).

Detection of changes to infrastructure is very important. Using “dynamic.rules” allows you to detect those changes
quickly and automatically adjust.

18.2 What the Sagan Log Analysis Engine Is. . . and What It Is Not.

Posted by Champ Clark on August 22, 2016 Article by Champ Clark III.

With so many log analysis tools out there, we sometimes see strange comparisons between the Sagan log analysis
engine and unrelated tools. For example, people often ask how Sagan compares to Splunk. In our opinion, these are
two different tools with two different jobs.

For one, the Sagan log analysis engine is a tool that was programmed completely with a focus on security. Splunk and
similar tools, on the other hand, are analysis and log archival search utilities with security focused functionality added
on later. We aren’t suggesting that this is a bad thing, and it doesn’t mean that Splunk and similar tools are “bad.” But,
as security tools they are attempting to accomplish different goals.

If anything, Sagan is more similar to tools like OSSEC, rather than Splunk.

What we are doing with Sagan is trying to detect the successful “bang” (attack) when it occurs. Robert Nunley turned
me on to this military terminology some time ago and I think it applies to information security very well.

“To think about an attack on a timeline, bang is in the middle. Bang is the act. Bang is the IED explosion, the
sniper taking a shot, or the beginning of an ambush.” (From the book “Left of Bang”; https://www.amazon.com/
Left-Bang-Marine-Combat-Program/dp/1936891301)

88 Chapter 18. Sagan Blogs

https://www.amazon.com/Left-Bang-Marine-Combat-Program/dp/1936891301
https://www.amazon.com/Left-Bang-Marine-Combat-Program/dp/1936891301

Sagan User Guide Documentation, Release 1.2.2

“Left of bang” is before the attack has occurred. The “bang” is the time of the attack and where Sagan does its best
detection. Retro or non-real time detection of an attack is at the “right of bang,” where most log analysis tools operate
today.

At Quadrant, we are working with the “bang” and at the “right of bang.” Using technologies that operate
at both time points allows our SOC to detect threats better.

Operating on the “left of bang” is more difficult to accomplish. We are proactively working to improve this within
our BlueDot threat intelligence (part of Sagan), and this is also where projects like Quadrant’s new “APT Deflector”
(patent pending) come into play.

The idea behind Sagan is for it to treat logs similarly to how Snort (IDS) treats packets, in rapid, real- time analysis
and correlation. Let’s examine these two statements.

Snort (IDS) and “Full Packet Capture” (FPC) have two different functions. If I need to search for something in my
FPC archive, I can. I put IDS in front so that it might detect “bad things” happening before I have to go into my FPC
archive.

Sagan and log archival have two different functions. If I need to search for something in my log archive, I can. I put
Sagan in front so that it might detect “bad things” happening before I have to go into my log archive.

Sagan is the IDS for logs, FPC is the “log archive.”

In some cases, Sagan is able to tell you enough about an attack, so that you might not need to dig any further. In other
cases it does not. Instead, you use the Sagan data to point you in the right direction to use with other tools.

As a “technology + people” company, this is exactly how we use Sagan at Quadrant Information Security in our SOC.
When IDS detects a “bad thing” our SOC handlers might utilize “Bro” (https://www.bro.org/) or FPC to get a clearer
picture of what is going on. When Sagan detects a “bad thing” happening, our SOC handlers use raw log searches to
paint a better picture about what is going on. We then relay that clear picture back to our clients.

Sagan is also intended to be the “glue” between security devices. I just recently had a friendly argument with the author
of Snort, Martin Roesch, about something he said in his RSA keynote speech “Advanced Strategies for Defending
against a New Breed of Attacks” (The full video is at: https://www.youtube.com/watch?v=O_mmGUu_6gM . At 9:00
minutes you get to the points I’m referring too).

It seemed to me while watching his video that he was suggesting that we come up with a means that would allow
different security devices to communicate with each other. It sounded a lot like “Security Device Event Exchange”
(SDEE) (https://en.wikipedia.org/wiki/Security_Device_Event_Exchange) to me. He also stated that he believed this
couldn’t be accomplished at the log level.

My counter-argument is that vendors are never going to “work together”, sing “kumbaya” and start using a standard,
unified format. It’s been tried, multiple times, and each time it has failed. What are the odds that Cisco C-level
executives are going to want to see data interaction and exchange with say, Juniper gear? Or Fortinet?

Speaking to his second point, in an ideal world, your Linux servers would be able to share “security” related infor-
mation with your Microsoft servers. For example, let’s say that an attacker is attempting to ‘brute force’ your Linux
server’s SSH service. Let’s also say that the brute force was unsuccessful. One hour later, a valid successful login via
Microsoft RDP is detected from the same IP address. This might be something you want to investigate.

This is exactly what Sagan does, at the log level. While the Linux and Windows servers won’t “share” information,
since they both send data back to Sagan, Sagan becomes the intermediary for the data. Another example might be your
IDS detecting an SQL injection attack, but your “Web Application Firewall” (or mod_security) blocks the attack. We
might want this data, but not escalate it to a phone call at 3:00 a.m. We can now also “track” the attacker across our
network.

The idea is to do this in real-time. Not retro-actively hours or days later.

We do this in Sagan with what is known as “flowbits”. Robert Nunley from Quadrant wrote an excellent post some
time ago about flowbits (https://quadrantsec.com/about/blog/sagan_flowbit/). The next thing that’s usually said is, “ah,
but now I have to figure out how to write rules with flowbits.” Actually, we’ve already written many rules with flowbits

18.2. What the Sagan Log Analysis Engine Is. . . and What It Is Not. 89

https://www.bro.org/
https://www.youtube.com/watch?v=O_mmGUu_6gM
https://en.wikipedia.org/wiki/Security_Device_Event_Exchange
https://quadrantsec.com/about/blog/sagan_flowbit/

Sagan User Guide Documentation, Release 1.2.2

of common scenarios, just like the examples above, and we are constantly improving our rule set. However, you also
have the power to write your own rules.

The idea behind the Sagan log analysis engine is to be a real-time “IDS” for your logs. It is the “glue” between your
devices.

There is no single tool that is a silver bullet and anyone claiming that there is, is lying.

18.3 Sagan 1.0.0 log analysis engine released!

Posted by Champ Clark on October 23, 2015

In June 2010, we completed initial work on Sagan 0.0.1 which was a very basic outline of what we thought a real-time
log analysis engine should be. Historically, people treated logs as an archive of only the past activities, and in 2010,
many solutions for “log analysis” were based on command line tools and concepts like grep. This approach is fine and
certainly useful, but why was real-time log analysis not really a “thing?” We never suggested getting rid of historical
log search functionality, but the lack of “real time” detection was troubling; we expect some security software, like
Intrusion Detections Systems (IDS) to be “real time,” so why was log analysis not treated the same way? After all, if
someone told you that their solution to packet inspection was to “look at all the packets via a ‘grep’ every Friday,” you
would laugh at them. We decided to tackle this problem because of our own selfish needs.

When we started developing Sagan, we naturally focused on our own needs at Quadrant Information Security. Since we
are an MSSP (Managed Security Service Provider), we needed to be able to monitor security appliances and software
similarly to how we monitored our “Snort” instances. Back in 2010, pre-Cisco/Sourcefire buy-out, not all companies
were interested in Snort. They “trusted” more “mainstream” products from companies like Cisco, Sonicwall, Fortinet,
etc. As much as we argued that Snort was a better IDS/IPS solution, many potential customers simply were not
interested; “we’re a Cisco shop, that’s the way it is,” we heard this a lot.

Initial development began so that we, as an MSSP, could say “yes, we can monitor that.” At the time, that was our
primary need, which meant that Sagan had to be 100% real time. It would not be reasonable for our analysts to have
to “grep” logs daily in order to search for possible malicious activity. Software should be able to provide this data and
do it better. To be real-time in environments with mass amounts of log data, Sagan needed to be multi-CPU aware
and memory-efficient. Therefore, we designed Sagan in C using threading (pthreads). If your analysis platform has
multiple CPUs and/or cores, Sagan would need to “spread” the log analysis load across them. Since our analysts
already understood packet analysis via Snort rules, it made sense to have Sagan use a similar syntax, which also meant
that Snort rule management software like “pulledpork” would inherently work with Sagan.

Since we were already traveling down the “very much like” Snort path in terms of design, we decided that we might as
well adopt the Snort “unified2” output format, which means that Sagan can store its data in the same place that Snort
does. This also meant that we can correlate log events to our packet events, and that we are out-of-the-box compatible
with Snorby, BASE, Squil, etc.

Overall, those were the basic milestones we wanted to get to. As time went on, Sagan required more complexity that
was not foreseen at the time of its inception (i.e., flowbits). In August of 2015, after 5 years of development, we put
Sagan into a “code freeze” which means that rather than trying to add complex new features to Sagan, we focus on
stability. And although Sagan has always been pretty stable, we started testing across a lot of platforms that varied in
log data flow, rules enabled, and environmental complexity. In August of 2015 released “RC1” (Release candidate #1)
to the public to help us test Sagan. We made it up to “RC5”, and today, October 23rd, 2015, we’re proud to call this
Sagan 1.0.0.

Today, Sagan is used around the world by medical companies, hospitals, banks, credit unions, financial institutions,
petroleum companies, law firms, supermarket chains, telecommunications companies, accounting firms, manufactur-
ers, hosting providers, insurance companies, colleges, universities and various law enforcement agencies. It is even
used by other network and computer security companies, and these are just the organizations that we know use Sagan!

We are very proud of how far Sagan has come since its inception. Sagan is a complex piece of software that required
the input and help from many people. I like to highlight that fact since Sagan would not be where it is today had

90 Chapter 18. Sagan Blogs

Sagan User Guide Documentation, Release 1.2.2

it not been for all of these people willing to spend time deep in the Sagan code, and developing rules. If you have a
moment, please check out the contributors via the “sagan –credits” flag or https://github.com/beave/sagan/blob/master/
src/sagan-credits.c

Now that 1.0.0 is behind us, we look forward to adding some new “killer” functionality. It is going to be a really fun
ride. Check out the open source version of Sagan at http://sagan.io

18.4 Sagan output to other SIEMs

Posted by Champ Clark on November 06, 2014

Sagan is a very powerful engine at detecting threats contained in log data. When Sagan detects something that it
believes you should know about, it can “output” these alerts in several formats. The most popular and useful of
these output formats is “Unified2”. Unified2 is typically used by Snort, Suricata and Sagan to record details about an
event/alerts. It records not only the payload, or in Sagan’s case, the offending log message but other details as well.
The source, destination IP address, source and destination ports and much more.

What makes this output format so powerful is that it gives Sagan the ability to put event and alert data in the same
location as other utilities like Snort and Suricata. This means you can view “threats” from “one pane of glass” (one
console). So instead of having IDS/IPS threats in one console and Sagan log analysis data in another, it all gets stored
in a unified location. With that said, there are power instances you might want to correlate more than just “threat”
data. For example, you might was to send this data to a centralized log server. If you are sending your Snort/Suricata
data to a centralized log server, then it likely makes sense you would like to do the same with Sagan data.

This give you the ability to not only look at the threat data from Snort, Suricata and Sagan, but other data “surrounding”
the event.

To do this, we use Sagan’s “syslog” output format. This lets Sagan send events and alerts to the systems “syslog”
facility. These can then be forwarded to our centralized log server and/or SIEM. As we’ve stated in pervious blog
posts, we try to maintain some compatibilty with Snort in some respects. This allows Quadrant Information Security
to work on creating the best log analysis engine without having to worry about things like rule management, rule
formats, etc.

With this in mind, it should come as no suprise that Sagan’s “syslog” output format works very similar to Snort’s
“syslog” output format. In your sagan.conf file, you would add the following:

output syslog: LOG_AUTH LOG_ALERT LOG_PID

These are also the default settings for Sagan. The output format in the configuration file is like this:

output syslog: (facility) (priority) (syslog options)

(Supported facilities: LOG_AUTH, LOG_AUTHPRIV, LOG_CRON, LOG_DAEMON, LOG_FTP, LOG_INSTALL,
LOG_KERN, LOG_LPR, LOG_MAIL, LOG_NETINFO, LOG_RAS, LOG_REMOTEAUTH, LOG_NEWS,
LOG_SYSLOG, LOG_USER, LOG_UUCP, LOG_LOCAL0, LOG_LOCAL1, LOG_LOCAL2, LOG_LOCAL3,
LOG_LOCAL4, LOG_LOCAL5, LOG_LOCAL6, LOG_LOCAL7)

(Supported priorities: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING, LOG_NOTICE,
LOG_INFO, LOG_DEBUG)

(Supported options: LOG_CONS, LOG_NDELAY, LOG_PERROR, LOG_PID, LOG_NOWAIT)

With the syslog output configured, Sagan can now generate messages to your local syslog daemon that look like this:

sagan[8517]: [1:5002178:2] [OPENSSH] SSH login success after brute force attack! [Classification: Correlated
Attack] [Priority: 1] {TCP} 10.10.10.10:42131 -> 10.10.10.11:22

You might be thinking to yourself how similar the Sagan syslog message looks to a Snort or Suricata syslog message.
You would be correct! Sagan does this so that you might take advantage of Snort syslog parsers within your SIEM!
For example, lets say you use Splunk to collect logs from your Snort IDS/IPS systems. In Splunk, you might have

18.4. Sagan output to other SIEMs 91

https://github.com/beave/sagan/blob/master/src/sagan-credits.c
https://github.com/beave/sagan/blob/master/src/sagan-credits.c
http://sagan.io

Sagan User Guide Documentation, Release 1.2.2

built a log parser to extract important data from Snort messages (source, destination, protocol, etc). The same parser
you use to extract useful information from your Snort logs will work with Sagan syslog data! It just “works”. No new
parsing or data extraction techniques are needed. This idea applies to any SIEM technilogies (ELSA, Logstash, etc).
The final step is to get these Sagan log messages from your local system to your SIEM. In order to do this, we need
the local syslog daemon to forward these events.

If your system uses syslog-ng as a logging daemon, you would want to add something like this to your syslog-ng
configuration:

filter f_sagan { program(“sagan*”); }; destination f_sagan_siem { udp(“10.10.10.10” port 514); }; log {
source(src); filter(f_sagan); destination(f_sagan_siem); };

If your system uses rsyslog as a logging daemon, you would want to add something like this to your rsyslog configu-
rations.

If $programname == ‘sagan*’ then @10.10.10.10:514

For a older, more traditional syslog daemon, you would use something like this:

auth.alert @10.10.10.10

(Note: “10.10.10.10” would be your SIEM. After these changes are made, your syslog daemon will likely need to be
reset or restarted).

This will allows Sagan to directly send alerts via syslog. I should note that if you use Barnyard2 with Sagan, you’ve
always had this ability! One of the output formats Barnyard2 has is syslog! In fact, if you are using Barnyard2 with
Sagan, you’ll likely want to enable the syslog output in your Barnyard2 configurations! To configure with Barnyard2,
you would add this to your configuration:

output alert_syslog: host=10.10.10.10:514, LOG_AUTH LOG_ALERT

With this sort of setup, Sagan can now share it’s threat intelligence directly with your SIEM.

18.5 Sagan Flowbit

Posted by Kat Casey on June 08, 2015 These insights were provided by the expertise of Rob Nunley.

(Update: November 17th, 2018 - The term ‘flowbit’ is really tied to ‘xbit’)

Daniel Kahneman is a Doctor of Psychology who was awarded the Nobel Prize in Economic Sciences in 2002
(http://www.princeton.edu/~kahneman/). It may seem strange, initially, that a Psychologist would win one of the most
world-renowned economics awards, but Dr. Kahneman’s contributions can be applied to many fields; this includes cy-
bersecurity. Dr. Kahneman’s primary contribution was related to “human judgment and decision-making under uncer-
tainty” (http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2002/kahneman-facts.html), of which
he has performed a great deal of research and experimentation.

Dr. Kahneman, who often performed experiments with Dr. Amos Tversky, may be best known for his research into
System 1 and System 2 thinking. System 1 thinking uses heuristics, or quick and dirty “rules”, to make instant and
subconscious decisions. System 2 thinking involves logical and conscious thought to make decisions. Heuristics are
susceptible to a number of systematic errors and pitfalls, but heuristics serve a purpose. (http://people.hss.caltech.edu/
~camerer/Ec101/JudgementUncertainty.pdf).

Just as with everyday life, heuristics are often sufficient for many tasks and that utility extends to the realm network
monitoring via NIDS and log analyses. Log messages contain information detailing the occurrence of an event. At
best, a log message might indicate the source and destination of an action, the user(s) involved in the action, the
catalyst of an action, and the outcome of an action. At worst, a log message may contain any one, or none, of those
items. Sagan uses two primary methods for alert detection: heuristics (i.e., “rules” or signatures) and processors (e.g.,
reputational lookup of IP addresses). Some conclusions derived from the application of heuristics are valid—“login

92 Chapter 18. Sagan Blogs

http://www.princeton.edu/~kahneman/
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2002/kahneman-facts.html
http://people.hss.caltech.edu/~camerer/Ec101/JudgementUncertainty.pdf
http://people.hss.caltech.edu/~camerer/Ec101/JudgementUncertainty.pdf

Sagan User Guide Documentation, Release 1.2.2

failure for user root from src IP 1.2.3.4” is pretty straightforward. A single log message is not always a valid indicator
of an event, however, as we will explore below:

**4722: A user account was enabled.

Subject: Security ID: ACMEadministrator Account Name: administrator Account Domain: ACME Logon ID:
0x20bad

Target Account: Security ID: ACMEHumpty.Dumpty Account Name: Humpty-Dumpty Account Domain:
ACME**

The above log message clearly states that “A user account was enabled”, so what is the confusion? The log message,
by itself, is missing context. If a Windows account is disabled and re-enabled, only the above log message will appear.
If an account is created, however, there are always two messages created: 4720: A user account was created and 4722:
A user account was enabled.

A Sagan feature developed specifically for the clustering of indicators in order to apply context to heuristics-based
detection is flowbit. Flowbit, while not true System 2 thinking, empowers Sagan with the ability to trigger alerts for
specific events only in the presence or absence of other events. Flowbits are given unique names based on what they
are being used for (e.g., “created_enabled”). Sagan can measure for the presence or absence of events with flowbit by
using a “flag” to represent whether or not a flowbit is set. An example of Sagan applying context for more informed
decision-making can be observed by revisiting the Windows user account enabled example.

If a Windows account is disabled and re-enabled, there is no “account re-enabled” event. Instead, research was required
to identify indicators and to find unique indicators which could be used for diagnosticity. As mentioned previously,
creation of a new Windows account generates log messages for both enabled and created, but re-enabled accounts
only generate account enabled events. The signatures below are used to determine when a Windows account has been
re-enabled.

**alert syslog $EXTERNAL_NET any -> $HOME_NET any (msg:”[WINDOWS-AUTH] User account created
[FLOWBIT SET]”; content: ” 4720: “; program: Security*; classtype: successful-user; flowbits: set, created_enabled,
30; flowbits: noalert; reference: url,wiki.quadrantsec.com/bin/view/Main/5001880; sid: 5001880; rev:3;)

alert syslog $EXTERNAL_NET any -> $HOME_NET any (msg:”[WINDOWS-AUTH] User account re-enabled”;
content: ” 4722: “; content:! “$” ;program: Security*; flowbits: isnotset, by_src, created_enabled; classtype:
successful-user; reference: url,wiki.quadrantsec.com/bin/view/Main/5001881; sid: 5001881; rev:3;)**

The first flowbit field in the first signature (sid: 5001880) notifies Sagan by using the flowbit command “set”, provides
a unique name for the flowbit, and declares how long the flowbit should remain active.

flowbits: set, created_enabled, 30

The flowbit details are stored in memory along with other information such as IP addresses involved. The second
flowbit field in the first signature instructs Sagan not to produce an alert if this rule is triggered.

flowbits: noalert

The second signature contains only a single flowbit field, but this is what determines if an alert will trigger. This
signature instructs Sagan that, if all other criteria for the signature match, check the flowbit table for a flowbit named
created_enabled where the source IP address matches the newly identified source IP address (by_src). If the flowbit
does not exist (isnotset), generate an alert stating that a user account has been re-enabled.

flowbits: isnotset, by_src, created_enabled

If there is still some confusion, we can examine once again why we are looking for a flowbit that does not exist in this
scenario.

User account created created message && enabled message

User account re-enabled enabled message

18.5. Sagan Flowbit 93

Sagan User Guide Documentation, Release 1.2.2

If it is our intention to know when an account has been re-enabled, we do not want to trigger on any account enabled
messages following an user account created message for the same source IP address. Context is provided by the
presence or absence of the user account created message combined with the IP address being tracked.

Flowbit consists of three basic functions:

flowbits: set, (flowbit name), (expire time);

Instructs Sagan to create an entry in memory for the unique flowbit name for the duration, in seconds, given as an
expire time.

flowbits: (unset|isset|isnotset), (by_src|by_dst|both|reverse|none), (flowbit name);”

Instructs Sagan how to respond to an alert with respect to a flowbit that has been set for a unique name. Possible
actions are checking if the flowbit is set or is not set, as well as unsetting the flowbit if it exists. Search criteria is
defined by tracking the source IP address, destination IP address, both IP addresses, the inverse of the original source
and destination (i.e., source becomes destination / destination becomes source), or no tracking criteria.

flowbits: noalert;

This instructs Sagan not to generate an alert when a rule triggers, and is best used with initial indicators in a chain. Al-
though flowbit does not have many features by itself, its power comes by chaining, or clustering, events in a multitude
of combinations. Consider the following scenarios:

A Windows server shuts down normally, so logs are generated for each process that is killed. If a message stating that
anti-virus software has been killed is observed in conjunction with a message stating that a server is shutting down,
then that is expected. If a message stating that anti-virus software has been killed is observed but the server is not
being shut down or restarted, then that is something that may be of interest to administrators and security analysts.

A user logging in to a system is normal. Observing five-thousand login failures followed by a login success may be
suspect.

What if we want to track more than two indicators in succession? Sagan can handle that, too! Not only can Sagan
chain numerous indicators, but an initial indicator in a chain can be used by multiple secondary indicators. Also, since
Sagan can process whatever logs are sent to it, we can leverage Snort IDS logs to combine network events with system
events.

Consider the following scenarios:

Snort logs (forwarded to Sagan) indicate a remote file inclusion attempt. This sets the RFI flowbit.

The attack, which was successful, causes the web server to request a Perlbot file. Sagan checks the RFI flowbit and,
because the flowbit was set for the web server’s IP address, we can receive an alert notifying us that there was a
successful RFI attack.

If we have another “flowbits: set” instruction in our “flowbits: isset” signature, we have the ability to extend our chain.
With reliable, valid indicators, we are able to receive increasingly relevant information with each additional signature.
Let’s extend the above scenario a little farther.

Snort logs (forwarded to Sagan) indicate a remote file inclusion attempt. This sets the RFI flowbit.

The attack, which was successful, causes the web server to request a Perlbot file. Sagan checks the RFI flowbit and,
because the flowbit was set for the web server’s IP address, we can receive an alert notifying us that there was a
successful RFI attack. In addition to the alert, we set another flowbit called RFI_Download.

The web server runs a new process (detected via OSSEC, auditd, or some other service). Since the RFI_Download
flowbit is set, we know that the new process started by our web server may be of interest to incident responders, so
Sagan can send us another alert!

We’ll discuss more advanced Sagan flowbit usage in a later blog post, but I hope that the example scenarios shown
have at least opened the reader’s mind to the possibilities the power and potential of flowbit.

94 Chapter 18. Sagan Blogs

Sagan User Guide Documentation, Release 1.2.2

All forms of heuristics are prone to various limitations and shortcomings, but flowbit helps overcome some of the po-
tential pitfalls inherent in heuristics-based detection. Sagan’s flowbit can increase accuracy and reduce false positives
by requiring multiple indicators, potentially from multiple sources, before triggering an alert. Flowbit can be used to
support incident responders, as shown above, by tracking indicators in real-time (this can also help with postmortem
incident analysis). Flowbit also ensures that events occur within the context in which they are relevant.

The possibilities are limited by creativity, observability of events, and diagnosticity of indicators.

18.5. Sagan Flowbit 95

Sagan User Guide Documentation, Release 1.2.2

96 Chapter 18. Sagan Blogs

CHAPTER 19

Articles about Sagan

19.1 Reading

“Logging and processing logs from Windows 7. Timber!” - Linux Magazine - http://www.linux-magazine.com/
content/download/61671/482426/version/1/file/072-073_kurt.pdf

“Analyzing Bro Logs with Sagan” (2015/09/10) - https://blog.zeek.org//2015/09/analyzing-bro-logs-with-sagan.html

“Sagan as a Log Normalizer” (2013/11/16) - https://isc.sans.edu/forums/diary/Sagan+as+a+Log+Normalizer/17039

“ELSA with Sagan” (2013/01/31) - http://blog.infosecmatters.net/2013/01/elsa-with-sagan.html

“Infoworld Sagan BOSSIE award” (2012/09/18) - https://www.infoworld.com/article/2606792/open-source-
software/bossie-awards-2012–the-best-open-source-networking-and-security-software.html#slide17

19.2 Audio/Video

Champ discusses Sagan “Pauldotcom Security Weekly” (2013/12/12) - http://traffic.libsyn.com/pauldotcom/
PaulDotCom-356-Part1.mp3

“Taking a bite out of logs with Sagan” at “Hackers On Planet Earth” (HOPE9) (2012/07) - https://www.youtube.com/
watch?v=pMlAmteCjQo

Champ talks with the Jacksonville Linux User group about Sagan - https://www.youtube.com/watch?v=rySjNnEpjbI

19.3 Presentations/Papers

“Securing your Mikrotik Network” by Andrew Thrift (Presentation) - http://sagan.io/pdf/2_andrew.pdf

“Building wireless IDS systems using open source” - 2013? - http://sagan.quadrantsec.com/papers/wireless-ids/

“Defending the Homeland: Logging and Monitoring at home” by @nullthreat - http://sagan.io/pdf/
BlackLodgeNSMOverview-Nullthreat.pdf

97

http://www.linux-magazine.com/content/download/61671/482426/version/1/file/072-073_kurt.pdf
http://www.linux-magazine.com/content/download/61671/482426/version/1/file/072-073_kurt.pdf
https://blog.zeek.org//2015/09/analyzing-bro-logs-with-sagan.html
https://isc.sans.edu/forums/diary/Sagan+as+a+Log+Normalizer/17039
http://blog.infosecmatters.net/2013/01/elsa-with-sagan.html
https://www.infoworld.com/article/2606792/open-source-software/bossie-awards-2012--the-best-open-source-networking-and-security-software.html#slide17
https://www.infoworld.com/article/2606792/open-source-software/bossie-awards-2012--the-best-open-source-networking-and-security-software.html#slide17
http://traffic.libsyn.com/pauldotcom/PaulDotCom-356-Part1.mp3
http://traffic.libsyn.com/pauldotcom/PaulDotCom-356-Part1.mp3
https://www.youtube.com/watch?v=pMlAmteCjQo
https://www.youtube.com/watch?v=pMlAmteCjQo
https://www.youtube.com/watch?v=rySjNnEpjbI
http://sagan.io/pdf/2_andrew.pdf
http://sagan.quadrantsec.com/papers/wireless-ids/
http://sagan.io/pdf/BlackLodgeNSMOverview-Nullthreat.pdf
http://sagan.io/pdf/BlackLodgeNSMOverview-Nullthreat.pdf

Sagan User Guide Documentation, Release 1.2.2

“Centralized and structured log file analysis with Open Source and Free Software tools” Bachelor Thesis by Jens
Kühnel. - http://sagan.io/pdf/bachelor.pdf

98 Chapter 19. Articles about Sagan

http://sagan.io/pdf/bachelor.pdf

CHAPTER 20

Getting help

The primary Sagan site is located at:

https://sagan.io

Sagan Github page is located at:

https://github.com/beave/sagan

If you are having issues getting Sagan to work, consider posting in the Sagan mailing list. This list is good for general
configuration, install and usage questions.

https://groups.google.com/forum/#!forum/sagan-users

If you need to report a compile or programming issue, please use our Github.com issues page. That is located at:

https://github.com/beave/sagan/issues

If you want to chat about Sagan you can hit up our “Mattermost” chat system!

https://m.telephreak.org/sagan/channels/town-square

99

https://sagan.io
https://github.com/beave/sagan
https://groups.google.com/forum/#!forum/sagan-users
https://github.com/beave/sagan/issues
https://m.telephreak.org/sagan/channels/town-square

Sagan User Guide Documentation, Release 1.2.2

100 Chapter 20. Getting help

CHAPTER 21

TODO

• Documentation on new JSON decoders. (did json-input)

• Better documentation on syslog-ng, rsyslog and nxlog setup (pipe and JSON)

• external now powered by json

101

Sagan User Guide Documentation, Release 1.2.2

102 Chapter 21. TODO

Index

Symbols
"date"

command line option, 20
"facility"

command line option, 20
"level"

command line option, 20
"message"

command line option, 20
"priority"

command line option, 20
"software": "{software type}"

command line option, 20
"time"

command line option, 20
-disable-libfastjson

command line option, 9
-disable-lognorm

command line option, 9
-disable-snortsam

command line option, 8
-disable-syslog

command line option, 9
-enable-bluedot

command line option, 9
-enable-esmtp

command line option, 8
-enable-geoip

command line option, 8
-enable-libpcap

command line option, 9
-enable-redis

command line option, 9
-enable-system-strstr

command line option, 9
-prefix=/usr/

command line option, 8
-sysconfdir=/etc

command line option, 8

-with-esmtp-includes=DIR
command line option, 8

-with-esmtp-libraries=DIR
command line option, 8

-with-geoip-includes=DIR
command line option, 8

-with-geoip-libraries=DIR
command line option, 9

-with-libfastjson-includes=DIR
command line option, 9

-with-libfastjson-libraries=DIR
command line option, 9

-with-libpcap-includes=DIR
command line option, 9

-with-libpcap-libraries=DIR
command line option, 9

-with-libpcre-includes=DIR
command line option, 10

-with-libpcre-libraries=DIR
command line option, 10

-with-libpthread-includes=DIR
command line option, 9

-with-libpthread-libraries=DIR
command line option, 9

-with-libyaml-includes
command line option, 8

-with-libyaml-includes=DIR
command line option, 9

-with-libyaml-libraries=DIR
command line option, 9

-with-libyaml_libraries
command line option, 8

-with-lognorm-includes=DIR
command line option, 9

-with-lognorm-libraries=DIR
command line option, 9

->
command line option, 52

$EXTERNAL_NET
command line option, 51

103

Sagan User Guide Documentation, Release 1.2.2

$HOME_NETWORK
command line option, 52

“syslog-source-ip”
command line option, 20

{dynamic_load: /path/to/rules/to/load}
command line option, 57

A
after: track {by_src|by_dst|by_username|by_string},

count {number of event},
seconds {number of seconds};

command line option, 53
alert

command line option, 51
alert_time: days {days}, hours

{hours};
command line option, 53

any
command line option, 51, 52

append_program;
command line option, 54

apt-get install libesmtp-dev
command line option, 5

apt-get install libhiredis-dev
command line option, 5

apt-get install liblognorm-dev
liblognorm2

command line option, 4
apt-get install libmaxminddb0

libmaxminddb-dev
geoip-database-contrib
geoipupdate

command line option, 5
apt-get install libpcap-dev

command line option, 6
apt-get install libyaml-dev

command line option, 3

B
blacklist {by_src|by_dst|both|all};

command line option, 54
bluedot: type {file_hash|url|filename},{category};

command line option, 54
bluedot: type {ip_reputation},track

{src|dst|both|all},{none|mdate_effective_period|cdate_effective_period},{category};
command line option, 54

C
cd /usr/ports/devel/pcre && make &&

sudo make install
command line option, 3

cd /usr/ports/mail/libesmtp && make &&
sudo make install

command line option, 5

cd /usr/ports/textproc/libyaml/ &&
sudo make install

command line option, 4
classtype: {classification}

command line option, 55
command line option

"date", 20
"facility", 20
"level", 20
"message", 20
"priority", 20
"software": "{software type}", 20
"time", 20
-disable-libfastjson, 9
-disable-lognorm, 9
-disable-snortsam, 8
-disable-syslog, 9
-enable-bluedot, 9
-enable-esmtp, 8
-enable-geoip, 8
-enable-libpcap, 9
-enable-redis, 9
-enable-system-strstr, 9
-prefix=/usr/, 8
-sysconfdir=/etc, 8
-with-esmtp-includes=DIR, 8
-with-esmtp-libraries=DIR, 8
-with-geoip-includes=DIR, 8
-with-geoip-libraries=DIR, 9
-with-libfastjson-includes=DIR, 9
-with-libfastjson-libraries=DIR, 9
-with-libpcap-includes=DIR, 9
-with-libpcap-libraries=DIR, 9
-with-libpcre-includes=DIR, 10
-with-libpcre-libraries=DIR, 10
-with-libpthread-includes=DIR, 9
-with-libpthread-libraries=DIR, 9
-with-libyaml-includes, 8
-with-libyaml-includes=DIR, 9
-with-libyaml-libraries=DIR, 9
-with-libyaml_libraries, 8
-with-lognorm-includes=DIR, 9
-with-lognorm-libraries=DIR, 9
->, 52
$EXTERNAL_NET, 51
$HOME_NETWORK, 52
“syslog-source-ip”, 20
{dynamic_load:

/path/to/rules/to/load}, 57
after: track {by_src|by_dst|by_username|by_string},

count {number of event},
seconds {number of seconds};,
53

alert, 51

104 Index

Sagan User Guide Documentation, Release 1.2.2

alert_time: days {days}, hours
{hours};, 53

any, 51, 52
append_program;, 54
apt-get install libesmtp-dev, 5
apt-get install libhiredis-dev, 5
apt-get install liblognorm-dev

liblognorm2, 4
apt-get install libmaxminddb0

libmaxminddb-dev
geoip-database-contrib
geoipupdate, 5

apt-get install libpcap-dev, 6
apt-get install libyaml-dev, 3
blacklist {by_src|by_dst|both|all};,

54
bluedot: type

{file_hash|url|filename},{category};,
54

bluedot: type
{ip_reputation},track
{src|dst|both|all},{none|mdate_effective_period|cdate_effective_period},{category};,
54

cd /usr/ports/devel/pcre && make
&& sudo make install, 3

cd /usr/ports/mail/libesmtp &&
make && sudo make install, 5

cd /usr/ports/textproc/libyaml/ &&
sudo make install, 4

classtype: {classification}, 55
country_code: track

{by_src|by_dst}, {is|isnot}
{ISO3166 Country Codes}, 55

date, 76
default_dst_port: {port number}, 56
default_proto: {tcp/udp/icmp}, 56
default_src_port: {port number}, 56
depth: {depth value}, 57
distance: {distance value}, 57
dst_ip, 75
dst_port, 75
email: {email address}, 57
emerge -av libesmtp, 5
emerge -av libpcap, 6
emerge -av libpcre, 3
emerge -av libyaml, 4
event_id, 75
event_id: {id},{id},{id}...;, 58
event_type, 75
external: {path/and/program};, 58
facility, 75
flexbits: set, {flexbit name},

{expire time};, 58
flexbits_pause: {seconds};, 59

flexbits_upause: {microseconds};,
59

json_contains;, 60
json_content: "{key}",

"{search}";, 60
json_meta_contains;, 61
json_meta_content: "key",

value1,value2,value3... ;, 60
json_meta_nocase;, 61
json_nocase;, 60
json_pcre: "key",

"/regularexpression/";, 60
level, 75
LOOK THIS UP, 4
message, 75
meta_content: "string %sagan%

string",$VAR;, 61
meta_depth: {depth value}, 62
meta_distance: {distance value}, 62
meta_offset: {offset value};, 62
meta_within: {within value};, 63
msg: "human readable message";, 63
nocase, 63
normalize;, 63
offset: {offset value};, 64
parse_dst_ip: {destination

position}, 64
parse_hash: {md5|sha1|sha256};, 65
parse_port;, 64
parse_proto;, 64
parse_src_ip: {source position};,

65
pcre: "{regular expression}", 65
program, 75
program: {program name|another

program name}, 65
proto, 75
reference: {reference name},

{reference url}, 66
rev: {revision number};, 66
sid: {signature id};, 66
src_ip, 75
src_port, 75
sudo apt-get install libpcre3-dev

libpcre3, 3
sudo yum install pcre-devel, 3
sudo yum install redis, 5
syslog-source-ip, 75
syslog_facility: {syslog

facility}, 58
syslog_level: {syslog level};, 61
syslog_tag: {syslog tag};, 66
tag., 75
threshold: type

Index 105

Sagan User Guide Documentation, Release 1.2.2

{limit|suppress}, track
{by_src|by_dst|by_username|by_string},
count {number of event},
seconds {number of seconds},
66

time, 76
within: {within value};, 67
xbits:{set|unset|isset},{name},track

{ip_src|ip_dst|ip_pair}
[,expire <seconds>];, 67

xbits_pause: {seconds};, 68
xbits_upause: {microseconds};, 68
yum install GeoIP GeoIP-devel

GeoIP-data, 5
yum install liblognorm, 4
yum install libpcap, 6
yum install libyaml-devel, 3

country_code: track {by_src|by_dst},
{is|isnot} {ISO3166 Country
Codes}

command line option, 55

D
date

command line option, 76
default_dst_port: {port number}

command line option, 56
default_proto: {tcp/udp/icmp}

command line option, 56
default_src_port: {port number}

command line option, 56
depth: {depth value}

command line option, 57
distance: {distance value}

command line option, 57
dst_ip

command line option, 75
dst_port

command line option, 75

E
email: {email address}

command line option, 57
emerge -av libesmtp

command line option, 5
emerge -av libpcap

command line option, 6
emerge -av libpcre

command line option, 3
emerge -av libyaml

command line option, 4
event_id

command line option, 75
event_id: {id},{id},{id}...;

command line option, 58
event_type

command line option, 75
external: {path/and/program};

command line option, 58

F
facility

command line option, 75
flexbits: set, {flexbit name},

{expire time};
command line option, 58

flexbits_pause: {seconds};
command line option, 59

flexbits_upause: {microseconds};
command line option, 59

J
json_contains;

command line option, 60
json_content: "{key}", "{search}";

command line option, 60
json_meta_contains;

command line option, 61
json_meta_content: "key",

value1,value2,value3... ;
command line option, 60

json_meta_nocase;
command line option, 61

json_nocase;
command line option, 60

json_pcre: "key",
"/regularexpression/";

command line option, 60

L
level

command line option, 75
LOOK THIS UP

command line option, 4

M
message

command line option, 75
meta_content: "string %sagan%

string",$VAR;
command line option, 61

meta_depth: {depth value}
command line option, 62

meta_distance: {distance value}
command line option, 62

meta_offset: {offset value};
command line option, 62

meta_within: {within value};

106 Index

Sagan User Guide Documentation, Release 1.2.2

command line option, 63
msg: "human readable message";

command line option, 63

N
nocase

command line option, 63
normalize;

command line option, 63

O
offset: {offset value};

command line option, 64

P
parse_dst_ip: {destination position}

command line option, 64
parse_hash: {md5|sha1|sha256};

command line option, 65
parse_port;

command line option, 64
parse_proto;

command line option, 64
parse_src_ip: {source position};

command line option, 65
pcre: "{regular expression}"

command line option, 65
program

command line option, 75
program: {program name|another

program name}
command line option, 65

proto
command line option, 75

R
reference: {reference name},

{reference url}
command line option, 66

rev: {revision number};
command line option, 66

S
sid: {signature id};

command line option, 66
src_ip

command line option, 75
src_port

command line option, 75
sudo apt-get install libpcre3-dev

libpcre3
command line option, 3

sudo yum install pcre-devel
command line option, 3

sudo yum install redis
command line option, 5

syslog-source-ip
command line option, 75

syslog_facility: {syslog facility}
command line option, 58

syslog_level: {syslog level};
command line option, 61

syslog_tag: {syslog tag};
command line option, 66

T
tag.

command line option, 75
threshold: type {limit|suppress},

track {by_src|by_dst|by_username|by_string},
count {number of event},
seconds {number of seconds}

command line option, 66
time

command line option, 76

W
within: {within value};

command line option, 67

X
xbits:{set|unset|isset},{name},track

{ip_src|ip_dst|ip_pair}
[,expire <seconds>];

command line option, 67
xbits_pause: {seconds};

command line option, 68
xbits_upause: {microseconds};

command line option, 68

Y
yum install GeoIP GeoIP-devel

GeoIP-data
command line option, 5

yum install liblognorm
command line option, 4

yum install libpcap
command line option, 6

yum install libyaml-devel
command line option, 3

Index 107

	What is Sagan?
	License

	Installation
	libpcre (Regular Expressions)
	libyaml (YAML configuration files)
	Other dependencies
	liblognorm (Normalization)
	libfastjson (JSON)
	libesmtp (SMTP)
	libmaxminddb (GeoIP)
	hiredis (Redis)
	libpcap (Sniffing logs)

	Compiling Sagan
	Quick start from source
	A more complete quick start
	Prerequisites
	Common configure options
	Post-installation setup and testing

	Syslog Configuration
	rsyslog - “pipe” mode
	rsyslog - JSON mode
	syslog-ng - “pipe” mode
	syslog-ng - JSON mode
	nxlog
	other sources

	Sagan Configuration
	Sagan with JSON input

	vars
	sagan-core
	core
	parse_ip
	selector
	redis-server (experimental)
	mmap-ipc
	ignore_list
	liblognorm
	plog

	processors
	track-clients
	rule-tracking
	perfmonitor
	blacklist
	bluedot
	zeek-intel (formally “bro-intel”)
	dynamic-load

	outputs
	eve-log
	alert
	fast
	smtp
	syslog

	rule-files
	Rule syntax
	Rule Keywords
	after
	alert_time
	append_program
	blacklist
	bluedot
	classtype
	content
	country_code
	default_proto
	default_dst_port
	default_src_port
	depth
	distance
	dynamic_load
	email
	event_id
	external
	syslog_facility
	flexbits
	flexbits_pause
	json_content
	json_nocase
	json_contains
	json_pcre
	json_meta_content
	json_meta_nocase
	json_meta_contains
	syslog_level
	meta_content
	meta_depth
	meta_distance
	meta_offset
	meta_nocase
	meta_within
	msg
	nocase
	normalize
	offset
	parse_dst_ip
	parse_port
	parse_proto
	parse_proto_program
	parse_hash
	parse_src_ip
	pcre
	priority
	program
	reference
	rev
	sid
	syslog_tag
	threshold
	within
	xbits
	xbits_pause
	xbits_upause
	zeek-intel

	Sagan Peek
	What is “saganpeek”
	Building “saganpeek”

	Sagan & JSON
	Why JSON?
	Different method of JSON input
	JSON “mapping”
	How JSON nest are processed
	When mapping is not needed
	Mappable JSON Fields
	JSON via named pipe (FIFO)
	JSON via syslog message field

	Journald
	What is “journald”?
	Analyzing journald logs locally
	Analyzing journald logs remotely

	High Performance Considerations
	batch-size
	Rule sets
	Rule order of execution

	Contributing & Coding Style
	How to contribute to Sagan
	Coding guidelines and style

	Sagan Blogs
	Dynamic Rules with Sagan.
	What the Sagan Log Analysis Engine Is… and What It Is Not.
	Sagan 1.0.0 log analysis engine released!
	Sagan output to other SIEMs
	Sagan Flowbit

	Articles about Sagan
	Reading
	Audio/Video
	Presentations/Papers

	Getting help
	TODO
	Index

