

    
      
          
            
  
Welcome to s3l’s documentation!

S3L is a python toolkit based on safe semi-supervised learning, which is a novel branch of semi-supervised learning.

Semi-supervised learning (SSL) concerns the problem on how to improve learning performance via the usage of a small amount of labeled data and a large amount of unlabeled data. Many SSL methods have been developed, e.g., generative model, graph-based method, disagreement-based method and semi-supervised SVMs. Despite the success of SSL, however, a considerable amount of empirical studies reveal that SSL with the exploitation of unlabeled data might even deteriorate learning performance. It is highly desirable to study safe SSL scheme that on one side could often improve performance, on the other side will not hurt performance, since the users of SSL wont expect that SSL with the usage of more data performs worse than certain direct supervised learning with only labeled data.

Specifically, Safe, here means that the generalization performance is never statistically significantly worse than methods using only labeled data.

S3L implements multiple front-end safe semi-supervised learning algorithms, and provides a weakly-supervised learning experiment framework including some well-defined protocols for learning algorithms, experiments and evaluation metrics. With this toolkit, you can build up your comparing experiments between learning algorithms with different learning settings like supervised, semi/weakly-supervised, as well as different tasks such as single/multi-label learning. We hope this toolkit could help you explore the classic semi-supervised learning algorithms and go further to test your ones.

Submit bugs or suggestions in the Issues section or feel free to submit your contributions as a pull request.
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Introduction


Functionality Overview

This toolkit defines a unified experimnts framework for semi-supervised learning algorithms. Besides, it also provides some state-of-the-art safe semi-supervised learning (Safe SSL) algorithms handling bad data quality and model uncertainty. We design the framework under as less as assumption except for supervised setting. Therefore, it’s convenient to incorporate different algorithms for different settings into our experiment framework. We hope this unified framework can help researchers and other users evaluate machine learning algorithms in a light manner.


Pipeline of Safe SSL

In this toolkit, we foucus on three critical aspects to improve the safeness of semi-supervised learning: data quality, model uncertainty and measure diversity.


	As for data quality, the graph used in graph-based SSL and risky unlabeled samples may degenerate the performance.


	In the model part, we now understand that the exploitation of unlabeled data naturally leads to more than one model option, and inadequate choice may lead to poor performance.


	In practical applications, the performance measures are often diverse, so the safeness should also be considered under different measures.




The figure below provides an illustration of the three aspects of the safeness problem in semi-supervised learning.

[image: _images/s3l_pipeline.png]
Then, we will introduce the corresponding algorithms in detail in data quality module, model uncertainty module and ensemble module.

For more details about safe semi-supervised learning, we recommend users to read Safe semi-supervised learning: a brief introduction [http://lamda.nju.edu.cn/liyf/paper/FCS19-SafeSSL.pdf].






Packages and Modules

Here, we will give a brief introduction of the submodules in this package.


	Classification: Classical semi-supervised learning algorithms.


	Data Quality: Algorithms to solve the safeness of graph-based SSL algorithms.


	Model Uncertainty: Algorithms to eliminate the uncertainty of classifiers.


	Ensemble: Ensemble methods to provide a safer prediction when given a set of training models or prediction results.


	Experiments: A class which designs experiment process.


	Estimator: A class of machine learning algorithms.


	Metric: Metric functions used to evaluate the prediction given ground-truth.


	Wrapper: Helper classes to wrap the third-party packages into the experiments in this package.










          

      

      

    

  

    
      
          
            
  
Tutorial of S3L

This documentation introduces the S3L. Examples are provided to show the generic usage under different settings. To master S3L, a careful reading of Generic Processes th Use S3L and further reading of User Guide will be much helpful.
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Quick Start

S3L is a python package of Safe Semi-Supervised Learning [https://git.nju.edu.cn/coolshan008/s3l].


Dependencies

The package is developed with Python3 (version 3.6|3.7 are tested in both windows and linux system).

Basic Dependencies

numpy >= 1.15.1
scipy >= 1.1.0
scikit-learn >= 0.19.2
cvxopt >= 1.2.0








Setup

You can get s3l simply by:

$ pip install s3l





Or clone s3l source code to your local directory and build from source:

$ cd S3L
$ python setup.py s3l
$ pip install dist/*.whl





Both ways would install the dependent packages with pip command automatically.




A Quick Example

We can use s3l for different experiments. The following example shows a possible way to do experiments based on built-in algorithms and data sets:

import sys, os
from s3l.Experiments import SslExperimentsWithoutGraph
from s3l.model_uncertainty.S4VM import S4VM

# algorithm configs
configs = [
        ('S4VM', S4VM(), {
            'kernel': 'RBF',
            'gamma':[0],
            'C1': [50,100],
            'C2': [0.05,0.1],
            'sample_time':[100]
        })
    ]

# datasets
# name,feature_file,label_file,split_path,graph_file
datasets = [
    ('house', None, None, None, None),
    ('isolet', None, None, None, None)
    ]

# experiments
experiments = SslExperimentsWithoutGraph(transductive=True, n_jobs=4)
experiments.append_configs(configs)
experiments.append_datasets(datasets)
experiments.set_metric(performance_metric='accuracy_score')

results = experiments.experiments_on_datasets(unlabel_ratio=0.75,test_ratio=0.2,
    number_init=2)











          

      

      

    

  

    
      
          
            
  
Generic Processes to Use S3L

We will show you two generic processes to start using S3L, which includes two parts:


	Experiment Framework


	Call Algorithms Directly





Experiment Framework

We provide built-in experiment process for different semi-supervised settings with different input data such as inductive/transductive, WithGraph/WithoutGraph, givenDataSplit/randomlySplit and so on. The experiment class implements the following process: load data, data split, hyper-parameters search and evaluate the selected model in testing data. In order to accelerate the experiments, we also include multi-process with joblib. The experiment framework allow you to evaluate supervised/semi-supervised learning algorithms in less than ten statements. Take an example,

import sys
import os

from s3l.Experiments import SslExperimentsWithGraph
from s3l.classification.LPA import LPA


if __name__ == '__main__':
    configs = [
        ('LPA', LPA(), {
            'kernel': ['rbf'],
            'n_neighbors':[3,5,7]
        })
    ]

    datasets = [
        ('ionosphere', None, None, None, None)
    ]
    # (name, feature_file, label_file, split_path, graph_file)

    experiments = SslExperimentsWithGraph(n_jobs=1)

    experiments.append_configs(configs)
    experiments.append_datasets(datasets)
    experiments.set_metric(performance_metric='accuracy_score')

    results = experiments.experiments_on_datasets(
        unlabel_ratio=0.75, test_ratio=0.2, number_init=4)

    # do something with results #





The above codes evaluates Label Propagation algorithm on the built-in dataset ionosphere. The best model is searched with rbf kernel and n_neighbors is in the range of [3, 5, 7]. Finally, the accuracy_score is reported in the local variable result.




Call Algorithms Directly

The built-in algorithms can be called directly as in sklearn package. The algorithms we have implemented are listed here [https://git.nju.edu.cn/coolshan008/s3l/]. As long as reading the examples of certain algorithm in its module page, you can easily try out semi-supervised algorithm as you like. For example,

import sys
import os
import numpy as np
from s3l.classification.TSVM import TSVM
from s3l.metrics.performance import accuracy_score
from s3l.datasets import base, data_manipulate


if __name__ == '__main__':
    datasets = [
        ('house', None, None),
    ]
    for name, feature_file, label_file in datasets:
        # load dataset
        X, y = base.load_dataset(name, feature_file, label_file)

        # split
        _, _, labeled_idxs, unlabeled_idxs = \
            data_manipulate.inductive_split(X=X, y=y, test_ratio=0.,
                            initial_label_rate=1 - unlabel_ratio,
                            split_count=1, all_class=True)

        labeled_idx = labeled_idxs[0]
        unlabeled_idx = unlabeled_idxs[0]

        tsvm = TSVM()
        tsvm.fit(X, y, labeled_idx)
        pred = lead.predict(X[unlabeled_idx])
        print("Accuracy_score: {}".format(
                    accuracy_score(y[unlabeled_idx], pred)))





The above code runs TSVM (Transductive Support Vector Machine) with default hyper-parameter settings given feature X, label y and indexes of labeled data``labeled_idx``. Then, the prediction is evaluated with accuracy score on unlabeled data.







          

      

      

    

  

    
      
          
            
  
APIs

The following links contain detailed information about every function, class and module.



	Subpackages
	classification
	CoTraining

	LPA

	TSVM





	data_quality
	LEAD

	SLP





	datasets
	base

	data_manipulate

	usps





	ensemble
	SafetyForecast





	metrics
	performance





	model_uncertainty
	S4VM

	SAFER





	utils
	log_utils









	Submodules
	Experiments

	base













          

      

      

    

  

    
      
          
            
  
Subpackages



	classification
	CoTraining

	LPA

	TSVM





	data_quality
	LEAD

	SLP





	datasets
	base

	data_manipulate

	usps





	ensemble
	SafetyForecast





	metrics
	performance





	model_uncertainty
	S4VM
	S4VM implements the S4VM algorithm in [1].





	SAFER
	SAFER implements the SAFER algorithm in [1].









	utils
	log_utils













          

      

      

    

  

    
      
          
            
  
classification



	CoTraining

	LPA

	TSVM









          

      

      

    

  

    
      
          
            
  
CoTraining


	
class s3l.classification.CoTraining.CoTraining(pos=1, neg=1, model1=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001, verbose=False), model2=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001, verbose=False), ind1=array([], dtype=int64), ind2=array([], dtype=int64), nepo=40, buffer_size=200)

	Bases: s3l.base.InductiveEstimatorWOGraph

CoTraining classifier


	Parameters

	
	pos (int [https://docs.python.org/3/library/functions.html#int] (default=1)) – The number of positive samples selected in each contraining iteration


	neg (int [https://docs.python.org/3/library/functions.html#int] (default=1)) – The number of negative samples selected in each contraining iteration


	model (object [https://docs.python.org/3/library/functions.html#object]) – [model1,model2] initializing model1 for view1 and model2 for view2


	ind1 (array-like [] (default=0)) – The column index of view1 in features X


	ind2 (array-like [] (default=0)) – The column index of view2 in features X


	nepo (int [https://docs.python.org/3/library/functions.html#int] (default=40)) – The number of iteration


	buffer_size (int [https://docs.python.org/3/library/functions.html#int] (default=200)) – The size of buffer









	
model

	Two best model for view1 and view2.


	Type

	object list










	
fit(X, targets, labeled_idx)

	Fit a cotraining model

All the input data is provided matrix X (labeled and unlabeled)
and corresponding label matrix y with a dedicated marker value for
unlabeled samples.


	Parameters

	
	feature1 (view1 array-like, shape = [n_samples, n_features]) – 


	feature2 (view2 array_like, shape = [n_samples, n_features]) – 


	targets (array_like, shape = [n_samples]) – label of n_labeled_samples in X.


	labeled_ind (the index of labeled data in targets.) – 


	example (For) – 






	Returns

	self



	Return type

	returns an instance of self.










	
predict(X, select_1=True)

	
	Parameters

	
	X (np.ndarray, shape = [n_samples, n_features]) – samples to be predicted


	select_1 (boolean, optional) – select the prediction of model1 and model2.






	Returns

	y – Predictions for input data



	Return type

	np.ndarray, shape = [n_samples]










	
set_params(param)

	Update the parameters of the estimator and release old results to
prepare for new training.













          

      

      

    

  

    
      
          
            
  
LPA


	
class s3l.classification.LPA.LPA(kernel='rbf', gamma=20, n_neighbors=7, max_iter=30, tol=0.001, n_jobs=None)

	Bases: s3l.base.TransductiveEstimatorwithGraph

Class for label propagation module.


	Parameters

	
	kernel ({'knn', 'rbf', callable} (default='rbf')) – String identifier for kernel function to use or the kernel function
itself. Only ‘rbf’ and ‘knn’ strings are valid inputs. The function
passed should take two inputs, each of shape
[n_samples, n_features], and return a [n_samples, n_samples] shaped
weight matrix.


	gamma (float [https://docs.python.org/3/library/functions.html#float] (default=20)) – Parameter for rbf kernel


	n_neighbors (integer > 0 (default=7)) – Parameter for knn kernel


	max_iter (integer (default=30)) – Change maximum number of iterations allowed


	tol (float [https://docs.python.org/3/library/functions.html#float] (default=1e-3)) – Convergence tolerance: threshold to consider the system at steady
state


	n_jobs (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional (default=None)) – The number of parallel jobs to run.
None means 1 unless in a joblib.parallel_backend`context.
`-1`` means using all processors. See Glossary
for more details.









	
fit(X, y, labeled_idx, W)

	Fit a label propagation model

All the input data is provided matrix X (labeled and unlabeled)
and corresponding label matrix y with a dedicated marker value for
unlabeled samples. Optional matrix W is a graph provided for label
propagation.


	Parameters

	
	X (array-like, shape = [n_samples, n_features]) – A {n_samples by n_samples} size matrix will be created from this


	y (array_like, shape = [n_samples]) – n_labeled_samples (unlabeled points are marked as 0)


	labeled_idx (array_like, shape = [n_samples]) – index of n_labeled_samples in X.


	W (array_like,  shape = [n_samples, n_samples]) – graph of instances






	Returns

	self



	Return type

	returns an instance of self.










	
predict(index)

	Performs transductive inference across the model.


	Parameters

	index (array-like) – a row vector with length l, where l is the number of unlabeled
instance. Each element is an index of a unlabeled instance.



	Returns

	y – Predictions for input data



	Return type

	array_like, shape = [n_samples]










	
set_params(param)

	Parameter setting function.


	Parameters

	param：dict – Store parameter names and corresponding values {‘name’: value}.

















          

      

      

    

  

    
      
          
            
  
TSVM


	
class s3l.classification.TSVM.TSVM(kernel='RBF', C1=100, C2=0.1, alpha=0.1, beta=-1, gamma=0)

	Bases: s3l.base.InductiveEstimatorWOGraph

TSVM classifier


	Parameters

	
	kernel ({'Linear', 'RBF'} (default='RBF')) – String identifier for kernel function to use or the kernel function
itself. Only ‘Linear’ and ‘RBF’ strings are valid inputs.


	C1 (float [https://docs.python.org/3/library/functions.html#float] (default=100)) – Initial weight for labeled instances.


	C2 (float [https://docs.python.org/3/library/functions.html#float] (default=0.1)) – Initial weight for unlabeled instances.


	alpha (float [https://docs.python.org/3/library/functions.html#float] (default=0.1)) – Balance parameter


	beta (float [https://docs.python.org/3/library/functions.html#float] (default=-1)) – Balance parameter


	gamma (float [https://docs.python.org/3/library/functions.html#float] (default=0)) – Parameter for RBF kernel






	Other Parameters

	model (object) – Best model.






	
fit(X, y, labeled_idx)

	Fit a semi-supervised SVM model

All the input data is provided matrix X (labeled and unlabeled)
and corresponding label matrix y with a dedicated marker value for
unlabeled samples.


	Parameters

	
	X (array-like, shape = [n_samples, n_features]) – A {n_samples by n_samples} size matrix will be created from this


	y (array_like, shape = [n_samples]) – n_labeled_samples (unlabeled points are marked as 0)


	labeled_idx (array_like, shape = [n_samples]) – index of n_labeled_samples in X.






	Returns

	self



	Return type

	returns an instance of self.










	
predict(X)

	Performs inductive inference across the model.


	Parameters

	X (array_like, shape = [n_samples, n_features]) – 



	Returns

	y – Predictions for input data



	Return type

	array_like, shape = [n_samples]










	
set_params(param)

	Parameter setting function.


	Parameters

	param：dict – Store parameter names and corresponding values {‘name’: value}.

















          

      

      

    

  

    
      
          
            
  
data_quality



	LEAD

	SLP









          

      

      

    

  

    
      
          
            
  
LEAD

This module implements the algorithm LEAD.

References


	1

	Yu-Feng Li, Shao-Bo Wang and Zhi-Hua Zhou. Graph Quality Judgement:
A Large Margin Expedition. In: Proceedings of the 25th International
Joint Confernece on Artificial Intelligence (IJCAI‘16), New York, NY, 2016.



	2

	R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine
Learning Research 9(2008), 1871-1874.






	License:

	MIT






	
class s3l.data_quality.LEAD.LEAD(C1=1.0, C2=0.01)

	Bases: s3l.base.TransductiveEstimatorwithGraph


	Parameters

	
	C1 (float [https://docs.python.org/3/library/functions.html#float] (default=1.0)) – weight for the hinge loss of labeled instances. It was set as 1 in
our paper.


	C2 (float [https://docs.python.org/3/library/functions.html#float] (default=0.01)) – weight for the hinge loss of unlabeled instances. It was set as
0.01 in our paper.








Examples

>>> from s3l.data_quality.LEAD import LEAD
>>> from s3l.datasets import data_manipulate, base
>>> X, y = base.load_covtype(True)
>>> W = base.load_graph_covtype(True)
>>> _, test_idxs, labeled_idxs, unlabeled_idxs = \
>>>                     data_manipulate.inductive_split(X=X, y=y)
>>> lead = LEAD(C1 = 1.0, C2 = 0.01)
>>> lead.fit(X,y,labeled_idxs,W)
>>> lead.predict(unlabeled_idxs)
[1,-1,-1,1,1...,1]





References

LEAD implements the LEAD algorithm in [1].

LEAD employs the Python version of liblinear [2] (available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear/).
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	Yu-Feng Li, Shao-Bo Wang and Zhi-Hua Zhou. Graph Quality Judgement:
A Large Margin Expedition. In: Proceedings of the 25th International
Joint Confernece on Artificial Intelligence
(IJCAI‘16), New York, NY, 2016.



	2

	R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A library for large linear classification. Journal of
Machine Learning Research 9(2008), 1871-1874.






	
fit(gssl_value, label, l_ind, W)

	Given prediction from gssl, train method judge the quality of
prediction with large-margin model


	Parameters

	
	gssl_value (array-like) – a matrix with size n * T, where n is the number of instances and T
is the number of graphs that gssl takes.Each row is a set of
predictive values of an instance.


	label (array-like) – a column binary vector with length n. Each element is +1 or -1 for
labeled instances. For unlabeled instances, this parameter could
be used for computing accuracy if the ground truth is available.


	l_ind (array-like) – a row vector with length l, where l is the number of labeled
instance. Each element is an index of a labeled instance.


	W (matrix) – affinity matrix, labels should be at the left-top corner, should be
in sparse form.













	
predict(u_ind, baseline_pred=None)

	predict method replace the unsafe prediction with the baseline_pred
to improve the safeness.


	Parameters

	
	u_ind (array-like) – a row vector with length l, where l is the number of unlabeled
instance. Each element is an index of a unlabeled instance.


	baseline_pred (array-like) – a column vector with length n. Each element is a baseline
predictive result of the corresponding instance. LEAD will replace
the result of S3VM with this if the instance locates in the margin
of S3VM.






	Returns

	pred – the label of the instance, including labeled and unlabeled
instances, even though for labeled instances the prediction is
consistent with the true label.



	Return type

	a column vector with length n. Each element is a prediction for










	
set_params(param)

	Parameter setting function.


	Parameters

	：dict (param) – Store parameter names and corresponding values {‘name’: value}.

















          

      

      

    

  

    
      
          
            
  
SLP

This module implements the algorithm SLP.

References


	1

	D.-M. Liang and Y.-F. Li. Lightweight Label Propagation for
Large-Scale Network Data. In: 27th International Joint Conference
on Artificial Intelligence (IJCAI‘18), Stockholm, Sweden, 2018.






	Author:

	De-Ming Liang <XXX@gmail.com>
Xiao-Shuang Lv <XXX@XXX.com>



	License:

	MIT






	
class s3l.data_quality.SLP.SLP(stepSize=0.1, T=6)

	Bases: s3l.base.TransductiveEstimatorwithGraph

This is a python implementation of SLP, which can do label propagation
on large-scale graphs.

Read more in the User Guide.


	Parameters

	
	stepSize (coefficient, optical (default=0.1)) – step size.


	T (coefficient,optical (default=6)) – running epoches.








Examples

>>> from s3l.data_quality.SLP import SLP
>>> from s3l.datasets import data_manipulate, base
>>> X, y = base.load_covtype(True)
>>> W = base.load_graph_covtype(True)
>>> _, test_idxs, labeled_idxs, unlabeled_idxs = \
>>>                       data_manipulate.inductive_split(X=X, y=y)
>>> slp = SLP(stepSize=0.1, T=6)
>>> slp.fit(X,y,labeled_idxs,W)
>>> slp.predict(unlabeled_idxs)
[1,-1,-1,1,1...,1]





References

SLP implements the LEAD algorithm in [1].


	1

	D.-M. Liang and Y.-F. Li. Lightweight Label Propagation for
Large-Scale Network Data. In: 27th International Joint Conference on
Artificial Intelligence (IJCAI‘18), Stockholm, Sweden, 2018.






	
fit(X, y, l_ind, W)

	Fit the model to data.


	Parameters

	
	W (sparse matrix) – affinity matrix, labels should be at the left-top corner,
should be in sparse form.


	y (array-like) – label vector with different labels [n_samples].


	l_ind (array-like) – a row vector with length l, where l is the number of labeled
instance. Each element is an index of a labeled instance.






	Returns

	pred – prediction of labels [n_samples, n_labels], in the original sort.



	Return type

	array-like










	
predict(u_ind)

	Compute the most possible label for samples in W.


	Parameters

	u_ind (array-like) – a row vector with length l, where l is the number of unlabeled
instance. Each element is an index of a unlabeled instance.



	Returns

	pred – Each row is the most likely label for a sample [n_samples].



	Return type

	array-like










	
predict_proba(u_ind)

	Compute probabilities of possible labels for samples in W.


	Parameters

	u_ind (array-like) – a row vector with length l, where l is the number of unlabeled
instance. Each element is an index of a unlabeled instance.



	Returns

	pred – Each line is the probability of possible labels of a sample
involved in the calculation of the prediction
[n_samples, n_labels].



	Return type

	array-like










	
set_params(param)

	Parameter setting function.


	Parameters

	：dict (param) – Store parameter names and corresponding values {‘name’: value}.

















          

      

      

    

  

    
      
          
            
  
datasets



	base

	data_manipulate

	usps









          

      

      

    

  

    
      
          
            
  
base

Base IO code for all datasets


	
s3l.datasets.base.get_data_home(data_home=None)

	Return the path of the data dir.

This folder is used by some large dataset loaders to avoid downloading the
data several times.

If the folder does not already exist, it is automatically created.


	Parameters

	data_home (str | None) – The path to data dir.










	
s3l.datasets.base.clear_data_home(data_home=None)

	Delete all the content of the data home cache.


	Parameters

	data_home (str | None) – The path to data dir.










	
s3l.datasets.base.load_data(feature_file=None, label_file=None)

	Load data from absolute path.


	Parameters

	
	feature_file (string.optional (default=None)) – The absolute path of the user-provided feature dataset.
The File should be in ‘.csv’ format and organized as follows:







	feature_name:

	[1,n_features]



	data:

	[m_samples,n]






When the feature is a sparse matrix, the file should be in ‘*./mat/npz’
format.




	label_file (string.optional (default=None)) – The absolute path of the user-provided label dataset.
The File should be in ‘.csv’ format and organized as follows:







	label_name:

	[1,n_labels]



	label:

	[m_samples,n]






When the label is a sparse matrix, the file should be in ‘*./mat/npz’
format.

Besides,the number of rows in the label_file should be the same as
the feature_file.








	Returns

	
	X (array-like) – Data matrix with [m_samples, n_features].The data will be used to
train models.


	y (array-like) – The label of load data with [m_samples, n_labels].















	
s3l.datasets.base.load_graph(name, graph_file=None)

	Load graph from self-contained data set or user-provided data set.
The self-contained data set is loaded first according to the provided data
set name. Load the dataset according to the provided path when the dataset
name is empty or does not exist.


	Parameters

	
	name (string.optional (default=None)) – Name should be the name of the data in the self-contained data list.


	graph_file (string.optional (default=None)) – The absolute path of the user-provided feature dataset.
The File should be in ‘*.csv/mat/npz’ format .






	Returns

	W



	Return type

	np.nda










	
s3l.datasets.base.load_boston(return_X_y=False)

	Load and return the boston house-prices dataset (regression).







	Samples total

	506



	Dimensionality

	13



	Features

	real, positive



	Targets

	real 5. - 50.







	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are:
‘data’, the data to learn, ‘target’, the regression targets,
and ‘DESCR’, the full description of the dataset.


	(data, target) (tuple if return_X_y is True)















	
s3l.datasets.base.load_diabetes(return_X_y=False)

	Load and return the diabetes dataset (regression).







	Samples total

	442



	Dimensionality

	10



	Features

	real, -.2 < x < .2



	Targets

	integer 25 - 346






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are:
‘data’, the data to learn and ‘target’, the regression target for each
sample.


	(data, target) (tuple if return_X_y is True)















	
s3l.datasets.base.load_digits(return_X_y=False)

	Load and return the digits dataset (classification).

Each datapoint is a 8x8 image of a digit.







	Classes

	10



	Samples per class

	~180



	Samples total

	1797



	Dimensionality

	64



	Features

	integers 0-16






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are:
‘data’, the data to learn, ‘images’, the images corresponding
to each sample, ‘target’, the classification labels for each
sample, ‘target_names’, the meaning of the labels, and ‘DESCR’,
the full description of the dataset.


	(data, target) (tuple if return_X_y is True)










This is a copy of the test set of the UCI ML hand-written digits datasets
http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits






	
s3l.datasets.base.load_iris(return_X_y=False)

	Load and return the iris dataset (classification).

The iris dataset is a classic and very easy multi-class classification
dataset.







	Classes

	3



	Samples per class

	50



	Samples total

	150



	Dimensionality

	4



	Features

	real, positive






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object. See
below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are:
‘data’, the data to learn, ‘target’, the classification labels,
‘target_names’, the meaning of the labels, ‘feature_names’, the
meaning of the features, and ‘DESCR’, the
full description of the dataset.


	(data, target) (tuple if return_X_y is True)















	
s3l.datasets.base.load_breast_cancer(return_X_y=False)

	Load and return the breast cancer wisconsin dataset (classification).

The breast cancer dataset is a classic and very easy binary classification
dataset.







	Classes

	2



	Samples per class

	212(M),357(B)



	Samples total

	569



	Dimensionality

	30



	Features

	real, positive







	Parameters

	return_X_y (boolean, default=False) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are:
‘data’, the data to learn, ‘target’, the classification labels,
‘target_names’, the meaning of the labels, ‘feature_names’, the
meaning of the features, and ‘DESCR’, the
full description of the dataset.


	(data, target) (tuple if return_X_y is True)










The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is
downloaded from: https://goo.gl/U2Uwz2






	
s3l.datasets.base.load_linnerud(return_X_y=False)

	Load and return the linnerud dataset (multivariate regression).







	Samples total

	20



	Dimensionality

	3 (for both data and target)



	Features

	integer



	Targets

	integer







	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are: ‘data’ and
‘targets’, the two multivariate datasets, with ‘data’ corresponding to
the exercise and ‘targets’ corresponding to the physiological
measurements, as well as ‘feature_names’ and ‘target_names’.


	(data, target) (tuple if return_X_y is True)















	
s3l.datasets.base.load_wine(return_X_y=False)

	Load and return the wine dataset (classification).

The wine dataset is a classic and very easy multi-class classification
dataset.







	Classes

	3



	Samples per class

	[59,71,48]



	Samples total

	178



	Dimensionality

	13



	Features

	real, positive






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are: ‘data’, the
data to learn, ‘target’, the classification labels, ‘target_names’, the
meaning of the labels, ‘feature_names’, the meaning of the features,
and ‘DESCR’, the full description of the dataset.


	(data, target) (tuple if return_X_y is True)










The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit
standard format from:
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data






	
s3l.datasets.base.load_ionosphere(return_X_y=False)

	Load and return the ionosphere dataset (classification).

The ionosphere dataset is a classic and very easy multi-class classification
dataset.







	Classes

	2



	Samples per class

	[225,126]



	Samples total

	351



	Dimensionality

	34



	Features

	good, bad






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are: ‘data’, the
data to learn, ‘target’, the classification labels, ‘target_names’, the
meaning of the labels, ‘feature_names’, the meaning of the features,
and ‘DESCR’, the full description of the dataset.


	(data, target) (tuple if return_X_y is True)










The copy of UCI ML ionosphere Data Set dataset is downloaded and modified
to fit standard format from:
https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere/ionosphere.data






	
s3l.datasets.base.load_australian(return_X_y=False)

	Load and return the australian dataset (classification).

The australian dataset is a classic and very easy multi-class classification
dataset.







	Classes

	2



	Samples per class

	[307,383]



	Samples total

	690



	Dimensionality

	14



	Features

	class_1, class_0






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are: ‘data’, the
data to learn, ‘target’, the classification labels, ‘target_names’, the
meaning of the labels, ‘feature_names’, the meaning of the features,
and ‘DESCR’, the full description of the dataset.


	(data, target) (tuple if return_X_y is True)










The copy of UCI ML australian Data Set dataset is downloaded and modified
to fit standard format from:
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/australian/australian.dat






	
s3l.datasets.base.load_bupa(return_X_y=False)

	Load and return the bupa dataset (classification).

The bupa dataset is a classic and very easy multi-class classification
dataset.







	Classes

	2



	Samples per class

	[145,200]



	Samples total

	345



	Dimensionality

	6



	Features

	class_1, class_0






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are: ‘data’, the
data to learn, ‘target’, the classification labels, ‘target_names’, the
meaning of the labels, ‘feature_names’, the meaning of the features,
and ‘DESCR’, the full description of the dataset.


	(data, target) (tuple if return_X_y is True)










The copy of UCI ML bupa Data Set dataset is downloaded and modified to fit
standard format from:
https://archive.ics.uci.edu/ml/machine-learning-databases/liver-disorders/bupa.data






	
s3l.datasets.base.load_haberman(return_X_y=False)

	Load and return the haberman dataset (classification).

The haberman dataset is a classic and very easy multi-class classification
dataset.







	Classes

	2



	Samples per class

	[225,81]



	Samples total

	306



	Dimensionality

	3



	Features

	class_1, class_2






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (X, y) instead of a Bunch object.
See below for more information about the X and y object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are: ‘data’, the
data to learn, ‘target’, the classification labels, ‘target_names’, the
meaning of the labels, ‘feature_names’, the meaning of the features,
and ‘DESCR’, the full description of the dataset.


	(data, target) (tuple if return_X_y is True)










The copy of UCI ML haberman Data Set dataset is downloaded and modified to
fit standard format from:
https://archive.ics.uci.edu/ml/machine-learning-databases/haberman/haberman.data






	
s3l.datasets.base.load_vehicle(return_X_y=False)

	Load and return the vehicle dataset (classification).

The vehicle dataset is a classic and very easy multi-class classification
dataset.







	Classes

	4



	Samples per

	class[137,148,168,143]



	Samples total

	596



	Dimensionality

	18



	Features

	class_1, class_2






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=False.) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.



	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are: ‘data’, the
data to learn, ‘target’, the classification labels, ‘target_names’, the
meaning of the labels, ‘feature_names’, the meaning of the features,
and ‘DESCR’, the full description of the dataset.


	(data, target) (tuple if return_X_y is True)










The copy of libsvm vehicle Data Set dataset is downloaded and modified to
fit standard format from:
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/vehicle.scale

Besides,We dropped the missing data.






	
s3l.datasets.base.load_covtype(return_X_y=False)

	Load and return the covtype dataset (classification).

The covtype dataset is a classic and very easy multi-class classification
dataset.







	Classes

	2



	Samples per

	class[297711,283301]



	Samples total

	581012



	Dimensionality

	54



	Features

	class_1, class_-1






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=True.) – If True, returns (data, target) .
See below for more information about the data and target object.



	Returns

	(data, target)



	Return type

	tuple if return_X_y is True










	
s3l.datasets.base.load_housing10(return_X_y=False)

	Load and return the housing10 dataset (classification).

The housing10 dataset is a classic and very easy multi-class classification
dataset.







	Classes

	
	






	Samples per

	
	






	Samples total

	506



	Dimensionality

	13



	Features

	continue.






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=True.) – If True, returns (data, target) .
See below for more information about the data and target object.



	Returns

	(data ,target)



	Return type

	tuple if return_X_y is True










	
s3l.datasets.base.load_spambase(return_X_y=False)

	Load and return the spambase dataset (classification).

The spambase dataset is a classic and very easy multi-class classification
dataset.







	Classes

	2



	Samples per

	class[1813,2788]



	Samples total

	4601



	Dimensionality

	57



	Features

	class_1, class_-1






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=True.) – If True, returns (data, target) .
See below for more information about the data and target object.



	Returns

	(data, target)



	Return type

	tuple if return_X_y is True










	
s3l.datasets.base.load_house(return_X_y=False)

	Load and return the spambase dataset (classification).

The spambase dataset is a classic and very easy multi-class classification
dataset.







	Classes

	2



	Samples per

	class[108,124]



	Samples total

	232



	Dimensionality

	16



	Features

	class_1, class_-1






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=True.) – If True, returns (data, target) .
See below for more information about the data and target object.



	Returns

	(data, target)



	Return type

	tuple if return_X_y is True










	
s3l.datasets.base.load_clean1(return_X_y=False)

	Load and return the house dataset (classification).

The spambase dataset is a classic and very easy multi-class classification
dataset.







	Classes

	2



	Samples per

	class[207,269]



	Samples total

	476



	Dimensionality

	166



	Features

	class_1, class_-1






Read more in the User Guide.


	Parameters

	return_X_y (boolean, default=True.) – If True, returns (data, target) .
See below for more information about the data and target object.



	Returns

	(data, target)



	Return type

	tuple if return_X_y is True










	
s3l.datasets.base.load_dataset(name=None, feature_file=None, label_file=None)

	Load data from self-contained data set or user-provided data set.
The self-contained data set is loaded first according to the provided data
set name. Load the dataset according to the provided path when the dataset
name is empty or does not exist.


	Parameters

	
	name (string.optional (default=None)) – Name should be the name of the data in the self-contained data list.


	feature_file (string.optional (default=None)) – The absolute path of the user-provided feature dataset.
The File should be in ‘.csv’ format and organized as follows:







	feature_name:

	[1,n_features]



	data:

	[m_samples,n]









	label_file (string.optional (default=None)) – The absolute path of the user-provided label dataset.
The File should be in ‘.csv’ format and organized as follows:







	label_name:

	[1,n_labels]



	label:

	[m_samples,n]






Besides,the number of rows in the label_file should be the same as
the feature_file.








	Returns

	
	X (array-like) – Data matrix with [m_samples, n_features].The data will be used to
train models.


	y (array-like) – The label of load data with [m_samples, n_labels].


















          

      

      

    

  

    
      
          
            
  
data_manipulate

This file implements some useful functions used to manipulate the data
features or labels.


	
s3l.datasets.data_manipulate.inductive_split(X=None, y=None, instance_indexes=None, test_ratio=0.3, initial_label_rate=0.05, split_count=10, all_class=True, save_file=False, saving_path=None, name=None)

	Provided one of X, y or instance_indexes to execute the inductive split.

Return the indexs for train/test data, and labled/unlabeled data in train
ones for each split. If X, y are both provided, the lengths
of them should be the same.


	Parameters

	
	X (array-like, optional) – Data matrix with [n_instances, n_features]


	y (array-like, optional) – labels of given data [n_instances, n_labels] or [n_instances]


	instance_indexes (list [https://docs.python.org/3/library/stdtypes.html#list], optional (default=None)) – List contains instances’ names, used for image datasets,
or provide index list instead of data matrix.
Must provide one of [instance_names, X, y]


	test_ratio (float [https://docs.python.org/3/library/functions.html#float], optional (default=0.3)) – Ratio of test set


	initial_label_rate (float [https://docs.python.org/3/library/functions.html#float], optional (default=0.05)) – Ratio of initial label set
e.g. Initial_labelset*(1-test_ratio)*n_instances


	split_count (int [https://docs.python.org/3/library/functions.html#int], optional (default=10)) – Random split data _split_count times


	all_class (bool [https://docs.python.org/3/library/functions.html#bool], optional (default=True)) – Whether each split will contain at least one instance for each class.
If False, a totally random split will be performed.


	save_file (boolean, optional (default=False)) – 


	saving_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional (default='.')) – Giving None to disable saving.


	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional (default=None)) – Dataset name.






	Returns

	
	train_idx (list) – index of training set, shape like [n_split_count, n_training_indexes]


	test_idx (list) – index of testing set, shape like [n_split_count, n_testing_indexes]


	label_idx (list) – index of labeling set, shape like [n_split_count, n_labeling_indexes]


	unlabel_idx (list) – index of unlabeling set, shape like [n_split_count,
n_unlabeling_indexes]















	
s3l.datasets.data_manipulate.ratio_split(X=None, y=None, instance_indexes=None, unlabel_ratio=0.3, split_count=10, all_class=True, save_file=False, saving_path=None, name=None)

	Split the data into labeled and unlabeled set with given ratio.

Provide one of X, y or instance_indexes to execute the transductive split.
If X, y are both provided, the lengths of them should be the same. If X,
instance_indexes are both provided, the instance_indexes is used for split.


	Parameters

	
	X (array-like, optional) – Data matrix with [n_instances, n_features]


	y (array-like, optional) – labels of given data [n_instances, n_labels] or [n_instances]


	instance_indexes (list [https://docs.python.org/3/library/stdtypes.html#list], optional (default=None)) – List contains instances’ names, used for image datasets,
or provide index list instead of data matrix.
Must provide one of [instance_names, X, y]


	unlabel_ratio (float [https://docs.python.org/3/library/functions.html#float], optional (default=0.3)) – Ratio of test set


	split_count (int [https://docs.python.org/3/library/functions.html#int], optional (default=10)) – Random split data _split_count times


	all_class (bool [https://docs.python.org/3/library/functions.html#bool], optional (default=True)) – Whether each split will contain at least one instance for each class.
If False, a totally random split will be performed.


	save_file (boolean, optional (default=False)) – 


	saving_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional (default='.')) – Giving None to disable saving.


	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional (default=None)) – Dataset name.






	Returns

	
	train_idxs (list) – index of training set, shape like [n_split_count, n_training_indexes]


	test_idxs (list) – index of testing set, shape like [n_split_count, n_testing_indexes]















	
s3l.datasets.data_manipulate.cv_split(X=None, y=None, instance_indexes=None, k=3, split_count=10, all_class=True, save_file=False, saving_path=None, name=None)

	Split the data into labeled and unlabeled set with given ratio.

Provide one of X, y or instance_indexes to execute the transductive split.
Use instance_indexes firstly.


Note


	For multi-label task, set all_class = False.


	For classification, the label must not be float type







	Parameters

	
	X (array-like, optional) – Data matrix with [n_instances, n_features]


	y (array-like, optional) – labels of given data [n_instances, n_labels] or [n_instances]


	instance_indexes (list [https://docs.python.org/3/library/stdtypes.html#list], optional (default=None)) – List provides index list instead of X.
Must provide one of [instance_names, X, y]


	k (int [https://docs.python.org/3/library/functions.html#int], optional (default=3)) – Parameter for k-fold split. k should be small enough when we have
few label data.


	split_count (int [https://docs.python.org/3/library/functions.html#int], optional (default=10)) – Random split data _split_count times


	all_class (bool [https://docs.python.org/3/library/functions.html#bool], optional (default=True)) – Whether each split will contain at least one instance for each class.
If False, a totally random split will be performed.


	save_file (boolean, optional (default=False)) – A flag indicates whether to save the splits.


	saving_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional (default='.')) – Giving None to disable saving.


	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional (default=None)) – Dataset name.






	Returns

	
	train_idx (list) – index of training set, shape like [n_split_count, n_training_indexes]


	test_idx (list) – index of testing set, shape like [n_split_count, n_testing_indexes]















	
s3l.datasets.data_manipulate.split_load(path, name)

	Load split from path.


	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to a dir which contains train_idx.txt, test_idx.txt,
label_idx.txt, unlabel_idx.txt.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of dataset. The file is stored as ‘XXX_train/test_idx.txt/npy’






	Returns

	
	train_idx (list) – index of training set, shape like [n_split_count, n_training_samples]


	test_idx (list) – index of testing set, shape like [n_split_count, n_testing_samples]


	label_idx (list) – index of labeling set, shape like [n_split_count, n_labeling_samples]


	unlabel_idx (list) – index of unlabeling set, shape like
[n_split_count, n_unlabeling_samples]















	
s3l.datasets.data_manipulate.check_y(y, binary=True)

	Transform label vector to proba matrix. Use for binary and multi-class
tasks.


	Parameters

	
	y (np.ndarray) – Original label vector.


	binary (boolean (default=True)) – Indicate different tasks.






	Returns

	
	labels (1-D np.ndarray) – A vector store the original labels. The labels are sorted as in y_t.


	y_t (np.ndarray) – When binary == True, y_t is 1-D vector with {1,-1}.
When binary == False, y_t is a matrix in the shape n_samples, n_classes.















	
s3l.datasets.data_manipulate.check_inputs(X, y, binary=True)

	Transform the input label vector to proba matrix;
Encode the str feature.


	Parameters

	
	X (np.ndarray) – Features


	y (np.ndarray) – Labels













	
s3l.datasets.data_manipulate.modify_y(y, ind, n_labels, binary=True)

	This function is the reverse function of check_y, which transfer the
prediction from inner results to the origin labels.


	Parameters

	
	y (np.ndarray) – Prediction


	ind (np.ndarray) – Index


	n_labels (1-D np.ndarray) – A vector store the original labels. The labels are sorted as in y.
















          

      

      

    

  

    
      
          
            
  
usps

usps dataset.

Handwritten recognition for digital acquisition. There are a total of 9298
handwritten digital images in the library(both 16*16 pixel grayscale values,
the grayscale values have been normalized).And the dataset is divided into train
and test.

The dataset page is available from LIBSVM


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps




And the dataset with pretreatment can be found from


http://lamda.nju.edu.cn/liangdm/data/usps.tar.gz





	
s3l.datasets.usps.fetch_usps(data_home=None, subset='train', download_if_missing=True, return_X_y=False)

	Load the filenames and data from the usps dataset.


	Parameters

	
	data_home (optional, default: None) – Specify a download and cache folder for the datasets.


	subset ('train' or 'test', optional) – Select the dataset to load: ‘train’ for the training set, ‘test’
for the test set.


	download_if_missing (optional, default: True) – If False, raise an IOError if the data is not locally available
instead of trying to download the data from the source site.


	return_X_y (optional,default: false) – If True, returns (data, target) instead of a Bunch object.
See below for more information about the data and target object.






	Returns

	
	data (Bunch) – Dictionary-like object, the interesting attributes are: ‘data’, the
data to learn, ‘target’, the classification labels, ‘target_names’, the
meaning of the labels, ‘feature_names’, the meaning of the features,
and ‘DESCR’, the full description of the dataset.


	(data, target) (tuple if return_X_y is True)


















          

      

      

    

  

    
      
          
            
  
ensemble



	SafetyForecast









          

      

      

    

  

    
      
          
            
  
SafetyForecast


	
class s3l.ensemble.SafetyForecast.SafetyForecast(C1=1.0, C2=0.01, estimators=None)

	Bases: s3l.base.SaferEnsemble

Provide a safer prediction when given a set of training models or
predict results. Judge the quality of prediction with large-margin model.


	Parameters

	
	C1 (float [https://docs.python.org/3/library/functions.html#float] (default=1.0)) – weight for the hinge loss of labeled instances. It was set as 1 in
our paper.


	C2 (float [https://docs.python.org/3/library/functions.html#float] (default=0.01)) – weight for the hinge loss of unlabeled instances. It was set as
0.01 in our paper.


	pred_values (predict values) – 


	fallback_ind (fallback indexs of  unsafe prediction.) – 


	estimators (list of estimators,optional (default=None)) – When ‘estimators’ is none, it means user should provide predictive
results. When ‘estimators’ is a list,each member of list is a tuple.
Each tuple is an initialization of a estimator and a description of its
parameters [(estimator,fit_params)].








Examples

When the ‘estimators’ parameter is initialized, the calling method is
roughly as follows:

>>> from s3l.classification.TSVM import TSVM
>>> from s3l.model_uncertainty.S4VM import S4VM
>>> estimator_list = [(TSVM(),False), (S4VM(),True)]
>>> model = SafetyForecast(estimators=estimator_list)
>>> model.fit(x, y, l_ind)
>>> model.predict(u_ind)





It can be used like this when the ‘estimators’ is None:

>>> model = SafetyForecast()
>>> model.fit(prediction, y, l_ind)
>>> model.predict(u_ind, baseline_pred)






	
fit(X, y, l_ind)

	Provide an interface that can pass in multiple learners or
predictive results.


	Parameters

	
	X (array-like) – Data matrix with [n_samples, n_features] or a set of prediction.


	y (array-like) – Each element is +1 or -1 for labeled instances. For unlabeled
instances, this parameter could be used for computing accuracy if
the ground truth is available.


	l_ind (array-like) – a row vector with length l, where l is the number of labeled
instance. Each element is an index of a labeled instance.













	
fit_estimators(X, y, l_ind, u_ind)

	Provide a training interface that trains multiple models and give
a safer prediction of these models.


	Parameters

	
	X (array-like) – Data matrix with [n_samples, n_features].The data will be used to
train models.


	y (array-like) – Each element is +1 or -1 for labeled instances. For unlabeled
instances, this parameter could be used for computing accuracy if
the ground truth is available.


	l_ind (array-like) – a row vector with length l, where l is the number of labeled
instance. Each element is an index of a labeled instance.


	u_ind (array-like) – a row vector with length l, where l is the number of unlabeled
instance. Each element is an index of a unlabeled instance.













	
fit_pred(prediction, label, l_ind, u_ind)

	Predict a safer result from predictions, train method judge the
quality of prediction with large-margin model


	Parameters

	
	prediction (array-like) – A set of prediction.Each row is a set of predictive values of an
instance.Each col is a prediction result.


	label (array-like) – Each element is +1 or -1 for labeled instances. For unlabeled
instances, this parameter could be used for computing accuracy if
the ground truth is available.


	l_ind (array-like) – a row vector with length l, where l is the number of labeled
instance. Each element is an index of a labeled instance.


	u_ind (array-like) – a row vector with length l, where l is the number of unlabeled
instance. Each element is an index of a unlabeled instance.













	
predict(u_ind, baseline_pred=None)

	Predict method replace the unsafe prediction with the baseline_pred
to improve the safeness.


	Parameters

	
	u_ind (array-like) – a row vector with length l, where l is the number of unlabeled
instance. Each element is an index of a unlabeled instance.


	baseline_pred (array-like) – Each element is a baseline predictive result of the corresponding
instance. LEAD will replace the result of S3VM with this if the
instance locates in the margin of S3VM.






	Returns

	pred – the label of the instance, including labeled and unlabeled
instances, even though for labeled instances the prediction is
consistent with the true label.



	Return type

	a column vector with length n. Each element is a prediction for










	
predict_proba()

	Compute probabilities of possible labels for samples in W.


	Parameters

	None – 



	Returns

	pred – Each line is the probability of possible labels of a sample
involved in the calculation of the prediction [n_samples, n_labels].



	Return type

	array-like










	
set_params(param)

	Parameter setting function.


	Parameters

	：dict (param) – Store parameter names and corresponding values {‘name’: value}.
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	performance









          

      

      

    

  

    
      
          
            
  
performance

Pre-defined Performance

Implement classical methods

The metric method is called by performance_metric(ground-truth, prediction,
param_dict) All metric method would pop the parameters in the param_dict first.


	
s3l.metrics.performance.accuracy_score(y_true, y_pred, param_dict=None)

	Accuracy classification score.


	Parameters

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) _labels.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Predicted _labels, as returned by a classifier.


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

sample_weight : array-like of shape = [n_samples], optional Sample
weights.












	Returns

	score



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
s3l.metrics.performance.zero_one_loss(y_true, y_pred, param_dict=None)

	Zero-one classification loss.

If normalize is True, return the fraction of misclassifications
(float), else it returns the number of misclassifications (int). The best
performance is 0.

Read more in the User Guide.


	Parameters

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) labels.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Predicted labels, as returned by a classifier.


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

normalize : bool, optional (default=True)
    If ``False``, return the number of misclassifications.
    Otherwise, return the fraction of misclassifications.

sample_weight : array-like of shape = [n_samples], optional
    Sample weights.












	Returns

	loss – If normalize == True, return the fraction of misclassifications
(float), else it returns the number of misclassifications (int).



	Return type

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int],










	
s3l.metrics.performance.roc_auc_score(y_true, y_score, param_dict=None)

	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)
from prediction scores.


	Parameters

	
	y_true (array, shape = [n_samples] or [n_samples, n_classes]) – True binary _labels or binary label indicators. True binary labels.
If labels are not either {-1, 1} or {0, 1}, then pos_label should be
explicitly given.


	y_score (array, shape = [n_samples] or [n_samples, n_classes]) – Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers). For binary
y_true, y_score is supposed to be the score of the class with greater
label.


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

pos_label : int or str, optional, default=None
    Label considered as positive and others are considered negative.
sample_weight : array-like of shape = [n_samples], optional,
default=None
    Sample weights.












	Returns

	auc



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
s3l.metrics.performance.get_fps_tps_thresholds(y_true, y_score, param_dict=None)

	Calculate true and false positives per binary classification threshold.


	Parameters

	
	y_true (array, shape = [n_samples]) – True targets of binary classification


	y_score (array, shape = [n_samples]) – Estimated probabilities or decision function


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – 
	A dictory saving the parameters including::

	
	pos_labelint or str, default=None

	The label of the positive class
















	Returns

	
	fps (array, shape = [n_thresholds]) – A count of false positives, at index i being the number of negative
samples assigned a score >= thresholds[i]. The total number of
negative samples is equal to fps[-1] (thus true negatives are given by
fps[-1] - fps).


	tps (array, shape = [n_thresholds <= len(np.unique(y_score))]) – An increasing count of true positives, at index i being the number
of positive samples assigned a score >= thresholds[i]. The total
number of positive samples is equal to tps[-1] (thus false negatives
are given by tps[-1] - tps).


	thresholds (array, shape = [n_thresholds]) – Decreasing score values.















	
s3l.metrics.performance.f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None)

	Compute the F1 score, also known as balanced F-score or F-measure

The F1 score can be interpreted as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0.
The relative contribution of precision and recall to the F1 score are
equal. The formula for the F1 score is:

F1 = 2 * (precision * recall) / (precision + recall)





In the multi-class and multi-label case, this is the average of
the F1 score of each class with weighting depending on the average
parameter.

Read more in the User Guide.


	Parameters

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) target values.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Estimated targets as returned by a classifier.


	labels (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The set of labels to include when average != 'binary', and their
order if average is None. Labels present in the data can be
excluded, for example to calculate a multiclass average ignoring a
majority negative class, while labels not present in the data will
result in 0 components in a macro average. For multilabel targets,
labels are column indices. By default, all labels in y_true and
y_pred are used in sorted order.


Changed in version 0.17: parameter labels improved for multiclass problem.






	pos_label (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int], 1 by default) – The class to report if average='binary' and the data is binary.
If the data are multiclass or multilabel, this will be ignored;
setting labels=[pos_label] and average != 'binary' will report
scores for that label only.


	average (string, [None [https://docs.python.org/3/library/constants.html#None], 'binary' (default), 'micro', 'macro', 'samples',                        'weighted']) – This parameter is required for multiclass/multilabel targets.
If None, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:


	'binary':

	Only report results for the class specified by pos_label.
This is applicable only if targets (y_{true,pred}) are binary.



	'micro':

	Calculate metrics globally by counting the total true positives,
false negatives and false positives.



	'macro':

	Calculate metrics for each label, and find their unweighted
mean.  This does not take label imbalance into account.



	'weighted':

	Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters ‘macro’ to account for label imbalance; it can result in an
F-score that is not between precision and recall.



	'samples':

	Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
accuracy_score()).








	sample_weight (array-like of shape = [n_samples], optional) – Sample weights.






	Returns

	f1_score – F1 score of the positive class in binary classification or weighted
average of the F1 scores of each class for the multiclass task.



	Return type

	float [https://docs.python.org/3/library/functions.html#float] or array of float, shape = [n_unique_labels]






See also

fbeta_score(), precision_recall_fscore_support(), jaccard_score(), multilabel_confusion_matrix()



References


	1

	Wikipedia entry for the F1-score [https://en.wikipedia.org/wiki/F1_score]





Examples

>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')  # doctest: +ELLIPSIS
0.26...
>>> f1_score(y_true, y_pred, average='micro')  # doctest: +ELLIPSIS
0.33...
>>> f1_score(y_true, y_pred, average='weighted')  # doctest: +ELLIPSIS
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0. , 0. ])





Notes

When true positive + false positive == 0 or
true positive + false negative == 0, f-score returns 0 and raises
UndefinedMetricWarning.






	
s3l.metrics.performance.hamming_loss(y_true, y_pred, param_dict=None)

	Compute the average Hamming loss.

The Hamming loss is the fraction of labels that are incorrectly predicted.


	Parameters

	
	y_true (1d array-like, or label indicator array / sparse matrix) – Ground truth (correct) labels.


	y_pred (1d array-like, or label indicator array / sparse matrix) – Predicted labels, as returned by a classifier.


	labels (array, shape = [n_labels], optional (default=None)) – Integer array of labels. If not provided, labels will be inferred
from y_true and y_pred.






	Returns

	loss – Return the average Hamming loss between element of y_true and
y_pred.



	Return type

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int],










	
s3l.metrics.performance.one_error(y_true, y_pred, param_dict=None)

	
Compute the one_error,similar to 0/1-loss.





	Parameters

	
	y_true (array, shape = [n_samples] or [n_samples, n_classes]) – True binary labels or binary label indicators.


	y_score (array, shape = [n_samples] or [n_samples, n_classes]) – Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

sample_weight : array-like of shape = [n_samples], optional
    Sample weights.












	Returns

	one_error



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
s3l.metrics.performance.coverage_error(y_true, y_score, param_dict=None)

	Coverage error measure.
Compute how far we need to go through the ranked scores to cover all
true labels. The best value is equal to the average number
of labels in y_true per sample.

Ties in y_scores are broken by giving maximal rank that would have
been assigned to all tied values.


	Parameters

	
	y_true (array, shape = [n_samples, n_labels]) – True binary labels in binary indicator format.


	y_score (array, shape = [n_samples, n_labels]) – Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

sample_weight : array-like of shape = [n_samples], optional
    Sample weights.












	Returns

	coverage_error



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
s3l.metrics.performance.label_ranking_loss(y_true, y_score, param_dict=None)

	Compute Ranking loss measure.

Compute the average number of label pairs that are incorrectly ordered
given y_score weighted by the size of the label set and the number of
labels not in the label set.


	Parameters

	
	y_true (array or sparse matrix, shape = [n_samples, n_labels]) – True binary labels in binary indicator format.


	y_score (array, shape = [n_samples, n_labels]) – Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

sample_weight : array-like of shape = [n_samples], optional
    Sample weights.












	Returns

	loss



	Return type

	float [https://docs.python.org/3/library/functions.html#float]





References


	1

	Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010).
Mining multi-label data. In Data mining and knowledge discovery
handbook (pp. 667-685). Springer US.










	
s3l.metrics.performance.label_ranking_average_precision_score(y_true, y_score, param_dict=None)

	Compute ranking-based average precision


	Parameters

	
	y_true (array or sparse matrix, shape = [n_samples, n_labels]) – True binary labels in binary indicator format.


	y_score (array, shape = [n_samples, n_labels]) – Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

sample_weight : array-like of shape = [n_samples], optional
    Sample weights.












	Returns

	score



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
s3l.metrics.performance.micro_auc_score(y_true, y_score, param_dict=None)

	Compute the micro_auc_score.


	Parameters

	
	y_true (array, shape = [n_samples] or [n_samples, n_classes]) – True binary labels or binary label indicators.


	y_score (array, shape = [n_samples] or [n_samples, n_classes]) – Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

sample_weight : array-like of shape = [n_samples], optional
    Sample weights.












	Returns

	micro_auc_score



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
s3l.metrics.performance.Average_precision_score(y_true, y_score, param_dict=None)

	
Compute average precision (AP) from prediction scores




AP summarizes a precision-recall curve as the weighted mean of precisions
achieved at each threshold, with the increase in recall from the previous
threshold used as the weight:


\[\text{AP} = \sum_n (R_n - R_{n-1}) P_n\]


	Parameters

	
	y_true (array, shape = [n_samples] or [n_samples, n_classes]) – True binary labels or binary label indicators.


	y_score (array, shape = [n_samples] or [n_samples, n_classes]) – Target scores, can either be probability estimates of the positive
class, confidence values, or non-thresholded measure of decisions
(as returned by “decision_function” on some classifiers).


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

sample_weight : array-like of shape = [n_samples], optional
    Sample weights.












	Returns

	average_precision



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
s3l.metrics.performance.minus_mean_square_error(y_true, y_pred, param_dict=None)

	Minus mean square error


	Parameters

	
	y_true (1d array-like) – Ground truth (correct) values.


	y_pred (1d array-like) – Predicted values, as returned by a regressor.


	param_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictory saving the parameters including:

sample_weight : array-like of shape = [n_samples],
optional Sample weights.












	Returns

	score



	Return type

	float [https://docs.python.org/3/library/functions.html#float]













          

      

      

    

  

    
      
          
            
  
model_uncertainty



	S4VM
	S4VM implements the S4VM algorithm in [1].





	SAFER
	SAFER implements the SAFER algorithm in [1].













          

      

      

    

  

    
      
          
            
  
S4VM


S4VM implements the S4VM algorithm in [1].

S4VM employs the Python version of libsvm [2] (available at
https://www.csie.ntu.edu.tw/~cjlin/libsvm/).

References


	1

	Yu-Feng Li and Zhi-Hua Zhou. Towards Making Unlabeled Data Never Hurt.
In: Proceedings of the 28th International Conference on Machine Learning
(ICML‘11), Bellevue, Washington, 2011.



	2

	R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using
second order information for training SVM. Journal of Machine Learning
Research 6, 1889-1918, 2005.






	
class s3l.model_uncertainty.S4VM.S4VM(kernel='RBF', C1=100, C2=0.1, sample_time=100, gamma=0, n_clusters=10)

	Bases: s3l.base.InductiveEstimatorWOGraph

Base class for S4VM module.


	Parameters

	
	kernel ('RBF' or 'Linear' (default='RBF')) – String identifier for kernel function to use or the kernel function
itself. Only ‘RBF’ and ‘Linear’ strings are valid inputs.


	gamma (float [https://docs.python.org/3/library/functions.html#float]) – Parameter gamma is the width of RBF kernel. Default value is
average distance between instances.


	C1 (double (default=100)) – Weight for the hinge loss of labeled instance.


	C2 (double (default=0.1)) – Weight for the hinge loss of unlabeled instance. If C2 is set as 0,
our S4VM will degenerate to standard SVM.


	sampleTime (integer (default=100)) – The sampling times for each sampleTime.


	n_clusters (integer (default=10)) – The number of clusters to form as well as the number of centroids to
generate for K-means.









	
fit(X, y, labeled_idx)

	Fit the model according to the given training data.


	Parameters

	
	X ({array-like, sparse matrix}, shape = [n_samples, n_features]) – Training vector containing labeled and unlabeled instances, where
n_samples in the number of samples and n_features is the number of
features. All unlabeled samples will be transductively assigned
labels.


	y (array-like, shape = [n_labeled_samples]) – Target vector relative to labeled instances in X.


	labeled_idx (array-like, shape = [n_labeled_samples]) – Index of labeled instances in X.






	Returns

	self



	Return type

	object [https://docs.python.org/3/library/functions.html#object]










	
predict(u_ind)

	Predict method replace the unsafe prediction with the baseline_pred
to improve the safeness.


	Parameters

	u_ind (array-like) – a row vector with length l, where l is the number of unlabeled
instance. Each element is an index of a unlabeled instance.



	Returns

	pred – the label of the instance, including labeled and unlabeled
instances, even though for labeled instances the prediction is
consistent with the true label.



	Return type

	a column vector with length n. Each element is a prediction for










	
set_params(param)

	Parameter setting function.


	Parameters

	：dict (param) – Store parameter names and corresponding values {‘name’: value}.



















          

      

      

    

  

    
      
          
            
  
SAFER


SAFER implements the SAFER algorithm in [1].

References


	1

	Yu-Feng Li, Han-Wen Zha and Zhi-Hua Zhou. Construct Safe Prediction
from Multiple Regressors. In: The 31st AAAI Conference on Artificial
Intelligence % (AAAI‘17), San Francisco, California, 2017.






	
class s3l.model_uncertainty.SAFER.SAFER(estimator=False)

	Bases: s3l.base.InductiveEstimatorWOGraph


	
baseline_predict(X, y, l_ind)

	This is a  1NN regressor with euclidean distance measure.


	Parameters

	
	X (array-like) – Data matrix with [n_samples, n_features] or a set of prediction.


	y (array-like) – Each element is +1 or -1 for labeled instances. For unlabeled
instances, this parameter could be used for computing accuracy if
the ground truth is available.


	l_ind (array-like) – a row vector with length l, where l is the number of labeled
instance. Each element is an index of a labeled instance.













	
fit(X, y, l_ind=None)

	Provide an interface that can pass in multiple learners
or predictive results.


	Parameters

	
	X (array-like) – Data matrix with [n_samples, n_features] or a set of prediction.


	y (array-like) – Each element is +1 or -1 for labeled instances. For unlabeled
instances, this parameter could be used for computing accuracy if
the ground truth is available.


	l_ind (array-like,optional(default=None)) – a row vector with length l, where l is the number of labeled
instance. Each element is an index of a labeled instance.













	
fit_estimator(X, y, l_ind, n_neighbors=3, metric='minkowski')

	Provide a training interface that trains multiple models and give
a safer prediction of these models.


	Parameters

	
	X (array-like) – Data matrix with [n_samples, n_features] or a set of prediction.


	y (array-like) – Each element is +1 or -1 for labeled instances. For unlabeled
instances, this parameter could be used for computing accuracy if
the ground truth is available.


	l_ind (array-like) – a row vector with length l, where l is the number of labeled
instance. Each element is an index of a labeled instance.













	
fit_pred(candidate_prediction=None, baseline_prediction=None)

	SAFER implements the SAFER algorithm in [1].


	Parameters

	
	candidate_prediction (array-like, optical(default=None)) – a matrix with size instance_num * candidate_num . Each
column vector of candidate_prediction is a candidate regression
result.


	baseline_prediction (array-like, optical(default=None)) – a column vector with length instance_num. It is the regression
result of the baseline method.






	Returns

	Safer_prediction – a predictive regression result by SAFER.



	Return type

	array-like










	
predict(u_ind)

	Compute the most possible label for samples in X.


	Returns

	pred – Each row is the most likely label for a sample [n_samples].



	Return type

	array-like










	
set_params(param)

	Parameter setting function.


	Parameters

	：dict (param) – Store parameter names and corresponding values {‘name’: value}.
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log_utils


	
s3l.utils.log_utils.get_logger(name='s3l', level=None)

	Fetch the logger with name and level.


	Parameters

	
	name (string, optional (default="s3l")) – 


	level (const int, optional(default=None)) – A value in the set {logging.DEBUG, logging.INFO, logging.WARNING,
logging.ERROR, logging.CRITICAL} If None, the returned logger will
have the default logging level set by update_default_level.






	Returns

	logger – Call logger.[debug/info/warning/error/critical](msg, *arg, **kwargs) to
add logging. Refer to https://docs.python.org/3/howto/logging.html.



	Return type

	A logger object










	
s3l.utils.log_utils.init_fh()

	Initialize the global file_handler for LOGGER.






	
s3l.utils.log_utils.strftime(t=None)

	




	
s3l.utils.log_utils.update_default_level(default_level)

	Update the logging level for logger.


	Parameters

	default_level (const int) – A value in the set {logging.DEBUG, logging.INFO, logging.WARNING,
logging.ERROR, logging.CRITICAL}










	
s3l.utils.log_utils.update_default_logging_dir(default_logging_dir)

	Update the dir to place the logging file.


	Parameters

	default_logging_dir (string) – 













          

      

      

    

  

    
      
          
            
  
Submodules



	Experiments

	base









          

      

      

    

  

    
      
          
            
  
Experiments

Class to implement the process of semi-supervised learning experiments.


	
class s3l.Experiments.SslExperimentsWithoutGraph(transductive=True, n_jobs=1, metri_param={}, all_class=True)

	Bases: s3l.base.BaseExperiments

Semi-supervised learning experiments without graph.

This class implements a common process of SSL experiments in both
transductive and inductive settings. It optimize the hyper-parameters
using grid-search policy which is paralleled using multi-processing.


	Parameters

	
	transductive (boolean, optional (default=True)) – The experiment is transductive if True else inductive.


	n_jobs (int [https://docs.python.org/3/library/functions.html#int], optional (default=1)) – The nunmber of jobs to run the experiemnt.


	all_class (boolean, optional (default=True)) – Whether all split should have all classes.









	
performance_metric_name

	The name of the metric.


	Type

	string, optional (default=’accuracy_score’)










	
metri_param

	A dict store the


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default={})










	
datasets

	A list of tuple which store the information of datasets to run.


	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
configs

	A list of tuple which store the information of algorithms to evaluate.


	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
performance_metric

	A callable object which is the evaluating method.


	Type

	callable










	
metri_param

	A dict which store the parameters for self.performance_metric.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]









Notes


	Multi-processing requests the estimator to be picklable. You may refer
to __getstate__ and __setstate__ methods when your self-defined
estimator has some problems with serialization.





	
experiments_on_datasets(unlabel_ratio=0.8, test_ratio=0.3, number_init=5)

	The datasets are splits randomly or based on given splits. Get
Label/Unlabel splits for each dataset in this funciton and conduct
experiments on them. Results are stored for each dataset.


	Parameters

	
	unlabel_ratio (float [https://docs.python.org/3/library/functions.html#float]) – The ratio of test data for each dataset.


	number_init (int [https://docs.python.org/3/library/functions.html#int]) – Different label initializations for each dataset.






	Returns

	results – {dataset_name: {config_name:[scores]} }



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]














	
class s3l.Experiments.SslExperimentsWithGraph(n_jobs=1)

	Bases: s3l.base.BaseExperiments

Semi-supervised learning experiments with graph.

This class implements a common process of SSL experiments in both
transductive and inductive settings for graph-based methods. It optimize
the hyper-parameters using grid-search policy which is paralleled using
multi-processing.


	Parameters

	
	transductive (boolean, optional (default=True)) – The experiment is transductive if True else inductive.


	n_jobs (int [https://docs.python.org/3/library/functions.html#int], optional (default=1)) – The nunmber of jobs to run the experiemnt.


	all_class (boolean, optional (default=True)) – Whether all split should have all classes.









	
performance_metric_name

	The name of the metric.


	Type

	string, optional (default=’accuracy_score’)










	
metri_param

	A dict store the


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict], optional (default={})










	
datasets

	A list of tuple which store the information of datasets to run.


	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
configs

	A list of tuple which store the information of algorithms to evaluate.


	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
performance_metric

	A callable object which is the evaluating method.


	Type

	callable










	
metri_param

	A dict which store the parameters for self.performance_metric.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]









Notes


	Multi-processing requests the estimator to be picklable. You may refer
to __getstate__ and __setstate__ methods when your self-defined
estimator has some problems with serialization.





	
experiments_on_datasets(unlabel_ratio=0.8, test_ratio=0.3, number_init=5)

	The datasets are splits randomly or based on given splits. Get
Label/Unlabel splits for each dataset in this funciton and conduct
experiments on them. Results are stored for each dataset.


	Parameters

	
	unlabel_ratio (float [https://docs.python.org/3/library/functions.html#float]) – The ratio of unlabeled data for each dataset.


	test_ratio (float [https://docs.python.org/3/library/functions.html#float]) – The ratio of test data for each dataset. Is invalid when
`transductive`=True.


	number_init (int [https://docs.python.org/3/library/functions.html#int]) – Different label initializations for each dataset.






	Returns

	results – {dataset_name: {config_name:[scores]} }



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

















          

      

      

    

  

    
      
          
            
  
base

Base classes for all estimators and experiments.


	
class s3l.base.BaseEstimator

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Base class for all estimators in s3l.
.. rubric:: Notes

All estimators should specify all the parameters that can be set
at the class level in their __init__ as explicit keyword
arguments (no *args or **kwargs).


	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	deep (boolean, optional) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.



	Returns

	params – Parameter names mapped to their values.



	Return type

	mapping of string to any










	
set_params(param)

	Update the parameters of the estimator and release old results to
prepare for new training.










	
class s3l.base.BaseExperiments(transductive=True, n_jobs=1, all_class=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base class for all experiments.
You can inherit this class to design you own experiment process.


	
append_configs(configs)

	Append estimators configs to self.config


	Parameters

	configs (list of (name, estimator, param_dict)) – In which name: string, estimator: object of estimator,
param_dict: dict of parameters for corresponding estimator.










	
append_datasets(datasets)

	Append datasets file names to self.datasets


	Parameters

	datasets (list of (name,feature_file,label_file,split_path,graph_file)) – Detais:

name: string
    Name of the dataset. Arbitrary
feature_file: string or None
    Absolute file name of the feature file. Can be any thing if
label_file: string or None
    Absolute file name of the label file.
split_path: string or None
    Absolute path in which store the split files. Should be None if
    no split files is provided.
graph_file: string or None
    Absolute file name of the graph files. Should be None if no
    graph is provided.
















	
append_evaluate_metric(performance_metric='accuracy_score', kwargs={})

	Append the metric for evaluation.


	Parameters

	
	performace_metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – The query performance-metric function.
Giving str to use a pre-defined performance-metric.


	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The args used in performance-metric.
if kwargs is None,the pre-defined performance will init in the
default way. Note that, each parameters should be static.













	
get_evaluation_results()

	




	
set_metric(performance_metric='accuracy_score', metric_large_better=True, param_dict=None)

	Set the metric for experiment.


	Parameters

	
	performace_metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – The query performance-metric function.
Giving str to use a pre-defined performance-metric.


	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The args used in performance-metric.
if kwargs is None,the pre-defined performance will init in the
default way. Note that, each parameters should be static.

















	
class s3l.base.InductiveEstimatorWOGraph

	Bases: s3l.base.BaseEstimator


	
fit(X, y, l_ind, **kwargs)

	Takes X, y, label_index






	
predict(X, **kwargs)

	Takes X










	
class s3l.base.InductiveEstimatorwithGraph

	Bases: s3l.base.BaseEstimator


	
fit(X, y, l_ind, W, **kwargs)

	Takes X, y, label_index, affinity matrix






	
predict(X, **kwargs)

	Takes X










	
class s3l.base.SaferEnsemble

	Bases: s3l.base.BaseEstimator

Base class for SaferEnsemble for semi-supervised learning.
.. rubric:: Notes

All estimators should specify all the parameters that can be set
at the class level in their __init__ as explicit keyword
arguments (no *args or **kwargs).


	
fit(X, y, l_ind, **kwargs)

	Fit the model with base semi-supervised predictions.






	
predict(u_ind, baseline_pred=None)

	Should provide baseline prediction. Can only make safer prediction
with given ones, so it’s transductive.










	
class s3l.base.SupervisedEstimator

	Bases: s3l.base.BaseEstimator

Supervised estimator of single-label task.


	
fit(X, y, l_ind=None, **kwargs)

	Takes X, y, label_index.






	
predict(X, **kwargs)

	Takes X






	
predict_log_proba(X)

	




	
predict_proba(X)

	




	
set_params(param)

	Update the parameters of the estimator and release old results to
prepare for new training.










	
class s3l.base.TransductiveEstimatorWOGraph

	Bases: s3l.base.BaseEstimator


	
fit(X, y, l_ind, **kwargs)

	Takes X, y, label_index






	
predict(u_ind, **kwargs)

	Takes unlabel_index










	
class s3l.base.TransductiveEstimatorwithGraph

	Bases: s3l.base.BaseEstimator


	
fit(X, y, l_ind, W, **kwargs)

	Takes X, y, label_index, affinity matrix






	
predict(u_ind, **kwargs)

	Takes unlabel_index













          

      

      

    

  

    
      
          
            
  
User Guide

This section details the customization process and implementation of the built-in classes and povides further instructions for advanced users.



	Usages of Built-in Experiments
	The Process of Built-in Experiment Class

	Five Steps to Run the Experiments

	Attention





	Details of built-in Estimators
	About Classification

	About Data Quality

	About Model Uncertainty

	About Ensemble

	About Wrapper





	List of Built-in Metrics

	How to Implement Your Own Estimators
	Attention





	Prepare Data
	Load Data

	Split Data













          

      

      

    

  

    
      
          
            
  
Usages of Built-in Experiments

In this page, we will introduce the details of the built-in experiments classes, which include classes of inductive/transductive semi-supervised learning with or without graph.


The Process of Built-in Experiment Class

We first introduce the main process of the experiment, which includes load dataset, data manipulate, hyper-parameters selection and model evaluation. Before the experiemnts start, you’ll be asked to configure the datasets, evaluation metrics, estimators and their candidate parameters. Then, the experiments classes help you finish the whole process without much attention. You should set the estimators, metrics and the datasets to run the experiments.

We provide two built-in experiment classes: SslExperimentsWithoutGraph, SslExperimentsWithGraph. The common steps to run the experiment is:


	Initialize an instance of experiments class


	Set the estimators to evaluate with append_configs method


	Set the datasets with append_datasets


	Set the evaluation metrics with set_metric and append_evaluate_metric methods


	Run







Five Steps to Run the Experiments

Here is an example:

from s3l.Experiments import SslExperimentsWithoutGraph
from s3l.model_uncertainty.S4VM import S4VM

# list of (name, estimator instance, dict of parameters)
configs = [
        ('S4VM', S4VM(), {
            'kernel': 'RBF',
            'gamma':[0],
            'C1': [50,100],
            'C2': [0.05,0.1],
            'sample_time':[100]
        })
    ]

# list of (name, feature_file, label_file, split_path, graph_file)
datasets = [
    ('house', None, None, None, None),
    ('isolet', None, None, None, None)
    ]

# 1. Initialize an object of experiments class
experiments = SslExperimentsWithoutGraph(transductive=True, n_jobs=4)
# 2. Set the estimators to evaluate with `append_configs` method
experiments.append_configs(configs)
# 3. Set the datasets with `append_datasets`
experiments.append_datasets(datasets)
# 4. Set the evaluation metrics with `set_metric`
experiments.set_metric(performance_metric='accuracy_score')
# optional. Additional metrics to evaluate the best model.
experiments.append_evaluate_metric(performance_metric='zero_one_loss')
experiments.append_evaluate_metric(performance_metric='hamming_loss')
# 5. Run
results = experiments.experiments_on_datasets(unlabel_ratio=0.75,test_ratio=0.2,
    number_init=2)





During the initialization, you should first choose a class from     SslExperimentsWithoutGraph, SslExperimentsWithGraph based on using graph or not. Besides, you should specify the semi-supervised scheme as inductive (set transductive``=``False) or transductive (set transductive``=``True) and deside how many cores of CPU you want to use.

Then, you should call append_configs, append_datasets and set_metric in any order to configure the experiments:


	append_configs takes in a list of tuples like (name, object, parameters_dict). name is a string as you like, object is the object of an estimator, parameters_dict is a dict whose keys are name of parameters for corresponding estimator, values are lists of candidate values.


	append_datasets takes in a list of tuples like (name, feature_file, label_file, split_path, graph_file). name is a string used for output; feature_file, label_file, split_spath, graph_file can be string or NoneType, which should be the absolute path of the file you provided. If you use built-in datasets, feature_file and label_file can be None; If split_file is None, experiments class will split the data every time you run; graph_file should be set when the experiment need a graph.


	set_metric configures the evaluation metric used in hyper-parameters selection. The best model is selected based on this metric. [Here is a list of supported metrics](http). Please note that parameter metric_large_better indicates whether the metric is larger better.


	append_evaluate_metric appends other metrics which would be used to evaluate the best model selected in hyper-parameters selection. [Here is a list of supported metrics](http)







Attention


	In order to reduce repetitive codes, we define some protocols to follow for estimators and metrics. You can refer to How to Implement Your Own Estimators for more details.


	When debugging, you should close parallel mode by setting n_jobs to 1 else your code won’t stop at the breakpoint.


	If the built-in experiment process doesn’t meet your demands, you can design yours own settings (refer to How to Design Your Own Experiments and Experiments).










          

      

      

    

  

    
      
          
            
  
Details of built-in Estimators

In this page, we will introduce the built-in estimator classes in each module. In short, they all has fit, predict, set_params methods. You can find more details in APIs to call them directly, or evaluate them in the experiment class.


About Classification

Three classical semi-supervised algorithms are implemented as the baselines of safe SSL, including Transductive Support Vector Machine (TSVM), Label Propagation Algorithm (LPA) and Co-training (CoTraining).




About Data Quality

Two algorithms called LEAD (LargE margin grAph quality juDgement) and SLP (Stochastic Label Propagation) are implemented in this package. LEAD is the first algorithm to study the quality of the graph. The basic idea is that given a set of candidate graphs, when one graph has a high quality, its predictive results may have a large margin separation. Therefore, given multiple graphs with unknown quality, one should encourage to use the graphs with a large margin, rather than the graphs with a small margin, and reduce the chances of performance degradation consequently. The proposed stacking method first regenerates a new SSL data set with the predictive results of GSSL on candidate graphs, and then formulates safe GSSL as the classical semi-supervised SVM optimization on the regenerated dataset.

SLP is a lightweight label propagation method for large-scale network data. A lightweight iterative process derived from the well-known stochastic gradient descent strategy is used to reduce memory overhead and accelerate the solving process.




About Model Uncertainty

We provide two safe SSL algorithms named S4VM (Safe Semi-supervised Support Vector Machine) and SAFER (SAFE semi-supervised Regression) in this package.

S4VM first generates a pool of diverse large margin low-density separators, and then optimizes the label assignment for the unlabeled data in the worse case under the assumption that the ground-truth label assignment can be realized by one of the obtained low-density separators.

For semi-supervised regression (SSR), SAFER tries to learn a safe prediction given a set of SSR predictions obtained in various ways. To achieve this goal, the safe semi-supervised regression problem is forumlated as a geometric projection issue. When the ground-truth label assignment is realized by a convex linear combination of base regressors, the proposal is probably safe and achieve the maximal worst-case performance gain.




About Ensemble

We also implement an ensemble method called SafetyForest to provide a safer prediction when given a set of training models or prediction results. SafetyForest works in a similar way as LEAD. The only difference between the two is that the input of the latter needs to be the predictions of graphs, but doest not need for the former.




About Wrapper

The wrapper helps wrapping the algorithms in third-party packages such as scikit-learn. We wrap some popular supervised learning algorithms in the wrapper as examples.







          

      

      

    

  

    
      
          
            
  
List of Built-in Metrics

This package provides some commonly used metrics. They are implemented in a pre-defined protocols in order to be called by experiments classes. Here is an example.

def accuracy_score(y_true, y_pred, param_dict=None):
    """Accuracy classification score.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) _labels.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Predicted _labels, as returned by a classifier.

    param_dict: dict
        A dictory saving the parameters including::

            sample_weight : array-like of shape = [n_samples], optional Sample
            weights.

    Returns
    -------
    score : float
    """
    # codes...





These functions always have three parameters: y_true for ground-truth labels, y_pred for prediction returned by an estimator, param_dict is a dict that stores other parameters used in the function.

The built-in metrics include:

'accuracy_score',
'zero_one_loss',
'roc_auc_score',
'get_fps_tps_thresholds',
'f1_score',
'hamming_loss',
'one_error',
'coverage_error',
'label_ranking_loss',
'label_ranking_average_precision_score',
'micro_auc_score',
'Average_precision_score',
'minus_mean_square_error'





Please refer to s3l.metrics.performance for more details.





          

      

      

    

  

    
      
          
            
  
How to Implement Your Own Estimators

All the estimators in all packages follow the pre-defined protocols based on their types. All the implementations of algorithms which follow the protocols in s3l.base can be evaluated as the built-in algorithms by experiment classes.

The estimators should inherit a base estimator class in s3l.base according to the type of the estimator you are going to implement. We currently provide five options for you:


	TransductiveEstimatorwithGraph,


	TransductiveEstimatorWOGraph,


	InductiveEstimatorWOGraph,


	InductiveEstimatorwithGraph,


	SupervisedEstimator.




As the names indicate, the experiments support supervised learning algorithms, semi-supervised learning algorithms in both inductive and transductive settings with or without graph.

For each estimator class, you must implement the following methods: set_params, fit and predict.

set_params is the methods to configure the parameters of the estimator objects given a dict storing the values of some parameters. It’s called in the experiments to search for the best hyper-parameters. Since the object is used repeatly with different hyper-parameters, you should make sure that the object is reset as if hadn’t been trained. A common implementation is as follows.

def set_params(self, param):
        """Parameter setting function.

        Parameters
        ----------
        param：dict
            Store parameter names and corresponding values {'name': value}.
        """
        if isinstance(param, dict):
            self.__dict__.update(param)

        # Codes to reset some properties which may influence the
        # prediction.





fit is the method to train the model given data; predict is the method to make prediction. The main difference between base classes is the parameters of the fit and predict. For transductive estimator, the predict method takes in the indexes of instances to predict (the estimator can see the testing data when training). For inductive estimator, the predict method takes in the features of instances to predict. fit method always takes X, y, l_ind, and optional args are supported. For graph-based algorithms, W must be provided for fit method.

For supervised learning algorithm, you can inherit SupervisedEstimator class. You must rewrite __init__ method and initialize the member model as an object of supervised learning model, and model must have the following methods:

class SupervisedEstimator(BaseEstimator):
    """ Supervised estimator of single-label task.
    """

    @abstractmethod
    def __init__(self):
        super(SupervisedEstimator, self).__init__()
        self.model = None

    def fit(self, X, y, l_ind=None, **kwargs):
        """
        Takes X, y, label_index.
        """
        if l_ind is not None:
            X = X[l_ind, :]
            if y.ndim == 2:
                y = y[l_ind, :].reshape(-1)
            else:
                y = y[l_ind]
        self.model.fit(X, y)

    def predict(self, X, **kwargs):
        """
        Takes X
        """
        return self.model.predict(X)

    def set_params(self, param):
        self.model.set_params(**param)

    def predict_proba(self, X):
        return self.model.predict_proba(X)

    def predict_log_proba(self, X):
        return self.model.predict_log_proba(X)





s3l.wrapper.sklearn_wrapper guides you to wrap any supervised learning algorithm you like.


Attention

Sometimes your estimator class may contain C-language object member. The object of estimator can be un-serializable when the C object has pointers because the python interpreter has no way to know the details of the memory where the pointer points to.

The experiment classes run the experiemnts in multi-process mode when n_jobs is set larger than 1, which requires the estimator object is serializable. An option is to rewrite the __getstate__ and __setstate__ methods to design the way how estimator object is dumped and loaded by pickle. The simplest way is to drop the un-picklable member in __getstate__ and re-initialze it in __setstate__. Here is an example taken from s3l.classification.TSVM where self.model is a C object:

def __getstate__(self):
    """
    The model is ctypes objects and contains pointers cannot be pickled.
    So we drop the model when we pickle TSVM.
    """
    state = self.__dict__.copy()
    del state['model']  # manually delete
    return state

def __setstate__(self, state):
    """
    The model is ctypes objects and contains pointers cannot be pickled.
    So we drop the model when we pickle TSVM.
    """
    self.__dict__.update(state)
    self.model = None  # manually update











          

      

      

    

  

    
      
          
            
  
Prepare Data

In this page, we will introduce the functions we provide to load datasets and split given data.


Load Data

In s3l.datasets.base, we provide some useful functions to load data. Here is the list:

'load_data',
'load_dataset',
'load_graph',
'load_boston',
'load_diabetes',
'load_digits',
'load_iris',
'load_breast_cancer',
'load_linnerud',
'load_wine',
'load_ionosphere',
'load_australian',
'load_bupa',
'load_haberman',
'load_vehicle',
'load_covtype',
'load_housing10',
'load_spambase',
'load_house',
'load_clean1'





Among them, load_data, load_dataset and load_graph functions can be used to load the data you prepare. Other functions load the built-in datasets which are commonly used by researchers. These functions return the data in the form which can be used by estimators directly. For example,

X, y = load_XXX(return_X_y=False)
# XXX is the name of dataset





We’ll show you how to use the two user-oriented functions  load_data, load_dataset and load_graph. load_dataset is directly called in experiments classes, you can use them when you try algorithms outside experiment class or when you’re implementing you own experiment class.

load_data loads features and labels of a dataset given the file names.

X, y = load_data(feature_file, label_file)





load_dataset wraps load_data with another parameter name and loads built-in dataset if name matchs.

X, y = load_dataset(name, feature_file, label_file)





load_graph loads the graph in *.csv/npz/mat file and returns a matrix.

W = load_graph(graph_file)








Split Data

In s3l.datasets.data_manipulate, we provide some useful functions to split data. Here is the list:

'inductive_split',
'ratio_split',
'cv_split'





Among them, inductive_split can split the dataset into three parts: labeled set, unlabeled set and testing set, which is helpful for semi-supervised learning tasks.

from sklearn.datasets import make_classification
from s3l.datasets import data_manipulate

X, y = make_classification()
train_idx, test_idx, label_idx, unlabel_idx = \
            data_manipulate.inductive_split(X, y,test_ratio=0.3,
                    initial_label_rate=0.05, split_count=10)





ratio_split and cv_split help split the given data based on train/test ratio and k-Fold.

from sklearn.datasets import make_classification
from s3l.datasets import data_manipulate

X, y = make_classification()
# ratio_split
train_idx, test_idx = \
            data_manipulate.ratio_split(X, y, unlabel_ratio=0.3,
                split_count=10)

# cv_split
train_idx, test_idx = \
            data_manipulate.cv_split(X, y, k=3, split_count=10)





The returned XXX_indexes are lists of indexes which can be directly used by built-in estimators.
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Plans and Release Note


v0.1.0

First release!


	A general semi-supervised learning experiment framework.


	Classical semi-supervised learning algorithms.


	Some of our explorations on safe semi-supervised learning.







v0.1.1 (Developing)


	Hope to improve generality to more settings.


	Abstract the process of hyper-parameter optimization.


	More algorithms.
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Preparing Data

In this page, we introduce the functions we provided to load datasets and split given data.


Load Data

In s3l.datasets.base we provide some useful functions to load data. Here is the list:

'load_data',
'load_dataset',
'load_graph',
'load_boston',
'load_diabetes',
'load_digits',
'load_iris',
'load_breast_cancer',
'load_linnerud',
'load_wine',
'load_ionosphere',
'load_australian',
'load_bupa',
'load_haberman',
'load_vehicle',
'load_covtype',
'load_housing10',
'load_spambase',
'load_house',
'load_clean1'





Among them, load_data, load_dataset and load_graph functions can be used to load the data you prepare. Other function loads the built-in datasets which are commonly used by researchers. These functions returns the data in the form which can be used by estimators directly. For example,

X, y = load_XXX(return_X_y=False)
# XXX is the name of dataset





We’ll show you how to use the two user-oriented functions  load_data, load_dataset and load_graph. load_dataset is directly called in experiments classes, you can use them when you try algorithms outside experiment class or when you’re implementing you own experiment class.

load_data is a function which load features and labels of a dataset given the file names.

X, y = load_data(feature_file, label_file)





load_dataset wrap load_data with another parameter name and load build-in dataset if name matchs.

X, y = load_dataset(name, feature_file, label_file)





load_graph load the graph in *.csv/npz/mat file and return a matrix.

W = load_graph(graph_file)








Split Data

In s3l.datasets.data_manipulate we provide some useful functions to split data. Here is the list:

'inductive_split',
'ratio_split',
'cv_split'





Among them, inductive_split can split the dataset into three parts: labeled set, unlabeled set and testing set, which is helpful for semi-supervised learning tasks.

from sklearn.datasets import make_classification
from s3l.datasets import data_manipulate

X, y = make_classification()
train_idx, test_idx, label_idx, unlabel_idx = \
            data_manipulate.inductive_split(X, y,test_ratio=0.3,
                    initial_label_rate=0.05, split_count=10)





ratio_split and cv_split help split the given data based on train/test ratio and k-Fold.

from sklearn.datasets import make_classification
from s3l.datasets import data_manipulate

X, y = make_classification()
# ratio_split
train_idx, test_idx = \
            data_manipulate.ratio_split(X, y, unlabel_ratio=0.3,
                split_count=10)

# cv_split
train_idx, test_idx = \
            data_manipulate.cv_split(X, y, k=3, split_count=10)





The returned XXX_indexes are list of indexes which can be directly used by built-in estimators.
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