S-RL Toolbox Documentation

Antonin Raffin

Jan 22, 2019

Guide

1	Main	Features	3
	1.1	Installation	3
	1.2	Getting Started	5
		Reinforcement Learning	
		Hyperparameter Search	
	1.5	Environments	8
	1.6	State Representation Learning Models	10
	1.7	Plotting	11
	1.8	Working With Real Robots: Baxter and Robobo	12
	1.9	Running Tests	16
	1.10	Changelog	16
2	Indic	tes and tables	17

S-RL Toolbox: Reinforcement Learning (RL) and State Representation Learning (SRL) Toolbox for Robotics

Github repository: https://github.com/araffin/robotics-rl-srl

Video: https://youtu.be/qNsHMkIsqJc

This repository was made to evaluate State Representation Learning methods using Reinforcement Learning. It integrates (automatic logging, plotting, saving, loading of trained agent) various RL algorithms (PPO, A2C, ARS, ACKTR, DDPG, DQN, ACER, CMA-ES, SAC, TRPO) along with different SRL methods (see SRL Repo) in an efficient way (1 Million steps in 1 Hour with 8-core cpu and 1 Titan X GPU).

We also release customizable Gym environments for working with simulation (Kuka arm, Mobile Robot in PyBullet, running at 250 FPS on a 8-core machine) and real robots (Baxter Robot, Robobo with ROS).

CHAPTER 1

Main Features

- 10 RL algorithms (Stable Baselines included)
- logging / plotting / visdom integration / replay trained agent
- hyperparameter search (hyperband, hyperopt)
- integration with State Representation Learning (SRL) methods (for feature extraction)
- visualisation tools (explore latent space, display action proba, live plot in the state space, ...)
- · robotics environments to compare SRL methods
- easy install using anaconda env or Docker images (CPU/GPU)

Related paper:

"S-RL Toolbox: Environments, Datasets and Evaluation Metrics for State Representation Learning" (Raffin et al., 2018) https://arxiv.org/abs/1809.09369

Note: This documentation only gives an overview of the RL Toolbox, and provides some examples. However, for a complete list of possible argument, you have to use the --help argument. For example, you can try: python -m rl_baselines.train --help

1.1 Installation

Python 3 is required (python 2 is not supported because of OpenAI baselines)

Note: we are using Stable Baselines, a fork of OpenAI Baselines with unified interface and other improvements (e.g. tensorboard support).

1.1.1 Using Anaconda

0. Download the project (note the --recursive argument because we are using git submodules):

git clone git@github.com:araffin/robotics-rl-srl.git --recursive

1. Install the swig library:

```
sudo apt-get install swig
```

2. Install the dependencies using environment.yml file (for anaconda users) in the current environment

```
conda env create --file environment.yml
source activate py35
```

PyBullet Documentation

1.1.2 Using Docker

Use Built Images

GPU image (requires nvidia-docker):

docker pull araffin/rl-toolbox

CPU only:

```
docker pull araffin/rl-toolbox-cpu
```

Build the Docker Images

Build GPU image (with nvidia-docker):

docker build . -f docker/Dockerfile.gpu -t rl-toolbox

Build CPU image:

docker build . -f docker/Dockerfile.cpu -t rl-toolbox-cpu

Note: if you are using a proxy, you need to pass extra params during build and do some tweaks:

Run the images

Run the nvidia-docker GPU image

Or, with the shell file:

```
./run_docker_gpu.sh python -m rl_baselines.train --srl-model ground_truth --env_
→MobileRobotGymEnv-v0 --no-vis --num-timesteps 1000
```

Run the docker CPU image

```
docker run -it --rm --network host --ipc=host --name test --mount src="$(pwd)",

→target=/tmp/rl_toolbox,type=bind araffin/rl-toolbox-cpu bash -c 'source activate_

→py35 && cd /tmp/rl_toolbox/ && python -m rl_baselines.train --srl-model ground_

→truth --env MobileRobotGymEnv-v0 --no-vis --num-timesteps 1000'
```

Or, with the shell file:

```
./run_docker_cpu.sh python -m rl_baselines.train --srl-model ground_truth --env_
→MobileRobotGymEnv-v0 --no-vis --num-timesteps 1000
```

Explanation of the docker command:

- docker run -it create an instance of an image (=container), and run it interactively (so ctrl+c will work)
- --rm option means to remove the container once it exits/stops (otherwise, you will have to use docker rm)
- --network host don't use network isolation, this allow to use visdom on host machine
- --ipc=host Use the host system's IPC namespace. It is needed to train SRL model with PyTorch. IPC (POSIX/SysV IPC) namespace provides separation of named shared memory segments, semaphores and message queues.
- --name test give explicitly the name test to the container, otherwise it will be assigned a random name
- --mount src=... give access of the local directory (pwd command) to the container (it will be map to /tmp/rl_toolbox), so all the logs created in the container in this folder will be kept (for that you need to pass the --log-dir logs/ option)
- bash -c 'source activate py35 && ... Activate the conda environment inside the docker container, and launch an experiment (python -m rl_baselines.train ...)

1.2 Getting Started

Here is a quick example of how to train a PPO2 agent on MobileRobotGymEnv-v0 environment for 10 000 steps using 4 parallel processes:

```
python -m rl_baselines.train --algo ppo2 --no-vis --num-cpu 4 --num-timesteps 10000 --
→env MobileRobotGymEnv-v0
```

The complete command (logs will be saved in *logs*/ folder):

```
python -m rl_baselines.train --algo rl_algo --env env1 --log-dir logs/ --srl-model_

→raw_pixels --num-timesteps 10000 --no-vis
```

To use the robot's position as input instead of pixels, just pass --srl-model ground_truth instead of --srl-model raw_pixels

1.3 Reinforcement Learning

Note: All CNN policies normalize input, dividing it by 255. By default, observations are not stacked. For SRL, states are normalized using a running mean/std average.

About frame-stacking, action repeat (frameskipping) please read this blog post: Frame Skipping and Pre-Processing for DQN on Atari

Before you start a RL experiment, you have to make sure that a visdom server is running, unless you deactivate visualization.

Launch visdom server:

python -m visdom.server

1.3.1 RL Algorithms: OpenAl Baselines and More

Several algorithms from Stable Baselines have been integrated along with some evolution strategies and SAC:

- A2C: A synchronous, deterministic variant of Asynchronous Advantage Actor Critic (A3C).
- ACER: Sample Efficient Actor-Critic with Experience Replay
- ACKTR: Actor Critic using Kronecker-Factored Trust Region
- ARS: Augmented Random Search (https://arxiv.org/abs/1803.07055)
- CMA-ES: Covariance Matrix Adaptation Evolution Strategy
- DDPG: Deep Deterministic Policy Gradients
- DeepQ: DQN and variants (Double, Dueling, prioritized experience replay)
- PPO1: Proximal Policy Optimization (MPI Implementation)
- PPO2: Proximal Policy Optimization (GPU Implementation)
- SAC: Soft Actor Critic
- TRPO: Trust Region Policy Optimization (MPI Implementation)

Train an Agent with Discrete Actions

To train an agent (without visualization with visdom):

python -m rl_baselines.train --algo ppo2 --log-dir logs/ --no-vis

You can train an agent on the latest learned model (knowing it's type) located at log_folder: srl_zoo/logs/ DatasetName/(defined for each environment in config/srl_models.yaml):

Train an Agent with Continuous Actions

Continuous actions have been implemented for DDPG, PPO2, ARS, CMA-ES, SAC and random agent. To use continuous actions in the position space: python -m rl_baselines.train --algo ppo2 --log-dir logs/ -c

To use continuous actions in the joint space:

python -m rl_baselines.train --algo ppo2 --log-dir logs/ -c -joints

Train an agent multiple times on multiple environments, using different methods

To run multiple environments with multiple SRL models for a given algorithm (you can use the same arguments as for training should you need to specify anything to the training script):

```
python  -m rl_baselines.pipeline --algo ppo2 --log-dir logs/ --env env1 env2 [...] --
→srl-model model1 model2 [...]
```

For example, run a total of 30 experiments of ppo2 with 4 cpus and randomly initialized target position, in the default environment using VAE, and using ground truth (15 experiments each):

Load a Trained Agent

To load a trained agent and see the result:

```
python -m replay.enjoy_baselines --log-dir path/to/trained/agent/ --render
```

1.3.2 Add your own RL algorithm

- 1. Create a class that inherits rl_baselines.base_classes.BaseRLObject which implements your algorithm. You will need to define specifically:
 - save(save_path, _locals=None): to save your model during or after training.
 - load (load_path, args=None): to load and return a saved instance of your class (static function).
 - customArguments (parser): @classmethod to define specifics command line arguments from train.py or pipeline.py calls, then returns the parser object.
 - getAction (observation, dones=None): to get the action from a given observation.
 - makeEnv(self, args, env_kwargs=None, load_path_normalise=None): override if you need to change the environment wrappers (static function).
 - train(args, callback, env_kwargs=None, hyperparam=None): to create the environment, and train your algorithm on said environment.
 - (OPTIONAL) getActionProba(observation, dones=None): to get the action probabilities from a given observation. This is used for the action probability plotting in replay. enjoy_baselines.
 - (OPTIONAL) getOptParam(): @classmethod to return the hyperparameters that can be optimised through the callable argument. Along with the type and range of said parameters.
- 2. Add your class to the registered_rl dictionary in rl_baselines/registry.py, using this format NAME: (CLASS, ALGO_TYPE, [ACTION_TYPE]), where:

- NAME: is your algorithm's name.
- CLASS: is your class that inherits BaseRLObject.
- ALGO_TYPE: is the type of algorithm, defined by the enumerator AlgoType in rl_baselines/ ______init___.py, can be REINFORCEMENT_LEARNING, EVOLUTION_STRATEGIES or OTHER (OTHER is used to define algorithms that can't be run in enjoy_baselines.py (ex: Random_agent)).
- [ACTION_TYPE]: is the list of compatible type of actions, defined by the enumerator ActionType in rl_baselines/__init__.py, can be CONTINUOUS and/or DISCRETE.
- 3. Now you can call your algorithm using --algo NAME with train.py or pipeline.py.

1.4 Hyperparameter Search

This repository also allows hyperparameter search, using hyperband or hyperopt for the implemented RL algorithms

for example, here is the command for a hyperband search on PPO2, ground truth on the mobile robot environment:

1.5 Environments

All the environments we propose follow the OpenAI Gym interface. We also extended this interface (adding extra methods) to work with SRL methods (see *State Representation Learning Models*).

OpenAI Gym repo: https://github.com/openai/gym

1.5.1 Available environments

You can find a recap table in the README.

- Kuka arm: Here we have a Kuka arm which must reach a target, here a button.
 - KukaButtonGymEnv-v0: Kuka arm with a single button in front.
 - KukaRandButtonGymEnv-v0: Kuka arm with a single button in front, and some randomly positioned objects
 - Kuka2ButtonGymEnv-v0: Kuka arm with 2 buttons next to each others, they must be pressed in the correct order (lighter button, then darker button).
 - KukaMovingButtonGymEnv-v0: Kuka arm with a single button in front, slowly moving left to right.
- Mobile robot: Here we have a mobile robot which reach a target position
 - MobileRobotGymEnv-v0: A mobile robot on a 2d terrain where it needs to reach a target position (yellow cylinder).
 - MobileRobot2TargetGymEnv-v0: A mobile robot on a 2d terrain where it needs to reach two target positions, in the correct order (yellow target, then red target).
 - MobileRobot1DGymEnv-v0: A mobile robot on a 1d slider where it can only go up and down, it must reach a target position.
 - MobileRobotLineTargetGymEnv-v0: A mobile robot on a 2d terrain where it needs to reach a colored band going across the terrain.

- Racing car: Here we have the interface for the Gym racing car environment. It must complete a racing course in the least time possible (only available in a terminal with X running)
 - CarRacingGymEnv-v0: A racing car on a racing course, it must complete the racing course in the least time possible.
- Baxter: A baxter robot that must reach a target, with its arms.
 - Baxter-v0: A bridge to use a baxter robot with ROS (in simulation, it uses Gazebo)
- Robobo: A Robobo robot that must reach a target position.
 - RoboboGymEnv-v0: A bridge to use a Robobo robot with ROS.

1.5.2 Generating Data

To test the environment with random actions:

python -m environments.dataset_generator --no-record-data --display

Can be as well used to render views (or dataset) with two cameras if multi_view=True.

To record data (i.e. generate a dataset) from the environment for training a SRL model, using random actions:

python -m environments.dataset_generator --num-cpu 4 --name folder_name

1.5.3 Add a custom environment

- 1. Create a class that inherits environments.srl_env.SRLGymEnv which implements your environment. You will need to define specifically:
 - getTargetPos(): returns the position of the target.
 - getGroundTruthDim(): returns the number of dimensions used to encode the ground truth.
 - getGroundTruth(): returns the ground truth state.
 - step (action): step the environment in simulation with the given action.
 - reset (): re-initialise the environment.
 - render (mode='human'): returns an observation of the environment.
 - close (): closes the environment, override if you need to change it.
 - Make sure __init__ has the parameter **_kwargs in order to ignore useless flag parameters sent by the calling code.
- 2. Add this code to the same file as the class declaration

```
def getGlobals():
    """
    :return: (dict)
    """
    return globals()
```

it will allow the logging of constant values used by the class

3. Add your class to the registered_env dictionary in environments/registry.py, using this format NAME: (CLASS, SUPER_CLASS, PLOT_TYPE, THREAD_TYPE), where:

- NAME: is your environment's name, it must only contain [A-Z] [a-z] [0-9] and end with the version number in this format: -v{number}.
- CLASS: is your class that is a subclass of SRLGymEnv.
- SUPER_CLASS: is the super class of your class, this is for saving all the globals and parameters.
- PLOT_TYPE: is the type of plotting for replay.enjoy_baselines, defined by the enumerator PlottingType in environments/__init__.py, can be PLOT_2D or PLOT_3D (use PLOT_3D if unsure).
- THREAD_TYPE: is the type of multithreading supported by the environment, defined by the enumerator ThreadingType in environments/__init__.py, can be (from most restricive to less restricive) PROCESS, THREAD or NONE (use NONE if unsure).
- 4. Add the name of the environment to config/srl_models.yaml, with the location of the saved model for each SRL model (can point to a dummy location, but must be defined).
- 5. Now you can call your environment using --env NAME with train.py, pipeline.py or dataset_generator.py.

1.6 State Representation Learning Models

A State Representation Learning (SRL) model aims to compress from a high dimensional observation, a compact representation. This learned representation can be used instead of learning a policy directly from pixels, in a deep reinforcement learning algorithm.

A more detailed overview: https://arxiv.org/pdf/1802.04181.pdf

Please look the SRL Repo to learn how to train a state representation model. Then you must edit config/ srl_models.yaml and set the right path to use the learned state representations.

To train a Reinforcement learning agent on a specific SRL model:

python -m rl_baselines.train --algo ppo2 --log-dir logs/ --srl-model model_name

1.6.1 Available SRL models

The available state representation models are:

- ground_truth: Hand engineered features (e.g., robot position + target position for mobile robot env)
- raw_pixels: Learning a policy in an end-to-end manner, directly from pixels to actions.
- supervised: A model trained with Ground Truth states as targets in a supervised setting.
- autoencoder: an autoencoder from the raw pixels
- vae: a variational autoencoder from the raw pixels
- inverse: an inverse dynamics model
- forward: a forward dynamics model
- srl_combination: a model combining several losses (e.g. vae + forward + inverse...) for SRL
- pca: pca applied to the raw pixels
- robotic_priors: robotic priors model (Learning State Representations with Robotic Priors)

- multi_view_srl: a SRL model using views from multiple cameras as input, with any of the above losses (e.g triplet and others)
- joints: the arm's joints angles (kuka environments only)
- joints_position: the arm's x,y,z position and joints angles (kuka environments only)

Note: For debugging, we integrated logging of states (we save the states that the RL agent encountered during training) with SAC algorithm. To log the states during RL training you have to pass the --log-states argument:

```
python -m rl_baselines.train --srl-model ground_truth --env_

→MobileRobotLineTargetGymEnv-v0 --log-dir logs/ --algo sac --reward-scale 10 --log-

→states
```

The states will be saved in a log_srl/ folder as numpy archives, inside the log folder of the rl experiment.

1.6.2 Add a custom SRL model

If your SRL model is a charateristic of the environment (position, angles, ...):

- 1. Add the name of the model to the registered_srl dictionary in state_representation/ registry.py, using this format NAME: (SRLType.ENVIRONMENT, [LIMITED_TO_ENV]), where:
 - NAME: is your model's name.
 - [LIMITED_TO_ENV]: is the list of environments where this model works (will check for subclass), set to None if this model applies to every environment.
- 2. Modify the def getSRLState (self, observation) in the environments to return the data you want for this model.
- 3. Now you can call your SRL model using --srl-model NAME with train.py or pipeline.py.

Otherwise, for the SRL model that are external to the environment (Supervised, autoencoder, ...):

- 1. Add your SRL model that inherits SRLBaseClass, to the function state_representation.models. loadSRLModel.
- 2. Add the name of the model to the registered_srl dictionary in state_representation/ registry.py, using this format NAME: (SRLType.SRL, [LIMITED_TO_ENV]), where:
 - NAME: is your model's name.
 - [LIMITED_TO_ENV]: is the list of environments where this model works (will check for subclass), set to None if this model applies to every environment.
- 3. Add the name of the model to config/srl_models.yaml, with the location of the saved model for each environment (can point to a dummy location, but must be defined).
- 4. Now you can call your SRL model using --srl-model NAME with train.py or pipeline.py.

1.7 Plotting

1.7.1 Plot Learning Curve

To plot a learning curve from logs in visdom, you have to pass path to the experiment log folder:

python -m replay.plots --log-dir /logs/raw_pixels/ppo2/18-03-14_11h04_16/

To aggregate data from different experiments (different seeds) and plot them (mean + standard error). You have to pass path to rl algorithm log folder (parent of the experiments log folders):

Here it plots experiments with reward shaping and that have a minimum of 1000 data points (using timesteps on the x-axis), the plot data will be saved in the file output_file.npz.

To create a comparison plots from saved plots (.npz files), you need to pass a path to folder containing .npz files:

```
python -m replay.compare_plots -i logs/path/to/folder/ --shape-reward --timesteps
```

1.7.2 Gather Results

Gather results for all experiments of an environment. It will report mean performance for a given budget.

```
python -m replay.gather_results -i path/to/envdir/ --min-timestep 5000000 --timestep-

→budget 1000000 2000000 3000000 5000000 --episode-window 100
```

1.8 Working With Real Robots: Baxter and Robobo

1.8.1 Baxter Robot with Gazebo and ROS

Gym Wrapper for baxter environment, more details in the dedicated README (environments/gym_baxter/README.md).

Warning: ROS (and Gazebo + Baxter) only works with python2, whereas this repo (except the ROS scripts) works with python3. For Ros/Baxter installation, please look at the Official Tutorial. Also, ROS comes with its own version of OpenCV, so when running the python3 scripts, you need to deactivate ROS. In the same vein, if you use Anaconda, you need to disable it when you want to run ROS scripts (denoted as python 2 in the following instructions).

- 0. Download ROS packages (ROS kinetic) and install them in your catkin workspace:
- arm scenario experiments, branch "rl"
- arm scenario simulator branch kinetic-devel
- 1. Start ros nodes (Python 2):

```
roslaunch arm_scenario_simulator baxter_world.launch
rosrun arm_scenario_simulator spawn_objects_example
```

python -m real_robots.gazebo_server

Then, you can either try to teleoperate the robot (python 3):

python -m real_robots.teleop_client

or test the environment with random actions (using the gym wrapper):

python -m environments.gym_baxter.test_baxter_env

If the port is already used, you can see the program pid using the following command:

sudo netstat -lpn | grep :7777

and then kill it (with kill -9 program_pid)

or in one line:

kill -9 `sudo lsof -t -i:7777`

1.8.2 Working With a Real Baxter Robot

WARNING: Please read COMPLETELY the following instructions before running and experiment on a real baxter.

Recording Data With a Random Agent for SRL

1. Change you environment to match baxter ROS settings (usually using the baxter.sh script from RethinkRobotics) or in your .bashrc:

```
# NB: This is only an example
export ROS_HOSTNAME=192.168.0.211  # Your IP
export ROS_MASTER_URI=http://baxter.local:11311  # Baxter IP
```

- 2. Calibrate the different values in real_robots/constants.py using real_robots/ real_baxter_debug.py:
- Set USING_REAL_BAXTER to True
- Position of the target: BUTTON_POS
- Init position and orientation: LEFT_ARM_INIT_POS, LEFT_ARM_ORIENTATION
- Position of the table (minimum z): Z_TABLE
- Distance below which the target is considered to be reached: DIST_TO_TARGET_THRESHOLD
- Distance above which the agent will get a negative reward: MAX_DISTANCE
- Maximum number of steps per episode: MAX_STEPS
- 3. Configure images topics in real_robots/constants.py:
- IMAGE_TOPIC: main camera
- SECOND_CAM_TOPIC: second camera (set it to None if you don't want to use a second camera)
- DATA_FOLDER_SECOND_CAM: folder where the images of the second camera will be saved
- 4. Launch ROS bridge server (python 2):

```
python -m real_robots.real_baxter_server
```

- 5. Deactivate ROS from your environment and switch to python 3 environment (for using this repo)
- Set the number of episodes you want to record, name of the experiment and random seed in environments/ gym_baxter/test_baxter_env.py
- 7. Record data using a random agent:

python -m environments.gym_baxter.test_baxter_env

8. Wait until the end... Note: the real robot runs at approximately 0.6 FPS.

NB: If you want to save the image without resizing, you need to comment the line in the method getObservation() in environments/gym_baxter/baxter_env.py

RL on a Real Baxter Robot

- 1. Update the settings in rl_baselines/train.py, so it saves and log the training more often (LOG_INTERVAL, SAVE_INTERVAL,...)
- 2. Make sure that USING_REAL_BAXTER is set to True in real_robots/constants.py.
- 3. Launch ROS bridge server (python 2):

```
python -m real_robots.real_baxter_server
```

4. Start visdom for visualizing the training

python -m visdom.server

4. Train the agent (python 3)

```
python -m rl_baselines.train --srl-model ground_truth --log-dir logs_real/ --num-
→stack 1 --shape-reward --algo ppo2 --env Baxter-v0
```

1.8.3 Working With a Real Robobo

Robobo Documentation

Note: the Robobo is controlled using time (the feedback frequency is too low to do closed-loop control) The robot was calibrated for a constant speed of 10.

Recording Data With a Random Agent for SRL

1. Change you environment to match Robobo ROS settings or in your .bashrc: NOTE: Robobo is using ROS Java, if you encounter any problem with the cameras (e.g. with a xtion), you should create the master node on your computer and change the settings in the robobo dev app.

```
# NB: This is only an example
export ROS_HOSTNAME=192.168.0.211  # Your IP
export ROS_MASTER_URI=http://robobo.local:11311  # Robobo IP
```

- 2. Calibrate the different values in real_robots/constants.py using real_robots/ real_robobo_server.py and real_robots/teleop_client.py (Client for teleoperation):
- Set USING_ROBOBO to True
- Area of the target: TARGET_INITIAL_AREA
- Boundaries of the environment: (MIN_X, MAX_X, MIN_Y, MAX_Y)

- Maximum number of steps per episode: MAX_STEPS IMPORTANT NOTE: if you use color detection to detect the target, you need to calibrate the HSV thresholds LOWER_RED and UPPER_RED in real_robots/ constants.py (for instance, using this script). Be careful, you may have to change the color conversion (cv2.COLOR_BGR2HSV instead of cv2.COLOR_RGB2HSV)
- 3. Configure images topics in real_robots/constants.py:
- IMAGE_TOPIC: main camera
- SECOND_CAM_TOPIC: second camera (set it to None if you don't want to use a second camera)
- DATA_FOLDER_SECOND_CAM: folder where the images of the second camera will be saved

NOTE: If you want to use robobo's camera (phone camera), you need to republish the image to the raw format:

4. Launch ROS bridge server (python 2):

python -m real_robots.real_robobo_server

- 5. Deactivate ROS from your environment and switch to python 3 environment (for using this repo)
- 6. Set the number of episodes you want to record, name of the experiment and random seed in environments/ robobo_gym/test_robobo_env.py
- 7. Record data using a random agent:

python -m environments.robobo_gym.test_robobo_env

8. Wait until the end... Note: the real robobo runs at approximately 0.1 FPS.

NB: If you want to save the image without resizing, you need to comment the line in the method getObservation() in environments/robobo_gym/robobo_env.py

RL on a Real Robobo

- 1. Update the settings in rl_baselines/train.py, so it saves and logs the training more often (LOG_INTERVAL, SAVE_INTERVAL,...)
- 2. Make sure that USING_ROBOBO is set to True in real_robots/constants.py.
- 3. Launch ROS bridge server (python 2):

python -m real_robots.real_robobo_server

4. Start visdom for visualizing the training

python -m visdom.server

4. Train the agent (python 3)

```
python -m rl_baselines.train --srl-model ground_truth --log-dir logs_real/ --num-
--stack 1 --algo ppo2 --env RoboboGymEnv-v0
```

1.9 Running Tests

Download the test datasets kuka_gym_test and kuka_gym_dual_test and put it in srl_zoo/data/ folder.

./run_tests.sh --all

1.10 Changelog

For download links, please look at Github release page.

1.10.1 Release 1.2.0 (2019-01-17)

- fixed a bug in the dataset generator where the GUI was instantiated two times
- updated stable-baselines version + srl-zoo submodule
- add stable-baselines SAC version
- remove pytorch SAC version breaking changes

1.10.2 Release 1.0 (2018-10-09)

Stable Baselines Version

Model trained with previous release are not compatible with this version.

- refactored all rl baselines to integrate with Stable Baselines breaking changes
- · updated plotting scripts
- added doc

1.10.3 Release 0.4 (2018-09-25)

First Stable Version

Initial release, using OpenAI Baselines (and patches) for the RL algorithms.

CHAPTER 2

Indices and tables

- genindex
- modindex
- search