
rxp_player Documentation
Release 0.0.1

roxlu

February 11, 2017

Contents

1 Getting Started 3

2 Programmers Guide 5

3 API Reference 9

i

ii

rxp_player Documentation, Release 0.0.1

rxp_player is an open source, cross platform C library for playing back .ogg video files that are encoded with theora
and vorbis. In the near future we will also add support for Daala and Opus.

Contents:

Contents 1

rxp_player Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Getting Started

To compile rxp_player you need to:

• Clone the repository

• Make sure you compiled the dependencies (or use the one we provide)

• Compile the library with the packaged build script

1.1 Building the library

Clone the rxp_player repository from github:

git clone git@github.com:roxlu/rxp_player.git

1.1.1 Dependencies

rxp_player depends on the follow libraries

• libogg

• libvorbis

• libtheora

• libuv

Furthermore the example that is part of the library, which implements a fully working video player needs a couple of
other libraries. We provide precompiled libraries that are tested on Mac/Win/Arch-Linux and will be automatically
downloaded upon first build. These libraries are:

• cubeb

• glfw

• glxw

• tinylib

3

http://downloads.xiph.org/releases/ogg/libogg-1.3.1.tar.gz
http://downloads.xiph.org/releases/vorbis/libvorbis-1.3.4.tar.gz
http://downloads.xiph.org/releases/theora/libtheora-1.1.1.zip
http://downloads.xiph.org/releases/theora/libtheora-1.1.1.zip
https://github.com/kinetiknz/cubeb
http://www.glfw.org/
https://github.com/rikusalminen/glxw
https://github.com/roxlu/tinylib

rxp_player Documentation, Release 0.0.1

1.1.2 Compiling rxp_player on Mac and Linux

We provide build scripts for both linux, mac and windows. We’re using CMake for the build system. By default the
CMake file will download the dependencies and necessary test files the first time you execute the scripts. To build
execute:

cd build
./release.sh

This will automatically download a test video and starts the test application. It will also build a librxp_player.a file
and copies it to the root install directory for you compiler and operation system.

1.1.3 Compiling on Windows

@TODO

1.1.4 Libraries to link with on Mac

When you want to link with librxpplayer in your application you need to link with the following frameworks and
libraries on mac.

• CoreFoundation

• Cocoa

• OpenGL

• IOKit

• CoreVideo

• AudioUnit

• CoreAudio

• AudioToolbox

4 Chapter 1. Getting Started

CHAPTER 2

Programmers Guide

On this page we will describe everything you need to know to create a fully working video player with rxp_player
with audio and video output. For the output parts we refer to the glfw example that you can find in src/examples.

The simplest video player is one that does not have audio output. Therefore we will start with this first and in the next
section we describe how you can add audio output too. Although the API is similar for both video with and without
audio, for the user there are some big differences.

A global flow of how to use the player is:

• initialize a player with rxp_player_init()

• open a file using rxp_player_open()

• start playback with rxp_player_play()

• call rxp_player_update() repeatedly in your draw loop.

• release all used memory when you receive the RXP_PLAYER_EVENT_RESET by calling
rxp_player_clear() in you on_event callback.

Before you can use the player you need to initialize the rxp_player context which manages all memory, video, audio
etc.. Call rxp_player_init() with a pointer to a rxp_player struct. All functions of the rxp_player library return
zero on sucess, < 0 on error, so make sure to check this.

After you’ve initialized the struct you can open a file by calling rxp_player_open() and pass the context struct
and the filepath to the .ogg file you want to play.

To start playing call rxp_player_play(). But by only calling these functions you’re not yet there. You need to
tell the rxp_player that you want to receive video frames. For this we use a callback, that should accept a pointer to
the player and a rxp_packet.

The rxp_packet holds all the information you need to display a frame. Every time this function is called it means you
need to update your screen with the recevied buffers. The rxp_packet has a member img[3] that contains the width,
height, stride and video data for each of the video planes. At the time of writing we only support YUV420P video
data.

The function below shows a simple example of this:

// player is `rxp_player player`
static int setup_player() {

if (rxp_player_init(&player) < 0) {
printf("+ Error: cannot init player.\n");
return -1;

}

5

rxp_player Documentation, Release 0.0.1

if (rxp_player_open(&player, "bunny.ogg") < 0) {
printf("+ Error: cannot open the ogg file.\n");
return -2;

}

if (rxp_player_play(&player) < 0) {
printf("+ Error: failed to start playing.\n");
return -3;

}

player.on_video_frame = on_video_frame;
player.on_event = on_event;

return 0;
}

An important aspect you need to implement is the on_event callback where you clear all used memory when the player
has finished playing and decoding all frames. The on_event function will be called when certain player or decoder
events happen. These events are:

RXP_PLAYER_DEC_EVENT_AUDIO_INFO: The decoder decoded some audio frames and the
players’ members nchannels and samplerate have been set.

RXP_PLAYER_EVENT_PLAY: The scheduler/player has opened the file and decoded the first couple
of frames/seconds and the player is ready to start running. This is when you should start the audio
stream when the .ogg file has audio samples. You can check this by testing the number of channels,
which should be > 0, when the .ogg file has an audio stream.

RXP_PLAYER_EVENT_RESET: Whenever you receive the RXP_PLAYER_EVENT_RESET event
it’s time to tear down the player and stop the audio stream if it was running. Call
rxp_player_clear() when you receive this event. This event is fired when either you asked
the player to stop by using rxp_player_stop() or simply when we’re ready decoding video
frames or when the audio buffer hasn’t got any new samples that can be played.

The function below shows an example that implements an event handler, which also start an audio stream using the
‘cubeb‘_ library. Note how we clear the used memory where we receive the RXP_PLAYER_EVENT_RESET event.
When you don’t call rxp_player_clear() memory will leak.

static void on_event(rxp_player* p, int event) {

if (event == RXP_DEC_EVENT_AUDIO_INFO) {
printf("+ Received RXP_DEC_EVENT_AUDIO_INFO event.\n");

}
else if (event == RXP_PLAYER_EVENT_PLAY) {
printf("+ Received RXP_PLAYER_EVENT_PLAY event.\n");
if (p->nchannels > 0) {

start_audio();
}

}
else if (event == RXP_PLAYER_EVENT_RESET) {
printf("+ Received RXP_PLAYER_EVENT_RESET event.\n");

if (rxp_player_clear(p) < 0) {
printf("+ Failed clearing the player.\n");

}

/* check if this is a repeated call to start the audio stream */
if (audio_ctx) {

cubeb_stream_stop(audio_stream);

6 Chapter 2. Programmers Guide

rxp_player Documentation, Release 0.0.1

cubeb_stream_destroy(audio_stream);
cubeb_destroy(audio_ctx);
audio_ctx = NULL;
audio_stream = NULL;
printf("+ Cleaned up the audio stream.\n");

}
}

}

7

rxp_player Documentation, Release 0.0.1

8 Chapter 2. Programmers Guide

CHAPTER 3

API Reference

rxp_player_init(rxp_player* player)
Initialize the player and all it’s members. Internally this will create a queue for the video plackets, sets up the
ringbuffer for audio to default values (won’t allocate any bytes for the ringbuffer here), initializes the decoder,
scheduler clock etc.. This must be called before you make any other call on the rxp_player, and everytime where
you called rxp_player_clear().

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 on success, < 0 on error.

rxp_player_clear(rxp_player* player)
This function clears all used memory of the rxp_player. This function will will deallocate the packet
queue, deallocate the scheduler, decoder, clock etc.. After calling rxp_player_clear() you can call
rxp_player_init() again if you want to reload or replay the file.

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 on success, < 0 on error.

rxp_player_open(rxp_player* player, char* file)
This will open the given .ogg file. Make sure that you’ve called rxp_player_init() before calling this
function. Also, when you want to re-open the same file after it has been played completely and you already
called rxp_player_clear() to free internally used memory, you need to call rxp_player_init()
before calling this function again.

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 on success, < 0 on error.

// somewhere globally
rxp_player player;

// opening a file
{
if (rxp_player_init(&player) < 0) {

exit(1);
}

if (rxp_player_open(&player, "bunny.ogg") < 0) {
exit(1);

}

if (rxp_player_play(&player) < 0) {
exit(1);

}

9

rxp_player Documentation, Release 0.0.1

// set callbacks
player.on_event = on_event
player.on_video_frame = on_video_frame

}

rxp_player_play(rxp_player* player)
Start playing the opened file. Make sure that you’ve called rxp_player_init(), rxp_player_open()
first.

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 on success, < 0 on error.

rxp_player_update(rxp_player* player)
Make sure to call this function as often as possible as it will check if you need to display a new video frame.
And it will make sure that the internally used scheduler will be updated as well so it will continue decoding as
needed.

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 on success, < 0 on error.

rxp_player_pause(rxp_player* player)
Pause the playback. This will change the state of the player and the rxp_player_update() will not handle
any frames/timings until we continue playing again. To continue playback, call rxp_player_play() again.

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 on success, < 0 on error.

rxp_player_stop(rxp_player* player)
Stop the currently being played player. This will stop everything completely and you’ll need to re-initialize the
player again if you want to start playing again. This will trigger the RXP_PLAYER_EVENT_RESET from where
you call rxp_player_clear() as described in the programmers guide.

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 on success, < 0 on error.

rxp_player_is_playing(rxp_player* player)
Check if the video player is playing.

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 when the player is playing, else 1, < 0 on error.

rxp_player_is_paused(rxp_player* player)
Check if the video player is paused.

Parameters rxp_player* – Pointer to the rxp_player

Returns 0 when the player is paused, else 1, < 0 on error.

10 Chapter 3. API Reference

Index

R
rxp_player_clear() (built-in function), 9
rxp_player_init() (built-in function), 9
rxp_player_is_paused() (built-in function), 10
rxp_player_is_playing() (built-in function), 10
rxp_player_open() (built-in function), 9
rxp_player_pause() (built-in function), 10
rxp_player_play() (built-in function), 10
rxp_player_stop() (built-in function), 10
rxp_player_update() (built-in function), 10

11

	Getting Started
	Programmers Guide
	API Reference

