

Welcome to Ruruki’s documentation!

Contents:

	Introduction
	Introduction to Ruruki - In-Memory Directed Property Graph

	Contributing

	Versioning

	Summary

	Functionality still being worked on

	Demo

	Build and Testing Status

	Tutorial
	Let’s begin
	Installing ruruki

	Creating a database

	Adding in some data

	Searching for information

	Dumping and loading data

	Tutorial demo script

	Interfaces
	Graph

	Base Entity

	Vertex

	Edge

	Entity Set

	Locks

	Implementations
	Graphs

	Entities

	Locks

	Parsers
	Cypher parser

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Introduction to Ruruki - In-Memory Directed Property Graph

What is Ruruki [https://en.wiktionary.org/wiki/ruruki]? Well the technical meaning is “it is any tool used to extract snails from rocks”.

So ruruki is a in-memory directed property graph database tool used for building complicated graphs of anything.

Ruruki is super useful for

	Temporary lightweight graph database. Sometimes you do not want to depend on a heavy backend that requires complicated software like Java. Or you do not have root or admin access on the server you want to run the database on. With ruruki, you can install it in a python virtualenv and be up and running in no time.

	Proof of concept. Ruruki is super great for demonstrating a proof of concept with little resources, effort, and hassle.

My idea behind using a graph database is because everything is connected in some shape or form, no matter what it is. You can apply it to things like

	Linking actors -> movies -> directors.

	Linking networks, social or computer.

	Linking people to business structures, hierarchy, or responsibilities.

	Navigation.

	Mapping which snails climb over which rocks, or tools used for extraction, and so on.

	And the list goes on, and on, and on.

You just need to change your mindset on how data is linked together, represented, and related.
Like Newton’s third law “For every action there is an equal and opposite re-action”, in terms of a graph with relationships, if one vertex/node is affected, there will be an impact on another node somewhere in the graph. For example, if the CEO is hit by a asteroid, who in the business are affected.

There are many similar projects/libraries out there that do the exact same as ruruki, but I decided to do my own graph library for the following reasons

	Other libraries lacked documentation.
	GrapheekDB [https://bitbucket.org/nidusfr/grapheekdb]

	NetworkX [https://networkx.github.io/]

	graph-tool [https://graph-tool.skewed.de/]

	python-graph [https://github.com/pmatiello/python-graph]

	Code was hard and complicated to read and follow.

	Others are too big and complex for the job that I needed to do.

	And lastly, I wanted to learn more about graph databases and decided writing a graph database library was the best way to wrap
my head around it, and why not?

Contributing

If you would like to contribute, below are some guidelines.

	PEP8 (pylint)

	Documentation should be done on the interfaces if possible to keep it consistent.

	Unit-tests covering 100% of the code.

Versioning

Ruruki uses the Semantic Versioning [http://semver.org] scheme.

Summary

Given a version number MAJOR.MINOR.PATCH, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards-compatible manner, and

	PATCH version when you make backwards-compatible bug fixes.

	Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

Functionality still being worked on

	Traversing algorithms.

	Query language.

	Extensions, for example interacting with Neo4j.

	Persistence.

	Channels for publishing and subscribing.

Demo

To see an online demo of ruruki-eye [https://github.com/jenmud/ruruki-eye] follow the following link http://www.ruruki.com.

Build and Testing Status

[image: https://travis-ci.org/optiver/ruruki.svg?branch=master]
 [https://travis-ci.org/optiver/ruruki][image: https://coveralls.io/repos/github/optiver/ruruki/badge.svg?branch=master]
 [https://coveralls.io/github/optiver/ruruki?branch=master][image: Code Climate]
 [https://codeclimate.com/github/optiver/ruruki][image: https://img.shields.io/pypi/dm/ruruki.svg]
 [https://pypi.python.org/pypi/ruruki][image: https://img.shields.io/pypi/status/ruruki.svg]
 [https://pypi.python.org/pypi/ruruki][image: https://img.shields.io/pypi/pyversions/ruruki.svg]
 [https://pypi.python.org/pypi/ruruki][image: https://img.shields.io/pypi/dd/ruruki.svg]
 [https://pypi.python.org/pypi/ruruki][image: https://img.shields.io/pypi/dw/ruruki.svg]
 [https://pypi.python.org/pypi/ruruki][image: https://img.shields.io/pypi/dm/ruruki.svg]
 [https://pypi.python.org/pypi/ruruki]

Tutorial

Before we start the tutorial, let first address the single most important
thing - If you are reading this, You are awesome

Let’s begin

Note

Each step in the tutorial will continue and add from the last step.

Installing ruruki

Lets first create an environment where we can install ruruki and use it.

	We will do this using a python virtual environment.

$ virtualenv-2.7 ruruki-ve
New python executable in ruruki-ve/bin/python2.7
Also creating executable in ruruki-ve/bin/python
Installing setuptools, pip...done.

	Install the graph database library into the newly created virtual environment.

$ ruruki-ve/bin/pip install ruruki
Collecting ruruki
 Downloading http://internal-index.com/prod/+f/2e6/c4263fb2b546a/ruruki.tar.gz
Installing collected packages: ruruki
 Running setup.py install for ruruki
Successfully installed ruruki

Creating a database

Note

Please keep in mind that the library is only installed into the virtual
environment you created above, not your system-wide Python installation,
so to use it you’ll need to run the virtual environment’s
Python interpreter:

$ ruruki-ve/bin/python

	Let’s start with first creating the graph.

>>> from ruruki.graphs import Graph
>>> graph = Graph()

	In order to use the IGraph.get_or_create_vertex() and
IGraph.get_or_create_edge() effectively we should create some
constraints to ensure uniqueness.

Ensure that vertices/nodes person, book, author, and category have a
unique name property.
>>> graph.add_vertex_constraint("person", "name")
>>> graph.add_vertex_constraint("book", "name")
>>> graph.add_vertex_constraint("author", "name")
>>> graph.add_vertex_constraint("category", "name")

Adding in some data

Now that we have a empty graph database, lets start adding in some data.

	Create some nodes. Because we added uniqueness constraints above, we can use
the IGrapph.get_or_create_vertex() method to ensure we don’t create
duplicate vertices with the same details.

add the categories
>>> programming = graph.get_or_create_vertex("category", name="Programming")
>>> operating_systems = graph.get_or_create_vertex("category", name="Operating Systems")

add some books
>>> python_crash_course = graph.get_or_create_vertex("book", title="Python Crash Course")
>>> python_pocket_ref = graph.get_or_create_vertex("book", title="Python Pocket Reference")
>>> how_linux_works = graph.get_or_create_vertex("book", title="How Linux Works: What Every Superuser Should Know", edition="second")
>>> linux_command_line = graph.get_or_create_vertex("book", title="The Linux Command Line: A Complete Introduction", edition="first")

add a couple authors of the books above
>>> eric_matthes = graph.get_or_create_vertex("author", fullname="Eric Matthes", name="Eric", surname="Matthes")
>>> mark_lutz = graph.get_or_create_vertex("author", fullname="Mark Lutz", name="Mark", surname="Lutz")
>>> brian_ward = graph.get_or_create_vertex("author", fullname="Brian Ward", name="Brian", surname="Ward")
>>> william = graph.get_or_create_vertex("author", fullname="William E. Shotts Jr.", name="William", surname="Shotts")

add some random people
>>> john = graph.get_or_create_vertex("person", name="John", surname="Doe")
>>> jane = graph.get_or_create_vertex("person", name="Jane", surname="Doe")

	Create a relationships between vertices created above. Again notice the use of IGraph.get_or_create_edge() to ensure uniqueness between
the head and tails for the particular edge labels being created.

link the books to a category
>>> graph.get_or_create_edge(python_crash_course, "CATEGORY", programming)
>>> graph.get_or_create_edge(python_pocket_ref, "CATEGORY", programming)
>>> graph.get_or_create_edge(linux_command_line, "CATEGORY", operating_systems)
>>> graph.get_or_create_edge(how_linux_works, "CATEGORY", operating_systems)

link the books to their authors
>>> graph.get_or_create_edge(python_crash_course, "BY", eric_matthes)
>>> graph.get_or_create_edge(python_pocket_ref, "BY", mark_lutz)
>>> graph.get_or_create_edge(how_linux_works, "BY", brian_ward)
>>> graph.get_or_create_edge(linux_command_line, "BY", william)

Create some arbitrary data between John and Jane Doe.
>>> graph.get_or_create_edge(john, "READING", python_crash_course)
>>> graph.get_or_create_edge(john, "INTEREST", programming)
>>> graph.get_or_create_edge(jane, "LIKE", operating_systems)
>>> graph.get_or_create_edge(jane, "MARRIED-TO", john)
>>> graph.get_or_create_edge(jane, "READING", linux_command_line)
>>> graph.get_or_create_edge(jane, "READING", python_pocket_ref)

Below is a visualization of the graph so far

[image: _images/screencapture-1.png]

Searching for information

Let’s start searching and looking for data.

Note

The examples below only demonstrate filtering and searching on vertices,
but the same operations can be applied to edges too.

	Find all people.

>>> print graph.get_vertices("person").all()
[<Vertex> ident: 10, label: person, properties: {'surname': 'Doe', 'name': 'John'},
 <Vertex> ident: 11, label: person, properties: {'surname': 'Doe', 'name': 'Jane'}]

	Finding all help and reference books.

>>> result = graph.get_vertices("book", name__contains="Reference") | graph.get_vertices("book", title__contains="Crash Course")
>>>> print result.all()
[<Vertex> ident: 4, label: book, properties: {'name': 'Python Pocket Reference', 'title': 'Python Pocket Reference'},
 <Vertex> ident: 2, label: book, properties: {'name': 'Python Crash Course', 'title': 'Python Crash Course'}]

	Finding all python books excluding crash course books.

>>> result = graph.get_vertices("book", name__contains="Python") - graph.get_vertices("book", title__contains="Crash Course")
>>>> print result.all()
[<Vertex> ident: 4, label: book, properties: {'name': 'Python Pocket Reference', 'title': 'Python Pocket Reference'}]

	If you already know that identity number

>>> print repr(graph.get_vertex(0))
<Vertex> ident: 0, label: category, properties: {'name': 'Programming'}

Dumping and loading data

Ruruki is an in-memory database, so all the data goes away when your program
exits. However, Ruruki provides dump()
and load() methods that
will let you record a graph to disk and load it again later.

	Dumping your graph so that you can use it later.

>>> graph.dump(open("/tmp/graph.dump", "w"))

	Loading a dump file.

>>> graph.load(open("/tmp/graph.dump"))

Tutorial demo script

The above demo script can be found under ruruki/test_utils/tutorial_books_demo.py

Interfaces

Graph

	
class ruruki.interfaces.IGraph

	Interface for a property graph database.

	
add_edge(head, label, tail, **kwargs)

	Add an directed edge to the graph.

Note

If you wish to add in a undirected edge, you should add a
directed edge in each direction.

	Parameters:	
	head (IVertex) – Head vertex.

	label (str) – Edge label.

	tail (IVertex) – Tail vertex.

	kwargs (str, value.) – Property key and values to set on the new created edge.

	Raises:	ConstraintViolation – Raised if you are trying to create a
duplicate edge between head and tail.

	Returns:	Added edge.

	Return type:	IEdge

	
add_vertex(label=None, **kwargs)

	Create a new vertex, add it to the graph, and return the newly
created vertex.

	Parameters:	
	label (str or None) – Vertex label.

	kwargs (str, value.) – Property key and values to set on the new created
vertex.

	Raises:	ConstraintViolation – Raised if you are adding a new vertex
that violates a constraint.

	Returns:	Added vertex.

	Return type:	IVertex

	
add_vertex_constraint(label, key)

	Add a constraint to ensure uniqueness for a particular label and
property key.

	Parameters:	
	label (str) – Vertex label which the constraint is meant for.

	key (str) – Vertex property key used to ensure uniqueness.

	
append_edge(edge)

	Append the edge to the graph.

Note

The edge that you are appending to the graph should have
ident set to None, so that the
IGraph can manage what the identity number should be.

	Parameters:	edge (IEdge) – Edge that should be appended to the graph.

	Raises:	
	ConstraintViolation – Raised if you are trying to create a
duplicate edge between head and tail.

	EntityIDError – If the edge already has a identity number set.

	DatabaseError – If the edge already is already bound to
anther IGraph.

	Returns:	The edge after it has been appended to the graph.

	Return type:	IEdge

	
append_vertex(vertex)

	Append the vertex to the graph.

Note

The vertex that you are appending to the graph should have
ident set to None, so that the
IGraph can manage what the identity number should be.

	Parameters:	vertex (IVertex) – Vertex that should be appended to the graph.

	Raises:	
	ConstraintViolation – Raised if you are appending a new vertex
that violates a constraint.

	EntityIDError – If the vertex already has a identity number set.

	DatabaseError – If the vertex already is already bound to
anther IGraph.

	Returns:	The vertex after it has been appended to the graph.

	Return type:	IVertex

	
bind_to_graph(entity)

	Bind an entity to the graph and generate and set a unique id on the
entity.

	Parameters:	entity (IEntity) – Entity that you are binding to the graph.

	Raises:	UnknownEntityError – Is raised if the entity is not a instance
if a IVertex or IEdge.

	
close()

	Close the instance.

	
dump(file_handler)

	Export the database to a file handler.

	Parameters:	
	file_handler – A writable file-like object; a description of
this graph will be written to this file encoded as JSON data
that can be read back later with load().

	file_handler – file

	
get_edge(id_num)

	Return the edge referenced by the provided object identifier.

	Parameters:	id_num (int) – Edge identity number.

	Returns:	Added edge.

	Return type:	IEdge

	
get_edges(head=None, label=None, tail=None, **kwargs)

	Return an iterable of all the edges in the graph that have a
particular key/value property.

Note

See IEntitySet.filter() for filtering options.

	Parameters:	
	head (IVertex) – Head vertex of the edge. If None then
heads will be ignored.

	label (str or None) – Edge label. If None
then all edges will be checked for key and value.

	tail (IVertex) – Tail vertex of the edge. If None then
tails will be ignored.

	kwargs (str and value.) – Property key and value.

	Returns:	IEdge that matched the filter criteria.

	Return type:	IEntitySet

	
get_or_create_edge(head, label, tail, **kwargs)

	Get or create a unique directed edge.

Note

If you wish to add in a unique undirected edge, you should add a
directed edge in each direction.

If head or tail is a tuple, then
get_or_create_vertex() will always be called to create
the vertex.

	Parameters:	
	head (IVertex or tuple of
label str and properties dict) – Head vertex.

	label (str) – Edge label.

	tail (IVertex or tuple of
label str and properties dict) – Tail vertex.

	kwargs (str, value.) – Property key and values to set on the new created edge.

	Returns:	Added edge.

	Return type:	IEdge

	
get_or_create_vertex(label=None, **kwargs)

	Get or create a unique vertex.

Note

Constraints will always be applied first when searching for
vertices.

	Parameters:	
	label (str or None) – Vertex label.

	kwargs (str, value.) – Property key and values to set on the new created
vertex.

	Returns:	Added vertex.

	Return type:	IVertex

	
get_vertex(id_num)

	Return the vertex referenced by the provided object identifier.

	Parameters:	id_num (int) – Vertex identity number.

	Returns:	Vertex that has the identity number.

	Return type:	IVertex

	
get_vertex_constraints()

	Return all the known vertex constraints.

	Returns:	Distinct label and key pairs to
add_vertex_constraint().

	Return type:	Iterable of
tuple of label str, key str

	
get_vertices(label=None, **kwargs)

	Return all the vertices in the graph that have a particular
key/value property.

Note

See IEntitySet.filter() for filtering options.

	Parameters:	
	label – Vertice label. If None
then all vertices will be checked for key and value.

	label – str or None

	kwargs (str and value.) – Property key and value.

	Returns:	IVertex that matched the filter criteria.

	Return type:	IEntitySet

	
load(file_handler)

	Load and import data into the database. Data should be in a JSON
format.

Note

Id’s are not retained and are regenerated. This allows you to
load multiple dumps into the same graph.

	Parameters:	
	file_handler – A file-like object that, when read,
produces JSON data describing a graph.
The JSON data should be compatible with that produced by
dump().

	file_handler – file

	
remove_edge(edge)

	Remove the provided edge from the graph.

Note

Removing a edge does not remove the head or tail vertices,
but only the edge between them.

	Parameters:	edge (IEdge) – Remove a edge/relationship.

	
remove_vertex(vertex)

	Remove the provided vertex from the graph.

	Parameters:	vertex (IVertex) – Remove a vertex/node.

	Raises:	VertexBoundByEdges – Raised if you are trying to remove
a vertex that is still bound or attached to another vertex
via edge.

	
set_property(entity, **kwargs)

	Set or update the entities property key and values.

	Parameters:	kwargs (str, value.) – Property key and values to set on the new created
vertex.

	Raises:	
	ConstraintViolation – A constraint violation is raised when
you are updating the properties of a entity and you already have
a entity with the constrained property value.

	UnknownEntityError – If you are trying to update a property
on a IEntity that is not known in the database.

	TypeError – If the entity that you are trying to update is
not supported by the database. Property updates only support
Ivertex and IEdge.

Base Entity

	
class ruruki.interfaces.IEntity

	Base interface for a vertex/node and edge/relationship.

Note

Identity numbers are None by default. They are set
by the bind_to_graph() when they are bound to the
a graph. If using IEntity and IEntitySet without
a bound graph, you will need to manually set the ident yourself.

IDGenerator can help you with assigning id’s to vertices
and edges.

	
as_dict(include_privates=False)

	Return the entity as a dictionary representation.

>>> from pprint import pprint
>>> from ruruki.entities import Entity
>>> e = Entity("Person")
>>> e.set_property(name="Bob")
>>> e.set_property(_private_name="Sasquatch")
>>> pprint(e.as_dict()["properties"])
{'name': 'Bob'}

>>> pprint(e.as_dict(include_privates=True)["properties"])
{'_private_name': 'Sasquatch', 'name': 'Bob'}

	Parameters:	include_privates (bool) – True to include private property keys in the
dump. Private property keys are those that begin with “_”.

	Returns:	The entity as a dictionary representation.

	Return type:	dict

	
is_bound()

	Return True if the entity is bound to a graph.

	Returns:	True is the entity is bound to a IGraph

	Return type:	bool

	
remove_property(key)

	Un-assigns a property key with its value.

	Parameters:	key (str) – Key that you are removing.

	
set_property(**kwargs)

	Assign or update a property.

	Parameters:	kwargs (key str and value.) – Key and value pairs.

Vertex

	
class ruruki.interfaces.IVertex

	Interface for a vertex/node.

	
add_in_edge(vertex, label=None, **kwargs)

	Add and create an incoming edge between the two vertices.

	Parameters:	
	vertex (IVertex) – Edge the vertex is attached to.

	label (str) – Label for the edge being created.

	kwargs (str and value) – Key and values for the edges properties.

	
add_out_edge(vertex, label=None, **kwargs)

	Add and create an outgoing edge between the two vertices.

	Parameters:	
	vertex (IVertex) – Edge the vertex is attached to.

	label (str) – Label for the edge being created.

	kwargs (key str and value.) – Edges property key and value pairs.

	
as_dict(include_privates=False)

	Return the entity as a dictionary representation.

>>> from pprint import pprint
>>> from ruruki.entities import Entity
>>> e = Entity("Person")
>>> e.set_property(name="Bob")
>>> e.set_property(_private_name="Sasquatch")
>>> pprint(e.as_dict()["properties"])
{'name': 'Bob'}

>>> pprint(e.as_dict(include_privates=True)["properties"])
{'_private_name': 'Sasquatch', 'name': 'Bob'}

	Parameters:	include_privates (bool) – True to include private property keys in the
dump. Private property keys are those that begin with “_”.

	Returns:	The entity as a dictionary representation.

	Return type:	dict

	
get_both_edges(label=None, **kwargs)

	Return both in and out edges to the vertex.

	Parameters:	
	label (str) – Edge label.
If None, all edges will be returned.

	kwargs (key str and value.) – Edge property key and value pairs.

	Returns:	New IEntitySet with filtered entities.

	Return type:	IEntitySet

	
get_both_vertices(label=None, **kwargs)

	Return the in and out vertices adjacent to the vertex
according to the edges.

	Parameters:	
	label (str) – Vertices label.
If None, all edges will be returned.

	kwargs (key str and value.) – Vertices property key and value pair.

	Returns:	New IEntitySet with filtered entities.

	Return type:	IEntitySet

	
get_in_edges(label=None, **kwargs)

	Return all the in edges to the vertex.

	Parameters:	
	label (str) – Edge label.
If None, all edges will be returned.

	kwargs (key str and value.) – Edges property key and value pairs.

	Returns:	New IEntitySet with filtered entities.

	Return type:	IEntitySet

	
get_in_vertices(label=None, **kwargs)

	Return the in vertices adjacent to the vertex according to the
edge.

	Parameters:	
	label (str) – Vertices label.
If None, all edges will be returned.

	kwargs (key str and value.) – Vertices property key and value pairs.

	Returns:	New IEntitySet with filtered entities.

	Return type:	IEntitySet

	
get_out_edges(label=None, **kwargs)

	Return all the out edges to the vertex.

	Parameters:	
	label (str) – Edge label.
If None, all edges will be returned.

	kwargs (key str and value.) – Edge property key and value pairs.

	Returns:	New IEntitySet with filtered entities.

	Return type:	IEntitySet

	
get_out_vertices(label=None, **kwargs)

	Return the out vertices adjacent to the vertex according to the
edge.

	Parameters:	
	label (str) – Vertices label.
If None, all edges will be returned.

	kwargs (key str and value.) – Vertices property key and value pairs.

	Returns:	New IEntitySet with filtered entities.

	Return type:	IEntitySet

	
in_edge_count()

	Return the total number of in edges.

	Returns:	Total number of in edges.

	Return type:	int

	
is_bound()

	Return True if the entity is bound to a graph.

	Returns:	True is the entity is bound to a IGraph

	Return type:	bool

	
out_edge_count()

	Return the total number of out edges.

	Returns:	Total number of out edges.

	Return type:	int

	
remove_edge(edge)

	Remove a IEdge from
the vertex if it exists.

	Parameters:	edge (IEdge) – Edge that you are removing from the vertex.

	Raises:	KeyError – KeyError is raised if you are trying to remove
an edge that is not found or does not exist.

	
remove_property(key)

	Un-assigns a property key with its value.

	Parameters:	key (str) – Key that you are removing.

	
set_property(**kwargs)

	Assign or update a property.

	Parameters:	kwargs (key str and value.) – Key and value pairs.

Edge

	
class ruruki.interfaces.IEdge

	Interface for a edge/relationship.

	
as_dict(include_privates=False)

	Return the entity as a dictionary representation.

>>> from pprint import pprint
>>> from ruruki.entities import Entity
>>> e = Entity("Person")
>>> e.set_property(name="Bob")
>>> e.set_property(_private_name="Sasquatch")
>>> pprint(e.as_dict()["properties"])
{'name': 'Bob'}

>>> pprint(e.as_dict(include_privates=True)["properties"])
{'_private_name': 'Sasquatch', 'name': 'Bob'}

	Parameters:	include_privates (bool) – True to include private property keys in the
dump. Private property keys are those that begin with “_”.

	Returns:	The entity as a dictionary representation.

	Return type:	dict

	
get_in_vertex()

	Return the in/head vertex.

	Returns:	In vertex.

	Return type:	IVertex

	
get_out_vertex()

	Return the out/tail vertex.

	Returns:	Out vertex.

	Return type:	IVertex

	
is_bound()

	Return True if the entity is bound to a graph.

	Returns:	True is the entity is bound to a IGraph

	Return type:	bool

	
remove_property(key)

	Un-assigns a property key with its value.

	Parameters:	key (str) – Key that you are removing.

	
set_property(**kwargs)

	Assign or update a property.

	Parameters:	kwargs (key str and value.) – Key and value pairs.

Entity Set

	
class ruruki.interfaces.IEntitySet

	Interface for a entity containers.

	
add(entity)

	Add a unique entity to the set.

	Parameters:	entity (IEntity) – Unique entity being added to the set.

	Raises:	KeyError – KeyError is raised if the entity being added
to the set has a ident conflict with an existing
IEntity

	
all(label=None, **kwargs)

	Return all the items in the container as a list.

	Parameters:	
	label (str) – Filter for entities that have a particular label. If
None, all entities are returned.

	kwargs (key=value) – Property key and value.

	Returns:	All the items in the container.

	Return type:	list containing IEntity

	
clear()

	This is slow (creates N new iterators!) but effective.

	
discard(entity)

	Remove a entity from the current set.

	Parameters:	entity (IEntity) – Entity to be removed from the set.

	Raises:	KeyError – KeyError is raised if the entity being discared
does not exists in the set.

	
filter(label=None, **kwargs)

	Filter for all entities that match the given label and properties
returning a new
IEntitySet

Note

Keywords should be made of a property name
(as passed to the add_vertex() or
add_edge() methods)
followed by one of these suffixes, to control how the given
value is matched against the IEntity‘s values for
that property.

	__contains

	__icontains

	__startswith

	__istartswith

	__endswith

	__iendswith

	__le

	__lt

	__ge

	__gt

	__eq

	__ieq

	__ne

	__ine

	Parameters:	
	label (str) – Filter for entities that have a particular label. If
None, all entities are returned.

	kwargs (key=value) – Property key and value.

	Returns:	New IEntitySet with the entities that
matched the filter criteria.

	Return type:	IEntitySet

	
get(ident)

	Return the IEntity that has the identification number
supplied by parameter ident

	Parameters:	ident (int) – Identification number.

	Raises:	KeyError – Raised if there are no IEntity that
has the given identification number supplied by parameter ident.

	Returns:	The IEntity that has the identification number
supplied by parameter indent

	Return type:	Iterable of str

	
get_indexes()

	Return all the index labels and properties.

	Returns:	All the index label and property keys.

	Return type:	Iterable of tuple of str, str

	
get_labels()

	Return labels known to the entity set.

	Returns:	All the the labels known to the entity set.

	Return type:	Iterable of str

	
isdisjoint(other)

	Return True if two sets have a null intersection.

	
pop()

	Return the popped value. Raise KeyError if empty.

	
remove(entity)

	Like discard(), remove a entity from the current set.

	Parameters:	entity (IEntity) – Entity to be removed from the set.

	Raises:	KeyError – KeyError is raised if the entity being removed
does not exists in the set.

	
sorted(key=None, reverse=False)

	Sort and return all items in the container.

	Parameters:	
	key (callable) – Key specifies a function of one argument that is used to
extract a comparison key from each list element. The default
is to compare the elements directly.

	reverse (bool) – If set to True, then the list elements are sorted as
if each comparison were reverted.

	Returns:	All the items in the container.

	Return type:	list containing IEntity

	
update_index(entity, **kwargs)

	Update the index with the new property keys.

	Parameters:	
	entity (IEntity) – Entity with a set of properties that need to be
indexed.

	kwargs (str, value.) – Property key and values to set on the new created
vertex.

Locks

	
class ruruki.interfaces.ILock

	Interface for locking.

	
acquire()

	Acquire a lock.

	Raises:	AcquireError – If a lock failed to be acquired.

	
release()

	Release the lock.

	Raises:	ReleaseError – If the lock was unable to be released.

Implementations

Graphs

	
class ruruki.graphs.Graph

	In-memory graph database.

See IGraph for doco.

	
class ruruki.graphs.PersistentGraph(path, auto_create=True)

	Persistent Graph database storing data to a file system.

See IGraph for doco.

Note

Verices and Edges ID’s are retained when the path is loaded.

Warning

Use this persistent graph if performance is not important.
There is a performance hit due to the extra disk I/O overhead
when doing many writing/updating operations.

path
 |_ vertices
 | |_ constraints.json (file)
 | |_ label
 | | |_ 0
 | | |_ properties.json (file)
 | | |_ in-edges
 | | | |_ 0 -> ../../../../edges/label/0 (symlink)
 | | |_ out-edges
 | | |_
 | |
 | |_ label
 | | |_ 1
 | | |_ properties.json (file)
 | | |_ in-edges
 | | | |_
 | | |_ out-edges
 | | |_ 0 -> ../../../../edges/label/0 (symlink)
 |
 |_ edges
 |_ label
 |
 |_0
 |_ properties.json (file)
 |_ head
 | |_ 0 -> ../../../vertices/0 (symlink)
 |_ tail
 |_ 1 -> ../../../vertices/1 (symlink)

	Parameters:	
	path (str) – Path to ruruki graph data on disk.

	auto_create (bool) – If True, then missing vertices or edges
directories will be created.

	Raises:	DatabasePathLocked – If the path is already locked by another
persistence graph instance.

Entities

	
class ruruki.entities.EntitySet(entities=None)

	EntitySet used for storing, filtering, and iterating over
IEntity objects.

Note

See IEntitySet for documenation.

	Parameters:	entities (Iterable of IEntity) – Entities being added to the set.

	
clear()

	This is slow (creates N new iterators!) but effective.

	
discard(entity)

	Remove a entity from the current set.

	Parameters:	entity (IEntity) – Entity to be removed from the set.

	Raises:	KeyError – KeyError is raised if the entity being discared
does not exists in the set.

	
isdisjoint(other)

	Return True if two sets have a null intersection.

	
pop()

	Return the popped value. Raise KeyError if empty.

	
class ruruki.entities.Entity(label=None, **kwargs)

	Base class for containing the common methods used for the other
entities like vertices and edges.

Note

See IEntity for doco.

Note

The properties can be accessed as if they are attributes
directly by prepending prop__ to the key.

>>> e = Entity("Entity", name="Example")
>>> e.prop__name
'Example'

	Parameters:	
	label – IEntity label.

	kwargs (str`=value or :class:`dict) – Additional properties for the IEntity.

	
class ruruki.entities.Vertex(label=None, **kwargs)

	Vertex/Node is the representation of a entity. It can be anything
and contains properties for additional information.

Note

See IVertex for doco.

Note

The properties can be accessed as if they are attributes
directly by prepending prop__ to the key.

>>> v = Vertex("Person", name="Foo")
>>> v.prop__name
'Foo'

	Parameters:	
	label – IEntity label.

	kwargs (str`=value or :class:`dict) – Additional properties for the IEntity.

	
class ruruki.entities.PersistentVertex(*args, **kwargs)

	Persistent Vertex behaves exactly the same as a Vertex but has
an additional path attribute which is the disk location.

	
class ruruki.entities.Edge(head, label, tail, **kwargs)

	Edge/Relationship is the representation of a relationship between two
entities. A edge has properties for additional information.

Note

See IEdge for doco.

Note

The properties can be accessed as if they are attributes
directly by prepending prop__ to the key.

>>> v1 = Vertex("Person", name="Foo")
>>> v2 = Vertex("Person", name="Bar")
>>> e = Edge(v1, "knows", v2, since="school")
>>> e.prop__since
'school'

	Parameters:	
	head (IVertex) – Head IVertex of the edge.

	label – IEntity label.

	tail (IVertex) – Tail IVertex of the edge.

	kwargs (str`=value or :class:`dict) – Additional properties for the IEntity.

	
class ruruki.entities.PersistentEdge(*args, **kwargs)

	Persistent Edge behaves exactly the same as a Edge but has an
additional path attribute which is the disk location.

Locks

	
class ruruki.locks.Lock

	Base locking class.

See ILock for doco.

	
locked

	Return the status of the lock.

	Returns:	True if the lock is acquired.

	Return type:	bool

	
class ruruki.locks.FileLock(filename)

	File based locking.

	Parameters:	filename (str) – Filename to create a lock on.

	
locked

	Return the status of the lock.

	Returns:	True if the lock is acquired.

	Return type:	bool

	
class ruruki.locks.DirectoryLock(path)

	Directory based locking.

	Parameters:	path (str) – Path that you are locking.

	
locked

	Return the status of the lock.

	Returns:	True if the lock is acquired.

	Return type:	bool

Parsers

Cypher parser

	
ruruki.parsers.cypher_parser.parse(query_string)

	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | O
 | P
 | R
 | S
 | U
 | V

A

 	
 	acquire() (ruruki.interfaces.ILock method)

 	add() (ruruki.interfaces.IEntitySet method)

 	add_edge() (ruruki.interfaces.IGraph method)

 	add_in_edge() (ruruki.interfaces.IVertex method)

 	add_out_edge() (ruruki.interfaces.IVertex method)

 	add_vertex() (ruruki.interfaces.IGraph method)

 	
 	add_vertex_constraint() (ruruki.interfaces.IGraph method)

 	all() (ruruki.interfaces.IEntitySet method)

 	append_edge() (ruruki.interfaces.IGraph method)

 	append_vertex() (ruruki.interfaces.IGraph method)

 	as_dict() (ruruki.interfaces.IEdge method)

 	(ruruki.interfaces.IEntity method)

 	(ruruki.interfaces.IVertex method)

B

 	
 	bind_to_graph() (ruruki.interfaces.IGraph method)

C

 	
 	clear() (ruruki.entities.EntitySet method)

 	(ruruki.interfaces.IEntitySet method)

 	
 	close() (ruruki.interfaces.IGraph method)

D

 	
 	DirectoryLock (class in ruruki.locks)

 	discard() (ruruki.entities.EntitySet method)

 	(ruruki.interfaces.IEntitySet method)

 	
 	dump() (ruruki.interfaces.IGraph method)

E

 	
 	Edge (class in ruruki.entities)

 	
 	Entity (class in ruruki.entities)

 	EntitySet (class in ruruki.entities)

F

 	
 	FileLock (class in ruruki.locks)

 	
 	filter() (ruruki.interfaces.IEntitySet method)

G

 	
 	get() (ruruki.interfaces.IEntitySet method)

 	get_both_edges() (ruruki.interfaces.IVertex method)

 	get_both_vertices() (ruruki.interfaces.IVertex method)

 	get_edge() (ruruki.interfaces.IGraph method)

 	get_edges() (ruruki.interfaces.IGraph method)

 	get_in_edges() (ruruki.interfaces.IVertex method)

 	get_in_vertex() (ruruki.interfaces.IEdge method)

 	get_in_vertices() (ruruki.interfaces.IVertex method)

 	get_indexes() (ruruki.interfaces.IEntitySet method)

 	
 	get_labels() (ruruki.interfaces.IEntitySet method)

 	get_or_create_edge() (ruruki.interfaces.IGraph method)

 	get_or_create_vertex() (ruruki.interfaces.IGraph method)

 	get_out_edges() (ruruki.interfaces.IVertex method)

 	get_out_vertex() (ruruki.interfaces.IEdge method)

 	get_out_vertices() (ruruki.interfaces.IVertex method)

 	get_vertex() (ruruki.interfaces.IGraph method)

 	get_vertex_constraints() (ruruki.interfaces.IGraph method)

 	get_vertices() (ruruki.interfaces.IGraph method)

 	Graph (class in ruruki.graphs)

I

 	
 	IEdge (class in ruruki.interfaces)

 	IEntity (class in ruruki.interfaces)

 	IEntitySet (class in ruruki.interfaces)

 	IGraph (class in ruruki.interfaces)

 	ILock (class in ruruki.interfaces)

 	in_edge_count() (ruruki.interfaces.IVertex method)

 	
 	is_bound() (ruruki.interfaces.IEdge method)

 	(ruruki.interfaces.IEntity method)

 	(ruruki.interfaces.IVertex method)

 	isdisjoint() (ruruki.entities.EntitySet method)

 	(ruruki.interfaces.IEntitySet method)

 	IVertex (class in ruruki.interfaces)

L

 	
 	load() (ruruki.interfaces.IGraph method)

 	Lock (class in ruruki.locks)

 	
 	locked (ruruki.locks.DirectoryLock attribute)

 	(ruruki.locks.FileLock attribute)

 	(ruruki.locks.Lock attribute)

O

 	
 	out_edge_count() (ruruki.interfaces.IVertex method)

P

 	
 	parse() (in module ruruki.parsers.cypher_parser)

 	PersistentEdge (class in ruruki.entities)

 	PersistentGraph (class in ruruki.graphs)

 	
 	PersistentVertex (class in ruruki.entities)

 	pop() (ruruki.entities.EntitySet method)

 	(ruruki.interfaces.IEntitySet method)

R

 	
 	release() (ruruki.interfaces.ILock method)

 	remove() (ruruki.interfaces.IEntitySet method)

 	remove_edge() (ruruki.interfaces.IGraph method)

 	(ruruki.interfaces.IVertex method)

 	
 	remove_property() (ruruki.interfaces.IEdge method)

 	(ruruki.interfaces.IEntity method)

 	(ruruki.interfaces.IVertex method)

 	remove_vertex() (ruruki.interfaces.IGraph method)

S

 	
 	set_property() (ruruki.interfaces.IEdge method)

 	(ruruki.interfaces.IEntity method)

 	(ruruki.interfaces.IGraph method)

 	(ruruki.interfaces.IVertex method)

 	
 	sorted() (ruruki.interfaces.IEntitySet method)

U

 	
 	update_index() (ruruki.interfaces.IEntitySet method)

V

 	
 	Vertex (class in ruruki.entities)

 _static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Ruruki's documentation!

 		Introduction

 		Introduction to Ruruki - In-Memory Directed Property Graph

 		Contributing

 		Versioning

 		Summary

 		Functionality still being worked on

 		Demo

 		Build and Testing Status

 		Tutorial

 		Let's begin

 		Installing ruruki

 		Creating a database

 		Adding in some data

 		Searching for information

 		Dumping and loading data

 		Tutorial demo script

 		Interfaces

 		Graph

 		Base Entity

 		Vertex

 		Edge

 		Entity Set

 		Locks

 		Implementations

 		Graphs

 		Entities

 		Locks

 		Parsers

 		Cypher parser

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_images/screencapture-1.png
Showing 74 edges linked to 12vertices

@ ou L

sn Course

Left Click to pin and/or move a node around
Right Click to unpin a node
Middle Click to open in another tab.

Double Click to expand a node
Shift + Double Click to collapse a node
Ctrl+ Double Click to re-center to the node
210 toggle this help

_static/up.png

