

Runium

[image: Runium logo]
[image: Travis build status] [https://travis-ci.org/AGTGreg/runium] [image: Code Climate maintainability] [https://codeclimate.com/github/AGTGreg/runium/maintainability] [image: PyPI version shields.io] [https://pypi.org/project/runium/] [image: PyPI pyversions] [https://pypi.org/project/runium/] [image: Documentation Status] [https://runium.readthedocs.io/en/latest/main.html] [image: GitHub license] [https://github.com/AGTGreg/runium/blob/master/LICENSE]

Runium is a Python library that makes it easy to write non-blocking,
asynchronous tasks.

You can add new tasks as you please, choose when and how to execute them as
Threads or Processes and attach callbacks to be executed as soon as the
task is finished running. Run those tasks once or periodically or schedule to
run them at a specific time.

The purpose of Runium is to do these simple, easy and clean with minimum to
no changes to your code. Just one line of code is all it takes.

Documentation https://runium.readthedocs.io/en/latest/main.html

Github: https://github.com/AGTGreg/runium

Pypi: https://pypi.org/project/runium/

Features

	Concurrency: Run a task once or many times in its own Thread or Process.

	Repetition: Run tasks periodically on even time intervals. Optionally for a certain amount of times.

	Scheduling: Run tasks at a certain date and time.

	Callbacks: Runium tasks can accept callback functions which are executed when the task is finished running.

	Simplicity and Readability: Do all the above in a single line of code that is easy to read.

Installation

Runium is distributed on PyPI. The best way to install it is with pip:

$ pip install runium

Quickstart

A basic example:

from runium.core import Runium

def task():
 print("I am working...")

Initialize Runium
rn = Runium()

Create a task
async_task = rn.new_task(task)

Run it. This will return a future object.
future = async_task.run()

Then you can wait for the result.
future.result()

Of course you can do all these in one line :)
rn.new_task(task).run().result()

Callbacks:

async_task.on_finished(callback).run()

async_task.on_success(s_callback).on_error(e_callback).run()

async_task.on_iter(callback).run()

Choose how, when and how many times a task should run:

Run it multiple times...
future = async_task.run(times=3)

...every 1 hour
future = async_task.run(every='1 hour', times=3)

Or tell Runium to start the task in a specific time
future = async_task.run(start_in='5 hours')

All the methods above will return a future object. You can use result()
to wait for it.
future.result()

Here it is in one line :)
rn.new_task(task).run(every='1 second', times=3).result()

Overview:

	Runium

	Features

	Installation

	Quickstart

Usage:

	 Initialize Runium
	Runium()

	pending_tasks

	 Creating tasks
	new_task

	 Callbacks
	on_finished

	on_success

	on_error

	on_iter

	add_done_callback

	 Running tasks
	run()

Epilogue:

	 Contributing
	Contribution Process

	Getting started

	Code style

	Testing

	Building the documentation

Runium

[image: Runium logo]
[image: Travis build status] [https://travis-ci.org/AGTGreg/runium] [image: Code Climate maintainability] [https://codeclimate.com/github/AGTGreg/runium/maintainability] [image: PyPI version shields.io] [https://pypi.org/project/runium/] [image: PyPI pyversions] [https://pypi.org/project/runium/] [image: Documentation Status] [https://runium.readthedocs.io/en/latest/main.html] [image: GitHub license] [https://github.com/AGTGreg/runium/blob/master/LICENSE]

Runium is a Python library that makes it easy to write non-blocking,
asynchronous tasks.

You can add new tasks as you please, choose when and how to execute them as
Threads or Processes and attach callbacks to be executed as soon as the
task is finished running. Run those tasks once or periodically or schedule to
run them at a specific time.

The purpose of Runium is to do these simple, easy and clean with minimum to
no changes to your code. Just one line of code is all it takes.

Documentation https://runium.readthedocs.io/en/latest/main.html

Github: https://github.com/AGTGreg/runium

Pypi: https://pypi.org/project/runium/

Features

	Concurrency: Run a task once or many times in its own Thread or Process.

	Repetition: Run tasks periodically on even time intervals. Optionally for a certain amount of times.

	Scheduling: Run tasks at a certain date and time.

	Callbacks: Runium tasks can accept callback functions which are executed when the task is finished running.

	Simplicity and Readability: Do all the above in a single line of code that is easy to read.

Installation

Runium is distributed on PyPI. The best way to install it is with pip:

$ pip install runium

Quickstart

A basic example:

from runium.core import Runium

def task():
 print("I am working...")

Initialize Runium
rn = Runium()

Create a task
async_task = rn.new_task(task)

Run it. This will return a future object.
future = async_task.run()

Then you can wait for the result.
future.result()

Of course you can do all these in one line :)
rn.new_task(task).run().result()

Callbacks:

async_task.on_finished(callback).run()

async_task.on_success(s_callback).on_error(e_callback).run()

async_task.on_iter(callback).run()

Choose how, when and how many times a task should run:

Run it multiple times...
future = async_task.run(times=3)

...every 1 hour
future = async_task.run(every='1 hour', times=3)

Or tell Runium to start the task in a specific time
future = async_task.run(start_in='5 hours')

All the methods above will return a future object. You can use result()
to wait for it.
future.result()

Here it is in one line :)
rn.new_task(task).run(every='1 second', times=3).result()

Initialize Runium

It all starts with the Runium object which lives in runium.core. You will
use Runium to create new tasks and choose how to run them (as Threads or
Processes).

Runium also keeps a list of all the pending tasks.

Runium()

runium.core.Runium(mode='multithreading', max_workers=None, debug=True)

In order to start using Runium, you must first import it from the core module
and Intitialize it.

Runium will start a new Thread or Process pool and will create an empty tasks
list.

	Parameters

	
	mode – (Optional) A string indicating wether the tasks should be run as Threads or Processes. It can be either ‘multithreading’ (Default) or ‘multiprocessing’.

	max_workers – (Optional) An integer that indicates the max number of Threads or Processes to use. In Multithreading mode if max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5. In Multiprocessing mode it will default to the number of processors on the machine.

	debug – (Optional) If True all the exceptions raised by the tasks will be printed in the console.

Example:

from runium.core import Runium

This will run tasks as seperate Threads.
rn = Runium()
This will run tasks as seperate Processes.
rn = Runium(mode='multiprocessing')

pending_tasks

Runium.pending_tasks()

Returns a dictionary with all the pending tasks that looks like this:

Creating tasks

After initializing Runium, the first thing you want to do is create new tasks.
Creating a new task will not execute it but it will return a Task object
instead were you can attach callbacks and call its run() method to start
running the task.

new_task

Runium.new_task(fn, kwargs={})

Creates a new Task, and adds it to the tasks list. Returns a handy
runium.core.Task object.

	Parameters

	
	fn – The callable to be executed.

	kwargs – (Optional) A dictionary that contains the arguments of the callable (if any).

Example:

def simple_task():
 print("I'm working...")

runium.new_task(simple_task)

Here’s what it looks like if your task has arguments:

def send_email(to, msg):
 print("Sending", msg, "to", to)
 return True

runium.new_task(
 send_email, kwargs={
 'to': 'mail.example.com',
 'msg': 'This is a test email.'
 })

Note

You can add the optional argument runium in your function to get access
to some of the statistics of that task inside that function. For example:

def task(runium):
 print(runium['iterations_remaining'])

runium.new_task(task).run(times=3)

>> 3
>> 2
>> 1

Callbacks

A callback is a function that is attached to a runium.core.Task object and
gets executed as soon as the task finishes.

Callbacks are executed in the same Thread/Process as the Task that calls them.
As a result they are non-blocking.

on_finished

Task.on_finished(fn, updates_result=False)

Runs the callback after the task has been executed successfully or after an
exception was raised.

Accepts a callable with the task’s success and error results as its only
arguments.

If the task was successfull (no exceptions were raised) then the success
argument will contain the task’s return and the error argument will be
None.

If the task is unsuccessfull (an exception was raised) then the error argument
will contain the exception object and success will be None.

	Parameters

	
	fn – The callable to be executed with success and error as its only arguments.

	updates_result – (Optional) If this is True then the task’s result will be replaced with whatever is returned by the callable.

Example:

def send_email():
 print("Sending email...")
 return "Email sent."

The callback must have the success and error arguments.
def callback(success, error):
 if success:
 return True
 elif error:
 return "An error occurred."

Attach the callback like this
async_task = runium.new_task(send_email).on_finished(callback).run()

You may also choose to get the result of the callback instead of the task
by setting the parameter updates_result to True.
async_task = runium.new_task(send_email).on_finished(
 callback, updates_result=True).run()

This will return True
async_task.result()

on_success

Task.on_success(fn, updates_result=False)

Runs the callback after the task has been executed successfully and no
exceptions were raised.

Accepts a callable with the task’s result as its only argument.

	Parameters

	
	fn – The callable to be executed with success as its only argument.

	updates_result – (Optional) If this is True then the task’s result will be replaced with whatever is returned by the callable.

Example:

def send_email():
 print("Sending email...")
 return "Email sent."

The callback must have the success argument.
def callback(success):
 return ("Success!")

Attach the callback like this
async_task = runium.new_task(send_email).on_success(callback).run()

This callback is often used together with on_error callback:
async_task = runium.new_task(
 send_email
).on_success(
 callback
).on_error(
 error_callback
).run()

on_error

Task.on_error(fn, updates_result=False)

Runs the callback after an exception was raised by the task.

Accepts a callable with the task’s exception object as its only argument.

	Parameters

	
	fn – The callable to be executed with error as its only argument.

	updates_result – (Optional) If this is True then the task’s result will be replaced with whatever is returned by the callable.

Example:

def send_email():
 raise Exception("Email was not sent.)

The callback must have the error argument.
def callback(error):
 resend_email()

Attach the callback like this
async_task = runium.new_task(send_email).on_error(callback).run()

This callback is often used together with on_success callback:
async_task = runium.new_task(
 send_email
).on_success(
 callback
).on_error(
 error_callback
).run()

on_iter

Task.on_iter(fn, updates_result=False)

Runs the callback every time the task is beeing executed successfully or after
an exception was raised.

Accepts a callable with the task’s success and error results as its only
arguments.

If the task was successfull (no exceptions were raised) then the
success argument will contain the task’s return and the error
argument will be None.

If the task is unsuccessfull (an exception was raised) then the error
argument will contain the exception object and success will be None.

The difference between this type of callback and all the others is that
the other callbacks will run only once after the task has been executed
no matter how many times we’ve set it to run. But an on_iter callback
will run on every iteration if the task is to be executed many times.

	Parameters

	
	fn – The callable to be executed with success and error as its only arguments: fn(success, error)

	updates_result – (Optional) If this is True then the task’s result will be replaced with whatever is returned by the callable.

Example:

The callback must have the success and error arguments.
def callback(success, error):
 if success:
 print(success)
 return True
 elif error:
 print(error)
 return "An error occurred."

The callback will be executed 3 times.
async_task = runium.new_task(send_email).on_iter(callback).run(times=3)

add_done_callback

This is not a Runium method but since Task.run() returns a Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]
object, you can also add callbacks using this method. But you have to call
run() first before using this method.
Read the documentation about it here: add_done_callback() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.add_done_callback]

Running Tasks

After you create a Task you have to call its run() method in order to start
running it. You can specify how often, how many times and when the task should
start running.

Here’s how it works:

run()

Task.run(every=None, times=None, start_in=0)

Starts running the task. Returns a Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] object.

	Parameters

	
	every – (Optional) Run the task every n seconds. This value can be an integer or a float that indicates the number of seconds or a string that starts with an integer and finishes with the time scale.

	times – (Optional) How many times the task should run. It accepts an integer.

	start_in – (Optional) The amount of seconds to wait before start runing the task. It accepts the same values as :every.

Note

In order to improve readability the every and start_in parameters
can accept strings in this format:

1 second 2 seconds 1 minute 2 minutes 1 hour 2 hours

Example

Run a task once.
async_task = runium.new_task(task).run()

Run a task multiple times.
async_task = runium.new_task(task).run(times=3)

Run the task at once then repeat indefinitely every 1 hour.
async_task = runium.new_task(task).run(every='1 hour')

Start the task in 5 hours.
async_task = runium.new_task(task).run(start_in='5 hours')

Calling the run() method will give you a Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] object so you may use
its methods:

You can call result() to wait for it.
async_task.result()

Warning

Python’s future.excetion() will allways return None because Runium
catches all exceptions and passes them to future.result().

Contributing to Runium

It is great you want to contribute! Let’s make Runium great together! If you
wish to add new features or fix a bug, you will have to follow some procedures
and rules in order to get your changes accepted. This is to keep the code base
nice and clean.

Contribution Process

	Fork the project on Github

	Clone the fork to your local machine

	Make the changes to the project

	Run the test suite with tox (if you changed any code)

	Commit if you haven’t already

	Push the changes to your Github fork

	Make a pull request on Github

Getting started

First create a Virtual Environment with Python 3.7 which is the default
version used in Runium.

$ python3.7 venv -m runium-env

Then clone Runium inside the Virtual Environment and start coding!

Code style

We use PEP 8 rules and flake8. Basically if you use flake8 you’re good. This
applies to all text files (source code, tests, documentation). Just follow the
surrounding code style as closely as possible.

Testing

Running the test suite is done using the tox. This will test the code base
against all supported Python versions and performs some code quality checks
using flake8 as well.

Any nontrivial code changes must be accompanied with the appropriate tests.
The tests should not only maintain the coverage, but should test any new
functionality or bug fixes reasonably well. If you’re fixing a bug, first make
sure you have a test which fails against the unpatched codebase and succeeds
against the fixed version. Naturally, the test suite has to pass on every
Python version. If setting up all the required Python interpreters seems like
too much trouble, make sure that it at least passes on the lowest supported
version of both Python. The full test suite is always run against each pull
request, but it’s a good idea to run the tests locally first.

Building the documentation

You will find all the documentation files inside docs/source/.
We use ReStructuredText (.rst) for the docs files and Sphinx to compile
them so if you want to contibute to the docs you’ll have to install this as
well: pip install Sphinx.

If you want to add a new file add it inside docs/source/ then include it in
the toctree inside index.rst and build the decumentation locally to make
sure it works:

$ make clean
$ makde html

The documentation you just build will be inside docs/build/.

Index

Features

	Concurrency: Run a task once or many times in its own Thread or Process.

	Repetition: Run tasks periodically on even time intervals. Optionally for a certain amount of times.

	Scheduling: Run tasks at a certain date and time.

	Callbacks: Runium tasks can accept callback functions which are executed when the task is finished running.

	Simplicity and Readability: Do all the above in a single line of code that is easy to read.

Installation

Runium is distributed on PyPI. The best way to install it is with pip:

$ pip install runium

Runium

[image: Runium logo]
[image: Travis build status] [https://travis-ci.org/AGTGreg/runium] [image: Code Climate maintainability] [https://codeclimate.com/github/AGTGreg/runium/maintainability] [image: PyPI version shields.io] [https://pypi.org/project/runium/] [image: PyPI pyversions] [https://pypi.org/project/runium/] [image: Documentation Status] [https://runium.readthedocs.io/en/latest/main.html] [image: GitHub license] [https://github.com/AGTGreg/runium/blob/master/LICENSE]

Runium is a Python library that makes it easy to write non-blocking,
asynchronous tasks.

You can add new tasks as you please, choose when and how to execute them as
Threads or Processes and attach callbacks to be executed as soon as the
task is finished running. Run those tasks once or periodically or schedule to
run them at a specific time.

The purpose of Runium is to do these simple, easy and clean with minimum to
no changes to your code. Just one line of code is all it takes.

Documentation https://runium.readthedocs.io/en/latest/main.html

Github: https://github.com/AGTGreg/runium

Pypi: https://pypi.org/project/runium/

Quickstart

A basic example:

from runium.core import Runium

def task():
 print("I am working...")

Initialize Runium
rn = Runium()

Create a task
async_task = rn.new_task(task)

Run it. This will return a future object.
future = async_task.run()

Then you can wait for the result.
future.result()

Of course you can do all these in one line :)
rn.new_task(task).run().result()

Callbacks:

async_task.on_finished(callback).run()

async_task.on_success(s_callback).on_error(e_callback).run()

async_task.on_iter(callback).run()

Choose how, when and how many times a task should run:

Run it multiple times...
future = async_task.run(times=3)

...every 1 hour
future = async_task.run(every='1 hour', times=3)

Or tell Runium to start the task in a specific time
future = async_task.run(start_in='5 hours')

All the methods above will return a future object. You can use result()
to wait for it.
future.result()

Here it is in one line :)
rn.new_task(task).run(every='1 second', times=3).result()

 _static/runium_logo.png
Rn

Runium

_static/up.png

_static/runium_logo_small.png

_static/up-pressed.png

_images/runium_logo.png
Rn

Runium

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Runium

 		
 Runium

 		
 Features

 		
 Installation

 		
 Quickstart

 		
 Initialize Runium

 		
 Runium()

 		
 pending_tasks

 		
 Creating tasks

 		
 new_task

 		
 Callbacks

 		
 on_finished

 		
 on_success

 		
 on_error

 		
 on_iter

 		
 add_done_callback

 		
 Running tasks

 		
 run()

 		
 Contributing

 		
 Contribution Process

 		
 Getting started

 		
 Code style

 		
 Testing

 		
 Building the documentation

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

