

 Navigation

 	
 index

 	
 next |

 	Rulu 0.1.0 documentation

Rulu Documentation

Rulu provides a Pythonic, declarative interface for building rule-based expert systems [http://clipsrules.sourceforge.net/WhatIsCLIPS.html#ExpertSystems].

Rulu is implemented over PyCLIPS [http://pyclips.sourceforge.net/web/], the Python wrapper of the CLIPS [http://clipsrules.sourceforge.net/] expert
system library.

Installation

pip install rulu

User Documentation

	Getting Started
	Step 1: Define the data model

	Step 2: Define rules

	Step 3: Add input facts

	Step 4: Run the rule engine

	Step 5: Read the output facts

	Output

	Running Python Code
	Python Actions

	Python Functions

	CLIPS Functions

	Fact I/O
	CLIPS format

	Pandas dataframes

	Export to Excel

	Database integration

 Copyright 2014, Uri Barkai.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rulu 0.1.0 documentation

Getting Started

In this demo we’ll define a Family Tree expert system, that takes as input
low-level information about family relations (“X is the father of Y”,
“Y is the father of Z”) and deduces higher-level relations (“X is
the grandfather of Z”).

Step 1: Define the data model

The basic unit of information for the rule engine is the fact, which is
simply a record containing one or more data fields. Facts are structured,
so we need to start by defining the fields contained in each fact type. This
translates to template definitions in CLIPS, and is analogous to
relation/table definitions in an RDBMS.

from rulu import *

class IsFatherOf(Fact):
 father = StringField()
 son = StringField()

Step 2: Define rules

At the core of the expert system are the rule definitions. They provide the
business logic for generating new facts based on known ones, according to
various conditions.

We’ll now define a rule that states the following: If X is the father of
Y, and Y is the father of Z, then X is the grandfather of Z.

IsGrandfatherOf = RuleDef(
 match(IsFatherOf[1].son, IsFatherOf[2].father),
 action(Assert(grandfather=IsFatherOf[1].father, grandson=IsFatherOf[2].son, degree=0))
)

Let’s break this definition to its different components:

	This rule takes as input two facts of type IsFatherOf. They are
referred to as ‘1’ and ‘2’ (but any name may be used).

	The only condition is expressed in the match statement. It states
that the son member of record #1 needs to equal the father member
of record #2. Continuing the RDBMS analogy, a match statement is
similar to a JOIN between tables.

	Whenever the match condition holds, the rule is fired, and its actions
are taken. In this case we use a single Assert action, which is the CLIPS
terminology for creating new facts.

	The above rule also contains an implicit definition for a fact type named
IsGrandfatherOf with 3 fields (grandfather, grandson, degree).

Let’s add another rule, to cover great-grandfathers of all degrees.

RuleDef(
 target(IsGrandfatherOf),
 match(IsFatherOf.son, IsGrandfatherOf.grandfather),
 action(Assert(grandfather=IsFatherOf.father,
 grandson=IsGrandfatherOf.grandson,
 degree=IsGrandfatherOf.degree+1))
)

Notes:

	In the rule we used the target statement to specify explicitly the
target fact type.

	In the arithmetic expression IsGrandfatherOf.degree+1, it is important
to note that the actual calculation will not run in Python. In fact,
this example contains pure CLIPS rules in the sense that no Python code
will run during rule engine execution. the Instead, Rulu will “compile” these rule
definitions to CLIPS code, and CLIPS will take care of the entire run. This is great
for large data sets because CLIPS (written in C) is by far more efficient than
Python.

Step 3: Add input facts

from rulu.engine import RuleEngine

engine = RuleEngine()
Load the data model and rules (assuming they're defined in 'family.py')
engine.load_module('family')

engine.assert_('IsFatherOf', father='Adam', son='Seth')
engine.assert_('IsFatherOf', father='Seth', son='Enos')
engine.assert_('IsFatherOf', father='Enos', son='Kenan')
engine.assert_('IsFatherOf', father='Kenan', son='Mahalalel')

Step 4: Run the rule engine

Apply all rules while possible
engine.run()

Step 5: Read the output facts

Print output facts
for fact in engine.get_facts('IsGrandfatherOf'):
 print '{} is the {}grandfather of {}.'.format(
 fact.grandfather, 'great-'*fact.degree, fact.grandson)

Output

Enos is the grandfather of Mahalalel.
Seth is the grandfather of Kenan.
Adam is the grandfather of Enos.
Adam is the great-grandfather of Kenan.
Seth is the great-grandfather of Mahalalel.
Adam is the great-great-grandfather of Mahalalel.

 Copyright 2014, Uri Barkai.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rulu 0.1.0 documentation

Running Python Code

The rules in the previous example (see Getting Started) were pure CLIPS rules,
that did not involve any Python code during the engine run. Rulu also provides easy
ways to integrate with Python code, as explained here.

Python Actions

We can write the entire action portion of a rule in python.
For example, compare the declarative (CLIPS) rule from the previous section:

IsGrandfatherOf = RuleDef(
 match(IsFatherOf[1].son, IsFatherOf[2].father),
 action(Assert(grandfather=IsFatherOf[1].father, grandson=IsFatherOf[2].son, degree=0))
)

With the following procedural (Python) form:

IsGrandfatherOf = RuleDef(
 fields(grandfather=String, grandson=String, degree=Integer),
 match(IsFatherOf[0].son, IsFatherOf[1].father)
)

@IsGrandfatherOf._python_action
def action(assert_, IsFatherOf):
 assert_(grandfather=IsFatherOf[0].father, grandson=IsFatherOf[1].son, degree=0)

Notes:

	Python actions are defined using the _python_action decorator.

	The function’s parameters include an assert_ function to create new facts,
as well as all the input facts contained in the rule (in this case IsFatherOf
accessible as a dictionary).

	Note the explicit fields declaration. In the previous example, Rulu could automatically
deduce the target fields from the Assert statement. Here the fact assertion is done in
run-time, so the fields cannot be deduced up front and need to be declared.

Python Functions

We can use Python code even when writing rules using the declarative (CLIPS) form.
The functions need to be registered in advance, as follows:

@RuleFunc
def increment(x):
 return x+1

@RuleFunc
def take_father(x):
 return x.father

RuleDef(
 target(IsGrandfatherOf),
 match(IsFatherOf.son, IsGrandfatherOf.grandfather),
 action(Assert(grandfather=take_father(IsFatherOf), grandson=IsGrandfatherOf.grandson, greatness=increment(IsGrandfatherOf.greatness)))
)

Note: in this case the function return types can be deduced from context. In other cases
they have to be declared explicitly using @IntegerRuleFunc, StringRuleFunc etc.

 Copyright 2014, Uri Barkai.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rulu 0.1.0 documentation

CLIPS Functions

CLIPS provides many useful functions (see chapter 12 of the CLIPS Reference Manual [http://clipsrules.sourceforge.net/documentation/v630/bpg.pdf])
for use in rule definitions. All these functions may be used in Rulu as follows:

greeting.py

from rulu import *

Declare a built-in CLIPS function by name and return value.
strcat = clips_func('str-cat', String)

class Entity(Fact):
 name = StringField()

Greeting = RuleDef(
 action(Assert(text=strcat("Hello, ", Entity.name, "!")))
)

Input Facts

	Entity
	name

	0
	World

Output Facts

	Greeting
	text

	0
	Hello, World!

 Copyright 2014, Uri Barkai.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Rulu 0.1.0 documentation

Fact I/O

In the basic example we used Python code to insert input facts into the expert system’s
working memory. We also used Python code to process the output facts directly. It is often
useful to import/export facts from/to other formats for integration with other data processing
tools (or simply for storage on disk).

CLIPS format

The native CLIPS format can be used for storing facts in files:

from rulu.engine import RuleEngine

engine = RuleEngine()
engine.load_module('family')
engine.load('family-in.clp')
engine.run()
engine.save('family-out.clp')

family-in.clp

(IsFatherOf (father "Adam") (son "Seth"))
(IsFatherOf (father "Seth") (son "Enos"))
(IsFatherOf (father "Enos") (son "Kenan"))
(IsFatherOf (father "Kenan") (son "Mahalalel"))

family-out.clp

(initial-fact)
(IsFatherOf (father "Adam") (son "Seth"))
(IsFatherOf (father "Seth") (son "Enos"))
(IsFatherOf (father "Enos") (son "Kenan"))
(IsFatherOf (father "Kenan") (son "Mahalalel"))
(IsGrandfatherOf (greatness 0) (grandson "Mahalalel") (grandfather "Enos"))
(IsGrandfatherOf (greatness 0) (grandson "Kenan") (grandfather "Seth"))
(IsGrandfatherOf (greatness 0) (grandson "Enos") (grandfather "Adam"))
(IsGrandfatherOf (greatness 1) (grandson "Kenan") (grandfather "Adam"))
(IsGrandfatherOf (greatness 1) (grandson "Mahalalel") (grandfather "Seth"))
(IsGrandfatherOf (greatness 2) (grandson "Mahalalel") (grandfather "Adam"))

Pandas dataframes

The dataframe is a very convenient structure for holding fact data:

>>> from rulu.rulu_io import facts_to_df
>>> facts_to_df(engine, 'IsFatherOf')

 father son
0 Adam Seth
1 Seth Enos
2 Enos Kenan
3 Kenan Mahalalel

[4 rows x 2 columns]

Export to Excel

Database integration

TBD :)

 Copyright 2014, Uri Barkai.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Rulu 0.1.0 documentation

Index

 Copyright 2014, Uri Barkai.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Rulu 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Uri Barkai.
 Created using Sphinx 1.3.5.

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

