

 Navigation

 	
 index

 	Rules Documentation latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/rules/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/rules/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Rules Documentation latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 contributing/README.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Contributing

For some time development will happen on GitHub and will be using the pull
request model: In case you are not familiar with that, please take a few minutes
to read the GitHub article [https://help.github.com/articles/using-pull-requests]
about that topic.

Please take a moment to read the Development Guide to learn about the process and the conventions used in this project.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/forked-repository.jpg
htps://github.com/omissis/ rules

O/ @ @S =

This repository ~

Y omissis / rules
forked rom fagotles

]

Search or type a command

Rules 8.x-3.x development — Edit

© 60 commits

5]

Merge pull request #22 from Klausilreadme-2276369

P branch: B.x3x ~

1’ 3 branches 59 releases

rules/+

% aust autnorea 36 minutes ago

s

1 tests

Merge pull request #18 from fubhy/use-kemeftestbase

Various coding standard and typo fixes.

Use wget for downloading Drupal instead of Drush to prevent random fe...

Added basic README contributing info and test execution instructions.
Initial commit of info file and module file.

Re-named "rules" or rule elements to Rules expression plugins.

Womissis +- X B

Asar o Yrork 1

i § contributors

) Pull Roquest (%) Compare

latest comit 983eab6dt2 B3 |

3 hours ago
2 days ago

anhour ago

an hour ago

& months ago

b
T r—

‘You can clons with HTTPS, SSH,
o Subversion. @

@ Clone in Desktop

extending_rules/rules_plugins.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Extending Rules

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/drupal_rules_simple_example.jpg
generate ‘ 4 ﬁre

Content has

Acting user been updated

_static/up.png

extending_rules/rules_condition_plugins.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Rules Condition Plugins

To implement a Rules Condition Plugin, place your plugin code under the namespace \Drupal\{module_name}\Plugin\Condition\ in {module_name}/src/Plugin/Condition, for example:

/**
 * Provides a 'Node is sticky' condition.
 *
 * @Condition(
 * id = "rules_node_is_sticky",
 * label = @Translation("Node is sticky"),
 * category = @Translation("Node"),
 * context = {...}
 *)
 */
class NodeIsSticky extends RulesConditionBase {

 /**
 * {@inheritdoc}
 */
 public function evaluate() {
 $node = $this->getContextValue('node');
 return $node->isSticky();
 }

}

This replaces Drupal 7 Rules’ hook_rules_condition_info

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/enable-module.jpg
818181/ @ cuend | ocarupuis-ruie: 5

€« C [loc.drupal8-rules.com/admin/modules @@=

B content ch Structure 4x Appearance Pgo Extend A Configuration g People | Reports @ Help

Extend

List Uninstall
Home » Administration

Download additional contributed modules to extend Drupal's functionality,

Regularly review available updates to maintain a secure and current site. Always run the update script each time a module s updated. Enable the Update Manager module to
update and install modules and themes,

) —

¥ RULES

NAME DESCRIPTION

O Rules ¥ React on events and conditionally evaluate actions.

extending_rules/rules_data_processor_plugins.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Rules Data Processor Plugins

Data processors are for processing the values resulting from the configured data selection.

To implement a Rules Data Processor Plugin, place your plugin code under the namespace \Drupal\{module_name}\Plugin\RulesDataProcessor\ in {module_name}/src/Plugin/RulesDataProcessor, for example:

/**
 * A data processor for applying numerical offsets.
 *
 * The plugin configuration must contain the following entry:
 * - offset: the value that should be added.
 *
 * @RulesDataProcessor(
 * id = "rules_numeric_offset",
 * label = @Translation("Apply numeric offset")
 *)
 */
class NumericOffset extends PluginBase implements DataProcessorInterface {

 /**
 * {@inheritdoc}
 */
 public function process($value) {
 return $value + $this->configuration['offset'];
 }

}

This replaces Drupal 7 Rules’ hook_rules_evaluator_info

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/original-repository.jpg
htps://github.com/fago/ rules

Thiswpostory - Searchorypeacofland © Explore Gist Blog Help

fago / rules

Rules 8.x-3.x development

(D 60 commits & contributors.

P branch: 8x3.x + | rules / +

Merge pull request #22 from Klausilreadme-2276369 =
| Kauetaunoredss minves a0
W Merge pull request #18 from fubhy/use-kemeltestbase
Various coding standard and typo fixes.

B travis.yml Use wget for downloading Drupal instead of Drush to prevent random te... [ipasiinozeen [

E) README.md Added basic README contributing info and test execution instructions. You can clone with HTTPS, SSH,

or Subversion. @
B rules.info.ymi Initial commit of info file and module file.

Clone in Deskto
B rules.services.yml Re-named "rules® or rule elements to Rules expression plugins. B clono 7

&> Download zIP
README.md

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

extending_rules/rules_plugin_derivatives.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

 #Rules Plugin Derivatives

The Plug-in System of Drupal 8 provides a mechanism called Plugin Derivatives [https://www.drupal.org/node/1653226]. This powerful concept allows a single plugin class to expose multiple plugins to the user interface.

In Rules, currently we use plugin derivates whenever dealing with entities: Instead of exposing a single “Create a new Entity” action, the user is presented with options like “Create a new Node”, “Create a new Taxonomy Term” or “Create a new User”.

According to our Derivatives policy [https://www.drupal.org/node/2473169], we want to have derivatives whenever dealing with entity type based Actions or Conditions. Other cases might make sense, feel free to discuss them in the policy issue [https://www.drupal.org/node/2473169].

A good reference implementation is the EntityCreate action:

The EntityCreate [https://github.com/fago/rules/blob/8.x-3.x/src/Plugin/Action/EntityCreate.php] action doesn’t contain the context annotations:

/**
 * Provides a generic 'Create a new entity' action.
 *
 * @Action(
 * id = "rules_entity_create",
 * deriver = "Drupal\rules\Plugin\Action\EntityCreateDeriver",
 *)
 */
class EntityCreate extends RulesActionBase implements ContainerFactoryPluginInterface {

Instead it references the EntityCreateDeriver [https://github.com/fago/rules/blob/8.x-3.x/src/Plugin/Action/EntityCreateDeriver.php] who based on all entity types, provides derivatives.

 /**
 * {@inheritdoc}
 */
 public function getDerivativeDefinitions($base_plugin_definition) {
 foreach ($this->entityManager->getDefinitions() as $entity_type_id => $entity_type) {
 // Only allow content entities and ignore configuration entities.
 if (!$entity_type instanceof ContentEntityTypeInterface) {
 continue;
 }
 $this->derivatives["entity:$entity_type_id"] = [
 'label' => $this->t('Create a new @entity_type', ['@entity_type' => $entity_type->getLowercaseLabel()]),
 'category' => $entity_type->getLabel(),
 'entity_type_id' => $entity_type_id,
 'context' => [],
 'provides' => [
 'entity' => new ContextDefinition("entity:$entity_type_id", $entity_type->getLabel()),
],
] + $base_plugin_definition;
 // Add a required context for the bundle key, and optional contexts for
 // other required base fields. This matches the storage create() behavior,
 // where only the bundle requirement is enforced.
 $bundle_key = $entity_type->getKey('bundle');
 $base_field_definitions = $this->entityManager->getBaseFieldDefinitions($entity_type_id);
 foreach ($base_field_definitions as $field_name => $definition) {
 if ($field_name != $bundle_key && !$definition->isRequired()) {
 continue;
 }
 $required = ($field_name == $bundle_key);
 $multiple = ($definition->getCardinality() === 1) ? FALSE : TRUE;
 $this->derivatives["entity:$entity_type_id"]['context'][$field_name] = new ContextDefinition(
 $definition->getType(), $definition->getLabel(), $required, $multiple, $definition->getDescription()
);
 }
 }
 return $this->derivatives;
 }

Also see the related ticket [https://www.drupal.org/node/2409055].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

extending_rules/events.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Events

Rules uses the Symfony event dispatching system [http://symfony.com/doc/current/components/event_dispatcher/introduction.html]
to trigger events and invoke reaction rules when an event occurs. A module that
wants to provide events can do so without having a module dependency to Rules -
dispatching standard Symfony events in code is enough.

In order to make an event known to Rules a *.rules.events.yml file has to be
provided to register the event(s). Example from Rules itself:

rules_user_login:
 label: 'User has logged in'
 category: 'User'
 context:
 account:
 type: 'entity:user'
 label: 'Logged in user'

This entry registers an event called “rules_user_login” which has one context
parameter called “account”.

Next, an event class should be declared (you can also use Symfony’s
GenericEvent directly, but an explicit class is encouraged):

class UserLoginEvent extends GenericEvent {

 const EVENT_NAME = 'rules_user_login';

}

Invoking the event looks like this:

// Set the account twice on the event: as the main subject but also in the
// list of arguments.
$event = new UserLoginEvent($account, ['account' => $account]);
$event_dispatcher = \Drupal::service('event_dispatcher');
$event_dispatcher->dispatch(UserLoginEvent::EVENT_NAME, $event);

An instance of the UserLoginEvent class is created, passing along the
account user object as context parameter. The event dispatching service is used
to invoke all event subscribers. Rules itself is among those subscribers with
its GenericEventSubscriber class which will trigger all reaction rules
that are configured for the event.

Note: Do not use \Drupal when invoking events from within a class, use
dependency injection [https://www.drupal.org/node/2133171] for the event
dispatcher service instead.

Note 2: Make sure to issue a service container rebuild or
cache clear [https://www.drupal.org/documentation/clearing-rebuilding-cache]
when you configure and save new reaction rules, so that the event registration
is picked up.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

extending_rules/rules_action_plugins.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Rules Action Plugins

To implement a Rules Action Plugin, place your plugin code under the namespace \Drupal\{module_name}\Plugin\Action\ in {module_name}/src/Plugin/Action, for example:

/**
 * Provides a 'Delete entity' action.
 *
 * @Action(
 * id = "rules_entity_delete",
 * label = @Translation("Delete entity"),
 * category = @Translation("Entity"),
 * context = {...}
 * }
 *)
 */
class EntityDelete extends RulesActionBase {

 /**
 * {@inheritdoc}
 */
 public function execute() {
 $entity = $this->getContextValue('entity');
 $entity->delete();
 }

}

This replaces Drupal 7 Rules’ hook_rules_action_info

 © Copyright 2016.
 Created using Sphinx 1.3.5.

extending_rules/rules_expression_plugins.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Rules Expression Plugins

To implement a Rules Expression Plugin, place your plugin code under the namespace \Drupal\{module_name}\Plugin\RulesExpression\ in {module_name}/src/Plugin/RulesExpression.

This replaces Drupal 7 Rules’ hook_rules_plugin_info

 © Copyright 2016.
 Created using Sphinx 1.3.5.

extending_rules/providing_context_to_rules_plugins.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Providing Context to Rules Plugins

To provide context to a Rules Plugin, for example an entity for the entity delete action plugin, use the following format:

 * context = {
 * "entity" = @ContextDefinition("entity",
 * label = @Translation("Entity"),
 * description = @Translation("Specifies the entity, which should be deleted permanently.")
 *)
 * }

For example:

/**
 * Provides a 'Delete entity' action.
 *
 * @Action(
 * id = "rules_entity_delete",
 * label = @Translation("Delete entity"),
 * category = @Translation("Entity"),
 * context = {
 * "entity" = @ContextDefinition("entity",
 * label = @Translation("Entity"),
 * description = @Translation("Specifies the entity, which should be deleted permanently.")
 *)
 * }
 *)
 */
class EntityDelete extends RulesActionBase {

 /**
 * {@inheritdoc}
 */
 public function execute() {
 $entity = $this->getContextValue('entity');
 $entity->delete();
 }

}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

SUMMARY.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Summary

		Rules Documentation

		Contributing
		Setting up the environment

		Executing the automated tests

		Developing

		Extending Rules
		Rules Condition Plugins

		Rules Action Plugins

		Events

		Rules Expression Plugins

		Rules Data Processor Plugins

		Providing Context to Rules Plugins

		Rules Plugin Derivatives

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

README.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Rules Documentation

Introduction

The Rules module [http://drupal.org/project/rules] allows site administrators to build flexible workflows using events, conditions, and actions (known as reactive or ECA rules [http://http://en.wikipedia.org/wiki/Event_condition_action]).

Rules can react to events occurring on your site, such as a user logging in or a node being submitted, and it can perform customized follow-up actions such as redirecting to a certain page or setting field values.

Rules is also a framework used by other modules, allowing them to expose user-reconfigurable components with sets of actions and conditions that are managed in easy to import/export configuration files. Rules leverages Entity API to read and act on data and work seamlessly with all types of variables and entities.

[image: Drupal Rules Simple Example]

How to contribute to the documentation

If you have trouble understanding any part of the documentation, please notify those of us who work on this section by creating an issue on our Rules documentation repository [https://github.com/fubhy/rules-docs] and clearly explain what you don’t understand and why - we’re happy to hear from you, your contribution helps everyone at Drupal!

You can also contribute directly on our Rules documentation repository [https://github.com/fubhy/rules-docs] by editing the files through the GitHub [https://github.com/] interface directly in your browser. Alternatively, you can clone the repository and edit the book in your favorite text editor or in the official GitBook desktop app [https://github.com/GitbookIO/editor].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/file.png

contributing/environment.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Setting up the environment

LAMP

The very first step for starting contributing to Rules is to setup a classic
“LAMP” environment: that’s a bit out of the scope of this document, so please
take a look at Drupal Installation Guide [https://drupal.org/documentation/install]
and especially at its System requirements section [https://drupal.org/requirements].

Drush

Installing the powerful Drupal Shell is not mandatory but it can definitely be helpful during development. At the moment of writing, there’s no stable version of Drush for Drupal 8 yet -at the moment of writing the currently tagged release is 7.0.0-alpha3- so depending if you feel brave or not, you can choose either the tagged release or the bleeding development edge.
One way or another, the recommended way to install it is through composer: be aware that the installation is going to be global and therefore will probably override your current, stable one. Unfortunately, due to a (temporary?) dependency-clash between Drupal 8 and Drush 7, it’s not possible to just install it within your Drupal 8’s vendors directory.
So fire the following in your terminal:

composer global require drush/drush=dev-master

Et voilà, the Drupal 8-compatible version of Drush will be quickly installed for you.

Drupal 8

Once you’ve got your system ready to host Drupal 8, the next step is to go and
clone its repository in the directory where your web server will expect it to be
by using the following command, being careful to replace “MINOR_VERSION” and “DESTINATION_DIRECTORY” as needed:

git clone --branch 8.MINOR_VERSION.x http://git.drupal.org/project/drupal.git DESTINATION_DIRECTORY

Please look at the Drupal Git Instructions [https://drupal.org/project/drupal/git-instructions]
for more information about how to clone Drupal.

Once you finished cloning Drupal, set up a database for it and proceed with the
installation: after it’s completed, the only thing’s missing is the Rules
module.

Rules

NOTE: you will need a working GitHub account for contributing to Rules.

In order to start working on Rules, you have to visit its
module page on GitHub [https://github.com/fago/rules] and click the fork
button.

[image: Forking Rules repository]

That will create a copy of the Rules repository on your GitHub account. At this
point you’re ready to clone it in your working environment in a directory of your choice by using the following command (don’t forget to replace YOUR_USER with
the name of your GitHub user):

git clone git@github.com:YOUR_USER/rules.git

Once you did all of that, symlink the cloned rules directory under the Drupal’s modules
directory.

NOTE: directly cloning Rules withing Drupal’s modules directory is discouraged for development.

[image: Drupal 8 modules page]

The only thing left to do now is to head to the module page clicking on the
Extend button in the top menu and enable Rules.

[image: Drupal 8 modules page]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

contributing/start_developing.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Developing

Once you verified everything’s working properly by running the tests, you’re ready to go!

Taking a look at the issue queue

While the coding is done on github, the issue queue is still taken care of on drupal.org: you can take a look at the open issues [https://www.drupal.org/project/issues/search/rules?assigned=&submitted=&project_issue_followers=&status[0]=Open&version[0]=8.x&issue_tags_op=%3D&issue_tags=&text=&&&&order=field_issue_priority&sort=desc], pick one you like and assign it to you.

Coding and Pull Request-ing

Remember to create a branch before start developing! It’s name should contain the issue id and a slug to tell what the thing you’re working on is about, for example: 2276369-readme.

Once you’re done with the development, push your commits and create a Pull Request [https://help.github.com/articles/using-pull-requests#initiating-the-pull-request] on github.

After your code has been reviewed, you might be asked to perform some changes and then have them reviewed again. After a number of iterations, you should get your code merged into the main repository. Hurray!

Keeping your fork up to date

After some time your forked repository and the original one(called upstream) will eventually get out of sync leaving you with an old, unsupported version. In order to keep that up to date, you’ll need to fetch (i.e: downloading without touching the code on your computer) the latest commits and then merge them in the branch you need, which most likely will be 8.x-3.x. So enter your Rules module’s directory and type:

git remote add upstream https://github.com/fago/rules.git

This command will add the original Rules’ repository reference to your local repository(you don’t have to repeat it all the time, just the first one will do).
Then you can proceed with the download and merge on the wanted branch:

git fetch upstream
git checkout 8.x-3.x
git merge upstream/8.x-3.x

And that’s it! Your repository is up to date again so that you can start developing a new feature right away! Please check Github’s guide on how to sync a fork [https://help.github.com/articles/syncing-a-fork] for more information

Keep the conventions in mind

		Always create an issue in the drupal.org Rules issue queue [http://drupal.org/project/issues/rules]
for every pull request you are working on.

		Always cross-reference the Issue in the Pull Request and the Pull Request in
the Issue.

		Always create a new branch for every pull request: its name should contain a
brief summary of the ticket and its issue id, e.g 2276369-readme.

		Try to keep the history of your pull request as clean as possible by squashing
your commits: you can look at the Symfony documentation [http://symfony.com/doc/current/cmf/contributing/commits.html]
or at the Git book [http://git-scm.com/book/en/Git-Tools-Rewriting-History#Changing-Multiple-Commit-Messages]
for more information on how to do that.

Taking over a stalled pull request

Sometimes a pull request gets stalled, and you want to move the issue forward.
In order to get the code from that pull request in a branch of your fork, follow
the steps for Checking out pull requests locally [https://help.github.com/articles/checking-out-pull-requests-locally/].

Then you can submit a new pull request with your additional changes that
supersedes the existing one. Make sure to leave a comment at the old pull
request that you are picking up the work.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

contributing/testing.html

 Navigation

 		
 index

 		Rules Documentation latest documentation »

Executing the automated tests

This module comes with PHPUnit and SimpleTest tests. You need a working Drupal 8
installation and a checkout of the Rules module in the modules folder.

PHPUnit

./vendor/phpunit/phpunit/phpunit -c ./core/phpunit.xml.dist ./modules/rules

Simpletest

Make sure simpletest is enabled:

drush en -y simpletest rules

And then run the tests

drush test-run 'Rules, Rules conditions'

php ./core/scripts/run-tests.sh --verbose --color "rules"

You can also execute the test cases from the web interface at /admin/config/development/testing.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

