

Rubix Documentation

RubiX is a light-weight data caching framework that can be used by Big-Data engines.
RubiX can be extended to support any engine that accesses data in cloud stores using Hadoop FileSystem interface via plugins.
Using the same plugins, RubiX can also be extended to be used with any cloud store.

Contents:

	1. RubiX
	1.1. Use Case

	1.2. Supported Engines and Cloud Stores

	2. Installation Guide
	2.1. Getting Started

	2.2. Data Engines

	3. Configuration
	3.1. Cache

	3.2. Network

	3.3. Cluster

	3.4. Metrics

	4. Metrics
	4.1. BookKeeper Server Metrics

	4.2. Client side Metrics

	5. Contribution Guidelines
	5.1. Developer Environment

	5.2. How to contribute code on Github

	5.3. Coding conventions

	5.4. Testing

	5.5. Commit Message

	5.6. How to report issues

	5.7. Documentation Style Guide

	6. Release Notes
	6.1. Release 0.3.21 (next release)

	6.2. Release 0.3.20

	6.3. Release 0.3.19

	6.4. Release 0.3.18

	6.5. Release 0.3.17

	6.6. Release 0.3.16

	6.7. Release 0.3.15

	6.8. Release 0.3.14

	6.9. Release 0.3.13

	6.10. Release 0.3.12

	6.11. Release 0.3.11

	6.12. Release 0.3.10

1. RubiX

RubiX is a light-weight data caching framework that can be used by Big-Data engines.
RubiX can be extended to support any engine that accesses data in cloud stores using Hadoop FileSystem interface via plugins.
Using the same plugins, RubiX can also be extended to be used with any cloud store

1.1. Use Case

RubiX provides disk or in-memory caching of data, which would otherwise be accessed over network when it resides in cloud store,
thereby improving performance.

1.2. Supported Engines and Cloud Stores

Amazon S3

	Presto [https://prestosql.io/]

	Spark

	Any engine using Hadoop 2.x (e.g. Hive)

2. Installation Guide

This section provides instructions to install RubiX and use it with Presto, Hive, or Spark.
If you want help to install on-prem or on other distributions, please
contact [https://groups.google.com/forum/#!forum/rubix-users] the community with your questions or issues.

These instructions require RubiX Admin [https://github.com/qubole/rubix-admin] to be installed on your cluster.

	2.1. Getting Started

	2.2. Data Engines
	Presto

	Spark

	Hive

2.1. Getting Started

Note

Make sure passwordless SSH is set up for your cluster before starting.

Install RubiX

Install RubiX Admin using PIP:

pip install rubix_admin

Run rubix_admin -h to generate a config file for RubiX Admin at ~/.radminrc.
Add the worker node IPs to the workers list so the file looks like the following:

 coordinator:
 - localhost
 workers:
 - <worker-ip1>
 - <worker-ip2>
 ..
 remote_packages_path: /tmp/rubix_rpms

Once RubiX Admin is configured, install the latest version of RubiX on all nodes specified in ~/.radminrc:

rubix_admin installer install --cluster-type <type>

To install a specific version of RubiX:

rubix_admin installer install --cluster-type <type> --rpm-version <rubix-version>

To install from an RPM file:

rubix_admin installer install --cluster-type <type> --rpm <path-to-rubix-rpm>

Start RubiX Daemons

Use the following command to start the BookKeeperServer and LocalDataTransferServer on all nodes specified in ~/.radminrc:

rubix_admin daemon start

To verify that the daemons are running, run the following command on each node:

sudo jps -m

You should see the following two entries in the resulting list:

<pid> RunJar ... com.qubole.rubix.bookkeeper.BookKeeperServer
<pid> RunJar ... com.qubole.rubix.bookkeeper.LocalDataTransferServer

If there was an issue starting the daemons, logs for RubiX can be found at /var/log/rubix/.

Configure engine to use RubiX

Presto

In order for Presto to use RubiX, you will first need to create an external table through Hive
using RubiX as the URL scheme in place of S3.

Start Hive with the following command. This will restart the metastore server,
allowing the rubix:// scheme to be recognized:

hive --hiveconf hive.metastore.uris="" \
 --hiveconf fs.rubix.impl=org.apache.hadoop.fs.s3a.S3AFileSystem

You will also need to set your AWS access & secret keys for authenticating with S3:

hive> set fs.s3n.awsAccessKeyId=<access-key>
hive> set fs.s3n.awsSecretAccessKey=<secret-key>

Once this is done, create your external table, but specify rubix:// instead of s3:// as the URL scheme:

CREATE EXTERNAL TABLE...
...
LOCATION 'rubix://<s3-path>'

Once your table is created, it will now be configured to use RubiX.

Spark

In order to use Spark with S3, you will need to specify your AWS access & secret keys when running your application:

...
--conf spark.hadoop.fs.s3.awsAccessKeyId=<access-key>
--conf spark.hadoop.fs.s3.awsSecretAccessKey=<secret-key>
...

Alternatively, you can add the following lines to your Spark properties file to set them for every application
(default location: $SPARK_HOME/conf/spark-defaults.conf):

spark.hadoop.fs.s3.awsAccessKeyId <access-key>
spark.hadoop.fs.s3.awsSecretAccessKey <secret-key>

Note

RubiX client configurations will also need to be set this way.

(Format: spark.hadoop.<rubix-conf-key>)

Run your first RubiX-enhanced query

Once you have properly configured your data engine, RubiX will now cache data when it is being fetched from S3.

You can verify this in the logs for your data engine, which should show usage of a Caching…S3FileSystem,
as well as in the BookKeeper logs at /var/log/rubix/bks.log.

Troubleshooting

ClassNotFoundException: org.apache.hadoop.fs.s3native.NativeS3FileSystem

Hadoop requires the hadoop-aws JAR in order to access files stored on S3. If Hadoop is unable to find
the NativeS3FileSystem class, make sure this JAR is included in your Hadoop classpath. This JAR should
be provided as part of your Hadoop installation.

Check Hadoop’s S3 documentation [https://wiki.apache.org/hadoop/AmazonS3] for more details.

ClassNotFoundException: org.jets3t.service.ServiceException

Spark requires JetS3t in order to execute applications using S3. If Spark is unable to find this class,
make sure jets3t-x.x.x.jar is included in spark.driver.extraClassPath and spark.executor.extraClassPath
in your Spark configuration. This JAR should be provided as part of your Hadoop installation.

2.2. Data Engines

This section provides additional information for using RubiX with various data engines.

These instructions require that RubiX Admin [https://github.com/qubole/rubix-admin]
has been installed on your cluster.

	Presto

	Spark

	Hive

Presto

Enable RubiX Caching for Table

In order for Presto to use RubiX, you will first need to create an external table through Hive
using RubiX as the URL scheme in place of S3.

Start Hive with the following command. This will restart the metastore server,
allowing the rubix:// scheme to be recognized:

hive --hiveconf hive.metastore.uris="" \
 --hiveconf fs.rubix.impl=org.apache.hadoop.fs.s3a.S3AFileSystem

You will also need to set your AWS access & secret keys for authenticating with S3:

hive> set fs.s3n.awsAccessKeyId=<access-key>
hive> set fs.s3n.awsSecretAccessKey=<secret-key>

Once this is done, create your external table, but specify rubix:// instead of s3:// as the URL scheme:

CREATE EXTERNAL TABLE...
...
LOCATION 'rubix://<s3-path>'

Once your table is created, it will now be configured to use RubiX.

Spark

Configuration

In order to use Spark with S3, you will need to specify your AWS access & secret keys when running your application:

...
--conf spark.hadoop.fs.s3.awsAccessKeyId=<access-key>
--conf spark.hadoop.fs.s3.awsSecretAccessKey=<secret-key>
...

Alternatively, you can add the following lines to your Spark properties file to set them for every application
(default location: $SPARK_HOME/conf/spark-defaults.conf):

spark.hadoop.fs.s3.awsAccessKeyId <access-key>
spark.hadoop.fs.s3.awsSecretAccessKey <secret-key>

Note

RubiX client configurations will also need to be set this way.

(Format: spark.hadoop.<rubix-conf-key>)

Hive

Add RubiX JARs to Hadoop Classpath

Add RubiX JARs through the Hive CLI:

hive> add jar /usr/lib/rubix/lib/rubix-hadoop2.jar
hive> add jar /usr/lib/rubix/lib/rubix-common.jar
hive> add jar /usr/lib/rubix/lib/rubix-core.jar
hive> add jar /usr/lib/rubix/lib/rubix-spi.jar

OR

Copy JARs to Hadoop’s shared lib directory:

cp /usr/lib/rubix/lib/rubix-hadoop2.jar \
 /usr/lib/rubix/lib/rubix-common.jar \
 /usr/lib/rubix/lib/rubix-core.jar \
 /usr/lib/rubix/lib/rubix-spi.jar \
 /usr/lib/hadoop/lib/share/hadoop/tools/lib

Configure Hive to use RubiX CachingFileSystem for S3/S3N/S3A schemes

If you use this option, all file system interactions with
tables with their location in AWS S3 will automatically use RubiX’s CachingFileSystem.

hive --hiveconf \
 fs.s3.impl=com.qubole.rubix.hadoop2.CachingNativeS3FileSystem \
 fs.s3n.impl=com.qubole.rubix.hadoop2.CachingNativeS3FileSystem \
 fs.s3a.impl=com.qubole.rubix.hadoop2.CachingS3AFileSystem

3. Configuration

3.1. Cache

	Option

	Description

	Type

	Default

	Client/
Server

	Applicable to
Embedded mode

	rubix.cache.block.size

	The amount of data downloaded per block requested for caching.
(if block size = 10MB, request for 45MB of data will download
5 blocks of 10MB)

	integer (bytes)

	1048576 (1MB)

	C & S

	Yes

	rubix.cache.dirprefix.list

	The list of directories to be used as parents for storing cache files.
Example: /media/ephemeral0/fcache/

	list
(comma-separated)

	/media/ephemeral

	C & S

	No

	rubix.cache.max.disks

	The number of (zero-indexed) disks within the parent directory to be
used for storing cached files.
Example: /media/ephemeral0 to /media/ephemeral4

	integer

	5

	C & S

	No

	rubix.cache.dirsuffix

	The name of the subdirectory to be used for storing cache files.
Example: /media/ephemeral0/fcache/

	string

	/fcache/

	C & S

	Yes

	rubix.cache.expiration.after-write

	The time files will be kept in cache prior to eviction.

	integer (ms)

	MAX_VALUE

	S

	Yes

	rubix.cache.usage.percentage

	The percentage of the disk space that will be filled with cached data
before cached files will start being evicted.

	integer (%)

	80

	S

	Yes

	rubix.cache.strict.mode

	Propagate exceptions if there is an error while caching data if true;
otherwise fall back on reading data directly from remote file system.

	boolean

	false

	C

	No

	rubix.cache.file.staleness-check.enable

	When true, always check for updates to file metadata from remote
filesystem. When false, file metadata will be cached for a period of
time before being fetched again.

	boolean

	true

	S

	Yes

	rubix.cache.stale.fileinfo.expiry.period

	(rubix.cache.file.staleness-check.enable must be false)
The time file metadata will be cached before it will be fetched again
from the remote filesystem.

	integer (s)

	36000

	S

	Yes

	rubix.cache.parallel.warmup

	When true, cache will be warmed up asynchronously.

	boolean

	false

	C & S

	No

	rubix.cache.dummy.mode

	When true, the cache is not populated with data and queries read data
directly from the source, but metadata is updated so that statistics
such as hitrate, cache reads etc. can be collected as if the data was
cached.

	boolean

	false

	C

	Yes

3.2. Network

	Option

	Description

	Type

	Default

	Client/Server

	Applicable to
Embedded mode

	rubix.network.bookkeeper.server.port

	The port on which the BookKeeper server is listening.

	integer

	8899

	C & S

	No

	rubix.network.local.transfer.server.port

	The port on which the Local Data Transfer server is listening.

	integer

	8898

	C

	No

	rubix.network.client.num-retries

	The maximum number of retry attempts for executing calls to the BookKeeper server.

	integer

	3

	C & S

	Yes

	rubix.network.server.connect.timeout

	The maximum time to wait for a connection to the BookKeeper server.

	integer (ms)

	1000

	C & S

	Yes

	rubix.network.server.socket.timeout

	The maximum time to wait for a response to requests sent to the BookKeeper server.

	integer (ms)

	3000

	C & S

	Yes

	rubix.network.client.read.timeout

	The maximum time to wait when reading data from another node.

	integer (ms)

	3000

	C

	Yes

3.3. Cluster

	Option

	Description

	Type

	Default

	Client / Server

	Applicable to
Embedded mode

	rubix.cluster.node.refresh.time

	The frequency at which the cluster node membership will be checked.

	integer (s)

	300 sec

	C & S

	Yes

	rubix.cluster.manager.hadoop.class

	The ClusterManager class to use for fetching node-related information for Hadoop clusters.

	string

	com.qubole.rubix.hadoop2. Hadoop2ClusterManager

	C & S

	No

	rubix.cluster.manager.presto.class

	The ClusterManager class to use for fetching node-related information for Presto clusters.

	string

	com.qubole.rubix.presto. PrestoClusterManager

	C & S

	No

3.4. Metrics

	Option

	Description

	Type

	Default

	Client / Server

	rubix.metrics.cache.enabled

	Collect cache-level metrics if true.

	boolean

	true

	S

	rubix.metrics.health.enabled

	Collect heartbeat metrics if true.

	boolean

	true

	S

	rubix.metrics.jvm.enabled

	Collect JVM-level metrics if true.

	boolean

	false

	S

	rubix.metrics.reporters

	The reporters to be used for collecting metrics.
Options: JMX, GANGLIA

	list
(comma-separated)

	JMX,GANGLIA

	S

	rubix.metrics.reporting.interval

	The interval at which all registered reporters will report their metrics.

	integer (ms)

	10000

	S

	rubix.metrics.ganglia.host

	The host at which the Ganglia server (gmond) is running.

	string

	127.0.0.1 (localhost)

	S

	rubix.metrics.ganglia.port

	The port on which the Ganglia server (gmond) is listening.

	integer

	8649

	S

4. Metrics

4.1. BookKeeper Server Metrics

These metrics are available on the BookKeeper server.

Health Metrics

Metrics relating to daemon & service health.

	Metric

	Description

	Abnormalities

	rubix.bookkeeper.gauge.live_workers

	The number of workers currently reporting
to the master node.

	Mismatch with number reported by engine
(Presto, Spark, etc.)

	rubix.bookkeeper.gauge.caching_validated_workers

	The number of workers reporting caching
validation success.

	Mismatch with live worker count
(one or more workers failed validation)

Cache Metrics

Metrics relating to cache interactions.

	Metric

	Description

	Abnormalities

	rubix.bookkeeper.gauge.cache_size_mb

	The current size of the local cache in MB.

	Cache size is bigger than
configured capacity

	rubix.bookkeeper.gauge.available_cache_size_mb

	The current disk space available for
cache in MB.

	

	rubix.bookkeeper.count.cache_eviction

	The number of files removed from the
local cache due to size constraints.

	No cache evictions & cache has
exceeded configured capacity

	rubix.bookkeeper.count.cache_invalidation

	The number of files invalidated from the
local cache when the source file has been
modified.

	

	rubix.bookkeeper.count.cache_expiry

	The number of files removed from the
local cache once expired.

	

	rubix.bookkeeper.gauge.cache_hit_rate

	The percentage of cache hits for the
local cache.

	Cache hit rate near 0%

	rubix.bookkeeper.gauge.cache_miss_rate

	The percentage of cache misses for the
local cache.

	Cache miss rate near 100%

	rubix.bookkeeper.count.total_request

	The total number of requests made
to read data.

	

	rubix.bookkeeper.count.cache_request

	The number of requests made to read data
cached locally.

	No cache requests made

	rubix.bookkeeper.count.nonlocal_request

	The number of requests made to read data
from another node.

	No non-local requests made

	rubix.bookkeeper.count.remote_request

	The number of requests made to download
data from the data store.

	No remote requests made

	rubix.bookkeeper.count.total_async_request

	The total number of requests made to
download data asynchronously.

	

	rubix.bookkeeper.count.processed_async_request

	The total number of asynchronous download
requests that have already been processed.

	

	rubix.bookkeeper.gauge.async_queue_size

	The current number of queued
asynchronous download requests.

	High queue size
(requests not being processed)

	rubix.bookkeeper.count.async_downloaded_mb

	The amount of data asynchronously
downloaded, in MB.
(If there are no cache evictions, this
should match cache_size_mb.)

	

	rubix.bookkeeper.count.async_download_time

	Total time spent on downloading data in sec

	

JVM Metrics

Metrics relating to JVM statistics, supplied by the Dropwizard Metrics metrics-jvm module. (https://metrics.dropwizard.io/3.1.0/manual/jvm/)

	Metric

	Description

	Abnormalities

	rubix.bookkeeper.jvm.gc.*
rubix.ldts.jvm.gc.*

	Metrics relating to garbage collection
(GarbageCollectorMetricSet)

	

	rubix.bookkeeper.jvm.memory.*
rubix.ldts.jvm.memory.*

	Metrics relating to memory usage
(MemoryUsageGaugeSet)

	

	rubix.bookkeeper.jvm.threads.*
rubix.ldts.jvm.threads.*

	Metrics relating to thread states
(CachedThreadStatesGaugeSet)

	

4.2. Client side Metrics

These metrics are available on the client side i.e. Presto or Spark where the jobs to read data are run.

Client side Metrics is divided into two:

	Basic stats: These stats are available under name rubix:name=stats

	Detailed stats: These stats are available under name rubix:name=stats,type=detailed

If Rubix is used in embedded mode, an engine specific suffix is added to these names, e.g., Presto adds catalog=<catalog_name> suffix.

Following sections cover the metrics available under both these types in detail.

Basic stats

	Metric

	Description

	mb_read_from_cache

	Data read from cache by the client jobs

	mb_read_from_source

	Data read from Source by the client jobs

	cache_hit

	Cache Hit ratio, between 0 and 1

Detailed Stats

Data unit in all metrics above is MB

5. Contribution Guidelines

This section provides guidelines to contribute to the project through code, issues and documentation.

	5.1. Developer Environment

	5.2. How to contribute code on Github

	5.3. Coding conventions

	5.4. Testing

	5.5. Commit Message

	5.6. How to report issues

	5.7. Documentation Style Guide

5.1. Developer Environment

Rubix is a Maven project and uses Java 8. It uses JUnit as the testing framework.
Ensure that you have a development environment that support the above
configuration.

Pre-requisites

	thrift binary needs to be available at /usr/local/bin/thrift. Rubix will not compile with the newer versions of thrift, it is recommended to install thrift version 0.9.3 by downloading the source from here [http://apache.mirrors.spacedump.net/thrift/0.9.3/thrift-0.9.3.tar.gz] and installing it using the steps mentioned here [https://thrift.apache.org/docs/BuildingFromSource]

	Java JDK 8 needs to be used. If you see an error like Fatal error compiling: invalid target release: 1.8 during compilation then setup your system to use Java JDK 8 for the build.

	For generating the RPM you need the rpmbuild command available. On Debian-based systems sudo apt-get install rpmbuild and on RPM-based systems sudo yum install rpm-build make it available.

Building

	Fork your own copy of RubiX into your github account by clicking on the “Fork” button

	Navigate to your account and clone that copy to your development box

git clone https://github.com/<username>/rubix

	Run tests in the RubiX root directory.

mvn test

	Add Qubole RubiX as upstream

git remote add upstream https://github.com/qubole/rubix.git
git fetch upstream

5.2. How to contribute code on Github

1. Create a branch and start working on your change.

cd rubix
git checkout -b new_rubix_branch

2. Code

	Adhere to code standards.

	Include tests and ensure they pass.

	Add release notes, if required, in (next-release) rst file under docs/release/release_notes/

3. Commit

For every commit please write a short (max 72 characters) summary in the first
line followed with a blank line and then more detailed descriptions of the
change.

Don’t forget a prefix!

More details in Commit Guidelines [https://rubix.readthedocs.io/en/latest/contrib/commit.html]

4. Update your branch

git fetch upstream
git rebase upstream/master

5. Push to remote

git push -u origin new_rubix_branch

6. Issue a Pull Request [https://help.github.com/articles/proposing-changes-to-a-project-with-pull-requests/]

	Navigate to the Rubix repository you just pushed to (e.g. https://github.com/your-user-name/rubix)

	Click Pull Request.

	Write your branch name in the branch field (this is filled with master by default)

	Click Update Commit Range.

	Ensure the changesets you introduced are included in the Commits tab.

	Ensure that the Files Changed incorporate all of your changes.

	Fill in some details about your potential patch including a meaningful title.

	Click Send pull request.

7. Respond to feedback

The RubiX team may recommend adjustments to your code. Part of interacting with
a healthy open-source community requires you to be open to learning new
techniques and strategies; don’t get discouraged! Remember: if the RubiX
team suggest changes to your code, they care enough about your work that they
want to include it, and hope that you can assist by implementing those
revisions on your own.

8. Postscript

Once all the changes are approved, one contributor will push the change to the upstream code.

5.3. Coding conventions

	two spaces, no tabs

	no trailing whitespaces, blank lines should have no spaces

	Do not mix multiple fixes into a single commit.

	Add comments for your future selves and for your current/future peers

	Do not make whitespace changes as part of your regular/feature commits.

	If you feel whitespace issues need to be fixed, please push a separate
commit for the same. It will be approved quickly without any discussion.

5.4. Testing

This section provides contribution guidelines specific to testing.

	Robot Framework Integration Tests

Robot Framework Integration Tests

For more detailed info regarding Robot Framework and its capabilities,
read the Robot Framework user guide [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html].

Test Suites

Each .robot file is a test suite.
Related tests should be kept in the same test suite,
to allow for reuse of variables and suite-level keywords.

Test suites contain the following sections:

*** Settings ***

This section is for specifying suite-level documentation,
as well as keywords for suite-level setup & teardown.

This section also specifies other sources for keywords used by the test suite.
These can be:

	Robot Framework built-in libraries, such as Collections and OperatingSystem

	Other .robot files containing helpful keywords, such as setup.robot for setting up & tearing down tests.

	A fully-qualified Java class from a custom library containing methods that can be run as keywords (more info below)

Example:

*** Settings ***
Resource OperatingSystem
Resource bookkeeper.robot
Resource com.qubole.rubix.client.robotframework.BookKeeperClientRFLibrary

*** Variables ***

This section contains any variables common to the test cases in the suite.

Common variables needed across test suites include the following:

${WORKINGDIR} ${TEMPDIR}${/}<test-suite-name>
${DATADIR} ${WORKINGDIR}${/}data

${CACHE_DIR_PFX} ${WORKINGDIR}${/}
${CACHE_DIR_SFX} /fcache/
${CACHE_NUM_DISKS} <number-of-cache-disks>

Note: ${TEMPDIR} is supplied by Robot Framework at points to the operating system’s temp directory,
while ${/} is the operating system’s path separator.

*** Test Cases ***

This is where test cases are defined.

Test cases include a name on its own line,
followed by the keywords to be executed for the test on indented lines following it.

For RubiX, we use test templates [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#test-templates]
to run the test and verify that it passes with different modes of execution.

*** Keywords ***

This section contains any suite-level keywords,
as well as keywords for running tests defined as templates.

Like test cases, keywords include their name on its own line,
and the keywords to be run on indented lines after it.

Keywords should include a [Documentation] tag to provide details
regarding the purpose and/or usage of the keyword.

Test Cases

In general, a test case will require the following components:

	Setup

	Body

	Data generation

	Execution

	Verification

	Teardown

Setup

Start the test case with the Cache test setup keyword
to start a BookKeeper server with the provided configuration options
and create the directory used for storing generated data for the test.

The following example starts a server as a master,
and configures the cache directory settings and its maximum size.

Cache test setup
... ${DATADIR}
... rubix.cluster.is-master=true
... rubix.cache.dirprefix.list=${CACHE_DIR_PFX}
... rubix.cache.dirsuffix=${CACHE_DIR_SFX}
... rubix.cache.max.disks=${CACHE_NUM_DISKS}
... rubix.cache.fullness.size=${CACHE_MAX_SIZE}

Test Body

Integration tests need to:

	generate any files needed for test execution

	execute whatever steps necessary to sufficiently test the desired scenario

	verify the state of the BookKeeper & cache using metrics and other helper keywords

Generation

You can generate data files individually:

${fileName} = Generate single test file ${filePath} ${fileLength}

or as a batch of files with similar characteristics:

@{fileNames} = Generate test files ${filePathPrefix} ${fileLength} ${numberOfFiles}

Execution

In order to execute calls using the BookKeeper server, you will need to make a request object.

Similar to generating test files, requests can be generated individually:

${request} = Make read request
... ${fileName}
... ${startBlock}
... ${endBlock}
... ${fileLength}
... ${lastModified}
... ${clusterType}

or as a batch of requests with similar characteristics:

@{requests} = Make similar read requests
... ${fileNames}
... ${startBlock}
... ${endBlock}
... ${fileLength}
... ${lastModified}
... ${clusterType}

For read calls, current execution modes include combinations of:

	Caching data by directly calling the BookKeeper server OR using a client file system

	Executing caching calls sequentially OR concurrently

The execution mode is determined by the keyword name passed into the test template.
For example, the template below will first run the test with sequential calls to the BookKeeper server,
and then with concurrent calls using the client file system.

Cache eviction
 [Template] Test cache eviction
 Execute read requests using BookKeeper server call runConcurrently=${false}
 Concurrently execute read requests using client file system runConcurrently=${true}

The actual execution of the keyword is controlled by the following step,
which will run the keyword concurrently on the specified number of threads if the flag is set to true,
or sequentially otherwise.

RUN KEYWORD IF ${runConcurrently}
... Execute concurrent requests
... ${executionKeyword}
... ${numThreads}
... ${requests}
... ELSE
... Execute sequential requests
... ${executionKeyword}
... ${requests}

Verification

Test execution can be verified by comparing metrics values to expected values.

Verify metric value ${metricName} ${expectedValue}

As well, you can verify that the size of the cache is the expected size.

Verify cache directory size
... ${cacheDirPrefix}
... ${cacheDirSuffix}
... ${cacheDirNumDisks}
... ${expectedCacheSize}

Teardown

Finish the test case with the Cache test teardown keyword as a [Teardown] step;
this ensures the BookKeeper server used for this test is properly shut down
and the environment is cleaned before execution of the next test.

[Teardown] Cache test teardown ${DATADIR}

Style Guide

Variables

Variables within a keyword are camelCase.

@{testFileNames} = Generate test files ${REMOTE_PATH} ${FILE_LENGTH} ${NUM_TEST_FILES}

Variables in the “Variables” section of a test case are ALL_CAPS_AND_UNDERSCORE_SEPARATED
(like Java constants).

${NUM_EXPECTED_EVICTIONS} 3

Keywords

Names

Built-in keywords are ALL CAPS.

CREATE DIRECTORY ${directoryName}

Test keywords (defined in a test or resource .robot file) are Sentence capitalized.

Generate single test file ${fileName} ${fileLength}

Custom library keywords (eg. from BookKeeperRFClientLibrary) are camel Case.

&{metrics} = get Cache Metrics

Arguments

Arguments have 2 spaces between the keyword and each other.

Verify metric value ${METRIC_EVICTION} ${NUM_EXPECTED_EVICTIONS}

If the keyword needs more than 3 arguments, place the arguments on separate lines.

${request} = Create test client read request
... ${fileName}
... ${startBlock}
... ${endBlock}
... ${fileLength}
... ${lastModified}
... ${clusterType}

Use named arguments for keywords where possible to enhance clarity.

Verify cache directory size

... expectedCacheSize=${CACHE_MAX_SIZE}

For sets of keywords with similar arguments, alignment of arguments is preferred.

[Template] Test cache eviction
Download requests runConcurrently=${false}
Concurrently download requests runConcurrently=${true}
Read requests runConcurrently=${false}
Concurrently read requests runConcurrently=${true}

Custom Keywords

If a test requires more functionality than what Robot Framework can offer
(such as when executing requests using the BookKeeper server), keywords can be created
as functions in BookKeeperClientRFLibrary. All public methods in this class
are exposed as keywords to be used by Robot Framework.

In the following example, getCacheMetrics() in BookKeeperClientRFLibrary
is accessible for use by our custom Robot Framework keyword Verify metric value:

public Map<String, Double> getCacheMetrics() throws IOException, TException
{
 try (RetryingBookkeeperClient client = createBookKeeperClient()) {
 return client.getCacheMetrics();
 }
}

Verify metric value
 [Arguments] ${metricName} ${expectedValue}
 &{metrics} = get Cache Metrics
 ...

5.5. Commit Message

Commits are used as a source of truth for various reports. A couple of examples are:

	Release Notes

	Issues resolved for QA to plan the QA cycle.

To be able to generate these reports, uniform commit messages are required.
All your commits should follow the following convention:

For every commit please write a short (max 72 characters) summary in the first
line followed with a blank line and then more detailed descriptions of the
change.

Format of summary:

ACTION: AUDIENCE: COMMIT_MSG

Description:

ACTION is one of 'chg', 'fix', 'new'
Is WHAT the change is about.
'chg' is for refactor, small improvement, cosmetic changes...
'fix' is for bug fixes
'new' is for new features, big improvement

AUDIENCE is one of 'dev', 'usr', 'pkg', 'test', 'doc'
Is WHO is concerned by the change.
'dev' is for developers (API changes, refactors...)
'usr' is for final users

You will use your environment’s default editor (EDITOR=vi|emacs) to compose the
commit message. Do NOT use the command line git commit -m “my mesg” as this
only allows you to write a single line that most of the times turns out to be
useless to others reading or reviewing your commit.

Example

new: dev: #124: report liveness metric for BookKeeper daemon (#139)

Add a liveness gauge that the daemon is up & alive. Right now, this
is a simple check that a thread (reporter to be added in a subsequent
commit) is alive. In the future, this simple framework will be used
to add more comprehensive health checks. Ref: #140

The above example shows the commit summary is:

	a single line composed of four columns

	column 1 tells us the nature of the change or ACTION: new

	a short one-line summary of WHAT the commit is doing

The description or the body of the commit message delves into more detail
that is intended to serve as a history for developers on the team on how the
code is evolving. There are more immediate uses of this description however.
When you raise pull requests to make your contributions into the project, your
commit descriptions serve as explanations of WHY you fixed an issue. HOW you
fixed an issue is explained by code already. This is also the place where the
peer-reviewers will begin understanding your code. An unclear commit message is
the source of a lot of back and forth resulting in frustration between
reviewers and committers.

Reference: http://chris.beams.io/posts/git-commit/

5.6. How to report issues

A bug report means something is broken, preventing normal/typical use of Rubix.

Make sure the bug isn’t already resolved. Search for similar issues [https://github.com/qubole/rubix/issues].

Make sure you have clear instructions to reproduce your problem.

If possible, submit a Pull Request with a failing test, or;if you’d rather take matters into your own hands, try fix the bug yourselfMake a report of everything you know about the bug so far by opening an issue about it.When the bug is fixed, you can usually expect to see an update posted on the reporting issue.

5.7. Documentation Style Guide

	Documentation uses Sphinx [http://www.sphinx-doc.org/en/master/] documentation generator.

	Documentation is hosted on ReadTheDocs [http://rubix.readthedocs.io/en/latest/]

	File issues if you notice bugs in documentation or to request more information.
Label issues with doc

	Contributions to documentation is accepted as a Pull Request.

	Choose Markdown if you will add new pages

	Choose Rich Structured Text (rst) for indexes or if the documentation needs tables.

	To locally test docs changes run python -msphinx . _build inside docs directory

6. Release Notes

	6.1. Release 0.3.21 (next release)
	Fixes and Features

	6.2. Release 0.3.20
	Fixes and Features

	6.3. Release 0.3.19
	Fixes and Features

	6.4. Release 0.3.18
	Fixes and Features

	6.5. Release 0.3.17
	Fixes and Features

	6.6. Release 0.3.16
	Fixes and Features

	6.7. Release 0.3.15
	Fixes and Features

	6.8. Release 0.3.14
	Fixes and Features

	6.9. Release 0.3.13
	Fixes and Features

	6.10. Release 0.3.12
	Fixes and Features

	New Extensions

	6.11. Release 0.3.11

	6.12. Release 0.3.10

6.1. Release 0.3.21 (next release)

Fixes and Features

6.2. Release 0.3.20

Fixes and Features

	Fix for Presto cluster managers to return current NodeName from Presto’s NodeManager when it is available

6.3. Release 0.3.19

Fixes and Features

	Add an implementation of PrestoClusterManager that does not cache the list of worker nodes. Set rubix.cluster.manager.presto.class as com.qubole.rubix.prestosql.SyncPrestoClusterManager to use the new implementation.

6.4. Release 0.3.18

Fixes and Features

	Cleanup cache directories before initializing the cache to correctly measure available disk space

	Update cache status with each successful readRequest in case of parallel warmup to minimize the errors in accounting disk space. Maximum read-request length is also limited to 100MB by default to minimize accounting errors.

6.5. Release 0.3.17

Note

This release removes shading of thrift jars from rubix-spi. If you are using rubix-spi as a dependency, you will not find the thrift classes from this jar and you will need to use rubix-build jars instead.

Fixes and Features

	Improvements in consistent hashing logic to minimize redistributions during change in the membership of the cluster

	Moved shading of Thrift classes into a common sub-module rubix-build. Project is now traversable in IDE and mvn test works at the root. Clients should now include rubix-build artifact instead of including sub-modules independently

	Consider requests served from another node’s cache under cache hit

	Added total_system_source_mb_read stat in detailed metrics to show total data read from source: during read + warmups

6.6. Release 0.3.16

Fixes and Features

	Allow ClusterManager implementations to provide hostname and host-address instead of always using fixed ones

	Initialize caching stats in embedded-mode initialisation instead of CachingFileSystem initialisation

6.7. Release 0.3.15

Fixes and Features

	Run scavenger thread in daemon mode to allow jvm to exit. This prevents Spark apps from getting stuck during exit.

6.8. Release 0.3.14

Fixes and Features

	Fixed a regression from 0.3.11 which slows down split generation.

	Jmx stats refactoring to for better accounting of stats.

	Added support to plug in custom reporter for metrics that can send metrics to custom sinks. It can be set used by setting rubix.metrics.reporters=CUSTOM and providing implementation class using rubix.metric-collector.impl.

6.9. Release 0.3.13

Fixes and Features

	Generation numbers are added for files cached on disk to avoid several race conditions with invalidations

	Scavenger service has been added to reap the idle connections

	Local Data Server connections are now pooled

	Fail fast when BookKeeper or Local Data Server sockets cannot be created

	Use bounded thread pools BookKeeper and Local Data Server

	Parallel warmup is now enabled by default

6.10. Release 0.3.12

Fixes and Features

	Prevent RemoteFetchProcessor from stopping on exception

	Fail fast in BookKeeper startup if no disks are available for caching

	Fix over-estimation of disk usage by cache

	Enable FileSystem object cache in Rubix servers

	Allow configuring Rubix via a separate xml file. rubix.site.location can be used to provide location of Rubix configuration file

	Removed shading of GCS connector to fix caching over GoogleHadoopFileSystem

New Extensions

	CachingPrestoAliyunOSSFileSystem: Caching over AliyunOSSFileSystem

	CachingPrestoAdlFileSystem: Caching over AdlFileSystem

6.11. Release 0.3.11

	Fix a regression from 0.3.10 that caused wrong BlockLocations to be returned in CachingFileSystem#listLocatedStatus

	Presto’s native NodeManager can now be used as cluster manager in embedded mode

6.12. Release 0.3.10

	Bypass getFileInfo network call when staleness check is enabled

	Remove runtime dependencies to fix ClassNotFound errors in Embedded mode

	Ensure InputStream for DirectReadRequestChain is always closed

	Make CachingFileSystem extend FilterFileSystem

	Fix connection leak in RetryingPooledThriftClient that happens if a connection terminates with an exception

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Rubix Documentation

 		
 RubiX

 		
 Use Case

 		
 Supported Engines and Cloud Stores

 		
 Amazon S3

 		
 Installation Guide

 		
 Getting Started

 		
 Install RubiX

 		
 Start RubiX Daemons

 		
 Configure engine to use RubiX

 		
 Run your first RubiX-enhanced query

 		
 Data Engines

 		
 Presto

 		
 Spark

 		
 Hive

 		
 Configuration

 		
 Cache

 		
 Network

 		
 Cluster

 		
 Metrics

 		
 Metrics

 		
 BookKeeper Server Metrics

 		
 Client side Metrics

 		
 Contribution Guidelines

 		
 Developer Environment

 		
 Pre-requisites

 		
 Building

 		
 How to contribute code on Github

 		
 1. Create a branch and start working on your change.

 		
 2. Code

 		
 3. Commit

 		
 4. Update your branch

 		
 5. Push to remote

 		
 6. Issue a Pull Request

 		
 7. Respond to feedback

 		
 8. Postscript

 		
 Coding conventions

 		
 Testing

 		
 Robot Framework Integration Tests

 		
 Commit Message

 		
 Example

 		
 How to report issues

 		
 Documentation Style Guide

 		
 Release Notes

 		
 Release 0.3.21 (next release)

 		
 Fixes and Features

 		
 Release 0.3.20

 		
 Fixes and Features

 		
 Release 0.3.19

 		
 Fixes and Features

 		
 Release 0.3.18

 		
 Fixes and Features

 		
 Release 0.3.17

 		
 Fixes and Features

 		
 Release 0.3.16

 		
 Fixes and Features

 		
 Release 0.3.15

 		
 Fixes and Features

 		
 Release 0.3.14

 		
 Fixes and Features

 		
 Release 0.3.13

 		
 Fixes and Features

 		
 Release 0.3.12

 		
 Fixes and Features

 		
 New Extensions

 		
 Release 0.3.11

 		
 Release 0.3.10

