

GridAPPS-D’s Documentation

[image: _images/GridAPPS-D_Logo.png]

	Overview
	Conceptual Design Summary

	Architecture

	Definition of Terms

	References

	Version History

	Contact Us

	Installing GridAPPS-D
	Requirements

	Docker and prerequisite install on OS X

	Clone or download the repository

	Install Docker on Ubuntu

	Start the docker container services

	Start gridappsd

	Exiting the container and stopping the containers

	Restarting the containers

	Using GridAPPS-D
	Start GridAPPS-D platform

	Start a Simulation

	Stop GridAPPS-D platform

	Using Platform API

	Powergrid Model API

	Configuration File API

	Logging API

	Simulation API

	Hosting Application or Service

	GridAPPS-D Development Resources
	Eclipse IDE Setup

	Execution Workflow

	Messaging

	CIM Documentation

	Platform UML Diagrams

	Data Model
	IEEE 8500-Node Test Feeder

	Integrated Applications
	Volt-var Optimization (VVO)

	Visualization

	PNNL Applications (Release Cycle 2)

	State Estimator
	Objectives

	Design

	Testing and Validation

	Operating/Running

	References

	Model Validator
	Objectives

	Design

	Testing and Validation

	Operating/Running

	NREL Applications (Release Cycle 2)

	Distribution Optimal Power Flow for Real-Time Setpoint Dispatch
	Objectives

	Design

	Testing and Validation

	Operating/Running

	References

	API Documentation
	GridAPPS-D

	GOSS

	FNCS

	VVO

	GridLAB-D

	gov.pnnl.gridlabd.cim

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

Through a series of industry centric meetings and workshops, the U.S.
Department of Energy Office of Electricity Delivery and Energy Reliability
(DOE-OE) gathered input from utilities throughout the United States on
their experiences in implementing, or planning to implement, ADMS. The
results of these meetings are documented in a February 2015 report titled Voices of
Experience: Insights into Advanced Distribution Management Systems [https://www.smartgrid.gov/files/ADMS-Guide_2-11.2015.pdf].

The report documents the potential benefits to utilities in implementing
ADMS applications, and underscores the need for more affordability, a
timely path for deploying ADMS, and the development and deployment of ADMS
applications. The high cost and amount of time required for ADMS
deployment and application development was highlighted.

In response to these needs, DOE-OE has established an ADMS program with
this project specifically tasked with developing an open-source, standards
based ADMS application development platform - GridAPPS-D.

Conceptual Design Summary

A conceptual design for GridAPPS-D was created at the beginning of the project. The conceptual design is summarized below. The full design document may be downloaded from this link - GridAPPS-D Conceptual Design [http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26340.pdf]

This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as the project progresses.

Architecture

A conceptual architecture for the system has five key functional elements as shown in
Figure 1:

	Tools help developers enhance the functionality of their applications. Examples might include off-line power flow, optimization tool boxes, state estimators, statistical processing, etc.

	I/O allows convenient access to the power system model and data through standards-based queries and messages. Conversely, applications can send control signals to the simulator using standard message schemas.

	Development utilities include loggers, debuggers, access control, test managers, user interface toolkits, and other application support functions.

	Data bus is based on industry standards like IEC 61968 and 61970 (i.e. the Common Information Model), plus more to be identified.

	Distribution simulator represents the power system operating in real time. Initially, this will be GridLAB-D, but future versions may include EPRI’s OpenDSS, ns-3 for communications, and other federated co-simulators.

Figure 1 also shows the relationships between GridAPPS-D, the ADMS
application developer and commercial tools. Two different classes of data
flow are shown:

	Control and configuration data are shown with dashed lines; this allows the application developer to manage the platform.

	Data flowing as a part of an application are shown with solid lines.

For more detailed information about the architecture and design, see UML from the Functional Specification

[image: conceptual_design]

Figure 1: GridAPPS-D provides a method for developers (top) to run their
new applications on a real-time simulator with extensive modeling and tool
support (heavy box). GridAPPS-D is built around standard data models like
the CIM (center). It readily interfaces to existing software products
(right), which may also 1) use components of GridAPPS-D and 2) supplement or
replace the built-in distribution simulator (bottom), facilitating the
deployment of new ADMS applications to existing software products.

Definition of Terms

Process Manager - Process Manager keeps track of all the processes running on the platform. These processes may include simulators, requests, applications and other managers. It is also the starting point for a request received by the platform.

Configuration Manager - It receives simulation configuration request from Process Manager and parses it to build the necessary configuration files.

Data Manager - The data manager accesses the database to build the model files used by the simulator.

Simulation Manager - The simulation manager launches the simulator and other required applications such as the FNCS bridge, FNCS, and the VoltVar application. It is in charge of managing the timing of the simulation and reporting output from the simulation out to the simulation status topic.

FNCS-GOSS Bridge - Serves as a bridge between FNCS and Simulation Manager.

FNCS - FNCS is a network co-simulator used to communicate between simulator and FNCS-GOSS bridge

Platform - Refers to GridAPPS-D platform.

RC1 - Release Cycle 1.

Simulation - A real world distribution system currently done by GridLAB-D

Simulator - In current release GridLAB-D serves as the simulator.

VoltVar Application -

Vizualization - A web-based visualization application is developed in RC1 to view power system model with real time values from simulation result.

GOSS - Grid Optics Software System is a middleware architecture designed as a prototype future data analytics and integration platform

GridLAB-D - GridLAB-D is a distribution level powerflow simulator. It acts as the real world distribution system in GridAPPS-D.

Power System Model - IEEE 8500 model is used in RC1.

Model - See Power System Model

CIM - Common Information Model is a standard for representing electrical network and exchange information.

References

	CIT1

	W. H. Kersting, “Radial distribution test feeders,” in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, pp. 908-912 vol.2.

	CIT2

	R. F. Arritt and R. C. Dugan, “The IEEE 8500-node test feeder,” in IEEE PES T&D 2010, 2010, pp. 1-6.

	CIT3

	M. E. Baran and H. Ming-Yung, “Volt/VAr control at distribution substations,” in IEEE Transactions on Power Systems, vol. 14, pp. 312-318, 1999.

	CIT4

	V. Borozan, M. E. Baran, and D. Novosel, “Integrated volt/VAr control in distribution systems,” in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, pp. 1485-1490 vol.3.

	CIT5

	K. P. Schneider and J. C. Fuller, “Voltage control devices on the IEEE 8500 node test feeder,” in IEEE PES T&D 2010, 2010, pp. 1-6.

	CIT6

	I. Gorton et al., “GridOPTICS(TM) A Novel Software Framework for Integrating Power Grid Data Storage, Management and Analysis,” in System Sciences (HICSS), 2013 46th Hawaii International Conference on, 2013, pp. 2167-2176.

	CIT7

	S. Ciraci, J. Daily, J. Fuller, A. Fisher, L. Marinovici, and K. Agarwal, “FNCS: a framework for power system and communication networks co-simulation,” in Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative, Tampa, Florida, 2014, pp. 1-8.

	CIT8

	D. P. Chassin, J. C. Fuller, and N. Djilali, “GridLAB-D: An agent-based simulation framework for smart grids,” in Journal of Applied Mathematics, vol. 2014, no. 492320, pp. 1-12, 2014.

Version History

Version Name: Release Cycle 1 (RC1)

Release Date: May 2017

Version description: This is the first version for internal release of GridAPPS-D platform.
This is not ready for public use yet.

Functional requirements covered in this release:

	102/202 Command Interface

	301 Real-time Simulation Data

	310 Hosted Application, but short-cutting the registration process (partial)

	401 Distribution Co-Simulator (partial)

	402 Process Manager (partial)

	404 Data Manager (partial)

	405 Simulation Manager (partial)

	406 Power System Model Manager (partial)

	413 Platform Manager (encapsulating 401 and 403-406)

Contact Us

GridAPPS-D team can be reached at gridappsd@pnnl.gov

Installing GridAPPS-D

GridAPPS-D is available using docker containers

Requirements

	git

	docker version 17.12 or higher

	docker-compose version 1.16.1 or higher

Docker and prerequisite install on OS X

	
	git

	
	OS X requires xcode

xcode-select --install

Clone or download the repository

git clone https://github.com/GRIDAPPSD/gridappsd-docker
cd gridappsd-docker

Install Docker on Ubuntu

	run the docker-ce installation script

./docker_install_ubuntu.sh

	log out of your Ubuntu session and log back in to make the docker groups change active

Start the docker container services

./run.sh

	The run.sh does the following

	
	download the mysql dump file

	download the blazegraph data

	start the docker containers

	ingest the blazegraph data

	connect to the gridappsd container

Start gridappsd

Now we are inside the executing container

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/

Exiting the container and stopping the containers

Use Ctrl+C to stop gridappsd from running
exit
./stop.sh

Restarting the containers

./run.sh

Reconnecting to the running gridappsd container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Using GridAPPS-D

Start GridAPPS-D platform

Connect to the running GridAPPS-D container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Now we are inside the executing container. Start the platform.

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/ and click the menu button.

[image: home-image]

Start a Simulation

Choose Simulations from the menu.

[image: menu-image]

To run a demo simulation keep the selected and entered values as it is. Otherwise select/enter Powergrid, Simulation and Application configuration values.
Click the check mark to save the configuration.

[image: config-image]

Click the triangle (1) to start the simulation. Simulation Status (2) at the bottom of the screen will display the simulation log messages.

[image: start-image]

The demo simulation runs 2 minutes of load variations with the sample-app
controlling capacitor banks on the IEEE 8500-node test system [CIT2].
Most of Figure 1 is devoted to a map layout view of the test circuit, with updated
labels for capacitor banks and voltage regulators. On the right-hand side, strip
chart plots of the phase ABC voltages at capacitors and regulators, phase
ABC substation power levels, and phase ABC regulator taps are continually
updated. Capacitor bank labels on the circuit map view change between
OPEN and CLOSED to show the bank status as load varies and the VVO
application issues control commands. While GridAPPS-D runs the demo,
GridLAB-D [CIT8] simulates power system operation and exchanges
information with the sample-app using GOSS [CIT6] and FNCS [CIT7].

Following image shows the demo simulation output of the sample-app running on the IEEE 8500-node test system.

[image: rc3_overview_image0]

Stop GridAPPS-D platform

For an orderly shutdown of the platform:

Use Ctrl+C to stop gridappsd from running

Using Platform API

Applications and services can use either publish/subscribe mechanism or Python API to interact with GridAPPS-D platform.

Publish/Subscribe mechanism can be implemented using any of the language bindings for ActiveMQ messaging framework.

Python API wraps the publish/subscribe messaging and makes the interaction easier for Python apps/services.
For more information on Python API and how to use it, look at https://github.com/GRIDAPPSD/gridappsd-python and
https://github.com/GRIDAPPSD/gridappsd-sample-app.

Following sections describe the messaging APIs and the corresponding Python API function to interact with platform.
Where no Python API function is mentioned, following generic functions can be used.

send(self, topic, message)
get_response(self, topic, message, timeout=5)
subscribe(self, topic, callback, id=None)

Powergrid Model API

The Powergrid Model Data Manager API allows you to query the powergrid model data store. Six actions are available: Query_Model_names, Query, Query_Object, Query_Object_Types, Query_Model, and Put_Model

Query Model Info

Returns list of names/ids for models, substations, subregions, and regions for all available feeders.

Allowed parameter is:

	Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request:

{
 "requestType": "QUERY_MODEL_INFO",
 "resultFormat": "JSON"
}

Example Response for result format JSON:

{
 "models": [{
 "modelName": "ieee123",
 "modelId": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "stationName": "ieee123_Substation",
 "stationId": "_FE44B314-385E-C2BF-3983-3A10C6060022",
 "subRegionName": "large",
 "subRegionId": "_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
 "regionName": "ieee",
 "regionId": "_24809814-4EC6-29D2-B509-7F8BFB646437"
},

Query Model Names

Returns list of names for all available models.

Allowed parameter is:

	Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_MODEL_NAMES",
 "resultFormat": "JSON"
}

Example Response for result format JSON:

{
 "modelNames": ["_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
 "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "_5B816B93-7A5F-B64C-8460-47C17D6E4B0F",
 "_67AB291F-DCCD-31B7-B499-338206B9828F",
 "_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095",
 "_C1C3E687-6FFD-C753-582B-632A27E28507"]
}

Python API function:

query_model_names(self, model_id=None)

Query

Returns results from a generic SPARQL query against one or all models.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	queryString - SPARQL query, for more information see https://www.w3.org/TR/rdf-sparql-query/ See below for example.

	resultFormat – XML/JSON , The format you wish the result to be returned in. Can be either JSON or XML. Will return result bindings based on the select part of the query string. See below for example.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY",
 "resultFormat": "JSON",
 "queryString": "select ?line_name ?subregion_name ?region_name WHERE {?line rdf:type cim:Line.?line cim:IdentifiedObject.name ?line_name.?line cim:Line.Region ?subregion.?subregion cim:IdentifiedObject.name ?subregion_name.?subregion cim:SubGeographicalRegion.Region ?region.?region cim:IdentifiedObject.name ?region_name}"
}

Example Response:

{
"head": {
 "vars": ["line_name" , "subregion_name" , "region_name"]
 } ,
"results": {
 "bindings": [
 {
 "line_name": { "type": "literal" , "value": "ieee8500" } ,
 "subregion_name": { "type": "literal" , "value": "ieee8500_SubRegion" },
 "region_name": { "type": "literal" , "value": "ieee8500_Region" }
 }
]
}
}

Python API function:

query_data(self, query, database_type=POWERGRID_MODEL, timeout=30)

Query Object

Returns details for a particular object based on the object Id.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	objectID – mrid of the object you wish to return details for.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT",
 "resultFormat": "JSON",
 "objectId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"
}

Example Response:

{
 "head": {
 "vars": ["property" , "value"]
 } ,
 "results": {
 "bindings": [
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#Feeder.NormalEnergizingSubstation" } ,
 "value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/namespace/kb/sparql#_F1E8E479-5FA0-4BFF-8173-B375D25B0AA2" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID" } ,
 "value": { "type": "literal" , "value": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name" } ,
 "value": { "type": "literal" , "value": "ieee8500" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#PowerSystemResource.Location" } ,
 "value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/namespace/kb/sparql#_AD650B25-8A04-EA09-95D4-4F78DD0A05E7" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" } ,
 "value": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#Feeder" }
 }
]
 }
}

Python API function:

query_object(self, object_id, model_id=None):

Query Object Types

Returns the available object types in the model

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	resultFormat – XML/JSON /CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT_TYPES",
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "resultFormat": "JSON"
}

Example Response:

{
 "objectTypes": ["http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#TransformerTank",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#PowerTransformer",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#LinearShuntCompensator",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#EnergySource",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ACLineSegment",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#LoadBreakSwitch",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#EnergyConsumer"]
}

Python API function:

query_object_types(self, model_id=None)

Query Model

Returns all or part of the specified model. Can be filtered by object type

Allowed parameters are:

	modelId - when specified it searches against that model, if empty it will search against all models

	objectType (optional) – type of objects you wish to return details for.

	filter – SPARQL formatted filter string

	resultFormat – XML/JSON, Will return result in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_MODEL",
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "resultFormat": "JSON",
 "filter": "?s cim:IdentifiedObject.name 'q14733'",
 "objectType": "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode"
}

Example Response:

[{
 "id": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.ConnectivityNodeContainer": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.TopologicalNode": "_AE5EDB3A-9177-AEA6-78EF-3DDBA4557D94",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name": "q14733",
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type": "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode"
}]

Query Object Ids

Not yet available Returns details for a particular object based on the object Id.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	objectType (optional) – type of objects you wish to return details for.

	resultFormat – XML/JSON/CSV , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT_IDS",
 "resultFormat": "JSON",
 "objectType": "......."
}

Example Response:

 {
 "objectIDs": ["_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
 "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "_5B816B93-7A5F-B64C-8460-47C17D6E4B0F",
 "_67AB291F-DCCD-31B7-B499-338206B9828F",
 "_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095",
 "_C1C3E687-6FFD-C753-582B-632A27E28507"]
}

Query Object Dictionary By Type

Not yet available Returns details for either all objects of a particular type or a particular object based on the object Id in the same format as the model dictionary file.

Allowed parameters are:

	objectType – type of objects you wish to return details for.

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	objectID (optional) - mrid of the object you wish to return details for.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT_IDS",
 "resultFormat": "JSON",
 "objectType": "Capacitor. TODO what is cim type name......"
}

Example Response:

{
 "name": "c83",
 "mRID": "_8B8DB36D-CF7F-8C11-6C9C-E24B59C02366",
 "CN1": "83",
 "phases": "ABC",
 "kvar_A": 200.0,
 "kvar_B": 200.0,
 "kvar_C": 200.0,
 "nominalVoltage": 4160.0,
 "nomU": 4160.0,
 "phaseConnection": "Y",
 "grounded": true,
 "enabled": false,
 "mode": null,
 "targetValue": 0.0,
 "targetDeadband": 0.0,
 "aVRDelay": 0.0,
 "monitoredName": null,
 "monitoredClass": null,
 "monitoredBus": null,
 "monitoredPhase": null
},....

Put Model

Note

Future Capability. Not yet available.

Inserts a new model into the model repository. This could validate model format during insertion **Keep cim/model version in mind

Allowed parameters are:

	modelId – id to store the new model under, or update existing model

	modelContent – expects either RDF/XML or JSON formatted powergrid model

	inputFormat – XML/JSON

Configuration File API

Request all GridLAB-D configuration files

Generates all configuration files necessary to run a sumulation using the GridLAB-D simulator. Returns the diretory where all of the configuration files are stored.

	Required: configurationType, parameters[model_id,directory,simulationname,simulation_start_time,simulation_duration,simulation_id,simulation_broker_host,simulation_broker_port]

	Optional: parameters[i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name,solver_method]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D All",
 "parameters": {
 "load_scaling_factor": "1.0",
 "i_fraction": "1.0",
 "model_id": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "p_fraction": "0.0",
 "simulation_id": "12345",
 "z_fraction": "0.0",
 "simulation_broker_host": "localhost",
 "simulation_name": "ieee8500",
 "simulation_duration": "60",
 "simulation_start_time": "2018-02-18 00:00:00",
 "solver_method": "NR",
 "schedule_name": "ieeezipload",
 "simulation_broker_port": "61616",
 "directory": "/tmp/gridlabdsimulation/"
 }
}

Response:
<directory where files have been stored>

Request GridLAB-D Base File

Generates the main GLM file required by the GridLAB-D simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id, i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D Base GLM",
 "parameters": {
 "i_fraction": "1.0",
 "z_fraction": "0.0",
 "model_id": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "load_scaling_factor": "1.0",
 "schedule_name": "ieeezipload",
 "p_fraction": "0.0"
 }
}

Response:

object regulator_configuration {
 name "rcon_VREG4";
 connect_type WYE_WYE;
 Control MANUAL; // OUTPUT_VOLTAGE;
.......

Request GridLAB-D Symbols File

Generates the symbols file with XY coordinates used by the GridLAB-D simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D Symbols",
 "parameters": {
 "model_id": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"
 }
}

Response:

{"feeder":[
{"swing_nodes":[
{"name":"source","bus":"sourcebus","phases":"ABC",
 "nominal_voltage":66395.3,"x1":1693780.0,"y1":1.22775777570982E7}
]},
{"capacitors":[
.......

Request CIM Dictionary file

Generates a dictionary file which maps between the mrid identifiers used by the CIM model and the other names of model objects used by simulators.

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Dictionary",
 "parameters":{"model_id":"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"}
 }

Response:

{"feeders":[
{"name":"ieee8500",
"mRID":"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"substation":"ieee8500_Substation",
"substationID":"_F1E8E479-5FA0-4BFF-8173-B375D25B0AA2",
"subregion":"large",
"subregionID":"_A1170111-942A-6ABD-D325-C64886DC4D7D",
"region":"ieee",
"regionID":"_6F10E278-12DC-9CBB-D2D9-D09582538F8A",
"capacitors":[
{"name":"capbank0a","mRID":"_A5866105-A527-F682-C982-69807C0E088B","CN1":"r42246","phases":"A","kvar_A":400.0,"kvar_B":0.0,"kvar_C":0.0,"nominalVoltage":12470.0,"nomU":7200.0,"phaseConnection":"Y","grounded":true,"enabled":true,"mode":"reactivePower","targetValue":-50000.0,"targetDeadband":-500000.0,"aVRDelay":100.0,"monitoredName":"cap_3a","monitoredClass":"ACLineSegment","monitoredBus":"q16642","monitoredPhase":"A"},
.......
],
"regulators":[
{"bankName":"FEEDER_REG","size":"3","bankPhases":"ABC","tankName":["feeder_rega","feeder_regb","feeder_regc"],"endNumber":[2,2,2],"endPhase":["A","B","C"],"rtcName":["feeder_rega","feeder_regb","feeder_regc"],"mRID":["_330E7EDE-2C70-8F72-B183-AA4BA3C5E221","_0EBF840D-7BE9-0D81-03A0-315D617ECA27","_BBB3984D-2A67-7E15-0763-635C5B06A348"],"monitoredPhase":["A","B","C"],"TapChanger.tculControlMode":["volt","volt","volt"],"highStep":[32,32,32],"lowStep":[0,0,0],"neutralStep":[16,16,16],"normalStep":[16,16,16],"TapChanger.controlEnabled":[true,true,true],"lineDropCompensation":[false,false,false],"ltcFlag":[true,true,true],"RegulatingControl.enabled":[true,true,true],"RegulatingControl.discrete":[true,true,true],"RegulatingControl.mode":["voltage","voltage","voltage"],"step":[1.0125,1.0125,1.0063],"targetValue":[126.5000,126.5000,126.5000],"targetDeadband":[2.0000,2.0000,2.0000],"limitVoltage":[0.0000,0.0000,0.0000],"stepVoltageIncrement":[0.6250,0.6250,0.6250],"neutralU":[7200.0000,7200.0000,7200.0000],"initialDelay":[15.0000,15.0000,15.0000],"subsequentDelay":[2.0000,2.0000,2.0000],"lineDropR":[0.0000,0.0000,0.0000],"lineDropX":[0.0000,0.0000,0.0000],"reverseLineDropR":[0.0000,0.0000,0.0000],"reverseLineDropX":[0.0000,0.0000,0.0000],"ctRating":[300.0000,300.0000,300.0000],"ctRatio":[1500.0000,1500.0000,1500.0000],"ptRatio":[60.0000,60.0000,60.0000]},
.......
],
"solarpanels":[
],
"batteries":[
],
"switches":[
{"name":"2002200004641085_sw","mRID":"_F5E6D212-C700-C94A-ED54-E00E8230C19C","CN1":"q14734","CN2":"d5587291-3_int","phases":"ABC","nominalVoltage":12470.0,"normalOpen":false},
.......
],
"measurements":[
 {"name":"RatioTapChanger_VREG2","mRID":"02b818b7-fab3-4529-b3b3-fa7cb026eab9","ConductingEquipment_mRID":"_39BD981D-C57D-49E9-1209-9DF79B93A9EA","Terminal_mRID":"_4082AE8B-FAF3-34A9-26A6-6769C16CF78D","measurementType":"Pos","phases":"A","MeasurementClass":"Discrete","ConductingEquipment_type":"PowerTransformer","ConductingEquipment_name":"VREG2","ConnectivityNode":"190-8593"},
{"name":"PowerTransformer_hvmv_sub_Power","mRID":"034241b0-c4f9-4f83-9b65-5dcbeab6b029","ConductingEquipment_mRID":"_B32F64E3-AAD3-FA3F-254B-CF74D12DA290","Terminal_mRID":"_ECDEEB50-1B94-9B13-A797-DED1326D80A5","measurementType":"VA","phases":"B","MeasurementClass":"Analog","ConductingEquipment_type":"PowerTransformer","ConductingEquipment_name":"hvmv_sub","ConnectivityNode":"hvmv_sub_hsb"},

.......
]
}]}

Request CIM Feeder Index file

Generates a list of the feeders available powergrid model data store

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Feeder Index",
 "parameters":{"model_id":"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"}
 }

Response:

{"feeders":[
{"name":"ieee123","mRID":"_C1C3E687-6FFD-C753-582B-632A27E28507","substationName":"ieee123_Substation","substationID":"_FE44B314-385E-C2BF-3983-3A10C6060022","subregionName":"large","subregionID":"_1CD7D2EE-3C91-3248-5662-A43EFEFAC224","regionName":"ieee","regionID":"_24809814-4EC6-29D2-B509-7F8BFB646437"},
{"name":"ieee13nodecktassets","mRID":"_5B816B93-7A5F-B64C-8460-47C17D6E4B0F","substationName":"ieee13nodecktassets_Substation","substationID":"_D5B23536-54A7-984E-78F2-B136E9B6380E","subregionName":"test","subregionID":"_C43D4535-5786-01CD-C3C4-69AAC7945AD2","regionName":"ieee","regionID":"_85D8A951-64F2-4787-C922-4AE0AA99A874"},
.......
]}

Request Simulation Output Configuration file

Generates file containing objects and properties with measurements avilable in the selected model

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Feeder Index",
 "parameters":{"model_id":"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"}
 }

Response:

{
 "cap_capbank0a": [
 "switchA",
 "shunt_A",
 "voltage_A"
],

 "cap_capbank1b": [
 "switchB",
 "voltage_B",
 "shunt_B"
],
 "cap_capbank2c": [
 "voltage_C",
 "switchC",
 "shunt_C"
],
 "cap_capbank0b": [
 "voltage_B",
 "switchB",
 "shunt_B"
],.......

Request YBus Export Configuration file

Generates file containing ybus configuration for the selected simulation. Simulation must be running.

	Required: configurationType, parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"YBus Export",
 "parameters":{"simulation_id":"12345"}
 }

Response:

{
 yParseFilePath":"/tmp/gridappsd_tmp/1129698954/base_ysparse.csv",
 "nodeListFilePath":"/tmp/gridappsd_tmp/1129698954/base_nodelist.csv",
 "summaryFilePath":"/tmp/gridappsd_tmp/1129698954/base_summary.csv"
}

Logging API

All processes should publish their log messages with process status to Process Manager. These processes include applications, simulations, services, and test runs.

Topic:

Log message with process status should be published on the following topic. Process id should be attached to the topic name at the end.

goss.gridappsd.simulation.log.[simulation_id]
goss.gridappsd.service.log.[service_id]
goss.gridappsd.application.log.[app_id]
goss.gridappsd.test.log.[test_id]

Message structure:

{
 "source": "",
 "processId": "",
 "timestamp": "",
 "processStatus": "[STARTED|STOPPED|RUNNING|ERROR|PASSED|FAILED]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

Receiving multiple logs:

User can either subscribe to individual process’s log by subscribing to topics mentioned above or receive all logs of a type by subscribing to following topics.

goss.gridappsd.simulation.log.*
goss.gridappsd.service.log.*
goss.gridappsd.application.log.*
goss.gridappsd.test.log.*

Similarly, to receive to all logs subscribe to following topic:

goss.gridappsd.*.log.*

Simulation API

Start a Simulation

Returns simulation id.

Queue:

goss.gridappsd.process.request.simulation

Example Request:

{

power_system_config: the CIM model to be used in the simulation

"power_system_config": {
 "GeographicalRegion_name": "ieee8500nodecktassets_Region",
 "SubGeographicalRegion_name": "ieee8500nodecktassets_SubRegion",
 "Line_name": "ieee8500"
},

simulation_config: the paramaters used by the simulation

"simulation_config": {
 "start_time": "1248134400",
 "duration": "120",
 "simulator": "GridLAB-D",
 "timestep_frequency": "1000",
 "timestep_increment": "1000",
 "simulation_name": "ieee8500",
 "power_flow_solver_method": "NR",

simulation_output: the objects and fields to be returned by the simulation

"simulation_output": {
 "output_objects": [{
 "name": "rcon_FEEDER_REG",
 "properties": ["connect_type",
 "Control",
 "control_level",
 "PT_phase",
 "band_center",
 "band_width",
 "dwell_time",
 "raise_taps",
 "lower_taps",
 "regulation"]
 },
 ]
},

model creation config: the paramaters used to generate the input file for the simulation

 "model_creation_config": {
 "load_scaling_factor": "1",
 "schedule_name": "ieeezipload",
 "z_fraction": "0",
 "i_fraction": "1",
 "p_fraction": "0"
 }
},

application config: inputs to any other applications that should run as part of the simluation, in this case the voltvar application

"application_config": {
 "applications": [{
 "name": "vvo",
 "config_string": "{\"static_inputs\": {\"ieee8500\" : {\"control_method\": \"ACTIVE\", \"capacitor_delay\": 60, \"regulator_delay\": 60, \"desired_pf\": 0.99, \"d_max\": 0.9, \"d_min\": 0.1,\"substation_link\": \"xf_hvmv_sub\",\"regulator_list\": [\"reg_FEEDER_REG\", \"reg_VREG2\", \"reg_VREG3\", \"reg_VREG4\"],\"regulator_configuration_list\": [\"rcon_FEEDER_REG\", \"rcon_VREG2\", \"rcon_VREG3\", \"rcon_VREG4\"],\"capacitor_list\": [\"cap_capbank0a\",\"cap_capbank0b\", \"cap_capbank0c\", \"cap_capbank1a\", \"cap_capbank1b\", \"cap_capbank1c\", \"cap_capbank2a\", \"cap_capbank2b\", \"cap_capbank2c\", \"cap_capbank3\"], \"voltage_measurements\": [\"nd_l2955047,1\", \"nd_l3160107,1\", \"nd_l2673313,2\", \"nd_l2876814,2\", \"nd_m1047574,3\", \"nd_l3254238,4\"], \"maximum_voltages\": 7500, \"minimum_voltages\": 6500,\"max_vdrop\": 5200,\"high_load_deadband\": 100,\"desired_voltages\": 7000, \"low_load_deadband\": 100,\"pf_phase\": \"ABC\"}}}"
 }]
}

}

Subscribe to Simulation Output

Topic:

/topic/goss.gridappsd.simulation.output.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "YYYY-MM-DDThh:mm:ss.sssZ",
 "measurement" : {
 "measurement_mrid" : "123a456b-789c-012d-345e-678f901a234b"
 "magnitude" : 3410.456,
 "angle" : -123.456
 }
 }
}

Subscribe to Simulation Logs

Topic:

/topic/goss.gridappsd.simulation.log.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "source": "",
 "processId": "",
 "timestamp": "",
 "processStatus": "[STARTED|STOPPED|RUNNING|ERROR|PASSED|FAILED]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

Send Input to Simulation

Topic:

/topic/goss.gridappsd.fncs.input

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "2018-01-08T13:27:00.000Z",
 "difference_mrid" : "123a456b-789c-012d-345e-678f901a235c"
 "reverse_differences" : [
 {
 "object" : "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute" : "ShuntCompensator.sections",
 "value" : "1"
 },
 {
 "object" : "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute" : "ShuntCompensator.sections",
 "value" : "0"
 }
]
 "forward_differences" : [
 {
 "object" : "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute" : "ShuntCompensator.sections",
 "value" : "0"
 },
 {
 "object" : "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute" : "ShuntCompensator.sections",
 "value" : "1"
 }
]
 }
 }
}

Hosting Application or Service

Supported Application or Service Types

	Python

	EXE

Hosting Application or Service

Developers can create application and services using GridAPPS-D API and use following instruction to host it with the platform.
For example of application and service working with GridAPPS-D, please see: https://github.com/GRIDAPPSD/gridappsd-sample-app and
https://github.com/GRIDAPPSD/gridappsd-state-estimator

	Create proper folder structure for the application or service.

Following is the recommended structure for applications or services working with gridappsd using sample-app as an example:

For application:

.
├── README.md
└── my_app
 ├── app
 │ ├── [application exe or pythod code]
 ├── requirements.txt
 ├── my_app.config
 └── setup.py

For service:

.
├── README.md
└── my_service
 ├── service
 │ ├── [service exe or pythod code]
 ├── requirements.txt
 ├── my_service.config
 └── setup.py

Where config file is used by GridAPPS-D to launch the application or service from inside the gridappsd container.

Example config for application:

{
 "id":"sample_app",
 "description":"GridAPPS-D Sample Application app",
 "creator":"PNNL",
 "inputs":[],
 "outputs":[],
 "options": ["(simulationId)"],
 "type":"PYTHON",
 "execution_path": "sample_app/runsample.py",
 "launch_on_startup":false,
 "prereqs":["fncs","fncsgossbridge"],
 "multiple_instances":true
}

Example config for service:

{
 "id":"state-estimator",
 "description":"State Estimator",
 "creator":"PNNL",
 "inputs":["/topic/goss.gridappsd.fncs.output","/topic/goss.gridappsd.se.input"],
 "outputs":["/topic/goss.gridappsd.se.requests","/topic/goss.gridappsd.se.system_state"],
 "static_args":["(simulationId)"],
 "execution_path":"service/bin/state-estimator.out",
 "type":"EXE",
 "launch_on_startup":false,
 "prereqs":[],
 "multiple_instances":true,
 "environmentVariables":[]
}

	Clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (refered to as gridappsd-docker repository) next to this repository (they should both have the same parent folder)

.
├── gridappsd-docker
└── gridappsd-sample-app

	Add application or service to platform

In order to add your application/service to the container you will need to modify the docker-compose.yml file included in the gridappsd-docker repository.
Under the gridappsd service there is an example volumes leaf that is commented out. Uncomment and modify these lines to add the path for your application and config file.
Adding these lines will mount the application/service on the container’s filesystem when the container is started.

For application:

volumes:
- ~/git/gridappsd-sample-app/sample_app:/gridappsd/applications/sample_app
- ~/git/gridappsd-sample-app/sample_app/sample_app.config:/gridappsd/applications/sample_app.config

 volumes:
 - ~/git/[my_app_directory]/[my_app]:/gridappsd/applications/[my_app]
 - ~/git/[my_app_directory]/[my_app]/[my_app.config]:/gridappsd/applications/[my_app.config]

For service:

volumes:
- ~/git/gridappsd-sample-app/sample_app:/gridappsd/applications/sample_app
- ~/git/gridappsd-sample-app/sample_app/sample_app.config:/gridappsd/applications/sample_app.config

 volumes:
 - ~/git/[my_service_directory]/[my_service]:/gridappsd/services/[my_service]
 - ~/git/[my_service_directory]/[my_service]/[my_service.config]:/gridappsd/services/[my_service.config]

GridAPPS-D Development Resources

This section is useful for developers for understanding or changing platform’s internal workings and for those wishing to develop their own applications for GridAPPS-D.
For developing application for GridAPPS-D platform see Using GridAPPS-D .

Eclipse IDE Setup

	
	Download or clone the repository from github

	
	Install github desktop https://desktop.github.com/ or sourcetree https://www.atlassian.com/software/sourcetree/overview and Clone the GOSS-GridAPPS-D repository (https://github.com/GRIDAPPSD/GOSS-GridAPPS-D)

	Or download the source (https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/archive/master.zip)

	Install java 1.8 SDK and set JAVA_HOME variable

	Install Eclipse http://www.eclipse.org/downloads/packages/release/Mars/1 (Mars 4.5.1 or earlier, 4.5.2 appears to have bugs related to bundle processing) TODO what about neon?

	Open eclipse with workspace set to GOSS-GridAPPS-D download location, eg. C:UsersusernameDocumentsGOSS-GridAPPS-D

	Install BNDTools plugin: Help->Install New Software->Work with: http://dl.bintray.com/bndtools/bndtools/3.0.0 and Install Bndtools 3.0.0 or earlier

	
	Import projects into workspace

	
	File->Import General->Existing Projects into workspace

	Select root directory, GOSS-GridAPPS-D download location

	Select cnf, pnnl.goss.gridappsd

	If errors are detected, Right click on the pnnl.goss.gridappsd project and select release, then release all bundles

	
	If you would like to you a local version of GOSS-Core (Optional)

	
	Update cnf/ext/repositories.bnd

	Select source view and add the following as the first line

	aQute.bnd.deployer.repository.LocalIndexedRepo;name=GOSS Local Release;local=/GOSS-Core2/cnf/releaserepo;pretty=true,

	verify by switching to bndtools and verify that there are packages under GOSS Local Relase

	Open pnnl.goss.gridappsd/bnd.bnd, Rebuild project, you should not have errors

	Open pnnl.goss.gridappsd/run.bnd.bndrun and click Run OSGI

Execution Workflow

[image: ../_images/RC1_workflow.png]
Process Manager - The workflow begins when a simulation request is sent to the request topic monitored by the Process Manager, the process manager gathers the necessary configurations from the Configuration Manager. Then sends the configuration to the simulation manager to run the simulation.

Configuration Manager - The configuration manager parses the request and builds the necessary configuration files. It also uses the data manager to pull the model data from the CIM database.

Data Manager - The data manager accesses the CIM database to build the model files used by the simulator.

Simulation Manager - The simulation manager launches the simulator and other required applications such as the FNCS bridge, FNCS, and the VoltVar application. It is in charge of managing the timing of the simulation and reporting output from the simulation out to the simulation status topic.

FNCS Bridge - Serves as input and output from the simulator to the rest of GridAPPS-D, receives initialization, timestep, update, and finalize requests from the simulation manager and other applications, such as voltvar. It also publishes output from the simulator on a pre-defined topic for the simulation manager and other applications to subscribe to.

Simulator - In this case GridLAB-D serves as the simulator.

Hosted Application - Applications can be developed to use the data generated by the simulation and submit feedback and updates to the simulator. Two examples of this have been developed in RC1, the VoltVar application and a vizualization application

Log Manager - Process Manager recieves a log message. It retrieves the username associated with the message and forwards the message and username to Log Manager. Log Manager writes the message on a file and if store_to_db key is true in log message then log manager calls the data manager to store the log message in the database.

Messaging

Please see Start a Simulation for more details.

CIM Documentation

This section summarizes the use of a reduced-order CIM 1 to support
feeder modeling for the volt-var application in Release Cycle 1 (RC1).
The full CIM includes over 1100 tables in SQL, each one corresponding to
a UML class, enumeration or datatype. In RC1, we’re using approximately
100 such entities, mapped onto 100+ tables in SQL. Later versions of
GridAPPS-D will use a triple-store or graph database, both of which
appear to be better suited for CIM.

The CIM subset described here is based on the profile adopted for the
most recent distribution CIM interoperability test, which was held in
2011 at EDF. For GridAPPS-D, we have updated that profile for
compatibility with the most recent CIM base standard.

Class Diagrams for the Profile

Figure 1 through Figure 11 present the UML class diagrams generated from
Enterprise Architect 2. These diagrams provide an essential roadmap
for understanding:

	How to ingest CIM XML from various sources into the database

	How to generate native GridLAB-D input files from the database

For those unfamiliar with UML class diagrams:

	Lines with an arrowhead indicate class inheritance. For example, in
Figure 1, ACLineSegment inherits from Conductor, ConductingEquipment,
Equipment and then PowerSystemResource. ACLineSegment inherits all
attributes and associations from its ancestors (e.g. length), in
addition to its own attributes and ancestors.

	Lines with a diamond indicate composition. For example, in Figure 1,
ConnectivityNodes make up a TopologicalNode, and then
TopologicalNodes make up a TopologicalIsland.

	Lines without a terminating symbol are associations. For example, in
Figure 1, ACLineSegment has (through inheritance) a BaseVoltage,
Location and EquipmentContainer.

	Italicized names at the top of each class indicate the ancestor (aka
superclass), in cases where the ancestor does not appear on the
diagram. For example, in Figure 1, PowerSystemResource inherits from
IdentifiedObject.

Please see OSPRREYS_RC1.eap 3 in the repository 4 on GitHub
for the latest updates. The EnterpriseArchitect file includes a
description of each class, attribute and association. It can also
generate HTML documentation of the CIM, with more detail than provided
here.

The diagrammed UML associations have a role and cardinality at each end,
source and target. In practice, only one end of each association is
profiled and implemented in SQL. In some cases, the figure captions
indicate which end, but see the CIM profile for specific definitions, as
described in the object diagram section.

Nearly every CIM class inherits from IdentifiedObject, from which we use
two attributes:

	mRID is the “master identifier” that must be unique and persistent
among all instances. It’s often used as the RDF resource identifier,
and is often a GUID.

	Name is a human-readable identifier that need not be unique.

[image: image0]

Figure 1: Placement of ACLineSegment into a Line (aka Feeder). In
GridAPPS-D, the Line is the EquipmentContainer for all power system
components and the ConnectivityNodeContainer for all nodes. It also
corresponds to one TopologicalIsland. It’s part of a
SubGeographicalRegion and GeographicalRegion for proper context with
other CIM models. For visualization, ACLineSegment can be drawn from a
sequence of PositionPoints associated via Location. The Terminals are
free-standing; two of them will “reverse-associate” to the ACLineSegment
as ConductingEquipment, and each terminal also has one ConnectivityNode.
In RC1, we have a one-to-one association between ConnectityNode and
TopologicalNode. The AngleRefTopologicalNode association can be used to
identify the swing bus for GridLAB-D. Otherwise, we’re only using the
topology classes to facilitate state variables, as described in Figure
11. The Terminal:phases attribute is not used; instead, phases will be
defined in the ConductingEquipment instances. The associated
BaseVoltage:nominalVoltage attribute is important for many of the
classes that don’t have their own rated voltage attributes, for example,
EnergyConsumer.

[image: image1]

Figure 2: There are four different ways to specify ACLineSegment
impedances. In all cases, Conductor:length is required. The first way is
to specify the individual ACLineSegment attributes, which are sequence
impedances and admittances, leaving PerLengthImpedance null. The second
way is to specify the same attributes on an associated
PerLengthSequenceImpedance, in which case the ACLineSegment attributes
should be null. The third way is to associate a PerLengthPhaseImpedance,
leaving the ACLineSegment attributes null. Only conductorCount from 1 to
3 is supported, and there will be 1, 3 or 6 reverse-associated
PhaseImpedanceData instances that define the lower triangle of the Z and
Y matrices per unit length. The sequenceNumber goes from 1 to
N+N*(N-1)/2 in column order. The fourth way to specify impedance is by
wire/cable and spacing data, as described with Figure 10. If there are
ACLineSegmentPhase instances reverse-associated to the ACLineSegment,
then per-phase modeling applies. There are several use cases for
ACLineSegmentPhase: 1) single-phase or two-phase primary, 2) low-voltage
secondary using phases s1 and s2, 3) associated wire data where the
neutral exists, 4) associated wire data where the phase wires are
different. It is the application’s responsibility to propagate phasing
through terminals to other components, and to identify any miswiring.

[image: image2]

Figure 3: The EnergySource is balanced three-phase, representing a
transmission system source (this is probably not the way we’ll model
distributed generation in future versions). The EnergyConsumer is a ZIP
load, possibly unbalanced, with an associated LoadResponse instance
defining the ZIP coefficients. For three-phase delta loads, the
phaseConnection is D and the three reverse-associated
EnergyConsumerPhase instances will have phase=A for the AB load, phase=B
for the BC load and phase=C for the AC load. A three-phase wye load may
have either Y or Yn for the phaseConnection. Single-phase and two-phase
loads, including secondary loads, should have phaseConnection=I (for
individual).

[image: image3]

Figure 4: There are seven different kinds of Switch supported in the
CIM, and all of them have zero impedance. They would all behave the same
in power flow analysis, and all would require many more attributes than
are defined in CIM to support protection analysis. The use cases for
SwitchPhase include 1) single-phase, two-phase and secondary switches,
2) one or two conductors open in a three-phase switch or 3)
transpositions, in which case phaseSide1 and phaseSide2 would be
different.

[image: image4]

Figure 5: On the left, LinearShuntCompensator and
LinearShuntCompensatorPhase define capacitor banks, in a way very
similar to EnergyConsumer in Figure 3. The kVAR ratings must be
converted to susceptance based on the nominal voltage, nomU. Note that
aVRDelay is really a capacitor control parameter, to be used in
conjunction with RegulatingControl on the right-hand side. The
RegulatingControl associates to the controlled capacitor bank via
RegulatingCondEq, and to the monitored location via Terminal. There is
no support for a PT or CT ratio, so targetDeadband and targetValue have
to be in primary volts, amps, vars, etc.

[image: image5]

Figure 6: PowerTransformers may be modeled with or without tanks, and in
both cases vectorGroup should be specified according to IEC transformer
standards (e.g. Dy1 for many substation transformers). The case without
tanks is most suitable for balanced three-phase transformers that won’t
reference catalog data; any other case should use tank-level modeling.
In the tankless case, each winding will have a PowerTransformerEnd that
associates to both a Terminal and a BaseVoltage, and the parent
PowerTransformer. The impedance and admittance parameters are defined by
reverse-associated TransformerMeshImpedance between each pair of
windings, and a reverse-associated TransformerCoreAdmittance for one
winding. The units for these are ohms and siemens based on the winding
voltage, rather than per-unit. WindingConnection is similar to
PhaseShuntConnectionKind, adding Z and Zn for zig-zag connections and A
for autotranformers. If the transformer is unbalanced in any way, then
TransformerTankEnd is used instead of PowerTransformerEnd, and then one
or more TransformerTanks may be used in the parent PowerTransformer.
Some of the use cases are 1) center-tapped secondary, 2) open-delta and
3) EHV transformer banks. Tank-level modeling is also required is using
catalog data, as described with Figure 9.

[image: image6]

Figure 7: A RatioTapChanger can represent a transformer tap changer on
the associated TransformerEnd. The RatioTapChanger has some parameters
defined in a direct-associated TapChangerControl, which inherits from
RegulatingControl some of the same attributes used in capacitor controls
(Figure 5). Therefore, a line voltage regulator in CIM includes a
PowerTransformer, a RatioTapChanger, and a TapChangerControl. The CT and
PT parameters of a voltage regulator can only be described via the
AssetInfo mechanism, described with Figure 8.

[image: image7]

Figure 8: Many distribution software packages use the concept of catalog
data, aka library data, especially for lines and transformers. We use
the Asset and AssetInfo packages to implement this in CIM. Here, the
TapChangerInfo class includes the CT rating, CT ratio and PT ratio
parameters needed for line drop compensator settings in voltage
regulators. Catalog data is a one-to-many, and sometimes a many-to-many,
relationship. For these lookups, we create an Asset instance that has
one association to AssetInfo, and one-to-many associations to
PowerSystemResources. In this case, many TapChangers can share the same
TapChangerInfo data, which saves space and provides consistency.

[image: image8]

Figure 9: The catalog mechanism for transformers will associate a
TransformerTank (Figure 6) with TransformerTankInfo (here), via the
one-to-many mechanism described in Figure 8. The PowerTransformerInfo
collects TransformerTankInfo by reverse association, but it does not
link with PowerTransformer. In other words, the physical tanks are
cataloged because transformer testing is done on tanks. One possible use
for PowerTransformerInfo is to help organize the catalog. It’s important
that TransformerEndInfo:endNumber (here) properly match the
TransformerEnd:endNumber (Figure 6). The shunt admittances are defined
by NoLoadTest on a winding / end, usually just one such test. The
impedances are defined by a set of ShortCircuitTests; one winding / end
will be energized, and one or more of the others will be grounded in
these tests.

[image: image9]

Figure 10: The catalog / library mechanism for ACLineSegment will have a
WireSpacingInfo associated as in Figure 9. This will indicate whether
the line is overhead or underground. phaseWireCount and phaseWireSpacing
define optional bundling, so these will be 1 and 0 for distribution. The
number of phase and neutral conductors is actually defined by the number
of reverse-associated WirePosition instances. For example, a three-phase
line with neutral would have four of them, with phase = A, B, C and N.
On the right-hand side, concrete classes OverheadWireInfo,
TapeShieldCableInfo and ConcentricNeutralCableInfo may be associated (as
in Figure 9) to either ACLineSegment or ACLineSegmentPhase. The
association to ACLineSegment only applies for three-conductor,
three-phase lines all using the same wire data, or to supply just the
ratedCurrent attribute. All other use cases would associate to
ACLineSegmentPhase. It’s the application’s responsibility to calculate
impedances from this data. In particular, soil resistivity and
dielectric constants are not included in the CIM. Typical dielectric
constant values might be defined for each WireInsulationKind.

[image: image10]

Figure 11: The CIM state variables package might be used to mimic sensor
locations and values on the distribution system. Voltages are measured
on TopologicalNodes, power flows are measured at Terminals, step
positions are measured on TapChangers, status is measured on
ConductingEquipment, and on/off state is measured on ShuntCompensators.
The “injections” have been included here, but there may not be a use
case for them in distribution. On the other hand, we would need an
SvCurrent, which was probably not included in the CIM because of its
transmission system heritage. Attributes for sensor characteristics
would also have to be added in future versions of GridAPPS-D.

Typical Queries

These queries focus on requirements of the first volt-var application.

	Capacitors (Figure 5, Figure 12, Figure 13, Figure 14)

	Create a list of capacitors with bus name (Connectivity Node in
Figure 1), kVAR per phase, control mode, target value and target
deadband

	For a selected capacitor, update the control mode, target value,
and target deadband

	Regulators (Figure 7, Figure 8, Figure 12, Figure 29)

	List all transformers that have a tap changer attached, along with
their bus names and kVA sizes

	Given a transformer that has a tap changer attached, list or
update initialDelay, step, subsequentDelay, mode, targetDeadband,
targetValue, limitVoltage, lineDropCompensation, lineDropR,
lineDropX, reverseLineDropR and reverseLineDropX

	Transformers (Figure 6, Figure 9)

	Given a bus name or load (Figure 3), find the transformer serving
it (Figure 16, Figure 19)

	Find the substation transformer, defined as the largest
transformer (by kVA size and or highest voltage rating)

	List the transformer catalog (Figure 9, Figure 20) with name,
highest ratedS, list of winding ratedU in descending order, vector
group (https://en.wikipedia.org/wiki/Vector_group used with
connectionKind and phaseAngleClock), and percent impedance

	List the same information as in item c, but for transformers
(Figure 6) and also retrieving their bus names. Note that a
transformer can be defined in three ways

	Without tanks, for three-phase, multi-winding, balanced
transformers (Figure 16 and Figure 17).

	With tanks along with TransformerTankInfo (Figure 9) from a
catalog of “transformer codes”, which may describe balanced
or unbalanced transformers. See Figure 19 and Figure 20.

	With tanks for unbalanced transformers, and
TransformerTankInfo created on-the-fly. See Figure 19 and
Figure 20.

	Given a transformer (Figure 6), update it to use a different
catalog entry (TransformerTankInfo in Figure 9)

	Lines (Figure 2, Figure 10, Figure 12)

	List the line and cable catalog entries that meet a minimum
ratedCurrent and specific WireUsageKind. For cables, be able to
specify tape shield vs. concentric neutral, the
WireInsulationKind, and a minimum insulationThickness. (Figure 27)

	Given a line segment (Figure 2) update to use a different linecode
(Figure 10, Figure 26)

	Given a bus name, list the ACLineSegments connected to the bus,
along with the length, total r, total x, and phases used. There
are four cases as noted in the caption of Figure 2, and see Figure
23 through Figure 26.

	Given a bus name, list the set of ACLineSegments (or
PowerTransformers and Switches) completing a path from it back to
the EnergySource (Figure 3). Normally, the applications have to
build a graph structure in memory to do this, so it would be very
helpful if a graph/semantic database can do this.

	Voltage and other measurements (Figure 1, Figure 11)

	Given a bus, attach a voltage measurement point (SvVoltage, Figure
30)

	List all voltage measurement points and their buses, and for each
bus, list the phases actually present

	For tap changer position (SvTapStep, Figure 31), attach and list
measurements as in items a and b

	For capacitor switch status (SvShuntCompensatorSections, Figure
32), attach and list measurements as in items a and b

	Loads (Figure 3, Figure 28)

	Given a bus name, list and total all of the loads connected by
phase, showing the total p and q, and the composite ZIP
coefficients

	Switching (Figure 4, Figure 22)

	Given a bus name, trace back to the EnergySource and list the
switches encountered, grouped by type (i.e. the leaf class in
Figure 4). Also include the ratedCurrent, breakingCapacity if
applicable, and open/close status. If SwitchPhase is used, show
the phasing on each side and the open/close status of each phase.

	Given switch, toggle its open/close status.

Object Diagrams for Queries

This section contains UML object diagrams for the purpose of
illustrating how to perform typical queries and updates. For those
unfamiliar with UML object diagrams:

	Each object will be an instance of a class, and more than one
instance of a class can appear on the diagram. For example, Figure 12
shows two ConnectivityNode instances, one for each end of a
ConductingEquipment.

	The object name (if specified and important) appears before the colon
(:) above the line, while the UML class appears after the colon.
Every object in CIM will have a unique ID, and a name (not
necessarily unique), even if not shown here.

	Some objects may be shown with run-time state below the line. These
are attribute value assignments, drawn from those available in the
UML class or one of the class ancestors. The object may have more
attribute assignments, but only those directly relevant to the figure
captions are shown in the diagrams of this section.

	Object associations are shown with solid lines, role names, and
multiplicities similar to the UML class diagrams. One important
difference is that only one way of navigating a particular
association will be defined in the profile. For example, the lower
left corner of Figure 1 shows a two-way link between TopologicalNode
and ConnectivityNode in the UML class diagram. However, Figure 12
shows that only one direction has been defined in the profile. Each
ConnectivityNode has a direct reference to its corresponding
TopologicalNode. In order to navigate the reverse direction from
TopologicalNode to ConnectivityNode, some type of conditional query
would be required. In other words, the object diagrams in this
section indicate which associations can actually be used in
GridAPPS-D.

	In some cases, the multiplicities on the object diagrams are more
restrictive than on the class diagrams, due to profiling. For
example, Figure 12 reflects a one-to-one correspondence between
ConnectivityNode and TopologicalNode in this profile.

The object diagrams are intended to help you break down the CIM queries
into common sub-tasks. For example, query #1 works with capacitors. It’s
always possible to select a capacitor (aka LinearShuntCompensator) by
name. In order to find the capacitor at a bus, say “bus1” in Figure 12,
one would retrieve all Terminals having a ConnectivityNode reference to
“bus1”. Each of those Terminals will have a ConductingEquipment
reference, and you want the Terminal(s) for which that reference is
actually a LinearShuntCompensator. In this CIM profile, only leaf
classes (e.g. LinearShuntCompensator) will be instantiated, never base
classes like ConductingEquipment. There can be more than one capacitor
at a bus, more than one load, more than one line, etc.

[image: image11]

Figure 12: In order to traverse buses and components, begin with a
ConnectivityNode (left). Collect all terminals referencing that
ConnectivityNode; each Terminal will have one-to-one association with
ConductingEquipment, of which there are many subclasses. In this
example, the ConductingEquipment has a second terminal referencing the
ConnectivityNode called bus2. There are applications for both
Depth-First Search (DFS) and Bread-First Search (BFS) traversals. Note
1: the Terminals have names, but these are not useful. Some Terminal
names have been shown above, just to illustrate there is no useful
implication of sequencing or ordering. Note 2: in this version of
GridAPPS-D, we have one-to-one association of TopologicalNode and
ConnectivityNode, but all searches should visit ConnectivityNodes. Note
3: transformers are subclasses of ConductingEquipment, but we traverse
connectivity via transformer ends (aka windings). This is illustrated
later.

In order to find capacitors (or anything else) associated with a
particular “feeder”, Figure 13 shows that you would query for objects
having EquipmentContainer reference to the feeder’s Line object. In
GridAPPS-D RC1, we only use Line for equipment container in CIM, and
this would correspond to one entire GridLAB-D model. There is also a
BaseVoltage reference that will have the system nominal voltage for the
capacitor’s location. However, in order to work with equipment ratings
you should use ratedS and ratedU attributes where they exist,
particularly for capacitors and transformers. These attributes are often
slightly different than the “system voltage”. Most of the attribute
units in CIM are SI, with a few exceptions like percent and kW values on
transformer test sheets (i.e. CIM represents the test sheet, not the
equipment).

[image: image12]

Figure 13: All conducting equipment lies within an EquipmentContainer,
which in GridAPPS-D, will be a Line object named after the feeder. It
also has reference to a BaseVoltage, which is typically one of the ANSI
preferred system voltages. Power transformers are a little different, in
that each winding (called “end” in CIM) has reference to a BaseVoltage.
Note that equipment ratings come from the vendor, and in this case
ratedU is slightly different from nominalVoltage. All conducting
equipment has a Location, which contains XY coordinates (see Figure 1).
The Location is useful for visualization, but is not essential for a
power flow model.

Completing the discussion of capacitors, Figure 14 provides two examples
for single-phase, and three-phase with local voltage control. As shunt
elements, capacitors have only one Terminal instance. Loads and sources
have one terminal, lines and switches have two terminals, and
transformers have two or more terminals. Examples of all those are shown
later. In Figure 14, the capacitor’s kVAR rating will be based on its
nameplate ratedU, not the system’s nominalVoltage.

Often, the question will arise “what phases exist at this bus?”. There
is no phasing explicitly associated with a ConnectivityNode or Terminal
in CIM. To answer this question, we’d have to query for all
ConductingEquipment instances having Terminals connected to that bus, as
in Figure 12. The types of ConductingEquipment that may have individual
phases include LinearShuntCompensators (Figure 14), ACLineSegments,
PowerTransformers (via TransformerEnds), EnergyConsumers, and
descendants of Switch. If the ConductingEquipment has such individual
phases, then add those phases to list of phases existing at the bus. If
there are no individual phases, then ABC all exist at the bus. Note this
doesn’t guarantee that all wiring to the bus is correct; for example,
you could still have a three-phase load served by only a two-phase line,
which would be a modeling error. In Figure 14, we’d find phase C at
Bus611 and phases ABC at Bus675. Elsewhere in the model, there should be
ACLineSegments, PowerTransformers or Switch descendants delivering phase
C to Bus611, all three phases ABC to Bus675.

[image: image13]

Figure 14: Capacitors are called LinearShuntCompensator in CIM. On the
left, a 100 kVAR, 2400 V single-phase bank is shown on phase C at bus
611. bPerSection = 100e3 / 2400^2 [S], and the bPerSection on
LinearShuntCompensatorPhase predominates; these values can differ among
phases if there is more than one phase present. On the right, a balanced
three-phase capacitor is shown at bus 675, rated 300 kVAR and 4160 V
line-to-line. We know it’s balanced three phase from the absence of
associated LinearShuntCompensatorPhase objects. bPerSection = 300e4 /
4160^2 [S]. This three-phase bank has a voltage controller attached with
2400 V setpoint and 240 V deadband, meaning the capacitor switches ON if
the voltage drops below 2280 V and OFF if the voltage rises above 2520
V. These voltages have to be monitored line-to-neutral in CIM, with no
VT ratio. In this case, the control monitors the same Terminal that the
capacitor is connected to, but a different conducting equipment’s
Terminal could be used. The control delay is called aVRDelay in CIM, and
it’s an attribute of the LinearShuntCompensator instead of the
RegulatingControl. It corresponds to “dwell time” in GridLAB-D.

Figure 15 through Figure 20 illustrate the transformer query tasks, plus
Figure 29 for attached voltage regulators. The autotransformer example
is rated 500/345/13.8 kV and 500/500/50 MVA, for a transmission system.
The short circuit test values are ZHL=10%, ZHT=25%
and ZLT=30%. The no-load test values are 0.05% exciting
current and 0.025% no-load losses. These convert to r, x, g and b in SI
units, from and , where Srated and Urated are based on
the “from” winding (aka end). The same base quantities would be used to
convert r, x, g and b back to per-unit or percent. The open wye – open
delta impedances are already represented in percent or kW, from the test
reports.

[image: image14]

Figure 15: Autotransformer with delta tertiary winding acts like a
wye-wye transformer with smaller delta tertiary. The vector group would
be Yynd1 or Yyd1. For analyses other than power flow, it can be
represented more accurately as the physical series (n1) – common (n2)
connection, with a vector group Yand1. In either case, it’s a
three-winding transformer.

[image: image15]

Figure 16: A three-winding autotransformer is represented in CIM as a
PowerTransformer with three PowerTransformerEnds, because it’s balanced
and three-phase. The three Terminals have direct ConductingEquipment
references to the PowerTransformer, so you can find it from bus1, busX
or busY. However, each PowerTransformerEnd has a back-reference to the
same Terminal, and it’s own reference to BaseVoltage (Figure 13); that’s
how you link the matching buses and windings, which must have compatible
voltages. Terminals have no sequence number, so the endNumber is
important for correct linkage to catalog data as discussed later. By
convention, ends with highest ratedU have the lowest endNumber, and
endNumber establishes that end’s place in the vectorGroup.

[image: image16]

Figure 17: Power transformer impedances correspond to the three-winding
autotransformer example of Figure 15 and Figure 16. There are three
instances of TransformerMeshImpedance connected pair-wise between the
three windings / ends. The x and r values are in Ohms referred to the
end with highest ratedU in that pair. There is just one
TransformerCoreAdmittance, usually attached to the end with lowest
ratedU, and the attribute values are Siemens referred to that end’s
ratedU.

[image: image17]

Figure 18: Open wye - open delta transformer banks are used to provide
inexpensive three-phase service to loads, by using only two single-phase
transformers. This is an unbalanced transformer, and as such it requires
tank modeling in CIM. Physically, the two transformers would be in
separate tanks. Note that Tank A is similar to the residential
center-tapped secondary transformer, except the CIM phases would include
s1 and s2 instead of A and B.

[image: image18]

Figure 19: Unbalanced PowerTransformer instances comprise one or more
TransformerTanks, which own the TransformerTankEnds. Through the ends,
busHi collects phases ABN and busLo collects phases ABCN. Typically,
phase C will also exist at busHi, but this transformer doesn’t require
it. We still assign vectorGroup Yd1 to the supervising PowerTransformer,
as this is the typical case. The modeler should determine that. By
comparison to Figure 19, there is a possible ambiguity in how endA3
represents the polarity dot at the neutral end of Wdg A3. An earlier CIM
proposal would have assigned phaseAngleClock = 6 on endA3, but the
attribute was removed from TransformerTankEnd. It may not be possible to
infer the correct winding polarities from the vectorGroup in all cases.
There is a phaseAngleClock attribute on TransformerTankEndInfo, but that
represents a shelf state of the tank, not necessarily connections in the
field. Therefore, it may be necessary to propose the phaseAngleClock
attribute for TransformerTankEnd.

[image: image19]

Figure 20: This Asset catalog example defines the impedances for Tank B
of the open wye – open delta bank. This is a 50 kVA, 7200 / 240 V
single-phase transformer. It has 1% exciting current and 0.4 kW loss in
the no-load test, plus 2.1% reactance and 0.5 kW loss in the
short-circuit test. A multi-winding transformer could have more than one
grounded end in a short-circuit test, but this is not common. The
catalog data is linked with one or more TransformerTanks via the Asset
instance, shown to the left. This Asset instance won’t exist without
such links (i.e. the catalog data is actually used), so cardinalities
are 1 for AssetInfo and 1..* for PowerSystemResources. Furthermore,
endNumber on the TransformerEndInfo has to match endNumber on the
TransformerTankEnd instances associated to Tank B. Instead of catalog
information, we could have used mesh impedance and core admittance as in
Figure 17, but we’d have to convert the test sheets to SI units and we
could not share data with other TransformerTank instances, both of which
are inconvenient.

Figure 21 through Figure 27 illustrate the query tasks for
ACLineSegments and Switches, which will define most of the circuit’s
connectivity. The example sequence impedances were based on Z1
= 0.1 + j0.8 Ω/mile and Z0 = 0.5 + j2.0 Ω /mile. For
distribution systems, use of the shared catalog data is more common,
either pre-calculated matrix (Figure 25) or spacing and conductor
(Figure 26 and Figure 27). In both cases, impedance calculation is
outside the scope of CIM (e.g. GridLAB-D internally calculates line
impedance from spacing and conductor data).

[image: image20]

Figure 21: An ACLineSegment with two phases, A and C. If there are no
ACLineSegmentPhase instances that associate to it, assume it’s a
three-phase ACLineSegment. This adds phases AC to bus671 and bus684.

[image: image21]

Figure 22: This 50-Amp load break switch connects phases AC between
busLeft and busRight. Without associated SwitchPhase instances, it would
be a three-phase switch. This switch also transposes the phases; A on
side 1 connects with C on side 2, while C on side 1 connects with A on
side 2. This is the only way of transposing phases in CIM. Note the
ambiguity in side 1 and side 2, because Terminal.sequenceNumber was
subsequently removed from the CIM. This needs to be addressed in a
future version of the CIM. Also note that LoadBreakSwitch has the open
attribute inherited from Switch, while SwitchPhase has the converse
closed attribute. In order to open and close the switch, these
attributes would be toggled appropriately. See Figure 4 for other types
of switch.

[image: image22]

Figure 23: This is a balanced three-phase ACLineSegment between bus632
and bus671, 2000 feet or 609.6 m long. Sequence impedances are specified
in ohms, as attributes on the ACLineSegment. This is a typical pattern
for transmission lines, but not distribution lines.

[image: image23]

Figure 24: The impedances from Figure 23 were divided by 609.6 m, to
obtain ohms per meter for seqCat1. Utilities often call this a “line
code”, and other ACLineSegment instances can share the same
PerLengthImpedance. A model imported into the CIM could have many line
codes, not all of them used in that particular model. However, those
line codes should be available for updates by reassigning
PerLengthImpedance.

[image: image24]

Figure 25: This is a two-phase line segment from bus671 to bus684 using
a line code, which has been specified using a 2x2 symmetric matrix of
phase impedances per meter, instead of sequence impedances per meter.
This is more common for distribution than either Figure 23 or Figure 24.
It’s distinguished from Figure 24 by the fact that PerLengthImpedance
references an instance of PerLengthPhaseImpedance, not
PerLengthSequenceImpedance. The conductorCount attribute tells us it’s a
2x2 matrix, which will have two unique diagonal elements and one
distinct off-diagonal element. The elements are provided in three
PhaseImpedanceData instances, which are named here for clarity as Z11,
Z12 and Z22. However, the sequenceNumber is most significant, as the
elements must be numbered in lower triangular form. Finally, note that
Z11 and Z22 are slightly different. The matrix row numbers must
correspond to the phases present in ABC order. CIM doesn’t provide a way
of transposing matrix row assignments, so in order to swap phases A and
C, we’d have to create a second instance of PerLengthPhaseImpedance,
with Z11 and Z22 swapped. The GridAPPS-D CIM importer will create these
automatically, which expands the set of line codes. As presented here,
mtx604 can apply to phasing AB, BC or AC.

[image: image25]

Figure 26: The two-phase ACLineSegment impedance defined by sharing wire
and spacing data from a catalog. Each ACLineSegmentPhase links to an
OverheadWireInfo instance via the Asset instance. If the neutral (N) is
present, we have to specify its wire information for a correct impedance
calculation. In this case, ACN all use the same wire type, but they can
be different, especially for the neutral. Similarly, the WireSpacingInfo
associates to the ACLineSegment itself via a separate Asset instance.
These Asset instances only exist when the catalog data is used, so
cardinalities are 1 for AssetInfo and 1..* for PowerSystemResources.

[image: image26]

Figure 27: The upper five instances define catalog attributes for Figure
26. The WirePosition xCoord and yCoord units are meters, not feet, and
they include explicit phase assignments to match ACLineSegmentPhase.
This removes any ambiguity, but it’s still necessary to create copies
for phase transposition. The phaseWireSpacing and phaseWireCount
attributes are for sub-conductor bundling on EHV and UHV transmission
lines; bundling is not used on distribution. The number of WirePositions
that reference spc505acn determine how many wires need to be assigned,
and the phase attributes in those WirePosition instances determine how
many phases and neutrals there are. Eliminating the neutral, this would
produce a 2x2 phase impedance matrix. Although the pattern appears
general enough to support multiple neutrals and transmission overbuild,
the CIM doesn’t actually have the required phasing codes. When isCable
is true, the WirePosition yCoord values would be negative for
underground depth. To find overhead wires of a certain size or ampacity,
we can put query conditions on the ratedCurrent attribute. To find
underground conductors, we query the ConcentricNeutralCableInfo or
TapeShieldCableInfo instead of OverheadWireInfo. All three inherit the
ratedCurrent attribute from WireInfo. Cables don’t have a voltage rating
in CIM, but you can use insulationThickness as a proxy for voltage
rating in queries. Here, 5.588 mm corresponds to 220 mils, which is a
common size for distribution.

Figure 28 illustrates the loads, which are called EnergyConsumer in CIM.
The houses and appliances from GridLAB-D are not supported in CIM. Only
ZIP loads can be represented. Further, any load schedules would have to
be defined outside of CIM. Assume that the CIM loads are peak values.

Figure 29 illustrates the voltage regulator function. Note that
GridLAB-D combines the regulator and transformer functions, while CIM
separates them. Also, the CIM provides voltage and current transducer
ratios for tap changer controls, but not for capacitor controls.

Figure 30 through Figure 32 illustrate how measurements required for RC1
can be attached to buses or other components. Individual phase
measurements for voltage and capacitor status have to be added.

[image: image27]

Figure 28: The three-phase load (aka EnergyConsumer) on bus671 is
balanced and connected in delta. It has no ratedU attribute, so use the
referenced BaseVoltage (Figure 13) if a voltage level is required. On
the right, a three-phase wye-connected unbalanced load on bus675 is
indicated by the presence of three EnergyConsumerPhase instances
referencing UnbalancedLoad. For consistency in searches and
visualization, UnbalancedLoad.pfixed should be the sum of the three
phase values, and likewise for UnbalancedLoad.qfixed. In power flow
solutions, the individual phase values would be used. Both loads share
the same LoadResponse instance, which defines a constant power
characteristic for both P and Q, because the percentages for constant
impedance and constant current are all zero. The two other most commonly
used LoadResponseCharacteristics have 100% constant current, and 100%
constant impedance. Any combination can be used, and the units don’t
have to be percent (i.e. use a summation to determine the denominator
for normalization).

[image: image28]

Figure 29: In CIM, the voltage regulator function is separated from the
tap-changing transformer. The IEEE 13-bus system has a bank of three
independent single-phase regulators at busRG60, and this example shows a
RatioTapChanger attached to the regulator on phase A, represented by the
TransformerTankEnd having phases=A or phases=AN. See Figure 19 for a
more complete picture of TransformerTankEnds, or Figure 16 for a more
complete picture of PowerTransformerEnds. Either one can be the
TransformerEnd in this figure, but with a PowerTransformerEnd, all three
phase taps would change in unison (i.e. they are “ganged”). Most
regulator attributes of interest are found in RatioTapChanger or
TapChangerControl instances. However, we need the Asset mechanism to
specify ctRatio, ptRatio and ctRating values. These are inherent to the
equipment, whereas the attributes of RatioTapChanger and
TapChangerControl are all settings per instance. For the IEEE 13-bus
example, there would be separate RatioTapChanger and TapChangerControl
instances for phases B and C.

[image: image29]

Figure 30: In CIM, the voltage measurement attaches to TopologicalNode,
which we can find from the ConnectivityNode in GridAPPS-D. Positive
sequence or phase A measurement is implied, so we must add a phase
attribute on SvVoltage for GridAPPS-D. Physically, a voltage sensor is
more closely associated with a Terminal or ConnectivityNode.

[image: image30]

Figure 31: SvTapStep links to a TransformerEnd indirectly, through the
RatioTapChanger. There is no phasing ambiguity because
TransformerTankEnd has its phases attribute, while PowerTransformerEnd
always includes ABC. Units for SvTapStep.position are per-unit.

[image: image31]

Figure 32: The on/off measurement for a capacitor bank attaches directly
to LinearShuntCompensator, but there is no phasing support. That needs
to be proposed as a CIM extension.

Metering Relationship to Loads in the CIM

These UML class relationships in Figure 33 through Figure 35 have not
been planned for implementation in RC1, but in a future version of
GridAPPS-D, they can be used to link automated meter readings with loads
in the distribution system model.

[image: image32]

Figure 33: Energy Consumers are associated to Metering Usage Points

[image: image33]

Figure 34: Metering Usage Points have one or more EndDevices (i.e.
Meters)

[image: image34]

Figure 35: EndDevices associate to meter readings, functions and
channels.

CIM Enhancements for RC2

Possible CIM enhancements to support volt-var feeder modeling:

	Different on and off delay parameters for RegulatingControl (Figure
5)

	Phase modeling for EnergySource (Figure 3)

	Current ratings for PerLengthImpedance (Figure 2). At present, some
users rely on associated WireInfo, ignoring all attributes except
currentRating.

	Transducers for RegulatingControl (Figure 5)

	Dielectric constant and soil resistivity (Figure 10)

	Current flow and switch open/closed measurements (Figure 11)

	Individual phase measurements for voltage and capacitor state (Figure
11)

	Clock angles for TransformerTankEnd (i.e. move phaseAngleClock from
PowerTransformerEnd to TransformerEnd (Figure 6)

	Clarify side1 and side2 for switch phase modeling (Figure 4)

CIM Profile in CIMTool

CIMTool was used to develop and test the profile for RC1, because it:

	Generates SQL for the MySQL database definition

	Validates instance files against the profile

The CIMTool developer will not be able to support the tool in future, so
eventually we will use the new Schema Composer feature in Enterprise
Architect.

In order to view the profile, import the archived Eclipse project
OSPRREYS_CIMTOOL.zip into CIMTool. Please see the CIM tutorial slides
provided by Margaret Goodrich for user instructions.

Four instance files were validated against the profile in CIMTool. In
order to generate them, we use a current version of OpenDSS with the
Export CDPSMcombined command on four IEEE test feeders that come with
OpenDSS:

	~/src/opendss/Test/IEEE13_CDPSM.dss is the IEEE 13-bus test
feeder with per-length phase impedance matrices and a delta tertiary
added to the substation transformer.

	~/src/opendss/Test/IEEE13_Assets.dss is the IEEE 13-bus test
feeder with catalog data for overhead lines, cables and transformers.
Capacitor controls have also been added.

	~/src/opendss/Distrib/IEEETestCases/8500-Node/Master.dss is the
IEEE 8500-node test feeder with balanced secondary loads.

	~/src/opendss/Distrib/IEEETestCases/8500-Node/Master-unbal.dss is
the IEEE 8500-node test feeder with unbalanced secondary loads.

Either the 3rd or 4th feeder will be used for the
volt-var application. The 1st and 2nd feeders are used
to validate more parts of the CIM profile used in RC1. In all four
cases, CIMTool reports only two kinds of validation error:

	Isolated connectivity node: CIMTool expects two or more Terminals
per ConnectivityNode, but dead ended feeder segments will have only
one on the last node. This is not really an error, at least for
distribution systems.

	Minimum cardinality: For TapChangerControl instances, the
inherited RegulatingControl.RegulatingCondEq association is not
specified. This is not really an error, as the association is only
needed for shunt capacitor controls. Figure 36 shows that
RegulatingCondEq was not selected for TapChangerControl in the
profile, so this may reflect a defect in the validation code. Efforts
to circumvent it were not successful.

With these caveats, the profile and instances validate against each
other, for feeder models that solve in OpenDSS.

[image: image35]

Figure 36: Profiling TapChangerControl in CIMTool; the inherited
RegulatingCondEq is not included.

Creating Data Definition Language (DDL) for MySQL

As shown at the top of Figure 36, CIMTool builds RC1.sql to create
tables in a relational database, but the syntax doesn’t match that
required for MySQL. The following manual edits were made:

	Globally change CHAR VARYING(30) to varchar(50) with a blank
space pre-pended before the varchar

	Globally change “ to `

	In foreign keys to enumerations, change the referenced attribute
from mRID to name

	In foreign keys to EquipmentContainer or
ConnectivityNodeContainer, change the referenced table to
Line

	In foreign keys to ShuntCompensator, change the referenced table
to LinearShuntCompensator

	In foreign keys to TapChanger, change the referenced table to
RatioTapChanger.

	The CIM UML incorporates several polymorphic associations, which
can’t be implemented directly in SQL. Base parent class tables were
added for:

	AssetInfo, which can be referenced via the Parent attribute
from ConcentricNeutralCableInfo, TapeShieldCableInfo,
OverheadWireInfo, WireSpacingInfo, TapChangerInfo and
TransformerTankInfo

	TransformerEnd, which can be referenced via the Parent
attribute from PowerTransformerEnd and TransformerTankEnd

	PerLengthImpedance, which can be referenced via the Parent
attribute from PerLengthSequenceImpedance and
PerLengthPhaseImpedance

	Switch, which can be referenced via the SwtParent attribute
from Breaker, Fuse, Sectionaliser, Recloser, Disconnector, Jumper
and LoadBreakSwitch.

	ConductingEquipment, which can be referenced via the Parent
attribute from ACLineSegment, EnergySource, EnergyConsumer,
LinearShuntCompensator, PowerTransformer, and all of the Switch
types.

	The catalog data mechanism in Figure 8 required two new tables, one
for polymorphic associations and another for many-to-many joins:

	PowerSystemResource, which can be referenced via the PSR
attribute from ACLineSegment, ACLineSegmentPhase, RatioTapChanger
and TransformerTank.

	AssetInfoJoin, which references AssetInfo and
PowerSystemResource. This table actually supplants the Asset
class in Figure 8.

	The ShortCircuitTest in Figure 9 has a one-to-many association to
TransformerEndEnfo, and we need to implement the many side by
adding:

	GroundedEndJoin, which references TransformerEndInfo and
ShortCircuitTest.

	The ToTransformerEnd association in Figure 6 is one-to-many, so
CIMTool did not export it to SQL. Rather than create a join table, a
ToTransformerEnd attribute was added to TransformerMeshImpedance.
This supports only one-to-one association, which is justified
because the one-to-many case is very rare, and GridLAB-D cannot
model transformers having the one-to-many association. This
restriction may be removed in future versions having a semantic or
graph database.

Except for the first two items, all of these adjustments arose from
the absence of inheritance or polymorphism in SQL. These adjustments
will make the updates, queries and views more complicated. However,
they allow referential integrity to be enforced, which is one of the
most important reasons to use SQL and relational databases. Other
types of data store could be a more natural fit to the CIM UML, but
they may not have the performance of a relational database.

In GitHub:

	RC1.sql is the manually adjusted SQL export from CIMTool

	LoadRC1.sql will re-create the GridAPPS-D database in MySQL,
incorporate RC1.sql, and finally document the foreign keys. It
should run without error.

	1

	See http://cimug.ucaiug.org/default.aspx and the EPRI CIM Primer at:
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002006001

	2

	Suggest “Corporate Edition” from http://www.sparxsystems.com/ for
working with CIM UML. The free CIMTool is still available at
http://wiki.cimtool.org/index.h tml, but support is being phased out.

	3

	OSPRREYS is an older name for GridAPPS-D

	4

	https://github.com/GRIDAPPSD/Powergrid-Models/CIM

Platform UML Diagrams

UML from the Functional Specification

This section presents a selection of GridAPPS-D domain (class) diagrams
to supplement the OSPRREYS Functional Specification document. The
purpose is to enhance understanding of the functional specification, by
providing graphical walkthroughs of some important use cases. The reader
should be familiar with definitions in the functional specification, and
with Universal Modeling Language (UML) diagrams.

GridAPPS-D is organized as a suite of internal function managers, twelve
of them composing the Platform Manager as shown in Figure 1. All
GridAPPS-D functions and interactions are mediated by one (or more) of
these function managers. When running, the GridAPPS-D 413 Platform
Manager will be composed of one (and only one) of each internal manager
numbered 401 – 412. These internal managers work together to accomplish
various GridAPPS-D functions.

[image: uml_image0]

Figure 1: Composition of the GridAPPS-D Platform Manager

Within each class block, some top-level attributes are listed with (-)
signs in the middle division, and some top-level methods are listed with
(+) signs in the lower division. For example, we already know that 401
Distribution Co-Simulator will need component simulators (i.e.
attributes) for buildings (open-source EnergyPlus), communications
(open-source ns-3), and the electric power distribution grid
(open-source GridLAB-D running in a real-time mode). It will also need
at least one method that runs the suite of simulators in a mode
emulating continuous real-time operation. Taking another example, 407
Service Manager also contains an attribute for GridLAB-D to provide
power flow calculations, but run as a service to applications.

As the design evolves, classes in Figure 1 will acquire many more
attributes and methods. The attributes themselves may reference
complicated classes and data structures. Therefore, the UML model will
expand each class into layer and sub-layer diagrams to more clearly show
these evolving details. We can still use the top-level diagrams to make
sure that the major components are in place for the important use cases.

Figure 2 illustrates the case of a user executing an application, in the
role of EF7 from the functional specification. We initially focused on
volt-var optimization (VVO), and then added a more complicated demand
response (DR) application that fits the same basic pattern. As a
prerequisite, some entity has provided both applications to GridAPPS-D
for registration and hosting, in a process detailed later. For now, we
assume the application(s) have been installed and will focus first on
running VVO.

[image: uml_image1]

Figure 2: Executing an application

All user interaction with GridAPPS-D occurs through a command interface,
numbered 202 when the user writes commands to GridAPPS-D, and numbered
102 when the user gets data from GridAPPS-D. To run VVO, the user will
issue 203 Model Configuration Setup and 204 Simulation Configuration
Setup to GridAPPS-D, which then delegates the commands to various
internal function managers (see Figure 1). The 203 Setup will probably
extract the feeder model of interest, set load and weather data, etc.
The 204 Setup will probably tell 401 to run GridLAB-D for a certain time
period, but not to run ns-3 or EnergyPlus. The exact composition of 203
and 204 Setups will be determined later in the design process. In a
process described later, internal functions 405 (Simulation Control
Manager) and 406 (Power System Model Manager) will transform 201, 203
and 204 into 305 and 306, which 401 can then read and run from directly.

When it runs, 401 will generate streams of data that mimic real-time
operation of the system, and these streams pass to the other parts of
GridAPPS-D as 301 Real-time Simulation Data. Some of the data streams
may also output to the user as 101 Real-time Simulation Data. The 310
VVO Application can act on this data to make decisions (e.g. switch
capacitor banks, change regulator taps, change solar inverter settings).
In this process, 310 VVO could invoke power flow calculations in
GridLAB-D via 407 Service Manager, but this is different from the way
401 Co-Simulator runs. The application may use 407 services to explore
alternatives or run contingency analysis, which could change the power
system model, but the 401 real-time simulations always take priority and
always use the “real” model.

When we considered adding the second and more complicated application,
310 DR, the structure of Figure 2 didn’t change very much. The
open-headed diamond symbols indicate that GridAPPS-D can host several
applications, which is UML aggregation. These applications may interact
via the GridAPPS-D command interface, if the applications and their
command sets have been designed for it. For example, the DR application
may use VVO to check and mitigate voltage limits.

A DR application is more likely than VVO to need EnergyPlus and ns-3 in
the co-simulation. In response, we added those attributes to 401, and
will add supporting attributes to 201, 203 and 204 as the design
evolves. It should also be recognized that more sophisticated VVO
applications might incorporate communications (ns-3) if available.

Figure 3 depicts the process of managing power system models, including
the schema and repository within 201 Distribution System Model. Because
it’s based on standards (e.g. IEC 61968) and open-source tools (e.g.
MySQL), the model can be created and maintained from outside GridAPPS-D,
directly by EF 21, the Model Manager. This is shown at the top of Figure
3. This process is out of GridAPPS-D scope but within project scope, and
it can leverage existing tools like Cimphony, Cimdesk, EA, etc.

For use by and within GridAPPS-D, all model configuration commands will
pass from EF21 through the command interface to function 406, the Power
System Model Manager. This function reads the base power system model
data from 201, and configures it into a three-phase load flow model for
solution in 106/306. The Distribution Co-Simulator uses 306, but the
user might want 106 for off-line use. Working with 404 Data Manager, the
406 Power System Model Manager may also write additional data (i.e. not
used in the load flow calculation) to 104/304. In this case, the 102
Model Output function will collect that data from both 104 and 106 for
reporting to the user, EF7, via the command interface. Note that the
base data, in 201, is not modified through this process. Instead, the
base data is treated as input to GridAPPS-D.

[image: uml_image2]

Figure 3: Internal model management

Figure 4 shows the internal Platform Manager flow when running
application tests. Compared to the case of normal usage in Figure 2,
this example shows additional control and output for testing. The test
commands include 203 and 204, as in Figure 2, but they also include:

	205 Test Scripts, for the sequence of steps to perform

	206 Test Configuration Setup, including initial conditions, etc.

	207 Expected Results, for comparison to the actual output

	210 Application Metadata, for information to run and instrument the
application

The 403 Test Manager orchestrates the steps to run the application and
collect results. As part of 103 Test Results, it will compare the
real-time data (101/301) to the expected results in 207. If the testing
user, EF8, requested logging, then the 409 Log Manager will create
109/309 System Logs for collection by 403 Test Manager. Logging is
optional, and should have been requested as part of the 206 Test Config
Setup or 204 Model Config Setup (this is not spelled out in the
functional specification).

[image: uml_image3]

Figure 4: Testing an application or the platform

Figure 5 shows some of the internal 413 Platform Manager detail when a
user, EF7, runs an application in debugging mode. Compared to Figure 2,
there is much more internal output. The 212 Debug Configuration will
include such things as breakpoints, watch variables, and logging
requests. When run in debug mode, the 408 Debug Manager will collect the
internal inputs and intermediate results from a variety of GridAPPS-D
modules, including the simulator, services in use, model data, and
access violations. The 404 Data Manager mediates most of this data
collection (and with a change to the specification it could also mediate
101/301). The 408 Debug Manager combines this into 108 Intermediate
Results, with 109 System Logs, for output to the user via the command
interface. Depending on the implementation of GridAPPS-D, interactive
debugging may also be supported, but is not shown in Figure 5.

[image: uml_image4]

Figure 5: Debugging an application

Figure 6 shows the process of registering or updating an application to
use with GridAPPS-D. The developer, in the role of EF13, must provide
the application itself (211) along with the application data schema
(208) and metadata (210). The data schema includes input and output
parameters. The metadata includes a user-friendly name, description,
calling parameters, command syntax, API functions used, etc. Using this
information, 410 Application Hosting Manager will install and register
the application, and its data, with 407 Service Manager and 404 Data
Manager. After completing these steps, 412 Version Manager will output
the current version information via the command interface; the current
version includes information about which applications are installed
along with the application versions.

In order to perform application management, EF13 also needs to provide
user credentials to be checked against the 209 Access Control List. If
these credentials are valid, the 411 SAC Manager will create 311 Access
Permission Verification for all of the internal Platform Manager
components. In Figure 6, the 410 Application Hosting Manager can pass
311 to 404, 407 and 412 as needed. Although not shown earlier, SAC is
actually incorporated into all GridAPPS-D processes this way.

[image: uml_image5]

Figure 6: Hosting an application

UML for Release Cycle 1

Our objective is to demonstrate useful functionality, which is
standards-compliant, by the end of March 2017. A simple heuristic VVO
application will be running in GridAPPS-D. In terms of the Functional
Requirements, we will be implementing:

	102/202 Command Interface

	301 Real-time Simulation Data

	310 Hosted Application, but short-cutting the registration process

	401 Distribution Co-Simulator (partial)

	402 Process Manager (partial)

	404 Data Manager (partial)

	405 Simulation Manager (partial)

	406 Power System Model Manager (partial)

	413 Platform Manager (encapsulating 401 and 403-406)

This represents five out of twelve Internal Functions from the
Functional Requirements, in partial form. The deadline leaves four
months for detailed design and implementation, plus two months for
documentation and testing. Therefore, we have chosen a minimal set of
functions that can show end-to-end use of GridAPPS-D at the first
milestone.

In developing the work breakdown structure (WBS), we noted that
real-time simulation data is published with no time lags or errors in
Release 1. However, data flow in a real DMS is affected by sensor and
communication system performance, and also by the action of other
subsystems. In Release 2, this might be addressed through some
combination of:

	Communication and sensor models in the Distribution Co-Simulator

	Adding MDM and SCADA service attributes to the 407 Service Manager

	Filters on 301 Real-time Simulation Data

These decisions, and many others affecting Release 2 and Release 3, can
be deferred until we gain experience developing Release 1.

Figure 1 shows the software components planned for Release 1. Most of
these correspond to internal functions from the Functional Requirements,
with some relatively minor re-factoring. The Power System Model Manager
functionality has been split. The data store management and the creation
of a complete GridLAB-D model appear at the bottom. Once the simulator
is running, incremental changes are posted to the messaging bus.

Most of the “pink” components in Figure 1 are assigned to one task,
except:

	The 310 VVO is a sub-task of the Command Interface, due to the close
coupling of those efforts. The team on this task needs both power
system and software skills.

	A separate task has been added for some project-level items.

[image: rc1_tasks_image0]

Figure 1: Component Diagram for GridAPPS-D Release 1

Initial Work Breakdown for Release Cycle 1

The Release 1 work breaks down into seven tasks, listed below. Three
critical items must be completed first; these are highlighted in
red. There are other inter-task dependencies that have not yet been
called out. We plan to sequence the work over eight two-week “sprints”
within the four months allocated for detailed design and development,
using an agile process (Kanban).

	Project-level Elements

	Identify a power system model (note: IEEE-13 is already in
CIM/CDPSM)

	Design data store schema

	Manually ingest power system models

	Command Interface

	Design APIs

	For all configurations in Task 4

	For power system control actions (e.g. open/close switch)

	Select one language binding (e.g. Python, Java, C++, MATLAB)
and implement

	Develop a heuristic volt-var application (VVO) in the bound
language

	Integrate VVO into GridAPPS-D

	Messaging and Data Manager

	Select a messaging framework (eg. ZeroMQ)

	Create communication APIs

	Receives real-time data from simulator

	Receives power system control actions

	Handle communication between GridAPPS-D managers

	Log messages to file

	Configuration Manager (both Power System Config & Simulation Config)

	Receive configurations from command interface over message bus

	Translate configurations to native GridLAB-D

	Translate and publish incremental update messages

	Send configurations to Process Manager for simulation start

	Process Manager

	Receives configurations from the Configuration Manager

	Send configuration to the Distribution Co-Simulator

	Start Co-Simulation Process

	Create simulation data channels and inform application

	Stop simulation process

	Distribution Co-Simulator (wraps GridLAB-D)

	Accepts configurations from Process Manager

	Start simulation

	Produce and publish data in real time

	Accept changes in real time (e.g. capacitor switching) via message
bus

	Power System Model Manager

	Access the power system model in data store

	Create native GridLAB-D file for initial loading into the
simulator

Data Model

IEEE 8500-Node Test Feeder

An IEEE Working Group specified a set of distribution test circuits [CIT1] and
we have chosen the largest one of these as a sample circuit for GridAPPS-D [CIT2].
The 8500-Node test feeder operates at 12.47 kV and has a peak load of about 11 MW,
including approximately 1100 single-phase, center-tapped transformers with triplex
service drops. Loads are balanced between the two center-tapped windings.

The circuit includes 4 shunt capacitor banks and 4 voltage regulator banks, making
it a reasonable test for solving voltage problems and for applying volt-var
optimization (VVO). The circuit is also relatively lossy at peak load.

The model in GridAPPS-D came from the IEEE 8500-Node input files distributed with
OpenDSS, exported to CIM from OpenDSS, and then imported to the GridAPPS-D data
manager. In this automated process, four changes were implemented:

	Use constant-current load models, rather than constant-power load models. This is necessary for the solution to converge at peak load. Voltages at peak load are low, and a constant-power load will draw more current under those conditions. Holding the current magnitude constant allows GridLAB-D to achieve convergence under a variety of operating conditions. This is an appropriate compromise in accuracy for real-time applications, which need to be robust through wide variations in voltage and load. In contrast, planning applications usually need more accurate load models, even at the possible expense of re-running some non-converged simulations.

	Disable automatic regulator and capacitor controls. The volt-var application, described below, will supersede these settings. If a developer or user is testing the GridLAB-D model outside of GridAPPS-D, these control settings should be re-enabled in order to solve the circuit at peak load. That requires manual un-commenting edits to the GridLAB-D input file.

	Substitute a variable called VSOURCE for the SWING bus nominal voltage. This needs to be set at 1.05 per-unit of nominal on the 115-kV system (i.e. 69715.065) in order to solve at peak load. Other conditions may require different source voltage values.

	Use a schedule for the loads so they can vary with time during GridAPPS-D simulation. The file should be named zipload_schedule.player.

Integrated Applications

Volt-var Optimization (VVO)

The sample VVO application is a Python implementation of a heuristic method that PNNL has
investigated before [CIT3], [CIT4], [CIT5]. There are more advanced VVO methods that
could be implemented in future applications.

Visualization

We have created a web-based visualization of the sample VVO application.
The visualization displays the topology of the IEEE 8500-Node system as an
interactive graph. Capacitors and regulators are highlighted in the graph
and displayed alongside tables with current values for capacitor status
(OPEN or CLOSED), regulator voltage, and feeder power.

PNNL Applications (Release Cycle 2)

State Estimator

Objectives

State estimation is widely used in transmission system operations but is
less common in distribution system operations due to a relatively
limited value in traditional distribution systems, additional
computational complexity, and a lack of sensors. Advanced distribution
management platforms like GridAPPS-D provide access to model and sensor
data that can be leveraged to overcome barriers to adoption and open the
door to distribution system state estimators that are fast and accurate
enough to be useful in utility operations.

A distribution system state estimator computes the most likely state
given a set of present and/or past measurements. The full state of a
distribution system consists of either the full set of complex bus
voltages or the full set of complex branch currents; given the system
model (admittance matrix), the remaining system parameters can be
computed given the full system state.

Use Cases

	Assist power factor optimization: Utility objective is unity
power-factor at the substation.

	Assist voltage optimization (planning): Utility objective is 1 p.u.
voltage at last house primary.

	Real-time state estimation for advanced applications: applications
can access the state estimate at a sufficient resolution to capture
e.g. insolation variation caused by clouds.

Distribution System State Estimation Algorithms

State estimation uses system model information to produce an estimate of
the state vector x given a measurement vector z. The measurement vector
is related to the state vector and an error vector by the measurement
function, which may be non-linear.

\[z = h(x) + e\]

Multiple formulations of the distribution system state estimation
problem are possible:

	Node Voltage State Estimation (NVSE): The state vector consists of
node voltage magnitudes and angles for each node in the system (one
reference angle can be eliminated from the state vector). This
formulation of the state estimation problem is general to any
topology and it is the standard for transmission system state
estimation.

	Branch Current State Estimation (BCSE): Radial topology and
assumptions about shunt losses create a linear formulation of the
state estimation problem. The state vector contains branch currents
and, for a fully-constrained problem, requires one state per load,
which can be less than the number of branches in the system.

Different algorithms provide different advantages for distribution
system state estimation. A subset of the state estimation algorithms
below will be used to achieve these goals.

	Weighted Least Squares Estimation (WLSE): a concurrent set of
measurements are used to find a state vector that minimizes the
weighted least squares objective function. The algorithm is
memoryless with respect to previous solutions and measurements should
be synchronized.

	Kalman Filter Estimation (KFE) and Extended Kalman Filter Estimation
(EKFE): The Kalman filter provides a mechanism to consider past
state estimates alongside present measurements. This provides
additional noise rejection and allows asynchronous measurements can
be considered individually. KFE is appropriate for linear BCSE and
EKFE is compatible with nonlinear NVSE.

	Unscented Kalman Filter Estimation (UKFE): The unscented transform
estimates the expected value and variance of the system state by
observing the system outputs for inputs spanning the full
dimensionality of the measurement space. Again, the Kalman filter
provides a mechanism to consider past estimates.

TRL

The state estimator application will provide the capability to estimate
the full system state using asynchronous measurement data. In addition a
model order reduction technique will be implemented to greatly speed up
the state estimation computation and to reduce the dependence on
forecast-based pseudo-measurements. A paper (Reduced-Order State
Estimation for Power Distribution Systems with Sparse Sensing) is
targeted for IEEE Transactions on Power Systems.

Design

The state estimation service is being developed in c++. A modern c++
implementation allows the application to adapt to an evolving interface.
The program architecture is shown below.

[image: image0]

Topology Processor: initializes the measurement function and its
Jacobian and determines the size of the measurement vector, the
measurement covariance matrix, and the state vector.

Meter Interface: updates the measurement vector and the measurement
covariance matrix as new measurement data comes available.

State Estimator: performs the state estimation operation according to
the specified algorithm.

Output Interface: formats the state vector and any implicit states as an
output stream.

Inputs:

Upon initialization, the topology processor will receive the Y-bus from
the GridLAB-D service and will query contextual information and sensor
locations from the CIM database.

Periodic measurement data, including any forecasts to be used a
pseudo-measurements will be required as inputs.

A “terminate” command from the platform will end the state estimation
process.

Outputs:

The output will include the full system state (node voltages and/or
branch currents TBD).

Testing and Validation

Evaluation metrics

	State Error: compare state estimation output to “true” system state.

	Accuracy over baseline: compare state error of state estimator to
state error of a QSTS load-flow model.

	Execution Time

	Bad Sensor Detection (binary)

Scenarios

	Full sensor deployment: verify that the true system state can be
reproduced.

	Sparse sensor deployment: verify that the state estimator performs
better than a QSTS load-flow model.

	Breaker trip: verify that switch state can be detected even when it
is reported incorrectly.

	Bad sensor detection: verify that a sensor that is producing bad data
can be identified.

	Dependent application support: verify that the state estimator can
support e.g. the VVO application.

	Fault: for a radial system, determine the nearest common bus from
multiple emulated customer calls.

Operating/Running

The state estimator will execute the topology processor at
initialization and will enter a stat estimation loop. The state
estimation loop will exit and the process will end upon receiving a
‘terminate’ command from the platform.

At initialization, a configuration file will be read for:

	State estimation mode (state vector and algorithm) selection

	Normalized residual threshold for bad measurement / sensor detection

References

[1] Abur and A. G. Exposito, Power System State Estimation, New York,
NY: Marcel Dekker, Inc., 2004.

[2] M. E. Baran and A. W. Kelley, “A branch-current-based state
estimation method for distribution systems,” in IEEE Transactions on
Power Systems, vol. 10, no. 1, pp. 483-491, Feb 1995.

[3] Z. Jia, J. Chen and Y. Liao, “State estimation in distribution
system considering effects of AMI data,” 2013 Proceedings of IEEE
Southeastcon, Jacksonville, FL, 2013, pp. 1-6.

[4] S. C. Huang, C. N. Lu and Y. L. Lo, “Evaluation of AMI and SCADA
Data Synergy for Distribution Feeder Modeling,” in IEEE Transactions on
Smart Grid, vol. 6, no. 4, pp. 1639-1647, July 2015.

[5] M. Kettner; M. Paolone, “Sequential Discrete Kalman Filter for
Real-Time State Estimation in Power Distribution Systems: Theory and
Implementation,” in IEEE Transactions on Instrumentation and
Measurement, vol.PP, no.99, pp. 1-13, Jun. 2017.

[6] G. Valverde and V. Terzija, “Unscented kalman filter for power
system dynamic state estimation,” in IET Generation, Transmission &
Distribution, vol. 5, no. 1, pp. 29-37, Jan.

Model Validator

Objectives

The model validator will detect and attempt to correct unreasonable
component interconnections and network parameters.

Use Cases

	Valid transformer size and orientation (Utility): orientation is not
captured explicitly in their GIS system.

	Discover secondary line impedance parameters (Utility) conductor type
and line length are currently based on generic assumptions.

	Sanity check or estimate transformer size and impedance.

	Verify that the nominal voltage of nodes matches the base voltage of
the segment: generally the winding voltage of the upstream
transformer or swing bus voltage.

	Sanity check conductor sizes and line current ratings.

	Validate and fill in regulator and capacitor control settings.

	Check phase continuity (GridLAB-D may not model phase
discontinuities)

Design

The model validation application will be implemented in Python.

[image: image1]

Inputs:

The model validator will have access to the CIM database and archived
data from the state estimator.

Outputs:

The model validator will one or both of the following outputs:

	Model status: log file or GUI pipe for identified issues.

	Model correction: CIM updates to correct identified issues.

Testing and Validation

Evaluation metrics

	Ability to detect known issues.

Scenarios

	Utility merger: models with different format may be interpreted
differently, creating issues a CIM model.

	Data entry issue: model update does not match upgrade performed in
the field

Operating/Running

The model validator script will execute once when called by the
platform.

At initialization, a configuration file will be read for:

	Mode (status, quiet, verbose; see outputs section)

	Selectable validation items (use cases)

Given a perfect and complete set of voltage magnitude and angle
measurements, along with a detailed and accurate power system model, one
could calculate the real power, or any other electrical variable of
interest, anywhere in the system. In practice, measurements have errors,
time delays, and may even be missing. State estimation refers to the
process of minimizing the errors and filling in gaps 1. One state
estimation method is called “weighted least squares”, and it’s analogous
to drawing the best-fit line through a set of scattered points. Other
methods may perform better 2. Also, on distribution systems, it may be
better to estimate branch currents instead of node voltages, but the
principle is the same. In GridAPPS-D, the visualizations and
applications ought to use the best available state estimator outputs,
instead of raw SCADA values, for both accuracy and consistency.
Therefore, the state estimator is not an application but a service in
GridAPPS-D, sitting between emulated SCADA and the GOSS bus.

[image: image0]

Figure 1: The state estimator processes noisy and incomplete
measurements, then posting estimated voltage (V), current (I), real
power (P), reactive power (Q) and switch status (S) values onto the
GridAPPS-D message / data bus.

In Figure 1, the power system model (upper left) will include a limited
number of sensors, corresponding to actual voltage and current
transformers, line post sensors, wireless sensors, etc. In some
scenarios, smart meters can also be sensors. Each such sensor will have
different performance characteristics (e.g. precision, accuracy,
sampling rate). Distribution systems typically do not have enough
sensors to make the system observable, so there will be measurement gaps
in the topology. The state estimator might fill these gaps with
interpolation and graph-tracing methods on the power system model.

The supervisory control and data acquisition (SCADA) system in Figure 1
introduces more errors and failure points. Eventually, GridAPPS-D may
simulate these impacts by federating ns-3 as a co-simulator. Until then,
a placeholder module could be used to insert variable errors, time
delays and dropouts in each measurement, whether due to sensor
characteristics or the communication system. The output represents data
as it would come into an operations center, and feeds the state
estimator. Internally, the data flows between simulator, SCADA and state
estimator might be implemented with FNCS, but this is an implementation
detail. The state estimator will provide two outputs to the GOSS bus
used by all GridAPPS-D applications:

	At a time step configured by the platform, publish the best-estimate
VIPQS values wherever sensors actually exist in the model, with
quality attributes that still have to be established. Sensor
locations delineate circuit segments, and note that all VIPQS values
will be estimated at the boundaries, even if the sensor measures only
V or I, for example.

	Upon request by another application or service, publish the estimated
VIPQS values for all nodes and components in the model, even at
locations where no sensors exist. A variant is to publish the
estimates only for selected nodes and components.

As indicated in Figure 1, other applications need to obtain estimated
VIPQS values from the GOSS bus. Switch open/close states are a special
case; they might be considered known values, but in practice the switch
state is a measurement, which could lead to topology errors in the
model. For GridAPPS-D, switch state estimates need to be a point of
emphasis. Given that most distribution systems lack redundant
measurements, It would be possible for an application to query these
VIPQS values directly from the simulator or SCADA, bypassing the state
estimator, but this is “cheating” in most situations. However, in the
application development process, idealized VIPQS values could be
obtained through a combination of two methods:

	Add more sensors to the power system model

	Set the sensor and channel errors to zero

Because the sensor outputs in GridAPPS-D come from a power flow solution
that enforces Kirchhoff’s Laws, the state estimator will produce ideally
accurate values whenever the sensor and channel errors have been
specified to be zero. The state estimator may still exhibit
interpolation errors between sensor locations, but that is readily
mitigated for testing purposes by adding more sensors.

With reference to RC1, the visualization and VVO applications should now
subscribe to VIPQS values from the state estimator, not from the
distribution simulator. They may also use or display quality metrics on
the estimated values.

The state estimator basically attempts to fit measured data to a power
flow model, usually assuming that the model is correct. However, a model
attribute (e.g. line impedance) could also be estimated by minimizing
its error residual in the state estimator’s power flow solution. This
process works best when applied to just one or a few suspect attributes,
and/or when an archive is available to provide enough redundant
measurements. The Model Validation Application will use these state
estimator features off-line to help identify and correct the following
types of model errors:

	Unknown or incorrect service transformer sizes

	Unknown or incorrect secondary circuit lengths

	Incorrect phase identification of single-phase components

	Phase wiring errors in line segments and switches

	Transformer connection errors, especially reversed primary and
secondary

	Primary conductor sizes that don’t decrease monotonically with
distance from the source

	Missing regulator and capacitor control settings (i.e. supply
defaults from heuristic rules)

	More than one of these on the same pole: recloser, line regulator,
capacitor

	Substation transformer impedance and turns ratio

These types of errors often appear upon the initial model import from a
geographic information system (GIS), or in periodic model updates from
GIS. Other error types may be added later. Many utilities do not have
their secondary circuits modeled at all, but this has an important
impact on AMI data. The service transformers and secondary circuits
insert significant impedance between AMI meters and the primary circuit,
where most of the other sensors are installed. Therefore, the first two
items will require AMI data, and also enable its more effective use.

As shown in Figure 2, the Model Validator integrates with GridAPPS-D as
a hosted application on the GOSS bus. Internally, it will use some of
the same algorithms as the State Estimator and may share some code or
binary files, but this is an implementation detail. It will need to
access an archive of state-estimated VIPQS data, which may include AMI
data. It will also use or incorporate an off-line power flow model, not
the same one running in the GridAPPS-D distribution simulator. This may
be EPRI’s OpenDSS simulator 3; compared to GridLAB-D, it’s more
tolerant of model errors and provides more diagnostic information about
model errors.

[image: image1]

Figure 2: The Model Validator works with an archive from the state
estimator, and an off-line power flow model.

Transactive energy is a method of controlling loads and resources on the
distribution system, combining both market and electrical principles
4. One reason for including this application in DOE-funded GridAPPS-D
is that PNNL has made several technical contributions and led several
demonstration projects in transactive systems, also funded by DOE 5.

Application structure

This transactive systems application is to be implemented as a
modularized 2-layer 3-level structure, as seen from Figure 3. The layer
decomposition helps the control of various groups, with limited
information flow between different layers. With the predefined functions
in each agent type (Agent A, B, and C) in each level, the existing
transactive system related work can be conveniently integrated into the
application, and the new control features can be added into specific
control function in each type of the agent easily.

[image: TransactiveSystemAppStructure]

Figure 3: The structure of the modularized 2-layer 3-level transactive
system application

The modularized agents opens the door for integrating different control
mechanisms into the application. Users need to consider which level
their control algorithm fits into, and fill in the control function of
the Agent class in that level, without worrying about communications
between the agents. In each level, the same type of the agent may have
various control functions, which help combining benefits of different
control schemes together.

Agent A, B and C will be implemented as VOLTTRON applications. VOLTTRON
is an application platform for distributed sensing and control
applications 6. With the capability of hardware-in-the-loop (HIL)
testing through VOLTTRON, the transactive systems application will be
tested using the actual devices. A GOSS-VOLTTRON Bridge is to be
implemented, for the communication between GridAPPS-D and the VOLTTRON
agents in the transactive systems application.

Application test cases

The hierarchical control framework introduced in 7 for integrated
coordination between distributed energy resources and demand response
will be implemented into the application. In addition, [7] has not
considered the power losses or power constrains, which will be taken
into consideration in this test case. The two-layer control mechanism,
including the coordination layer and device layer, fits the proposed
structure of the application well. The control in each level will be
implemented into corresponding function in each type of the agent. The
IEEE 123-node test feeder built in GridLAB-D will be used for testing
the application.

CIM extension for the Application

The latest versions of GridAPPS-D has used a reduced-order CIM to
support feeder modeling. With transactive system application included
into GridAPPS-D platform, more objects, such as house air conditioner
and water heater, need to be defined in CIM. Before the definition in
CIM, a simplified version of the house object and water heater object
are to be implemented in GridLAB-D.

	1

	
	
	McDermott, “Grid Monitoring and State Estimation,” in Smart Grid Handbook, ed: John Wiley & Sons, Ltd, 2016.

	2

	
	Abur and A. Gómez Expósito, Power system state estimation : theory and implementation. New York, NY: Marcel Dekker, 2004.

	3

	
	
	Dugan and T. E. McDermott, “An open source platform for collaborating on smart grid research,” in Power and Energy Society General Meeting, 2011 IEEE, 2011, pp. 1-7.

	4

	Gridwise Architecture Council. (2017). Transactive Energy. Available: http://www.gridwiseac.org/about/transactive_energy.aspx

	5

	Pacific Northwest National Laboratory. (2017). Transactive Energy Simulation Platform (TESP). Available: http://tesp.readthedocs.io/en/latest/

	6

	
	Katipamula, J. Haack, G. Hernandez, B. Akyol, and J. Hagerman, “VOLTTRON: An Open-Source Software Platform of the Future,” IEEE Electrification Magazine, vol. 4, pp. 15-22, 2016.

	7

	Di Wu, Jianming Lian, Yannan Sun, Tao Yang, Jacob Hansen, “Hierarchical control framework for integrated coordination between distributed energy resources and demand response,” Electric Power Systems Research, pp. 45-54, May 2017.

NREL Applications (Release Cycle 2)

Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

Objectives

This application is designed to address the problem of optimizing the
operation of aggregations of heterogeneous energy resources connected to
a distribution system. We will focus on real-time optimization method
and the power setting points of the distributed energy resources (DERs)
will be updated on a second or subsecond timescale to maximize the
operational objectives while coping with the variability of ambient
conditions and noncontrollable energy assets [1]. In order to avoid
massive measurements and overcome the limitation caused by model
inaccuracy, this application will be implemented in a distributed
manner, and only local measurements and a feedback signal from the
substation aggregator are needed to determine the optimal setpoints for
each controlled DER unit.

[image: nrel_OPF_image0]

Figure 1 The conceptual framework of distribution OPF for real-time
setpoint dispatch.

Figure 1 shows the conceptual framework of this application, and this
application is targeting at TRL 3.

Design

Figure 2 describes the overall work flow of the application.
Distribution OPF algorithm requires real-time measurements, distribution
system model and power flow results, which will be obtained from
GridAPPS-D platform through GOSS/FNCS message bus. The optimization
problem formulation can be constructed using user-defined cost functions
for different controllable devices. Finally the optimal setpoints for
controllable devices will be solved based on the feedback information
from system measurements. These setpoints will be sent back to GridLab-D
grid model to update DER operations. Such a closed-loop control forms
the control iteration for the studied time point, and new setpoints for
the following time points will be determined in the same manner using
the updated model and measurements.

[image: nrel_OPF_image1]

Figure 2 The workflow of real-time setpoint dispatch application and
its interaction with GridApps-D.

Data requirements

Message schemas (UML) (Enterprise Architect software) Jeff will help
draw the UML diagram.

Testing and Validation

Evaluation metrics of this application:

	Real/reactive power at the substation

	System loss

	Voltages across the entire distribution grid: voltage magnitude,
voltage fluctuation, voltage unbalance.

	Legacy control device operations: total control actions of all
capacitors and regulators

Scenarios:

	Optimal Dispatch for Distributed PV Systems

	Optimal Dispatch for Distributed PV + Energy Storage

	Etc. (will be added when implementing the application)

Operating/Running

This application will be developed using Python.

References

[1] E. Dall’Anese, A. Bernstein, and A. Simonetto, “Feedback-based
Projected-gradient Method for Real-time Optimization of Aggregations
of Energy Resources,” IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Montreal, Canada, Nov. 2017.

API Documentation

GridAPPS-D

GOSS

The GridOPTICS Software System (GOSS) manages the platform data and message bus; its overall design is described in [CIT6].

FNCS

The Framework for Network Co-simulation (FNCS) manages the time clock and message traffic between platform simulators; its overall design is described in [CIT7].
For API documentation see https://github.com/FNCS/fncs/wiki .

VVO

GridLAB-D

GridLAB-D is the distribution grid simulator within the platform; its overall design is described in [CIT8].

gov.pnnl.gridlabd.cim

This Java package converts CIM RDF to GridLAB-D format.

	CDPSM_to_GLM

	CDPSM_to_GLM.GldNode

	CDPSM_to_GLM.SpacingCount

	SPARQLcimTest

CDPSM_to_GLM

	
public class CDPSM_to_GLM

	This class converts CIM (IEC 61968) RDF to GridLAB-D format

The general pattern is to retrieve iterators on the different types of objects (e.g. ACLineSegment) through simple SPARQL queries. Usually these iterators include just the mrID, or the mrID and name. Then Jena RDF model and resource functions are used to pull other properties from iterated objects, writing GridLAB-D input along the way. A future version will rely more heavily on SPARQL queries to do the selection and filtering, as the preferred pattern for developers working with CIM. In existing code, the EnergySource most closely follows this new preferred pattern.

Invoke as a console-mode program

	Author

	Tom McDermott

See also: CDPSM_to_GLM.main, CIM User Group [http://www.ucaiug.org/default.aspx], CIM Profile and Queries for Feeder Modeling in GridLAB-D [https://github.com/GRIDAPPSD/Powergrid-Models/blob/temcdrm/CIM/CDPSM_RC1.docx], GridLAB-D [http://www.gridlabd.org]

Fields

baseURI

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] baseURI

	identifies gridlabd

mapNodes

	
static HashMap [http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html]<String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html], GldNode> mapNodes

	to look up nodes by name

mapSpacings

	
static HashMap [http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html]<String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html], SpacingCount> mapSpacings

	to look up line spacings by name

neg120

	
static final Complex neg120

	Rotates a phasor -120 degrees by multiplication

nsCIM

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] nsCIM

	namespace for CIM; should match the CIM version used to generate the RDF

nsRDF

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] nsRDF

	namespace for RDF

pos120

	
static final Complex pos120

	Rotates a phasor +120 degrees by multiplication

ptBaseNomV

	
 Property ptBaseNomV

	

ptEqBaseV

	
 Property ptEqBaseV

	

ptEquip

	
 Property ptEquip

	

ptLevBaseV

	
 Property ptLevBaseV

	

Methods

AccumulateLoads

	
static boolean AccumulateLoads(GldNode nd, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs, double pL, double qL, double Pv, double Qv, double Pz, double Pi, double Pp, double Qz, double Qi, double Qp)

	Distributes a total load (pL+jqL) among the phases (phs) present on GridLAB-D node (nd)

	Parameters

	
	nd – GridLAB-D node to receive the total load

	phs – phases actually present at the node

	pL – total real power

	qL – total reactive power

	Pv – real power voltage exponent from a CIM LoadResponseCharacteristic

	Qv – reactive power voltage exponent from a CIM LoadResponseCharacteristic

	Pz – real power constant-impedance percentage from a CIM LoadResponseCharacteristic

	Qz – reactive power constant-impedance percentage from a CIM LoadResponseCharacteristic

	Pi – real power constant-current percentage from a CIM LoadResponseCharacteristic

	Qi – reactive power constant-current percentage from a CIM LoadResponseCharacteristic

	Pp – real power constant-power percentage from a CIM LoadResponseCharacteristic

	Qp – reactive power constant-power percentage from a CIM LoadResponseCharacteristic

	Returns

	always true

Bus_ShuntPhases

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] Bus_ShuntPhases(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] conn)

	appends N or D for GridLAB-D loads and capacitors, based on wye or delta connection

	Parameters

	
	phs – from CIM PhaseCode

	conn – contains w for wye connection and d for delta connection

	Returns

	phs with N or D possibly appended

CFormat

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] CFormat(Complex c)

	
	Parameters

	
	c – complex number

	Returns

	formatted string for GridLAB-D input files with ‘j’ at the end

Count_Phases

	
static int Count_Phases(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs)

	from the phase string, determine how many are present, but ignore D, N and S

	Parameters

	
	phs – the parsed CIM PhaseCode

	Returns

	(1..3)

FindBaseVoltage

	
static double FindBaseVoltage(Resource res, Property ptEquip, Property ptEqBaseV, Property ptLevBaseV, Property ptBaseNomV)

	Returns the nominal voltage for conduction equipment, from either its own or container’s base voltage. For example, capacitors and transformer ends have their own base voltage, but line segments don’t.

	Parameters

	
	res – an RDF resource corresponding to a ConductingEquipment instance; we need to find its base voltage

	ptEquip – an RDF property corresponding to the EquipmentContainer association

	ptEqBaseV – an RDF property corresponding to a possible BaseVoltage association on the equipment itself

	ptLevBaseV – an RDF property corresponding to the EquipmentContainer’s BaseVoltage association

	ptBaseNomV – an RDF property corresponding to the nominalVoltage attribute of a CIM BaseVoltage

	Returns

	the nominal voltage as found from the equipment or its container, or 1.0 if not found

FindConductorAmps

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] FindConductorAmps(Model mdl, Resource res, Property ptDataSheet, Property ptAmps)

	needs to return the current rating for a line segment ‘res’ that has associated WireInfo at ‘ptDataSheet’, which in turn has the current rating at ptAmps

TODO - this is not implemented; emitted syntax is for OpenDSS and the function call (below, in main) needs review

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	res – an RDF resource corresponding to a CIM ACLineSegment

	ptDataSheet – an RDF property corresponding to CIM AssetDatasheet attribute

	ptAmps – an RDF property corresponding to CIM ratedCurrent attribute

	Returns

	unusable OpenDSS input

FirstPhase

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] FirstPhase(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs)

	
	Parameters

	
	phs – a parsed CIM PhaseCode

	Returns

	the first phase found as A, B, or C

GLDCapMode

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GLDCapMode(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] s)

	translate the capacitor control mode from CIM to GridLAB-D

	Parameters

	
	s – CIM regulating control mode enum

	Returns

	MANUAL, CURRENT, VOLT, VAR

GLD_ID

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GLD_ID(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg)

	parse the GridLAB-D name from a CIM name, based on # position

	Parameters

	
	arg – the CIM IdentifiedObject.name attribute, not the mrID

	Returns

	the compatible name for GridLAB-D

GLD_Name

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GLD_Name(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg, boolean bus)

	convert a CIM name to GridLAB-D name, replacing unallowed characters and prefixing for a bus/node

	Parameters

	
	arg – the root bus or component name, aka CIM name

	bus – to flag whether nd_ should be prepended

	Returns

	the compatible name for GridLAB-D

GetACLineParameters

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetACLineParameters(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name, Resource r, double len, double freq, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs, PrintWriter [http://docs.oracle.com/javase/8/docs/api/java/io/PrintWriter.html] out)

	for a standalone ACLineSegment with sequence parameters, find GridLAB-D formatted and normalized phase impedance matrix

TODO - this is always three-phase, so we don’t need all 7 variations from GetSequenceLineConfigurations

	

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	name – the root name of the line segment and its line_configuration

	r – an RDF resource corresponding to a CIM ACLineSegment

	len – the length of the ACLineSegment in feet

	freq – frequency in Hz for converting susceptance to capacitance

	phs – phasing for the written line_configuration (one of 7 variations) that needs to be referenced

	out – the PrintWriter instance opened from the main program, passed here so that we can share code in GetSequenceLineConfigurations

	Returns

	the name of the written line_configuration

GetBusName

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetBusName(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] eq_id, int seq)

	finds the bus (ConnectivityNode) name for conducting equipment

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file*

	eq_id – the CIM mrID of the conducting equipment

	seq – equals 1 to use the first terminal found, or 2 to use the second terminal found

	Returns

	the GridLAB-D compatible bus name, or x if not found. As Terminals no longer have sequence numbers, the ordering of seq is unpredictable, so if there are two we can get bus 1 - bus 2 or bus 2 - bus 1

GetBusPositionString

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetBusPositionString(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] id)

	for a bus (ConnectivityNode), search for X,Y geo coordinates based on connected Terminals and equipment

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	id – name of the bus to search from

	Returns

	X,Y coordinates in comma-separated value (CSV) format

GetCableData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetCableData(Model mdl, Resource res)

	needs to return underground_line_conductor data in GridLAB-D format

TODO - this is not implemented; the emitted syntax is actually for OpenDSS

	

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	res – an RDF resource corresponding to a CIM CableInfo (not a leaf/concrete class)

	Returns

	unusable OpenDSS input

GetCapControlData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetCapControlData(Model mdl, Resource rCap, Resource ctl)

	
	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rCap – an RDF resource corresponding to a CIM LinearShuntCompensator (aka capacitor)

	ctl – an RDF resource corresponding to the CIM RegulatingControl that was found attached to the LinearShuntCompensator

	Returns

	the embedded capacitor control data for a GridLAB-D capacitor object

GetEquipmentType

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetEquipmentType(Resource r)

	find the type of monitored equipment for controlled capacitors, usually a line or the capacitor itself

	Parameters

	
	r – an RDF resource, will have a CIM mrID, should be a LinearShuntCompensator, ACLineSegment, EnergyConsumer or PowerTransformer

	Returns

	cap, line, xf if supported in GridLAB-D; NULL or ##UNKNOWN## if unsupported

GetGldTransformerConnection

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetGldTransformerConnection(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html][] wye, int nwdg)

	Map CIM connectionKind to GridLAB-D winding connections. TODO: some of the returnable types aren’t actually supported in GridLAB-D

	Parameters

	
	wye – array of CIM connectionKind attributes per winding

	nwdg – number of transformer windings, also the size of wye

	Returns

	the GridLAB-D winding connection. This may be something not supported in GridLAB-D, which should be treated as a feature request

GetImpedanceMatrix

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetImpedanceMatrix(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name, Property ptCount, Resource r, boolean bWantSec)

	Convert CIM PerLengthPhaseImpedance to GridLAB-D line_configuration

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	name – root name of the line_configuration(s), should be the CIM name

	r – an RDF resource, will have a CIM mrID, should be PerLengthPhaseImpedance

	ptCount – an RDF property for the PerLengthPhaseImpedance.conductorCount

	bWantSec – flags the inclusion of triplex, true except for debugging

	Returns

	the GridLAB-D formatted impedance matrix for a line configuration. We have to write 3 of these in the case of 1-phase or 2-phase matrices. If (by name) it appears to be triplex and bWantSec is false, nothing will be returned.

GetLineSpacing

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetLineSpacing(Model mdl, Resource rLine)

	needs to return the line_spacing and wire/cncable/tscable assignments for this rLine in GridLAB-D format

TODO - this is not implemented, the emitted syntax is actually for OpenDSS

	

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rLine – an RDF resource corresponding to a CIM ACLineSegment that should have an associated AssetInfo

	Returns

	unusable OpenDSS input

GetMatIdx

	
static int GetMatIdx(int n, int row, int col)

	converts the [row,col] of nxn matrix into the sequence number for CIM PerLengthPhaseImpedanceData (only valid for the lower triangle) *

	Parameters

	
	n – 2x2 matrix order

	row – first index of the element

	col – second index

	Returns

	sequence number

GetPowerTransformerData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetPowerTransformerData(Model mdl, Resource rXf)

	
	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rXf – an RDF resource corresponding to CIM PowerTransformer; it should have mesh impedance data

	Returns

	transformer and transformer_configuration objects in GridLAB-D format

GetPowerTransformerTanks

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetPowerTransformerTanks(Model mdl, Resource rXf, ResIterator itTank, boolean bWantSec)

	writes a PowerTransformer in GridLAB-D format, in the case where individual tranformer tanks that are connected together in a bank. GridLAB-D supports only 2-winding banks with same phasing on both sides, or single-phase, center-tapped secondary transformers.

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rXf – an RDF resource corresponding to a CIM PowerTransformer that uses tank modeling

	itTank – a Jena iterator on the tanks associated with rXf, known to be non-empty before this function is called

	bWantSec – usually true, in order to include single-phase, center-tapped secondary transformers, which would come to this function

	Returns

	transformer object in GridLAB-D format; the transformer_configuration comes from calling GetXfmrCode

GetPropValue

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetPropValue(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] uri, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] prop)

	unprotected lookup of uri.prop value, to be deprecated in favor of SafeProperty

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	uri – an RDF resource, currently only an EquipmentContainer is used, and it should always exist

	prop – currently only IdentifiedObject.name is used, and it should always exist

	Returns

	the name of the CIM object

GetRegulatorData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetRegulatorData(Model mdl, Resource rXf, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] xfGroup, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] bus1, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] bus2, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs)

	Connects a regulator in GridLAB-D format between bus1 and bus2; should be called from GetPowerTransformerTanks. In CIM, a regulator consists of a transformer plus the ratio tap changer, so if such is found, should call GetRegulatorData instead of just writing the transformer data in GetPowerTransformerTanks. Any impedance in the regulating transformer will be lost in the GridLAB-D model. Should be called from PowerTransformers that have RatioTapChangers attached, so we know that lookup will succeed

TODO: implement regulators for tank transformers

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	rXf – an RDF resource corresponding to a CIM PowerTransformer that has a RatioTapChanger associated

	name – the name of the PowerTransformer (already looked up before calling this function)

	xfGroup – the PowerTransformer’s IEC vector group (already looked up before calling this function)

	bus1 – first bus (ConnectivityNode) on the regulator (already looked up before calling this function)

	bus2 – second bus (ConnectivityNode) on the regulator (already looked up before calling this function)

	phs – phases that contain A, B and/or C (already looked up before calling this function)

	Returns

	regulator and regulator_configuration objects in GridLAB-D format

GetSequenceLineConfigurations

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetSequenceLineConfigurations(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name, double sqR1, double sqX1, double sqC1, double sqR0, double sqX0, double sqC0)

	For balanced sequence impedance, return a symmetric phase impedance matrix for GridLAB-D. We have to write 7 variations to support all combinations of 3, 2 or 1 phases used.

	Parameters

	
	name – is the root name for these 7 variations

	sqR1 – positive sequence resistance in ohms/mile

	sqX1 – positive sequence reactance in ohms/mile

	sqC1 – positive sequence capacitance in nF/mile

	sqR0 – zero sequence resistance in ohms/mile

	sqX0 – zero sequence reactance in ohms/mile

	sqC0 – zero sequence capacitance in nF/mile

	Returns

	text for 7 line_configuration objects

GetWdgConnection

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetWdgConnection(Resource r, Property p, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] def)

	parse the CIM WindingConnection enumeration

	Parameters

	
	r – an RDF resource, will have a CIM mrID, should be a transformerEnd

	p – an RDF property, will be a CIM attribute, should be connectionKind

	def – default value if property is not found, such as Y

	Returns

	D, Y, Z, Yn, Zn, A or I

GetWireData

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetWireData(Model mdl, Resource res)

	needs to return overhead_line_conductor data in GridLAB-D format; res is the CIM OverheadWireInfo instance

TODO - this is not implemented; the emitted syntax is actually for OpenDSS

	

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	res – an RDF resource corresponding to CIM OverheadWireInfo

	Returns

	unusable OpenDSS input

GetXfmrCode

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetXfmrCode(Model mdl, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] id, double smult, double vmult, boolean bWantSec)

	Translates a single TransformerTankInfo into GridLAB-D format. These transformers are described with short-circuit and open-circuit tests, which sometimes use non-SI units like percent and kW, as they appear on transformer test reports.

TODO: smult and vmult may be removed, as they should always be 1 for valid CIM XML

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	id – CIM mRID corresponding to a CIM TransformerTankInfo

	smult – scaling factor for converting winding ratings to volt-amperes (should be 1)

	vmult – scaling factor for converting winding ratings to volts (should be 1)

	bWantSec – usually true to include single-phase, center-tapped secondary tranformers, which come to this function

	Returns

	transformer_configuration object in GridLAB-D format

GldPrefixedNodeName

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GldPrefixedNodeName(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg)

	prefix all bus names with nd_ for GridLAB-D, so they “should” be unique

	Parameters

	
	arg – the root bus name, aka CIM name

	Returns

	nd_arg

MergePhases

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] MergePhases(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs1, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs2)

	accumulate phases without duplication

Phase_Kind_String

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] Phase_Kind_String(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg)

	parses a single phase from CIM SinglePhaseKind

	Parameters

	
	arg – CIM SinglePhaseKind enum

	Returns

	A, B, C, N, s1 or s2

Phase_String

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] Phase_String(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg)

	parses the phase string from CIM phaseCode

	Parameters

	
	arg – CIM PhaseCode enum

	Returns

	some combination of A, B, C, N, s1, s2, s12

SafeBoolean

	
static boolean SafeBoolean(Resource r, Property p, boolean def)

	look up Jena boolean value

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	boolean value, or default if not found

SafeDouble

	
static double SafeDouble(Resource r, Property p, double def)

	look up Jena double value

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	double value, or default if not found

SafeInt

	
static int SafeInt(Resource r, Property p, int def)

	look up Jena integer value

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	integer value, or default if not found

SafePhasesX

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafePhasesX(Resource r, Property p)

	look up Jena phase property

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	Returns

	phases in string format, or ABCN if not found

SafeProperty

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafeProperty(Resource r, Property p, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] def)

	look up Jena string property

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	the property (or default value) as a string

SafeRegulatingMode

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafeRegulatingMode(Resource r, Property p, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] def)

	parse the CIM regulating control mode enum

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	voltage, timeScheduled, reactivePower, temperature, powerFactor, currentFlow, userDefined

SafeResName

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafeResName(Resource r, Property p)

	for components (not buses) returns the CIM name from r.p attribute if it exists, or the r.mrID if not, in GridLAB-D format

	Parameters

	
	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	Returns

	a name compatible with GridLAB-D

SafeResourceLookup

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] SafeResourceLookup(Model mdl, Property ptName, Resource r, Property p, String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] def)

	
	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	ptName – should be the IdentifiedObject.Name property of the resource we are looking for

	r – an RDF resource, will have a CIM mrID

	p – an RDF property, will be a CIM attribute

	def – default value if property is not found

	Returns

	the GridLAB-D formatted name of a resource referenced by r.p

Shunt_Delta

	
static boolean Shunt_Delta(Resource r, Property p)

	for loads and capacitors, returns true only if CIM PhaseShuntConnectionKind indicates delta

	Parameters

	
	r – an RDF resource, will have a CIM mrID, should be LinearShuntCompensator or EnergyConsumer

	p – an RDF property, will be a CIM attribute for phaseConnection

	Returns

	true if delta connection

WirePhases

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] WirePhases(Model mdl, Resource r, Property p1, Property p2)

	Returns GridLAB-D formatted phase string by accumulating CIM single phases, if such are found, or assuming ABC if not found. Note that in CIM, secondaries have their own phases s1 and s2. *

	Parameters

	
	mdl – an RDF model (set of statements) read from the CIM imput file

	r – an RDF resource, will have a CIM mrID, should be something that can have single phases attached

	p1 – an RDF property, will be a CIM attribute, should associate from a single phase back to r

	p2 – an RDF property, will be a CIM attribute, should be the single phase instance’s phase attribute

	Returns

	concatenation of A, B, C, s1 and/or s2 based on the found individual phases

main

	
public static void main(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html][] args)

	Reads command-line input for the converter

	Parameters

	
	args – will be CDPSM_to_GLM [options] input.xml output_root

	Throws

	
	java.io.FileNotFoundException [http://docs.oracle.com/javase/8/docs/api/java/io/FileNotFoundException.html] – if the CIM RDF input file is not found

Options:

-l={0..1} load scaling factor, defaults to 1

-t={y|n} triplex; y/n to include or ignore secondaries. Defaults to yes. Use no for debugging only, as all secondary load will be ignored.

-e={u|i} encoding; UTF-8 or ISO-8859-1. No default, so this should be specified. Choose ‘u’ if the CIM file came frome OpenDSS.

-f={50|60} system frequency; defaults to 60

-v={1|0.001} multiplier that converts CIM voltage to V for GridLAB-D; defaults to 1

-s={1000|1|0.001} multiplier that converts CIM p,q,s to VA for GridLAB-D; defaults to 1

-q={y|n} are unique names used? If yes, they are used as unique GridLAB-D names. If no, the CIM mrID is de-mangled to create a unique GridLAB-D name, but this option is only implemented for ACLineSegments as written to some earlier GIS profiles.

-n={schedule_name} root filename for scheduled ZIPloads (defaults to none)

-z={0..1} constant Z portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

-i={0..1} constant I portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

-p={0..1} constant P portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

Example: java CDPSM_to_GLM -l=1 -e=u -i=1 ieee8500.xml ieee8500

Assuming Jena and Commons-Math are in Java’s classpath, this will produce two output files:

	ieee8500_base.glm with GridLAB-D components for a constant-current model at peak load. This file includes an adjustable source voltage and manual capacitor/tap changer states. It should be invoked from a separate GridLAB-D file that sets up the clock, solver, recorders, etc. For example, these two GridLAB-D input lines set up 1.05 per-unit source voltage on a 115-kV system:

	#define VSOURCE=69715.065 // 66395.3 * 1.05

	#include “ieee8500_base.glm”

If there were capacitor/tap changer controls in the CIM input file, that data was written to ieee8500_base.glm as comments, which can be recovered through manual edits.

	ieee8500_busxy.glm with bus geographic coordinates, used in GridAPPS-D but not GridLAB-D

Cautions: this converter does not yet implement all variations in the CIM for unbalanced power flow.

	AssetInfo links to WireSpacing, OverheadWireInfo, ConcentricNeutralCableInfo and TapeShieldCableInfo

	PerLengthSequenceImpedance has not been tested

	Capacitor power factor control mode - not in GridLAB-D

	Capacitor user-defined control mode - not in GridLAB-D

	Capacitor controlled by load (EnergyConsumer) - need to name loads

	Line ratings for PerLengthImpedance

	Dielectric constant (epsR) for cables - not in CIM

	Soil resistivity (rho) for line impedance - not in CIM

	Multi-winding transformers other than centertap secondary-not in GridLAB-D

	Unbalanced transformer banks - not in GridLAB-D

	Autotransformers have not been tested

	schedule_name implemented for secondary loads only, primary loads to be done

	Fuse not implemented

	Breaker not implemented

	Jumper not implemented

	Disconnector not implemented

	Throws

	
	java.io.UnsupportedEncodingException [http://docs.oracle.com/javase/8/docs/api/java/io/UnsupportedEncodingException.html] – if the UTF encoding flag is wrong

See also: CDPSM_to_GLM

CDPSM_to_GLM.GldNode

	
static class GldNode

	Helper class to accumulate nodes and loads.

All EnergyConsumer data will be attached to node objects, then written as load objects. This preserves the input ConnectivityNode names

TODO - another option is to leave all nodes un-loaded, and attach all loads to parent nodes, closer to what OpenDSS does

Fields

bDelta

	
public boolean bDelta

	will add N or D phasing, if not S

bSecondary

	
public boolean bSecondary

	if bSecondary true, the member variables for phase A and B loads actually correspond to secondary phases 1 and 2. For GridLAB-D, these are written to phase AS, BS or CS, depending on the primary phase, which we find from the service transformer or triplex.

bSwing

	
public boolean bSwing

	denotes the SWING bus, aka substation source bus

name

	
public final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name

	root name of the node (or load), will have nd_ prepended

nomvln

	
public double nomvln

	this nominal voltage is always line-to-neutral

pa_i

	
public double pa_i

	real power on phase A or s1, constant current portion

pa_p

	
public double pa_p

	real power on phase A or s1, constant power portion

pa_z

	
public double pa_z

	real power on phase A or s1, constant impedance portion

pb_i

	
public double pb_i

	real power on phase B or s2, constant current portion

pb_p

	
public double pb_p

	real power on phase B or s2, constant power portion

pb_z

	
public double pb_z

	real power on phase B or s2, constant impedance portion

pc_i

	
public double pc_i

	real power on phase C, constant current portion

pc_p

	
public double pc_p

	real power on phase C, constant power portion

pc_z

	
public double pc_z

	real power on phase C, constant impedance portion

phases

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phases

	ABC allowed

qa_i

	
public double qa_i

	reactive power on phase A or s1, constant current portion

qa_p

	
public double qa_p

	reactive power on phase A or s1, constant power portion

qa_z

	
public double qa_z

	reactive power on phase A or s1, constant impedance portion

qb_i

	
public double qb_i

	reactive power on phase B or s2, constant current portion

qb_p

	
public double qb_p

	reactive power on phase B or s2, constant power portion

qb_z

	
public double qb_z

	reactive power on phase B or s2, constant impedance portion

qc_i

	
public double qc_i

	reactive power on phase C, constant current portion

qc_p

	
public double qc_p

	reactive power on phase C, constant power portion

qc_z

	
public double qc_z

	reactive power on phase C, constant impedance portion

Constructors

GldNode

	
public GldNode(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] name)

	constructor defaults to zero load and zero phases present

	Parameters

	
	name – CIM name of the bus

Methods

AddPhases

	
public boolean AddPhases(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] phs)

	accumulates phases present

	Parameters

	
	phs – phases to add, may contain ABCDSs

	Returns

	always true

ApplyZIP

	
public void ApplyZIP(double Z, double I, double P)

	reapportion loads according to constant power (Z/sum), constant current (I/sum) and constant power (P/sum)

	Parameters

	
	Z – portion of constant-impedance load

	I – portion of constant-current load

	P – portion of constant-power load

GetPhases

	
public String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GetPhases()

	
	Returns

	phasing string for GridLAB-D with appropriate D, S or N suffix

HasLoad

	
public boolean HasLoad()

	
	Returns

	true if a non-zero real or reactive load on any phase

RescaleLoad

	
public void RescaleLoad(double scale)

	scales the load by a factor that probably came from the command line’s -l option

	Parameters

	
	scale – multiplying factor on all of the load components

CDPSM_to_GLM.SpacingCount

	
static class SpacingCount

	helper class to keep track of the conductor counts for WireSpacingInfo instances

Number of Conductors is the number of phases (1..3) plus neutrals (0..1)

Constructors

SpacingCount

	
public SpacingCount(int nconds, int nphases)

	construct with number of conductors and phases

	Parameters

	
	nconds – number of phases plus neutrals (1..4)

	nphases – number of phase conductors (1..3)

Methods

getNumConductors

	
public int getNumConductors()

	
	Returns

	accessor to number of conductors

getNumPhases

	
public int getNumPhases()

	
	Returns

	accessor to number of phases

SPARQLcimTest

	
public class SPARQLcimTest extends Object [http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html]

	This class runs an example SQARQL query against CIM XML

Future versions of GridAPPS-D will rely more heavily on SPARQL queries to do the selection and filtering, as the preferred pattern for developers working with CIM. This example uses several triples to execute a query on LinearShuntCompensators (aka capacitors).

Invoke as a console-mode program

	Author

	Tom McDermott

See also: SPARQLcimTest.main

Fields

baseURI

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] baseURI

	identifies gridlabd

nsCIM

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] nsCIM

	namespace for CIM; should match the CIM version used to generate the RDF

nsRDF

	
static final String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] nsRDF

	namespace for RDF

Methods

GLD_Name

	
static String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] GLD_Name(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html] arg, boolean bus)

	convert a CIM name to GridLAB-D name, replacing unallowed characters

main

	
public static void main(String [http://docs.oracle.com/javase/8/docs/api/java/lang/String.html][] args)

	Reads command-line input for the converter

	Parameters

	
	args – will be SPARQLcimTest [options] input.xml

Options: -e={u|i} encoding; UTF-8 or ISO-8859-1; choose u if input.xml came from OpenDSS

License

Copyright

 Index

Index

 A
 | B
 | C
 | F
 | G
 | H
 | M
 | N
 | P
 | Q
 | R
 | S
 | W

A

 	
 	AccumulateLoads(GldNode, String, double, double, double, double, double, double, double, double, double, double) (Java method)

 	
 	AddPhases(String) (Java method)

 	ApplyZIP(double, double, double) (Java method)

B

 	
 	baseURI (Java field), [1]

 	bDelta (Java field)

 	
 	bSecondary (Java field)

 	bSwing (Java field)

 	Bus_ShuntPhases(String, String) (Java method)

C

 	
 	CDPSM_to_GLM (Java class)

 	
 	CFormat(Complex) (Java method)

 	Count_Phases(String) (Java method)

F

 	
 	FindBaseVoltage(Resource, Property, Property, Property, Property) (Java method)

 	
 	FindConductorAmps(Model, Resource, Property, Property) (Java method)

 	FirstPhase(String) (Java method)

G

 	
 	GetACLineParameters(Model, String, Resource, double, double, String, PrintWriter) (Java method)

 	GetBusName(Model, String, int) (Java method)

 	GetBusPositionString(Model, String) (Java method)

 	GetCableData(Model, Resource) (Java method)

 	GetCapControlData(Model, Resource, Resource) (Java method)

 	GetEquipmentType(Resource) (Java method)

 	GetGldTransformerConnection(String[], int) (Java method)

 	GetImpedanceMatrix(Model, String, Property, Resource, boolean) (Java method)

 	GetLineSpacing(Model, Resource) (Java method)

 	GetMatIdx(int, int, int) (Java method)

 	getNumConductors() (Java method)

 	getNumPhases() (Java method)

 	GetPhases() (Java method)

 	GetPowerTransformerData(Model, Resource) (Java method)

 	
 	GetPowerTransformerTanks(Model, Resource, ResIterator, boolean) (Java method)

 	GetPropValue(Model, String, String) (Java method)

 	GetRegulatorData(Model, Resource, String, String, String, String, String) (Java method)

 	GetSequenceLineConfigurations(String, double, double, double, double, double, double) (Java method)

 	GetWdgConnection(Resource, Property, String) (Java method)

 	GetWireData(Model, Resource) (Java method)

 	GetXfmrCode(Model, String, double, double, boolean) (Java method)

 	GLD_ID(String) (Java method)

 	GLD_Name(String, boolean) (Java method), [1]

 	GLDCapMode(String) (Java method)

 	GldNode (Java class)

 	GldNode(String) (Java constructor)

 	GldPrefixedNodeName(String) (Java method)

 	gov.pnnl.gridlabd.cim (package), [1]

H

 	
 	HasLoad() (Java method)

M

 	
 	main(String[]) (Java method), [1]

 	mapNodes (Java field)

 	
 	mapSpacings (Java field)

 	MergePhases(String, String) (Java method)

N

 	
 	name (Java field)

 	neg120 (Java field)

 	
 	nomvln (Java field)

 	nsCIM (Java field), [1]

 	nsRDF (Java field), [1]

P

 	
 	pa_i (Java field)

 	pa_p (Java field)

 	pa_z (Java field)

 	pb_i (Java field)

 	pb_p (Java field)

 	pb_z (Java field)

 	pc_i (Java field)

 	pc_p (Java field)

 	
 	pc_z (Java field)

 	Phase_Kind_String(String) (Java method)

 	Phase_String(String) (Java method)

 	phases (Java field)

 	pos120 (Java field)

 	ptBaseNomV (Java field)

 	ptEqBaseV (Java field)

 	ptEquip (Java field)

 	ptLevBaseV (Java field)

Q

 	
 	qa_i (Java field)

 	qa_p (Java field)

 	qa_z (Java field)

 	qb_i (Java field)

 	
 	qb_p (Java field)

 	qb_z (Java field)

 	qc_i (Java field)

 	qc_p (Java field)

 	qc_z (Java field)

R

 	
 	RescaleLoad(double) (Java method)

S

 	
 	SafeBoolean(Resource, Property, boolean) (Java method)

 	SafeDouble(Resource, Property, double) (Java method)

 	SafeInt(Resource, Property, int) (Java method)

 	SafePhasesX(Resource, Property) (Java method)

 	SafeProperty(Resource, Property, String) (Java method)

 	SafeRegulatingMode(Resource, Property, String) (Java method)

 	
 	SafeResName(Resource, Property) (Java method)

 	SafeResourceLookup(Model, Property, Resource, Property, String) (Java method)

 	Shunt_Delta(Resource, Property) (Java method)

 	SpacingCount (Java class)

 	SpacingCount(int, int) (Java constructor)

 	SPARQLcimTest (Java class)

W

 	
 	WirePhases(Model, Resource, Property, Property) (Java method)

 gov.pnnl.gridlabd.cim

gov.pnnl.gridlabd.cim

This Java package converts CIM RDF to GridLAB-D format.

	CDPSM_to_GLM

	CDPSM_to_GLM.GldNode

	CDPSM_to_GLM.SpacingCount

	SPARQLcimTest

 Class Diagrams for the Profile

This section summarizes the use of a reduced-order CIM 1 to support
feeder modeling for the volt-var application in Release Cycle 1 (RC1).
The full CIM includes over 1100 tables in SQL, each one corresponding to
a UML class, enumeration or datatype. In RC1, we’re using approximately
100 such entities, mapped onto 100+ tables in SQL. Later versions of
GridAPPS-D will use a triple-store or graph database, both of which
appear to be better suited for CIM.

The CIM subset described here is based on the profile adopted for the
most recent distribution CIM interoperability test, which was held in
2011 at EDF. For GridAPPS-D, we have updated that profile for
compatibility with the most recent CIM base standard.

Class Diagrams for the Profile

Figure 1 through Figure 11 present the UML class diagrams generated from
Enterprise Architect 2. These diagrams provide an essential roadmap
for understanding:

	How to ingest CIM XML from various sources into the database

	How to generate native GridLAB-D input files from the database

For those unfamiliar with UML class diagrams:

	Lines with an arrowhead indicate class inheritance. For example, in
Figure 1, ACLineSegment inherits from Conductor, ConductingEquipment,
Equipment and then PowerSystemResource. ACLineSegment inherits all
attributes and associations from its ancestors (e.g. length), in
addition to its own attributes and ancestors.

	Lines with a diamond indicate composition. For example, in Figure 1,
ConnectivityNodes make up a TopologicalNode, and then
TopologicalNodes make up a TopologicalIsland.

	Lines without a terminating symbol are associations. For example, in
Figure 1, ACLineSegment has (through inheritance) a BaseVoltage,
Location and EquipmentContainer.

	Italicized names at the top of each class indicate the ancestor (aka
superclass), in cases where the ancestor does not appear on the
diagram. For example, in Figure 1, PowerSystemResource inherits from
IdentifiedObject.

Please see OSPRREYS_RC1.eap 3 in the repository 4 on GitHub
for the latest updates. The EnterpriseArchitect file includes a
description of each class, attribute and association. It can also
generate HTML documentation of the CIM, with more detail than provided
here.

The diagrammed UML associations have a role and cardinality at each end,
source and target. In practice, only one end of each association is
profiled and implemented in SQL. In some cases, the figure captions
indicate which end, but see the CIM profile for specific definitions, as
described in the object diagram section.

Nearly every CIM class inherits from IdentifiedObject, from which we use
two attributes:

	mRID is the “master identifier” that must be unique and persistent
among all instances. It’s often used as the RDF resource identifier,
and is often a GUID.

	Name is a human-readable identifier that need not be unique.

[image: image0]

Figure 1: Placement of ACLineSegment into a Line (aka Feeder). In
GridAPPS-D, the Line is the EquipmentContainer for all power system
components and the ConnectivityNodeContainer for all nodes. It also
corresponds to one TopologicalIsland. It’s part of a
SubGeographicalRegion and GeographicalRegion for proper context with
other CIM models. For visualization, ACLineSegment can be drawn from a
sequence of PositionPoints associated via Location. The Terminals are
free-standing; two of them will “reverse-associate” to the ACLineSegment
as ConductingEquipment, and each terminal also has one ConnectivityNode.
In RC1, we have a one-to-one association between ConnectityNode and
TopologicalNode. The AngleRefTopologicalNode association can be used to
identify the swing bus for GridLAB-D. Otherwise, we’re only using the
topology classes to facilitate state variables, as described in Figure
11. The Terminal:phases attribute is not used; instead, phases will be
defined in the ConductingEquipment instances. The associated
BaseVoltage:nominalVoltage attribute is important for many of the
classes that don’t have their own rated voltage attributes, for example,
EnergyConsumer.

[image: image1]

Figure 2: There are four different ways to specify ACLineSegment
impedances. In all cases, Conductor:length is required. The first way is
to specify the individual ACLineSegment attributes, which are sequence
impedances and admittances, leaving PerLengthImpedance null. The second
way is to specify the same attributes on an associated
PerLengthSequenceImpedance, in which case the ACLineSegment attributes
should be null. The third way is to associate a PerLengthPhaseImpedance,
leaving the ACLineSegment attributes null. Only conductorCount from 1 to
3 is supported, and there will be 1, 3 or 6 reverse-associated
PhaseImpedanceData instances that define the lower triangle of the Z and
Y matrices per unit length. The sequenceNumber goes from 1 to
N+N*(N-1)/2 in column order. The fourth way to specify impedance is by
wire/cable and spacing data, as described with Figure 10. If there are
ACLineSegmentPhase instances reverse-associated to the ACLineSegment,
then per-phase modeling applies. There are several use cases for
ACLineSegmentPhase: 1) single-phase or two-phase primary, 2) low-voltage
secondary using phases s1 and s2, 3) associated wire data where the
neutral exists, 4) associated wire data where the phase wires are
different. It is the application’s responsibility to propagate phasing
through terminals to other components, and to identify any miswiring.

[image: image2]

Figure 3: The EnergySource is balanced three-phase, representing a
transmission system source (this is probably not the way we’ll model
distributed generation in future versions). The EnergyConsumer is a ZIP
load, possibly unbalanced, with an associated LoadResponse instance
defining the ZIP coefficients. For three-phase delta loads, the
phaseConnection is D and the three reverse-associated
EnergyConsumerPhase instances will have phase=A for the AB load, phase=B
for the BC load and phase=C for the AC load. A three-phase wye load may
have either Y or Yn for the phaseConnection. Single-phase and two-phase
loads, including secondary loads, should have phaseConnection=I (for
individual).

[image: image3]

Figure 4: There are seven different kinds of Switch supported in the
CIM, and all of them have zero impedance. They would all behave the same
in power flow analysis, and all would require many more attributes than
are defined in CIM to support protection analysis. The use cases for
SwitchPhase include 1) single-phase, two-phase and secondary switches,
2) one or two conductors open in a three-phase switch or 3)
transpositions, in which case phaseSide1 and phaseSide2 would be
different.

[image: image4]

Figure 5: On the left, LinearShuntCompensator and
LinearShuntCompensatorPhase define capacitor banks, in a way very
similar to EnergyConsumer in Figure 3. The kVAR ratings must be
converted to susceptance based on the nominal voltage, nomU. Note that
aVRDelay is really a capacitor control parameter, to be used in
conjunction with RegulatingControl on the right-hand side. The
RegulatingControl associates to the controlled capacitor bank via
RegulatingCondEq, and to the monitored location via Terminal. There is
no support for a PT or CT ratio, so targetDeadband and targetValue have
to be in primary volts, amps, vars, etc.

[image: image5]

Figure 6: PowerTransformers may be modeled with or without tanks, and in
both cases vectorGroup should be specified according to IEC transformer
standards (e.g. Dy1 for many substation transformers). The case without
tanks is most suitable for balanced three-phase transformers that won’t
reference catalog data; any other case should use tank-level modeling.
In the tankless case, each winding will have a PowerTransformerEnd that
associates to both a Terminal and a BaseVoltage, and the parent
PowerTransformer. The impedance and admittance parameters are defined by
reverse-associated TransformerMeshImpedance between each pair of
windings, and a reverse-associated TransformerCoreAdmittance for one
winding. The units for these are ohms and siemens based on the winding
voltage, rather than per-unit. WindingConnection is similar to
PhaseShuntConnectionKind, adding Z and Zn for zig-zag connections and A
for autotranformers. If the transformer is unbalanced in any way, then
TransformerTankEnd is used instead of PowerTransformerEnd, and then one
or more TransformerTanks may be used in the parent PowerTransformer.
Some of the use cases are 1) center-tapped secondary, 2) open-delta and
3) EHV transformer banks. Tank-level modeling is also required is using
catalog data, as described with Figure 9.

[image: image6]

Figure 7: A RatioTapChanger can represent a transformer tap changer on
the associated TransformerEnd. The RatioTapChanger has some parameters
defined in a direct-associated TapChangerControl, which inherits from
RegulatingControl some of the same attributes used in capacitor controls
(Figure 5). Therefore, a line voltage regulator in CIM includes a
PowerTransformer, a RatioTapChanger, and a TapChangerControl. The CT and
PT parameters of a voltage regulator can only be described via the
AssetInfo mechanism, described with Figure 8.

[image: image7]

Figure 8: Many distribution software packages use the concept of catalog
data, aka library data, especially for lines and transformers. We use
the Asset and AssetInfo packages to implement this in CIM. Here, the
TapChangerInfo class includes the CT rating, CT ratio and PT ratio
parameters needed for line drop compensator settings in voltage
regulators. Catalog data is a one-to-many, and sometimes a many-to-many,
relationship. For these lookups, we create an Asset instance that has
one association to AssetInfo, and one-to-many associations to
PowerSystemResources. In this case, many TapChangers can share the same
TapChangerInfo data, which saves space and provides consistency.

[image: image8]

Figure 9: The catalog mechanism for transformers will associate a
TransformerTank (Figure 6) with TransformerTankInfo (here), via the
one-to-many mechanism described in Figure 8. The PowerTransformerInfo
collects TransformerTankInfo by reverse association, but it does not
link with PowerTransformer. In other words, the physical tanks are
cataloged because transformer testing is done on tanks. One possible use
for PowerTransformerInfo is to help organize the catalog. It’s important
that TransformerEndInfo:endNumber (here) properly match the
TransformerEnd:endNumber (Figure 6). The shunt admittances are defined
by NoLoadTest on a winding / end, usually just one such test. The
impedances are defined by a set of ShortCircuitTests; one winding / end
will be energized, and one or more of the others will be grounded in
these tests.

[image: image9]

Figure 10: The catalog / library mechanism for ACLineSegment will have a
WireSpacingInfo associated as in Figure 9. This will indicate whether
the line is overhead or underground. phaseWireCount and phaseWireSpacing
define optional bundling, so these will be 1 and 0 for distribution. The
number of phase and neutral conductors is actually defined by the number
of reverse-associated WirePosition instances. For example, a three-phase
line with neutral would have four of them, with phase = A, B, C and N.
On the right-hand side, concrete classes OverheadWireInfo,
TapeShieldCableInfo and ConcentricNeutralCableInfo may be associated (as
in Figure 9) to either ACLineSegment or ACLineSegmentPhase. The
association to ACLineSegment only applies for three-conductor,
three-phase lines all using the same wire data, or to supply just the
ratedCurrent attribute. All other use cases would associate to
ACLineSegmentPhase. It’s the application’s responsibility to calculate
impedances from this data. In particular, soil resistivity and
dielectric constants are not included in the CIM. Typical dielectric
constant values might be defined for each WireInsulationKind.

[image: image10]

Figure 11: The CIM state variables package might be used to mimic sensor
locations and values on the distribution system. Voltages are measured
on TopologicalNodes, power flows are measured at Terminals, step
positions are measured on TapChangers, status is measured on
ConductingEquipment, and on/off state is measured on ShuntCompensators.
The “injections” have been included here, but there may not be a use
case for them in distribution. On the other hand, we would need an
SvCurrent, which was probably not included in the CIM because of its
transmission system heritage. Attributes for sensor characteristics
would also have to be added in future versions of GridAPPS-D.

Typical Queries

These queries focus on requirements of the first volt-var application.

	Capacitors (Figure 5, Figure 12, Figure 13, Figure 14)

	Create a list of capacitors with bus name (Connectivity Node in
Figure 1), kVAR per phase, control mode, target value and target
deadband

	For a selected capacitor, update the control mode, target value,
and target deadband

	Regulators (Figure 7, Figure 8, Figure 12, Figure 29)

	List all transformers that have a tap changer attached, along with
their bus names and kVA sizes

	Given a transformer that has a tap changer attached, list or
update initialDelay, step, subsequentDelay, mode, targetDeadband,
targetValue, limitVoltage, lineDropCompensation, lineDropR,
lineDropX, reverseLineDropR and reverseLineDropX

	Transformers (Figure 6, Figure 9)

	Given a bus name or load (Figure 3), find the transformer serving
it (Figure 16, Figure 19)

	Find the substation transformer, defined as the largest
transformer (by kVA size and or highest voltage rating)

	List the transformer catalog (Figure 9, Figure 20) with name,
highest ratedS, list of winding ratedU in descending order, vector
group (https://en.wikipedia.org/wiki/Vector_group used with
connectionKind and phaseAngleClock), and percent impedance

	List the same information as in item c, but for transformers
(Figure 6) and also retrieving their bus names. Note that a
transformer can be defined in three ways

	Without tanks, for three-phase, multi-winding, balanced
transformers (Figure 16 and Figure 17).

	With tanks along with TransformerTankInfo (Figure 9) from a
catalog of “transformer codes”, which may describe balanced
or unbalanced transformers. See Figure 19 and Figure 20.

	With tanks for unbalanced transformers, and
TransformerTankInfo created on-the-fly. See Figure 19 and
Figure 20.

	Given a transformer (Figure 6), update it to use a different
catalog entry (TransformerTankInfo in Figure 9)

	Lines (Figure 2, Figure 10, Figure 12)

	List the line and cable catalog entries that meet a minimum
ratedCurrent and specific WireUsageKind. For cables, be able to
specify tape shield vs. concentric neutral, the
WireInsulationKind, and a minimum insulationThickness. (Figure 27)

	Given a line segment (Figure 2) update to use a different linecode
(Figure 10, Figure 26)

	Given a bus name, list the ACLineSegments connected to the bus,
along with the length, total r, total x, and phases used. There
are four cases as noted in the caption of Figure 2, and see Figure
23 through Figure 26.

	Given a bus name, list the set of ACLineSegments (or
PowerTransformers and Switches) completing a path from it back to
the EnergySource (Figure 3). Normally, the applications have to
build a graph structure in memory to do this, so it would be very
helpful if a graph/semantic database can do this.

	Voltage and other measurements (Figure 1, Figure 11)

	Given a bus, attach a voltage measurement point (SvVoltage, Figure
30)

	List all voltage measurement points and their buses, and for each
bus, list the phases actually present

	For tap changer position (SvTapStep, Figure 31), attach and list
measurements as in items a and b

	For capacitor switch status (SvShuntCompensatorSections, Figure
32), attach and list measurements as in items a and b

	Loads (Figure 3, Figure 28)

	Given a bus name, list and total all of the loads connected by
phase, showing the total p and q, and the composite ZIP
coefficients

	Switching (Figure 4, Figure 22)

	Given a bus name, trace back to the EnergySource and list the
switches encountered, grouped by type (i.e. the leaf class in
Figure 4). Also include the ratedCurrent, breakingCapacity if
applicable, and open/close status. If SwitchPhase is used, show
the phasing on each side and the open/close status of each phase.

	Given switch, toggle its open/close status.

Object Diagrams for Queries

This section contains UML object diagrams for the purpose of
illustrating how to perform typical queries and updates. For those
unfamiliar with UML object diagrams:

	Each object will be an instance of a class, and more than one
instance of a class can appear on the diagram. For example, Figure 12
shows two ConnectivityNode instances, one for each end of a
ConductingEquipment.

	The object name (if specified and important) appears before the colon
(:) above the line, while the UML class appears after the colon.
Every object in CIM will have a unique ID, and a name (not
necessarily unique), even if not shown here.

	Some objects may be shown with run-time state below the line. These
are attribute value assignments, drawn from those available in the
UML class or one of the class ancestors. The object may have more
attribute assignments, but only those directly relevant to the figure
captions are shown in the diagrams of this section.

	Object associations are shown with solid lines, role names, and
multiplicities similar to the UML class diagrams. One important
difference is that only one way of navigating a particular
association will be defined in the profile. For example, the lower
left corner of Figure 1 shows a two-way link between TopologicalNode
and ConnectivityNode in the UML class diagram. However, Figure 12
shows that only one direction has been defined in the profile. Each
ConnectivityNode has a direct reference to its corresponding
TopologicalNode. In order to navigate the reverse direction from
TopologicalNode to ConnectivityNode, some type of conditional query
would be required. In other words, the object diagrams in this
section indicate which associations can actually be used in
GridAPPS-D.

	In some cases, the multiplicities on the object diagrams are more
restrictive than on the class diagrams, due to profiling. For
example, Figure 12 reflects a one-to-one correspondence between
ConnectivityNode and TopologicalNode in this profile.

The object diagrams are intended to help you break down the CIM queries
into common sub-tasks. For example, query #1 works with capacitors. It’s
always possible to select a capacitor (aka LinearShuntCompensator) by
name. In order to find the capacitor at a bus, say “bus1” in Figure 12,
one would retrieve all Terminals having a ConnectivityNode reference to
“bus1”. Each of those Terminals will have a ConductingEquipment
reference, and you want the Terminal(s) for which that reference is
actually a LinearShuntCompensator. In this CIM profile, only leaf
classes (e.g. LinearShuntCompensator) will be instantiated, never base
classes like ConductingEquipment. There can be more than one capacitor
at a bus, more than one load, more than one line, etc.

[image: image11]

Figure 12: In order to traverse buses and components, begin with a
ConnectivityNode (left). Collect all terminals referencing that
ConnectivityNode; each Terminal will have one-to-one association with
ConductingEquipment, of which there are many subclasses. In this
example, the ConductingEquipment has a second terminal referencing the
ConnectivityNode called bus2. There are applications for both
Depth-First Search (DFS) and Bread-First Search (BFS) traversals. Note
1: the Terminals have names, but these are not useful. Some Terminal
names have been shown above, just to illustrate there is no useful
implication of sequencing or ordering. Note 2: in this version of
GridAPPS-D, we have one-to-one association of TopologicalNode and
ConnectivityNode, but all searches should visit ConnectivityNodes. Note
3: transformers are subclasses of ConductingEquipment, but we traverse
connectivity via transformer ends (aka windings). This is illustrated
later.

In order to find capacitors (or anything else) associated with a
particular “feeder”, Figure 13 shows that you would query for objects
having EquipmentContainer reference to the feeder’s Line object. In
GridAPPS-D RC1, we only use Line for equipment container in CIM, and
this would correspond to one entire GridLAB-D model. There is also a
BaseVoltage reference that will have the system nominal voltage for the
capacitor’s location. However, in order to work with equipment ratings
you should use ratedS and ratedU attributes where they exist,
particularly for capacitors and transformers. These attributes are often
slightly different than the “system voltage”. Most of the attribute
units in CIM are SI, with a few exceptions like percent and kW values on
transformer test sheets (i.e. CIM represents the test sheet, not the
equipment).

[image: image12]

Figure 13: All conducting equipment lies within an EquipmentContainer,
which in GridAPPS-D, will be a Line object named after the feeder. It
also has reference to a BaseVoltage, which is typically one of the ANSI
preferred system voltages. Power transformers are a little different, in
that each winding (called “end” in CIM) has reference to a BaseVoltage.
Note that equipment ratings come from the vendor, and in this case
ratedU is slightly different from nominalVoltage. All conducting
equipment has a Location, which contains XY coordinates (see Figure 1).
The Location is useful for visualization, but is not essential for a
power flow model.

Completing the discussion of capacitors, Figure 14 provides two examples
for single-phase, and three-phase with local voltage control. As shunt
elements, capacitors have only one Terminal instance. Loads and sources
have one terminal, lines and switches have two terminals, and
transformers have two or more terminals. Examples of all those are shown
later. In Figure 14, the capacitor’s kVAR rating will be based on its
nameplate ratedU, not the system’s nominalVoltage.

Often, the question will arise “what phases exist at this bus?”. There
is no phasing explicitly associated with a ConnectivityNode or Terminal
in CIM. To answer this question, we’d have to query for all
ConductingEquipment instances having Terminals connected to that bus, as
in Figure 12. The types of ConductingEquipment that may have individual
phases include LinearShuntCompensators (Figure 14), ACLineSegments,
PowerTransformers (via TransformerEnds), EnergyConsumers, and
descendants of Switch. If the ConductingEquipment has such individual
phases, then add those phases to list of phases existing at the bus. If
there are no individual phases, then ABC all exist at the bus. Note this
doesn’t guarantee that all wiring to the bus is correct; for example,
you could still have a three-phase load served by only a two-phase line,
which would be a modeling error. In Figure 14, we’d find phase C at
Bus611 and phases ABC at Bus675. Elsewhere in the model, there should be
ACLineSegments, PowerTransformers or Switch descendants delivering phase
C to Bus611, all three phases ABC to Bus675.

[image: image13]

Figure 14: Capacitors are called LinearShuntCompensator in CIM. On the
left, a 100 kVAR, 2400 V single-phase bank is shown on phase C at bus
611. bPerSection = 100e3 / 2400^2 [S], and the bPerSection on
LinearShuntCompensatorPhase predominates; these values can differ among
phases if there is more than one phase present. On the right, a balanced
three-phase capacitor is shown at bus 675, rated 300 kVAR and 4160 V
line-to-line. We know it’s balanced three phase from the absence of
associated LinearShuntCompensatorPhase objects. bPerSection = 300e4 /
4160^2 [S]. This three-phase bank has a voltage controller attached with
2400 V setpoint and 240 V deadband, meaning the capacitor switches ON if
the voltage drops below 2280 V and OFF if the voltage rises above 2520
V. These voltages have to be monitored line-to-neutral in CIM, with no
VT ratio. In this case, the control monitors the same Terminal that the
capacitor is connected to, but a different conducting equipment’s
Terminal could be used. The control delay is called aVRDelay in CIM, and
it’s an attribute of the LinearShuntCompensator instead of the
RegulatingControl. It corresponds to “dwell time” in GridLAB-D.

Figure 15 through Figure 20 illustrate the transformer query tasks, plus
Figure 29 for attached voltage regulators. The autotransformer example
is rated 500/345/13.8 kV and 500/500/50 MVA, for a transmission system.
The short circuit test values are ZHL=10%, ZHT=25%
and ZLT=30%. The no-load test values are 0.05% exciting
current and 0.025% no-load losses. These convert to r, x, g and b in SI
units, from and , where Srated and Urated are based on
the “from” winding (aka end). The same base quantities would be used to
convert r, x, g and b back to per-unit or percent. The open wye – open
delta impedances are already represented in percent or kW, from the test
reports.

[image: image14]

Figure 15: Autotransformer with delta tertiary winding acts like a
wye-wye transformer with smaller delta tertiary. The vector group would
be Yynd1 or Yyd1. For analyses other than power flow, it can be
represented more accurately as the physical series (n1) – common (n2)
connection, with a vector group Yand1. In either case, it’s a
three-winding transformer.

[image: image15]

Figure 16: A three-winding autotransformer is represented in CIM as a
PowerTransformer with three PowerTransformerEnds, because it’s balanced
and three-phase. The three Terminals have direct ConductingEquipment
references to the PowerTransformer, so you can find it from bus1, busX
or busY. However, each PowerTransformerEnd has a back-reference to the
same Terminal, and it’s own reference to BaseVoltage (Figure 13); that’s
how you link the matching buses and windings, which must have compatible
voltages. Terminals have no sequence number, so the endNumber is
important for correct linkage to catalog data as discussed later. By
convention, ends with highest ratedU have the lowest endNumber, and
endNumber establishes that end’s place in the vectorGroup.

[image: image16]

Figure 17: Power transformer impedances correspond to the three-winding
autotransformer example of Figure 15 and Figure 16. There are three
instances of TransformerMeshImpedance connected pair-wise between the
three windings / ends. The x and r values are in Ohms referred to the
end with highest ratedU in that pair. There is just one
TransformerCoreAdmittance, usually attached to the end with lowest
ratedU, and the attribute values are Siemens referred to that end’s
ratedU.

[image: image17]

Figure 18: Open wye - open delta transformer banks are used to provide
inexpensive three-phase service to loads, by using only two single-phase
transformers. This is an unbalanced transformer, and as such it requires
tank modeling in CIM. Physically, the two transformers would be in
separate tanks. Note that Tank A is similar to the residential
center-tapped secondary transformer, except the CIM phases would include
s1 and s2 instead of A and B.

[image: image18]

Figure 19: Unbalanced PowerTransformer instances comprise one or more
TransformerTanks, which own the TransformerTankEnds. Through the ends,
busHi collects phases ABN and busLo collects phases ABCN. Typically,
phase C will also exist at busHi, but this transformer doesn’t require
it. We still assign vectorGroup Yd1 to the supervising PowerTransformer,
as this is the typical case. The modeler should determine that. By
comparison to Figure 19, there is a possible ambiguity in how endA3
represents the polarity dot at the neutral end of Wdg A3. An earlier CIM
proposal would have assigned phaseAngleClock = 6 on endA3, but the
attribute was removed from TransformerTankEnd. It may not be possible to
infer the correct winding polarities from the vectorGroup in all cases.
There is a phaseAngleClock attribute on TransformerTankEndInfo, but that
represents a shelf state of the tank, not necessarily connections in the
field. Therefore, it may be necessary to propose the phaseAngleClock
attribute for TransformerTankEnd.

[image: image19]

Figure 20: This Asset catalog example defines the impedances for Tank B
of the open wye – open delta bank. This is a 50 kVA, 7200 / 240 V
single-phase transformer. It has 1% exciting current and 0.4 kW loss in
the no-load test, plus 2.1% reactance and 0.5 kW loss in the
short-circuit test. A multi-winding transformer could have more than one
grounded end in a short-circuit test, but this is not common. The
catalog data is linked with one or more TransformerTanks via the Asset
instance, shown to the left. This Asset instance won’t exist without
such links (i.e. the catalog data is actually used), so cardinalities
are 1 for AssetInfo and 1..* for PowerSystemResources. Furthermore,
endNumber on the TransformerEndInfo has to match endNumber on the
TransformerTankEnd instances associated to Tank B. Instead of catalog
information, we could have used mesh impedance and core admittance as in
Figure 17, but we’d have to convert the test sheets to SI units and we
could not share data with other TransformerTank instances, both of which
are inconvenient.

Figure 21 through Figure 27 illustrate the query tasks for
ACLineSegments and Switches, which will define most of the circuit’s
connectivity. The example sequence impedances were based on Z1
= 0.1 + j0.8 Ω/mile and Z0 = 0.5 + j2.0 Ω /mile. For
distribution systems, use of the shared catalog data is more common,
either pre-calculated matrix (Figure 25) or spacing and conductor
(Figure 26 and Figure 27). In both cases, impedance calculation is
outside the scope of CIM (e.g. GridLAB-D internally calculates line
impedance from spacing and conductor data).

[image: image20]

Figure 21: An ACLineSegment with two phases, A and C. If there are no
ACLineSegmentPhase instances that associate to it, assume it’s a
three-phase ACLineSegment. This adds phases AC to bus671 and bus684.

[image: image21]

Figure 22: This 50-Amp load break switch connects phases AC between
busLeft and busRight. Without associated SwitchPhase instances, it would
be a three-phase switch. This switch also transposes the phases; A on
side 1 connects with C on side 2, while C on side 1 connects with A on
side 2. This is the only way of transposing phases in CIM. Note the
ambiguity in side 1 and side 2, because Terminal.sequenceNumber was
subsequently removed from the CIM. This needs to be addressed in a
future version of the CIM. Also note that LoadBreakSwitch has the open
attribute inherited from Switch, while SwitchPhase has the converse
closed attribute. In order to open and close the switch, these
attributes would be toggled appropriately. See Figure 4 for other types
of switch.

[image: image22]

Figure 23: This is a balanced three-phase ACLineSegment between bus632
and bus671, 2000 feet or 609.6 m long. Sequence impedances are specified
in ohms, as attributes on the ACLineSegment. This is a typical pattern
for transmission lines, but not distribution lines.

[image: image23]

Figure 24: The impedances from Figure 23 were divided by 609.6 m, to
obtain ohms per meter for seqCat1. Utilities often call this a “line
code”, and other ACLineSegment instances can share the same
PerLengthImpedance. A model imported into the CIM could have many line
codes, not all of them used in that particular model. However, those
line codes should be available for updates by reassigning
PerLengthImpedance.

[image: image24]

Figure 25: This is a two-phase line segment from bus671 to bus684 using
a line code, which has been specified using a 2x2 symmetric matrix of
phase impedances per meter, instead of sequence impedances per meter.
This is more common for distribution than either Figure 23 or Figure 24.
It’s distinguished from Figure 24 by the fact that PerLengthImpedance
references an instance of PerLengthPhaseImpedance, not
PerLengthSequenceImpedance. The conductorCount attribute tells us it’s a
2x2 matrix, which will have two unique diagonal elements and one
distinct off-diagonal element. The elements are provided in three
PhaseImpedanceData instances, which are named here for clarity as Z11,
Z12 and Z22. However, the sequenceNumber is most significant, as the
elements must be numbered in lower triangular form. Finally, note that
Z11 and Z22 are slightly different. The matrix row numbers must
correspond to the phases present in ABC order. CIM doesn’t provide a way
of transposing matrix row assignments, so in order to swap phases A and
C, we’d have to create a second instance of PerLengthPhaseImpedance,
with Z11 and Z22 swapped. The GridAPPS-D CIM importer will create these
automatically, which expands the set of line codes. As presented here,
mtx604 can apply to phasing AB, BC or AC.

[image: image25]

Figure 26: The two-phase ACLineSegment impedance defined by sharing wire
and spacing data from a catalog. Each ACLineSegmentPhase links to an
OverheadWireInfo instance via the Asset instance. If the neutral (N) is
present, we have to specify its wire information for a correct impedance
calculation. In this case, ACN all use the same wire type, but they can
be different, especially for the neutral. Similarly, the WireSpacingInfo
associates to the ACLineSegment itself via a separate Asset instance.
These Asset instances only exist when the catalog data is used, so
cardinalities are 1 for AssetInfo and 1..* for PowerSystemResources.

[image: image26]

Figure 27: The upper five instances define catalog attributes for Figure
26. The WirePosition xCoord and yCoord units are meters, not feet, and
they include explicit phase assignments to match ACLineSegmentPhase.
This removes any ambiguity, but it’s still necessary to create copies
for phase transposition. The phaseWireSpacing and phaseWireCount
attributes are for sub-conductor bundling on EHV and UHV transmission
lines; bundling is not used on distribution. The number of WirePositions
that reference spc505acn determine how many wires need to be assigned,
and the phase attributes in those WirePosition instances determine how
many phases and neutrals there are. Eliminating the neutral, this would
produce a 2x2 phase impedance matrix. Although the pattern appears
general enough to support multiple neutrals and transmission overbuild,
the CIM doesn’t actually have the required phasing codes. When isCable
is true, the WirePosition yCoord values would be negative for
underground depth. To find overhead wires of a certain size or ampacity,
we can put query conditions on the ratedCurrent attribute. To find
underground conductors, we query the ConcentricNeutralCableInfo or
TapeShieldCableInfo instead of OverheadWireInfo. All three inherit the
ratedCurrent attribute from WireInfo. Cables don’t have a voltage rating
in CIM, but you can use insulationThickness as a proxy for voltage
rating in queries. Here, 5.588 mm corresponds to 220 mils, which is a
common size for distribution.

Figure 28 illustrates the loads, which are called EnergyConsumer in CIM.
The houses and appliances from GridLAB-D are not supported in CIM. Only
ZIP loads can be represented. Further, any load schedules would have to
be defined outside of CIM. Assume that the CIM loads are peak values.

Figure 29 illustrates the voltage regulator function. Note that
GridLAB-D combines the regulator and transformer functions, while CIM
separates them. Also, the CIM provides voltage and current transducer
ratios for tap changer controls, but not for capacitor controls.

Figure 30 through Figure 32 illustrate how measurements required for RC1
can be attached to buses or other components. Individual phase
measurements for voltage and capacitor status have to be added.

[image: image27]

Figure 28: The three-phase load (aka EnergyConsumer) on bus671 is
balanced and connected in delta. It has no ratedU attribute, so use the
referenced BaseVoltage (Figure 13) if a voltage level is required. On
the right, a three-phase wye-connected unbalanced load on bus675 is
indicated by the presence of three EnergyConsumerPhase instances
referencing UnbalancedLoad. For consistency in searches and
visualization, UnbalancedLoad.pfixed should be the sum of the three
phase values, and likewise for UnbalancedLoad.qfixed. In power flow
solutions, the individual phase values would be used. Both loads share
the same LoadResponse instance, which defines a constant power
characteristic for both P and Q, because the percentages for constant
impedance and constant current are all zero. The two other most commonly
used LoadResponseCharacteristics have 100% constant current, and 100%
constant impedance. Any combination can be used, and the units don’t
have to be percent (i.e. use a summation to determine the denominator
for normalization).

[image: image28]

Figure 29: In CIM, the voltage regulator function is separated from the
tap-changing transformer. The IEEE 13-bus system has a bank of three
independent single-phase regulators at busRG60, and this example shows a
RatioTapChanger attached to the regulator on phase A, represented by the
TransformerTankEnd having phases=A or phases=AN. See Figure 19 for a
more complete picture of TransformerTankEnds, or Figure 16 for a more
complete picture of PowerTransformerEnds. Either one can be the
TransformerEnd in this figure, but with a PowerTransformerEnd, all three
phase taps would change in unison (i.e. they are “ganged”). Most
regulator attributes of interest are found in RatioTapChanger or
TapChangerControl instances. However, we need the Asset mechanism to
specify ctRatio, ptRatio and ctRating values. These are inherent to the
equipment, whereas the attributes of RatioTapChanger and
TapChangerControl are all settings per instance. For the IEEE 13-bus
example, there would be separate RatioTapChanger and TapChangerControl
instances for phases B and C.

[image: image29]

Figure 30: In CIM, the voltage measurement attaches to TopologicalNode,
which we can find from the ConnectivityNode in GridAPPS-D. Positive
sequence or phase A measurement is implied, so we must add a phase
attribute on SvVoltage for GridAPPS-D. Physically, a voltage sensor is
more closely associated with a Terminal or ConnectivityNode.

[image: image30]

Figure 31: SvTapStep links to a TransformerEnd indirectly, through the
RatioTapChanger. There is no phasing ambiguity because
TransformerTankEnd has its phases attribute, while PowerTransformerEnd
always includes ABC. Units for SvTapStep.position are per-unit.

[image: image31]

Figure 32: The on/off measurement for a capacitor bank attaches directly
to LinearShuntCompensator, but there is no phasing support. That needs
to be proposed as a CIM extension.

Metering Relationship to Loads in the CIM

These UML class relationships in Figure 33 through Figure 35 have not
been planned for implementation in RC1, but in a future version of
GridAPPS-D, they can be used to link automated meter readings with loads
in the distribution system model.

[image: image32]

Figure 33: Energy Consumers are associated to Metering Usage Points

[image: image33]

Figure 34: Metering Usage Points have one or more EndDevices (i.e.
Meters)

[image: image34]

Figure 35: EndDevices associate to meter readings, functions and
channels.

CIM Enhancements for RC2

Possible CIM enhancements to support volt-var feeder modeling:

	Different on and off delay parameters for RegulatingControl (Figure
5)

	Phase modeling for EnergySource (Figure 3)

	Current ratings for PerLengthImpedance (Figure 2). At present, some
users rely on associated WireInfo, ignoring all attributes except
currentRating.

	Transducers for RegulatingControl (Figure 5)

	Dielectric constant and soil resistivity (Figure 10)

	Current flow and switch open/closed measurements (Figure 11)

	Individual phase measurements for voltage and capacitor state (Figure
11)

	Clock angles for TransformerTankEnd (i.e. move phaseAngleClock from
PowerTransformerEnd to TransformerEnd (Figure 6)

	Clarify side1 and side2 for switch phase modeling (Figure 4)

CIM Profile in CIMTool

CIMTool was used to develop and test the profile for RC1, because it:

	Generates SQL for the MySQL database definition

	Validates instance files against the profile

The CIMTool developer will not be able to support the tool in future, so
eventually we will use the new Schema Composer feature in Enterprise
Architect.

In order to view the profile, import the archived Eclipse project
OSPRREYS_CIMTOOL.zip into CIMTool. Please see the CIM tutorial slides
provided by Margaret Goodrich for user instructions.

Four instance files were validated against the profile in CIMTool. In
order to generate them, we use a current version of OpenDSS with the
Export CDPSMcombined command on four IEEE test feeders that come with
OpenDSS:

	~/src/opendss/Test/IEEE13_CDPSM.dss is the IEEE 13-bus test
feeder with per-length phase impedance matrices and a delta tertiary
added to the substation transformer.

	~/src/opendss/Test/IEEE13_Assets.dss is the IEEE 13-bus test
feeder with catalog data for overhead lines, cables and transformers.
Capacitor controls have also been added.

	~/src/opendss/Distrib/IEEETestCases/8500-Node/Master.dss is the
IEEE 8500-node test feeder with balanced secondary loads.

	~/src/opendss/Distrib/IEEETestCases/8500-Node/Master-unbal.dss is
the IEEE 8500-node test feeder with unbalanced secondary loads.

Either the 3rd or 4th feeder will be used for the
volt-var application. The 1st and 2nd feeders are used
to validate more parts of the CIM profile used in RC1. In all four
cases, CIMTool reports only two kinds of validation error:

	Isolated connectivity node: CIMTool expects two or more Terminals
per ConnectivityNode, but dead ended feeder segments will have only
one on the last node. This is not really an error, at least for
distribution systems.

	Minimum cardinality: For TapChangerControl instances, the
inherited RegulatingControl.RegulatingCondEq association is not
specified. This is not really an error, as the association is only
needed for shunt capacitor controls. Figure 36 shows that
RegulatingCondEq was not selected for TapChangerControl in the
profile, so this may reflect a defect in the validation code. Efforts
to circumvent it were not successful.

With these caveats, the profile and instances validate against each
other, for feeder models that solve in OpenDSS.

[image: image35]

Figure 36: Profiling TapChangerControl in CIMTool; the inherited
RegulatingCondEq is not included.

Creating Data Definition Language (DDL) for MySQL

As shown at the top of Figure 36, CIMTool builds RC1.sql to create
tables in a relational database, but the syntax doesn’t match that
required for MySQL. The following manual edits were made:

	Globally change CHAR VARYING(30) to varchar(50) with a blank
space pre-pended before the varchar

	Globally change “ to `

	In foreign keys to enumerations, change the referenced attribute
from mRID to name

	In foreign keys to EquipmentContainer or
ConnectivityNodeContainer, change the referenced table to
Line

	In foreign keys to ShuntCompensator, change the referenced table
to LinearShuntCompensator

	In foreign keys to TapChanger, change the referenced table to
RatioTapChanger.

	The CIM UML incorporates several polymorphic associations, which
can’t be implemented directly in SQL. Base parent class tables were
added for:

	AssetInfo, which can be referenced via the Parent attribute
from ConcentricNeutralCableInfo, TapeShieldCableInfo,
OverheadWireInfo, WireSpacingInfo, TapChangerInfo and
TransformerTankInfo

	TransformerEnd, which can be referenced via the Parent
attribute from PowerTransformerEnd and TransformerTankEnd

	PerLengthImpedance, which can be referenced via the Parent
attribute from PerLengthSequenceImpedance and
PerLengthPhaseImpedance

	Switch, which can be referenced via the SwtParent attribute
from Breaker, Fuse, Sectionaliser, Recloser, Disconnector, Jumper
and LoadBreakSwitch.

	ConductingEquipment, which can be referenced via the Parent
attribute from ACLineSegment, EnergySource, EnergyConsumer,
LinearShuntCompensator, PowerTransformer, and all of the Switch
types.

	The catalog data mechanism in Figure 8 required two new tables, one
for polymorphic associations and another for many-to-many joins:

	PowerSystemResource, which can be referenced via the PSR
attribute from ACLineSegment, ACLineSegmentPhase, RatioTapChanger
and TransformerTank.

	AssetInfoJoin, which references AssetInfo and
PowerSystemResource. This table actually supplants the Asset
class in Figure 8.

	The ShortCircuitTest in Figure 9 has a one-to-many association to
TransformerEndEnfo, and we need to implement the many side by
adding:

	GroundedEndJoin, which references TransformerEndInfo and
ShortCircuitTest.

	The ToTransformerEnd association in Figure 6 is one-to-many, so
CIMTool did not export it to SQL. Rather than create a join table, a
ToTransformerEnd attribute was added to TransformerMeshImpedance.
This supports only one-to-one association, which is justified
because the one-to-many case is very rare, and GridLAB-D cannot
model transformers having the one-to-many association. This
restriction may be removed in future versions having a semantic or
graph database.

Except for the first two items, all of these adjustments arose from
the absence of inheritance or polymorphism in SQL. These adjustments
will make the updates, queries and views more complicated. However,
they allow referential integrity to be enforced, which is one of the
most important reasons to use SQL and relational databases. Other
types of data store could be a more natural fit to the CIM UML, but
they may not have the performance of a relational database.

In GitHub:

	RC1.sql is the manually adjusted SQL export from CIMTool

	LoadRC1.sql will re-create the GridAPPS-D database in MySQL,
incorporate RC1.sql, and finally document the foreign keys. It
should run without error.

	1

	See http://cimug.ucaiug.org/default.aspx and the EPRI CIM Primer at:
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002006001

	2

	Suggest “Corporate Edition” from http://www.sparxsystems.com/ for
working with CIM UML. The free CIMTool is still available at
http://wiki.cimtool.org/index.h tml, but support is being phased out.

	3

	OSPRREYS is an older name for GridAPPS-D

	4

	https://github.com/GRIDAPPSD/Powergrid-Models/CIM

 Supported Application Types

Supported Application Types

	Python

	Java (Jar)

Registering Application With Platform

Assumptions: GOSS-GridAPPS-D repository (https://github.com/GRIDAPPSD/GOSS-GridAPPS-D.git) is cloned under [ROOT_DIR]

	Create a [app_name].config file in JSON format with keys and values as described below. where app_name should be unique for the application.

{
 "id":"app_name",
 "description":"This is desxription of the app",
 "creator":"orgnization name",
 "inputs":["topic.goss.gridappsd.input1", "topic.goss.gridappsd.input2", ..],
 "outputs":["topic.goss.gridappsd.output1", "topic.goss.gridappsd.output2", ..],
 "options":"space saperated command line input options",
 "execution_path":"absolute/execution/path",
 "type":"PYTHON|JAVA",
 "launch_on_startup":true|false,
 "prereqs":["other_app","other_service",..],
 "multiple_instances":true|false
}

	Put [app_name].config file in applications folder under cloned repository location

	Put your application under applications/[app_name] folder under cloned repository location as shown below.

applications
 [app_name]
 app
 Your application goes here
 test
 Test scripts for your application goes here.

See Using GridAPPSD section for details on starting a simulation from an application and communicating with plaform.
It also has an example in Python and Java to start a simulation.

 <no title>

	
	Download or clone the repository from github

	
	Install github desktop https://desktop.github.com/ or sourcetree https://www.atlassian.com/software/sourcetree/overview and Clone the GOSS-GridAPPS-D repository (https://github.com/GRIDAPPSD/GOSS-GridAPPS-D)

	Or download the source (https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/archive/master.zip)

	Install java 1.8 SDK and set JAVA_HOME variable

	Install Eclipse http://www.eclipse.org/downloads/packages/release/Mars/1 (Mars 4.5.1 or earlier, 4.5.2 appears to have bugs related to bundle processing) TODO what about neon?

	Open eclipse with workspace set to GOSS-GridAPPS-D download location, eg. C:UsersusernameDocumentsGOSS-GridAPPS-D

	Install BNDTools plugin: Help->Install New Software->Work with: http://dl.bintray.com/bndtools/bndtools/3.0.0 and Install Bndtools 3.0.0 or earlier

	
	Import projects into workspace

	
	File->Import General->Existing Projects into workspace

	Select root directory, GOSS-GridAPPS-D download location

	Select cnf, pnnl.goss.gridappsd

	If errors are detected, Right click on the pnnl.goss.gridappsd project and select release, then release all bundles

	
	If you would like to you a local version of GOSS-Core (Optional)

	
	Update cnf/ext/repositories.bnd

	Select source view and add the following as the first line

	aQute.bnd.deployer.repository.LocalIndexedRepo;name=GOSS Local Release;local=/GOSS-Core2/cnf/releaserepo;pretty=true,

	verify by switching to bndtools and verify that there are packages under GOSS Local Relase

	Open pnnl.goss.gridappsd/bnd.bnd, Rebuild project, you should not have errors

	Open pnnl.goss.gridappsd/run.bnd.bndrun and click Run OSGI

 <no title>

 [image: ../_images/RC1_workflow.png]
Process Manager - The workflow begins when a simulation request is sent to the request topic monitored by the Process Manager, the process manager gathers the necessary configurations from the Configuration Manager. Then sends the configuration to the simulation manager to run the simulation.

Configuration Manager - The configuration manager parses the request and builds the necessary configuration files. It also uses the data manager to pull the model data from the CIM database.

Data Manager - The data manager accesses the CIM database to build the model files used by the simulator.

Simulation Manager - The simulation manager launches the simulator and other required applications such as the FNCS bridge, FNCS, and the VoltVar application. It is in charge of managing the timing of the simulation and reporting output from the simulation out to the simulation status topic.

FNCS Bridge - Serves as input and output from the simulator to the rest of GridAPPS-D, receives initialization, timestep, update, and finalize requests from the simulation manager and other applications, such as voltvar. It also publishes output from the simulator on a pre-defined topic for the simulation manager and other applications to subscribe to.

Simulator - In this case GridLAB-D serves as the simulator.

Hosted Application - Applications can be developed to use the data generated by the simulation and submit feedback and updates to the simulator. Two examples of this have been developed in RC1, the VoltVar application and a vizualization application

Log Manager - Process Manager recieves a log message. It retrieves the username associated with the message and forwards the message and username to Log Manager. Log Manager writes the message on a file and if store_to_db key is true in log message then log manager calls the data manager to store the log message in the database.

 UML for Release Cycle 1

UML for Release Cycle 1

Our objective is to demonstrate useful functionality, which is
standards-compliant, by the end of March 2017. A simple heuristic VVO
application will be running in GridAPPS-D. In terms of the Functional
Requirements, we will be implementing:

	102/202 Command Interface

	301 Real-time Simulation Data

	310 Hosted Application, but short-cutting the registration process

	401 Distribution Co-Simulator (partial)

	402 Process Manager (partial)

	404 Data Manager (partial)

	405 Simulation Manager (partial)

	406 Power System Model Manager (partial)

	413 Platform Manager (encapsulating 401 and 403-406)

This represents five out of twelve Internal Functions from the
Functional Requirements, in partial form. The deadline leaves four
months for detailed design and implementation, plus two months for
documentation and testing. Therefore, we have chosen a minimal set of
functions that can show end-to-end use of GridAPPS-D at the first
milestone.

In developing the work breakdown structure (WBS), we noted that
real-time simulation data is published with no time lags or errors in
Release 1. However, data flow in a real DMS is affected by sensor and
communication system performance, and also by the action of other
subsystems. In Release 2, this might be addressed through some
combination of:

	Communication and sensor models in the Distribution Co-Simulator

	Adding MDM and SCADA service attributes to the 407 Service Manager

	Filters on 301 Real-time Simulation Data

These decisions, and many others affecting Release 2 and Release 3, can
be deferred until we gain experience developing Release 1.

Figure 1 shows the software components planned for Release 1. Most of
these correspond to internal functions from the Functional Requirements,
with some relatively minor re-factoring. The Power System Model Manager
functionality has been split. The data store management and the creation
of a complete GridLAB-D model appear at the bottom. Once the simulator
is running, incremental changes are posted to the messaging bus.

Most of the “pink” components in Figure 1 are assigned to one task,
except:

	The 310 VVO is a sub-task of the Command Interface, due to the close
coupling of those efforts. The team on this task needs both power
system and software skills.

	A separate task has been added for some project-level items.

[image: rc1_tasks_image0]

Figure 1: Component Diagram for GridAPPS-D Release 1

Initial Work Breakdown for Release Cycle 1

The Release 1 work breaks down into seven tasks, listed below. Three
critical items must be completed first; these are highlighted in
red. There are other inter-task dependencies that have not yet been
called out. We plan to sequence the work over eight two-week “sprints”
within the four months allocated for detailed design and development,
using an agile process (Kanban).

	Project-level Elements

	Identify a power system model (note: IEEE-13 is already in
CIM/CDPSM)

	Design data store schema

	Manually ingest power system models

	Command Interface

	Design APIs

	For all configurations in Task 4

	For power system control actions (e.g. open/close switch)

	Select one language binding (e.g. Python, Java, C++, MATLAB)
and implement

	Develop a heuristic volt-var application (VVO) in the bound
language

	Integrate VVO into GridAPPS-D

	Messaging and Data Manager

	Select a messaging framework (eg. ZeroMQ)

	Create communication APIs

	Receives real-time data from simulator

	Receives power system control actions

	Handle communication between GridAPPS-D managers

	Log messages to file

	Configuration Manager (both Power System Config & Simulation Config)

	Receive configurations from command interface over message bus

	Translate configurations to native GridLAB-D

	Translate and publish incremental update messages

	Send configurations to Process Manager for simulation start

	Process Manager

	Receives configurations from the Configuration Manager

	Send configuration to the Distribution Co-Simulator

	Start Co-Simulation Process

	Create simulation data channels and inform application

	Stop simulation process

	Distribution Co-Simulator (wraps GridLAB-D)

	Accepts configurations from Process Manager

	Start simulation

	Produce and publish data in real time

	Accept changes in real time (e.g. capacitor switching) via message
bus

	Power System Model Manager

	Access the power system model in data store

	Create native GridLAB-D file for initial loading into the
simulator

 UML from the Functional Specification

UML from the Functional Specification

This section presents a selection of GridAPPS-D domain (class) diagrams
to supplement the OSPRREYS Functional Specification document. The
purpose is to enhance understanding of the functional specification, by
providing graphical walkthroughs of some important use cases. The reader
should be familiar with definitions in the functional specification, and
with Universal Modeling Language (UML) diagrams.

GridAPPS-D is organized as a suite of internal function managers, twelve
of them composing the Platform Manager as shown in Figure 1. All
GridAPPS-D functions and interactions are mediated by one (or more) of
these function managers. When running, the GridAPPS-D 413 Platform
Manager will be composed of one (and only one) of each internal manager
numbered 401 – 412. These internal managers work together to accomplish
various GridAPPS-D functions.

[image: uml_image0]

Figure 1: Composition of the GridAPPS-D Platform Manager

Within each class block, some top-level attributes are listed with (-)
signs in the middle division, and some top-level methods are listed with
(+) signs in the lower division. For example, we already know that 401
Distribution Co-Simulator will need component simulators (i.e.
attributes) for buildings (open-source EnergyPlus), communications
(open-source ns-3), and the electric power distribution grid
(open-source GridLAB-D running in a real-time mode). It will also need
at least one method that runs the suite of simulators in a mode
emulating continuous real-time operation. Taking another example, 407
Service Manager also contains an attribute for GridLAB-D to provide
power flow calculations, but run as a service to applications.

As the design evolves, classes in Figure 1 will acquire many more
attributes and methods. The attributes themselves may reference
complicated classes and data structures. Therefore, the UML model will
expand each class into layer and sub-layer diagrams to more clearly show
these evolving details. We can still use the top-level diagrams to make
sure that the major components are in place for the important use cases.

Figure 2 illustrates the case of a user executing an application, in the
role of EF7 from the functional specification. We initially focused on
volt-var optimization (VVO), and then added a more complicated demand
response (DR) application that fits the same basic pattern. As a
prerequisite, some entity has provided both applications to GridAPPS-D
for registration and hosting, in a process detailed later. For now, we
assume the application(s) have been installed and will focus first on
running VVO.

[image: uml_image1]

Figure 2: Executing an application

All user interaction with GridAPPS-D occurs through a command interface,
numbered 202 when the user writes commands to GridAPPS-D, and numbered
102 when the user gets data from GridAPPS-D. To run VVO, the user will
issue 203 Model Configuration Setup and 204 Simulation Configuration
Setup to GridAPPS-D, which then delegates the commands to various
internal function managers (see Figure 1). The 203 Setup will probably
extract the feeder model of interest, set load and weather data, etc.
The 204 Setup will probably tell 401 to run GridLAB-D for a certain time
period, but not to run ns-3 or EnergyPlus. The exact composition of 203
and 204 Setups will be determined later in the design process. In a
process described later, internal functions 405 (Simulation Control
Manager) and 406 (Power System Model Manager) will transform 201, 203
and 204 into 305 and 306, which 401 can then read and run from directly.

When it runs, 401 will generate streams of data that mimic real-time
operation of the system, and these streams pass to the other parts of
GridAPPS-D as 301 Real-time Simulation Data. Some of the data streams
may also output to the user as 101 Real-time Simulation Data. The 310
VVO Application can act on this data to make decisions (e.g. switch
capacitor banks, change regulator taps, change solar inverter settings).
In this process, 310 VVO could invoke power flow calculations in
GridLAB-D via 407 Service Manager, but this is different from the way
401 Co-Simulator runs. The application may use 407 services to explore
alternatives or run contingency analysis, which could change the power
system model, but the 401 real-time simulations always take priority and
always use the “real” model.

When we considered adding the second and more complicated application,
310 DR, the structure of Figure 2 didn’t change very much. The
open-headed diamond symbols indicate that GridAPPS-D can host several
applications, which is UML aggregation. These applications may interact
via the GridAPPS-D command interface, if the applications and their
command sets have been designed for it. For example, the DR application
may use VVO to check and mitigate voltage limits.

A DR application is more likely than VVO to need EnergyPlus and ns-3 in
the co-simulation. In response, we added those attributes to 401, and
will add supporting attributes to 201, 203 and 204 as the design
evolves. It should also be recognized that more sophisticated VVO
applications might incorporate communications (ns-3) if available.

Figure 3 depicts the process of managing power system models, including
the schema and repository within 201 Distribution System Model. Because
it’s based on standards (e.g. IEC 61968) and open-source tools (e.g.
MySQL), the model can be created and maintained from outside GridAPPS-D,
directly by EF 21, the Model Manager. This is shown at the top of Figure
3. This process is out of GridAPPS-D scope but within project scope, and
it can leverage existing tools like Cimphony, Cimdesk, EA, etc.

For use by and within GridAPPS-D, all model configuration commands will
pass from EF21 through the command interface to function 406, the Power
System Model Manager. This function reads the base power system model
data from 201, and configures it into a three-phase load flow model for
solution in 106/306. The Distribution Co-Simulator uses 306, but the
user might want 106 for off-line use. Working with 404 Data Manager, the
406 Power System Model Manager may also write additional data (i.e. not
used in the load flow calculation) to 104/304. In this case, the 102
Model Output function will collect that data from both 104 and 106 for
reporting to the user, EF7, via the command interface. Note that the
base data, in 201, is not modified through this process. Instead, the
base data is treated as input to GridAPPS-D.

[image: uml_image2]

Figure 3: Internal model management

Figure 4 shows the internal Platform Manager flow when running
application tests. Compared to the case of normal usage in Figure 2,
this example shows additional control and output for testing. The test
commands include 203 and 204, as in Figure 2, but they also include:

	205 Test Scripts, for the sequence of steps to perform

	206 Test Configuration Setup, including initial conditions, etc.

	207 Expected Results, for comparison to the actual output

	210 Application Metadata, for information to run and instrument the
application

The 403 Test Manager orchestrates the steps to run the application and
collect results. As part of 103 Test Results, it will compare the
real-time data (101/301) to the expected results in 207. If the testing
user, EF8, requested logging, then the 409 Log Manager will create
109/309 System Logs for collection by 403 Test Manager. Logging is
optional, and should have been requested as part of the 206 Test Config
Setup or 204 Model Config Setup (this is not spelled out in the
functional specification).

[image: uml_image3]

Figure 4: Testing an application or the platform

Figure 5 shows some of the internal 413 Platform Manager detail when a
user, EF7, runs an application in debugging mode. Compared to Figure 2,
there is much more internal output. The 212 Debug Configuration will
include such things as breakpoints, watch variables, and logging
requests. When run in debug mode, the 408 Debug Manager will collect the
internal inputs and intermediate results from a variety of GridAPPS-D
modules, including the simulator, services in use, model data, and
access violations. The 404 Data Manager mediates most of this data
collection (and with a change to the specification it could also mediate
101/301). The 408 Debug Manager combines this into 108 Intermediate
Results, with 109 System Logs, for output to the user via the command
interface. Depending on the implementation of GridAPPS-D, interactive
debugging may also be supported, but is not shown in Figure 5.

[image: uml_image4]

Figure 5: Debugging an application

Figure 6 shows the process of registering or updating an application to
use with GridAPPS-D. The developer, in the role of EF13, must provide
the application itself (211) along with the application data schema
(208) and metadata (210). The data schema includes input and output
parameters. The metadata includes a user-friendly name, description,
calling parameters, command syntax, API functions used, etc. Using this
information, 410 Application Hosting Manager will install and register
the application, and its data, with 407 Service Manager and 404 Data
Manager. After completing these steps, 412 Version Manager will output
the current version information via the command interface; the current
version includes information about which applications are installed
along with the application versions.

In order to perform application management, EF13 also needs to provide
user credentials to be checked against the 209 Access Control List. If
these credentials are valid, the 411 SAC Manager will create 311 Access
Permission Verification for all of the internal Platform Manager
components. In Figure 6, the 410 Application Hosting Manager can pass
311 to 404, 407 and 412 as needed. Although not shown earlier, SAC is
actually incorporated into all GridAPPS-D processes this way.

[image: uml_image5]

Figure 6: Hosting an application

 State Estimator Service

State Estimator Service

Given a perfect and complete set of voltage magnitude and angle
measurements, along with a detailed and accurate power system model, one
could calculate the real power, or any other electrical variable of
interest, anywhere in the system. In practice, measurements have errors,
time delays, and may even be missing. State estimation refers to the
process of minimizing the errors and filling in gaps 1. One state
estimation method is called “weighted least squares”, and it’s analogous
to drawing the best-fit line through a set of scattered points. Other
methods may perform better 2. Also, on distribution systems, it may be
better to estimate branch currents instead of node voltages, but the
principle is the same. In GridAPPS-D, the visualizations and
applications ought to use the best available state estimator outputs,
instead of raw SCADA values, for both accuracy and consistency.
Therefore, the state estimator is not an application but a service in
GridAPPS-D, sitting between emulated SCADA and the GOSS bus.

[image: image0]

Figure 1: The state estimator processes noisy and incomplete
measurements, then posting estimated voltage (V), current (I), real
power (P), reactive power (Q) and switch status (S) values onto the
GridAPPS-D message / data bus.

In Figure 1, the power system model (upper left) will include a limited
number of sensors, corresponding to actual voltage and current
transformers, line post sensors, wireless sensors, etc. In some
scenarios, smart meters can also be sensors. Each such sensor will have
different performance characteristics (e.g. precision, accuracy,
sampling rate). Distribution systems typically do not have enough
sensors to make the system observable, so there will be measurement gaps
in the topology. The state estimator might fill these gaps with
interpolation and graph-tracing methods on the power system model.

The supervisory control and data acquisition (SCADA) system in Figure 1
introduces more errors and failure points. Eventually, GridAPPS-D may
simulate these impacts by federating ns-3 as a co-simulator. Until then,
a placeholder module could be used to insert variable errors, time
delays and dropouts in each measurement, whether due to sensor
characteristics or the communication system. The output represents data
as it would come into an operations center, and feeds the state
estimator. Internally, the data flows between simulator, SCADA and state
estimator might be implemented with FNCS, but this is an implementation
detail. The state estimator will provide two outputs to the GOSS bus
used by all GridAPPS-D applications:

	At a time step configured by the platform, publish the best-estimate
VIPQS values wherever sensors actually exist in the model, with
quality attributes that still have to be established. Sensor
locations delineate circuit segments, and note that all VIPQS values
will be estimated at the boundaries, even if the sensor measures only
V or I, for example.

	Upon request by another application or service, publish the estimated
VIPQS values for all nodes and components in the model, even at
locations where no sensors exist. A variant is to publish the
estimates only for selected nodes and components.

As indicated in Figure 1, other applications need to obtain estimated
VIPQS values from the GOSS bus. Switch open/close states are a special
case; they might be considered known values, but in practice the switch
state is a measurement, which could lead to topology errors in the
model. For GridAPPS-D, switch state estimates need to be a point of
emphasis. Given that most distribution systems lack redundant
measurements, It would be possible for an application to query these
VIPQS values directly from the simulator or SCADA, bypassing the state
estimator, but this is “cheating” in most situations. However, in the
application development process, idealized VIPQS values could be
obtained through a combination of two methods:

	Add more sensors to the power system model

	Set the sensor and channel errors to zero

Because the sensor outputs in GridAPPS-D come from a power flow solution
that enforces Kirchhoff’s Laws, the state estimator will produce ideally
accurate values whenever the sensor and channel errors have been
specified to be zero. The state estimator may still exhibit
interpolation errors between sensor locations, but that is readily
mitigated for testing purposes by adding more sensors.

With reference to RC1, the visualization and VVO applications should now
subscribe to VIPQS values from the state estimator, not from the
distribution simulator. They may also use or display quality metrics on
the estimated values.

Model Validation Application

The state estimator basically attempts to fit measured data to a power
flow model, usually assuming that the model is correct. However, a model
attribute (e.g. line impedance) could also be estimated by minimizing
its error residual in the state estimator’s power flow solution. This
process works best when applied to just one or a few suspect attributes,
and/or when an archive is available to provide enough redundant
measurements. The Model Validation Application will use these state
estimator features off-line to help identify and correct the following
types of model errors:

	Unknown or incorrect service transformer sizes

	Unknown or incorrect secondary circuit lengths

	Incorrect phase identification of single-phase components

	Phase wiring errors in line segments and switches

	Transformer connection errors, especially reversed primary and
secondary

	Primary conductor sizes that don’t decrease monotonically with
distance from the source

	Missing regulator and capacitor control settings (i.e. supply
defaults from heuristic rules)

	More than one of these on the same pole: recloser, line regulator,
capacitor

	Substation transformer impedance and turns ratio

These types of errors often appear upon the initial model import from a
geographic information system (GIS), or in periodic model updates from
GIS. Other error types may be added later. Many utilities do not have
their secondary circuits modeled at all, but this has an important
impact on AMI data. The service transformers and secondary circuits
insert significant impedance between AMI meters and the primary circuit,
where most of the other sensors are installed. Therefore, the first two
items will require AMI data, and also enable its more effective use.

As shown in Figure 2, the Model Validator integrates with GridAPPS-D as
a hosted application on the GOSS bus. Internally, it will use some of
the same algorithms as the State Estimator and may share some code or
binary files, but this is an implementation detail. It will need to
access an archive of state-estimated VIPQS data, which may include AMI
data. It will also use or incorporate an off-line power flow model, not
the same one running in the GridAPPS-D distribution simulator. This may
be EPRI’s OpenDSS simulator 3; compared to GridLAB-D, it’s more
tolerant of model errors and provides more diagnostic information about
model errors.

[image: image1]

Figure 2: The Model Validator works with an archive from the state
estimator, and an off-line power flow model.

Transactive Systems Application

Transactive energy is a method of controlling loads and resources on the
distribution system, combining both market and electrical principles
4. One reason for including this application in DOE-funded GridAPPS-D
is that PNNL has made several technical contributions and led several
demonstration projects in transactive systems, also funded by DOE 5.

Application structure

This transactive systems application is to be implemented as a
modularized 2-layer 3-level structure, as seen from Figure 3. The layer
decomposition helps the control of various groups, with limited
information flow between different layers. With the predefined functions
in each agent type (Agent A, B, and C) in each level, the existing
transactive system related work can be conveniently integrated into the
application, and the new control features can be added into specific
control function in each type of the agent easily.

[image: TransactiveSystemAppStructure]

Figure 3: The structure of the modularized 2-layer 3-level transactive
system application

The modularized agents opens the door for integrating different control
mechanisms into the application. Users need to consider which level
their control algorithm fits into, and fill in the control function of
the Agent class in that level, without worrying about communications
between the agents. In each level, the same type of the agent may have
various control functions, which help combining benefits of different
control schemes together.

Agent A, B and C will be implemented as VOLTTRON applications. VOLTTRON
is an application platform for distributed sensing and control
applications 6. With the capability of hardware-in-the-loop (HIL)
testing through VOLTTRON, the transactive systems application will be
tested using the actual devices. A GOSS-VOLTTRON Bridge is to be
implemented, for the communication between GridAPPS-D and the VOLTTRON
agents in the transactive systems application.

Application test cases

The hierarchical control framework introduced in 7 for integrated
coordination between distributed energy resources and demand response
will be implemented into the application. In addition, [7] has not
considered the power losses or power constrains, which will be taken
into consideration in this test case. The two-layer control mechanism,
including the coordination layer and device layer, fits the proposed
structure of the application well. The control in each level will be
implemented into corresponding function in each type of the agent. The
IEEE 123-node test feeder built in GridLAB-D will be used for testing
the application.

CIM extension for the Application

The latest versions of GridAPPS-D has used a reduced-order CIM to
support feeder modeling. With transactive system application included
into GridAPPS-D platform, more objects, such as house air conditioner
and water heater, need to be defined in CIM. Before the definition in
CIM, a simplified version of the house object and water heater object
are to be implemented in GridLAB-D.

References

	1

	
	
	McDermott, “Grid Monitoring and State Estimation,” in Smart Grid Handbook, ed: John Wiley & Sons, Ltd, 2016.

	2

	
	Abur and A. Gómez Expósito, Power system state estimation : theory and implementation. New York, NY: Marcel Dekker, 2004.

	3

	
	
	Dugan and T. E. McDermott, “An open source platform for collaborating on smart grid research,” in Power and Energy Society General Meeting, 2011 IEEE, 2011, pp. 1-7.

	4

	Gridwise Architecture Council. (2017). Transactive Energy. Available: http://www.gridwiseac.org/about/transactive_energy.aspx

	5

	Pacific Northwest National Laboratory. (2017). Transactive Energy Simulation Platform (TESP). Available: http://tesp.readthedocs.io/en/latest/

	6

	
	Katipamula, J. Haack, G. Hernandez, B. Akyol, and J. Hagerman, “VOLTTRON: An Open-Source Software Platform of the Future,” IEEE Electrification Magazine, vol. 4, pp. 15-22, 2016.

	7

	Di Wu, Jianming Lian, Yannan Sun, Tao Yang, Jacob Hansen, “Hierarchical control framework for integrated coordination between distributed energy resources and demand response,” Electric Power Systems Research, pp. 45-54, May 2017.

 Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

Objectives

This application is designed to address the problem of optimizing the
operation of aggregations of heterogeneous energy resources connected to
a distribution system. We will focus on real-time optimization method
and the power setting points of the distributed energy resources (DERs)
will be updated on a second or subsecond timescale to maximize the
operational objectives while coping with the variability of ambient
conditions and noncontrollable energy assets [1]. In order to avoid
massive measurements and overcome the limitation caused by model
inaccuracy, this application will be implemented in a distributed
manner, and only local measurements and a feedback signal from the
substation aggregator are needed to determine the optimal setpoints for
each controlled DER unit.

[image: nrel_OPF_image0]

Figure 1 The conceptual framework of distribution OPF for real-time
setpoint dispatch.

Figure 1 shows the conceptual framework of this application, and this
application is targeting at TRL 3.

Design

Figure 2 describes the overall work flow of the application.
Distribution OPF algorithm requires real-time measurements, distribution
system model and power flow results, which will be obtained from
GridAPPS-D platform through GOSS/FNCS message bus. The optimization
problem formulation can be constructed using user-defined cost functions
for different controllable devices. Finally the optimal setpoints for
controllable devices will be solved based on the feedback information
from system measurements. These setpoints will be sent back to GridLab-D
grid model to update DER operations. Such a closed-loop control forms
the control iteration for the studied time point, and new setpoints for
the following time points will be determined in the same manner using
the updated model and measurements.

[image: nrel_OPF_image1]

Figure 2 The workflow of real-time setpoint dispatch application and
its interaction with GridApps-D.

Data requirements

Message schemas (UML) (Enterprise Architect software) Jeff will help
draw the UML diagram.

Testing and Validation

Evaluation metrics of this application:

	Real/reactive power at the substation

	System loss

	Voltages across the entire distribution grid: voltage magnitude,
voltage fluctuation, voltage unbalance.

	Legacy control device operations: total control actions of all
capacitors and regulators

Scenarios:

	Optimal Dispatch for Distributed PV Systems

	Optimal Dispatch for Distributed PV + Energy Storage

	Etc. (will be added when implementing the application)

Operating/Running

This application will be developed using Python.

References

[1] E. Dall’Anese, A. Bernstein, and A. Simonetto, “Feedback-based
Projected-gradient Method for Real-time Optimization of Aggregations
of Energy Resources,” IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Montreal, Canada, Nov. 2017.

 Model Validator

Model Validator

Objectives

The model validator will detect and attempt to correct unreasonable
component interconnections and network parameters.

Use Cases

	Valid transformer size and orientation (Utility): orientation is not
captured explicitly in their GIS system.

	Discover secondary line impedance parameters (Utility) conductor type
and line length are currently based on generic assumptions.

	Sanity check or estimate transformer size and impedance.

	Verify that the nominal voltage of nodes matches the base voltage of
the segment: generally the winding voltage of the upstream
transformer or swing bus voltage.

	Sanity check conductor sizes and line current ratings.

	Validate and fill in regulator and capacitor control settings.

	Check phase continuity (GridLAB-D may not model phase
discontinuities)

Design

The model validation application will be implemented in Python.

[image: image1]

Inputs:

The model validator will have access to the CIM database and archived
data from the state estimator.

Outputs:

The model validator will one or both of the following outputs:

	Model status: log file or GUI pipe for identified issues.

	Model correction: CIM updates to correct identified issues.

Testing and Validation

Evaluation metrics

	Ability to detect known issues.

Scenarios

	Utility merger: models with different format may be interpreted
differently, creating issues a CIM model.

	Data entry issue: model update does not match upgrade performed in
the field

Operating/Running

The model validator script will execute once when called by the
platform.

At initialization, a configuration file will be read for:

	Mode (status, quiet, verbose; see outputs section)

	Selectable validation items (use cases)

 State Estimator

State Estimator

Objectives

State estimation is widely used in transmission system operations but is
less common in distribution system operations due to a relatively
limited value in traditional distribution systems, additional
computational complexity, and a lack of sensors. Advanced distribution
management platforms like GridAPPS-D provide access to model and sensor
data that can be leveraged to overcome barriers to adoption and open the
door to distribution system state estimators that are fast and accurate
enough to be useful in utility operations.

A distribution system state estimator computes the most likely state
given a set of present and/or past measurements. The full state of a
distribution system consists of either the full set of complex bus
voltages or the full set of complex branch currents; given the system
model (admittance matrix), the remaining system parameters can be
computed given the full system state.

Use Cases

	Assist power factor optimization: Utility objective is unity
power-factor at the substation.

	Assist voltage optimization (planning): Utility objective is 1 p.u.
voltage at last house primary.

	Real-time state estimation for advanced applications: applications
can access the state estimate at a sufficient resolution to capture
e.g. insolation variation caused by clouds.

Distribution System State Estimation Algorithms

State estimation uses system model information to produce an estimate of
the state vector x given a measurement vector z. The measurement vector
is related to the state vector and an error vector by the measurement
function, which may be non-linear.

\[z = h(x) + e\]

Multiple formulations of the distribution system state estimation
problem are possible:

	Node Voltage State Estimation (NVSE): The state vector consists of
node voltage magnitudes and angles for each node in the system (one
reference angle can be eliminated from the state vector). This
formulation of the state estimation problem is general to any
topology and it is the standard for transmission system state
estimation.

	Branch Current State Estimation (BCSE): Radial topology and
assumptions about shunt losses create a linear formulation of the
state estimation problem. The state vector contains branch currents
and, for a fully-constrained problem, requires one state per load,
which can be less than the number of branches in the system.

Different algorithms provide different advantages for distribution
system state estimation. A subset of the state estimation algorithms
below will be used to achieve these goals.

	Weighted Least Squares Estimation (WLSE): a concurrent set of
measurements are used to find a state vector that minimizes the
weighted least squares objective function. The algorithm is
memoryless with respect to previous solutions and measurements should
be synchronized.

	Kalman Filter Estimation (KFE) and Extended Kalman Filter Estimation
(EKFE): The Kalman filter provides a mechanism to consider past
state estimates alongside present measurements. This provides
additional noise rejection and allows asynchronous measurements can
be considered individually. KFE is appropriate for linear BCSE and
EKFE is compatible with nonlinear NVSE.

	Unscented Kalman Filter Estimation (UKFE): The unscented transform
estimates the expected value and variance of the system state by
observing the system outputs for inputs spanning the full
dimensionality of the measurement space. Again, the Kalman filter
provides a mechanism to consider past estimates.

TRL

The state estimator application will provide the capability to estimate
the full system state using asynchronous measurement data. In addition a
model order reduction technique will be implemented to greatly speed up
the state estimation computation and to reduce the dependence on
forecast-based pseudo-measurements. A paper (Reduced-Order State
Estimation for Power Distribution Systems with Sparse Sensing) is
targeted for IEEE Transactions on Power Systems.

Design

The state estimation service is being developed in c++. A modern c++
implementation allows the application to adapt to an evolving interface.
The program architecture is shown below.

[image: image0]

Topology Processor: initializes the measurement function and its
Jacobian and determines the size of the measurement vector, the
measurement covariance matrix, and the state vector.

Meter Interface: updates the measurement vector and the measurement
covariance matrix as new measurement data comes available.

State Estimator: performs the state estimation operation according to
the specified algorithm.

Output Interface: formats the state vector and any implicit states as an
output stream.

Inputs:

Upon initialization, the topology processor will receive the Y-bus from
the GridLAB-D service and will query contextual information and sensor
locations from the CIM database.

Periodic measurement data, including any forecasts to be used a
pseudo-measurements will be required as inputs.

A “terminate” command from the platform will end the state estimation
process.

Outputs:

The output will include the full system state (node voltages and/or
branch currents TBD).

Testing and Validation

Evaluation metrics

	State Error: compare state estimation output to “true” system state.

	Accuracy over baseline: compare state error of state estimator to
state error of a QSTS load-flow model.

	Execution Time

	Bad Sensor Detection (binary)

Scenarios

	Full sensor deployment: verify that the true system state can be
reproduced.

	Sparse sensor deployment: verify that the state estimator performs
better than a QSTS load-flow model.

	Breaker trip: verify that switch state can be detected even when it
is reported incorrectly.

	Bad sensor detection: verify that a sensor that is producing bad data
can be identified.

	Dependent application support: verify that the state estimator can
support e.g. the VVO application.

	Fault: for a radial system, determine the nearest common bus from
multiple emulated customer calls.

Operating/Running

The state estimator will execute the topology processor at
initialization and will enter a stat estimation loop. The state
estimation loop will exit and the process will end upon receiving a
‘terminate’ command from the platform.

At initialization, a configuration file will be read for:

	State estimation mode (state vector and algorithm) selection

	Normalized residual threshold for bad measurement / sensor detection

References

[1] Abur and A. G. Exposito, Power System State Estimation, New York,
NY: Marcel Dekker, Inc., 2004.

[2] M. E. Baran and A. W. Kelley, “A branch-current-based state
estimation method for distribution systems,” in IEEE Transactions on
Power Systems, vol. 10, no. 1, pp. 483-491, Feb 1995.

[3] Z. Jia, J. Chen and Y. Liao, “State estimation in distribution
system considering effects of AMI data,” 2013 Proceedings of IEEE
Southeastcon, Jacksonville, FL, 2013, pp. 1-6.

[4] S. C. Huang, C. N. Lu and Y. L. Lo, “Evaluation of AMI and SCADA
Data Synergy for Distribution Feeder Modeling,” in IEEE Transactions on
Smart Grid, vol. 6, no. 4, pp. 1639-1647, July 2015.

[5] M. Kettner; M. Paolone, “Sequential Discrete Kalman Filter for
Real-Time State Estimation in Power Distribution Systems: Theory and
Implementation,” in IEEE Transactions on Instrumentation and
Measurement, vol.PP, no.99, pp. 1-13, Jun. 2017.

[6] G. Valverde and V. Terzija, “Unscented kalman filter for power
system dynamic state estimation,” in IET Generation, Transmission &
Distribution, vol. 5, no. 1, pp. 29-37, Jan.

 FNCS

FNCS

Overview

FNCS is the co-simulation engine used by GridAPP-D’s simulation manager class to facilitating real-time synchonization and message passing between the GridLAB-D simulation and the GOSS message bus.

Source Code

FNCS is maintained by PNNL. The repository is located at https://github.com/FNCS/fncs. GridAPPS-D is using the latest release of FNCS which is v2.3.2.

FNCS Documentation

The documentation for FNCS is located at https://github.com/FNCS/fncs/wiki.

Building and Installing the Source

Linux

Prerequisites

FNCS requires both the ZeroMQ and CZMQ libraries. For the purposes of the tutorial FNCS and it’s prerequisites will be installed a custom location refered to by $FNCS_INSTALL. All source code is downloaded to the $HOME directory.

download and install ZeroMQ
:~$ wget http://download.zeromq.org/zeromq-3.2.4.tar.gz
if you do not have wget, use
curl -O http://download.zeromq.org/zeromq-3.2.4.tar.gz

unpack zeromq, change to its directory
:~$ tar -xzf zeromq-3.2.4.tar.gz
:~$ cd zeromq-3.2.4

configure, make, and make install
:~/zeromq-3.2.4$./configure --prefix=$FNCS_INSTALL
:~/zeromq-3.2.4$ make
:~/zeromq-3.2.4$ make install

download and install CZMQ
:~/zeromq-3.2.4$ cd $HOME

:~$ wget http://download.zeromq.org/czmq-3.0.0-rc1.tar.gz
if you do not have wget, use
curl -O http://download.zeromq.org/czmq-3.0.0-rc1.tar.gz

unpack czmq, change to its directory
:~$ tar -xzf czmq-3.0.0-rc1.tar.gz
:~$ cd czmq-3.0.0

configure, make, and make install
:~/czmq-3.0.0$./configure --prefix=$FNCS_INSTALL --with-libzmq=$FNCS_INSTALL
:~/czmq-3.0.0$ make
:~/czmq-3.0.0$ make install

Building FNCS

In this tutorial FNCS source code will be downloaded using git to the $HOME directory. The code will be installed at t/FNCShe loacation $FNCS_INSTALL.

download FNCS
:~$ git clone https://github.com/FNCS/fncs.git

change to FNCS directory
:~$ cd fncs

configure, make, and make install
:~/fncs$./configure --prefix=$FNCS_INSTALL --with-zmq=$FNCS_INSTALL
:~/fncs$ make
:~/fncs$ make install

Environment Setup

In order for GridAPPS-D to be able to run FNCS and for GridLAB-D to be built with FNCS The following environment variables need to be setup:

	$PATH must contain $FNCS_INSTALL/bin

	$LD_LIBRARY_PATH must contain $FNCS_INSTALL/lib

 GridLAB-D

GridLAB-D

Overview

GridLAB-D is a steady-state Distribution System simulation tool. It solves full three phase unbalanced network power flows and provides highly detailed enduse load models. It is part of GridAPPS-D’s Simulation Engine. It serves for providing the real world distribution system environment for third party GridAPPS-D applications to monitor and control in real time.

Source Code

GridLAB-D is maintained by Pacific Northwest National Laboratories in GitHub. The repository is located at https://github.com/gridlab-d/gridlab-d. GridAPPS-D uses the 4.0 release which is in release candidate currently and located on branch release/RC4.0.

GridLAB-D Documentation

GridLAB-D’s Documentation is located at http://gridlab-d.shoutwiki.com/wiki/Main_Page

Building and Installing the Source

Linux

Prerequisites

The following packages are needed in order to build GridLAB-D.

:~$ sudo apt-get install \
gcc \
g++ \
automake \
libtool \
git

For GridAPPS-D GridLAB-D will need to be compiled with the FNCS shared Library so FNCS will need to be installed. For instructions on building and installing FNCS, please go here. For the purposes of this document the location of where you installed FNCS will be known as $FNCS_INSTALL.

Building GridLAB-D

For the purposes of this instruction set, the location to where you download the repository will be known as $GLD_INSTALL.

#download the release/RC4.0 branch repository
:$GLD_INSTALL$ git clone https://github.com/gridlab-d/gridlab-d.git -b release/RC4.0 --single-branch
#build and install xerces located in the third_party folder of the repository
:$GLD_INSTALL$ cd gridlab-d/third_party
:$GLD_INSTALL/gridlab-d/third_party$ tar -xzf xerces-c-3.1.1.tar.gz
:$GLD_INSTALL/gridlab-d/third_party$ cd xerces-c-3.1.1
:$GLD_INSTALL/gridlab-d/third_party/xerces-c-3.1.1$./configure
:$GLD_INSTALL/gridlab-d/third_party/xerces-c-3.1.1$ sudo make
:$GLD_INSTALL/gridlab-d/third_party/xerces-c-3.1.1$ sudo make install
#build and install GridLAB-D with FNCS
:$GLD_INSTALL/gridlab-d/third_party/xerces-c-3.1.1$ cd ../../
:$GLD_INSTALL/gridlab-d$ autoreconf -if
:$GLD_INSTALL/gridlab-d$./configure --prefix=$GLD_INSTALL/install --with-fncs=$FNCS_INSTALL --enable-silent-rules 'CFLAGS=-g -O0 -w' 'CXXFLAGS=-g -O0 -w' 'LDFLAGS=-g -O0 -w'
#before performing make. Make sure the envirionment variable $LD_LIBRARY_PATH contains the path $FNCS_INSTALL/lib if it doesn't then it will need to be added to $LD_LIBRARY_PATH
:$GLD_INSTALL/gridlab-d$ make
:$GLD_INSTALL/gridlab-d$ install

Environment Setup

In order for GridAPPS-D to be able to run GridLAB-D The following environment variables need to be setup:

	$PATH must contain $GLD_INSTALL/install/bin and $FNCS_INSTALL/bin

	$GLPATH must contain $GLD_INSTALL/install/lib/gridlabd and $GLD_INSTALL/install/share/gridlabd

	$CXXFLAGS must contain $GLD_INSTALL/install/share/gridlabd

	$LD_LIBRARY_PATH must contain $FNCS_INSTALL/lib

 <no title>

 You will need to populate the mysql database with the ieee8500 model

wget https://github.com/GRIDAPPSD/Bootstrap/raw/master/gridappsd_mysql_dump.sql

mysql -u root -p < gridappsd_mysql_dump.sql

	To populate Blazegraph with the ieee8500 model

	
	Download https://github.com/GRIDAPPSD/Powergrid-Models/blob/master/CIM/ieee8500.xml

	java -Dbigdata.propertyFile=$GRIDAPPSD_INSTALL/builds/lib/conf/rwstore.properties -jar $GRIDAPPSD_INSTALL/builds/lib/blazegraph.jar >> $GRIDAPPSD_INSTALL/builds/log/blazegraph.log 2>&1 &

	Go to http://localhost:9999

	Click on the Update tab

	Choose the ieee8500 model file and change the format to RDF/XML

	Click Update

 <no title>

 It is recommended to start with a linux platform such as Ubuntu and a ‘gridappsd’ user created. The bootstrap scripts should be run as root.

apt install -y git (you may need to run apt update first)
git clone https://github.com/GRIDAPPSD/Bootstrap.git
cd Bootstrap
chmod a+x *.sh
./bootstrap.sh

 <no title>

 You will need to clone the GOSS-GridAPPS-D and viz repositories and build each

	
	GOSS-GridAPPS-D

	
	git clone https://github.com/GRIDAPPSD/GOSS-GridAPPS-D.git

	cd GOSS-GridAPPS-D

	./build-goss-test.sh

	mkdir -p $GRIDAPPSD_INSTALL/builds/log

	
	Vizualization

	
	git clone https://github.com/GRIDAPPSD/viz.git

	cd viz

	npm install

	webpack

	
	Blazegraph

	
	wget https://downloads.sourceforge.net/project/bigdata/bigdata/2.1.1/blazegraph.jar -O $GRIDAPPSD_INSTALL/builds/lib/blazegraph.jar

 Requirements

Requirements

	git

	docker version 17.12 or higher

	docker-compose version 1.16.1 or higher

Docker and prerequisite install on OS X

	
	git

	
	OS X requires xcode

xcode-select --install

Clone or download the repository

git clone https://github.com/GRIDAPPSD/gridappsd-docker
cd gridappsd-docker

Install Docker on Ubuntu

	run the docker-ce installation script

./docker_install_ubuntu.sh

	log out of your Ubuntu session and log back in to make the docker groups change active

Start the docker container services

./run.sh

	The run.sh does the following

	
	download the mysql dump file

	download the blazegraph data

	start the docker containers

	ingest the blazegraph data

	connect to the gridappsd container

Start gridappsd

Now we are inside the executing container

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/

Exiting the container and stopping the containers

Use Ctrl+C to stop gridappsd from running
exit
./stop.sh

Restarting the containers

./run.sh

Reconnecting to the running gridappsd container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

 <no title>

 If the bootstrap doesn’t work, or you wish to install manually you will need the following prerequisites.

apt upgrade -y (as root user)

GridAPPS-D Dependencies - Use apt install for the following dependencies

apt install -y vim git mysql-server automake default-jdk g++ gcc python python-pip libtool apache2 gradle nodejs-legacy npm curl

	vim

	Git

	Mysql-server (I set the root pw as gridappsd1234)

	Automake

	Default-jdk

	G++

	Gcc

	Python (v 2.x)

	Python-pip

	Libtool

	Apache2

	Gradle

	nodejs-legacy

	npm

	curl

Then apply the following pip installs

pip install –upgrade pip

pip install stomp.py
pip install pyyaml

	pip install –upgrade pip

	pip install stomp.py

	pip install pyyaml

As well as the following npm packages

	npm install -g express

	npm install -g ejs

	npm install -g typescript

	npm install -g typings

	npm install -g webpack

The following structure should be set up to enable the run scripts to execute correctly.

	Griddapps-project

	builds/

	sources/

 <no title>

 To start the platform, open two terminal windows:

	
	To start GridAPPS-D, this should also start the web visualization

	
	cd gridappsd_project/sources/GOSS-GridAPPS-D

	./run-goss-test.sh

	In a browser go to http://localhost:8082/ieee8500

 <no title>

 Testing information will be added later

 Architecture

Architecture

A conceptual architecture for the system has five key functional elements as shown in
Figure 1:

	Tools help developers enhance the functionality of their applications. Examples might include off-line power flow, optimization tool boxes, state estimators, statistical processing, etc.

	I/O allows convenient access to the power system model and data through standards-based queries and messages. Conversely, applications can send control signals to the simulator using standard message schemas.

	Development utilities include loggers, debuggers, access control, test managers, user interface toolkits, and other application support functions.

	Data bus is based on industry standards like IEC 61968 and 61970 (i.e. the Common Information Model), plus more to be identified.

	Distribution simulator represents the power system operating in real time. Initially, this will be GridLAB-D, but future versions may include EPRI’s OpenDSS, ns-3 for communications, and other federated co-simulators.

Figure 1 also shows the relationships between GridAPPS-D, the ADMS
application developer and commercial tools. Two different classes of data
flow are shown:

	Control and configuration data are shown with dashed lines; this allows the application developer to manage the platform.

	Data flowing as a part of an application are shown with solid lines.

For more detailed information about the architecture and design, see UML from the Functional Specification

[image: conceptual_design]

Figure 1: GridAPPS-D provides a method for developers (top) to run their
new applications on a real-time simulator with extensive modeling and tool
support (heavy box). GridAPPS-D is built around standard data models like
the CIM (center). It readily interfaces to existing software products
(right), which may also 1) use components of GridAPPS-D and 2) supplement or
replace the built-in distribution simulator (bottom), facilitating the
deployment of new ADMS applications to existing software products.

 Conceptual Design Summary

Conceptual Design Summary

A conceptual design for GridAPPS-D was created at the beginning of the project. The conceptual design is summarized below. The full design document may be downloaded from this link - GridAPPS-D Conceptual Design [http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26340.pdf]

This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as the project progresses.

 Contact Us

Contact Us

GridAPPS-D team can be reached at gridappsd@pnnl.gov

 Definition of Terms

Definition of Terms

Process Manager - Process Manager keeps track of all the processes running on the platform. These processes may include simulators, requests, applications and other managers. It is also the starting point for a request received by the platform.

Configuration Manager - It receives simulation configuration request from Process Manager and parses it to build the necessary configuration files.

Data Manager - The data manager accesses the database to build the model files used by the simulator.

Simulation Manager - The simulation manager launches the simulator and other required applications such as the FNCS bridge, FNCS, and the VoltVar application. It is in charge of managing the timing of the simulation and reporting output from the simulation out to the simulation status topic.

FNCS-GOSS Bridge - Serves as a bridge between FNCS and Simulation Manager.

FNCS - FNCS is a network co-simulator used to communicate between simulator and FNCS-GOSS bridge

Platform - Refers to GridAPPS-D platform.

RC1 - Release Cycle 1.

Simulation - A real world distribution system currently done by GridLAB-D

Simulator - In current release GridLAB-D serves as the simulator.

VoltVar Application -

Vizualization - A web-based visualization application is developed in RC1 to view power system model with real time values from simulation result.

GOSS - Grid Optics Software System is a middleware architecture designed as a prototype future data analytics and integration platform

GridLAB-D - GridLAB-D is a distribution level powerflow simulator. It acts as the real world distribution system in GridAPPS-D.

Power System Model - IEEE 8500 model is used in RC1.

Model - See Power System Model

CIM - Common Information Model is a standard for representing electrical network and exchange information.

 Version History

Version History

Version Name: Release Cycle 1 (RC1)

Release Date: May 2017

Version description: This is the first version for internal release of GridAPPS-D platform.
This is not ready for public use yet.

Functional requirements covered in this release:

	102/202 Command Interface

	301 Real-time Simulation Data

	310 Hosted Application, but short-cutting the registration process (partial)

	401 Distribution Co-Simulator (partial)

	402 Process Manager (partial)

	404 Data Manager (partial)

	405 Simulation Manager (partial)

	406 Power System Model Manager (partial)

	413 Platform Manager (encapsulating 401 and 403-406)

 System Configurations

System Configurations

TODO default values and description (conf under GOSS-GridAPPS-D, FNCS ports and simulator count)

 Supported Application or Service Types

Supported Application or Service Types

	Python

	EXE

Hosting Application or Service

Developers can create application and services using GridAPPS-D API and use following instruction to host it with the platform.
For example of application and service working with GridAPPS-D, please see: https://github.com/GRIDAPPSD/gridappsd-sample-app and
https://github.com/GRIDAPPSD/gridappsd-state-estimator

	Create proper folder structure for the application or service.

Following is the recommended structure for applications or services working with gridappsd using sample-app as an example:

For application:

.
├── README.md
└── my_app
 ├── app
 │ ├── [application exe or pythod code]
 ├── requirements.txt
 ├── my_app.config
 └── setup.py

For service:

.
├── README.md
└── my_service
 ├── service
 │ ├── [service exe or pythod code]
 ├── requirements.txt
 ├── my_service.config
 └── setup.py

Where config file is used by GridAPPS-D to launch the application or service from inside the gridappsd container.

Example config for application:

{
 "id":"sample_app",
 "description":"GridAPPS-D Sample Application app",
 "creator":"PNNL",
 "inputs":[],
 "outputs":[],
 "options": ["(simulationId)"],
 "type":"PYTHON",
 "execution_path": "sample_app/runsample.py",
 "launch_on_startup":false,
 "prereqs":["fncs","fncsgossbridge"],
 "multiple_instances":true
}

Example config for service:

{
 "id":"state-estimator",
 "description":"State Estimator",
 "creator":"PNNL",
 "inputs":["/topic/goss.gridappsd.fncs.output","/topic/goss.gridappsd.se.input"],
 "outputs":["/topic/goss.gridappsd.se.requests","/topic/goss.gridappsd.se.system_state"],
 "static_args":["(simulationId)"],
 "execution_path":"service/bin/state-estimator.out",
 "type":"EXE",
 "launch_on_startup":false,
 "prereqs":[],
 "multiple_instances":true,
 "environmentVariables":[]
}

	Clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (refered to as gridappsd-docker repository) next to this repository (they should both have the same parent folder)

.
├── gridappsd-docker
└── gridappsd-sample-app

	Add application or service to platform

In order to add your application/service to the container you will need to modify the docker-compose.yml file included in the gridappsd-docker repository.
Under the gridappsd service there is an example volumes leaf that is commented out. Uncomment and modify these lines to add the path for your application and config file.
Adding these lines will mount the application/service on the container’s filesystem when the container is started.

For application:

volumes:
- ~/git/gridappsd-sample-app/sample_app:/gridappsd/applications/sample_app
- ~/git/gridappsd-sample-app/sample_app/sample_app.config:/gridappsd/applications/sample_app.config

 volumes:
 - ~/git/[my_app_directory]/[my_app]:/gridappsd/applications/[my_app]
 - ~/git/[my_app_directory]/[my_app]/[my_app.config]:/gridappsd/applications/[my_app.config]

For service:

volumes:
- ~/git/gridappsd-sample-app/sample_app:/gridappsd/applications/sample_app
- ~/git/gridappsd-sample-app/sample_app/sample_app.config:/gridappsd/applications/sample_app.config

 volumes:
 - ~/git/[my_service_directory]/[my_service]:/gridappsd/services/[my_service]
 - ~/git/[my_service_directory]/[my_service]/[my_service.config]:/gridappsd/services/[my_service.config]

 Topic:

 All processes should publish their log messages with process status to Process Manager. These processes include applications, simulations, services, and test runs.

Topic:

Log message with process status should be published on the following topic. Process id should be attached to the topic name at the end.

goss.gridappsd.simulation.log.[simulation_id]
goss.gridappsd.service.log.[service_id]
goss.gridappsd.application.log.[app_id]
goss.gridappsd.test.log.[test_id]

Message structure:

{
 "source": "",
 "processId": "",
 "timestamp": "",
 "processStatus": "[STARTED|STOPPED|RUNNING|ERROR|PASSED|FAILED]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

Receiving multiple logs:

User can either subscribe to individual process’s log by subscribing to topics mentioned above or receive all logs of a type by subscribing to following topics.

goss.gridappsd.simulation.log.*
goss.gridappsd.service.log.*
goss.gridappsd.application.log.*
goss.gridappsd.test.log.*

Similarly, to receive to all logs subscribe to following topic:

goss.gridappsd.*.log.*

 Start GridAPPS-D platform

Start GridAPPS-D platform

Connect to the running GridAPPS-D container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Now we are inside the executing container. Start the platform.

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/ and click the menu button.

[image: home-image]

Start a Simulation

Choose Simulations from the menu.

[image: menu-image]

To run a demo simulation keep the selected and entered values as it is. Otherwise select/enter Powergrid, Simulation and Application configuration values.
Click the check mark to save the configuration.

[image: config-image]

Click the triangle (1) to start the simulation. Simulation Status (2) at the bottom of the screen will display the simulation log messages.

[image: start-image]

The demo simulation runs 2 minutes of load variations with the sample-app
controlling capacitor banks on the IEEE 8500-node test system [CIT2].
Most of Figure 1 is devoted to a map layout view of the test circuit, with updated
labels for capacitor banks and voltage regulators. On the right-hand side, strip
chart plots of the phase ABC voltages at capacitors and regulators, phase
ABC substation power levels, and phase ABC regulator taps are continually
updated. Capacitor bank labels on the circuit map view change between
OPEN and CLOSED to show the bank status as load varies and the VVO
application issues control commands. While GridAPPS-D runs the demo,
GridLAB-D [CIT8] simulates power system operation and exchanges
information with the sample-app using GOSS [CIT6] and FNCS [CIT7].

Following image shows the demo simulation output of the sample-app running on the IEEE 8500-node test system.

[image: rc3_overview_image0]

Stop GridAPPS-D platform

For an orderly shutdown of the platform:

Use Ctrl+C to stop gridappsd from running

 Start a Simulation

 A publish and subscribe mechanism is utilized for clients and applications to communicate with the GridAPPS-D platform. The next sections describe the topics and expected message formats for starting a simulation, receiving data from a simulation, and interacting with an ongoing simulation.

Start a Simulation

Returns simulation id.

Queue:

goss.gridappsd.process.request.simulation

Example Request:

{

power_system_config: the CIM model to be used in the simulation

"power_system_config": {
 "GeographicalRegion_name": "ieee8500nodecktassets_Region",
 "SubGeographicalRegion_name": "ieee8500nodecktassets_SubRegion",
 "Line_name": "ieee8500"
},

simulation_config: the paramaters used by the simulation

"simulation_config": {
 "start_time": "1248134400",
 "duration": "120",
 "simulator": "GridLAB-D",
 "timestep_frequency": "1000",
 "timestep_increment": "1000",
 "simulation_name": "ieee8500",
 "power_flow_solver_method": "NR",

simulation_output: the objects and fields to be returned by the simulation

"simulation_output": {
 "output_objects": [{
 "name": "rcon_FEEDER_REG",
 "properties": ["connect_type",
 "Control",
 "control_level",
 "PT_phase",
 "band_center",
 "band_width",
 "dwell_time",
 "raise_taps",
 "lower_taps",
 "regulation"]
 },
 ]
},

model creation config: the paramaters used to generate the input file for the simulation

 "model_creation_config": {
 "load_scaling_factor": "1",
 "schedule_name": "ieeezipload",
 "z_fraction": "0",
 "i_fraction": "1",
 "p_fraction": "0"
 }
},

application config: inputs to any other applications that should run as part of the simluation, in this case the voltvar application

"application_config": {
 "applications": [{
 "name": "vvo",
 "config_string": "{\"static_inputs\": {\"ieee8500\" : {\"control_method\": \"ACTIVE\", \"capacitor_delay\": 60, \"regulator_delay\": 60, \"desired_pf\": 0.99, \"d_max\": 0.9, \"d_min\": 0.1,\"substation_link\": \"xf_hvmv_sub\",\"regulator_list\": [\"reg_FEEDER_REG\", \"reg_VREG2\", \"reg_VREG3\", \"reg_VREG4\"],\"regulator_configuration_list\": [\"rcon_FEEDER_REG\", \"rcon_VREG2\", \"rcon_VREG3\", \"rcon_VREG4\"],\"capacitor_list\": [\"cap_capbank0a\",\"cap_capbank0b\", \"cap_capbank0c\", \"cap_capbank1a\", \"cap_capbank1b\", \"cap_capbank1c\", \"cap_capbank2a\", \"cap_capbank2b\", \"cap_capbank2c\", \"cap_capbank3\"], \"voltage_measurements\": [\"nd_l2955047,1\", \"nd_l3160107,1\", \"nd_l2673313,2\", \"nd_l2876814,2\", \"nd_m1047574,3\", \"nd_l3254238,4\"], \"maximum_voltages\": 7500, \"minimum_voltages\": 6500,\"max_vdrop\": 5200,\"high_load_deadband\": 100,\"desired_voltages\": 7000, \"low_load_deadband\": 100,\"pf_phase\": \"ABC\"}}}"
 }]
}

}

Subscribe to Simulation Output

Topic:

/topic/goss.gridappsd.simulation.output.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "YYYY-MM-DDThh:mm:ss.sssZ",
 "measurement" : {
 "measurement_mrid" : "123a456b-789c-012d-345e-678f901a234b"
 "magnitude" : 3410.456,
 "angle" : -123.456
 }
 }
}

Subscribe to Simulation Logs

Topic:

/topic/goss.gridappsd.simulation.log.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "source": "",
 "processId": "",
 "timestamp": "",
 "processStatus": "[STARTED|STOPPED|RUNNING|ERROR|PASSED|FAILED]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

Send Input to Simulation

Topic:

/topic/goss.gridappsd.fncs.input

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "2018-01-08T13:27:00.000Z",
 "difference_mrid" : "123a456b-789c-012d-345e-678f901a235c"
 "reverse_differences" : [
 {
 "object" : "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute" : "ShuntCompensator.sections",
 "value" : "1"
 },
 {
 "object" : "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute" : "ShuntCompensator.sections",
 "value" : "0"
 }
]
 "forward_differences" : [
 {
 "object" : "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute" : "ShuntCompensator.sections",
 "value" : "0"
 },
 {
 "object" : "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute" : "ShuntCompensator.sections",
 "value" : "1"
 }
]
 }
 }
}

Input/Output Topics

The FNCS Bridge input and output topics are the main driver behind controlling the simulation and subscribing to the latest data from the simulation.
FNCS Bridge listens for input on topic goss/gridappsd/fncs/input and publishes responses on topic goss/gridappsd/fncs/output

Applications that wish to interact with the simulation can do so by subscribing to to the output topic and publishing commands to the input topic.

Each message should contain a command field, this specifies the operation that is either sent to teh input topic or responded to on the output topic. The available values for the command field are isInitialized, nextTimeStep, update, and stop. These are each described in more depth below.

	
	isInitialized

	goss/gridappsd/fncs/input - Checks to see if the simulator is initialized, meaning that it has established a connection to both GOSS and the simulator. This command takes no other parameters.

{"command": "isInitialized"}

goss/gridappsd/fncs/output - Returns simulator initializtion status (true/false) and any initialization messages.

{"command": "isInitialized", "response":<true/false>, "output":"Any messages from simulator regarding initialization"}

	
	nextTimeStep

	goss/gridappsd/fncs/input - Increments the simulator to the specified timestep, in a typical real-time simulation it will be incremented once per second. The only parameter is the current time in seconds (after the start of the simulation), this command will initiate the next time step in the simulator.

{"command": "nextTimeStep", "currentTime":<seconds from start of simulation>}

goss/gridappsd/fncs/output - Returns the current state of the objects and properties in the simulator, which objects and properties are specified by the simluation output. The is the output that applications will wish to subscribe to. The visualization application subscribes to this output to display the latest capacitor and regulator state. The volt-var optimization application subscribes to this output when managing voltage levels within the simulation

{"command": "nextTimeStep", "output": "{\"ieee8500\":{\"cap_capbank0a\":{\"capacitor_A\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank0b\":{\"capacitor_B\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank0c\":{\"capacitor_C\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank1a\":{\"capacitor_A\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank1b\":{\"capacitor_B\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank1c\":{\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank2a\":{\"capacitor_A\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank2b\":{\"capacitor_B\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank2c\":{\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank3\":{\"capacitor_A\":300000.0,\"capacitor_B\":300000.0,\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":0.0,\"phases\":\"ABCN\",\"phases_connected\":\"NCBA\",\"pt_phase\":\"\",\"switchA\":\"CLOSED\",\"switchB\":\"CLOSED\",\"switchC\":\"CLOSED\"},\"nd_190-7361\":{\"voltage_A\":\"6410.387411-4584.456974j V\",\"voltage_B\":\"-7198.592139-3270.308372j V\",\"voltage_C\":\"642.547265+7539.531175j V\"},\"nd_190-8581\":{\"voltage_A\":\"6485.244722-4692.686497j V\",\"voltage_B\":\"-7183.641237-3170.693324j V\",\"voltage_C\":\"544.875720+7443.341013j V\"},\"nd_190-8593\":{\"voltage_A\":\"6723.279162-5056.725836j V\",\"voltage_B\":\"-7494.205738-3101.034602j V\",\"voltage_C\":\"630.475857+7534.534977j V\"},\"nd__hvmv_sub_lsb\":{\"voltage_A\":\"6261.474438-3926.148203j V\",\"voltage_B\":\"-6529.409296-3466.545236j V\",\"voltage_C\":\"247.131622+7348.295282j V\"},\"nd_l2673313\":{\"voltage_A\":\"6569.522312-5003.052614j V\",\"voltage_B\":\"-7431.486583-3004.840139j V\",\"voltage_C\":\"644.553331+7464.115915j V\"},\"nd_l2876814\":{\"voltage_A\":\"6593.064915-5014.031801j V\",\"voltage_B\":\"-7430.572726-3003.995538j V\",\"voltage_C\":\"643.473396+7483.558765j V\"},\"nd_l2955047\":{\"voltage_A\":\"5850.305846-4217.166594j V\",\"voltage_B\":\"-6729.652722-2987.617376j V\",\"voltage_C\":\"535.302083+7395.127354j V\"},\"nd_l3160107\":{\"voltage_A\":\"5954.507575-4227.423005j V\",\"voltage_B\":\"-6662.357613-3055.346879j V\",\"voltage_C\":\"600.213657+7317.832960j V\"},\"nd_l3254238\":{\"voltage_A\":\"6271.490549-4631.254028j V\",\"voltage_B\":\"-7169.987847-3099.952683j V\",\"voltage_C\":\"751.609655+7519.062260j V\"},\"nd_m1047574\":{\"voltage_A\":\"6306.632406-4741.568924j V\",\"voltage_B\":\"-7214.626338-2987.055914j V\",\"voltage_C\":\"622.058711+7442.125124j V\"},\"rcon_FEEDER_REG\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":126.5,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG2\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG3\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG4\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"reg_FEEDER_REG\":{\"configuration\":\"rcon_FEEDER_REG\",\"phases\":\"ABC\",\"tap_A\":2,\"tap_B\":2,\"tap_C\":1,\"to\":\"nd__hvmv_sub_lsb\"},\"reg_VREG2\":{\"configuration\":\"rcon_VREG2\",\"phases\":\"ABC\",\"tap_A\":10,\"tap_B\":6,\"tap_C\":2,\"to\":\"nd_190-8593\"},\"reg_VREG3\":{\"configuration\":\"rcon_VREG3\",\"phases\":\"ABC\",\"tap_A\":16,\"tap_B\":10,\"tap_C\":1,\"to\":\"nd_190-8581\"},\"reg_VREG4\":{\"configuration\":\"rcon_VREG4\",\"phases\":\"ABC\",\"tap_A\":12,\"tap_B\":12,\"tap_C\":5,\"to\":\"nd_190-7361\"},\"xf_hvmv_sub\":{\"power_in_A\":\"1739729.121744-774784.928874j VA\",\"power_in_B\":\"1659762.622236-785218.729252j VA\",\"power_in_C\":\"1709521.679116-849734.584017j VA\"}}}\n"}

	
	update

	goss/gridappsd/fncs/input - Sends an update command which can change the capacitor and regulator status within the simulator, this is used by the volt-var optimization application. Parameters include a message field, which contains the simulation name and the desired values for the objects to be updated.

{"command": "update", "message": {"ieee8500": {"reg_FEEDER_REG": {"tap_C": -3, "tap_B": -2, "tap_A": -1}, "reg_VREG4": {"tap_C": 1, "tap_B": 8, "tap_A": 8}, "reg_VREG2": {"tap_C": -1, "tap_B": 2, "tap_A": 6}, "reg_VREG3": {"tap_C": -3, "tap_B": 6, "tap_A": 12}}}}

	
	stop

	goss/gridappsd/fncs/input - Stops the simulator and shuts down the bridge. No additional parameters are required

{"command": "stop"}

 <no title>

 In the web-based visualization, click the Play button at the top right to start the simulation using the default run configuration. Behind the scenes this uses the websockets/javascript API described in a previous section.

[image: rc1_starting_in_viz_image0]

 Request all GridLAB-D configuration files

Request all GridLAB-D configuration files

Generates all configuration files necessary to run a sumulation using the GridLAB-D simulator. Returns the diretory where all of the configuration files are stored.

	Required: configurationType, parameters[model_id,directory,simulationname,simulation_start_time,simulation_duration,simulation_id,simulation_broker_host,simulation_broker_port]

	Optional: parameters[i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name,solver_method]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D All",
 "parameters": {
 "load_scaling_factor": "1.0",
 "i_fraction": "1.0",
 "model_id": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "p_fraction": "0.0",
 "simulation_id": "12345",
 "z_fraction": "0.0",
 "simulation_broker_host": "localhost",
 "simulation_name": "ieee8500",
 "simulation_duration": "60",
 "simulation_start_time": "2018-02-18 00:00:00",
 "solver_method": "NR",
 "schedule_name": "ieeezipload",
 "simulation_broker_port": "61616",
 "directory": "/tmp/gridlabdsimulation/"
 }
}

Response:
<directory where files have been stored>

Request GridLAB-D Base File

Generates the main GLM file required by the GridLAB-D simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id, i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D Base GLM",
 "parameters": {
 "i_fraction": "1.0",
 "z_fraction": "0.0",
 "model_id": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "load_scaling_factor": "1.0",
 "schedule_name": "ieeezipload",
 "p_fraction": "0.0"
 }
}

Response:

object regulator_configuration {
 name "rcon_VREG4";
 connect_type WYE_WYE;
 Control MANUAL; // OUTPUT_VOLTAGE;
.......

Request GridLAB-D Symbols File

Generates the symbols file with XY coordinates used by the GridLAB-D simulator

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType": "GridLAB-D Symbols",
 "parameters": {
 "model_id": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"
 }
}

Response:

{"feeder":[
{"swing_nodes":[
{"name":"source","bus":"sourcebus","phases":"ABC",
 "nominal_voltage":66395.3,"x1":1693780.0,"y1":1.22775777570982E7}
]},
{"capacitors":[
.......

Request CIM Dictionary file

Generates a dictionary file which maps between the mrid identifiers used by the CIM model and the other names of model objects used by simulators.

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Dictionary",
 "parameters":{"model_id":"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"}
 }

Response:

{"feeders":[
{"name":"ieee8500",
"mRID":"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"substation":"ieee8500_Substation",
"substationID":"_F1E8E479-5FA0-4BFF-8173-B375D25B0AA2",
"subregion":"large",
"subregionID":"_A1170111-942A-6ABD-D325-C64886DC4D7D",
"region":"ieee",
"regionID":"_6F10E278-12DC-9CBB-D2D9-D09582538F8A",
"capacitors":[
{"name":"capbank0a","mRID":"_A5866105-A527-F682-C982-69807C0E088B","CN1":"r42246","phases":"A","kvar_A":400.0,"kvar_B":0.0,"kvar_C":0.0,"nominalVoltage":12470.0,"nomU":7200.0,"phaseConnection":"Y","grounded":true,"enabled":true,"mode":"reactivePower","targetValue":-50000.0,"targetDeadband":-500000.0,"aVRDelay":100.0,"monitoredName":"cap_3a","monitoredClass":"ACLineSegment","monitoredBus":"q16642","monitoredPhase":"A"},
.......
],
"regulators":[
{"bankName":"FEEDER_REG","size":"3","bankPhases":"ABC","tankName":["feeder_rega","feeder_regb","feeder_regc"],"endNumber":[2,2,2],"endPhase":["A","B","C"],"rtcName":["feeder_rega","feeder_regb","feeder_regc"],"mRID":["_330E7EDE-2C70-8F72-B183-AA4BA3C5E221","_0EBF840D-7BE9-0D81-03A0-315D617ECA27","_BBB3984D-2A67-7E15-0763-635C5B06A348"],"monitoredPhase":["A","B","C"],"TapChanger.tculControlMode":["volt","volt","volt"],"highStep":[32,32,32],"lowStep":[0,0,0],"neutralStep":[16,16,16],"normalStep":[16,16,16],"TapChanger.controlEnabled":[true,true,true],"lineDropCompensation":[false,false,false],"ltcFlag":[true,true,true],"RegulatingControl.enabled":[true,true,true],"RegulatingControl.discrete":[true,true,true],"RegulatingControl.mode":["voltage","voltage","voltage"],"step":[1.0125,1.0125,1.0063],"targetValue":[126.5000,126.5000,126.5000],"targetDeadband":[2.0000,2.0000,2.0000],"limitVoltage":[0.0000,0.0000,0.0000],"stepVoltageIncrement":[0.6250,0.6250,0.6250],"neutralU":[7200.0000,7200.0000,7200.0000],"initialDelay":[15.0000,15.0000,15.0000],"subsequentDelay":[2.0000,2.0000,2.0000],"lineDropR":[0.0000,0.0000,0.0000],"lineDropX":[0.0000,0.0000,0.0000],"reverseLineDropR":[0.0000,0.0000,0.0000],"reverseLineDropX":[0.0000,0.0000,0.0000],"ctRating":[300.0000,300.0000,300.0000],"ctRatio":[1500.0000,1500.0000,1500.0000],"ptRatio":[60.0000,60.0000,60.0000]},
.......
],
"solarpanels":[
],
"batteries":[
],
"switches":[
{"name":"2002200004641085_sw","mRID":"_F5E6D212-C700-C94A-ED54-E00E8230C19C","CN1":"q14734","CN2":"d5587291-3_int","phases":"ABC","nominalVoltage":12470.0,"normalOpen":false},
.......
],
"measurements":[
 {"name":"RatioTapChanger_VREG2","mRID":"02b818b7-fab3-4529-b3b3-fa7cb026eab9","ConductingEquipment_mRID":"_39BD981D-C57D-49E9-1209-9DF79B93A9EA","Terminal_mRID":"_4082AE8B-FAF3-34A9-26A6-6769C16CF78D","measurementType":"Pos","phases":"A","MeasurementClass":"Discrete","ConductingEquipment_type":"PowerTransformer","ConductingEquipment_name":"VREG2","ConnectivityNode":"190-8593"},
{"name":"PowerTransformer_hvmv_sub_Power","mRID":"034241b0-c4f9-4f83-9b65-5dcbeab6b029","ConductingEquipment_mRID":"_B32F64E3-AAD3-FA3F-254B-CF74D12DA290","Terminal_mRID":"_ECDEEB50-1B94-9B13-A797-DED1326D80A5","measurementType":"VA","phases":"B","MeasurementClass":"Analog","ConductingEquipment_type":"PowerTransformer","ConductingEquipment_name":"hvmv_sub","ConnectivityNode":"hvmv_sub_hsb"},

.......
]
}]}

Request CIM Feeder Index file

Generates a list of the feeders available powergrid model data store

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Feeder Index",
 "parameters":{"model_id":"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"}
 }

Response:

{"feeders":[
{"name":"ieee123","mRID":"_C1C3E687-6FFD-C753-582B-632A27E28507","substationName":"ieee123_Substation","substationID":"_FE44B314-385E-C2BF-3983-3A10C6060022","subregionName":"large","subregionID":"_1CD7D2EE-3C91-3248-5662-A43EFEFAC224","regionName":"ieee","regionID":"_24809814-4EC6-29D2-B509-7F8BFB646437"},
{"name":"ieee13nodecktassets","mRID":"_5B816B93-7A5F-B64C-8460-47C17D6E4B0F","substationName":"ieee13nodecktassets_Substation","substationID":"_D5B23536-54A7-984E-78F2-B136E9B6380E","subregionName":"test","subregionID":"_C43D4535-5786-01CD-C3C4-69AAC7945AD2","regionName":"ieee","regionID":"_85D8A951-64F2-4787-C922-4AE0AA99A874"},
.......
]}

Request Simulation Output Configuration file

Generates file containing objects and properties with measurements avilable in the selected model

	Required: configurationType, parameters[model_id]

	Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"CIM Feeder Index",
 "parameters":{"model_id":"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"}
 }

Response:

{
 "cap_capbank0a": [
 "switchA",
 "shunt_A",
 "voltage_A"
],

 "cap_capbank1b": [
 "switchB",
 "voltage_B",
 "shunt_B"
],
 "cap_capbank2c": [
 "voltage_C",
 "switchC",
 "shunt_C"
],
 "cap_capbank0b": [
 "voltage_B",
 "switchB",
 "shunt_B"
],.......

Request YBus Export Configuration file

Generates file containing ybus configuration for the selected simulation. Simulation must be running.

	Required: configurationType, parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
 "configurationType":"YBus Export",
 "parameters":{"simulation_id":"12345"}
 }

Response:

{
 yParseFilePath":"/tmp/gridappsd_tmp/1129698954/base_ysparse.csv",
 "nodeListFilePath":"/tmp/gridappsd_tmp/1129698954/base_nodelist.csv",
 "summaryFilePath":"/tmp/gridappsd_tmp/1129698954/base_summary.csv"
}

 Input/Output Topics

Input/Output Topics

The FNCS Bridge input and output topics are the main driver behind controlling the simulation and subscribing to the latest data from the simulation.
FNCS Bridge listens for input on topic goss/gridappsd/fncs/input and publishes responses on topic goss/gridappsd/fncs/output

Applications that wish to interact with the simulation can do so by subscribing to to the output topic and publishing commands to the input topic.

Each message should contain a command field, this specifies the operation that is either sent to teh input topic or responded to on the output topic. The available values for the command field are isInitialized, nextTimeStep, update, and stop. These are each described in more depth below.

	
	isInitialized

	goss/gridappsd/fncs/input - Checks to see if the simulator is initialized, meaning that it has established a connection to both GOSS and the simulator. This command takes no other parameters.

{"command": "isInitialized"}

goss/gridappsd/fncs/output - Returns simulator initializtion status (true/false) and any initialization messages.

{"command": "isInitialized", "response":<true/false>, "output":"Any messages from simulator regarding initialization"}

	
	nextTimeStep

	goss/gridappsd/fncs/input - Increments the simulator to the specified timestep, in a typical real-time simulation it will be incremented once per second. The only parameter is the current time in seconds (after the start of the simulation), this command will initiate the next time step in the simulator.

{"command": "nextTimeStep", "currentTime":<seconds from start of simulation>}

goss/gridappsd/fncs/output - Returns the current state of the objects and properties in the simulator, which objects and properties are specified by the simluation output. The is the output that applications will wish to subscribe to. The visualization application subscribes to this output to display the latest capacitor and regulator state. The volt-var optimization application subscribes to this output when managing voltage levels within the simulation

{"command": "nextTimeStep", "output": "{\"ieee8500\":{\"cap_capbank0a\":{\"capacitor_A\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank0b\":{\"capacitor_B\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank0c\":{\"capacitor_C\":400000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank1a\":{\"capacitor_A\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank1b\":{\"capacitor_B\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank1c\":{\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank2a\":{\"capacitor_A\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":100.0,\"phases\":\"AN\",\"phases_connected\":\"NA\",\"pt_phase\":\"A\",\"switchA\":\"CLOSED\"},\"cap_capbank2b\":{\"capacitor_B\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":101.0,\"phases\":\"BN\",\"phases_connected\":\"NB\",\"pt_phase\":\"B\",\"switchB\":\"CLOSED\"},\"cap_capbank2c\":{\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"BANK\",\"dwell_time\":102.0,\"phases\":\"CN\",\"phases_connected\":\"NC\",\"pt_phase\":\"C\",\"switchC\":\"CLOSED\"},\"cap_capbank3\":{\"capacitor_A\":300000.0,\"capacitor_B\":300000.0,\"capacitor_C\":300000.0,\"control\":\"MANUAL\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":0.0,\"phases\":\"ABCN\",\"phases_connected\":\"NCBA\",\"pt_phase\":\"\",\"switchA\":\"CLOSED\",\"switchB\":\"CLOSED\",\"switchC\":\"CLOSED\"},\"nd_190-7361\":{\"voltage_A\":\"6410.387411-4584.456974j V\",\"voltage_B\":\"-7198.592139-3270.308372j V\",\"voltage_C\":\"642.547265+7539.531175j V\"},\"nd_190-8581\":{\"voltage_A\":\"6485.244722-4692.686497j V\",\"voltage_B\":\"-7183.641237-3170.693324j V\",\"voltage_C\":\"544.875720+7443.341013j V\"},\"nd_190-8593\":{\"voltage_A\":\"6723.279162-5056.725836j V\",\"voltage_B\":\"-7494.205738-3101.034602j V\",\"voltage_C\":\"630.475857+7534.534977j V\"},\"nd__hvmv_sub_lsb\":{\"voltage_A\":\"6261.474438-3926.148203j V\",\"voltage_B\":\"-6529.409296-3466.545236j V\",\"voltage_C\":\"247.131622+7348.295282j V\"},\"nd_l2673313\":{\"voltage_A\":\"6569.522312-5003.052614j V\",\"voltage_B\":\"-7431.486583-3004.840139j V\",\"voltage_C\":\"644.553331+7464.115915j V\"},\"nd_l2876814\":{\"voltage_A\":\"6593.064915-5014.031801j V\",\"voltage_B\":\"-7430.572726-3003.995538j V\",\"voltage_C\":\"643.473396+7483.558765j V\"},\"nd_l2955047\":{\"voltage_A\":\"5850.305846-4217.166594j V\",\"voltage_B\":\"-6729.652722-2987.617376j V\",\"voltage_C\":\"535.302083+7395.127354j V\"},\"nd_l3160107\":{\"voltage_A\":\"5954.507575-4227.423005j V\",\"voltage_B\":\"-6662.357613-3055.346879j V\",\"voltage_C\":\"600.213657+7317.832960j V\"},\"nd_l3254238\":{\"voltage_A\":\"6271.490549-4631.254028j V\",\"voltage_B\":\"-7169.987847-3099.952683j V\",\"voltage_C\":\"751.609655+7519.062260j V\"},\"nd_m1047574\":{\"voltage_A\":\"6306.632406-4741.568924j V\",\"voltage_B\":\"-7214.626338-2987.055914j V\",\"voltage_C\":\"622.058711+7442.125124j V\"},\"rcon_FEEDER_REG\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":126.5,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG2\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG3\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"rcon_VREG4\":{\"Control\":\"MANUAL\",\"PT_phase\":\"CBA\",\"band_center\":125.0,\"band_width\":2.0,\"connect_type\":\"WYE_WYE\",\"control_level\":\"INDIVIDUAL\",\"dwell_time\":15.0,\"lower_taps\":16,\"raise_taps\":16,\"regulation\":0.10000000000000001},\"reg_FEEDER_REG\":{\"configuration\":\"rcon_FEEDER_REG\",\"phases\":\"ABC\",\"tap_A\":2,\"tap_B\":2,\"tap_C\":1,\"to\":\"nd__hvmv_sub_lsb\"},\"reg_VREG2\":{\"configuration\":\"rcon_VREG2\",\"phases\":\"ABC\",\"tap_A\":10,\"tap_B\":6,\"tap_C\":2,\"to\":\"nd_190-8593\"},\"reg_VREG3\":{\"configuration\":\"rcon_VREG3\",\"phases\":\"ABC\",\"tap_A\":16,\"tap_B\":10,\"tap_C\":1,\"to\":\"nd_190-8581\"},\"reg_VREG4\":{\"configuration\":\"rcon_VREG4\",\"phases\":\"ABC\",\"tap_A\":12,\"tap_B\":12,\"tap_C\":5,\"to\":\"nd_190-7361\"},\"xf_hvmv_sub\":{\"power_in_A\":\"1739729.121744-774784.928874j VA\",\"power_in_B\":\"1659762.622236-785218.729252j VA\",\"power_in_C\":\"1709521.679116-849734.584017j VA\"}}}\n"}

	
	update

	goss/gridappsd/fncs/input - Sends an update command which can change the capacitor and regulator status within the simulator, this is used by the volt-var optimization application. Parameters include a message field, which contains the simulation name and the desired values for the objects to be updated.

{"command": "update", "message": {"ieee8500": {"reg_FEEDER_REG": {"tap_C": -3, "tap_B": -2, "tap_A": -1}, "reg_VREG4": {"tap_C": 1, "tap_B": 8, "tap_A": 8}, "reg_VREG2": {"tap_C": -1, "tap_B": 2, "tap_A": 6}, "reg_VREG3": {"tap_C": -3, "tap_B": 6, "tap_A": 12}}}}

	
	stop

	goss/gridappsd/fncs/input - Stops the simulator and shuts down the bridge. No additional parameters are required

{"command": "stop"}

 Query Model Info

 The Powergrid Model Data Manager API allows you to query the powergrid model data store. Six actions are available: Query_Model_names, Query, Query_Object, Query_Object_Types, Query_Model, and Put_Model

Query Model Info

Returns list of names/ids for models, substations, subregions, and regions for all available feeders.

Allowed parameter is:

	Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request:

{
 "requestType": "QUERY_MODEL_INFO",
 "resultFormat": "JSON"
}

Example Response for result format JSON:

{
 "models": [{
 "modelName": "ieee123",
 "modelId": "_C1C3E687-6FFD-C753-582B-632A27E28507",
 "stationName": "ieee123_Substation",
 "stationId": "_FE44B314-385E-C2BF-3983-3A10C6060022",
 "subRegionName": "large",
 "subRegionId": "_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
 "regionName": "ieee",
 "regionId": "_24809814-4EC6-29D2-B509-7F8BFB646437"
},

Query Model Names

Returns list of names for all available models.

Allowed parameter is:

	Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_MODEL_NAMES",
 "resultFormat": "JSON"
}

Example Response for result format JSON:

{
 "modelNames": ["_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
 "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "_5B816B93-7A5F-B64C-8460-47C17D6E4B0F",
 "_67AB291F-DCCD-31B7-B499-338206B9828F",
 "_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095",
 "_C1C3E687-6FFD-C753-582B-632A27E28507"]
}

Python API function:

query_model_names(self, model_id=None)

Query

Returns results from a generic SPARQL query against one or all models.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	queryString - SPARQL query, for more information see https://www.w3.org/TR/rdf-sparql-query/ See below for example.

	resultFormat – XML/JSON , The format you wish the result to be returned in. Can be either JSON or XML. Will return result bindings based on the select part of the query string. See below for example.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY",
 "resultFormat": "JSON",
 "queryString": "select ?line_name ?subregion_name ?region_name WHERE {?line rdf:type cim:Line.?line cim:IdentifiedObject.name ?line_name.?line cim:Line.Region ?subregion.?subregion cim:IdentifiedObject.name ?subregion_name.?subregion cim:SubGeographicalRegion.Region ?region.?region cim:IdentifiedObject.name ?region_name}"
}

Example Response:

{
"head": {
 "vars": ["line_name" , "subregion_name" , "region_name"]
 } ,
"results": {
 "bindings": [
 {
 "line_name": { "type": "literal" , "value": "ieee8500" } ,
 "subregion_name": { "type": "literal" , "value": "ieee8500_SubRegion" },
 "region_name": { "type": "literal" , "value": "ieee8500_Region" }
 }
]
}
}

Python API function:

query_data(self, query, database_type=POWERGRID_MODEL, timeout=30)

Query Object

Returns details for a particular object based on the object Id.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	objectID – mrid of the object you wish to return details for.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT",
 "resultFormat": "JSON",
 "objectId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"
}

Example Response:

{
 "head": {
 "vars": ["property" , "value"]
 } ,
 "results": {
 "bindings": [
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#Feeder.NormalEnergizingSubstation" } ,
 "value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/namespace/kb/sparql#_F1E8E479-5FA0-4BFF-8173-B375D25B0AA2" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID" } ,
 "value": { "type": "literal" , "value": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name" } ,
 "value": { "type": "literal" , "value": "ieee8500" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#PowerSystemResource.Location" } ,
 "value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/namespace/kb/sparql#_AD650B25-8A04-EA09-95D4-4F78DD0A05E7" }
 } ,
 {
 "property": { "type": "uri" , "value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" } ,
 "value": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17#Feeder" }
 }
]
 }
}

Python API function:

query_object(self, object_id, model_id=None):

Query Object Types

Returns the available object types in the model

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	resultFormat – XML/JSON /CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT_TYPES",
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "resultFormat": "JSON"
}

Example Response:

{
 "objectTypes": ["http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#TransformerTank",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#PowerTransformer",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#LinearShuntCompensator",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#EnergySource",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ACLineSegment",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#LoadBreakSwitch",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#EnergyConsumer"]
}

Python API function:

query_object_types(self, model_id=None)

Query Model

Returns all or part of the specified model. Can be filtered by object type

Allowed parameters are:

	modelId - when specified it searches against that model, if empty it will search against all models

	objectType (optional) – type of objects you wish to return details for.

	filter – SPARQL formatted filter string

	resultFormat – XML/JSON, Will return result in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_MODEL",
 "modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "resultFormat": "JSON",
 "filter": "?s cim:IdentifiedObject.name 'q14733'",
 "objectType": "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode"
}

Example Response:

[{
 "id": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.ConnectivityNodeContainer": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.TopologicalNode": "_AE5EDB3A-9177-AEA6-78EF-3DDBA4557D94",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
 "http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name": "q14733",
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type": "http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode"
}]

Query Object Ids

Not yet available Returns details for a particular object based on the object Id.

Allowed parameters are:

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	objectType (optional) – type of objects you wish to return details for.

	resultFormat – XML/JSON/CSV , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT_IDS",
 "resultFormat": "JSON",
 "objectType": "......."
}

Example Response:

 {
 "objectIDs": ["_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
 "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
 "_5B816B93-7A5F-B64C-8460-47C17D6E4B0F",
 "_67AB291F-DCCD-31B7-B499-338206B9828F",
 "_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095",
 "_C1C3E687-6FFD-C753-582B-632A27E28507"]
}

Query Object Dictionary By Type

Not yet available Returns details for either all objects of a particular type or a particular object based on the object Id in the same format as the model dictionary file.

Allowed parameters are:

	objectType – type of objects you wish to return details for.

	modelId (optional) - when specified it searches against that model, if empty it will search against all models

	objectID (optional) - mrid of the object you wish to return details for.

	resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
 "requestType": "QUERY_OBJECT_IDS",
 "resultFormat": "JSON",
 "objectType": "Capacitor. TODO what is cim type name......"
}

Example Response:

{
 "name": "c83",
 "mRID": "_8B8DB36D-CF7F-8C11-6C9C-E24B59C02366",
 "CN1": "83",
 "phases": "ABC",
 "kvar_A": 200.0,
 "kvar_B": 200.0,
 "kvar_C": 200.0,
 "nominalVoltage": 4160.0,
 "nomU": 4160.0,
 "phaseConnection": "Y",
 "grounded": true,
 "enabled": false,
 "mode": null,
 "targetValue": 0.0,
 "targetDeadband": 0.0,
 "aVRDelay": 0.0,
 "monitoredName": null,
 "monitoredClass": null,
 "monitoredBus": null,
 "monitoredPhase": null
},....

Put Model

Note

Future Capability. Not yet available.

Inserts a new model into the model repository. This could validate model format during insertion **Keep cim/model version in mind

Allowed parameters are:

	modelId – id to store the new model under, or update existing model

	modelContent – expects either RDF/XML or JSON formatted powergrid model

	inputFormat – XML/JSON

 Start a Simulation

Start a Simulation

Returns simulation id.

Queue:

goss.gridappsd.process.request.simulation

Example Request:

{

power_system_config: the CIM model to be used in the simulation

"power_system_config": {
 "GeographicalRegion_name": "ieee8500nodecktassets_Region",
 "SubGeographicalRegion_name": "ieee8500nodecktassets_SubRegion",
 "Line_name": "ieee8500"
},

simulation_config: the paramaters used by the simulation

"simulation_config": {
 "start_time": "1248134400",
 "duration": "120",
 "simulator": "GridLAB-D",
 "timestep_frequency": "1000",
 "timestep_increment": "1000",
 "simulation_name": "ieee8500",
 "power_flow_solver_method": "NR",

simulation_output: the objects and fields to be returned by the simulation

"simulation_output": {
 "output_objects": [{
 "name": "rcon_FEEDER_REG",
 "properties": ["connect_type",
 "Control",
 "control_level",
 "PT_phase",
 "band_center",
 "band_width",
 "dwell_time",
 "raise_taps",
 "lower_taps",
 "regulation"]
 },
 ]
},

model creation config: the paramaters used to generate the input file for the simulation

 "model_creation_config": {
 "load_scaling_factor": "1",
 "schedule_name": "ieeezipload",
 "z_fraction": "0",
 "i_fraction": "1",
 "p_fraction": "0"
 }
},

application config: inputs to any other applications that should run as part of the simluation, in this case the voltvar application

"application_config": {
 "applications": [{
 "name": "vvo",
 "config_string": "{\"static_inputs\": {\"ieee8500\" : {\"control_method\": \"ACTIVE\", \"capacitor_delay\": 60, \"regulator_delay\": 60, \"desired_pf\": 0.99, \"d_max\": 0.9, \"d_min\": 0.1,\"substation_link\": \"xf_hvmv_sub\",\"regulator_list\": [\"reg_FEEDER_REG\", \"reg_VREG2\", \"reg_VREG3\", \"reg_VREG4\"],\"regulator_configuration_list\": [\"rcon_FEEDER_REG\", \"rcon_VREG2\", \"rcon_VREG3\", \"rcon_VREG4\"],\"capacitor_list\": [\"cap_capbank0a\",\"cap_capbank0b\", \"cap_capbank0c\", \"cap_capbank1a\", \"cap_capbank1b\", \"cap_capbank1c\", \"cap_capbank2a\", \"cap_capbank2b\", \"cap_capbank2c\", \"cap_capbank3\"], \"voltage_measurements\": [\"nd_l2955047,1\", \"nd_l3160107,1\", \"nd_l2673313,2\", \"nd_l2876814,2\", \"nd_m1047574,3\", \"nd_l3254238,4\"], \"maximum_voltages\": 7500, \"minimum_voltages\": 6500,\"max_vdrop\": 5200,\"high_load_deadband\": 100,\"desired_voltages\": 7000, \"low_load_deadband\": 100,\"pf_phase\": \"ABC\"}}}"
 }]
}

}

Subscribe to Simulation Output

Topic:

/topic/goss.gridappsd.simulation.output.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "YYYY-MM-DDThh:mm:ss.sssZ",
 "measurement" : {
 "measurement_mrid" : "123a456b-789c-012d-345e-678f901a234b"
 "magnitude" : 3410.456,
 "angle" : -123.456
 }
 }
}

Subscribe to Simulation Logs

Topic:

/topic/goss.gridappsd.simulation.log.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
 "source": "",
 "processId": "",
 "timestamp": "",
 "processStatus": "[STARTED|STOPPED|RUNNING|ERROR|PASSED|FAILED]",
 "logMessage": "",
 "logLevel": "[INFO|DEBUG|ERROR]",
 "storeToDb": [true|false]
}

Send Input to Simulation

Topic:

/topic/goss.gridappsd.fncs.input

Example Message:

{
 "simulation_id" : "12ae2345",
 "message" : {
 "timestamp" : "2018-01-08T13:27:00.000Z",
 "difference_mrid" : "123a456b-789c-012d-345e-678f901a235c"
 "reverse_differences" : [
 {
 "object" : "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute" : "ShuntCompensator.sections",
 "value" : "1"
 },
 {
 "object" : "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute" : "ShuntCompensator.sections",
 "value" : "0"
 }
]
 "forward_differences" : [
 {
 "object" : "61A547FB-9F68-5635-BB4C-F7F537FD824E",
 "attribute" : "ShuntCompensator.sections",
 "value" : "0"
 },
 {
 "object" : "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
 "attribute" : "ShuntCompensator.sections",
 "value" : "1"
 }
]
 }
 }
}

 <no title>

 Java

The request simulation can be called using the GOSS Client API. https://github.com/GridOPTICS/GOSS The Client API is used to send a run configuration to the GOSS simulation request topic, once the simulation has started it listens to the FNCS output topic for the simulation data.

import org.apache.http.auth.Credentials;
import org.apache.http.auth.UsernamePasswordCredentials;
import pnnl.goss.core.Client;
import pnnl.goss.core.Client.PROTOCOL;
import pnnl.goss.core.ClientFactory;
import pnnl.goss.core.GossResponseEvent;
import pnnl.goss.core.Request.RESPONSE_FORMAT;
import pnnl.goss.core.client.ClientServiceFactory;
import pnnl.goss.gridappsd.dto.PowerSystemConfig;
import pnnl.goss.gridappsd.dto.RequestSimulation;
import pnnl.goss.gridappsd.dto.SimulationConfig;
import pnnl.goss.gridappsd.utils.GridAppsDConstants;

ClientFactory clientFactory = new ClientServiceFactory();

Client client;

//Step1: Create GOSS Client
Credentials credentials = new UsernamePasswordCredentials(
 username, pw);
client = clientFactory.create(PROTOCOL.STOMP, credentials);

//Create Request Simulation object, you could also just pass in a json string with the configuration
PowerSystemConfig powerSystemConfig = new PowerSystemConfig();
powerSystemConfig.GeographicalRegion_name = "ieee8500_Region";
powerSystemConfig.SubGeographicalRegion_name = "ieee8500_SubRegion";
powerSystemConfig.Line_name = "ieee8500";

SimulationConfig simulationConfig = new SimulationConfig();
simulationConfig.duration = 60;
simulationConfig.power_flow_solver_method = "";
simulationConfig.simulation_id = ""; //.setSimulation_name("");
simulationConfig.simulator = ""; //.setSimulator("");

simulationConfig.start_time = new Date().getTime(); //.setStart_time(1248134400);

RequestSimulation requestSimulation = new RequestSimulation(powerSystemConfig, simulationConfig);

Gson gson = new Gson();
String request = gson.toJson(requestSimulation);
//Step3: Send configuration to the request simulation topic
String simulationId = client.getResponse(request, GridAppsDConstants.topic_requestSimulation, RESPONSE_FORMAT.JSON)

//Subscribe to bridge output
client.subscribe("goss/gridappsd/fncs/output", new GossResponseEvent() {
 public void onMessage(Serializable response) {
 System.out.println("simulation output is: "+response);
 }
});

 <no title>

 Python
The python API requires that you install the stomp.py package, you can do this using pip with the command pip install stomp.py For additional documentation see https://github.com/jasonrbriggs/stomp.py/wiki/Simple-Example You will need to create a stomp connection, listen to the output topic, and then send a message to start the simulation.

import json
import sys
import stomp
import time

goss_output_topic = '/queue/goss/gridappsd/fncs/output'
goss_simulation_status_topic = '/topic/goss/gridappsd/simulation/status/'
gossConnection= None
isInitialized = None
simulationId = None

class GOSSStatusListener(object):
 def on_message(self, headers, msg):
 message = ''
 print('status ',msg)
 def on_error(self, headers, msg):
 print('simulation status error ',msg)
class GOSSSimulationStartListener(object):
 def on_message(self, headers, msg):
 message = ''
 print('simulation start ', msg)
 _registerWithGOSS('system','manager', msg,gossServer='localhost',stompPort='61613')
 def on_error(self, headers, msg):
 print('simulation start error ',msg)

def _registerWithGOSS(username,password,simulationId,gossServer='localhost',
 stompPort='61613'):
 '''Register with the GOSS server broker and return.

 Function arguments:
 gossServer -- Type: string. Description: The ip location
 for the GOSS server. It must not be an empty string.
 Default: 'localhost'.
 stompPort -- Type: string. Description: The port for Stomp
 protocol for the GOSS server. It must not be an empty string.
 Default: '61613'.
 username -- Type: string. Description: User name for GOSS connection.
 password -- Type: string. Description: Password for GOSS connection.

 Function returns:
 None.
 Function exceptions:
 RuntimeError()
 '''
 if (gossServer == None or gossServer == ''
 or type(gossServer) != str):
 raise ValueError(
 'gossServer must be a nonempty string.\n'
 + 'gossServer = {0}'.format(gossServer))
 if (stompPort == None or stompPort == ''
 or type(stompPort) != str):
 raise ValueError(
 'stompPort must be a nonempty string.\n'
 + 'stompPort = {0}'.format(stompPort))
 gossConnection = stomp.Connection12([(gossServer, stompPort)])
 gossConnection.start()
 gossConnection.connect(username,password)
 gossConnection.set_listener('GOSSStatusListener', GOSSStatusListener())
 gossConnection.subscribe(goss_output_topic,1)

def _startSimulation(username,password,gossServer='localhost',stompPort='61613'):
 simulationCfg = '{"power_system_config":{"GeographicalRegion_name":"ieee8500nodecktassets_Region","SubGeographicalRegion_name":"ieee8500nodecktassets_SubRegion","Line_name":"ieee8500"}, "simulation_config":{"start_time":"1248134400","duration":"60","simulator":"GridLAB-D","simulation_name":"my test simulation","power_flow_solver_method":"FBS"}}'
 if (gossServer == None or gossServer == ''
 or type(gossServer) != str):
 raise ValueError(
 'gossServer must be a nonempty string.\n'
 + 'gossServer = {0}'.format(gossServer))
 if (stompPort == None or stompPort == ''
 or type(stompPort) != str):
 raise ValueError(
 'stompPort must be a nonempty string.\n'
 + 'stompPort = {0}'.format(stompPort))
 gossConnection = stomp.Connection12([(gossServer, stompPort)])
 gossConnection.start()
 gossConnection.connect(username,password, wait=True)
 gossConnection.set_listener('GOSSSimulationStartListener',GOSSSimulationStartListener())
 gossConnection.subscribe(destination='/queue/reply',id=2)
 gossConnection.send(body=simulationCfg, destination=goss_simulation_topic, headers={'reply-to': '/queue/reply'})
 time.sleep(3)
 print('sent simulation request')

if __name__ == "__main__":
 #TODO: send simulationId, fncsBrokerLocation, gossLocation,
 #stompPort, username and password as command line arguments

 _startSimulation('username','pw',gossServer='127.0.0.1',stompPort='61613')

 <no title>

 Websockets/Javascript

In order to call the simulation API from javascript you will need to install stomp.js [http://jmesnil.net/stomp-websocket/doc/]
In order to start the simulation through the websocket API you will need to send the configuration to the gridappsd simulation topic in the format descibed on the Simulation Request page #simulation-request_

<script src='js/jquery-2.1.4.min.js'></script>
<script src="js/stomp.js" type="text/javascript"></script>
configString = "........... See developer resources"
simulationTopic = "/queue/goss/gridappsd/process/request/simulation";
gossHost = "gridappsdhost";
//Create client
var client = Stomp.client("ws://"+gossHost+":61614");
client.heartbeat.incoming=0;
client.heartbeat.outgoing=0;

var connect_error_callback = function(error) {
 $("#debug").append("Error "+error + "\n");
};
var outputCallback = function(message){
 $("#debug").append("Output "+message.body + "\n");
}
//Make connection with server
client.connect("username", "pw", connect_callback, connect_error_callback);

var request = JSON.stringify(JSON.parse(configField));
client.send(simulationTopic, {"reply-to" :"/temp-queue/response-queue"}, request);
 client.subscribe("/temp-queue/response-queue", function(message) {
 var simulationId = JSON.parse(message.body);
 $("#debug").append("Received Simulation ID: " +simulationId + "\n");
 client.subscribe("/topic/goss/gridappsd/simulation/status/"+simulationId, statusCallback);
 });
client.subscribe("/topic/goss/gridappsd/fncs/output", outputCallback);

_images/cim_BusNavigation.png
object BusNavigation

+TopologicalNode' 1 +ConnectivityNode

+ConnectivityNode

+ConnectivityNode

+ConnectivityNode 1

+ConductingEquipmelt +ConductingEquipment

_images/cim_CIMTool.png
® © @ | CiMTool - OSPRREYS/Profiles/RC1.owl - CIMTool - /Applications/CIMTool/CIMTool.app/Contents/MacO...

Irse BB & Q& 515t G 5 [¥ cimtool
PR =0 2 RCT.sal | B IEEE13Nodeck! COPSM_Combined.di =Ojox._=0
P <
B % || © TapChangerControl B
¥ OSPRREYS > pesitont
@ incremer|| Select members of this ciass. € Show superciass members [Show subclass members > [PowerTrs
¥ & Instance| v i PowerTra
- mRD 1.1 < TapChanger = mRiD
" eer discrete 1.1 ¥ -1 SuperClass: ReguiatingControl » Flcomne|
@il enabled 1.1 = targetvalueUnitultlier: UnitMults = endN
@i imitvoltage 1..1 < protectiveActionRegulation -
et tineDropCompensation 1..1 -
ineDropR 1.1 <~ ReguiationSchedule -
PR _— 0O lineDropX 1..1 » i SuperClass: PowerSystemResource -
S| Tmeaera -
I monitoredPhase 1.1 -
Lo e e S -
|[pocumentation 53 properties |
> E
>
re

_images/cim_AssetsOverview.png
class AssetsOverview

IdentifiedObject
IdentifiedObjec |\ cotinfo Asset
Assetinfo
0.1
+Assets | 0.*
Assetinfo::TapChangerinfo
+ ctRating: CurrentFlow [0..1] +PowerSystemResources | 0..*
+ ctRatio: Float [0..1]
+ ptRatio: Float [0..1] IdentifiedObject

Core:PowerSystemResource

Wires::TapChanger

controlEnabled: Boolean [0..1]
highStep: Integer [0..1]

alDelay: Seconds [0..1]
lowStep: Integer [0..1]

ItcFlag: Boolean [0..1]
neutralStep: Integer [0..1]
neutralU: Voltage [0..1]
normalStep: Integer [0..1]

step: Float [0..1]
subsequentDelay: Seconds [0..1]

bk ok o+ F o+ o+ 4

_images/cim_Autotransformer.png
Autotransformer
—> (Yan)

with Delta Tertiary
(Yand1)
oT

n3

_images/cim_ConductingEquipmentContexts.png
cbjec(Ccnducl'\ngEqu'\pmechmex(s/

‘ :BaseVoltage ‘

+BaseVoltage

‘ nominalVoltage = 12470.0

SubstationTransformerSecondary:
PowerTransformerEnd

+BaseVoltage 1

‘ ratedU = 12500.0

anyButTransformer:

+EquipmentContainer

Feeder: Line

Condu

gEquipment +EquipmentContainer

+PowerTransformer

SubstationTransformer:
PowerTransformer

+Location

:Location

_images/cim_DCIMLoadModel.png
class DCIMLoadModel

IdentifiedObject|
Metering::UsagePoint
PowerSystemResource + amiBillingReady: AmiBillingReadyKind [0..1]
Core::Equipment +Equipments +UsagePoints | * checkBilling: Boolean [0..1]
+ connectionState: UsagePointConnectedKind [0..1]
+ aggregate: Boolean [0..1] 0..% 0..*| + estimatedLoad: CurrentFlow [0..1]
+ normallylnService: Boolean [0..1] + grounded: Boolean [0..1]
+ isSdp: Boolean [0..1]
+ isVirtual: Boolean [0..1]
+ minimalUsageExpected: Boolean [0..1]
+ nominalServiceVoltage: Voltage [0..1]
AcDCTerminall + outageRegion: String [0..1]
» R + phaseCode: PhaseCode [0..1]
Core::) +ConductingEquipment 0..* i + ratedCurrent: CurrentFlow [0..1]
ConductingEquipment - + phases: PhaseCode [0..1] + ratedPower: ActivePower [0..1]
+Terminals + readCycle: String [0..1]
+ readRoute: String [0..1]
+ serviceDeliveryRemark: String [0..1]
+ servicePriority: String [0..1]
Wires::EnergyConsumer IdentifiedObject
0..1 LoadModel::
+ customerCount: Integer [0..1] +EnergyConsumer LoadResponseCharacteristic
+ grounded: Boolean [0..1 +LoadResponse «enumerationy
+ p: ActivePower [0..1] + exponentModel: Boolean [0..1] Core:-PhaseCode
+ pfixed: ActivePower [0..1] + pConstantCurrent: Float [0..1]
+ pfixedPct: PerCent [0..1 + pConstantimpedance: Float [0..1] ABCN
+ phaseConnection: PhaseShuntConnectionKind [0..1] + pConstantPower: Float [0..1] ABC
+ @ ReactivePower [0..1] + pFrequencyExponent: Float [0..1] ABN
+ gfixed: ReactivePower [0..1] + pVoltageExponent: Float [0..1] ACN
+ gfixedPct: PerCent [0..1 + (qConstantCurrent: Float [0..1] BCN
+ (qConstantimpedance: Float [0..1] AB
+EnergyConsumer | 1 + qConstantPower: Float [0..1] AC
+EnergyConsumerPhase | 0..* + qFrequencyExponent: Float [0..1] BC
PowersystemResource + qVoltageExponent: Float [0..1] AN
Wires:: i:
EnergyConsumerPhase) A
«enumeration»
+ pfixed: ActivePower [0..1] Wires:: E
+ pfixedPct: PerCent [0..1] SinglePhaseKind €
+ phase: SinglePhaseKind [0..1] ecnumeens N
+ (gfixed: ReactivePower [0..1] Wires:- SIN
+ dfixedPct: PerCent [0..1] PhaseShuntConnectionKind c 3
S12N
D N sl
Y sl s2
Yn s2 s12

_images/cim_CapacitorMeasurement.png
object CapacitorMeasurement

Bus675: Cap675: LinearShuntCompensator
controlEnabled = true
phaseConnection = Y Cap675sections:
1 normalSections = 1 +ShuntCompensator SvShuntCompensatorSe
+ConnectivityNode maximumSections = 1 —
+ConductingEquipment aVRDelay = 30 1 sections = sectionsOn
grounded = true
11 nomu -4160
:Terminal

bPerSection = 0.0347

_images/cim_Capacitors.png
object Capacitors

Bus611: Bus675:

+ConnectivityNode | 1 +ConnectivityNode | 1

:Terminal :Terminal

—

+ConductingEquipment 1

+Terminal

0.1

Cap6il: +ConductingEquipment

LinearShuntCompensator

Cap675:
LinearShuntCompensator

normalSections = 1

phaseConnection = Y
bPerSection = 0.0174
nomU = 2400

targetDeadband = 240

controlEnabled = true

phaseConnection = Y +RegulatingCondEq targetValue = 2400
| +RegulatingCon

normalSections = 1 mode = voltage

maximumSections = 1 j ! 1
maximumSections = 1
grounded = true
aVRDelay = 30
+ShuntCompensator | 1 grounded = true
nomU = 4160

bPerSection = 0.0347

LinearShuntCompensatorPhase

normalSections = 1
maximumSections = 1
bPerSection = 0.0174
phase = C

_images/cim_DCIMTransformerInfo.png
class DCIMTransformerinfo

Assetinfo «enumeration»
PowerTransforn e Wires:WindingConnection
D
Y
+PowerTransformerinfo | 1 7
Yn
+TransformerTankinfos 1..* Zn
A
Assetinfo |
TransformerTankinfo
+TransformerTankinfo | 1
+TransformerEndinfos | 1.*
Assetinfo IdentifiedObject
TransformerEndinfo TransformerTest
+ connectionKind: WindingConnection [0..1] + basePower: ApparentPower [0..1]
+ emergencyS: ApparentPower [0..1] + temperature: Temperature [0..1]
+ endNumber: Integer [0..1]
+ insulationU: Voltage [0..1] +EnergisedEnd
+ phaseAngleClock: Integer [0..1]]
+ r:Resistance [0..1] 0.1 +EnergisedEndNoLoadTests
+ rateds: ApparentPower [0..1] ‘o..*
+ ratedU: Voltage [0..1]
+ shortTerms: ApparentPower [0..1] ‘ NoloadTest
+ energisedEndVoltage: Voltage [0..1]
1 1% + gCurrent: PerCent [0..1]
+EnergisedEnd +GroundedEnds + excitingCurrentZero: PerCent [0..1]
+ loss: KiloActivePower [0..1]
+ lossZero: KiloActivePower [0..1]
+GroundedEndShortCircuitTests.
+EnergisedEndShortCircuitTests
0.* 0.*

energisedEndStep: Integer [0..1]
groundedEndStep: Integer [0..1]
leakagelmpedance: Impedance [0..1]
leakagelmpedanceZero: Impedance [0..1]
loss: KiloActivePower [0..1]

lossZero: KiloActivePower [0..1]

oo+ o+

_images/cim_DCIMWireInfo.png
class DCIMWirelnfo

Assetinfo
Wirelnfo

Fob ok ok ok h o ok f b+ 4

coreRadius: Length [0..1]

coreStrandCount: Integer [0..1]

gmr: Length [0..1]

insulated: Boolean [0..1]

insulationMaterial: WirelnsulationKind [0..1]
insulationThickness: Length [0..1]

rACS50: ResistancePerlLength [0..1]
rAC75: ResistancePerLength [0..1]
radius: Length [0..1]
ratedCurrent: CurrentFlow [0..1]

rDC20: ResistancePerlLength [0..1]
sizeDescription: String [0..1]
strandCount: Integer [0..1]

Cablelnfo

S

diameterOverCore: Length [0..1]
diameterOverInsulation: Length [0..1]
diameterOverJacket: Length [0..1]
diameterOverScreen: Length [0..1]
isStrandFill: Boolean [0..1]
nominalTemperature: Temperature [0..1]
sheathAsNeutral: Boolean [0..1]

OverheadWirelnfo

Assetinfo

WireSpacinglnfo

isCable: Boolean [0..1]
phaseWireCount: Integer [0..1]
phaseWireSpacing: Length [0..1]
ireUsageKind [0..1]

oo+ o+

usage:

+WireSpacinglnfo| 0--1

+WirePositions | 1.+

IdentifiedObject

WirePosition

+ phase: SinglePhaseKind [0..1]
+ xCoord: Displacement [0..1]
+ yCoord: Displacement [0..1]

«enumeration»
Wires::SinglePhaseKind

«enumeration»
WirelnsulationKind

TapeShieldCablelnfo

ConcentricNeutralCablelnfo

+ tapelap: PerCent [0..1]
+ tapeThickness: Length [0..1]

diameterOverNeutral: Length [0..1]
neutralStrandCount: Integer [0..1]
neutralStrandGmr: Length [0..1]
neutralStrandRadius: Length [0..1]
neutralStrandRDC20: ResistancePerLength [0..1]

oo+ o+ o+

«enumeration»
WireUsageKind

transmission
distribution
secondary
other

asbestosAndVarnishedCambric

butyl

ethylenePropyleneRubber
highMolecularWeightPolyethylene
treeResistantHighMolecularWeightPolyethylene
lowCapacitanceRubber

oilPaper

ozoneResistantRubber

beltedPilc

unbeltedPilc

rubber

siliconRubber

varnishedCambricCloth
varnishedDacronGlass
crosslinkedPolyethylene
treeRetardantCrosslinkedPolyethylene
highPressureFluidFilled

other

_images/cim_LineAssetInfo.png
1
+ConnectivityNode

+ConnectivityNode

+ConductingEquipment 1 +ConductingEquipment

[+PowerSystemResources

+AClineSegment |+ACLineSegment

+PowerSystemResources

+PowerSystemResources

+AssetInfo

1

+AssetlInfo!

L
+PowerSystemResources

nav.xhtml

 Table of Contents

 		
 GridAPPS-D’s Documentation

 		
 Overview

 		
 Conceptual Design Summary

 		
 Architecture

 		
 Definition of Terms

 		
 References

 		
 Version History

 		
 Contact Us

 		
 Installing GridAPPS-D

 		
 Requirements

 		
 Docker and prerequisite install on OS X

 		
 Clone or download the repository

 		
 Install Docker on Ubuntu

 		
 Start the docker container services

 		
 Start gridappsd

 		
 Exiting the container and stopping the containers

 		
 Restarting the containers

 		
 Using GridAPPS-D

 		
 Start GridAPPS-D platform

 		
 Start a Simulation

 		
 Stop GridAPPS-D platform

 		
 Using Platform API

 		
 Powergrid Model API

 		
 Query Model Info

 		
 Query Model Names

 		
 Query

 		
 Query Object

 		
 Query Object Types

 		
 Query Model

 		
 Query Object Ids

 		
 Query Object Dictionary By Type

 		
 Put Model

 		
 Configuration File API

 		
 Request all GridLAB-D configuration files

 		
 Request GridLAB-D Base File

 		
 Request GridLAB-D Symbols File

 		
 Request CIM Dictionary file

 		
 Request CIM Feeder Index file

 		
 Request Simulation Output Configuration file

 		
 Request YBus Export Configuration file

 		
 Logging API

 		
 Topic:

 		
 Message structure:

 		
 Receiving multiple logs:

 		
 Simulation API

 		
 Start a Simulation

 		
 Subscribe to Simulation Output

 		
 Subscribe to Simulation Logs

 		
 Send Input to Simulation

 		
 Hosting Application or Service

 		
 Supported Application or Service Types

 		
 Hosting Application or Service

 		
 GridAPPS-D Development Resources

 		
 Eclipse IDE Setup

 		
 Execution Workflow

 		
 Messaging

 		
 CIM Documentation

 		
 Class Diagrams for the Profile

 		
 Typical Queries

 		
 Object Diagrams for Queries

 		
 Metering Relationship to Loads in the CIM

 		
 CIM Enhancements for RC2

 		
 CIM Profile in CIMTool

 		
 Creating Data Definition Language (DDL) for MySQL

 		
 Platform UML Diagrams

 		
 UML from the Functional Specification

 		
 UML for Release Cycle 1

 		
 Initial Work Breakdown for Release Cycle 1

 		
 Data Model

 		
 IEEE 8500-Node Test Feeder

 		
 Integrated Applications

 		
 Volt-var Optimization (VVO)

 		
 Visualization

 		
 PNNL Applications (Release Cycle 2)

 		
 State Estimator

 		
 Objectives

 		
 Use Cases

 		
 Distribution System State Estimation Algorithms

 		
 TRL

 		
 Design

 		
 Inputs:

 		
 Outputs:

 		
 Testing and Validation

 		
 Evaluation metrics

 		
 Scenarios

 		
 Operating/Running

 		
 References

 		
 Model Validator

 		
 Objectives

 		
 Use Cases

 		
 Design

 		
 Inputs:

 		
 Outputs:

 		
 Testing and Validation

 		
 Evaluation metrics

 		
 Scenarios

 		
 Operating/Running

 		
 NREL Applications (Release Cycle 2)

 		
 Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

 		
 Objectives

 		
 Design

 		
 Testing and Validation

 		
 Operating/Running

 		
 References

 		
 API Documentation

 		
 GridAPPS-D

 		
 GOSS

 		
 FNCS

 		
 VVO

 		
 GridLAB-D

 		
 gov.pnnl.gridlabd.cim

 		
 CDPSM_to_GLM

 		
 CDPSM_to_GLM.GldNode

 		
 CDPSM_to_GLM.SpacingCount

 		
 SPARQLcimTest

 		
 License

_images/cim_LineMatrix.png
:ACLineSegmentPhase

:ACLineSegmentPhase

:Terminal

x=0.8431e-3
r=0.8225e-3
sequenceNumber = 1

Z12: PhaselmpedanceData

x =0.2853e-3

+ConnectivityNode

r=0.1284e-3
sequenceNumber = 2

+ACLineSegment

matrix671_684:

1

+ConnectivityNode
+ACLineSegment

+ConductingEquipment

+Phaselmpedance

:Terminal

222: PhaselmpedanceData

x =0.8370e-3

1

i i 1 ac neSegment
+ConductingEquipment 1
length = 91.4
0.*
+Perlengthimpedance
+Phaselmpedance 0.1
1
mtx604:
PerLengthPhaselmpedance
1
+Phaselmpedance conductorCount = 2

r=0.8260e-3
sequenceNumber = 3

_images/cim_LineModel.png
class LineModel

Line

ConnectivityNodeCortainer | (1

Core::EquipmentContainer

+Equipments

Core::Equipment

N B 0.%
+EquipmentContainer -

IdentifiedObject
Core::SubGeographicalRegion

’ 0.1

+Region

PowerSystemResairce

+ length: Length [0..1]

Core::ConductingEquipment

«enumeration»
SinglePhaseKind

ACLineSegment

bOch: Susceptance [0..1]
beh: Susceptance [0..1]
g0ch: Conductance [0..1]
geh: Conductance [0..1]
r: Resistance [0..1]

10: Resistance [0..1]

x: Reactance [0..1]

X0: Reactance [0..1]

FoEoh ot o+ o+

+ACLineSegment

1 +ACLineSegmentPhases

PowerSystemResairce

ACLineSegmentPhase

+ACLineSegments \ 0..*

+PerLengthimpedance \ o_1

+ phase: SinglePhaseKind [0..1]

PerlengthLineParameter

Perlengthimpedance

PerlengthSequencelmpedance

bOch: SusceptancePerlLength [0..1]
bch: SusceptancePerlLength [0..1]
g0ch: ConductancePerlength [0..1]
gch: ConductancePerlength [0..1]
r: ResistancePerLength [0..1]

10: ResistancePerLength [0..1]

x: ReactancePerLength [0..1]

x0: ReactancePerlength [0..1]

FoEoh ot o+ o+

‘ PerlengthPhaselmpedance ‘

+ conductorCount: Integer [0..1]

+Phaselmpedance | 1

+PhaselmpedanceData | 1..*

‘ PhaselmpedanceData ‘

b: SusceptancePerLength [0..1]
r: ResistancePerLength [0..1]
sequenceNumber: Integer [0..1]
x: ReactancePerLength [0..1]

oo+ o+

_images/cim_LineCatalog.png
object LineCatalog

1/0_ACSR: OverheadWirelnfo

rDC20 = 0.5222e-3
sizeDescription = Raven
strandCount = 6

spc505acn Spacinglnfo

usage = distribution
phaseWireSpacing = 0

phaseWireCount = 0

rACT75 = 0.7083e-3 isCable = false
rAC25 = 0.5334e-3
coreStrandCount = 1 +WireSpacinglnfo \+Wire5pacinglnf0

rACS50 = 0.6959-3 +WireSpacinginfo

radius = 5.0546e-3
ratedCurrent = 230.0

insulated = false
ePo:

gmr = 1.9436e-3

coreRadius = 1.6853e-3

yCoord = 8.5345 yCoord = 8.5345 yCoord = 7.3153
xCoord = -1.0668 xCoord = 1.0668 xCoord = 0.1524
phase = A phase = C phase = N

250_AA_CN: ConcentricNeutralCablelnfo
1/0_Cu_Ts: TapeShieldCablelnfo

insulationThickness = 5.588e-3
ratedCurrent = 255.0 insulationThickness = 5.588e-3

ratedCurrent = 165.0

_images/cim_LineInstance.png
+ConductingEquipment +ConductingEquipment

+ConnectivityNode
1

_images/cim_Loads.png
object Loads

+ConnectivityNode

:Terminal

+ConductingEquipment
1

BalancedLoad:
EnergyConsumer

customerCount = 1

grounded = false
phaseConnection = D
qfixed = 6603
pfixed = 1155e3

ConstantPower:
LoadResponseCharacte

qConstantPower = 100
qConstantimpedance = 0
qConstantCurrent = 0
pConstantPower = 100
pConstantimpedance = 0
pConstantCurrent = 0

) 1
toadResponse +LoadResponse
+EnergyConsumer-

:EnergyConsumerPhase i

qfixed = 1903

phase = A +EnergyConsumel

pfixed = 485¢3 1

:EnergyConsumerPhase

qfixed = 60e3

phase = B
pfixed = 68e3

r

:EnergyConsumerPhase

Bus675:

+ConnectivityNode

:Terminal

+ConductingEquipment

UnbalancedLoad:
EnergyConsumer

customerCount = 1
phaseConnection = Y
grounded = true
qfixed = 462e3
pfixed = 843e3

1

+EnergyConsumer

qfixed = 212¢3
phase = C
pfixed = 2903

_images/cim_LoadsAndSources.png
cmp LoadsAndSources

IdentifiedObject
LoadModel::LoadResponseCharacteristic

exponentModel: Boolean [0..1]
pConstantCurrent: Float [0..1]
pConstantimpedance: Float [0..1]
pConstantPower: Float [0..1]
pFrequencyExponent: Float [0..1]
pVoltageExponent: Float [0..1]
qConstantCurrent: Float [0..1]
qConstantimpedance: Float [0..1]
qConstantPower: Float [0..1]
qFrequencyExponent: Float [0..1]
qVoltageExponent: Float [0..1]

R

+LoadResponse \ 0.1

+EnergyConsumer 0..*

Equipment

CorexConductingEquipment

EnergyConsumer

EnergySource

customerCount: Integer [0..1]

grounded: Boolean [0..1]

p: ActivePower [0..1]

pfixed: ActivePower [0..1]

phaseConnection: PhaseShuntConnectionKind [0..1]
q: ReactivePower [0..1]

qfixed: ReactivePower [0..1]

bt o+ o+

bkt ot o+ o+

+EnergyConsumer | 1

+EnergyConsumerPhase | 0..*

PowerSystemResairce

EnergyConsumerPhase

+ pfixed: ActivePower [0..1]
+ phase: SinglePhaseKind [0..1]
+ gfixed: ReactivePower [0..1]

nominalVoltage: Voltage [0..1]

r: Resistance [0..1]

10: Resistance [0..1]

rn: Resistance [0..1]

voltageAngle: AngleRadians [0..1]
voltageMagnitude: Voltage [0..1]
x: Reactance [0..1]

x0: Reactance [0..1]

xn: Reactance [0..1]

«enumeration»

SinglePhaseKind

«enumeration»
PhaseShuntConnectionKind

_images/cim_LinePhaseNavigation.png
object LinePhaseNavigation

Terminal +ConductingEquipment
1
+ACLineSegment
+Connect
1
bus671: :ACLineSegmentPhase

e671_684
ACLineSegment

+ConductingEquipment

1

+ACLineSegment

:Terminal

+ConnectivityNode
1

:ACLineSegmentPhase

bus684:

_images/cim_LineSequence.png
object LineSequence

‘Terminal +ConductingEquipment 5€q632_671: +ConductingEquipment ‘Terminal
ACLineSegment
1 1
length = 609.6
0.*

+ConnectivityNode

+ConnectivityNode

+PerLengthimpedance !
bus632: 0.1
bus671:
seqCatl:

PerlengthSequencelmpedance

:ACLineSegment X0 = 01.2427e-3
| AT ACtineSegment
length = 60.0 - 10 = 0.3107e-3
r=00621e-3 length = 150

_images/cim_MeteringEndDevices.png
class MeteringEndDevices /

Assetinfo AssetFunction +EndDeviceFunction
- 0.%))
EndDevicelnfo L EndDevicelnfo EndDeviceFunction o1
+ capability: EndDeviceCapability [0..1] 0.1 +EndDeviceFunctions | + €nabled: Boolean [0..1]
+ isSolidState: Boolean [0..1]
+ phaseCount: Integer [0..1] z 3
+ ratedCurrent: CurrentFlow [0..1] i i i
+ ratedVoltage: Voltage [0..1] SimpleEndDeviceFunction
+ kind: EndDeviceFunctionKind [0..1] ‘
ComFunction ‘
ActivityRecord 7 +EndDevices | o_ +EndDevice |0..1 + amrAddress: String [0..1]
EndDeviceEvent +EndDeviceEvents + amrRouter: String [0..1]
0.x AssetContainer + direction: ComDirectionKind [0..1]
+ issuerlD: String [0..1] 0.1 EndDevice + technology: ComTechnologyKind [0..1]
+ issuerTrackingID: String [0..1] +EndDevice -
+ userlD: String [0..1] + amrSystem: String [0..1] +ComFunctions | 0..*
o +EndDevices| + installCode: String [0..1]
o 0.% + isPan: Boolean [0..1] +ComModule|0..1
+EndDeviceEvents 0-* 4 isvirtual: Boolean [0..1] G
+EndDeviceEvents +EndDevices| + timeZoneOffset: Minutes [0..1]
ComModule
0"*7 + amrSystem: String [0..1]
+UsagePoint +UsagePoint +EndDevices + supportsAutonomousDst: Boolean [0..1]
0.1 0.1 + timeZoneOffset: Minutes [0..1]
IdentifiedObject|
UsagePoint
‘ Meter ‘
0.1 0. 0%

+UsagePoint

+EndDeviceControls
0..

+UsagePoints +UsagePoints

+EndDeviceControls

‘ + formNumber: String [0..1] ‘

+EndDeviceGroups

IdentifiedObject|
EndDeviceGroup

+ type: String [0..1]

0..
+EndDeviceGroups

0..

+EndDeviceGroups

+EndDeviceControls

0. 0.

EndD

IdentifiedObject|
eviceControl

0..

+EndDeviceControls

* 0.

0..
IdentifiedObject|
UsagePointGroup

+UsagePointGroups *+UsagePointGroups

+UsagePointGroups

0..

+Meter

+DemandResponsePrograms

0..1

+ type: String [

+MeterReadings 0..*

Identifie:
+MeterReading 0..1

+Mete

0..
|

+DemandResponsePrograms

dObject| +MeterReadings

IdentifiedObject|
DemandResponseProgram

MeterReading [

0..

rReadings

+Readings

BaseReading| +Readings

+ReadingType

+Registers

0..

IdentifiedObject|
Register

isvirtual: Boolean [0..1]
leftDigitCount: Integer [0..1]
rightDigitCount: Integer [0..1]
touTier: Timelnterval [0..1]
touTierName: String [0..1]

+ o+ o+ o+

+Register

+Channels

IdentifiedObject|
Channel

+

isvirtual: Boolean [0..1]

+Channel |0..

+ReadingType|0..

IdentifiedObject|
ReadingType

accumulation: String [0..1]
aggregate: String [0..1]
argument: RationalNumber [0..1]
commodity: String [0..1]
consumptionTier: Integer [0..1]
cpp: Integer [0..1]

currency: String [0..1]
flowDirection: String [0..1]
interharmonic: ReadingInterharmonic [0..1]
macroPeriod: String [0..1]
measurementKind: String [0..1]
measuringPeriod: String [0..1]
multiplier: String [0..1]

phases: String [0..1]

tou: Integer [0..1]

Reading

1

I I I T I T

unit: String [0..1]

_images/cim_MeteringUsagePoints.png
class MeteringUsagePoints /

PowerSystemResource
Core::Equipment

Location

UsagePointLocation

+ aggregate: Boolean [0..1]
+ normallylnService: Boolean [0..1] +

T
+Equipments 0..%

+ accessMethod: String [0..1]
remark: String [0..1]
+ siteAccessProblem: String [0..1]

AssetContainer

0.1 0.1 0.1

+UsagePoint
+UsagePoint

+UsagePoint

+Usag

+UsagePointGroups

IdentifiedObject| o
UsagePointGroup

+EndDeviceControls

+DemandResponsePrograms
0.%

+UsagePointGroups

+UsagePointGroups

DemandResponseProgram

IdentifiedObject|

+ type: String [0..1]
+ validityInterval: DateTimelnterval [0..1]

+DemandResponsePrograms o_*

+EndDeviceEvents

0..1

ActivityRecord | +EndDeviceEvents

UsagePointLocati 0.1
+UsagePointLocation +EndDevices
0.* i
+UsagePoints [0..* +UsagePoints | o « EndDeies
- +EndDevices
IdentifiedObject] T
UsagePoint
+ amiBillingReady: AmiBillingReadyKind [0..1] . 0. - EndDevice |0
+ checkBilling: Boolean [0..1] +EndDevices -
+ connectionState: UsagePointConnectedKind [0..1] . .
+ estimatedLoad: CurrentFlow [0..1] +UsagePoint +EndDeviceGroups | 0..
+ grounded: Boolean [0..1] 0..1 IdentifiedObject|
+ isSdp: Boolean [0..1] +EndDeviceGroups N
+ isVirtual: Boolean [0..1] +UsagePoints EndDeviceCioup
+ minimalUsageExpected: Boolean [0..1] 0% 0.%
+ nominalServiceVoltage: Voltage [0..1] -
+ outageRegion: String [0..1] 0.%
+UsagePoints + phaseCode: PhaseCode [0..1] +EndDeviceGroups
+ ratedCurrent: CurrentFlow [0..1] +EndDeviceConTrols
0.%
+ ratedPower: ActiveRowerll Gl +EndDeviceControls | +EndDeviceControls
+ readCycle: String [0..1] 0..% 0..% 0.%
+ readRoute: String [0..1] - —L
+ serviceDeliveryRemark: String [0..1] IdentifiedObject
+ servicePriority: String [0..1] EndDeviceControl

0.% EndDeviceEvent 0.%

0-* 1" 4 EndDeviceEvents

+MeterReading

+MeterReadings /dentifiedObject

+MeterServiceWorks

+MetrologyRequirements
0.%

IdentifiedObject|
MetrologyRequirement

MeterServiceWork

+MetrologyRequirements

+MeterReadings

MeterReading
0.* 0.*

Work

+ Meter‘ 0..1
+MeterServiceWorks +Meter Meter
0..* 0.1
0. 0.1

+MeterReplacementWorks +OldMeter

+ reason: ReadingReasonKind [0..1]

+ReadingTypes|/dentifiedObject

ReadingType

_images/cim_NamingHierarchyPart1.png
class NamingHierarchyPart1 /

CorexEquipmentContainer

IdentifiedObject
Core:SubGeographicalRegion

IdentifiedObject
Core::GeographicalRegion

+Region

+Regions +Region

IdentifiedObject

Core::BaseVoltage

+ nominalVoltage: Voltage [0..1]

+EquipmentContainer

+BaseVoltage [0.1

Core::Connecti

yNodeContainer

+ConductingEquipment

IdentifiedObject
| Core::PowerSystemResource

0.%

1

+ConnectivityNodeContainer

+ConnectivityNodes

CorexConductingEquipment

0.%

0.1 +PowerSystemResources

+Location

+ConductingEquipment 1

IdentifiedObject

Common::Location

IdentifiedObject

Common:CoordinateSystem

+Locations

0.114+ crsUrn: String [0..1]
1 +CoordinateSystem
+Location
+PositionPoints
0.5

+ length: Length [0..1]

Common::Posi

nPoint

+ sequenceNumber: Integer [0..1]
n: String [0..1]
n: String [0..1]

0.%

. ACLineSegment
+Terminals

b0ch: Susceptance [0..1]
beh: Susceptance [0..1]

ACDCTerminal

erminal

+TopologicalNode) 0..1

g0ch: Conductance [0..1]

geh: Conductance [0..1]
r: Resistance [0..1]

10: Resistance [0..1]

x: Reactance [0..1]

X0: Reactance [0..1]

Topology:

IdentifiedObject

opologicalNode

IdentifiedObject
+AngleRefTopologicalNode +AngleRefTopologicallsland Tonma
0.1 01 Topologicallsland
+TopologicalNodes +Topologicallsland

1.* 0.1

_images/cim_PowerTransformerNavigation.png
object Powel‘TransformerNavigation/

+Terming

+PowerTransformer 4powerTransformer

+Terminal 1

+ConductingEquipment, N
gEquipment

1
+ConductingEquipment

+PowerTransformer
+ConnectivityNode

+Terminal

_images/cim_RegulatingEquipment.png
class RegulatingEquipment

ConductingEquipment|
RegulatingCondEq

+ controlEnabled: Boolean [0..1]

+RegulatingCondEq

+Terminal

+RegulatingControl

ACDCTerminal

Core::Terminal

PowerSystemResairce

RegulatingControl

0.%

0.1
+RegulatingControl

oo+ o+

discrete: Boolean [0..1]

enabled: Boolean [0..1]

mode: RegulatingControlModekind [0..1]
monitoredPhase: PhaseCode [0..1]
targetDeadband: Float [0..1]
targetValue: Float [0..1]

ShuntCompensator

aVRDelay: Seconds [0..1]
grounded: Boolean [0..1]
maximumSections: Integer
nomU: Voltage [0..1]

oo+ o+

normalSections: Integer [0..
phaseConnection: PhaseShuntConnectionKind [0..1]

0..1]

1]

«enumeration»

«enumeration»

PhaseShuntConnectionKind

RegulatingControlModeKind

voltage

1

+ShuntCompensator

+ShuntCompensatorPhase /0..*

activePower
reactivePower
currentFlow
admittance
timeScheduled
temperature

PowerSystemResairce

ShuntCompensatorPhase

LinearShuntCompensator

+ maximumSections: Integer [0..1]
+ normalSections: Integer [0..1]
+ phase: SinglePhaseKind [0..1]

oo+ o+

b0PerSection: Susceptance [0..1]
bPerSection: Susceptance [0..1]
gOPerSection: Conductance [0..1]
gPerSection: Conductance [0..1]

«enumeration»
SinglePhaseKind

LinearShuntCompensatorPhase

+ bPerSection: Susceptance [0..1]
+ gPerSection: Conductance [0..1]

powerFactor

«enumeration»
Core::PhaseCode

ABCN
ABC
ABN
ACN
BCN
AB
AC
BC
AN
BN
CN
A

B

€

N
sIN
2N
s12N
s1
52
s12

_images/cim_OpenWyeOpenDelta.png
Connectivity Node 1

Open Wye — Open Delta Bank

Z 8PON AJAROBULOD

_images/cim_PowerTransformerImpedance.png
object PowerTransformerimpedance /

ptEnd2:

PowerTransformerEnd

ptEndi:
PowerTransformerEnd

‘TransformerMeshimpedance
— +ToTransformerEnd

endNumber = 2
1| ratedu=345e3
rateds = 500e6

+FromTransformerEnd
phaseAngleClock = 0

connectionKind = A 1

ratedU = 500e3

phaseAngleClock = 0

connectionKind = Y
ratedS = 500e6

endNumber = 1

+PowerTransformer 1
“+PowerTransformer 17 +FromTransformerEnd

xfmrl: PowerTransformer
vectorGroup = Yyd1
1

+FromTransformerEnd

TransformerMeshimpedance

+PowerTransformer Y= 71415
r=0.7142
+ToTransformerEnd
+ToTransformerEnd ptEnd3:
PowerTransformerEnd

1
+TransformerEnd

:TransformerCoreAdmittance

endNumber = 3
ratedU = 13800
ratedS = 50e6
phaseAngleClock = 1

§=65.625¢-6
b = 112.875e-6

connectionKind = D

_images/cim_SwitchingEquipment.png
class SwitchingEquipment

ConductingEquipment|
Switch

normalOpen: Boolean [0..1]
open: Boolean [0..1]
ratedCurrent: CurrentFlow [0..1]
retained: Boolean [0..1]

oo+ o+

+Switch

+SwitchPhase

o PowerSystemResairce
SwitchPhase

i Sectionaliser
‘ ProtectedSwitch ‘ closed: Boolean [0..1]

normalOpen: Boolean [0..1]
phaseSide1: SinglePhaseKind [0..1]
phaseSide2: SinglePhaseKind [0..1]

+ breakingCapacity: CurrentFlow [0..1] ‘

oo+ o+

Jumper

LoadBreakSwitch

Fuse .
Disconnector

«enumeration»
SinglePhaseKind
Recloser

Breaker

_images/cim_TankImpedance.png
object Tankimpedance

tankB:
TransformerTank

1.*
+PowerSystemResources

:Asset

+PowerSystemResources
1.*

:TransformerTank

+AssetInfo

:NolLoadTest

+TransformerTankinfo

:TransformerEndinfo

ratedU = 7200
ratedS = 50e3
connectionKind = |

phaseAngleClock = 0
endNumber = 1

+EnergisedEnd

50kVA240:
TransformerTankinfo

EN
+TransformerTankinfo

loss =

excitingCurrent = 1.0

+EnergisedEnd

:TransformerEndinfo

0.4

1

:ShortCircuitTest

loss = 0.5
leakagelmpedance = 2.1

+GroundedEnds 1..*

ratedU = 240
ratedS = 50e3
phaseAngleClock = 0
endNumber = 2

connectionKind = |

_images/cim_StateVariables.png
class StateVariables

StateVariable

‘ SvshuntCompensatorSections ‘

+

sections: Float [0..1] ‘

AN

+ShuntCompensator

+SvShuntCompensatorSections 0..1

RegulatingCondEq

Wires::ShuntCompensator

+SvTapStep

+TapChanger

Sustatus ‘
PowerSystemResairce

Svlnjection
+ plnjection: ActivePower [0..1]
+ glnjection: ReactivePower [0..1]

nSe

+Svlnjection | 0.1

+SvStatus

Boolean [0..1]

0.1

Wires::TapChanger

‘ SvPowerFlow

+ p: ActivePower [0..1]

+ q: ReactivePower [0..1]

+TopologicalNode

IdentifiedObject
Topology::

TopologicalNode

Swoltage
+ angle: AngleDegrees [0..1]
+ v:Voltage [0..1]
+SWoltage” 0.1

+TopologicalNode

0..1

+ConductingEquipment +\Svp0wernow
1

Equipment

onductingEquipment
+ConductingEquipment

+Terminal
+Terminals

ACDCTerminal

Core::Terminal

_images/cim_SwitchPhaseNavigation.png
:Terminal

+ConnectivityNode

buslLeft:

dal: LoadBreaks

+ConductingEquipment.

normalOpen = false

closed = true
phaseSide2 = C
phaseSidel = A

1
+>witch

open = false

normalOpen = false |1

ratedCurrent = 50

+ConductingEquipment

closed = true
phaseSide2 = A
phaseSidel = C
normalOpen = false

:Terminal

+ConnectivityNode

_images/cim_TapChanger.png
object TapChanger /

SinglePhaseRegulatorTankEnd:

FeederRegulator:

+TransformerEnd RatioTapChanger
TransformerTankEnd
1 initialDelay = 15
phases = AN subsequentDelay = 2
step = 1.0625

+Terminal 1

:Terminal

+ConnectivityNode
1

busRG60:

+TapChangerControl
J 1

+PowerSystemResources

:TapChangerControl

monitoredPhase = A
targetValue = 122
targetDeadband = 2

mode = voltage
reverselineDropX = 0
reverselineDropR = 0
lineDropX = 9

lineDropR = 3
lineDropCompensation = true
limitVoltage = 126

+AssetInfo

LDCRatios:
TapChangerinfo

ctRatio = 3500
ptRatio = 20
ctRating = 700

_images/cim_TapChangerClass.png
class TapChanger /

PowerTransformerEnd

TransformerTankEnd

+ phases: PhaseCode [0..1]

«enumeration»
Core::PhaseCode

ABCN
ABC
ABN
ACN
BCN
AB
AC
BC
AN
BN
CN
A

B

€

N
sIN
s2N
s12N
sl
s2
512

IdentifiedObject

TransformerEnd

+TransformerEnd

«enumeration»
RegulatingControlModeKind

voltage
activePower

PowerSystemResairce

RegulatingControl

reactivePower + discrete: Boolean [0..1]

currentFlow + enabled: Boolean [0..1]

it + mode: RegulatingControlModeKind [0..1]

timeScheduled + monitoredPhase: PhaseCode [0..1]

temperature + targetDeadband: Float [0..1]

powerFactor + targetValue: Float [0..1]
PowerSystemResaurce

TapChanger

controlEnabled: Boolean [0..1]
highStep: Integer [0..1]
tialDelay: Seconds [0..1]
lowStep: Integer [0..1]

ItcFlag: Boolean [0..1]
neutralStep: Integer [0..1]
neutralU: Voltage [0..1]
normalStep: Integer [0..1]

step: Float [0..1]
subsequentDelay: Seconds [0..1]

bk ok o+ F o+ o+ 4

+TapChanger
o

+RatioTapChanger
0.1

+TapChangerControl (, ;
L0

TapChangerControl

oo+ o+

limitVoltage: Voltage [0..1]
lineDropCompensation: Boolean [0..1]
lineDropR: Resistance [0..1]
lineDropX: Reactance [0..1]
reverselineDropR: Resistance [0..1]
reverselineDropX: Reactance [0..1]

RatioTapChanger

+
+

stepVoltagelncrement: PerCent [0..1]

tculControlMode: TransformerControlMode [0..1]

_images/cim_TankNavigation.png
endA2:
TransformerTankEnd

endAl:
TransformerTankEnd

+Terminal :Terminal

:Terminal +Terminal

grounded = true
endNumber = 2
phases = AN

+TransformerTank +TransformerTank

grounded = true
endNumber = 1
phases = AN

tankA:
TransformerTank

+ConnectivityNode

+TransformerTank

+ConnectivityNode

endA3:
TransformerTankEnd

grounded = true
endNumber = 3
phases = BN

+ConnectivityNode
+PowerTransformer

+ConnectivityNode +ConductingEquipment +ConductingEquipment A
1

+Terminal

openWyeOpenDelta:
+ConductingEquipment PowerTransformer +ConductingEquipment

1
vectorGroup = Yd1

+ConductingEquipment

:Terminal

:Terminal

1
+Terminal

+PowerTransformer
—
+Terminal

endB2:
TransformerTankEnd

tankB:
TransformerTank

endB1:
TransformerTankEnd

grounded - false
endNumber = 2
phases = BC

grounded = true +TransformerTank

endNumber = 1
phases = BN

+TransformerTank

_images/cim_VoltageMeasurements.png
object VoltageMeasurements

+TopologicalNode

topo684:
TopologicalNode

+TopologicalNode

voltage684: SVoltage

v = sensorVolts
angle = sensorDegrees

_images/conceptual_design.png
Distribution System Application

Dsitribution System Appiication

Distribution System Application under development

i i
. I

Tools: P
Powerflow, bata Emels Commercial
Tools:

Opnnéztancn. Data : EMS
. Interfaces configuration | DMS.

and H OMS.
management GIS.‘

Historian,

i Etc

Standards Based (CIM, etc.) Data Bus

!

Distribution Simulator
(Co-simulation with GridLAB-D, OpenDSS, NS-3, etc.)

Data Ingest

[eridAPPS-D - Distribution System Application Development Platiorm

<+—» Da

“Control” and configuration

_images/cim_TapMeasurements.png
object TapMeasurements

SinglePhaseRegulatorTankEnd:

TransformerTankEnd

+TransformerEnd

FeederRegulator:

RatioTapChanger

‘ phases = AN

initialDelay = 15
subsequentDelay = 2
step = 1.0625

+TapChanger

FeederTapStepA:
SvTapStep

1

position = puTap

_images/cim_Transformer.png
class Transformer /

ACDCTerminal Equipment
Core::Terminal +Terminals +ConductingEquipment Core::ConductingEquipment
|
0*
+ConductingEquipment
o
+Terminal | 0.1
= — +BaseVoltage
IderifiecERy PowerTransformer
Core:BaseVoltage | 0--1
+ vectorGroup: String [0..1]
+BaseVoltage/ 0.1 +PowerTransformer 0.1 0.1
+PowerTransformer
+PowerTransformerEnd
o 0.* +TransformerTanks
PowerTransformerEnd -
Equipment
+TransformerEnds + connectionind: WindingConnection [0..1] . e
+Transformerénd 0% 0.* + phaseAngleClock: Integer [0..1] fiaidhats L1
IdertifiedObjec + r:Resistance [0..1]
N P’ End + ratedS: ApparentPower [0..1]
ransformer€n 4+ ratedU: Voltage [0.1] +TransformerTank | 0_1
+ endNumber: Integer [0..1]
+ grounded: Boolean [0..1]
+ rground: Resistance [0..1]
+ xground: Reactance [0..1]
+TransformerTankEnds | 1..*
TransformerTankEnd
+ phases: PhaseCode [0..1]
o 1 1% +ToTransformerEnd
+FromTransformerEnd IdentifiedObject
T f Meshl d «enumeration» «enumeration»
+TransformerEnd T Core::PhaseCode WindingConnection
+ToMeshimpedance 0.* [g oo 7o)
A ABCN D
+ 10: Resistance [0..1] e B
+FromMeshlmpedance 0.* | + x: Reactance [0..1] A B
+ x0:Reactance [0..1] — a
BCN Zn
AB A
+CoreAdmittance IdortifiedOlyedt :tci |
0.1 TransformerCoreAdmittance e
+ b: Susceptance [0..1] s
+ b0: Susceptance [0..1] 8
+ g Conductance [0..1] N
+ g0: Conductance [0..1] g
N
SIN
SN
S12N
s1
$2
s12

_images/image1.png
At DER _,{

Local
Information and

tpoint
pdate

PQ;

b

OMeasurement, unit
OControllable DER
[substation

_images/config.png
GridAPPS.

GridAPPS-D +

<« c @

localhost:8080/edit-simulation-config - O W search In @

GridAPPS-D

Power System Configuration

Geographical Region Name | leeeB500nodecktass... v

SubGeographical Region ieeeB500nodecktass... v
Name
Line Name ieee8500 v

Simulation Configuration

Duration 120 S

Simulator GridLAB-D v

Timestep Frequency 1000 g

_images/home.png
COENR

| @ localhost:8050

-0 %

J/ GridAPPS-D vi.0

_images/simulation.png
Applications & Services

Browse Database

STOMP Client

_images/start.png
GridAPPS-D - Mozilla Firefox

GridAPPS-D

&« c o ® localhost:8080/ieee8500 - O W search N @

‘ GridAPPS-D

Thu Mar 08 2018 13:32:45 GMT-0800 (PST) || p || Voltage A

7,000 4
e ~; p— | 5,800
';: _' #of ¢ BwichB CLOSED . 6,600

Y . 5,400

- o ! A~ 2 62004

6,000 <

H - “;_.‘?:.__,: g VREGH
I T 5,800
I R ey
o 3 AMATIITIRINASETAT Y 12

© ISMTHEBIZESIZIDSTIHY 8

T e
PR ST

LT Voltage B

b ‘¢ .. 11004
L R . 7.000
/ 6,900 |
LY 6,800 |
Sre. 6,700
6,600 -
— 6,500
. 6,400
s AT 6,300
[11 —
s 6,100 -

i Znnn

Simulation Status
Voltage C

{"source™:"gov.pnnl.goss.aridappsd.process.ProcessNewSimulationRequest”,"processld":"15¢ | 7,150

_images/rc1_start_simulation.png
GridAPPS-D X

@@|172.20.128.20:8082ﬁeee8500 | @ Q search wB ¥ A =

2l Most Visited @ Getting Started @ PNNL WEB PORTAL

GridAPPS-D IEEE 8500 Fri May 19 2017 16:33:30 GMT-0700 (Pacific Standard Time)

v
g Voltage A Start Simulation

ccap_capbank3]

Switch A CLOSED S0

8,100

8,000+

7,900

7,800 —

7,700

7,600+

7,500+

74004

4

7300 —

7.200
Voltage 1 Tap
A 6252.510505-4481.860073]V 10
B -7013.064122-3197.545301j V10
C 620.602583+7341.037835]V 3
Voltage B

e e

_images/rc3_demo.png
&« c @ @ localhost:8080/ieee8500 o @ search N @ =

GridAPPS-D

Thu Mar 08 2018 13:34:39 GMT-0800 (PST) >

g VAEGH

Vehige 1 Tap
oA AENIITESMOTIE Y 12
B 44 TMMEIASETIN Y 12
© ISMTBEMIESIZIDTIHY 8

Voltage B

7,100
7.000
6,900
6,800
6,700
6,600 -
6,500
6,400
6,300

6,200 -
6,100

& nnn

ny Voltage C

e . Wl 1 Taz ;
Etn_capbarkd = A MEIGNHATETIEY 8 . -
e Bmich A CLOSED B et B SAUSANTILIMANTSTERV 10
A Jsamp cLOSED TV 10 . © MELETIIOLATSLOENH Y 1
T e

-3 Cgneiemiamne B Y E

7.1504
7.1004
e 7,050
7.0004
6,950+
] 6,900 <+
o 6,850
. 6,800
Simulation Stat 5:700
imulaton us 5650
6,600+
6,550
6.500

{"source":"gov.pnnl.goss.gridappsd.process.ProcessNewSimulationRequest”,"processld™:"1553025507", "timestamp": 15205446

config {\"power_system_config\":{\"SubGeographicalRegion_name\"\"ieee8500nodecktassets_SubRegion 120RZ0nx

_images/uml_Hosting.png
class Hosting)

+

102 Hosting Output

Current Version

+Writes

Reads

412 Version Manager

Version Number

+
+

CollectinternalVersions
WriteVersion(): int

(): int

+Reads

310 Hosted
Application

EF13 Manage
Application

Versions

+Writes

202 Hosting Commands

- 208 Application Data Schema
- 209 Access Control List

- 210 Application Metadata

- 211 Application

410 App Hosting Manage

+ InstallApp(
+ UninstallApp(): int

- Available Applications

r

311 Access

+Reads +Writes

+Check Credentials

411 Security and Access
Control Manager

Permission
Verification

AccessControlList

CheckDataAccess(): int
CheckFunctionAccess(): int

+Writes

110 Hosted
Application

404 Data Manager

Data Repository
Data Schema

+Creates
+Write App Schema
+Registers
407 Service Manager
- Optimizers -
- Power-flow GridLAB-D .
+ RunService(): int +

IngestData(): int
RetrieveData(): int

+Executes

EF8 Test
Application

_images/uml_ModelManagement.png
class Model Management)

EF21 Manage
Models

+Writes

202 Model Commands

- 203 Model Configuration

+Reads

406 Power System Model
Manager

- ModelRepository
ModelSchema

BulkExport(): int
Bulkimport{

ExtractSimModel(): int
UpdateModel(): int

+ o+ o+ o+

+Creates +Reads

306 Power System
Config

+Reads

201 Distribution
System Model

Battery Inverters
Buildings
- Capacitors
- Customer Loads
- Lines
PV Inverters

- Regulators
- Substation

- Transformers

+Manages B

+Reads

‘ 106 Power System Configuration

‘ - Three-phase Powerflow Model

+Creates

404 Data Manager

- Data Repository
- Data Schema

+ IngestData(): int
+ RetrieveData(): i

401 Distribution Co-
Simulator

EF7 Execute
Application

+Reads +Reads

102 Model Output

- 104 Available Data and Metadata
- 106 Power System Configuration

+Reads

104/304 Available

Data and
+Writes

Metadata

- dynamics model
owerflow model

- Buildings EnergyPlus

- Real-time GridLAB-D

- Communications ns-3

+ RunContinuous(): int

_images/uml_Debugging.png
class Debugging)

EF7 Execute

109/309 System
Application

Logs

102 Debug Output

+Reads +Reads

- 108 Intermediate Results
- 109 System Logs

+Writes

202 Debug Commands

- Debug Configuration

+Writes

409 Log Manager

+Reads

- Log Configuration

108/308 +Reads ——1

Intermediate
Results

+Reads

+Writes

101/ 301 Real Time Simulation Data

- AMI Outputs: double 408 Debug Manager
- Battery Outputs: double .
- Currents: double +Writes

411 Security and Access Control
311 Access Manager

+Collects - DebuggerConfiguration +Collects

Permission

- i N
- End-of-line Voltage: double IntermediateResults Verification - AccessControllist

- Inverter Outputs: double + RunDebugMode(): int
- Line Post Sensors (Cap Banks): double
- Reactive Powers: double

- Real Powers: double

- Substation SCADA: double

+ CheckDataAccess(): int
+ CheckFunctionAccess(): int

- Voltages: double +Collects 107/307 Services
B 406 Power System Model In Use
+Writes Manager
+Writes
- ModelRepository
- ModelSchema
401 Distribution Co- q
N + BulkExport(): int 407 Service Manager
Simulator . +Collects
. N N - Optimizers
- Buildi Ei il + ExtractSimModel(): int
urcings SRR e i EEE) 104/304 Available - Power-flow GridLAB-D
- Communications ns-3 + UpdateModel(): int Doy

- Real-time GridLAB-D

Metadata + RunService(): int

+Creates +Writes

+Reads 306 Power System

Config

- dynamics model
- __powerflow model

+Reads

+Reads 404 Data Manager

- Data Repository
- Data Schema

305 Simulation
Config

+Reads

+ IngestData(): int
+ RetrieveData(): int

solver choice
- speed
- time

+Writes 405 Simulation Control

Manager

- ConfigurationSetup

+ StartSimulation(): int
+ StopSimulation(): int

_images/uml_DomainObjects.png
cmp Domain Objects)

Hosted VWO @
Application (310)

Configurations

Configuration @

Command @

Interface
(102/202)

Available data

Incremental configs Data Manager @

Manager
(405/406)

Initial Sim Config

Initial PS

am- [

Compliant PS Model @
Data Store Manager (406)
(only the

CDPSM

profiles)

Process Manager @
(402)

(a04)

Make Data Channels

Real-time data,
Events, Control
Actions,’
Incremental

Updates
Start/Stop

Message Bus

Distribution Co- @
Simulator (401)

GLD File

GridLAB-D

_images/uml_Platform.png
class Platform J

411 Security and Access Control
Manager

412 Version Manager

- AccessControlList

- Version Number

401 Distribution Co-
Simulator

+ CheckDataAccess(): int -
+ CheckFunctionAccess(): int -

+ CollectinternalVersions(): int

+ WriteVersion(): int

Buildings EnergyPlus
Communications ns-3
Real-time GridLAB-D

410 App Hosting Manager

- Available Applications

+ InstallApp(): int
+ UninstallApp(): int

409 Log Manager

Log Configuration

408 Debug Manager

DebuggerConfiguration
IntermediateResults

+

RunDebugMode(): int

407 Service Manager

+

RunContinuous(): int

413 Platform Manager

AppMgr: 410 App Hosting Manager

DataMgr: 404 Data Manager

DebugMgr: 408 Debug Manager

LogMgr: 409 Log Manager

ModelMgr: 406 Power System Model Manager
ProcMgr: 402 Process Manager

SACMgr: 411 Security and Access Control Manager
ServiceMgr: 407 Service Manager

SimMgr: 405 Simulation Control Manager
Simulator: 401 Distribution Co-Simulator
TestMgr: 403 Test Manager

VersionMgr: 412 Version Manager

- Optimizers
- Power-flow GridLAB-D

+ RunService(): int

406 Power System Model
Manager

405 Simulation Control
Manager

402 Process Manager

Schedules
Workflow

- ModelRepository -
ModelSchema

ConfigurationSetup

+
BulkExport(): int +
Bulkimport(): int
ExtractSimModel(): int
UpdateModel(): int

+ o+ o+ o+

StartSimulation(): int

StopSimulation(): int

+

RunProcesses(): i

nt

403 Test Manager

Expected Results
Test Configuration
Test Results

Test Scripts

RunTests(): i

404 Data Manager

Data Repository
Data Schema

IngestData(): int

RetrieveData(): int

_images/uml_Testing.png
class Testing)

EF8 Test
Application

202 Test Commands

+Writes
- 203 Model Config Setup

- 204 Simulation Config Setup
- 205 Test Scripts

- 206 Test Config Setup
+Reads | - 207 Expected Results

+Reads
- 210 Application Metadata

102 Test Output

- 103 Test Results
- 109 System Logs

+Reads
+Writes 403 Test Manager

- Expected Results

- Test Configuration
- TestResults

- Test Scripts

109/309 System
+Reads Logs

+