

Welcome to rss_ringoccs’s documentation!

Contents:

	rss_ringoccs package
	Subpackages
	rss_ringoccs.calibration package
	Submodules

	rss_ringoccs.diffrec package
	Submodules

	rss_ringoccs.occgeo package
	Submodules

	rss_ringoccs.rsr_reader package
	Submodules

	rss_ringoccs.scatter package
	Submodules

	rss_ringoccs.tools package
	Submodules

Indices and tables

	Index

	Module Index

	Search Page

rss_ringoccs package

	License and Copyright:

	Copyright (C) 2019 Team Cassini

This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see http://www.gnu.org/licenses/.

This program is part of the rss_ringoccs repository hosted at
https://github.com/NASA-Planetary-Science/rss_ringoccs and developed
with the financial support of NASA’s Cassini Mission to Saturn.

	Purpose:

	Provide tools for analysis of ring occultation experiments,
particularly those pertaining to the Cassini Radio Science
Experiment [https://pds-rings.seti.org/cassini/rss/],
based on methods from [MTR1986] and [CRSUG2018]. This software
package contains methods for reading and extracting RSR data,
computing occultation geometry, calibrating RSR data, and
performing diffraction reconstruction for calibrated data at
different resolutions. Also included are tools for writing
and reading the data products output by the software.

	Dependencies:

	
	numpy

	spiceypy

	scipy

	time

	sys

	subprocess

	pdb

	pandas

	matplotlib

	os

	platform

	References:

	
	MTR1986

	Essam A. Marouf, G. Leonard Tyler, Paul A. Rosen,
“Profiling Saturn’s rings by radio occultation”.
Icarus, Volume 68, Issue 1, 1986, Pages 120-166,
https://doi.org/10.1016/0019-1035(86)90078-3

	CRSUG2018

	Cassini Radio Science User’s Guide [https://pds-rings.seti.org/cassini/rss/Cassini%20Radio%20Science%20Users%20Guide%20-%2030%20Sep%202018.pdf].

	GRESH86

	Gresh et al. (1986) “An analysis of bending waves
in Saturn’s rings using Voyager radio occultation data”.
Icarus 68, 481-502.

	NICH14

	Philip D. Nicholson, Richard G. French, Colleen A.
McGhee-French, Matthew M. Hedman, Essam A. Marouf, Joshua
E. Colwell, Katherine Lonergan, Talia Sepersky.
“Noncircular features in Saturn’s rings II: The C ring”.
Icarus, Volume 241, 2014, Pages 373-396, ISSN 0019-1035.
https://doi.org/10.1016/j.icarus.2014.06.024 or
http://www.sciencedirect.com/science/article/pii/S0019103514003443

	NAIF

	NASA JPL/NAIF spice toolkit
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/
pdf/individual_docs/27_derived_quant.pdf

Subpackages

	rss_ringoccs.calibration package
	Submodules
	rss_ringoccs.calibration.calc_f_sky_recon module

	rss_ringoccs.calibration.calc_freq_offset module

	rss_ringoccs.calibration.calc_tau_thresh module

	rss_ringoccs.calibration.calibration_class module

	rss_ringoccs.calibration.dlp_class module

	rss_ringoccs.calibration.freq_offset_fit module

	rss_ringoccs.calibration.power_normalization module

	rss_ringoccs.calibration.resample_IQ module

	rss_ringoccs.diffrec package
	Submodules
	rss_ringoccs.diffrec.advanced_tools module

	rss_ringoccs.diffrec.diffraction_correction module

	rss_ringoccs.diffrec.special_functions module

	rss_ringoccs.diffrec.window_functions module

	rss_ringoccs.occgeo package
	Submodules
	rss_ringoccs.occgeo.calc_occ_geometry module

	rss_ringoccs.occgeo.occgeo module

	rss_ringoccs.rsr_reader package
	Submodules
	rss_ringoccs.rsr_reader.rsr_reader module

	rss_ringoccs.scatter package
	Submodules
	rss_ringoccs.scatter.spectro_reader module

	rss_ringoccs.scatter.spectrogram module

	rss_ringoccs.tools package
	Submodules
	rss_ringoccs.tools.CSV_tools module

	rss_ringoccs.tools.compare module

	rss_ringoccs.tools.dtau_miescatt_partsize_grid module

	rss_ringoccs.tools.et_to_spm module

	rss_ringoccs.tools.history module

	rss_ringoccs.tools.spm_to_et module

rss_ringoccs.calibration package

	Purpose:

	Provide tools for calibrating raw radio science data by
phase-correcting the measured complex signal and fitting
the free-space power, as discussed in [MTR1986] and
[CRSUG2018]. Final calibrated signal can be used to compute
the diffraction-limited profile of the occultation.

	Dependencies:

	
	numpy

	scipy

	sys

	pdb

	matplotlib

Submodules

	rss_ringoccs.calibration.calc_f_sky_recon module

	rss_ringoccs.calibration.calc_freq_offset module

	rss_ringoccs.calibration.calc_tau_thresh module

	rss_ringoccs.calibration.calibration_class module

	rss_ringoccs.calibration.dlp_class module

	rss_ringoccs.calibration.freq_offset_fit module

	rss_ringoccs.calibration.power_normalization module

	rss_ringoccs.calibration.resample_IQ module

rss_ringoccs.calibration.calc_f_sky_recon module

	Purpose

	Calculate sky frequency from the reconstructed event kernels.
copied from Nicole Rappaport’s predicts program in Fortran.

	References

	This is a pythonized version of Nicole Rappaport’s PREDICTS
program, which predicts sky frequencies by computing the Doppler
shift due to motion of the spacecraft relative to the observer
(i.e., the receiving station).

	Dependencies

	
	numpy

	spiceypy

	
rss_ringoccs.calibration.calc_f_sky_recon.calc_f_sky_recon(f_spm, rsr_inst, sc_name, f_uso, kernels)

	Calculates sky frequency at given times.

	Arguments

	
	f_spm (np.ndarray)

	SPM values to evaluate sky frequency at

	rsr_inst (object)

	Instance of RSRReader class

	sc_name (str)

	Name of spacecraft to get sky frequency for.
In our case, this should always be ‘Cassini’

	f_uso (float)

	USO sky frequency for the event and the right band

	kernels (list)

	String list of full path name to set of kernels

	Returns

	
	RF (np.ndarray)

	Reconstructed sky frequency computed from
spacecraft telemetry and oscillator frequency

	
rss_ringoccs.calibration.calc_f_sky_recon.derlt(sc_code, etsc, rs_code, et)

	
	Arguments

	
	sc_code (int)

	Spacecraft NAIF ID

	etsc (float)

	Epoch (in ephemeris seconds past J2000 TDB)
at which the signal arrives at the receiver
station

	rs_code (int)

	Receiving station NAIF ID

	et (float)

	Ephemeris time

	Returns

	
	DLTDT2 (float)

	

	
rss_ringoccs.calibration.calc_f_sky_recon.derpt(et, code)

	
	Arguments

	
	et (float)

	Ephemeris time

	code (int)

	NAIF ID

	Returns

	
	B (float)

	

rss_ringoccs.calibration.calc_freq_offset module

	Purpose

	Class for computing the frequency corresponding to the maximum
power in the FFT power spectrum

	Dependencies

	
	numpy

	
class rss_ringoccs.calibration.calc_freq_offset.calc_freq_offset(rsr_inst, spm_min, spm_max, dt_freq=2.0)

	Bases: object

	Purpose

	Calls functions to sample raw signal at regular intervals
using a window of width dt_freq

	Arguments

	
	rsr_inst (object)

	Object instance of the RSRReader class

	spm_min (float)

	Minimum observed event time for sampling

	spm_max (*float)

	Maximum observed event time for sampling

	Keyword Arguments

	
	dt_freq (float)

	half the width of the FFT window

	Attributes

	
	spm_vals (np.ndarray)

	Observed event time at full sampling

	IQ_m (np.ndarray)

	Uncorrected real and imaginary components of signal

	dt (float)

	Raw time sampling from spm_vals

	dt_freq (float)

	half the width of the FFT window

	spm_min (float)

	Minimum time for sampling

	spm_max (float)

	Maximum time for sampling

	f_spm (np.ndarray)

	Observed event time for frequency offset

	f_offset (np.ndarray)

	Frequency offset, or frequency at max power

rss_ringoccs.calibration.calc_tau_thresh module

	Purpose

	Compute [image: \tau_{thresh}] for use as a proxy for maximum
reliable value of optical depth within the diffraction-limited or
diffraction-reconstructed profile. This follows [MTR1986]
Equations 24 and 26, which define, respectively, the power of the
thermal noise

[image: \hat{P}_N = \frac{\dot{\rho}_0} {\mathrm{SNR}_0 \Delta\rho_0}]

and the threshold optical depth

[image: \tau_{thresh} = -\sin(B) \ln\left(\frac{1}{2}C_{\alpha}\hat{P}_N\right)]

	Dependencies

	
	numpy

	matplotlib

	scipy

	
class rss_ringoccs.calibration.calc_tau_thresh.calc_tau_thresh(rsr_inst, geo_inst, cal_inst, res_km=1.0, Calpha=2.41)

	Bases: object

	Purpose

	Compute threshold optical depth following

	Arguments

	
	rsr_inst (object)

	object instance of the RSRReader class

	geo_inst (object)

	object instance of the Geometry class

	cal_inst (object)

	object instance of the Calibration class

	Keyword Arguments

	
	res_km (float)

	Reconstruction resolution in km

	Calpha (float)

	Constant for scaling Bandwidth/SNR ratio.
Default is 2.41 for 70% confidence
(see [MTR1986])

	Attributes

	
	snr (np.ndarray)

	Signal-to-noise ratio SNR0 over the
entire occultation. This changes over the
occultation because the signal power
fluctuates.

	tau_thresh (np.ndarray)

	threshold optical depth computed
using [MTR1986]

	spm_vals (np.ndarray)

	Observed event time array from cal_inst

	rho_vals (np.ndarray)

	Ring intercept point array interpolated to
spm_vals

	
find_noise(spm, IQ, df)

	Locate the additive receiver noise within the data set.
This is done by computing a spectrogram of the raw
complex signal, filtering out the spacecraft signal, and
averaging over the frequency and time domains.

	Arguments

	
	spm (np.ndarray)

	raw SPM in seconds

	IQ (np.ndarray)

	measured complex signal

	df (float)

	sampling frequency in Hz of the IQ

	Returns

	
	p_noise (np.ndarray)

	noise power

rss_ringoccs.calibration.calibration_class module

	Purpose

	Class framework for performing the necessary calibration steps for
the RSR data. This includes phase correction based on frequency
offset of the spacecraft and normalization of received power with
respect to the intrinsic spacecraft power.

	Notes

	Can be computationally cumbersome, especially for chord
occultations. May require up to 30 mins for 16 kHz RSR data files.

	Dependencies:

	
	numpy

	scipy

	sys

	
class rss_ringoccs.calibration.calibration_class.Calibration(rsr_inst, geo_inst, pnf_order=3, dt_cal=1.0, verbose=False, write_file=True, interact=False)

	Bases: object

	Purpose

	Define a class which, when instantiated, calls the submodules
for performing each step of the calibration process by
instantiating the classes FreqOffsetFit in the
freq_offset_fit.py script and Normalization in the
power_normalization.py script.

	Arguments

	
	rsr_inst (object)

	Instance of the RSRReader class

	geo_inst (object)

	Instance of the Geometry class

	Keyword Arguments

	
	pnf_order (float)

	whole number specifying the polynomial
order to use when fitting the freespace power.
Default is 3.

	dt_cal (float)

	Desired final spacing in SPM between data
points. Default is 1 sec.

	verbose (bool)

	If True, print intermediate steps and
results. Default is False.

	write_file (bool)

	If True, write output CAL .TAB and
CAL .LBL files. Default is True.

	interact (bool)

	If True, enables the interactive mode in
the terminal for fitting the freespace power.
Default is False.

	Attributes

	
	rev_info (dict)

	dict of information identifying the
specific occultation: rsrfile, year, day of
year, direction and type of occultation,
spacecraft revolution number, and observation
band

	t_oet_spm_vals (np.ndarray)

	SPM values for observed event
time [image: t]

	f_sky_hz_vals (np.ndarray)

	sum of the reconstructed sky frequency values
and the fit to frequency offset
[image: \hat{f}(t)_{sky}=f_{dr}(t) +\hat{f}(t)_{offset}]
following Equation 19 in [CRSUG2018].

	f_offset_fit_vals (np.ndarray)

	fit to
frequency offset [image: \hat{f}(t)_{offset}]

	p_free_vals (np.ndarray)

	fit to freespace power
[image: \hat{P}_0(t)]

	IQ_c (np.ndarray)

	phase-corrected spacecraft signal
[image: I_{c}+iQ_{c}]

	history (dict)

	information about the parameters, results,
and computation of the calibration procedures

	FORFIT_chi_squared (float)

	sum of the squared residual
frequency offset fit such that
[image: \chi^2 = \frac{1}{N-m} \sum((\hat{f}(t)_{offset}-f(t)_{offset}) /\hat{f}(t)_{offset})^2]

	FSPFIT_chi_squared (float)

	[image: \chi^2 = \frac{1}{N-m}\sum ((\hat{P}_0(t)-P_0(t))/\hat{P}_0(t))^2]

	
correct_IQ(spm_vals, IQ_m, f_spm, f_offset_fit)

	Purpose:

Apply frequency offset fit to raw measured signal using
the signal frequencies calculated by FreqOffsetFit.
First resamples the frequency offset fit to a 0.1 sec
separation. Then, computes detrending function by
integrating frequency offset fit to get phase detrending
function [image: \psi] using Equation 18 from
[CRSUG2018] where

[image: \psi = \int^{t}\hat{f}(\tau)_{offset} \mathrm{d}\tau+\psi(t_0)]

Finally, applies phase detrending correction to signal to
raw signal such that

[image: I_{c}+iQ_{c} = [I_{m}+iQ_{m}] \exp(-i\psi)]

as discussed in [CRSUG2018] (see their Equation 17).

	Arguments:

	
	spm_vals (np.ndarray)

	raw SPM values

	IQ_m (np.ndarray)

	raw complex signal measured by DSN

	f_spm (np.ndarray)

	SPM sampled for frequency offset
calculation in the calc_freq_offset class
in the calc_freq_offset.py script.

	f_offset_fit (np.ndarray)

	frequency of the spacecraft
signal corresponding to f_spm

	Returns:

	
	IQ_c (np.ndarray)

	Frequency-corrected complex signal
[image: I_{c}+iQ_{c}] corresponding to
spm_vals

rss_ringoccs.calibration.dlp_class module

	Purpose

	Create a class whose attributes have all the necessary inputs for
performing a Fresnel inversion usng DiffractionCorrection, given
instances of the classes RSRReader, Geometry, and Calibration.

	Dependencies

	
	numpy

	copy

	scipy

	
class rss_ringoccs.calibration.dlp_class.DiffractionLimitedProfile(rsr_inst, geo_inst, cal_inst, dr_km, verbose=False, write_file=True, profile_range=[65000.0, 150000.0])

	Bases: object

	Purpose

	Framework for an object class containing the diffraction-limited
optical depth profile (DLP) and related attributes.

	Arguments

	
	rsr_inst (object)

	Instance of RSRReader class

	geo_inst (object)

	Instance of Geometry class

	cal_inst (object)

	Instance of Calibration class

	dr_km (float)

	radial sampling rate [image: \Delta\rho]
for the DLP in kilometers. DLP radial
resolution is the Nyquist radial sampling,
i.e., twice the input value of dr_km,
meaning that this will affect the minimum
resolution of the diffraction-reconstructed
profile. Value for dr_km can range from
0.05 km to 0.75 km for the reconstruction
resolutions supported by rss_ringoccs.
PDS sampling rate is 0.25 km, which gives a
DLP resolution of 0.5 km.

	Keyword Arguments

	
	verbose (bool)

	When True, turns on verbose output. Default
is False.

	write_file (bool)

	When True, writes processing results to
file. Default is True.

	profile_range (list)

	1x2 list specifying the radial limits
in km of on the occultation. Default is
[65000,150000].

	Attributes

	
	dr_km (float)

	raw DLP sampling rate

	raw_tau_threshold_vals (np.ndarray)

	threshold optical depth

	rho_km_vals (np.ndarray)

	Ring-intercept points in km

	t_oet_spm_vals (np.ndarray)

	Observed event times in seconds past
midnight

	p_norm_vals (np.ndarray)

	Normalized diffraction-limited power

	phase_rad_vals (np.ndarray)

	Phase of diffraction-limited signal,
in radians

	B_rad_vals (np.ndarray)

	Ring opening angle in radians

	D_km_vals (np.ndarray)

	Ring intercept point to spacecraft distance
in km

	F_km_vals (np.ndarray)

	Fresnel scale in km

	f_sky_hz_vals (np.ndarray)

	Sky frequency in Hz

	phi_rad_vals (np.ndarray)

	Observed ring azimuth

	t_ret_spm_vals (np.ndarray)

	Ring event time in seconds past midnight

	t_set_spm_vals (np.ndarray)

	Spacecraft event time in seconds past
midnight

	phi_rl_rad_vals (np.ndarray)

	Ring longitude in radians

	rho_dot_kms_vals (np.ndarray)

	Ring intercept radial velocity in km/s

	rho_corr_pole_km_vals (np.ndarray)

	Radius correction due to
improved pole. This is populated
with a placeholder of zeros

	rho_corr_timing_km_vals (np.ndarray)

	Radius correction due to
timing offset. This is
populated with a placeholder
of zeros

	tau_vals (np.ndarray)

	Diffraction-limited optical depth

	history (dict)

	Processing history with all inputs necessary to
rerun pipeline to obtain identical output

	rev_info (dict)

	dict containing rev- and rsr-specific info

	Note:

	
	All np.ndarray attributes are sampled at dr_km radial spacing.

	
classmethod create_dlps(rsr_inst, geo_inst, cal_inst, dr_km, verbose=False, write_file=False, profile_range=[65000.0, 150000.0])

	Create ingress and egress instances of DiffractionLimitedProfile.

	Arguments

	
	rsr_inst (object)

	Instance of RSRReader class

	geo_inst (object)

	Instance of Geometry class

	cal_inst (object)

	Instance of Calibration class

	dr_km (float)

	radial sampling rate [image: \Delta\rho]
for the DLP in kilometers. DLP radial
resolution is the Nyquist radial sampling,
i.e., twice the input value of dr_km,
meaning that this will affect the minimum
resolution of the diffraction-reconstructed
profile. Value for dr_km can range from
0.05 km to 0.75 km for the reconstruction
resolutions supported by rss_ringoccs.
PDS sampling rate is 0.25 km, which gives a
DLP resolution of 0.5 km.

	Keyword Arguments

	
	verbose (bool)

	When True, turns on verbose output. Default
is False.

	write_file (bool)

	When True, writes processing results to
file. Default is True.

	profile_range (list)

	1x2 list specifying the radial limits
in km of on the occultation. Default is
[65000,150000].

rss_ringoccs.calibration.freq_offset_fit module

	Purpose:

	Compute a fit to the frequency offset using offset frequencies
calculated from raw data, sigma-clipping frequencies
contaminated by rings, and fitting with a polynomial of order
determined by an iterative F-test.

	
class rss_ringoccs.calibration.freq_offset_fit.FreqOffsetFit(rsr_inst, geo_inst, f_uso_x=8427222034.3405, verbose=False, write_file=False)

	Bases: object

	Purpose

	Obtains [image: f(t)_{offset}] from calc_freq_offset,
[image: f(t)_{dr}] from calc_f_sky_recon. Computes a polynomial
fit [image: \hat{f}(t)_{offset}] of F-test specified order to
sigma-clipped frequency offset. Final sky frequency
[image: \hat{f}(t)_{sky}] is calculated by summing the polynomial
fit [image: \hat{f}(t)_{offset}] with the reconstructed sky
frequency [image: f(t)_{dr}].

	Arguments

	
	rsr_inst (object)

	object instance of the RSRReader class

	geo_inst (object)

	object instance of the Geometry class

	Keyword Arguments

	
	f_uso_x (float)

	frequency in Hz of the X-band ultra-stable
oscilator onboard the Cassini spacecraft.
Default is 8427222034.3405 Hz.

	verbose (bool)

	when True, enables verbose output mode

	Attributes:

	
	f_offset_fit (np.ndarray)

	fit to frequency offset :math:`hat{f}(t)_{offset}

	f_spm (np.ndarray)

	SPM at which the offset frequency was sampled

	f_sky_recon (np.ndarray)

	reconstructed sky frequency [image: f(t)_{dr}]

	f_offset_fit (np.ndarray)

	fit to the frequency offset
math:hat{f}(t)_{offset} evaluated at f_spm

	chi_squared (float)

	sum of the squared residual difference between
the frequency offset and the frequency offset fit
normalized by the fit value (Pearson’s
[image: \chi^2]) such that
[image: \chi^2 = \frac{1}{N-m} \sum((\hat{f}(t)_{offset}-f(t)_{offset}) /\hat{f}(t)_{offset})^2]
for [image: N] data and [image: m] free
parameters (i.e., the polynomial order plus
one).

	
calc_poly_order(f_spm_cl, f_offset_cl, verbose=False)

	Use a variant of the F-test to determine the best order
polynomial to use to fit the frequency offset.

	Arguments

	
	f_spm_cl (np.ndarray)

	SPM sampled by calc_freq_offset
and clipped by the initial boolean mask.

	f_offset_cl (np.ndarray)

	carrier frequency offset from
center of band

	
create_mask(f_spm, f_rho, f_offset)

	Creates a Boolean mask array which excludes data based on
the following critera:

	ring or planetary occultation in region prevents
accurate estimation of the offset frequency

	offset frequencies fall more than 5-sigma beyond
the median offset frequency

	offset frequencies vary by more than 0.25 Hz relative
to neighboring offset frequencies

	adjacent data all excluded by previous requirements
(excludes noise which by happenstance satisfies the
above criteria)

	Arguments

	
	f_spm (np.ndarray)

	SPM sampled by calc_freq_offset
when calculating the offset frequencies for
the occultation

	f_rho (np.ndarray)

	ring intercept radius of the
spacecraft signal resampled to match f_spm

	f_offset (np.ndarray)

	frequency offset

	Returns

	
	fsr_mask (np.ndarray)

	Array of booleons, with True for
reliable frequency offset.

	
fit_freq_offset(f_spm, f_rho, f_offset, verbose=False)

	Fit a polynomial to frequency offset.

	Arguments

	
	f_spm (np.ndarray)

	SPM sampled by calc_freq_offset
when calculating the offset frequencies for
the occultation

	f_rho (np.ndarray)

	ring intercept radius of the
spacecraft signal resampled to match f_spm

	f_offset (np.ndarray)

	carrier frequency offset from
center of band

	Keyword Arguments

	
	verbose (bool)

	If True, print processing steps

	Returns

	
	f_offset_fit (np.ndarray)

	fit to the frequency
offset math:hat{f}(t)_{offset} evaluated at
f_spm

	chi2 (float)

	sum of the squared residual difference between
frequency offset and frequency offset fit
normalized by the fit value (Pearson’s
[image: \chi^2]) such that
[image: \chi^2 = \frac{1}{N-m} \sum((\hat{f}(t)_{offset}-f(t)_{offset}) /\hat{f}(t)_{offset})^2]
for [image: N] data and [image: m] free
parameters (i.e., the polynomial order plus
one).

	
plotFORFit(spm, f_offset, fit, mask, spm_min, spm_max, occ_min, occ_max)

	Plot results of the automated frequency offset
fit and save plot to a file. File name will match the
.LBL and .TAB nomenclature.

	Arguments

	
	spm (np.ndarray)

	SPM sampled by calc_freq_offset
when calculating the offset frequencies for
the occultation

	f_offset (np.ndarray)

	frequency offset

	fit (np.ndarray)

	polynomial fit to the frequency offset

	mask (np.ndarray)

	boolean array used to mask frequency
offset for the polynomial fitting

	spm_min (float)

	start of occultation in SPM

	spm_max (float)

	end of occultation in SPM

rss_ringoccs.calibration.power_normalization module

	Purpose

	Normalize frequency-corrected power using a polynomial fit of specified
order.

	Dependencies

	
	numpy

	scipy

	matplotlib

	
class rss_ringoccs.calibration.power_normalization.Normalization(spm_raw, IQ_c, geo_inst, order=3, fittype='poly', interact=False, verbose=False, write_file=False)

	Bases: object

	Purpose

	Finds freespace power based on ring geometry, locations of gaps
computed by the Geometry class, and signal power relative to median
power within the gaps. Fits the freespace power with a polynomial.
If desired, this fitting process can be interactive. A plot will be
saved following rss_ringoccs nomenclature to visualize the fit results.

	Arguments

	
	spm_raw (np.ndarray)

	SPM as sampled in the raw data

	IQ_c (np.ndarray)

	frequency-corrected signal corresponding to
spm_raw

	geo_inst (np.ndarray)

	instance of the Geometry class, used to estimate
the freespace regions within and surrounding the
ring system, accounting for Saturn occultation
and the Keplerian geometry of the rings

	rho_km_vals (np.ndarray)

	radial intercept poin of occultation in km

	Keyword Arguments

	
	verbose (bool)

	when True, outputs information to
command line about the freespace power fitting
progress and results. All results will be output
to the CAL.LBL file regardless of this keyword.
Default is False.

	order (float)

	a whole number specifying the order of the polynomial
fit to the freespace power. Default is 3.

	interact (bool)

	If True, allows user to interactively adjust fit
to the freespace power. Default is False.

	fittype (str)

	Type of fit to freespace regions. Default is
a polynomial fit.

	
create_mask(spm, gaps_spm, pc)

	
	Purpose:

	Set mask and gaps attribute.

	Arguments:

	
	spm (np.ndarray)

	SPM in seconds of the downsampled signal

	rho (np.ndarray)

	occultation intercept radius of the
downsampled signal

	gaps_spm (list)

	location of freespace regions as predicted
by the gap-finding routines get_freespace.py using
tabulated orbital parameters.

	pc (np.ndarray)

	phase-corrected downsampled power where
[image: P_c=|I_c^2+iQ_c^2|]. Sets attributes

	mask (np.ndarray)

	array of booleans wherein True designates data
corresponding to freespace power and False
data corresponding to occultation events

	gaps (list)

	an Nx2 list of lower and upper radial limits in
km for each of N gaps designated

	
downsample_IQ(spm_raw, IQ_c_raw, dt_down=0.5, verbose=False)

	
	Purpose:

	Downsample complex signal to specified time spacing to avoid
diffraction pattern affecting freespace power fit

	Arguments:

	
	spm_raw (np.ndarray)

	raw SPM values

	IQ_c_raw (np.nparray)

	[image: I_c+iQ_c] sampled at the
raw SPM rate

	Keyword Arguments:

	
	dt_down (float)

	Time spacing to downsample to

	verbose (bool)

	If True, prints downsampled results

	Returns:

	
	spm_vals_down (np.ndarray)

	SPM values after downsampling

	rho_km_vals_down (np.ndarray)

	Rho values after downsampling

	p_obs_down (np.ndarray)

	Observed power after downsampling

	
extract_list_from_str(gaps_str)

	
	Purpose:

	Extract an Nx2 list from the string of user input freespace regions.

	Arguments:

	
	gaps_str (str)

	string containing the user input freespace
regions.

	Returns:

	
	gaps (list)

	an Nx2 list of floats indicating the lower and upper
limits to the user-specific freespace regions.

	
fit_check(spm_down, p_obs_down, freespace_spm, order)

	
	Purpose:

	Allows user to update the freespace regions and fit order during the
freespace power fitting step. This is done by prompting the user for
input in the command line and displaying the results of their input
for the polynomial fit to the freespace power.
Only called if the Normalization keyword interact is set to
True.

	Arguments:

	
	gaps_str (str)

	string containing the user input freespace
regions.

	Returns:

	
	gaps (list)

	an Nx2 list of floats indicating the lower and upper
limits to the user-specific freespace regions.

	
fit_freespace_power(spm, power, order=3, fittype='poly')

	
	Arguments:

	
	spm (np.ndarray)

	downsampled SPM

	power (np.ndarray)

	absolute square of downsampled
phase-corrected signal

	Keyword Arguments:

	
	order (float)

	order of the fit, whole number between 1 and 5.
Default order is 3.

	type (str)

	type of fit to use, default is ‘poly’. Options are

	‘poly’ a single polynomial

	‘spline’ an unsmoothed spline fit

	Returns

	
	fit (np.ndarray)

	best fit to freespace power

	
hfit_med(p_obs_down)

	

	
plot_power_profile(spm, pow, gaps, order, save=False)

	
	Purpose:

	Plot results of the freespace power for total profile and
each individual freespace region and either show plot in a
GUI or save it to a file.
File name will match the *.LBL and *.TAB nomenclature.

	Arguments:

	
	spm (np.ndarray)

	SPM sampled by
calc_freq_offset when calculating the offset frequencies
for the occultation

	pow (np.ndarray)

	residual sky frequency

	gaps (np.ndarray)

	gap edges used to select freespace power

	order (float)

	order of polynomial fit to the residual sky
frequency

	Keyword Arguments:

	
	save (bool)

	If True, saves plots to file. Otherwise, plot
is shown in GUI. Default is False.

rss_ringoccs.calibration.resample_IQ module

	Purpose

	Resample I and Q from uniformly spaced time to uniformly spaced
radius. This is set up to downsample from the raw resolution data.

	
rss_ringoccs.calibration.resample_IQ.pre_resample(rho_km, vec, freq)

	Set vector sampling to be uniform with respect to radius at
a spacing comparable to that of raw resolution. For ingress
occultations, this step implicitly reverses the radius scale
when interpolating.

	Arguments

	
	rho_km (np.ndarray)

	radius in kilometers

	vec (np.ndarray)

	a single vector component I or Q of the
complex signal

	freq (float)

	radial sampling frequency

	Returns

	
	rho_grid (np.ndarray)

	Radii at uniform spacing at which the
signal component is resampled

	vec_grid (np.ndarray)

	Signal resampled with respect to radius
with a uniform spacing

	p (float)

	upsampling rate to be used by scipy.signal.resample_poly.
This will always be unity because no upsampling is done.

	q (float)

	downsampling rate to be used by
scipy.signal.resample_poly. This depends on the uniform
radial sampling rate at which rho_grid and vec_grid are
sampled.

	
rss_ringoccs.calibration.resample_IQ.resample_IQ(rho_km, IQ_c, dr_desired, verbose=False)

	Resample I and Q to uniformly spaced radius. Based off of
Matlab’s resample function

	Arguments

	
	rho_km (np.ndarray)

	Set of ring intercept point values at initial
resolution before resampling

	IQ_c (np.ndarray)

	Frequency-corrected complex signal at initial
resolution before resampling

	dr_desired (float)

	Desired final radial sample spacing

	verbose (bool)

	Testing variable to print out the first few resampled
results

	Returns

	
	rho_km_desired (np.ndarray)

	array of ring radius at final desired
spacing

	IQ_c_desired (np.ndarray)

	Frequency-corrected complex signal at
final desired spacing

rss_ringoccs.diffrec package

	Subpackage Name:

	diffrec

	Purpose:

	Provide functions and classes that aid in the process of
Diffraction Correction / Fresnel Inversion. Additional
functions for the purpose of forward modelling of
reconstructed data and diffraction modelling are included.
Special mathematical functions and solutions to common
problems in diffraction theory are also included.

	Sub-Modules:

	
	advanced_tools:

	This submodule is good for modeling the geometry of a
given occultation, and for comparing your results to
the results obtained by others (Ex. Results on the PDS).
This submodule contains the following:

	compare_tau:

	Class
Used for running diffraction correction on a
given set of diffracted data and then comparing
the outcome to a given set of reconstructed data.

	find_optimal_resolution:

	Class
Given a set of data and a reconstruction, this
class will run diffraction correction over a set
of resolutions. The output contains the L_2 and
L_infinity difference of the two reconstructions
as a function of resolution.

	delta_impulse_diffraction:

	Class
Given a set of geometry data, this class create
modeled data of the solution of diffraction
through a Dirac-Delta impulse function.
Reconstruction is then perform on the mock-data.
This tool is good for modeling the problem and
determining resolution constraints based on the
geometry available.

	diffraction_correction:

	This is the main sub-module in the entire subpackage.
Given a set of diffracted data and a requested resolution
(in kilometers), diffraction corrections will be
performed to produce a diffraction corrected profile.
This submodule comtains the following:

	DiffractionCorrection:

	Class
Given a requested resolution and an instance of
the NormDiff class (See Calibration subpackage),
this produces a diffraction corrected profile.

	Special Functions:

	fresnel_sin………The Fresnel sine integral.
fresnel_cos………The Fresnel cosine integral.
sq_well_solve…….Diffraction pattern through square well.
compute_norm_eq…..Computes the normalized equivalent width.
resolution_inverse..Computes the inverse of the function

y = x/(exp(-x)+x-1)

fresnel_scale…….Compute the Fresnel scale.

	window_functions:

	rect…………….Rectangular window.
coss…………….Squared cossine window.
kb20…………….Kaiser-Bessel 2.0 window.
kb25…………….Kaiser-Bessel 2.5 window.
kb35…………….Kaiser-Bessel 3.5 window.
kbmd20…………..Modified Kaiser-Bessel 2.0 window.
kbmd25…………..Modified Kaiser-Bessel 2.5 window.
get_range_actual….Given an array of numbers (usually the

radial range of the data), a range
request, and a window width, compute the
allowed range of processing.

Submodules

	rss_ringoccs.diffrec.advanced_tools module

	rss_ringoccs.diffrec.diffraction_correction module

	rss_ringoccs.diffrec.special_functions module

	rss_ringoccs.diffrec.window_functions module

rss_ringoccs.diffrec.advanced_tools module

	
class rss_ringoccs.diffrec.advanced_tools.CompareTau(geo, cal, dlp, tau, res, rng='all', wtype='kbmd20', fwd=False, bfac=True, sigma=2e-13, verbose=False, norm=True, psitype='fresnel4', res_factor=0.75)

	Bases: object

	
class rss_ringoccs.diffrec.advanced_tools.FindOptimalResolution(geo, cal, dlp, tau, sres, dres, nres, norm=True, bfac=True, sigma=2e-13, psitype='fresnel4', rng='all', wlst=['kbmd20'], res_factor=0.75, verbose=True)

	Bases: object

	
class rss_ringoccs.diffrec.advanced_tools.ModelFromGEO(geo, lambda_km, res, rho, width=100, dx_km_desired=0.25, occ='other', wtype='kb25', norm=True, bfac=True, verbose=True, psitype='fresnel', use_fresnel=False, eccentricity=0.0, periapse=0.0, use_deprecate=False, res_factor=0.75, rng='all', model='squarewell', echo=False, rho_shift=0.0)

	Bases: object

rss_ringoccs.diffrec.diffraction_correction module

	Purpose:

	Provide the DiffractionCorrection class for
performing the necessary mathematics to correct
for the diffraction effects that are obtained
during occultation observations of planetary
rings using radio waves.

	Dependencies:

	
	numpy

	scipy

	rss_ringoccs

	
class rss_ringoccs.diffrec.diffraction_correction.DiffractionCorrection(DLP, res, rng='all', wtype='kbmd20', fwd=False, norm=True, verbose=False, bfac=True, sigma=2e-13, psitype='fresnel4', write_file=False, res_factor=0.75, eccentricity=0.0, periapse=0.0)

	Bases: object

	Purpose:

	Perform diffraction correction for a ring occultation
on a data set that is a near radially symmetric function
of the ring radius, or ring intercept point (RIP).

	Arguments:

	
	DLP (object)

	The data set, usually an instance of the
DiffractionLimitedProfile class from the rss_ringoccs
Calibration subpackage. This instance MUST contain
the following attributes and have the same names.

rho_km_vals: Ring Radius (km)

phi_rad_vals: Ring Azimuth Angle (Radians)

p_norm_vals: Normalized Power

phase_rad_vals: Phase (Radians)

B_rad_vals: Elevation Angle (Radians)

D_km_vals: RIP-Distance (km)

f_sky_hz_vals: Sky Frequency (Hertz)

rho_dot_kms_vals: RIP-velocity (km/s)

history: History dictionary

	res (float or int)

	The requested resolution for processing (km). This
must be a positive real number.

	Keywords:

	
	rng (list or str)

	The requested range for diffraction correction.
Preferred input is rng = [a,b]. Arrays are
allowed and the range will be set as:

rng = [MIN(array), MAX(array)]

Finally, certain strings containing a few of the
regions of interests within the rings of Saturn
are allowed. Permissable strings are:

‘all’ [1.0, 400000.0]

‘cringripples’ [77690.0, 77760.0]

‘encke’ [132900.0, 134200.0]

‘enckegap’ [132900.0, 134200.0]

‘janusepimetheus’ [96200.0, 96800.0]

‘maxwell’ [87410.0, 87610.0]

‘maxwellringlet’ [87410.0, 87610.0]

‘titan’ [77870.0, 77930.0]

‘titanringlet’ [77870.0, 77930.0]

‘huygens’ [117650.0, 117950.0]

‘huygensringlet’ [117650.0, 117950.0]

Strings are neither case nor space sensitive.
For other planets use rng = [a,b]. Default value
is set to ‘all’ which processes [1, 400000]
Values MUST be set in kilometers.

	wtype (*str)

	The requested tapering function for diffraction
correction. A string with several allowed inputs:

‘rect’ Rectangular Window.

‘coss’ Squared Cosine Window.

‘kb20’ Kaiser-Bessel 2.0 Window.

‘kb25’ Kaiser-Bessel 2.5 Window.

‘kb35’ Kaiser-Bessel 3.5 Window.

‘kbmd20’ Modified kb20 Window.

‘kbmd25’ Modified kb25 Window.

The variable is neither case nor space sensitive.
Default window is set to ‘kb25’. See window_functions
submodule for further documentation.

	fwd (bool)

	A Boolean for determining whether or not
forward modelling will be computed. This is good
starting point for deciding if the diffraction
correction is physically significant or valid. If
the reconstruction is good, the forward model
should reproduce the p_norm_vals attribute from
the input DLP instance. Default is set to False.

	norm (bool)

	A Boolean for determining whether or not the
reconstructed complex transmittance is normalize
by the window width. This normalization is the
complex transmittance that is computed by using
free space divided by the complex transmittance
that is computed using free space weighted by the
selected tapering function. Default is True.

	bfac (bool)

	A Boolean for determining whether or not the
‘b’ factor in the window width computation is
used. This is equivalent to setting the Allen
Deviation for the spacecraft to a positive value
or to zero. If set to False, the Allen Deviation
is assumed to be zero. If set to True the Allen
Deviation is set to 2e-13, or whichever number you
wish to specify in the sigma keyword (See below).
Default is True.

	sigma (float)

	The Allen deviation for the spacecraft. If the bfac
keyword (See above) is set to False, this is ignored.
If bfac is set to True, and sigma is NOT specified,
then sigma=2e-13 will be used, which is the Allen
deviation for Cassini with 1 second integration time.
For spacecraft other than Cassini, you should provide
the Allen deviation yourself. Default is sigma=2e-13

	psitype (str)

	A string for determining what approximation to the
geometrical ‘psi’ function is used. Several strings
are allowed:

‘full’ No Approximation is applied.

‘MTR2’ Second Order Series from MTR86.

‘MTR3’ Third Order Series from MTR86.

‘MTR4’ Fourth Order Series from MTR86.

‘Fresnel’ Standard Fresnel approximation.

The variable is neither case nor space sensitive.
Default is set to ‘full’.

	verbose (bool)

	A Boolean for determining if various pieces of
information are printed to the screen or not.
Default is False.

	Attributes:

	
	bfac (bool)

	Boolean for bfac (See keywords).

	dathist (dict)

	History from DLP instance.

	dx_km (float)

	Radial spacing for the data points (km).

	f_sky_hz_vals (np.ndarray)

	Recieved frequency from the spacecraft (Hz).

	finish (int)

	Final point that was reconstructed.

	fwd (bool)

	Boolean for fwd (See keywords).

	history (dict)

	History for the DiffractionCorrection class.
This contains system info and user info, including
what operating system was used, username, hostname,
computer name, and the inputs provided.

	lambda_sky_km_vals (np.ndarray)

	Wavelength of recieved signal from spacecraft (km).

	mu_vals (np.ndarray)

	The sine of the ring opening angle (Unitless).

	n_used (int)

	Number of points that were reconstructed.

	norm (bool)

	Boolean for norm (See keywords).

	norm_eq (float)

	Normalized equivalent width computed from window
that was used during reconstruction. See the
window_functions submodule for more information.

	p_norm_fwd_vals (np.ndarray)

	Normalized power computer from the forward modelling
of the reconstructed data. This will be a None type
variable unless fwd=True is set. If the
reconstruction went well, this should mimic the raw
data, p_norm_vals.

	p_norm_vals (np.ndarray)

	Normalized power from the diffracted signal. This is
the square of the absolute value of the recieved
complex transmittance.

	phase_fwd_vals (np.ndarray)

	Phase computed from the forward model of the
reconstructed data. This will be a None type
variable unless fwd=True is set. If the
reconstruction went well, this should mimic
phase_rad_vals. This variable is in radians.

	phase_rad_vals (np.ndarray)

	Phase from the diffracted signal (Radians).

	phase_vals (np.ndarray)

	Reconstructed phase (Radians).

	phi_rad_vals (np.ndarray)

	Ring azimuth angle of the ring intercept (Radians).

	phi_rl_rad_vals (np.ndarray)

	Ring longitude angle. This will be a None type unless
it was provided in the DLP class. Otherwise,
this variable is in radians.

	power_vals (np.ndarray)

	Normalized reconstructed power.

	psitype (str)

	String for psitype (See keywords).

	raw_tau_threshold_vals (np.ndarray)

	Threshold optical depth for the diffracted data.
This will be a None type unless provided for in the
DLP class.

	res (float)

	Requested resolution (See arguments). In kilometers.

	rho_corr_pole_km_vals (np.ndarray)

	Radial corrections from the Planet’s pole. This will
be a None type variable unless provided in the
DLP class. Otherwise, this is in kilometers.

	rho_corr_timing_km_vals (np.ndarray)

	Radial corrections from timing offsets. This will be
a None type variable unless provided in the DLP
class. Otherwise, this is in kilometers.

	rho_dot_kms_vals (np.ndarray)

	Time derivative of the ring intercept point (km/s).

	rho_km_vals (np.ndarray)

	Ring-intercept-point (RIP) in kilometers.

	rng (list)

	Range that was used for reconstruction, taking into
the range that was requested by the user. The actual
range takes into account limits in the available data
and limits in the required window sizes.

	rngreq (str or list)

	Requested range (See keywords).

	sigma (float)

	Requested Allen deviation (See keywords).

	start (int)

	First point that was reconstructed.

	t_oet_spm_vals (np.ndarray)

	Time the signal is measured on Earth. This is a
None type unless provided for in the DLP class.

	t_ret_spm_vals (np.ndarray)

	Time the signal passes through the diffracting
medium. This is a None type unless provided for in
the DLP class.

	t_set_spm_vals (np.ndarray)

	Time the signal is emitted from the spacecraft. This
is a None type unless provided in the DLP class.

	tau_threshold_vals (np.ndarray)

	Threshold optical depth of the reconstructed data.

	tau_vals (np.ndarray)

	Optical depth of the reconstructed data.

	verbose (bool)

	Boolean for Verbose (See keywords).

	w_km_vals (np.ndarray)

	Window width as a function of radius (km).

	wtype (str)

	String for wtype (See keywords).

rss_ringoccs.diffrec.special_functions module

	
rss_ringoccs.diffrec.special_functions.compute_norm_eq(w_func, error_check=True)

	
	Purpose:

	Compute normalized equivalenth width of a given function.

	Arguments:

	
	w_func (np.ndarray)

	Function with which to compute
the normalized equivalent width of.

	Outputs:

	
	normeq (float)

	The normalized equivalent width of w_func.

	Notes:

	The normalized equivalent width is effectively computed
using Riemann sums to approximate integrals. Therefore
large dx values (Spacing between points in w_func)
will result in an inaccurate normeq. One should keep
this in mind during calculations.

	Examples:

	Compute the Kaiser-Bessel 2.5 window of width 30
and spacing 0.1, and then use compute_norm_eq
to compute the normalized equivalent width:

>>> from rss_ringoccs import diffrec as dc
>>> w = dc.window_functions.kb25(30, 0.1)
>>> normeq = dc.special_functions.compute_norm_eq(w)
>>> print(normeq)
1.6573619266424229

In contrast, the actual value is 1.6519208.
Compute the normalized equivalent width for the squared
cosine window of width 10 and spacing 0.25.

>>> from rss_ringoccs import diffrec as dc
>>> w = dc.window_functions.coss(10, 0.25)
>>> normeq = dc.special_functions.compute_norm_eq(w)
>>> print(normeq)
1.5375000000000003

The normalized equivalent width of the squared cosine
function can be computed exactly using standard methods
from a calculus course. It’s value is exactly 1.5
If we use a smaller dx when computing w, we get a better
approximation. Use width 10 and spacing 0.001.

>>> from rss_ringoccs import diffrec as dc
>>> w = dc.window_functions.coss(10, 0.001)
>>> normeq = dc.special_functions.compute_norm_eq(w)
>>> print(normeq)
1.50015

	
rss_ringoccs.diffrec.special_functions.d2psi(kD, r, r0, phi, phi0, B, D)

	
	Purpose:

	Compute [image: \mathrm{d}^2\psi/\mathrm{d}\phi^2]

	Arguments:

	
	kD (float)

	Wavenumber, unitless.

	r (float)

	Radius of reconstructed point, in kilometers.

	r0 (np.ndarray)

	Radius of region within window, in kilometers.

	phi (np.ndarray)

	Root values of [image: \mathrm{d}\psi/\mathrm{d}\phi],
radians.

	phi0 (np.ndarray)

	Ring azimuth angle corresponding to r0, radians.

	B (float)

	Ring opening angle, in radians.

	D (float)

	Spacecraft-RIP distance, in kilometers.

	Outputs:

	
	dpsi (np.ndarray)

	Second partial derivative of [image: \psi]
with respect to [image: \phi].

	
rss_ringoccs.diffrec.special_functions.double_slit_diffraction(x, z, a, d)

	
	Purpose:

	Compute diffraction through a double slit for the
variable x with a distance z from the slit and
slit parameter a and a distance d between the slits.
This assumes Fraunhofer diffraction.

	Variables:

	
	x

	A real or complex argument, or numpy array.

	z (float)

	The perpendicular distance from the slit
plane to the observer.

	a (float)

	The slit parameter. This is a unitless paramter
defined as the ratio between the slit width and
the wavelength of the incoming signal.

	d (float)

	The distance between slits.

	Outputs:

	
	f

	Single slit diffraction pattern.

	
rss_ringoccs.diffrec.special_functions.dpsi(kD, r, r0, phi, phi0, B, D)

	
	Purpose:

	Compute [image: \mathrm{d}\psi/\mathrm{d}\phi]

	Arguments:

	
	kD (float)

	Wavenumber, unitless.

	r (float)

	Radius of reconstructed point, in kilometers.

	r0 (np.ndarray)

	Radius of region within window, in kilometers.

	phi (np.ndarray)

	Root values of [image: \mathrm{d}\psi/\mathrm{d}\phi], radians.

	phi0 (np.ndarray)

	Ring azimuth angle corresponding to r0, radians.

	B (float)

	Ring opening angle, in radians.

	D (float)

	Spacecraft-RIP distance, in kilometers.

	Outputs:

	
	dpsi (array)

	Partial derivative of [image: \psi] with
respect to [image: \phi].

	
rss_ringoccs.diffrec.special_functions.dpsi_ellipse(kD, r, r0, phi, phi0, B, D, ecc, peri)

	
	Purpose:

	Compute [image: \mathrm{d}\psi/\mathrm{d}\phi]

	Arguments:

	
	kD (float)

	Wavenumber, unitless.

	r (float)

	Radius of reconstructed point, in kilometers.

	r0 (np.ndarray)

	Radius of region within window, in kilometers.

	phi (np.ndarray)

	Root values of [image: \mathrm{d}\psi/\mathrm{d}\phi], radians.

	phi0 (np.ndarray)

	Ring azimuth angle corresponding to r0, radians.

	B (float)

	Ring opening angle, in radians.

	D (float)

	Spacecraft-RIP distance, in kilometers.

	Outputs:

	
	dpsi (array)

	Partial derivative of [image: \psi] with
respect to [image: \phi].

	
rss_ringoccs.diffrec.special_functions.fresnel_cos(x)

	
	Purpose:

	Compute the Fresnel cosine function.

	Arguments:

	
	x (np.ndarray or float)

	A real or complex number, or numpy array.

	Outputs:

	
	f_cos (np.ndarray or float)

	The fresnel cosine integral of x.

	Notes:

	
	The Fresnel Cosine integral is the solution to the
equation [image: \mathrm{d}y/\mathrm{d}x = \cos(\frac\pi 2 x^2)], [image: y(0) = 0]. In other
words, [image: y = \int_{t=0}^{x}\cos(\frac\pi 2 t^2)\mathrm{d}t]

	The Fresnel Cosine and Sine integrals are computed by
using the scipy.special Error Function. The Error
Function, usually denoted Erf(x), is the solution to
[image: \mathrm{d}y/\mathrm{d}x = \frac{2}{\sqrt{\pi}}\exp(-x^2)], [image: y(0) = 0]. That is:
[image: y = \frac{2}{\sqrt{\pi}}\int_{t=0}^{x}\exp(-t^2)\mathrm{d}t].
Using Euler’s Formula for exponentials allows one
to use this to solve for the Fresnel Cosine integral.

	The Fresnel Cosine integral is used for the solution
of diffraction through a square well. Because of this
it is useful for forward modeling problems in
radiative transfer and diffraction.

	Examples:

	Compute and plot the Fresnel Cosine integral.

>>> import rss_ringoccs.diffcorr.special_functions as sf
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.array(range(0,10001))*0.01 - 50.0
>>> y = sf.fresnel_cos(x)
>>> plt.show(plt.plot(x,y))

	
rss_ringoccs.diffrec.special_functions.fresnel_scale(Lambda, d, phi, b, deg=False)

	
	Purpose:

	Compute the Fresnel Scale from [image: \lambda], [image: D],
[image: \phi], and [image: B].

	Arguments:

	
	Lambda (np.ndarray or float)

	Wavelength of the incoming signal.

	d (np.ndarray or float)

	RIP-Spacecraft Distance.

	phi (np.ndarray or float)

	Ring azimuth angle.

	b (np.ndarray or float)

	Ring opening angle.

	Keywords:

	
	deg (bool)

	Set True if [image: \phi] or [image: B] are in degrees.
Default is radians.

	Output:

	
	fres (np.ndarray or float)

	The Fresnel scale.

	Note:

	[image: \lambda] and [image: D] must be in the same units.
The output (Fresnel scale) will have the same units
as [image: \lambda] and d. In addition, [image: B] and [image: \phi] must also
have the same units. If [image: B] and [image: \phi] are in degrees,
make sure to set deg=True. Default is radians.

	
rss_ringoccs.diffrec.special_functions.fresnel_sin(x)

	
	Purpose:

	Compute the Fresnel sine function.

	Variables:

	
	x (np.ndarray or float)

	The independent variable.

	Outputs:

	
	f_sin (np.ndarray or float)

	The fresnel sine integral of x.

	Notes:

	
	The Fresnel sine integral is the solution to the
equation [image: \mathrm{d}y/\mathrm{d}x = \sin(\frac\pi 2 x^2)], [image: y(0) = 0]. In other
words, [image: y = \int_{t=0}^{x}\sin(\frac\pi 2 t^2) dt]

	The Fresnel Cossine and Sine integrals are computed
by using the scipy.special Error Function. The Error
Function, usually denoted Erf(x), is the solution to
[image: \mathrm{d}y/\mathrm{d}x = \frac{2}{\sqrt{\pi}} \exp(-x^2)], [image: y(0) = 0]. That is:
[image: y = \frac{2}{\sqrt{\pi}}\int_{t=0}^{x}\exp(-t^2)dt].
Using Euler’s Formula for exponentials allows one
to use this to solve for the Fresnel Sine integral.

	The Fresnel sine integral is used for the solution
of diffraction through a square well. Because of this
is is useful for forward modeling problems in
radiative transfer and diffraction.

	Examples:

	Compute and plot the Fresnel Sine integral.

>>> import rss_ringoccs.diffcorr.special_functions as sf
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.array(range(0,10001))*0.01 - 50.0
>>> y = sf.fresnel_sin(x)
>>> plt.show(plt.plot(x,y))

	
rss_ringoccs.diffrec.special_functions.inverse_square_well_diffraction(x, a, b, F)

	

	
rss_ringoccs.diffrec.special_functions.psi(kD, r, r0, phi, phi0, B, D)

	
	Purpose:

	Compute [image: \psi] (MTR Equation 4)

	Arguments:

	
	kD (float)

	Wavenumber, unitless.

	r (float)

	Radius of reconstructed point, in kilometers.

	r0 (np.ndarray)

	Radius of region within window, in kilometers.

	phi (np.ndarray)

	Root values of [image: \mathrm{d}\psi/\mathrm{d}\phi], radians.

	phi0 (np.ndarray)

	Ring azimuth angle corresponding to r0, radians.

	B (float)

	Ring opening angle, in radians.

	D (float)

	Spacecraft-RIP distance, in kilometers.

	Outputs:

	
	psi (np.ndarray)

	Geometric Function from Fresnel Kernel.

	
rss_ringoccs.diffrec.special_functions.resolution_inverse(x)

	
	Purpose:

	Compute the inverse of [image: y = x/(\exp(-x)+x-1)]

	Arguments:

	
	x (np.ndarray or float)

	Independent variable

	Outputs:

	
	f (np.ndarray or float)

	The inverse of [image: x/(\exp(-x)+x-1)]

	Dependencies:

	
	numpy

	scipy.special

	Method:

	The inverse of [image: x/(\exp(-x)+x-1)] is computed using the
LambertW function. This function is the inverse of
[image: y = x\exp(x)]. This is computed using the scipy.special
subpackage using their lambertw function.

	Warnings:

	
	The real part of the argument must be greater than 1.

	The scipy.special lambertw function is slightly
inaccurate when it’s argument is near [image: -1/e]. This
argument is [image: z = \exp(x/(1-x)) * x/(1-x)]

	Examples:

	Plot the function on the interval (1,2)

>>> import rss_ringoccs.diffcorr.special_functions as sf
>>> import numpy as np
>>> x = np.array(range(0,1001))*0.001+1.01
>>> y = sf.resolution_inverse(x)
>>> import matplotlib.pyplot as plt
>>> plt.show(plt.plot(x,y))

	
rss_ringoccs.diffrec.special_functions.savitzky_golay(y, window_size, order, deriv=0, rate=1)

	
	Purpose:

	To smooth data with a Savitzky-Golay filter.
This removes high frequency noise while
maintaining many of the original features of
the input data.

	Arguments:

	
	y (np.ndarray)

	The input “Noisy” data.

	window_size (int)

	The length of the window.
Must be an odd number.

	order (int)

	The order of the polynomial used for filtering.
Must be less then window_size - 1.

	Keywords:

	
	deriv (int)

	The order of the derivative what will be computed.

	Output:

	
	y_smooth (np.ndarray)

	The data smoothed by the Savitzky-Golay filter.
This returns the nth derivative if the deriv
keyword has been set.

	Notes:

	The Savitzky-Golay is a type of low-pass filter,
particularly suited for smoothing noisy data.
The main idea behind this approach is to make for
each point a least-square fit with a polynomial of
high order over a odd-sized window centered at the point.

	
rss_ringoccs.diffrec.special_functions.single_slit_diffraction(x, z, a)

	
	Purpose:

	Compute diffraction through a single slit for the
variable x with a distance z from the slit and
slit parameter a. This assume Fraunhofer diffraction.

	Variables:

	
	x

	A real or complex argument, or numpy array.

	z (float)

	The perpendicular distance from the slit plane to
the observer.

	a (float)

	The slit parameter. This is a unitless paramter
defined as the ratio between the slit width and
the wavelength of the incoming signal.

	Outputs:

	
	f

	Single slit diffraction pattern.

	
rss_ringoccs.diffrec.special_functions.square_well_diffraction(x, a, b, F)

	

rss_ringoccs.diffrec.window_functions module

	Purpose:

	Provide a suite of window functions and functions related
to the normalized equivalent width of a given array.

	Dependencies:

	
	numpy

	spicy

	
rss_ringoccs.diffrec.window_functions.coss(x, W)

	
	Purpose:

	Compute the Cosine Squared Window Function.

	Arguments:

	
	x (np.ndarray)

	Real valued array used for the independent
variable, or x-axis.

	w_in (float)

	Width of the window. Positive float.

	Outputs:

	
	w_func (np.ndarray)

	Window function of width w_in evaluated along x.

	
rss_ringoccs.diffrec.window_functions.kb20(x, W)

	
	Purpose:

	Compute the Kaiser-Bessel 2.0 Window Function.

	Arguments:

	
	x (np.ndarray)

	Real valued array used for the independent
variable, or x-axis.

	w_in (float)

	Width of the window. Positive float.

	Outputs:

	
	w_func (np.ndarray)

	Window function of width w_in evaluated along x.

	
rss_ringoccs.diffrec.window_functions.kb25(x, W)

	
	Purpose:

	Compute the Kaiser-Bessel 2.5 Window Function.

	Arguments:

	
	x (np.ndarray)

	Real valued array used for the independent
variable, or x-axis.

	w_in (float)

	Width of the window. Positive float.

	Outputs:

	
	w_func (np.ndarray)

	Window function of width w_in evaluated along x.

	
rss_ringoccs.diffrec.window_functions.kb35(x, W)

	
	Purpose:

	Compute the Kaiser-Bessel 3.5 Window Function.

	Arguments:

	
	x (np.ndarray)

	Real valued array used for the independent
variable, or x-axis.

	w_in (float)

	Width of the window. Positive float.

	Outputs:

	
	w_func (np.ndarray)

	Window function of width w_in evaluated along x.

	
rss_ringoccs.diffrec.window_functions.kbal(x, W, alpha)

	
	Purpose:

	Create a Kaiser-Bessel window with a user
specified alpha parameter.

	Variables:

	
	W (float)

	Window width.

	dx (float)

	Width of one point.

	al (float)

	The alpha parameter [image: \alpha_0].

	Outputs:

	
	w_func (np.ndarray)

	The Kaiser-Bessel alpha window of width
w_in and spacing dx between points.

	Notes:

	
	The Kaiser-Bessel window is computed using the
modified Bessel Function of the First Kind. It’s
value is [image: y = I_0(\alpha\sqrt{1-4x^2/w^2})/I_0(\alpha)],
where w is the window width.

	We automatically multiply the alpha parameter by pi,
so the kbal window function has an alpha value of
[image: \alpha = \alpha_0 \pi]

	The endpoints of the Kaiser-Bessel function tend to
zero faster than [image: (1+2\alpha) / \exp(\alpha)]

	Warnings:

	
	None of the Kaiser-Bessel windows evaluate to zero at
their endpoints. The endpoints are [image: 1/I_0(\alpha)].
For small values of alpha this can create Gibb’s like
effects in reconstruction do to the large
discontinuity in the window. For alpha values beyond
[image: 2.5\pi] this effect is negligible.

	
rss_ringoccs.diffrec.window_functions.kbmd20(x, W)

	
	Purpose:

	Compute the Modified Kaiser-Bessel 2.0 Window Function.

	Arguments:

	
	x (np.ndarray)

	Real valued array used for the independent
variable, or x-axis.

	w_in (float)

	Width of the window. Positive float.

	Outputs:

	
	w_func (np.ndarray)

	Window function of width w_in evaluated along x.

	
rss_ringoccs.diffrec.window_functions.kbmd25(x, W)

	
	Purpose:

	Compute the Modified Kaiser-Bessel 2.5 Window Function.

	Arguments:

	
	x (np.ndarray)

	Real valued array used for the independent
variable, or x-axis.

	w_in (float)

	Width of the window. Positive float.

	Outputs:

	
	w_func (np.ndarray)

	Window function of width w_in evaluated along x.

	
rss_ringoccs.diffrec.window_functions.kbmd35(x, W)

	
	Purpose:

	Compute the Modified Kaiser-Bessel 3.5 Window Function.

	Arguments:

	
	x (np.ndarray)

	Real valued array used for the independent
variable, or x-axis.

	w_in (float)

	Width of the window. Positive float.

	Outputs:

	
	w_func (np.ndarray)

	Window function of width w_in evaluated along x.

	
rss_ringoccs.diffrec.window_functions.kbmdal(x, W, al)

	
	Purpose:

	Create a modifed Kaiser-Bessel window
with a user specified alpha parameter.

	Variables:

	
	W (float)

	Window width.

	dx (float)

	Width of one point.

	al (float)

	The alpha parameter [image: \alpha_0].

	Outputs:

	
	w_func (np.ndarray)

	The Kaiser-Bessel alpha window of width
and w_in spacing dx between points.

	Notes:

	
	The Kaiser-Bessel window is computed using the
modified Bessel Function of the First Kind. It’s
value is [image: y = I_0(\alpha\sqrt{1-4x^2/w^2})/I_0(\alpha)],
where w is the window width.

	We automatically multiply the alpha parameter by pi,
so the kbal window function has an alpha value of
[image: \alpha = \alpha_0\pi]

	The endpoints of the Kaiser-Bessel function tend to
zero faster than [image: (1+2\alpha)) / \exp(\alpha)]

	Warnings:

	
	None of the Kaiser-Bessel windows evaluate to zero at
their endpoints. The endpoints are [image: 1/I_0(\alpha)].
For small values of alpha this can create Gibb’s like
effects in reconstruction due to the large
discontinuity in the window. For alpha values beyond
[image: 2.5\pi] this effect is negligible.

	
rss_ringoccs.diffrec.window_functions.normalize(dx, ker, f_scale)

	
	Purpose:

	Compute the window normalization

	Arguments:

	
	ker (np.ndarray)

	The Fresnel Kernel.

	dx (float)

	The spacing between points in the window.
This is equivalent to the sample spacing.
This value is in kilometers.

	f_scale (np.ndarray)

	The Fresnel Scale in kilometers.

	Outputs:

	
	norm_fact (float)

	The normalization of the input
Fresnel Kernel.

	
rss_ringoccs.diffrec.window_functions.rect(x, W)

	
	Purpose:

	Compute the rectangular window function.

	Arguments:

	
	x (np.ndarray)

	Real valued array used for the independent
variable, or x-axis.

	w_in (float)

	Width of the window. Positive float.

	Outputs:

	
	w_func (np.ndarray)

	Window function of width w_in evaluated along x.

	
rss_ringoccs.diffrec.window_functions.window_width(res, normeq, fsky, fres, rho_dot, sigma, bfac=True, Return_P=False)

	
	Purpose:

	Compute the window width as a function of ring radius.
This is given from MTR86 Equations 19, 32, and 33.

	Variables:

	
	res (float)

	The requested resolution.

	normeq (float)

	The normalized equivalent width. Unitless.

	fsky (float or np.ndarray)

	The sky frequency.

	fres (float or np.ndarray)

	The Fresnel scale.

	rdot (float) or (np.ndarray)

	The time derivative of the ring radius.

	Output:

	
	w_vals (np.ndarray)

	The window width as a function of ring radius.

rss_ringoccs.occgeo package

	Purpose

	Calculate occultation geometry parameters listed within CORSS_8001 v2
*GEO.TAB and *GEO.LBL files, as well as geometrical quantities needed for
calibrating RSS ring data.

Submodules

	rss_ringoccs.occgeo.calc_occ_geometry module

	rss_ringoccs.occgeo.occgeo module

rss_ringoccs.occgeo.calc_occ_geometry module

	Purpose

	Functions for calculating occultation geometry parameters listed in
*GEO.LBL file from Archived_Cassini_RSS_RingOccs_2018/ and other
useful geometry information, such as free-space regions and planetary
occultation times.

	Dependencies

	
	spiceypy

	numpy

	scipy

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_B_deg(et_vals, spacecraft, dsn, nhat_p, kernels=None, ref='J2000')

	This calculates ring opening angle, or the observed ring elevation,
as the complement to the angle made by the planet pole vector and
the spacecraft to DSN vector

	Arguments

	
	et_vals (np.ndarray)

	Array of earth-received times in
ephemeris seconds.

	dsn (str)

	DSN observing station ID – must be compatible with NAIF.

	nhat_p (np.ndarray)

	1x3 array unit vector in planet pole direction.

	Keyword Arguments

	
	kernels (str or list)

	List of NAIF kernels, including path.

	ref (str)

	Reference frame to be used in spiceypy calls. Default
is ‘J2000’

	Returns

	
	B_deg_vals (np.ndarray)

	Array of ring opening angle in degrees.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_B_eff_deg(B_deg, phi_ora_deg)

	This calculates the effective ring opening angle in degrees.

	Arguments

	
	B_deg (float or np.ndarray)

	Ring opening angle in degrees.

	phi_ora_deg (float or np.ndarray)

	Observed ring azimuth in
degrees.

	Returns

	
	B_eff_deg (float or np.ndarray)

	Effective ring opening angle
in degrees.

	Notes

	
	Reference: [GRESH86] Eq. 16

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_D_km(t1, t2)

	This calculates the light distance between two input times, in km.

	Args

	
	t1 (np.ndarray)

	Array of time in seconds.

	t2 (np.ndarray)

	Array of time in seconds.

	Returns

	
	D_km_vals (np.ndarray)

	Array of light distance in km.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_F_km(D_km_vals, f_sky_hz_vals, B_deg_vals, phi_ora_deg_vals)

	This calculates the Fresnel scale using Eq. 6 of [MTR1986].

	Arguments

	
	D_km_vals (np.ndarray)

	Array of spacecraft to ring intercept
point distances in km.

	f_sky_hz_vals (np.ndarray)

	Array of downlink sinusoidal signal
frequency at the front-end of observing dsn station, in Hz.

	B_deg_vals (np.ndarray)

	Array of ring opening angle in degrees.

	phi_ora_deg_vals (np.ndarray)

	Array of observed ring azimuth
in degrees.

	Returns

	
	F_km_vals (np.ndarray)

	Array of Fresnel scale in km.

	Notes

	
	diffcorr uses an independently-calculated Fresnel scale

	Reference: [MTR1986] Equation 6

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_beta(B_deg, phi_ora_deg)

	This calculates the optical depth enhancement factor.

	Arguments

	
	B_deg (float or np.ndarray)

	Ring opening angle in degrees.

	phi_ora_deg (float or np.ndarray)

	Observed ring azimuth in
degrees.

	Returns

	
	beta (np.ndarray)

	Optical depth enhancement factor.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_elevation_deg(et_vals, target, obs, kernels=None)

	Calculate the elevation of a target above the horizon for a given observer.

	Arguments

	
	et_vals (np.ndarray)

	Array of observed event times in ET sec.

	target (str)

	Target name – must be compatible with NAIF. This
will typically be spacecraft or planet name.

	obs (str)

	Observer name – must be compatible with NAIF. This
will typically be observing dsn station name. Observer is assumed
to be on Earth.

	kernels (str or list)

	List of NAIF kernels, including path.

	Returns

	
	elev_deg_vals (np.ndarray)

	Array of elevation angles in degrees.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_impact_radius_km(R_sc_km_vals, et_vals, spacecraft, dsn, nhat_p, ref='J2000', kernels=None)

	This calculates the closest approach of the spacecraft signal to the
planet defined as a sphere.

	Arguments

	
	R_sc_km_vals (list)

	List of 3-element arrays of spacecraft
position vector in planetocentric frame at input et_vals.

	et_vals (np.ndarray)

	Array of Earth-received times in ephemeris
seconds.

	spacecraft (str)

	Spacecraft name

	dsn (str)

	DSN observing station ID

	nhat_p (np.ndarray)

	1x3 array unit vector in planet pole direction.

	Keyword Arguments

	
	kernels (list)

	List of NAIF kernels, including path.

	ref (str)

	Reference frame to be used in spiceypy calls. Default
is ‘J2000’

	Returns

	
	R_imp_km_vals (np.ndarray)

	Array of impact radius in km.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_phi_deg(et_vals, rho_vec_km_vals, spacecraft, dsn, nhat_p, ref='J2000', kernels=None)

	This calculates observed ring azimuth and ring longitude.

	Arguments

	
	et_vals (np.ndarray)

	Array of earth-received time in ET seconds.

	rho_vec_km_vals (np.ndarray)

	Nx3 array of ring intercept position
vectors in km.

	spacecraft (str)

	Name of spacecraft

	dsn (str)

	DSN observing station ID

	nhat_p (np.ndarray)

	1x3 array unit vector in planet pole direction.

	Keyword Arguments

	
	kernels (str or list)

	List of NAIF kernels, including path

	ref (str)

	Reference frame to be used in spiceypy calls. Default
is ‘J2000’

	Returns

	
	phi_rl_deg_vals (np.ndarray)

	Array of inertial longitude in degrees.

	phi_ora_deg_vals (np.ndarray)

	Array of observed ring azimuth
in degrees.

	Notes:

	
	phi_ora_deg differs from the [MTR1986] definition by 180 degrees.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_rho_km(et_vals, planet, spacecraft, dsn, kernels=None, ring_frame=None)

	Calculate the distance between Saturn center to ring intercept point.

	Arguments

	
	et_vals (np.ndarray)

	Array of observed event times in ET sec.

	planet (str)

	Planet name

	spacecraft (str)

	Spacecraft name

	dsn (str)

	DSN observing station ID

	Keyword Arguments

	
	kernels (str or list)

	List of NAIF kernels, including path.

	ring_frame (str)

	Ring plane frame. Default is the equatorial
frame, (e.g. ‘IAU_SATURN’)

	Returns

	
	rho_km_vals (np.ndarray)

	Array of ring intercept points in km.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_rho_vec_km(et_vals, planet, spacecraft, dsn, ref='J2000', kernels=None, verbose=False, ring_frame=None)

	This calculates the position vector of the ring intercept point from the
planet center in J2000 frame.

	Arguments

	
	et_vals (np.ndarray)

	Array of earth-received times in ET sec

	planet (str)

	Name of planet

	spacecraft (str)

	Name of spacecraft

	dsn (str)

	DSN observing station ID

	Keyword Arguments

	
	kernels (str or list)

	Path to NAIF kernels

	verbose (bool)

	Option for printing processing steps

	ring_frame (str)

	Ring plane frame. Default is the equatorial
frame, (e.g. ‘IAU_SATURN’)

	ref (str)

	Reference frame to be used in spiceypy calls. Default
is ‘J2000’

	Returns

	
	rho_vec_km_vals (list)

	List of 3xN np.ndarrays of the planet
center to ring intercept point position vector in J2000 frame

	t_ret_et_vals (np.ndarray)

	Array of ring event times in ET seconds.

	References

	
	Ring intercept point calculation using a dynamical frame.
See [NAIF] page 19.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_rip_velocity(rho_km_vals, phi_rl_deg_vals, dt)

	This calculates the ring intercept point radial and azimuthal velocity.

	Arguments

	
	rho_km_vals (np.ndarray)

	Array of ring intercept points in km.

	phi_rl_deg_vals (np.ndarray)

	Array of ring longitudes in degrees.

	dt (float)

	Constant time spacing between points.

	Returns

	
	rho_dot_kms_vals (np.ndarray)

	Array of ring intercept radial
velocities in km/s.

	phi_rl_dot_kms_vals (np.ndarray)

	Array of ring intercept azimuthal
velocties in km/s.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_sc_state(et_vals, spacecraft, planet, dsn, nhat_p, ref='J2000', kernels=None)

	This calculates spacecraft state vector in a planetocentric frame.

	Arguments

	
	et_vals (np.ndarray)

	Array of spacecraft event times in ET seconds.

	spacecraft (str)

	Spacecraft name

	planet (str)

	Planet name

	dsn (str)

	Deep Space Network observing station ID

	nhat_p (np.ndarray)

	1x3 array unit vector in planet pole direction.

	Keyword Arguments

	
	kernels (str or list)

	Path to NAIF kernel(s)

	ref (str)

	Reference frame to be used in spiceypy calls. Default
is ‘J2000’

	Returns

	
	R_sc_km_vals (list)

	List of Nx3 np.ndarrays of spacecraft position
vector in km in planetocentric frame

	R_sc_dot_kms_vals (list)

	List of Nx3 np.ndarrays of spacecraft
velocity vector in km/s.

	Notes

	
	Saturn planetocentric frame is defined by x-axis parallel to
projection of spacecraft-to-Earth line-of-sight, z-axis in
direction of Saturn’s pole.

	
rss_ringoccs.occgeo.calc_occ_geometry.calc_set_et(et_vals, spacecraft, dsn, kernels=None)

	This calculates the time at which photons left the spacecraft, in ET sec.

	Arguments

	
	et_vals (np.ndarray)

	Array of earth-received times in ET seconds.

	spacecraft (str)

	

	dsn (str)

	Deep Space Network observing station ID

	Keyword Arguments

	
	kernels (str or *list)

	Path to NAIF kernels

	Returns

	
	t_set_et_vals (np.ndarray)

	Array of spacecraft event times
in ET sec.

	
rss_ringoccs.occgeo.calc_occ_geometry.find_gaps(t_ret_spm_vals, year, doy, rho_km_vals, phi_rl_deg_vals, niter=100, tolerance=0.001, t0=2454467.0, gaps_file='../tables/gap_orbital_elements.txt', kernels=None)

	Find regions of free-space power (gaps) in the ring system.

	Arguments

	
	t_ret_spm_vals (np.ndarray)

	Ring event times in SPM

	year (str)

	Reference year for seconds past midnight

	doy (str)

	Reference day of year for seconds past midnight

	rho_km_vals (np.ndarray)

	Ring intercept points in km

	phi_rl_deg_vals (np.ndarray)

	Inertial ring longitude in deg.

	Keyword Arguments

	
	niter (int)

	Maximum number of iterations

	tolerance (float)

	Minimum difference between new and old guess for
converging on a solution

	t0 (float)

	Reference epoch UTC 2008 January 1 12:00:00 for values
in gaps_file, in Julian date

	gaps_file (str)

	Path to text file with orbital elements of Saturn
ring features

	kernels (str or list)

	Path to NAIF kernels

	Returns

	
	gap_bounds (list)

	List of 1x2 lists of gap boundaries in km

	Notes

	
	Reference: [NICH14]

	Given the default “gaps_file” keyword argument, this script must be run in a directory one level below the top-level rss_ringoccs directory.

	
rss_ringoccs.occgeo.calc_occ_geometry.get_freespace(t_ret_spm_vals, year, doy, rho_km_vals, phi_rl_deg_vals, t_oet_spm_vals, atmos_occ_spm_vals, kernels=None, split_ind=None)

	Return list of gap boundaries (inner and outer edge) in distance from
center of Saturn and in seconds past midnight.

	Arguments

	
	t_ret_spm_vals (np.ndarray)

	Ring event times in SPM

	year (str)

	Reference year for seconds past midnight

	doy (str)

	Reference day of year for seconds past midnight

	rho_km_vals (np.ndarray)

	Ring intercept points in km

	phi_rl_deg_vals (np.ndarray)

	Inertial ring longitude in deg.

	t_oet_spm_vals (np.ndarray)

	Observed event times in SPM

	atmos_occ_spm_vals (np.ndarray)

	SPM times of when spacecraft signal
is blocked by planet atmosphere

	Keyword Arguments

	
	kernels (str or list)

	Path to NAIF kernels

	split_ind (int)

	Index of when a chord event switches from ingress
to egress

	Returns

	
	gaps_km (list)

	List of 1x2 lists of gap boundaries in km

	gaps_spm (list)

	List of 1x2 lists of gap boundaries in SPM

	
rss_ringoccs.occgeo.calc_occ_geometry.get_freespace_km(ret_spm, year, doy, rho_km, phi_rl_deg)

	Get all free-space regions, in and outside ring system.

	Arguments

	
	ret_spm (np.ndarray)

	Ring event times in SPM

	year (str)

	Reference year

:doy (str) Reference day of year
:rho_km (np.ndarray): Ring intercept points in km
:phi_rl_deg (np.ndarray): Inertial ring longitudes in deg

	Returns

	
	freespace_km (list)

	List of free-space boundaries in km

	
rss_ringoccs.occgeo.calc_occ_geometry.get_planet_occ_times(et_vals, obs, planet, spacecraft, height_above=500.0, kernels=None)

	Return times when the spacecraft-to-observer ray is blocked by planet.

	Arguments

	
	et_vals (np.ndarray)

	Array of observed event times in ET sec.

	obs (str)

	Observer name

	planet (str)

	Planet name

	spacecraft (str)

	Spacecraft name

	Keyword Arguments

	
	height_above (float)

	Height in km to be added to planet radius to
account for the atmosphere

	kernels (str or list)

	Path to NAIF kernels

	Returns

	
	et_blocked_vals (np.ndarray)

	Array of observed event times in ET

	Note:

	
	This was made to be generalizable to different planets, but has
been only tested with planet=’Saturn’.

	
rss_ringoccs.occgeo.calc_occ_geometry.get_pole(et, planet, kernels=None)

	Calculate unit vector in pole direction from kernel constants.

	Arguments

	
	et (float)

	Ephemeris seconds past J2000

	planet (str)

	Planet name

	Keyword Arguments

	
	kernels (str or list)

	Path to NAIF kernels

	Returns

	
	nhat_p (np.ndarray)

	1x3 unit vector in pole direction.

	Note:

	
	Quadratic terms for pole direction are typically zero but
are retained here for consistency with PCK file format definitions.

	
rss_ringoccs.occgeo.calc_occ_geometry.get_start_jd(year, doy)

	Get the start of a day in Julian date times.

	Arguments

	
	year (str)

	Year

	doy (str)

	Day of year

	Returns

	
	start_jd (float)

	Julian date time of the start of a day

	
rss_ringoccs.occgeo.calc_occ_geometry.rad_converge(t_ret_spm_vals, rho_km_vals, phi_rl_deg_vals, semimajor, eccentricity, curlypi_0, curlypi_dot, niter=100, tolerance=0.001)

	Computes initial guess for radius of ring feature using the semimajor
axis. Selects time and longitude closest to guess and computes true
anomaly for a new radius guess. Continues this estimation method
iteratively until difference between new and old radius guesses is
less than some tolerance or maximum number of iterations is reached.

	Arguments

	
	t_ret_spm_vals (np.ndarray)

	Ring event times in SPM.

	rho_km_vals (np.ndarray)

	Ring intercept points in km.

	phi_rl_deg_vals (np.ndarray)

	Inertial ring longitude in deg.

	semimajor (float)

	Semimajor axis of ring feature in km.

	eccentricity (float)

	Eccentricity of ring feature.

curlypi_0 (*float): Longitude of periapse in degrees.
curlypi_dot (*float): Apsidal precession rate in degrees/day.

	Keyword Arguments

	
	niter (int)

	Maximum number of iterations

	tolerance (float)

	Minimum difference between new and old guess for
converging on a solution

	Returns

	
	radius_new (float)

	Estimated radius of ring feature in km

	Notes

	
	Reference: [NICH14]

	
rss_ringoccs.occgeo.calc_occ_geometry.remove_blocked(t_oet_spm_vals, atmos_occ_spm_vals, t_ret_spm_vals, phi_rl_deg_vals, rho_km_vals)

	Remove values that occur during times blocked by planet atmosphere.

	Arguments

	
	t_oet_spm_vals (np.ndarray)

	Observed event times in SPM

	atmos_occ_spm_vals (np.ndarray)

	SPM times of when spacecraft signal
is blocked by planet atmosphere

	t_ret_spm_vals (np.ndarray)

	Ring event times in SPM

	phi_rl_deg_vals (np.ndarray)

	Inertial ring longitude in deg.

	rho_km_vals (np.ndarray)

	Ring intercept points in km

	Returns

	
	t_ret_spm_vals (np.ndarray)

	Ring event times in SPM, excluding
atmospheric occultation times

	t_oet_spm_vals (np.ndarray)

	Observed event times in SPM, excluding
atmospheric occultation times

	phi_rl_deg_vals (np.ndarray)

	Inertial ring longitude in deg,
excluding atmospheric occultation times

	rho_km_vals (np.ndarray)

	Ring intercept points in km, excluding
atmospheric occultation times

	
rss_ringoccs.occgeo.calc_occ_geometry.split_chord_arr(t_ret_spm_vals, t_oet_spm_vals, atmos_occ_spm_vals, phi_rl_deg_vals, rho_km_vals, ind, profdir)

	Return array of only ingress or egress portion of a chord occultation.

	Arguments

	
	t_ret_spm_vals (np.ndarray)

	Ring event times in SPM

	t_oet_spm_vals (np.ndarray)

	Observed event times in SPM

	atmos_occ_spm_vals (np.ndarray)

	SPM times of when spacecraft signal
is blocked by planet atmosphere

	phi_rl_deg_vals (np.ndarray)

	Inertial ring longitude in deg.

	rho_km_vals (np.ndarray)

	Ring intercept points in km

	ind (int)

	Index of where ingress switches to egress

	profdir (str)

	Profile direction to return (‘“INGRESS”’ or
‘“EGRESS”’)

	Returns

	
	t_ret_spm_vals (np.ndarray)

	Ring event times in SPM of ‘profdir’
portion of occultation

	t_oet_spm_vals (np.ndarray)

	Observed event times in SPM of ‘profdir’
portion of occultation

	phi_rl_deg_vals (np.ndarray)

	Inertial ring longitude in deg of
‘profdir’ portion of occultation

	rho_km_vals (np.ndarray)

	Ring intercept points in km of ‘profdir’
portion of occultation

	
rss_ringoccs.occgeo.calc_occ_geometry.xform_j2k_to_pcf(vec, et, spacecraft, dsn, nhat_p, ref='J2000', kernels=None)

	Transform vector in J2000 frame to planet ring plane frame.

	Arguments

	
	vec (np.ndarray)

	3-element vector in J2000 frame

	et (float)

	ET in seconds corresponding to input vec

	dsn (str)

	DSN observing station ID

	nhat_p (np.ndarray)

	1x3 array unit vector in planet pole direction.

	Keyword Arguments

	
	kernels (str or list)

	Path to NAIF kernels

	Returns

	
	out_vec (np.ndarray)

	3-element vector in planet ring plane frame.

rss_ringoccs.occgeo.occgeo module

	Purpose

	Calculate occultation geometry for RSS ring events.

	Notes

	
	kernels list must include:

	spacecraft ephemeris kernel

	planetary constants kernel

	leapseconds kernel

	planet and lunar ephemeris kernel

	earth stations kernel

	earth rotation and constants kernel

	topocentric frame kernel

	Dependencies

	
	scipy

	numpy

	spiceypy

	
class rss_ringoccs.occgeo.occgeo.Geometry(rsr_inst, planet, spacecraft, kernels, pt_per_sec=1.0, ref='J2000', ring_frame=None, nhat_p=None, verbose=False, write_file=True)

	Bases: object

	Purpose

	This is an object that calculates occultation geometry needed for
diffraction reconstruction as well as other relevant geometry
parameters.

	Arguments

	
	rsr_inst (class)

	Instance of RSRReader class.

	kernels (str or list)

	List of NAIF kernels, including path.

	planet (str)

	Planet name

	spacecraft (str)

	Spacecraft name

	Keyword Arguments

	
	pt_per_sec (float)

	Number of points calculated per second
for all geometry calculations.

	verbose (bool)

	Boolean for whether processing steps are printed.

	write_file (bool)

	Boolean for whether output *GEO.TAB and
*GEO.LBL files will be created.

	ref (str)

	Reference frame to be used in spiceypy calls. Default
is ‘J2000’

	ring_frame (str)

	Ring plane frame. Default is the equatorial
frame, (e.g. ‘IAU_SATURN’)

	nhat_p (list)

	Unit vector in pole direction, in rectangular
coordinates. If None, it will be calculated
using contents of the planetary constants kernel.

	Attributes

	
	t_oet_spm_vals (np.ndarray)

	Observed event time in seconds
past midnight.

	t_ret_spm_vals (np.ndarray)

	Ring event time in seconds past
midnight.

	t_set_spm_vals (np.ndarray)

	Spacecraft event time in seconds
past midnight.

	rho_km_vals (np.ndarray)

	Distance in km from the center of
Saturn to ring intercept point.

	phi_rl_deg_vals (np.ndarray)

	Ring longitude (inertial longitude)
in degrees.

	phi_ora_deg_vals (np.ndarray)

	Observed ring azimuth in degrees.

	D_km_vals (np.ndarray)

	Spacecraft to ring intercept point
distance in km.

	B_deg_vals (np.ndarray)

	Ring opening angle in degrees.

	rho_dot_kms_vals (np.ndarray)

	Ring intercept radial velocity
in km/s.

	phi_rl_dot_kms_vals (np.ndarray)

	Ring intercept azimuthal velocity
in km/s.

	F_km_vals (np.ndarray)

	Fresnel scale in km.

	R_imp_km_vals (np.ndarray)

	Impact radius in km.

	rx_km_vals (np.ndarray)

	x-component of spacecraft position in
a planetocentric frame, in km.

	ry_km_vals (np.ndarray)

	y-component of spacecraft position in
a planetocentric frame, in km.

	rz_km_vals (np.ndarray)

	z-component of spacecraft position in
a planetocentric frame, in km.

	vx_kms_vals (np.ndarray)

	x-component of spacecraft velocity in
a planetocentric frame, in km/s.

	vy_kms_vals (np.ndarray)

	y-component of spacecraft velocity in
a planetocentric frame, in km/s

	vz_kms_vals (np.ndarray)

	z-component of spacecraft velocity in
a planetocentric frame, in km/s

	elev_deg_vals (np.ndarray)

	Elevation angle in degrees.

	kernels (str or list)

	List of NAIF kernels, including path.

	rev_info (dict)

	RSR file specific info

	history (dict)

	Dictionary of processing history.

	naif_toolkit_version (str)

	NAIF toolkit version used
(e.g., “V.N0066”).

	B_eff_deg_vals (np.ndarray)

	Effective ring opening angle in deg.

	beta_vals (np.ndarray)

	Optical depth enhancement factor.

	ionos_occ_spm_vals (np.ndarray)

	Array of seconds past midnight
when the signal is occulted by the planet ionosphere, defined as
5000km above an ellipsoid with radii from cpck file.

	atmos_occ_spm_vals (np.ndarray)

	Array of seconds past midnight
when the signal is occulted by the planet atmosphere, defined as
500km above an ellipsoid with radii from cpck file.

	freespace_spm (list)

	List of 2x1 lists of seconds past midnight
values that define the inner and outer edge of a free-space
gap in the ring system

	freespace_km (np.ndarray)

	Array of 2x1 lists of km values
that define the inner and outer edge of a free-space gap
in the ring system

	ul_rho_km_vals (np.ndarray)

	Uplink ring intercept points.
This is only calculated for events after USO failure (after year
2010)

	ul_phi_rl_deg_vals (np.ndarray)

	Ring longitude of the uplink
ring intercept point. This is only calculated for events
after USO failure (after year 2010)

	ul_phi_ora_deg_vals (np.ndarray)

	Observed ring azimuth of the
uplink ring intercept point. This is only calculated for events
after USO failure (after year 2010)

	add_info (dict)

	Additional information about changes to the
data (e.g., removing points blocked by atmosphere,
removing false ring intercept points from proximal orbits, etc.)

	
get_chord_ind()

	Return index of where radial velocity sign change occurs in a chord
occultation.

	Returns

	
	ind (int)

	Index of where chord occultation goes from ‘“INGRESS”’
to ‘“EGRESS”’ or vice versa.

	
get_profile_dir()

	Return observed profile direction.

	Returns

	
	prof_dir (str)

	Profile direction as ‘“INGRESS”’,
‘“EGRESS”’, or ‘“BOTH”’.

	
verify_chord()

	Verify that an occultation with an increasing and decreasing
radial velocity is actually a chord occultation.

	Returns

	
	prof_dir (str)

	Profile direction as
‘“INGRESS”’, ‘“EGRESS”’, or ‘“BOTH”’.

rss_ringoccs.rsr_reader package

Purpose:

Reads in raw RSR data and meta data from the file header. Stores
pertinant information and raw data as attributes for future use.
Provides method for predicting the offset frequency from
spacecraft telemetry at the time of observation.

Submodules

	rss_ringoccs.rsr_reader.rsr_reader module

rss_ringoccs.rsr_reader.rsr_reader module

	Purpose

	Class to create an instance linked to an RSR file

	Dependencies

	
	multiprocessing

	numpy

	os

	scipy

	struct

	sys

	time

	
class rss_ringoccs.rsr_reader.rsr_reader.RSRReader(rsr_file, decimate_16khz_to_1khz=True, verbose=False)

	Bases: object

	Purpose

	

Reads the header of a raw RSR file when you first create an instance.
Then reads the full RSR file to read in the raw measured complex signal [image: I+iQ]

	Arguments

	
	rsr_file (str)

	Full path name of a raw RSR file to read. RSR files
can be downloaded using the shell script in the data”
directory of the GitHub clone

	Keyword Arguments

	
	decimate_16khz_to_1khz (bool)

	Optional Boolean argument which, if
set to True, decimates 16kHz files down to 1kHz sampling rate.
Note that this is a sticky keyword - if you set it to True, it
will be True for any subsequent calls from the instance until
you explicitly set it to False. This keyword is linked to the
private attribute __decimate_16khz_to_1khz

	cpu_count (int)

	Number of cores to use when reading data in from
file. Default is number of cores on your computer

	verbose (bool)

	Optional boolean variable which, when set to True,
prints the header attributes that were set

	Attributes

	
	rsr_file (str)

	Full path name of a raw RSR file to read

	spm_vals (np.ndarray)

	Seconds Past Midnight array of times over
entire rsr file

	doy (int)

	Day of year of event

	year (int)

	Year of event

	dsn (str)

	Deep Space Network ID of the downlink station

	band (str)

	Name of the wavelength of downlink transmission
(S, X, or Ka)

	ul_band (str)

	Name of the wavelength of uplink transmission

	ul_dsn (str)

	Deep Space Network ID of uplink station

	sample_rate_khz (int)

	Sample rate, in kHz, of transmission (1 or 16)

	history (dict)

	Dictionary recording parameters of the run

	Example

	>>> # Import rss_ringoccs
>>> import rss_ringoccs as rss
>>> # Define instance and set header attributes, and read in raw data
>>> rsr_inst = rss.rsr_reader.RSRReader(rsr_file)
>>> # Get predicted sky frequency at chosen SPM values f_spm
>>> f_spm_returned, f_sky_pred = rsr_inst.get_f_sky_pred(f_spm=f_spm)

	Notes:

	
	Setting decimate_16khz_to_1khz=True for a 1kHz file will be ignored

	16kHz files will take a few minutes to read and decimate

	
get_f_sky_pred(f_spm=None, verbose=False)

	Calculate predicted sky frequency at user-defined times using
polynomial coefficients in each SFDU.

	Arguments

	
	f_spm (np.ndarray)

	Array of SPM values to evaluate predicted
sky frequency at. Default is at 1 second spacing over entire
data set.

	verbose (bool)

	Print the first few predicted sky frequency values
if set to True

	Returns

	
	f_spm (np.ndarray)

	Array of SPM values that predicted sky
frequency was evaluated at.

	f_sky_pred (np.ndarray)

	Predicted sky frequency, calculated from
the polynomial coefficients in the RSR file

rss_ringoccs.scatter package

	Purpose:

	Compute the spectrogram of the incoherent signal based on
properties of the measured signal like sample rate. Spectrogram is
optionally stacked to improve SNR and output to a .TAB file
named following the software’s output file nomenclature.

Submodules

	rss_ringoccs.scatter.spectro_reader module

	rss_ringoccs.scatter.spectrogram module

rss_ringoccs.scatter.spectro_reader module

	
rss_ringoccs.scatter.spectro_reader.read_spectro(filename)

	

rss_ringoccs.scatter.spectrogram module

	
rss_ringoccs.scatter.spectrogram.Scatter(rsr_inst, geo_inst, cal_inst, rho_limits=[65000.0, 140000.0], stack=False, nstack=16, hires=False, numpts=None, nsegs=None)

	
	Purpose:

	Run spectrogram code and output results to file

	Arguments:

	
	rsr_inst (obj)

	instance of RSR reader

	geo_inst (obj)

	instance of Geometry

	cal_inst (obj)

	instance of Calibration

	Keyword Arguments:

	
	rho_limits (list)

	2x1 list of radii boundaries in km over which to
compute the spectrogram. Default is [65000,140000].

	stack (bool)

	specifies whether to stack the resulting spectrogram
to improve scattered signal SNR. Default is True.

	nstack (int)

	number of spectrogram slices to stack in each bin.
Only used if stack is set to True.

	hires (bool)

	specifying whether to compute spectrogram “manually”
in a high resolution time sampling mode with a
continuous Fourier transform (this circumvents the
Gabor uncertainty limit posed by the discrete STFT).
Default for hires is False. Note: this will take
a substantial amount of time to compute and is not recommended.

	
rss_ringoccs.scatter.spectrogram.cont_stft(time, signal, numpts=1000, nsegs=500)

	
	Purpose

	Compute the continuous STFT

	Arguments:

	
	time (np.ndarray)

	one-dimensional array of times at which
signal is sampled – sampling MUST be uniform

	signal (np.ndarray)

	the uniformly-sampled signal

	Keyword arguments:

	
	numpts (int)

	number of points per STFT segment

	nsegs (int)

	number of segments in STFT

	Notes:

	
	Both numpts and nsegs MUST be smaller than the length of time

	Continuous STFT will have dimensions nsegs``x``numpts

	
rss_ringoccs.scatter.spectrogram.spectro(time, signal, stack=True, nstack=16, hires=False, numpts=None, nsegs=None)

	
	Purpose:

	Compute short-time Fourtier transform (STFT), i.e. the spectrogram, from a given signal.

	Arguments:

	
	time (np.ndarray)

	array of times at which signal was measured

	signal (np.ndarray)

	array of signal values for which to compute
the spectrogram, must match length of times

	Keyword Arguments:

	
	stack (bool)

	boolean specifying whether to stack the spectrogram
to improve signal-to-noise, default is True

	nstack (int)

	number of FFT segments to include in each bin when
spectrogram is stacked. only used if stack
is True. Default is 16.

	hires (bool)

	boolean specifying whether to use a continuous
Fourier transform to circumvent Gabor uncertainty
when computing the STFT.

	numpts (int)

	number of points to use in each STFT segment.
Only used if hires is true, default 1000.

	nsegs (int)

	number of segments to use in total STFT. Only used
if hires is True, default is length of time / nperseg

	Notes:

	
	The continuous Fourier transform specified by hires is computationally
expensive and will take substatially longer to run than the discrete
STFT bound by the Gabor limit.

	numpts * nsegs is not to exceed the length of time.

	
rss_ringoccs.scatter.spectrogram.stack_spec(time, Sxx, N=16)

	
	Purpose:

	Stack spectrogram slices to improve SNR of the incoherent signal.

	Arguments:

	
	time (np.ndarray)

	Jx1 array of times at which the spectrogram was computed

	Sxx (np.ndarray)

	IxJ array of spectrogram power values

	Keyword Arguments:

	
	N (int)

	number of FFT segments to include in each bin,
must be less than J, default is 16

rss_ringoccs.tools package

	Purpose:

	Provides multiple miscellaneous tools for data input/output,
reconstructing objects, and converting information formats.
Some are used by multiple object classes within rss_ringoccs
while others are standalone scripts. See the User’s Guide
for details on which scripts the user might call directly.

Most relevant to the user is the ExtractCSVData, which serves
a critical role in starting the QuickLook rendition of the
processing pipeline.

Submodules

	rss_ringoccs.tools.CSV_tools module

	rss_ringoccs.tools.compare module

	rss_ringoccs.tools.dtau_miescatt_partsize_grid module

	rss_ringoccs.tools.et_to_spm module

	rss_ringoccs.tools.history module

	rss_ringoccs.tools.spm_to_et module

rss_ringoccs.tools.CSV_tools module

	Purpose

	Provide tools for reading in .TAB and .CSV files and converting
the data into a usable instance of the DLP class.

	Dependencies

	
	pandas

	numpy

	scipy

	
class rss_ringoccs.tools.CSV_tools.ExtractCSVData(geo, cal, dlp, tau=None, verbose=True, use_deprecate=False)

	Bases: object

	Purpose:

	Read three csv files (Geo, Cal, and DLP) and return
an instance containing all necessary attributes to run
diffraction correction. This instance can be fed
directly into the DiffractionCorrection class.

	Variables:

	
	geo (str)

	A string that contains the location of
the requested Geo file.
Ex: geo = “/path/to/geo.CSV”

	cal (str)

	A string that contains the location of
the requested Cal file.
Ex: cal = “/path/to/cal.CSV”

	dlp (str):

	A string that contains the location of
the requested dlp file.
Ex: dlp = “/path/to/dlp.CSV”

	Keywords:

	
	tau (str)

	A string that contains the location
of the requested Tau file. If not set,
variables from the tau file will have
NoneType. Ex: tau = “/path/to/tau.CSV”

	verbose (bool)

	A Boolean for specifying if various
status updates will be printed to the
command line.

	Attributes:

	
	B_rad_vals

	The ring opening angle of the ring plane
with respect to the line of sight from
Earth to the spacecraft.

	D_km_vals

	The distance from the spacecraft to the
ring-intercept point.

	f_sky_hz_vals

	The sky frequency of the incoming signal.

	p_norm_vals

	The normalized diffracted power.

	phase_rad_vals

	The diffracted phase, in radians.

	phase_vals

	The reconstructed phase contained in the
tau file. If tau is not set, this will be
a NoneType variable. Units are in radians.

	phi_rad_vals

	The observed ring azimuth angle, in radians.

	phi_rl_rad_vals

	The observed ring longitude angle, in radians.

	power_vals

	The reconstructed power contained in the tau
file. If tau is not set, this will be a
NoneType variable. Power is normalized to one
in free space regions.

	raw_tau_threshold_vals

	The threshold optical depth corresponding
to the diffracted optical depth profile.

	rho_corr_pole_km_vals

	Corrections for the ring-intercept point
computed by taking into account
Saturn’s pole direction.

	rho_corr_timing_km_vals

	Timing offset corrections to the
ring-intercept point.

	rho_dot_kms_vals

	The rate of change of the ring-intercept
point as a function of time. That is,
drho/dt.

	rho_km_vals

	The ring intercept point, in kilometers.

	t_oet_spm_vals

	Observed event time, the time the signal
is recieved on Earth, computed in
Seconds Past Midnight.

	t_ret_spm_vals

	Ring event time, the time the signal crosses
the rings, computed in Seconds
Past Midnight.

	t_set_spm_vals

	Spacecraft Event Time, the time the signal
was transmitted from the spacecraft,
computed in Seconds Past Midnight.

	tau_rho

	The ring-intercept point corresponding
to the values in the tau file. If tau
is not set, this will be a NoneType
variable. Units are in kilometers.

	tau_vals

	The normalized optical depth contained
in the tau file. If tau is not set, this
will be a NoneType variable.

	
rss_ringoccs.tools.CSV_tools.get_cal(cal, verbose=True)

	
	Purpose:

	To extract a pandas DataFrame from a given
CAL.TAB or CAL.CSV file.

	Arguments:

	
	cal (str)

	A string containing the location of
the requested cal file.
Ex: cal = “/path/to/cal.CSV”
File must contain the following columns,
in the following order:
| spm_vals
| f_sky_pred_vals
| f_sky_resid_fit_vals
| p_free_vals

	Keywords:

	
	verbose (bool)

	A Boolean for printing out auxiliary
information to the command line.

	
rss_ringoccs.tools.CSV_tools.get_dlp(dlp, verbose=True, use_deprecate=False)

	
	Purpose:

	To extract a pandas DataFrame from a given
DLP.TAB or DLP.CSV file.

	Arguments:

	
	dlp (str)

	A string containing the location of
the requested dlp file.
Ex: dlp = “/path/to/dlp.CSV”
File must contain the following columns,
in the following order:
| rho_km_vals
| rho_corr_pole_km_vals
| rho_corr_timing_km_vals
| phi_rl_deg_vals
| phi_ora_deg_vals
| p_norm_vals
| raw_tau_vals
| phase_deg_vals
| raw_tau_threshold_vals
| t_oet_spm_vals
| t_ret_spm_vals
| t_set_spm_vals
| B_deg_vals

	Keywords:

	
	verbose (bool)

	A Boolean for printing out auxiliary
information to the command line.

	
rss_ringoccs.tools.CSV_tools.get_geo(geo, verbose=True, use_deprecate=False)

	To extract a pandas DataFrame from a given GEO.TAB or GEO.CSV file.

	Arguments

	
	geo (str)

	A string containing the location of
the requested geo file.
Ex: geo = “/path/to/geo.CSV”
File must contain the following columns,
in the following order:
| t_oet_spm_vals
| t_ret_spm_vals
| t_set_spm_vals
| rho_km_vals
| phi_rl_deg_vals
| phi_ora_deg_vals
| B_deg_vals
| D_km_vals
| rho_dot_kms_vals
| phi_rl_dot_kms_vals
| F_km_vals
| R_imp_km_vals
| rx_km_vals
| ry_km_vals
| rz_km_vals
| vx_kms_vals
| vy_kms_vals
| vz_kms_vals
| obs_spacecract_lat_deg_vals

	Keywords

	
	verbose (bool)

	A Boolean for printing out auxiliary
information to the command line.

	
rss_ringoccs.tools.CSV_tools.get_tau(tau, verbose=True, use_deprecate=False)

	
	Purpose:

	To extract a pandas DataFrame from a given
TAU.TAB or TAU.CSV file.

	Arguments:

	
	tau (str)

	A string containing the location of
the requested tau file.
Ex: tau = “/path/to/tau.CSV”
File must contain the following columns,
in the following order:
| rho_km_vals
| rho_corr_pole_km_vals
| rho_corr_timing_km_vals
| phi_rl_deg_vals
| phi_ora_deg_vals
| p_norm_vals
| raw_tau_vals
| phase_deg_vals
| raw_tau_threshold_vals
| t_oet_spm_vals
| t_ret_spm_vals
| t_set_spm_vals
| B_deg_vals

	Keywords:

	
	verbose (bool)

	A Boolean for printing out auxiliary
information to the command line.

rss_ringoccs.tools.compare module

	
rss_ringoccs.tools.compare.compare(NormDiff, geo, cal, dlp, tau, outfile, res=0.75, rng='all', wtype='kbmd20', norm=True, bfac=True, sigma=2e-13, verbose=True, psitype='Fresnel8')

	

	
rss_ringoccs.tools.compare.cringplots(rev, geo, cal, dlp, res, outfile='outfile.pdf', wtype='kbmd20', psitype='cfresnel4')

	

	
rss_ringoccs.tools.compare.galleryplots(rev, geo, cal, dlp, tau=None, res=[1.0], rng='all', wtype='kbmd20', psitype='Fresnel4', norm=True, bfac=True, sigma=2e-13, verbose=True, res_factor=0.75, outfile='galleryplot.pdf', ymin=-0.2, ymax=1.4)

	
	Purpose:

	Create a set of plots of the same ring feature at
various resolutions as specified by the user.

	Arguments:

	
	rev (str)

	The rev number. Ex: rev = “Rev007”

	geo (str)

	The location of the geo file.
Ex: geo = “/path/to/geo”

	:cal (str)

	The location of the cal file.
Ex: dlp = “/path/to/cal”

	dlp (str)

	The location of the dlp file.
Ex: dlp = “/path/to/dlp”

	Keywords:

	
	tau (str)

	The location of the tau file. If set,
this plots the PDS power, as well as the
user reconstructed power.
Ex: tau = “/path/to/tau”

	res (list)

	The set of requested resolution to process
and plot. The values should be floating
point values and take the sampling theorem
into consideration.
Ex: res = [0.5, 0.7, 1.0, 1.2]

	rng (list or str)

	The requested range for diffraction correction.
Preferred input is rng = [a,b]. Arrays are
allowed and the range will be set as:

rng = [MIN(array), MAX(array)]

Finally, certain strings containing a few of the
regions of interests within the rings of Saturn
are allowed. Permissable strings are:

‘all’ [1.0, 400000.0]

‘cringripples’ [77690.0, 77760.0]

‘encke’ [132900.0, 134200.0]

‘enckegap’ [132900.0, 134200.0]

‘janusepimetheus’ [96200.0, 96800.0]

‘maxwell’ [87410.0, 87610.0]

‘maxwellringlet’ [87410.0, 87610.0]

‘titan’ [77870.0, 77930.0]

‘titanringlet’ [77870.0, 77930.0]

‘huygens’ [117650.0, 117950.0]

‘huygensringlet’ [117650.0, 117950.0]

Strings are neither case nor space sensitive.
For other planets use rng = [a,b]. Default value
is set to ‘all’ which processes [1, 400000]
Values MUST be set in kilometers.

	wtype (*str)

	The requested tapering function for diffraction
correction. A string with several allowed inputs:

‘rect’ Rectangular Window.

‘coss’ Squared Cosine Window.

‘kb20’ Kaiser-Bessel 2.0 Window.

‘kb25’ Kaiser-Bessel 2.5 Window.

‘kb35’ Kaiser-Bessel 3.5 Window.

‘kbmd20’ Modified kb20 Window.

‘kbmd25’ Modified kb25 Window.

The variable is neither case nor space sensitive.
Default window is set to ‘kb25’. See window_functions
submodule for further documentation.

	norm (bool)

	A Boolean for determining whether or not the
reconstructed complex transmittance is normalize
by the window width. This normalization is the
complex transmittance that is computed by using
free space divided by the complex transmittance
that is computed using free space weighted by the
selected tapering function. Default is True.

	bfac (bool)

	A Boolean for determining whether or not the
‘b’ factor in the window width computation is
used. This is equivalent to setting the Allen
Deviation for the spacecraft to a positive value
or to zero. If set to False, the Allen Deviation
is assumed to be zero. If set to True the Allen
Deviation is set to 2e-13, or whichever number you
wish to specify in the sigma keyword (See below).
Default is True.

	sigma (float)

	The Allen deviation for the spacecraft. If the bfac
keyword (See above) is set to False, this is ignored.
If bfac is set to True, and sigma is NOT specified,
then sigma=2e-13 will be used, which is the Allen
deviation for Cassini with 1 second integration time.
For spacecraft other than Cassini, you should provide
the Allen deviation yourself. Default is sigma=2e-13

	psitype (str)

	A string for determining what approximation to the
geometrical ‘psi’ function is used. Several strings
are allowed:

‘full’ No Approximation is applied.

‘MTR2’ Second Order Series from MTR86.

‘MTR3’ Third Order Series from MTR86.

‘MTR4’ Fourth Order Series from MTR86.

‘Fresnel’ Standard Fresnel approximation.

The variable is neither case nor space sensitive.
Default is set to ‘full’.

	verbose (bool)

	A Boolean for determining if various pieces of
information are printed to the screen or not.
Default is False.

	outfile (str)

	Path to the output folder and the name of the
pdf that is to be created.
Ex: outfile = “/path/to/outfile.pdf”

	res_factor (float)

	Floating point number used as a scale factor
for the resolution for the sake of consistency
with the PDS results. The definition of
resolution adopted in the PDS and the
definition specified in MTR86 differs by
a scale of about 0.75. To skip this, set
res_factor = 1.0.

	ymin (float)

	The minimum y value to be plotted.
Ex: ymin = -0.2

	ymax (float)

	The maximum y value to be plotted.
Ex: ymax = 1.5

rss_ringoccs.tools.dtau_miescatt_partsize_grid module

rss_ringoccs.tools.et_to_spm module

	Purpose

	Convert ephemeris time to seconds past midnight (SPM).

	Dependencies

	
	numpy

	spiceypy

	
rss_ringoccs.tools.et_to_spm.et_to_spm(et_vals, kernels=None, ref_doy=None)

	Convert ephemeris time to seconds past midnight.

	Arguments

	
	et_vals (float or np.ndarray)

	ET seconds past J2000

	Keyword Arguments

	
	kernels (str or list)

	Path to NAIF kernels

	ref_doy (int)

	Reference day of year, typically used for
occultations that occur over multiple days

	Returns

	
	spm_vals (float or np.ndarray)

	Seconds past midnight

rss_ringoccs.tools.history module

	Purpose

	Functions related to recording processing history.

	Dependencies

	
	sys

	time

	os

	platform

	pandas

	numpy

	
rss_ringoccs.tools.history.date_to_rev(year, doy, rss_file='../tables/RSSActivities_all_rings_only.txt')

	Pull rev number from a table given the year and doy from a RSS
activities file with columns for CIMS request, sequence number,
year, doy, start earth-received time in HH:MM, end earth-received time
in HH:MM

	Arguments

	
	year (int)

	Year of occultation

	doy (int)

	Day of year of occultation

	Returns

	
	rev_number (str)

	3-digit rev number (e.g. ‘007’)

	Note:

	
	
	Given default ‘rss_file’ location, this script must be run

	one directory from the top-level rss_ringoccs directory

	
rss_ringoccs.tools.history.get_rev_info(rsr_inst)

	This returns a dictionary with information related to the ring occultation.

	Arguments

	
	rsr_inst (class)

	Instance of RSRReader class

	Returns:

	
	rev_info (dict)

	Dictionary with keys: rsr_file, band, year, doy
dsn, rev, occ_dir, planetary_occ_flag

	
rss_ringoccs.tools.history.rev_to_occ_info(rev, sroc_info_file='../tables/list_of_sroc_dir_all_events.txt')

	Pull occultation direction from a text file given rev.

	Arguments

	
	rev (str)

	Revolution/orbit number in ‘XXX’ format

	Keyword Arguments

	
	sroc_info_file (str)

	Path to csv file with columns: rev number,
occultation direction, planetary occultation flag

	Returns

	
	occ_dir (str)

	Occultation direction (over entire, I&E, occultation)
This is not to be confused with profile direction.

	Note:

	
	
	Given default ‘sroc_info_file’ location, this script must be run

	one directory from the top-level rss_ringoccs directory

	
rss_ringoccs.tools.history.write_history_dict(input_vars, input_kwds, source_file, add_info=None)

	This creates a dictionary of processing history for an instance.

	Arguments:

	
	input_vars (dict)

	Dictionary of all input variables to the
instance.

	input_kwds (dict)

	Dictionary of all input keywords to the instance.

	source_file (str)

	Full path to the script used to run the instance.

	Keyword Arguments:

	
	add_info (dict)

	Dictionary of additional info

	Returns:

	
	history (dict)

	Dictionary with keys: “User Name”, “Host Name”,
“Run Date”, “Python Version”, “Operating System”,
“Source File”, “Positional Args”,
“Keyword Args”

rss_ringoccs.tools.spm_to_et module

	Purpose

	Calculate ephemeris time given a set of SPM values and appropriate kernels.

	Dependencies

	
	numpy

	spiceypy

	sys

	
rss_ringoccs.tools.spm_to_et.spm_to_et(spm, doy, year, kernels=None)

	Convert seconds past midnight to ephemeris seconds past J2000.

	Arguments

	
	spm (np.ndarray)

	SPM values

	doy (int)

	Day of year of observation

	year (int)

	Year of observation

	Keyword Arguments

	
	kernels (str)

	String specifying the appropriate ephemeris
kernel file. If None, sets the kernel file
to
../../kernels/naif/CASSINI/kernels/lsk/naif0012.tls
Default is None.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rss_ringoccs	

 	
 	
 rss_ringoccs.calibration	

 	
 	
 rss_ringoccs.calibration.calc_f_sky_recon	

 	
 	
 rss_ringoccs.calibration.calc_freq_offset	

 	
 	
 rss_ringoccs.calibration.calc_tau_thresh	

 	
 	
 rss_ringoccs.calibration.calibration_class	

 	
 	
 rss_ringoccs.calibration.dlp_class	

 	
 	
 rss_ringoccs.calibration.freq_offset_fit	

 	
 	
 rss_ringoccs.calibration.power_normalization	

 	
 	
 rss_ringoccs.calibration.resample_IQ	

 	
 	
 rss_ringoccs.diffrec	

 	
 	
 rss_ringoccs.diffrec.advanced_tools	

 	
 	
 rss_ringoccs.diffrec.diffraction_correction	

 	
 	
 rss_ringoccs.diffrec.special_functions	

 	
 	
 rss_ringoccs.diffrec.window_functions	

 	
 	
 rss_ringoccs.occgeo	

 	
 	
 rss_ringoccs.occgeo.calc_occ_geometry	

 	
 	
 rss_ringoccs.occgeo.occgeo	

 	
 	
 rss_ringoccs.rsr_reader	

 	
 	
 rss_ringoccs.rsr_reader.rsr_reader	

 	
 	
 rss_ringoccs.scatter	

 	
 	
 rss_ringoccs.scatter.spectro_reader	

 	
 	
 rss_ringoccs.scatter.spectrogram	

 	
 	
 rss_ringoccs.tools	

 	
 	
 rss_ringoccs.tools.compare	

 	
 	
 rss_ringoccs.tools.CSV_tools	

 	
 	
 rss_ringoccs.tools.et_to_spm	

 	
 	
 rss_ringoccs.tools.history	

 	
 	
 rss_ringoccs.tools.spm_to_et	

Index

 C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | P
 | R
 | S
 | V
 | W
 | X

C

 	
 	calc_B_deg() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_B_eff_deg() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_beta() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_D_km() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_elevation_deg() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_F_km() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_f_sky_recon() (in module rss_ringoccs.calibration.calc_f_sky_recon)

 	calc_freq_offset (class in rss_ringoccs.calibration.calc_freq_offset)

 	calc_impact_radius_km() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_phi_deg() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_poly_order() (rss_ringoccs.calibration.freq_offset_fit.FreqOffsetFit method)

 	calc_rho_km() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_rho_vec_km() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_rip_velocity() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	
 	calc_sc_state() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_set_et() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	calc_tau_thresh (class in rss_ringoccs.calibration.calc_tau_thresh)

 	Calibration (class in rss_ringoccs.calibration.calibration_class)

 	compare() (in module rss_ringoccs.tools.compare)

 	CompareTau (class in rss_ringoccs.diffrec.advanced_tools)

 	compute_norm_eq() (in module rss_ringoccs.diffrec.special_functions)

 	cont_stft() (in module rss_ringoccs.scatter.spectrogram)

 	correct_IQ() (rss_ringoccs.calibration.calibration_class.Calibration method)

 	coss() (in module rss_ringoccs.diffrec.window_functions)

 	create_dlps() (rss_ringoccs.calibration.dlp_class.DiffractionLimitedProfile class method)

 	create_mask() (rss_ringoccs.calibration.freq_offset_fit.FreqOffsetFit method)

 	(rss_ringoccs.calibration.power_normalization.Normalization method)

 	cringplots() (in module rss_ringoccs.tools.compare)

D

 	
 	d2psi() (in module rss_ringoccs.diffrec.special_functions)

 	date_to_rev() (in module rss_ringoccs.tools.history)

 	derlt() (in module rss_ringoccs.calibration.calc_f_sky_recon)

 	derpt() (in module rss_ringoccs.calibration.calc_f_sky_recon)

 	DiffractionCorrection (class in rss_ringoccs.diffrec.diffraction_correction)

 	
 	DiffractionLimitedProfile (class in rss_ringoccs.calibration.dlp_class)

 	double_slit_diffraction() (in module rss_ringoccs.diffrec.special_functions)

 	downsample_IQ() (rss_ringoccs.calibration.power_normalization.Normalization method)

 	dpsi() (in module rss_ringoccs.diffrec.special_functions)

 	dpsi_ellipse() (in module rss_ringoccs.diffrec.special_functions)

E

 	
 	et_to_spm() (in module rss_ringoccs.tools.et_to_spm)

 	
 	extract_list_from_str() (rss_ringoccs.calibration.power_normalization.Normalization method)

 	ExtractCSVData (class in rss_ringoccs.tools.CSV_tools)

F

 	
 	find_gaps() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	find_noise() (rss_ringoccs.calibration.calc_tau_thresh.calc_tau_thresh method)

 	FindOptimalResolution (class in rss_ringoccs.diffrec.advanced_tools)

 	fit_check() (rss_ringoccs.calibration.power_normalization.Normalization method)

 	fit_freespace_power() (rss_ringoccs.calibration.power_normalization.Normalization method)

 	
 	fit_freq_offset() (rss_ringoccs.calibration.freq_offset_fit.FreqOffsetFit method)

 	FreqOffsetFit (class in rss_ringoccs.calibration.freq_offset_fit)

 	fresnel_cos() (in module rss_ringoccs.diffrec.special_functions)

 	fresnel_scale() (in module rss_ringoccs.diffrec.special_functions)

 	fresnel_sin() (in module rss_ringoccs.diffrec.special_functions)

G

 	
 	galleryplots() (in module rss_ringoccs.tools.compare)

 	Geometry (class in rss_ringoccs.occgeo.occgeo)

 	get_cal() (in module rss_ringoccs.tools.CSV_tools)

 	get_chord_ind() (rss_ringoccs.occgeo.occgeo.Geometry method)

 	get_dlp() (in module rss_ringoccs.tools.CSV_tools)

 	get_f_sky_pred() (rss_ringoccs.rsr_reader.rsr_reader.RSRReader method)

 	get_freespace() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	
 	get_freespace_km() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	get_geo() (in module rss_ringoccs.tools.CSV_tools)

 	get_planet_occ_times() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	get_pole() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	get_profile_dir() (rss_ringoccs.occgeo.occgeo.Geometry method)

 	get_rev_info() (in module rss_ringoccs.tools.history)

 	get_start_jd() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	get_tau() (in module rss_ringoccs.tools.CSV_tools)

H

 	
 	hfit_med() (rss_ringoccs.calibration.power_normalization.Normalization method)

I

 	
 	inverse_square_well_diffraction() (in module rss_ringoccs.diffrec.special_functions)

K

 	
 	kb20() (in module rss_ringoccs.diffrec.window_functions)

 	kb25() (in module rss_ringoccs.diffrec.window_functions)

 	kb35() (in module rss_ringoccs.diffrec.window_functions)

 	kbal() (in module rss_ringoccs.diffrec.window_functions)

 	
 	kbmd20() (in module rss_ringoccs.diffrec.window_functions)

 	kbmd25() (in module rss_ringoccs.diffrec.window_functions)

 	kbmd35() (in module rss_ringoccs.diffrec.window_functions)

 	kbmdal() (in module rss_ringoccs.diffrec.window_functions)

M

 	
 	ModelFromGEO (class in rss_ringoccs.diffrec.advanced_tools)

N

 	
 	Normalization (class in rss_ringoccs.calibration.power_normalization)

 	
 	normalize() (in module rss_ringoccs.diffrec.window_functions)

P

 	
 	plot_power_profile() (rss_ringoccs.calibration.power_normalization.Normalization method)

 	plotFORFit() (rss_ringoccs.calibration.freq_offset_fit.FreqOffsetFit method)

 	
 	pre_resample() (in module rss_ringoccs.calibration.resample_IQ)

 	psi() (in module rss_ringoccs.diffrec.special_functions)

R

 	
 	rad_converge() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	read_spectro() (in module rss_ringoccs.scatter.spectro_reader)

 	rect() (in module rss_ringoccs.diffrec.window_functions)

 	remove_blocked() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	resample_IQ() (in module rss_ringoccs.calibration.resample_IQ)

 	resolution_inverse() (in module rss_ringoccs.diffrec.special_functions)

 	rev_to_occ_info() (in module rss_ringoccs.tools.history)

 	RSRReader (class in rss_ringoccs.rsr_reader.rsr_reader)

 	rss_ringoccs (module)

 	rss_ringoccs.calibration (module)

 	rss_ringoccs.calibration.calc_f_sky_recon (module)

 	rss_ringoccs.calibration.calc_freq_offset (module)

 	rss_ringoccs.calibration.calc_tau_thresh (module)

 	rss_ringoccs.calibration.calibration_class (module)

 	rss_ringoccs.calibration.dlp_class (module)

 	rss_ringoccs.calibration.freq_offset_fit (module)

 	rss_ringoccs.calibration.power_normalization (module)

 	rss_ringoccs.calibration.resample_IQ (module)

 	
 	rss_ringoccs.diffrec (module)

 	rss_ringoccs.diffrec.advanced_tools (module)

 	rss_ringoccs.diffrec.diffraction_correction (module)

 	rss_ringoccs.diffrec.special_functions (module)

 	rss_ringoccs.diffrec.window_functions (module)

 	rss_ringoccs.occgeo (module)

 	rss_ringoccs.occgeo.calc_occ_geometry (module)

 	rss_ringoccs.occgeo.occgeo (module)

 	rss_ringoccs.rsr_reader (module)

 	rss_ringoccs.rsr_reader.rsr_reader (module)

 	rss_ringoccs.scatter (module)

 	rss_ringoccs.scatter.spectro_reader (module)

 	rss_ringoccs.scatter.spectrogram (module)

 	rss_ringoccs.tools (module)

 	rss_ringoccs.tools.compare (module)

 	rss_ringoccs.tools.CSV_tools (module)

 	rss_ringoccs.tools.et_to_spm (module)

 	rss_ringoccs.tools.history (module)

 	rss_ringoccs.tools.spm_to_et (module)

S

 	
 	savitzky_golay() (in module rss_ringoccs.diffrec.special_functions)

 	Scatter() (in module rss_ringoccs.scatter.spectrogram)

 	single_slit_diffraction() (in module rss_ringoccs.diffrec.special_functions)

 	spectro() (in module rss_ringoccs.scatter.spectrogram)

 	
 	split_chord_arr() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 	spm_to_et() (in module rss_ringoccs.tools.spm_to_et)

 	square_well_diffraction() (in module rss_ringoccs.diffrec.special_functions)

 	stack_spec() (in module rss_ringoccs.scatter.spectrogram)

V

 	
 	verify_chord() (rss_ringoccs.occgeo.occgeo.Geometry method)

W

 	
 	window_width() (in module rss_ringoccs.diffrec.window_functions)

 	
 	write_history_dict() (in module rss_ringoccs.tools.history)

X

 	
 	xform_j2k_to_pcf() (in module rss_ringoccs.occgeo.calc_occ_geometry)

 _static/up-pressed.png

_static/up.png

_static/plus.png

_static/file.png

_static/minus.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to rss_ringoccs’s documentation!

 		
 rss_ringoccs package

 		
 Subpackages

 		
 rss_ringoccs.calibration package

 		
 rss_ringoccs.diffrec package

 		
 rss_ringoccs.occgeo package

 		
 rss_ringoccs.rsr_reader package

 		
 rss_ringoccs.scatter package

 		
 rss_ringoccs.tools package

_images/math/041510eddb481b871d8a3a7dccd7e665e590fa40.png
P, =|I*+1Q%

_images/math/04a29c6546de2b03416623e860f9ef830cf53ef2.png
dy/dz = sin(Fx°)

_images/math/01f1d67764c2ce1feafa71713f9b4aee68495fad.png
N 1. -
raresn = = sin(B) In (5 CaPy

_images/math/1765aef61bc8915406f332ffa2518db208fa00fa.png
—1/e

_images/math/1a4611c60e2920668038a9965d262e5a6955e522.png

_images/math/0566ae1f2f279d28e4ec83cd09e789aa448e9b48.png
r/lexp(—z)+x—1)

_images/math/0d938218bc008a60c5d3d32ca325af8b607c91bc.png
ST f(E)of pset — F(E)ogpset) [F(E)of fset)’

_images/math/2822d058c42b3cdb7bf689d2905a2ec50a5303b3.png

_images/math/288021f4aa82865fee452d1fc9e9e6c898ffdfdc.png

_images/math/26dd492f82133fbacbe2427404fac52665374d7a.png
f(t)of Fset

_images/math/320fd9c1511bb07e8bcebd43619f7664692b5343.png
F()of et

_images/math/3cf5aa5abe312e6fd4996975341a43aa566e8d8d.png

_images/math/294e681221779224ef235de901ff796e8c92c872.png
I. +1Q. = [I, +1Q] exp(—iv)

_images/math/2f0a12a514c77d416f43e3a639e90acb04756aad.png
di) /do

_images/math/443026aca0b695eb200d9327bba30fb06f5e738e.png

_images/math/3d7457c11df7dd6fa1661be9ac2a1f15c7ae0494.png
f@)sky = far(t) + f(E)of fset

_images/math/3f39ebba211df8e173eccc11ef1235282ca282c2.png

_images/math/5ea248c1142fa92f9daad47f5ab7ecd220fc14cc.png
(1 + 2a)/expl(a)

_images/math/5eb2bc24248f8e0124c95f07aff8b4d35dacd3bd.png

_images/math/467158caf1360dfe665c414e2b0834d233fa9bae.png
P

 [dp*

_images/math/499a2ee48b33448e80b97af9df9550828bdbfb59.png

_images/math/654c21973e0c1cbcc1ae934b90a12138653315f8.png

_images/math/6fb247803cd3e75b3bdf1fd55a66ba5882a05dee.png

_images/math/5ec053cf70dc1c98cc297322250569eda193e7a4.png

_images/math/63d51cb8e0c10c927fa04bdaf3d5d44f85e09a0e.png

_images/math/703933d0c8f0e8638325af0bd658c8964c6e1ce4.png
dy/dr = —= exp(—z?)

_images/math/76f1d8ace30435987c01a00ca53a71cba1f40e6c.png

_images/math/9805f44feec6f81d376d09e88b8236635edbb3c8.png

_images/math/a08c4a4b5a97a74b6fd95bb98a5cfb7d739f6e33.png

_images/math/8722e8f5a0ec0495074737b84cdd8a6c896c3fe1.png
1/1p(cx)

_images/math/89cf51c44897404a4a8e1c0a7ef0837df241123b.png

_images/math/b0a677c7b64a9ce46bca897eabaf2af1c84de1a5.png

_images/math/b312b05c486811aca52385a0be28ba9bb38d2e59.png
I. +10).

_images/math/a212f7c6a38408becb8ac93835d3417fcd2e0128.png
dy/dr = —= exp(—z?)

_images/math/a95977eba2be3fe847aed9326df98fd60995c617.png
e

_images/math/b969cab43bfd321ea4ab29672bfdefed790888be.png
I +10)

_images/math/77e57cb3b22c4a749cc0eace6176f2e629cb1054.png

_images/math/d154d4f1f335902ffe03b6fbf315c6c5cd2a857d.png
(1 + 2a))/expla)

_images/math/d7f20059e76215b46944224c63303a09fdb9561f.png

_images/math/ca2680d9d9ef815ed23b20c1ea977432a323552b.png

_images/math/ca7482b7d9f08148ade8dc72e50d9400403387b7.png
Tthresh

_images/math/e3264dac37bfcbb732b4e17ce2cf16c442658153.png
I. +10).

_images/math/e89765431934c995d7d6a5545dbd4dbf64122339.png
()

_images/math/dca2d6b40349191361c872b2a86d642aa679a90d.png
[_,sin(5t%)dt

_images/math/e1206e75c51e72ed5cb9e8d1392d2786bd71037c.png

_images/math/c1bae5b4ce01f36bafaa96feeacd24fd8cc950ab.png

_images/math/c2f31c22645274c375eff7920cfdfdc18d60341f.png

_static/comment-bright.png

_images/math/ff0b1ca7eb8010c3a6e1ab4161c9e7da84236fe3.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_images/math/ee2954ad7f6703ceec6c8a8f3286340c7d8c890f.png

_images/math/f4170ed8938b79490d8923857962695514a8e4cb.png

_images/math/edba97b4c0d864d26e92ea7ea73767fa38eef3f7.png

