
RPyC Documentation
Release 6.0.0/2024-02-23

Tomer Filiba

Feb 23, 2024

CONTENTS

1 Getting Started 3

2 Features 5

3 Use Cases 7

4 Contents 9

Python Module Index 95

Index 97

i

ii

RPyC Documentation, Release 6.0.0/2024-02-23

Version 6.0.0 has been released!

Be sure to read the changelog before upgrading!

Please use the github issues to ask questions report problems. Please do not email me directly

RPyC (pronounced as are-pie-see), or Remote Python Call, is a transparent python library for symmetrical remote
procedure calls, clustering and distributed-computing. RPyC makes use of object-proxying, a technique that employs
python’s dynamic nature, to overcome the physical boundaries between processes and computers, so that remote objects
can be manipulated as if they were local.

Fig. 1: A screenshot of a Windows client connecting to a Linux server. Note that text written to the server’s stdout is
actually printed on the server’s console.

CONTENTS 1

https://github.com/tomerfiliba/rpyc/issues
http://www.python.org
http://en.wikipedia.org/wiki/Remote_procedure_calls
http://en.wikipedia.org/wiki/Remote_procedure_calls
http://en.wikipedia.org/wiki/Clustering
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Proxy_pattern

RPyC Documentation, Release 6.0.0/2024-02-23

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Installing RPyC is as easy as pip install rpyc.

If you’re new to RPyC, be sure to check out the Tutorial. Next, refer to the Documentation and API Reference, as well
as the Mailing List.

For an introductory reading (that may or may not be slightly outdated), David Mertz wrote a very thorough Charming
Python installment about RPyC, explaining how it’s different from existing alternatives (Pyro, XMLRPC, etc.), what
roles it can play, and even show-cases some key features of RPyC (like the security model, remote monkey-patching,
or remote resource utilization).

3

http://gnosis.cx/dW/
http://www.ibm.com/developerworks/linux/library/l-rpyc/
http://www.ibm.com/developerworks/linux/library/l-rpyc/

RPyC Documentation, Release 6.0.0/2024-02-23

4 Chapter 1. Getting Started

CHAPTER

TWO

FEATURES

• Transparent - access to remote objects as if they were local; existing code works seamlessly with both local or
remote objects.

• Symmetric - the protocol itself is completely symmetric, meaning both client and server can serve requests. This
allows, among other things, for the server to invoke callbacks on the client side.

• Synchronous and asynchronous operation

• Platform Agnostic - 32/64 bit, little/big endian, Windows/Linux/Solaris/Mac. . . access objects across different
architectures.

• Low Overhead - RpyC takes an all-in-one approach, using a compact binary protocol, and requiring no complex
setup (name servers, HTTP, URL-mapping, etc.)

• Secure - employs a Capability based security model; integrates easily with SSH

• Zero-Deploy Enabled – Read more about Zero-Deploy RPyC

• Integrates with TLS/SSL, SSH and inetd.

5

http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Capability-based_security
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/inetd

RPyC Documentation, Release 6.0.0/2024-02-23

6 Chapter 2. Features

CHAPTER

THREE

USE CASES

• Excels in testing environments – run your tests from a central machine offering a convenient development envi-
ronment, while the actual operations take place on remote ones.

• Control/administer multiple hardware or software platforms from a central point: any machine that runs Python
is at your hand! No need to master multiple shell-script languages (BASH, Windows batch files, etc.) and use
awkward tools (awk, sed, grep, . . .)

• Access remote hardware resources transparently. For instance, suppose you have some proprietary electronic
testing equipment that comes with drivers only for HPUX, but no one wants to actually use HPUX. . . just
connect to the machine and use the remote ctypes module (or open the /dev file directly).

• Monkey-patch local code or remote code. For instance, using monkey-patching you can cross network boundaries
by replacing the socket module of one program with a remote one. Another example could be replacing the os
module of your program with a remote module, causing os.system (for instance) to run remotely.

• Distributing workload among multiple machines with ease

• Implement remote services (like WSDL or RMI) quickly and concisely (without the overhead and limitations of
these technologies)

7

http://en.wikipedia.org/wiki/Monkey_patch
http://en.wikipedia.org/wiki/WSDL
http://en.wikipedia.org/wiki/Java_remote_method_invocation

RPyC Documentation, Release 6.0.0/2024-02-23

8 Chapter 3. Use Cases

CHAPTER

FOUR

CONTENTS

4.1 Download and Install

You can always download the latest releases of RPyC from the project’s github page or its PyPI page. The easiest way
to install RPyC, however, is using:

pip install rpyc

If you don’t want to mess with virtualenvs or mess with system directories, install as user:

pip install rpyc --user

Be sure to read the changelog before upgrading versions! Also, always link your own applications against a fixed major
version of rpyc!

4.1.1 Platforms and Interpreters

RPyC is a pure-python library, and as such can run on any architecture and platform that runs python (or one of its
other implementations), both 32- and 64-bit. This is also true for a client and its server, which may run on different
architectures. The latest release supports:

• Python (CPython) 2.7-3.7

• May work on py2.6

• May work with Jython and IronPython. However, these are not primary concerns for me. Breakage may occur
at any time.

Cross-Interpreter Compatibility

Note that you cannot connect from a Python 2.x interpreter to a 3.x one, or vice versa. Trying to do so will results in
all kinds of strange exceptions, so beware. This is because Python 3 introduces major changes to the object model used
by Python 2.x: some types were removed, added or unified into others. Byte- and Unicode- strings gave me a nightmare
(and they still account for many bugs in the core interpreter). On top of that, many built-in modules and functions were
renamed or removed, and many new language features were added. These changes render the two major versions of
Python incompatible with one another, and sadly, this cannot be bridged automatically by RPyC at the serialization
layer.

It’s not that I didn’t try – it’s just too hard a feat. It’s basically like writing a 100% working 2to3 tool, alongside with a
matching 3to2 one; and that, I reckon, is comparable to the halting problem (of course I might be wrong here, but it
still doesn’t make it feasible).

9

https://github.com/tomerfiliba/rpyc/releases
http://pypi.python.org/pypi/rpyc
https://github.com/tomerfiliba/rpyc/issues/54
http://docs.python.org/library/2to3.html

RPyC Documentation, Release 6.0.0/2024-02-23

Big words aside – you can connect from Python 2.x to Python 2.y, as long as you only use types/modules/features
supported by both; and you can connect from Python 3.x to Python 3.y, under the same assumption.

Note: As a side note, do not try to mix different versions of RPyC (e.g., connecting a client machine running RPyC
3.1.0 to a server running RPyC 3.2.0). The wire-protocol has seen little changes since the release of RPyC 3.0, but the
library itself has changed drastically. This might work, but don’t count on it.

4.2 Development

4.2.1 Mailing List

There is an old mailing list that may contain useful information and that you should search before asking questions.
Nowadays however, do not count on getting any answers for new questions there.

4.2.2 Repository

RPyC is developed on github, where you can always find the latest code or fork the project.

4.2.3 Bugs and Patches

We’re using github’s issue tracker for bug reports, feature requests, and overall status.

Patches are accepted through github pull requests.

4.2.4 Dependencies

The core of RPyC has no external dependencies, so you can use it out of the box for “simple” use. However, RPyC
integrates with some other projects to provide more features, and if you wish to use any of those, you must install them:

• PyWin32 - Required for PipeStream on Windows

• zlib for IronPython - Required for IronPython prior to v2.7

4.3 Tutorial

Here’s a little tutorial to get you started with RPyC in no time:

4.3.1 Part 1: Introduction to Classic RPyC

We’ll kick-start the tutorial with what is known as classic-style RPyC, i.e., the methodology of RPyC 2.60. Since RPyC
3 is a complete redesign of the library, there are some minor changes, but if you were familiar with RPyC 2.60, you’ll
feel right at home. And even if you were not – we’ll make sure you feel at home in a moment ;)

10 Chapter 4. Contents

http://groups.google.com/group/rpyc
http://github.com/tomerfiliba/rpyc
http://github.com/tomerfiliba/rpyc/issues
http://help.github.com/pull-requests/
http://sourceforge.net/projects/pywin32/files/pywin32/
https://bitbucket.org/jdhardy/ironpythonzlib

RPyC Documentation, Release 6.0.0/2024-02-23

Running a Server

Let’s start with the basics: running a server. In this tutorial we’ll run both the server and the client on the same machine
(the localhost). The classic server can be started using:

$ python bin/rpyc_classic.py
INFO:SLAVE/18812:server started on [127.0.0.1]:18812

This shows the parameters this server is running with:

• SLAVE indicates the SlaveService (you’ll learn more about services later on), and

• [127.0.0.1]:18812 is the address on which the server binds, in this case the server will only accept connec-
tions from localhost. If you run a server with --host 0.0.0.0, you are free for arbitrary code execution from
anywhere.

Running a Client

The next step is running a client which connects to the server. The code needed to create a connection to the server is
quite simple, you’d agree

import rpyc
conn = rpyc.classic.connect("localhost")

If your server is not running on the default port (TCP 18812), you’ll have to pass the port= parameter to classic.
connect().

The modules Namespace

The modules property of connection objects exposes the server’s module-space, i.e., it lets you access remote modules.
Here’s how:

rsys = conn.modules.sys # remote module on the server!

This dot notation only works for top level modules. Whenever you would require a nested import for modules contained
within a package, you have to use the bracket notation to import the remote module, e.g.:

minidom = conn.modules["xml.dom.minidom"]

With this alone you are already set to do almost anything. For example, here is how you see the server’s command line:

>>> rsys.argv
['bin/rpyc_classic.py']

. . . add module search paths for the server’s import mechanism:

>>> rsys.path.append('/tmp/totally-secure-package-location)

. . . change the current working directory of the server process:

>>> conn.modules.os.chdir('..')

. . . or even print something on the server’s stdout:

4.3. Tutorial 11

RPyC Documentation, Release 6.0.0/2024-02-23

>>> print("Hello World!", file=conn.modules.sys.stdout)

The builtins Namespace

The builtins property of classic connection exposes all builtin functions available in the server’s python environment.
You could use it for example to access a file on the server:

>>> f = conn.builtins.open('/home/oblivious/.ssh/id_rsa')
>>> f.read()
'-----BEGIN RSA PRIVATE KEY-----\nMIIJKQIBAAKCAgEA0...XuVmz/ywq+5m\n-----END RSA PRIVATE␣
→˓KEY-----\n'

Ooopsies, I just leaked my private key. . . ;)

The eval and execute Methods

If you are not satisfied already, here is more: Classic connections also have properties eval and execute that allow
you to directly evaluate arbitrary expressions or even execute arbitrary statements on the server. For example:

>>> conn.execute('import math')
>>> conn.eval('2*math.pi')
6.283185307179586

But wait, this requires that rpyc classic connections have some notion of global variables, how can you see them? They
are accessible via the namespace property that will be initialized as empty dictionary for every new connection. So,
after our import, we now have:

>>> conn.namespace
{'__builtins__': <...>, 'math': <...>}

The aware reader will have noticed that neither of these shenanigans are strictly needed, as the same functionality
could be achieved by using the conn.builtins.compile() function, which is also accessible via conn.modules.
builtins.compile(), and manually feeding it with a remotely created dict.

That’s true, but we sometimes like a bit of sugar;)

The teleport method

There is another interesting method that allows you to transmit functions to the other sides and execute them over there:

>>> def square(x):
... return x**2
>>> fn = conn.teleport(square)
>>> fn(2)

This calculates the square of two as expected, but the computation takes place on the remote!

Furthermore, teleported functions are automatically defined in the remote namespace:

>>> conn.eval('square(3)')
9

(continues on next page)

12 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

>>> conn.namespace['square'] is fn
True

And the teleported code can also access the namespace:

>>> conn.execute('import sys')
>>> version = conn.teleport(lambda: print(sys.version_info))
>>> version()

prints the version on the remote terminal.

Note that currently it is not possible to teleport arbitrary functions, in particular there can be issues with closures to
non-trivial objects. In case of problems it may be worth taking a look at external libraries such as dill.

Continue to Part 2: Netrefs and Exceptions. . .

4.3.2 Part 2: Netrefs and Exceptions

In Part 1: Introduction to Classic RPyC, we have seen how to use rpyc classic connection to do almost anything
remotely.

So far everything seemed normal. Now it’s time to get our hands dirty and understand more what happens under the
hood!

Setup

Start a classic server using:

python bin/rpyc_classic.py

And connect your client:

>>> import rpyc
>>> conn = rpyc.classic.connect("localhost")

Netrefs

We know that we can use conn.modules.sys to access the sys module the server. . . But what kind of magical object
is that thing anyway?

>>> type(conn.modules.sys)
<netref class 'builtins.module'>

>>> type(conn.modules.sys.path)
<netref class 'builtins.list'>

>>> type(conn.modules.os.path.abspath)
<netref class 'builtins.function'>

Voila, netrefs (network references, also known as transparent object proxies) are special objects that delegate everything
done on them locally to the corresponding remote objects. Netrefs may not be real lists of functions or modules, but

4.3. Tutorial 13

https://pypi.org/project/dill/

RPyC Documentation, Release 6.0.0/2024-02-23

they “do their best” to look and feel like the objects they point to. . . in fact, they even fool python’s introspection
mechanisms!

>>> isinstance(conn.modules.sys.path, list)
True

>>> import inspect
>>> inspect.isbuiltin(conn.modules.os.listdir)
True
>>> inspect.isfunction(conn.modules.os.path.abspath)
True
>>> inspect.ismethod(conn.modules.os.path.abspath)
False
>>> inspect.ismethod(conn.modules.sys.stdout.write)
True

Cool, eh?

We all know that the best way to understand something is to smash it, slice it up and spill the contents into the world!
So let’s do that:

>>> dir(conn.modules.sys.path)
['____conn__', '____id_pack__', '__add__', '__class__', '__contains__', '__delattr__',
'__delitem__', '__delslice__', '__doc__', '__eq__', '__ge__', '__getattribute__',
'__getitem__', '__getslice__', '__gt__', '__hash__', '__iadd__', '__imul__',
'__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__',
'__setitem__', '__setslice__', '__str__', 'append', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

In addition to some expected methods and properties, you will have noticed ____conn__ and ____id_pack__. These
properties store over which connection the object should be resolved and an identifier that allows the server to lookup
the object from a dictionary.

Exceptions

Let’s continue on this exhilarating path of destruction. After all, things are not always bright, and problems must be
dealt with. When a client makes a request that fails (an exception is raised on the server side), the exception propagates
transparently to the client. Have a look at this snippet:

>>> conn.modules.sys.path[300] # there are only 12 elements in the list...
======= Remote traceback =======
Traceback (most recent call last):
File "D:\projects\rpyc\core\protocol.py", line 164, in _dispatch_request
res = self._handlers[handler](self, *args)

File "D:\projects\rpyc\core\protocol.py", line 321, in _handle_callattr
return attr(*args, **dict(kwargs))

IndexError: list index out of range

======= Local exception ========
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\projects\rpyc\core\netref.py", line 86, in method
return self.____sync_req__(consts.HANDLE_CALLATTR, name, args, kwargs)

(continues on next page)

14 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

File "D:\projects\rpyc\core\netref.py", line 53, in ____sync_req__
return self.____conn__.sync_request(handler, self.____id_pack__, *args)

File "D:\projects\rpyc\core\protocol.py", line 224, in sync_request
self.serve()

File "D:\projects\rpyc\core\protocol.py", line 196, in serve
self._serve(msg, seq, args)

File "D:\projects\rpyc\core\protocol.py", line 189, in _serve
self._dispatch_exception(seq, args)

File "D:\projects\rpyc\core\protocol.py", line 182, in _dispatch_exception
raise obj

IndexError: list index out of range
>>>

As you can see, we get two tracebacks: the remote one, showing what went wrong on the server, and a local one,
showing what we did to cause it.

Custom Exception Handling Example

The server example:

import rpyc
import urllib.error
from rpyc.utils.server import OneShotServer

class HelloService(rpyc.Service):
def exposed_foobar(self, remote_str):

raise urllib.error.URLError("test")

if __name__ == "__main__":
rpyc.lib.setup_logger()
server = OneShotServer(

HelloService,
port=12345,
protocol_config={'import_custom_exceptions': True}

)
server.start()

The client example:

import rpyc
import urllib.error
rpyc.core.vinegar._generic_exceptions_cache["urllib.error.URLError"] = urllib.error.
→˓URLError

if __name__ == "__main__":
conn = rpyc.connect("localhost", 12345)
try:

print(conn.root.foobar('hello'))
(continues on next page)

4.3. Tutorial 15

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

except urllib.error.URLError:
print('caught a URLError')

Continue to Part 3: Services and New Style RPyC. . .

4.3.3 Part 3: Services and New Style RPyC

So far we have covered the features of classic RPyC. However, the new model of RPyC programming (starting with
RPyC 3.00), is based on services. As you might have noticed in the classic mode, the client basically gets full control
over the server, which is why we (used to) call RPyC servers slaves. Luckily, this is no longer the case. The new model
is service oriented: services provide a way to expose a well-defined set of capabilities to the other party, which makes
RPyC a generic RPC platform. In fact, the classic RPyC that you’ve seen so far, is simply “yet another” service.

Services are quite simple really. To prove that, the SlaveService (the service that implements classic RPyC) is only
30 lines long, including comments ;). Basically, a service has the following boilerplate:

import rpyc

class MyService(rpyc.Service):
def on_connect(self, conn):

code that runs when a connection is created
(to init the service, if needed)
pass

def on_disconnect(self, conn):
code that runs after the connection has already closed
(to finalize the service, if needed)
pass

def exposed_get_answer(self): # this is an exposed method
return 42

exposed_the_real_answer_though = 43 # an exposed attribute

def get_question(self): # while this method is not exposed
return "what is the airspeed velocity of an unladen swallow?"

Note: The conn argument for on_connect and on_disconnect are added in rpyc 4.0. This is backwards incom-
patible with previous versions where instead the service constructor is called with a connection parameter and stores it
into self._conn.

As you can see, apart from the special initialization/finalization methods, you are free to define the class like any other
class. Unlike regular classes, however, you can choose which attributes will be exposed to the other party: if the name
starts with exposed_, the attribute will be remotely accessible, otherwise it is only locally accessible. In this example,
clients will be able to call get_answer, but not get_question, as we’ll see in a moment.

To expose your service to the world, however, you will need to start a server. There are many ways to do that, but the
simplest is

... continuing the code snippet from above ...

(continues on next page)

16 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

if __name__ == "__main__":
from rpyc.utils.server import ThreadedServer
t = ThreadedServer(MyService, port=18861)
t.start()

To the remote party, the service is exposed as the root object of the connection, e.g., conn.root. Now you know all
you need to understand this short demo:

>>> import rpyc
>>> c = rpyc.connect("localhost", 18861)
>>> c.root
<__main__.MyService object at 0x834e1ac>

This “root object” is a reference (netref) to the service instance living in the server process. It can be used access and
invoke exposed attributes and methods:

>>> c.root.get_answer()
42
>>> c.root.the_real_answer_though
43

Meanwhile, the question is not exposed:

>>> c.root.get_question()
======= Remote traceback =======
...
File "/home/tomer/workspace/rpyc/core/protocol.py", line 298, in sync_request
raise obj

AttributeError: cannot access 'get_question'

Access policy

By default methods and attributes are only visible if they start with the exposed_ prefix. This also means that attributes
of builtin objects such as lists or dicts are not accessible by default. If needed, you can configure this by passing
appropriate options when creating the server. For example:

from rpyc.utils.server import ThreadedServer
server = ThreadedServer(MyService, port=18861, protocol_config={

'allow_public_attrs': True,
})
server.start()

For a description of all available settings see the DEFAULT_CONFIG .

4.3. Tutorial 17

RPyC Documentation, Release 6.0.0/2024-02-23

Shared service instance

Note that we have here passed the class MyService to the server with the effect that every incoming connection will
use its own, independent MyService instance as root object.

If you pass in an instance instead, all incoming connections will use this instance as their shared root object, e.g.:

t = ThreadedServer(MyService(), port=18861)

Note the subtle difference (parentheses!) to the example above.

Note: Passing instances is supported starting with rpyc 4.0. In earlier versions, you can only pass a class of which
every connection will receive a separate instance.

Passing arguments to the service

In the second case where you pass in a fully constructed service instance, it is trivial to pass additional arguments to
the __init__ function. However, the situation is slightly more tricky if you want to pass arguments while separating
the root objects for each connection. In this case, use classpartial() like so:

from rpyc.utils.helpers import classpartial

service = classpartial(MyService, 1, 2, pi=3)
t = ThreadedServer(service, port=18861)

Note: classpartial is added in version 4.0.

But Wait, There’s More!

All services have a name, which is normally the name of the class, minus the "Service" suffix. In our case, the service
name is "MY" (service names are case-insensitive). If you wish to define a custom name, or multiple names (aliases),
you can do so by setting the ALIASES list. The first alias is considered to be the “formal name”, while the rest are
aliases:

class MyService(rpyc.Service):
ALIASES = ["floop", "bloop"]
...

In the original code snippet, this is what the client gets:

>>> c.root.get_service_name()
'MY'
>>> c.root.get_service_aliases()
('MY',)

The reason services have names is for the service registry: normally, a server will broadcast its details to a nearby
registry server for discovery. To use service discovery, a make sure you start the bin/rpyc_registry.py. This
server listens on a broadcast UDP socket, and will answer to queries about which services are running where.

Once a registry server is running somewhere “broadcastable” on your network, and the servers are configured to auto-
register with it (the default), clients can discover services automagically. To start a server:

18 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

>>> mysvc = rpyc.OneShotServer(service=MyService, port=18861, auto_register=True)
>>> mysvc.start()

To find servers running a given service name:

>>> rpyc.list_services()
>>> rpyc.discover("MY")
(('192.168.1.101', 18861),)

And if you don’t care to which you server you connect, you use connect_by_service:

>>> c2 = rpyc.connect_by_service("MY")
>>> c2.root.get_answer()
42

Decoupled Services

So far we’ve discussed only about the service that the server exposes, but what about the client? Does the client expose
a service too? After all, RPyC is a symmetric protocol – there’s no difference between the client and the server. Well,
as you might have guessed, the answer is yes: both client and server expose services. However, the services exposed
by the two parties need not be the same – they are decoupled.

By default, clients (using one of the connect() functions to connect to a server) expose the VoidService. As the
name suggests, this service exposes no functionality to the other party, meaning the server can’t make requests to the
client (except for explicitly passed capabilities, like function callbacks). You can set the service exposed by the client
by passing the service = parameter to one of the connect() functions.

The fact that the services on both ends of the connection are decoupled, does not mean they can be arbitrary. For
instance, “service A” might expect to be connected to “service B” – and runtime errors (mostly AttributeError)
will ensue if this not the case. Many times the services on both ends can be different, but do keep it in mind that if you
need interaction between the parties, both services must be “compatible”.

Note: Classic mode: when using any of the connect() functions, the client-side service is set to SlaveService as
well (being identical to the server).

Continue to Part 4: Callbacks and Symmetry. . .

4.3.4 Part 4: Callbacks and Symmetry

Before we dive into asynchronous invocation, we have to cover once last topic: callbacks. Passing a “callback function”
means treating functions (or any callable objects in our case) as first-class objects, i.e., like any other value in the
language. In C and C++ this is done with function pointers, but in python, there’s no special machinery for it. Surely
you’ve seen callbacks before:

>>> def f(x):
... return x**2
...
>>> map(f, range(10)) # f is passed as an argument to map
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Since in python functions (as well as any other value) are objects, and since RPyC is symmetrical, local functions can
be passed as arguments to remote objects, and vice versa. Here’s an example

4.3. Tutorial 19

http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/First-class_object
http://en.wikipedia.org/wiki/Function_pointer

RPyC Documentation, Release 6.0.0/2024-02-23

>>> import rpyc
>>> c = rpyc.classic.connect("localhost")
>>> rlist = c.modules.builtins.list((0,1,2,3,4,5,6,7,8,9)) # this is a remote list
>>> rlist
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>>
>>> def f(x):
... return x**3
...
>>> list(c.modules.builtins.map(f, rlist)) # calling the remote map with the local␣
→˓function f as an argument
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
>>>

and to better understand the previous example
>>> def g(x):
... print("hi, this is g, executing locally", x)
... return x**3
...
>>> list(c.modules.builtins.map(g, rlist))
hi, this is g, executing locally 0
hi, this is g, executing locally 1
hi, this is g, executing locally 2
hi, this is g, executing locally 3
hi, this is g, executing locally 4
hi, this is g, executing locally 5
hi, this is g, executing locally 6
hi, this is g, executing locally 7
hi, this is g, executing locally 8
hi, this is g, executing locally 9
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
>>>

To explain what the symmetry of RPyC means, consider the following diagram:

As you can see, while the client is waiting for the result (a synchronous request), it will serve all incoming requests,
meaning the server can invoke the callback it had received on the client. In other words, the symmetry of RPyC means
that both the client and the server are ultimately “servers”, and the “role” is more semantic than programmatic.

Continue to Part 5: Asynchronous Operation and Events. . .

4.3.5 Part 5: Asynchronous Operation and Events

Asynchronism

The last part of the tutorial deals with a more “advanced” issue of RPC programming, asynchronous operation, which
is a key feature of RPyC. The code you have seen so far was synchronous – which is similar to the code you often write:
when you invoke a function, you block until the result arrives. Asynchronous invocation allows you to start the request
and continue rather than waiting. Instead of getting the result of the call, you get an object known as an AsyncResult
(also known as a “future” or “promise”) that will eventually hold the result.

Note that there is no guarantee on execution order for async requests!

To turn the invocation of a remote function (or any callable object) asynchronous, all you have to do is wrap it with

20 Chapter 4. Contents

http://en.wikipedia.org/wiki/Futures_and_promises

RPyC Documentation, Release 6.0.0/2024-02-23

4.3. Tutorial 21

RPyC Documentation, Release 6.0.0/2024-02-23

async_, which creates a wrapper function that will return an AsyncResult instead of blocking. AsyncResult objects
have several properties and methods that

• ready - indicates whether or not the result arrived

• error - indicates whether the result is a value or an exception

• expired - indicates whether the AsyncResult object is expired (its time-to-wait has elapsed before the result has
arrived). Unless set by set_expiry, the object will never expire

• value - the value contained in the AsyncResult. If the value has not yet arrived, accessing this property will
block. If the result is an exception, accessing this property will raise it. If the object has expired, then an exception
is raised. Otherwise, the value is returned

• wait() - wait for the result to arrive, or until the object is expired

• add_callback(func) - adds a callback to be invoked when the value arrives

• set_expiry(seconds) - sets the expiry time of the AsyncResult. By default, no expiry time is set

This may sound a bit complicated, so let us have a look at some real-life code, to convince you it is not that scary:

>>> import rpyc
>>> c=rpyc.classic.connect("localhost")
>>> c.modules.time.sleep
<built-in function sleep>
>>> c.modules.time.sleep(2) # i block for two seconds, until the call returns

wrap the remote function with async_(), which turns the invocation asynchronous
>>> asleep = rpyc.async_(c.modules.time.sleep)
>>> asleep
async_(<built-in function sleep>)

invoking async functions yields an AsyncResult rather than a value
>>> res = asleep(15)
>>> res
<AsyncResult object (pending) at 0x0842c6bc>
>>> res.ready
False
>>> res.ready
False

... after 15 seconds...
>>> res.ready
True
>>> print(res.value)
None
>>> res
<AsyncResult object (ready) at 0x0842c6bc>

And here’s a more interesting snippet:

>>> aint = rpyc.async_(c.builtins.int) # async wrapper for the remote type int

a valid call
>>> x = aint("8")
>>> x
<AsyncResult object (pending) at 0x0844992c>

(continues on next page)

22 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

>>> x.ready
True
>>> x.error
False
>>> x.value
8

and now with an exception
>>> x = aint("this is not a valid number")
>>> x
<AsyncResult object (pending) at 0x0847cb0c>
>>> x.ready
True
>>> x.error
True
>>> x.value
Traceback (most recent call last):
...
File "/opt/rpyc/rpyc/core/async_.py", line 102, in value
raise self._obj

ValueError: invalid literal for int() with base 10: 'this is not a valid number'

========= Remote Traceback (1) =========
Traceback (most recent call last):
File "/opt/rpyc/rpyc/core/protocol.py", line 324, in _dispatch_request
res = self._HANDLERS[handler](self, *args)

...
ValueError: invalid literal for int() with base 10: 'this is not a valid number'
>>>

Events

Combining async_ and callbacks yields a rather interesting result: async callbacks, also known as events. Generally
speaking, events are sent by an “event producer” to notify an “event consumer” of relevant changes, and this flow is
normally one-way (from producer to consumer). In other words, in RPC terms, events can be implemented as async
callbacks, where the return value is ignored. To better illustrate the situation, consider the following FileMonitor
example – it monitors a file (using os.stat()) for changes, and notifies the client when a change occurs (with the old
and new stat results).

import rpyc
import os
import time
from threading import Thread

class FileMonitorService(rpyc.Service):
class exposed_FileMonitor(object): # exposing names is not limited to methods :)

def __init__(self, filename, callback, interval = 1):
self.filename = filename
self.interval = interval
self.last_stat = None
self.callback = rpyc.async_(callback) # create an async callback

(continues on next page)

4.3. Tutorial 23

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

self.active = True
self.thread = Thread(target = self.work)
self.thread.start()

def exposed_stop(self): # this method has to be exposed too
self.active = False
self.thread.join()

def work(self):
while self.active:

stat = os.stat(self.filename)
if self.last_stat is not None and self.last_stat != stat:

self.callback(self.last_stat, stat) # notify the client of the␣
→˓change

self.last_stat = stat
time.sleep(self.interval)

if __name__ == "__main__":
from rpyc.utils.server import ThreadedServer
ThreadedServer(FileMonitorService, port = 18871).start()

And here’s a live demonstration of events:

>>> import rpyc
>>> f = open("/tmp/floop.bloop", "wb", buffering=0)
>>> conn = rpyc.connect("localhost", 18871)
>>> bgsrv = rpyc.BgServingThread(conn) # creates a bg thread to process incoming events
>>>
>>> def on_file_changed(oldstat, newstat):
... print("\nfile changed")
... print(f" old stat: {oldstat}")
... print(f" new stat: {newstat}")
...
>>> mon = conn.root.FileMonitor("/tmp/floop.bloop", on_file_changed) # create a filemon

wait a little for the filemon to have a look at the original file

>>> f.write(b"oloop") # change the file size and wait for filemon to notice the change
file changed

old stat: (33188, 1564681L, 2051L, 1, 1011, 1011, 0L, 1225204483, 1225204483,␣
→˓1225204483)

new stat: (33188, 1564681L, 2051L, 1, 1011, 1011, 6L, 1225204483, 1225204556,␣
→˓1225204556)

>>> f.close()
>>> mon.stop()
>>> bgsrv.stop()
>>> conn.close()

Note that in this demo I used BgServingThread , which basically starts a background thread to serve all incoming
requests, while the main thread is free to do as it wills. You don’t have to open a second thread for that, if your
application has a reactor (like gtk’s gobject.io_add_watch): simply register the connection with the reactor for
read, invoking conn.serve. If you don’t have a reactor and don’t wish to open threads, you should be aware that
these notifications will not be processed until you make some interaction with the connection (which pulls all incoming
requests). Here’s an example of that:

24 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

>>> conn = rpyc.connect("localhost", 18871)
>>> mon = conn.root.FileMonitor("/tmp/floop.bloop", on_file_changed)
>>> f.write(b"zloop") # change the file size

Notice that nothing is printed. To print the file change messages,
the RPyC connection must serve requests from filemon that contain stat data.
Dispatching a request would implicitly make the connection serve existing requests.
Executing conn.poll_all() would explicitly serve all requests, without an extra␣
→˓dispatch.
>>> conn.poll_all()
file changed

old stat: (33188, 1564681L, 2051L, 1, 1011, 1011, 0L, 1225205197, 1225205197,␣
→˓1225205197)

new stat: (33188, 1564681L, 2051L, 1, 1011, 1011, 6L, 1225205197, 1225205218,␣
→˓1225205218)
>>>

4.4 Documentation

4.4.1 Introduction

About RPyC

RPyC was inspired by the work of Eyal Lotem on pyinvoke, which pioneered in the field of “dynamic RPC” (where
there’s no predefined contract between the two sides). The two projects, however, are completely unrelated in any other
way. RPyC is developed and maintained by Tomer Filiba (tomerfiliba@gmail.com).

Note: Please do not send questions directly to my email – use our the github issues instead

Contributors

Contributors for newer versions are visible from the git commit history.

v3.2.3

• Guy Rozendorn - backported lots of fixes from 3.3 branch

• Alon Horev - UNIX domain socket patch

4.4. Documentation 25

http://pybuild.sourceforge.net/pyinvoke.html
http://tomerfiliba.com
mailto:tomerfiliba@gmail.com

RPyC Documentation, Release 6.0.0/2024-02-23

v3.2.2

• Rotem Yaari - Add logging of exceptions to the protocol layer, investigate EINTR issue

• Anselm Kruis - Make RPyC more introspection-friendly

• Rüdiger Kessel - SSH on windows patch

v3.2.1

• Robert Hayward - adding missing import

• pyscripter - investigating python 3 incompatibilities

• xanep - handling __cmp__ correctly

v3.2.0

• Alex - IPv6 support

• Sponce - added the ThreadPoolServer, several fixes to weak-references and AsyncResult

• Sagiv Malihi - Bug fix in classic server

• Miguel Alarcos - issue #8

• Pola Abram - Discovered several races when server threads trerminate

• Chris - Several bug fixes (#46, #49, #50)

v3.1.0

• Alex - better conventions, Jython support

• Fruch - testing, benchmarking

• Eyecue - porting to python3

• Jerome Delattre - IronPython support

• Akruis - bug fixes

v3.0.0-v3.0.7

• Noam Rapahel - provided the original Twisted-integration with RPyC.

• Gil Fidel - provided the original NamedPipeStream on Windows.

• Eyal Lotem - Consulting and spiritual support :)

• Serg Dobryak - backporting to python 2.3

• Jamie Kirkpatrick - patches for the registry server and client

26 Chapter 4. Contents

https://github.com/pyscripter
https://github.com/xanep
https://github.com/tomerfiliba/rpyc/issues/8

RPyC Documentation, Release 6.0.0/2024-02-23

Logo

The logo is derived from the Python logo, with explicit permission. I created it using Power Point (sorry, I’m no graphic
designer :), and all the files are made available here:

•

•

•

• Also in the original Power Point master.

Theory of Operation

This is a short outline of the “Theory of Operation” of RPyC. It will introduce the main concepts and terminology
that’s required in order to understand the library’s internals.

Theory

The most fundamental concept of computer programming, which almost all operating systems share, is the process. A
process is a unit of code and data, contained within an address space – a region of (virtual) memory, owned solely by
that process. This ensures that all processes are isolated from one another, so that they could run on the same hardware
without interfering to each other. While this isolation is essential to operating systems and the programming model we
normally use, it also has many downsides (most of which are out of the scope of this document). Most importantly,
from RPyC’s perspective, processes impose artificial boundaries between programs which forces programs to resort to
monolithic structuring.

Several mechanism exist to overcome these boundaries, most notably remote procedure calls. Largely speaking, RPCs
enable one process to execute code (“call procedures”) that reside outside of its address space (in another process) and
be aware of their results. Many such RPC frameworks exist, which all share some basic traits: they provide a way to
describe what functions are exposed, define a serialization format, transport abstraction, and a client-side library/code-
generator that allows clients utilize these remote functions.

RPyC is yet another RPC. However, unlike most RPCs, RPyC is transparent. This may sound like a rather weird
virtue at first – but this is the key to RPyC’s power: you can “plug” RPyC into existing code at (virtually) no cost. No
need to write complicated definition files, configure name servers, set up transport (HTTP) servers, or even use special
invocation syntax – RPyC fits the python programming model like a glove. For instance, a function that works on a
local file object will work seamlessly on a remote file object – it’s duck-typing to the extreme.

4.4. Documentation 27

http://www.python.org/community/logos/
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/address_space
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/serialization
http://en.wikipedia.org/wiki/Duck_typing

RPyC Documentation, Release 6.0.0/2024-02-23

An interesting consequence of being transparent is symmetry – there’s no longer a strict notion of what’s a server as
opposed to what’s a client – both the parties may serve requests and dispatch replies; the server is simply the party
that accepts incoming connections – but other than that, servers and clients are identical. Being symmetrical opens the
doors to lots of previously unheard-of features, like callback functions.

The result of these two properties is that local and remote objects are “equal in front of the code”: your program
shouldn’t even be aware of the “proximity” of object it is dealing with. In other words, two processes connected by
RPyC can be thought of as a single process. I like to say that RPyC unifies the address space of both parties, although
physically, this address space may be split between several computers.

Note: The notion of address-space unification is mostly true for “classic RPyC”; with new-style RPyC, where services
dominate, the analogy is of “unifying selected parts of the address space”.

In many situations, RPyC is employed in a master-slave relation, where the “client” takes full control over the “server”.
This mainly allows the client to access remote resources and perform operations on behalf of the server. However,
RPyC can also be used as the basis for clustering and distributed computing: an array of RPyC servers on multiple
machines can form a “huge computer” in terms of computation power.

Note: This would require some sort of framework to distribute workload and guarantee task completion. RPyC itself
is just the mechanism.

Implementation

Boxing

A major concept in the implementation of RPyC is boxing, which is a form of serialization (encoding) that transfers
objects between the two ends of the connection. Boxing relies on two methods of serialization:

• By Value - simple, immutable python objects (like strings, integers, tuples, etc.) are passed by value, meaning
the value itself is passed to the other side. Since their value cannot change, there is no restriction on duplicating
them on both sides.

• By Reference - all other objects are passed by reference, meaning a “reference” to the object is passed to the
other side. This allows changes applied on the referencing (proxy) object to be reflected on the actual object.
Passing objects by reference also allows passing of “location-aware” objects, like files or other operating system
resources.

On the other side of the connection, the process of unboxing takes place: by-value data is converted (“deserialized”) to
local objects, while by-reference data is converted to object proxies.

Object Proxying

Object proxying is a technique of referencing a remote object transparently: since the remote object cannot be trans-
ferred by-value, a reference to it is passed. This reference is then wrapped by a special object, called a proxy that “looks
and behaves” just like the actual object (the target). Any operation performed on the proxy is delivered transparently
to the target, so that code need not be aware of whether the object is local or not.

Note: RPyC uses the term netref (network reference) for a proxy object

28 Chapter 4. Contents

http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Cluster_(computing)
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_valueBy
http://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_reference
http://en.wikipedia.org/wiki/Proxy_pattern

RPyC Documentation, Release 6.0.0/2024-02-23

Most of the operations performed on object proxies are synchronous, meaning the party that issued the operation on the
proxy waits for the operation to complete. However, sometimes you want asynchronous mode of operation, especially
when invoking remote functions which might take a while to return their value. In this mode, you issue the operation and
you will later be notified of its completion, without having to block until it arrives. RPyC supports both methods: proxy
operations, are synchronous by default, but invocation of remote functions can be made asynchronous by wrapping the
proxy with an asynchronous wrapper.

Services

In older versions of RPyC, up to version 2.60 (now referred to as classic RPyC), both parties had to “fully trust” each
other and be “fully cooperative” – there was no way to limit the power of one party over the other. Either party could
perform arbitrary operations on the other, and there was no way to restrict it.

RPyC 3.0 introduced the concept of services. RPyC itself is only a “sophisticated transport layer” – it is a mechanism,
it does not set policies. RPyC allows each end of the connection to expose a (potentially different) service that is
responsible for the “policy”, i.e., the set of supported operations. For instance, classic RPyC is implemented by the
SlaveService, which grants arbitrary access to all objects. Users of the library may define their own services, to
meet their requirements.

How To’s

This page contains a collection of useful concepts and examples for developing with RPyC

Redirecting Standard Input/Output

You can “rewire” stdin, stdout and stderr between RPyC hosts. For example, if you want to “forward” the stdout
of a remote process to your local tty, you can use the following receipt:

>>> import rpyc
>>> c = rpyc.classic.connect("localhost")
>>> c.execute("print('hi there')") # this will print on the host
>>> import sys
>>> c.modules.sys.stdout = sys.stdout
>>> c.execute("print('hi here')") # now this will be redirected here
hi here

Also note that if you are using classic mode RPyC, you can use the context manager rpyc.classic.
redirected_stdio:

>>> c.execute("print('hi there')") # printed on the server
>>>
>>> with rpyc.classic.redirected_stdio(c):
... c.execute("print('hi here')") # printed on the client
...
hi here
>>> c.execute("print('hi there again')") # printed on the server
>>>

4.4. Documentation 29

http://en.wikipedia.org/wiki/Separation_of_mechanism_and_policy
http://www.python.org/doc/2.5.2/lib/typecontextmanager.html

RPyC Documentation, Release 6.0.0/2024-02-23

Fig. 1: A screenshot of an RPyC client redirecting standard output from the server to its own console.

Debugging

If you are using the classic mode, you will be glad to know that you can debug remote exceptions with pdb:

>>> c = rpyc.classic.connect("localhost")
>>> c.modules["xml.dom.minidom"].parseString("<<invalid xml>/>")
======= Remote traceback =======
Traceback (most recent call last):
...
File "/usr/lib/python2.5/xml/dom/minidom.py", line 1925, in parseString
return expatbuilder.parseString(string)

File "/usr/lib/python2.5/xml/dom/expatbuilder.py", line 940, in parseString
return builder.parseString(string)

File "/usr/lib/python2.5/xml/dom/expatbuilder.py", line 223, in parseString
parser.Parse(string, True)

ExpatError: not well-formed (invalid token): line 1, column 1
...
File "/home/tomer/workspace/rpyc/core/protocol.py", line 298, in sync_request
raise obj

xml.parsers.expat.ExpatError: not well-formed (invalid token): line 1, column 1
>>>
>>> rpyc.classic.pm(c) # start post-portem pdb
> /usr/lib/python2.5/xml/dom/expatbuilder.py(226)parseString()
-> pass
(Pdb) l
221 parser = self.getParser()
222 try:
223 parser.Parse(string, True)
224 self._setup_subset(string)
225 except ParseEscape:
226 -> pass
227 doc = self.document
228 self.reset()
229 self._parser = None
230 return doc

(continues on next page)

30 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

231
(Pdb) w
...
/home/tomer/workspace/rpyc/core/protocol.py(381)_handle_call()

-> return self._local_objects[oid](*args, **dict(kwargs))
/usr/lib/python2.5/xml/dom/minidom.py(1925)parseString()

-> return expatbuilder.parseString(string)
/usr/lib/python2.5/xml/dom/expatbuilder.py(940)parseString()

-> return builder.parseString(string)
> /usr/lib/python2.5/xml/dom/expatbuilder.py(226)parseString()
-> pass
(Pdb)

Tunneling

Many times, especially in testing environments, you have subnets, VLANs, VPNs, firewalls etc., which may prevent
you from establishing a direct TCP connection between two machines, crossing network in two different networks.
This may be done for security reasons or to simulate the environment where your product will be running, but it also
hinders your ability to conduct tests. However, with RPyC you can overcome this limitation very easily: simply use the
remote machine’s socket module!

Consider the following diagram:

Machine A belongs to network A, and it wants to connect to machine B, which belongs to network B. Assuming there’s
a third machine, C that has access to both networks (for instance, it has multiple network cards or it belongs to multiple
VLANs), you can use it as a transparent bridge between machines A and B very easily: simply run an RPyC server on
machine C, to which machine A would connect, and use its socket module to connect to machine B. It’s really simple:

this runs on machine `A`
import rpyc

machine_c = rpyc.classic.connect("machine-c")
sock = machine_c.modules.socket.socket()
sock.connect(("machine-b", 12345))

(continues on next page)

4.4. Documentation 31

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

sock.send(...)
sock.recv(...)

Monkey-Patching

If you have python modules that make use of the socket module (say, telnetlib or asyncore), and you want them
to be able to cross networks over such a bridge, you can use the recipe above to “inject” C’s socket module into your
third-party module, like so:

import rpyc
import telnetlib

machine_c = rpyc.classic.connect("machine-c")
telnetlib.socket = rpyc.modules.socket

This is called monkey-patching, it’s a very handy technique which you can use in other places as well, to override
functions, classes and entire modules. For instance

import mymodule
import rpyc
...
mymodule.os = conn.modules.os
mymodule.open = conn.builtins.open
mymodule.Telnet = conn.modules.telnetlib.Telnet

That way, when mymodule makes use of supposedly local modules, these modules actually perform operations on the
remote machine, transparently.

Use Cases

This page lists some examples for tasks that RPyC excels in solving.

Remote (“Web”) Services

Starting with RPyC 3.00, the library is service-oriented. This makes implementing secure remote services trivial:
a service is basically a class that exposes a well-defined set of remote functions and objects. These exposed func-
tions can be invoked by the clients of the service to obtain results. For example, a UPS-like company may expose a
TrackYourPackage service with

get_current_location(pkgid)
get_location_history(pkgid)
get_delivery_status(pkgid)
report_package_as_lost(pkgid, info)

RPyC is configured (by default) to prevent the use of getattr on remote objects to all but “allowed attributes”, and
the rest of the security model is based on passing capabilities. Passing capabilities is explicit and fine grained – for
instance, instead of allowing the other party call open() and attempting to block disallowed calls at the file-name level
(which is weak), you can pass an open file object to the other party. The other party could manipulate the file (calling
read/write/seek on it), but it would have no access to the rest of the file system.

32 Chapter 4. Contents

http://en.wikipedia.org/wiki/Monkey_patch
http://en.wikipedia.org/wiki/Directory_traversal

RPyC Documentation, Release 6.0.0/2024-02-23

Administration and Central Control

Efficient system administration is quite difficult: you have a variety of platforms that you need to control, of different
endianities (big/little) or bit-widths (32/64), different administration tools, and different shell languages (sh, tcsh,
batch files, WMI, etc.). Moreover, you have to work across numerous transport protocols (telnet, ftp, ssh, etc.),
and most system tools are domain-specific (awk, grep) and quite limited (operating on lines of text), and are difficult
to extend or compose together. System administration today is a mishmash of technologies.

Why not use python for that? It’s a cross-platform, powerful and succinct programming language with loads of libraries
and great support. All you have to do is pip install rpyc on all of your machines, set them up to start an RPyC
server on boot (over SSH or SSL), and there you go! You can control every machine from a single place, using a unified
set of tools and libraries.

Hardware Resources

Many times you find yourself in need of utilizing hardware (“physical”) resources of one machine from another. For
instance, some testgear or device can only connect to Solaris SPARC machines, but you’re comfortable with developing
on your Windows workstation. Assuming your device comes with C bindings, some command-line tool, or accepts
commands via ioctl to some device node – you can just run an RPyC server on that machine, connect to it from your
workstation, and access the device programmatically with ease (using ctypes or popen remotely).

Parallel Execution

In CPython, the GIL prevents multiple threads from executing python bytecode at once. This simplifies the design of
the python interpreter, but the consequence of which is that CPython cannot utilize multiple/multicore CPUs. The only
way to achieve scalable, CPU-bound python programs is to use multiple processes, instead of threads. The bright side
of using processes over threads is reducing synchronization problems that are inherent to multithreading – but without
a easy way to communicate between your processes, threads are more appealing.

Using RPyC, multiprocessing becomes very easy, since we can think of RPyC-connected processes as “one big pro-
cess”. Another modus operandi is having the “master” process spawn multiple worker processes and distribute work-
load between them.

Distributed Computation Platform

RPyC forms a powerful foundation for distributed computations and clustering: it is architecture and platform agnostic,
supports synchronous and asynchronous invocation, and clients and servers are symmetric. On top of these features, it
is easy to develop distributed-computing frameworks; for instance, such a framework will need to:

• Take care of nodes joining or leaving the cluster

• Handle workload balancing and node failures

• Collect results from workers

• Migrate objects and code based on runtime profiling

Note: RPyC itself is only a mechanism for distributed computing; it is not a distributed computing framework

Distributed algorithms could then be built on top of this framework to make computations faster.

4.4. Documentation 33

http://en.wikipedia.org/wiki/Device_file
http://wiki.python.org/moin/GlobalInterpreterLock

RPyC Documentation, Release 6.0.0/2024-02-23

Testing

The first and foremost use case of RPyC is in testing environments, where the concept of the library was conceived
(initially as pyinvoke).

Classic-mode RPyC is the ideal tool for centralized testing across multiple machines and platforms: control your
heterogeneous testing environment (simulators, devices and other test equipment) and test procedure from the comfort
of your workstation. Since RPyC integrates so well with python, it is very easy to have your test logic run on machine
A, while the side-effects happen on machine B.

There is no need to copy and keep your files synchronized across several machines, or work on remote file systems
mounts. Also, since RPyC requires a lot of network “ping-pongs”, and because of the inherent security risks of the
classic mode, this mode works best on secure, fast local networks (which is usually the case in testing environments).

• A little about RPyC - related projects, contributors, and logo issues

• Theory of Operation - background on the inner workings of RPyC and the terminology

• Use cases - some common use-cases, demonstrating the power and ease of RPyC

• How to’s - solutions to specific problems

4.4.2 Reference

RPyC Servers

Since RPyC is a symmetric protocol (where both client and server can process requests), an RPyC server is a largely
just a main-loop that accepts incoming connections and calls serve_all(). RPyC comes with three built-in servers:

• Forking - forks a child-process to handle each incoming connection (POSIX only)

• Threaded - spawns a thread to handle each incoming connection (POSIX and Windows)

• Thread Pool - assigns a worker-thread for each incoming connection from the thread pool; if the thread pool is
exhausted, the connection is dropped.

If you wish to implement new servers (say, reactor-based, etc.), you can derive from rpyc.utils.server.Server
and implement _accept_method() to your own liking.

Note: RPyC uses the notion of authenticators to authenticate incoming connections. An authenticator object can be
passed to the server instance upon construction, and it is used to validate incoming connections. See Authenticators
for more info.

Classic Server

RPyC comes “bundled” with a Classic-mode server – rpyc_classic.py. This executable script takes several
command-line switches and starts an RPyC server exposing the ClassicService. It is installed to your python’s
scripts/ directory, and should be executable from the command line. Example usage:

$./rpyc_classic.py -m threaded -p 12333
INFO:SLAVE/12333:server started on [0.0.0.0]:12333
INFO:SLAVE/12333:accepted 127.0.0.1:34044
INFO:SLAVE/12333:welcome [127.0.0.1]:34044
INFO:SLAVE/12333:goodbye [127.0.0.1]:34044

(continues on next page)

34 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

^C
WARNING:SLAVE/12333:keyboard interrupt!
INFO:SLAVE/12333:server has terminated
INFO:SLAVE/12333:listener closed

The classic server takes the following command-line switches (try running it with -h for more info):

General switches

• -m, --mode=MODE - the serving mode (threaded, forking, or stdio). The default is threaded; stdio is
useful for integration with inetd.

• -p, --port=PORT - the TCP port (only useful for threaded or forking modes). The default is 18812; for SSL
the default is 18821.

• --host=HOSTNAME - the host to bind to. The default is 0.0.0.0.

• --ipv6 - if given, binds an IPv6 socket. Otherwise, binds an IPv4 socket (the default).

• --logfile=FILENAME - the log file to use. The default is stderr

• -q, --quiet - if given, sets quiet mode (no logging).

Registry switches

• --register - if given, the server will attempt to register with a registry server. By default, the server will not
attempt to register.

The following switches are only relevant in conjunction with --register:

• --registry-type=REGTYPE - The registry type (UDP or TCP). The default is UDP, where the server sends timely
UDP broadcasts, aimed at the registry server.

• --registry-port=REGPORT - The TCP/UDP port of the registry server. The default is 18811.

• --registry-host=REGHOST - The host running the registry server. For UDP the default is broadcast (255.
255.255.255); for TCP, this parameter is required.

SSL switches

If any of the following switches is given, the server uses the SSL authenticator. These cannot be used with conjunction
with --vdb.

• --ssl-keyfile=FILENAME - the server’s SSL key-file. Required for SSL

• --ssl-certfile=FILENAME - the server’s SSL certificate file. Required for SSL

• --ssl-cafile=FILENAME - the certificate authority chain file. This switch is optional; if it’s given, it enables
client-side authentication.

4.4. Documentation 35

RPyC Documentation, Release 6.0.0/2024-02-23

Custom RPyC Servers

Starting an RPyC server that exposes your service is quite easy – when you construct the rpyc.utils.server.Server
instance, pass it your rpyc.core.service.Service factory. You can use the following snippet:

import rpyc
from rpyc.utils.server import ThreadedServer # or ForkingServer

class MyService(rpyc.Service):
#
... you service's implementation
#
pass

if __name__ == "__main__":
server = ThreadedServer(MyService, port = 12345)
server.start()

Refer to rpyc.utils.server.Server for the list all possible arguments.

Registry Server

RPyC comes with a simple command-line registry server, which can be configured quite extensively by command-line
switches. The registry server is a bonjour-like agent, with which services may register and clients may perform queries.
For instance, if you start an RPyC server that provides service Foo on myhost:17777, you can register that server with
the registry server, which would allow clients to later query for the servers that expose that service (and get back a list
of TCP endpoints). Example usage:

$./bin/rpyc_registry.py --listing
DEBUG:REGSRV/UDP/18811:registering 172.18.0.6:18861 as MY

For more info, see :ref:`api-registry`.

Switches

• -m, --mode=MODE - The registry mode; either UDP or TCP. The default is UDP.

• -p, --port=PORT - The UDP/TCP port to bind to. The default is 18811.

• -f, --file=FILE - The log file to use. The default is stderr.

• -q, --quiet - If given, sets quiet mode (only errors are logged)

• -t, --timeout=PRUNING_TIMEOUT - Sets a custom pruning timeout, in seconds. The pruning time is the amount
of time the registry server will keep a previously-registered service, when it no longer sends timely keepalives.
The default is 4 minutes (240 seconds).

• -l, --listing - Give a boolean indicating if registry should allow sending the list of its known services. The
default is False.

36 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

Classic

Prior to version 3, RPyC employed a modus-operandi that’s now referred to as “classic mode”. In this mode, the server
was completely under the control of its client – there was no way to restrict what the client could do, and there was no
notion of services. A client simply connected to a server and began to manipulate it.

Starting with version 3, RPyC became service-oriented, and now servers expose well-defined services, which define
what a client can access. However, since the classic mode proved very useful and powerful, especially in testing
environments, and in order to retain backwards compatibility, the classic mode is still exists in current versions – this
time implemented as a service.

See also the API reference

Usage

RPyC installs rpyc_classic.py to your Python scripts directory (e.g., C:\PythonXX\Scripts, /usr/local/bin,
etc.), which is a ready-to-run classic-mode server. It can be configured with command-line parameters. Once you have
it running, you can connect to it like so

conn = rpyc.classic.connect("hostname") # use default TCP port (18812)

proc = conn.modules.subprocess.Popen("ls", stdout = -1, stderr = -1)
stdout, stderr = proc.communicate()
print(stdout.split())

remote_list = conn.builtin.range(7)

conn.execute("print('foo')")

Services

RPyC is oriented around the notion of services. Services are classes that derive from rpyc.core.service.Service
and define “exposed methods” – normally, methods whose name explicitly begins with exposed_. Services also have
a name, or a list of aliases. Normally, the name of the service is the name of its class (excluding a possible Service
suffix), but you can override this behavior by specifying the ALIASES attribute in the class.

Let’s have a look at a rather basic service – a calculator (see Custom RPyC Servers for more info)

import rpyc

class CalculatorService(rpyc.Service):
def exposed_add(self, a, b):

return a + b
def exposed_sub(self, a, b):

return a - b
def exposed_mul(self, a, b):

return a * b
def exposed_div(self, a, b):

return a / b
def foo(self):

print("foo")

When a client connects, it can access any of the exposed members of the service

4.4. Documentation 37

RPyC Documentation, Release 6.0.0/2024-02-23

import rpyc

conn = rpyc.connect("hostname", 12345)
x = conn.root.add(4,7)
assert x == 11

try:
conn.root.div(4,0)

except ZeroDivisionError:
pass

As you can see, the root attribute of the connection gives you access to the service that’s exposed by the other party. For
security concerns, access is only granted to exposed_ members. For instance, the foo method above is inaccessible
(attempting to call it will result in an AttributeError).

Rather than having each method name start with exposed_, you may prefer to use a decorator. Let’s revisit the calcu-
lator service, but this time we’ll use decorators.

import rpyc

@rpyc.service
class CalculatorService(rpyc.Service):

@rpyc.exposed
def add(self, a, b):

return a + b
@rpyc.exposed
def sub(self, a, b):

return a - b
@rpyc.exposed
def mul(self, a, b):

return a * b
@rpyc.exposed
def div(self, a, b):

return a / b
def foo(self):

print("foo")

When implementing services, @rpyc.service and @rpyc.exposed can replace the exposed_ naming convention.

Implementing Services

As previously explained, all exposed_ members of your service class will be available to the other party. This applies
to methods, but in fact, it applies to any attribute. For instance, you may expose a class:

class MyService(rpyc.Service):
class exposed_MyClass(object):

def __init__(self, a, b):
self.a = a
self.b = b

def exposed_foo(self):
return self.a + self.b

If you wish to change the name of your service, or specify a list of aliases, set the ALIASES (class-level) attribute to a

38 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

list of names. For instance:

class MyService(rpyc.Service):
ALIASES = ["foo", "bar", "spam"]

The first name in this list is considered the “proper name” of the service, while the rest are considered aliases. This
distinction is meaningless to the protocol and the registry server.

Your service class may also define two special methods: on_connect(self, conn) and on_disconnect(self,
conn). The on_connect method is invoked when a connection has been established. From the client-side perspective,
on_connect is invoked each time a client successfully invokes rpyc.connect or any other function provided by the
connection factory module: rpyc.utils.factory. After the connection is dead, on_disconnect is invoked (you
will not be able to access remote objects inside of on_disconnect).

Note: Try to avoid overriding the __init__ method of the service. Place all initialization-related code in
on_connect.

Built-in Services

RPyC comes bundled with two built-in services:

• VoidService, which is an empty “do-nothing” service. It’s useful when you want only one side of the connection
to provide a service, while the other side a “consumer”.

• SlaveService, which implements Classic Mode RPyC.

Decoupled Services

RPyC is a symmetric protocol, which means both ends of the connection can act as clients or servers – in other words
– both ends may expose (possibly different) services. Normally, only the server exposes a service, while the client
exposes the VoidService, but this is not constrained in any way. For instance, in the classic mode, both ends expose
the SlaveService; this allows each party to execute arbitrary code on its peer. Although it’s not the most common
use case, two-sides services are quite useful. Consider this client:

class ClientService(rpyc.Service):
def exposed_foo(self):

return "foo"

conn = rpyc.connect("hostname", 12345, service = ClientService)

And this server:

class ServerService(rpyc.Service):
def on_connect(self, conn):

self._conn = conn

def exposed_bar(self):
return self._conn.root.foo() + "bar"

The client can invoke conn.root.bar() on the server, which will, in turn, invoke foo back on the client. The final
result would be "foobar".

Another approach is to pass callback functions. Consider this server:

4.4. Documentation 39

RPyC Documentation, Release 6.0.0/2024-02-23

class ServerService(rpyc.Service):
def exposed_bar(self, func):

return func() + "bar"

And this client:

def foofunc():
return "foo"

conn = rpyc.connect("hostname", 12345)
conn.root.bar(foofunc)

See also Configuration Parameters

Asynchronous Operation

Many times, especially when working in a client-server model, you may want to perform operations “in the back-
ground”, i.e., send a batch of work to the server and continue with your local operation. At some later point, you may
want to poll for the completion of the work, or perhaps be notified of its completion using a callback function.

RPyC is very well-suited for asynchronous work. In fact, the protocol itself is asynchronous, and synchronicity is
layered on top of that – by issuing an asynchronous request and waiting for its completion. However, since the syn-
chronous modus-operandi is the most common one, the library exposes a synchronous interface, and you’ll need to
explicitly enable asynchronous behavior.

async_()

The wrapper async_() takes any callable netref and returns an asynchronous-wrapper around that netref. When
invoked, this wrapper object dispatches the request and immediately returns an AsyncResult, instead of waiting for
the response.

Usage

Create an async wrapper around the server’s time.sleep function

async_sleep = rpyc.async_(conn.modules.time.sleep)

And invoke it like any other function, but instead of blocking, it will immediately return an AsyncResult

res = async_sleep(5)

Which means your client can continue working normally, while the server performs the request. There are several
pitfalls using async_, be sure to read the Notes section!

You can test for completion using res.ready, wait for completion using res.wait(), and get the result using res.
value. You may set a timeout for the result using res.set_expiry(), or even register a callback function to be
invoked when the result arrives, using res.add_callback().

40 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

Notes

The returns async proxies are cached by a weak-reference. Therefore, you must hold a strong reference to the returned
proxy. Particularly, this means that instead of doing

res = async_(conn.root.myfunc)(1,2,3)

Use

myfunc_async = async_(conn.root.myfunc)
res = myfunc_async(1,2,3)

Furthermore, async requests provide no guarantee on execution order. In particular, multiple subsequent async
requests may be executed in reverse order.

timed()

timed allows you to set a timeout for a synchronous invocation. When a timed function is invoked, you’ll syn-
chronously wait for the result, but no longer than the specified timeout. Should the invocation take longer, a
AsyncResultTimeout will be raised.

Under the hood, timed is actually implemented with async_: it begins dispatches the operation, sets a timeout on the
AsyncResult, and waits for the response.

Example

allow this function to take up to 6 seconds
timed_sleep = rpyc.timed(conn.modules.time.sleep, 6)

wait for 3 seconds -- works
async_res = timed_sleep(3) # returns immediately
async_res.value # returns after 3 seconds

wait for 10 seconds -- fails
async_res = timed_sleep(10) # returns immediately
async_res.value # raises AsyncResultTimeout

Background Serving Thread

BgServingThread is a helper class that simply starts a background thread to serve incoming requests. Using it is quite
simple:

bgsrv = rpyc.BgServingThread(conn)
...
now you can do blocking stuff, while incoming requests are handled in the background
...
bgsrv.stop()

Using the BgServingThread allows your code (normally the client-side) to perform blocking calls, while still being
able to process incoming request (normally from the server). This allows the server to send “events” (i.e., invoke
callbacks on the client side) while the client is busy doing other things.

4.4. Documentation 41

http://docs.python.org/library/weakref.html

RPyC Documentation, Release 6.0.0/2024-02-23

For a detailed example show-casing the BgServingThread, see Events in the tutorial.

Security

Operating over a network always involve a certain security risk, and requires some awareness. Version 3 of RPyC was
a rewrite of the library, specifically targeting security and service-orientation. Unlike version 2.6, RPyC no longer
makes use of insecure protocols like pickle, supports security-related configuration parameters, comes
with strict defaults, and encourages the use of a capability-based security model. Even so, it behooves you to take a
layered to secure programming and not let RPyC be a single point of failure.

CVE-2019-16328 is the first vulnerability since 2008, which made it possible for a remote attacker to bypass standard
protocol security checks and modify the behavior of a service. The latent flaw was committed to master from September
2018 to October 2019 and affected versions 4.1.0 and 4.1.1. As of version 4.1.2, the vulnerability has been fixed.

RPyC is intuitive and secure when used properly. However, if not used properly, RPyC is also the perfect back-door. . .
The general recommendation is not to use RPyC openly exposed over the Internet. It’s wiser to use it only over secure
local networks, where you trust your peers. This does not imply that there’s anything wrong with the mechanism–but the
implementation details are sometimes too subtle to be sure of. Of course, you can use RPyC over a secure connection,
to mitigate these risks.

RPyC works by exposing a root object, which in turn may expose other objects (and so on). For instance, if you
expose a module or an object that has a reference to the sys module, a user may be able to reach it. After reaching
sys, the user can traverse sys.modules and gain access to all of the modules that the server imports. More complex
methodologies, similar to those used in CVE-2019-16328, could leverage access to builtins.str, builtins.type,
builtins.object, and builtins.dict and gain access to sys modules. The default configurations for RPyC are
intended to mitigate access to dangerous objects. But if you enable allow_public_attrs, return uninitialized classes
or override _rpyc_getattr such things are likely to slip under the radar (it’s possible to prevent this – see below).

Wrapping

The recommended way to avoid over-exposing of objects is wrapping. For example, if your object has the attributes
foo, bar, and spam, and you wish to restrict access to foo and bar alone – you can do

class MyWrapper(object):
def __init__(self, obj):

self.foo = obj.foo
self.bar = obj.bar

Since this is a common idiom, RPyC provides restricted(). This function returns a “restricted view” of the given
object, limiting access only to the explicitly given set of attributes.

class MyService(rpyc.Service):
def exposed_open(self, filename):

f = open(filename, "r")
return restricted(f, ["read", "close"], []) # allow access only to 'read' and

→˓'close'

Assuming RPyC is configured to allow access only to safe attributes (the default), this would be secure.

When exposing modules, you can use the __all__ list as your set of accessible attributes – but do keep in mind that
this list may be unsafe.

42 Chapter 4. Contents

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16328

RPyC Documentation, Release 6.0.0/2024-02-23

Classic Mode

The classic mode (SlaveService) is intentionally insecure – in this mode, the server “gives up” on security and
exposes everything to the client. This is especially useful for testing environments where you basically want your client
to have full control over the server. Only ever use a classic mode server over secure local networks.

Configuration Parameters

By default, RPyC is configured to allow very little attribute access. This is useful when your clients are untrusted,
but this may be a little too restrictive. If you get “strange” AttributeError exceptions, stating that access to cer-
tain attributes is denied – you may need to tweak the configuration parameters. Normally, users tend to enable
allow_public_attrs, but, as stated above, this may have undesired implications.

Attribute Access

RPyC has a rather elaborate attribute access scheme, which is controlled by configuration parameters. However, in
case you need more fine-grained control, or wish to completely override the configuration for some type of objects –
you can implement the RPyC attribute protocol. This protocol consists of _rpyc_getattr, _rpyc_setattr, and
_rpyc_delattr, which are parallel to __getattr__ / __setattr__ / __delattr__. Their signatures are

_rpyc_getattr(self, name)
_rpyc_delattr(self, name)
_rpyc_setattr(self, name, value)

Any object that implements this protocol (or part of it) will override the default attribute access policy. For example, if
you generally wish to disallow access to protected attributes, but have to expose a certain protected attribute of some
object, just define _rpyc_getattr for that object which allows it:

class MyObjectThatExposesProtectedAttrs(object):
def __init__(self):

self._secret = 18
def _rpyc_getattr(self, name):

if name.startswith("__"):
disallow special and private attributes
raise AttributeError("cannot accept private/special names")

allow all other attributes
return getattr(self, name)

SSL

Using external tools, you can generate client and server certificates, and a certificate authority. After going through
this setup stage, you can easily establish an SSL-enabled connection.

Server side:

from rpyc.utils.authenticators import SSLAuthenticator
from rpyc.utils.server import ThreadedServer

...

authenticator = SSLAuthenticator("myserver.key", "myserver.cert")
(continues on next page)

4.4. Documentation 43

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

server = ThreadedServer(SlaveService, port = 12345, authenticator = authenticator)
server.start()

Client side:

import rpyc

conn = rpyc.ssl_connect("hostname", port = 12345, keyfile="client.key",
certfile="client.cert")

For more info, see the documentation of ssl module.

Zero-Deploy RPyC

Setting up and managing servers is a headache. You need to start the server process, monitor it throughout its life
span, make sure it doesn’t hog up memory over time (or restart it if it does), make sure it comes up automatically after
reboots, manage user permissions and make sure everything remains secure. Enter zero-deploy.

Zero-deploy RPyC does all of the above, but doesn’t stop there: it allows you to dispatch an RPyC server on a machine
that doesn’t have RPyC installed, and even allows multiple instances of the server (each of a different port), while
keeping it all 100% secure. In fact, because of the numerous benefits of zero-deploy, it is now considered the preferred
way to deploy RPyC.

How It Works

Zero-deploy only requires that you have Plumbum (1.2 and later) installed on your client machine and that you can
connect to the remote machine over SSH. It takes care of the rest:

1. Create a temporary directory on the remote machine

2. Copy the RPyC distribution (from the local machine) to that temp directory

3. Create a server file in the temp directory and run it (over SSH)

4. The server binds to an arbitrary port (call it port A) on the localhost interfaces of the remote machine, so it
will only accept in-bound connections

5. The client machine sets up an SSH tunnel from a local port, port B, on the localhost to port A on the remote
machine.

6. The client machine can now establish secure RPyC connections to the deployed server by connecting to
localhost:port B (forwarded by SSH)

7. When the deployment is finalized (or when the SSH connection drops for any reason), the deployed server will
remove the temporary directory and shut down, leaving no trace on the remote machine

44 Chapter 4. Contents

http://docs.python.org/library/ssl.html
http://plumbum.readthedocs.org

RPyC Documentation, Release 6.0.0/2024-02-23

Usage

There’s a lot of detail here, of course, but the good thing is you don’t have to bend your head around it – it requires only
two lines of code:

from rpyc.utils.zerodeploy import DeployedServer
from plumbum import SshMachine

create the deployment
mach = SshMachine("somehost", user="someuser", keyfile="/path/to/keyfile")
server = DeployedServer(mach)

and now you can connect to it the usual way
conn1 = server.classic_connect()
print(conn1.modules.sys.platform)

you're not limited to a single connection, of course
conn2 = server.classic_connect()
print(conn2.modules.os.getpid())

when you're done - close the server and everything will disappear
server.close()

The DeployedServer class can be used as a context-manager, so you can also write:

with DeployedServer(mach) as server:
conn = server.classic_connect()
...

Here’s a capture of the interactive prompt:

>>> sys.platform
'win32'
>>>
>>> mach = SshMachine("192.168.1.100")
>>> server = DeployedServer(mach)
>>> conn = server.classic_connect()
>>> conn.modules.sys.platform
'linux2'
>>> conn2 = server.classic_connect()
>>> conn2.modules.os.getpid()
8148
>>> server.close()
>>> conn2.modules.os.getpid()
Traceback (most recent call last):
...

EOFError

You can deploy multiple instances of the server (each will live in a separate temporary directory), and create multiple
RPyC connections to each. They are completely isolated from each other (up to the fact you can use them to run
commands like ps to learn about their neighbors).

4.4. Documentation 45

RPyC Documentation, Release 6.0.0/2024-02-23

MultiServerDeployment

If you need to deploy on a group of machines a cluster of machines, you can also use MultiServerDeployment:

from rpyc.utils.zerodeploy import MultiServerDeployment

m1 = SshMachine("host1")
m2 = SshMachine("host2")
m3 = SshMachine("host3")

dep = MultiServerDeployment([m1, m2, m3])
conn1, conn2, conn3 = dep.classic_connect_all()

...

dep.close()

On-Demand Servers

Zero-deploy is ideal for use-once, on-demand servers. For instance, suppose you need to connect to one of your
machines periodically or only when a certain event takes place. Keeping an RPyC server up and running at all times is
a waste of memory and a potential security hole. Using zero-deploy on demand is the best approach for such scenarios.

Security

Zero-deploy relies on SSH for security, in two ways. First, SSH authenticates the user and runs the RPyC server under
the user’s permissions. You can connect as an unprivileged user to make sure strayed RPyC processes can’t rm -rf
/. Second, it creates an SSH tunnel for the transport, so everything is kept encrypted on the wire. And you get these
features for free – just configuring SSH accounts will do.

Timeouts

You can pass a timeout argument, in seconds, to the close()method. A TimeoutExpired is raised if any subprocess
communication takes longer than the timeout, after the subprocess has been told to terminate. By default, the timeout
is None i.e. infinite. A timeout value prevents a close() call blocking indefinitely.

Advanced Debugging

A guide to using Wireshark when debugging complex use such as chained-connections or version specific issues. To
test more complex issues, we may wish to use pyenv or Docker in our development environment.

46 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

Testing Supported Python Versions via pyenv

Let’s use pyenv to install Python versions under active development. Since development versions are pulled from a
VCS, we wish to force install to get the latest commit before testing. The dependency plumbum needs to be installed
as well (add [dev] for plumbum development dependencies). All together now!

versions=(3.7 3.8 3.9 3.10 3.11 3.12)
for ver in ${versions[@]}; do

pyenv install --force ${ver}
pyenv global ${ver}
pyenv exec pip install --upgrade pip setuptools wheel plumbum[dev]
site="$(pyenv exec python -c 'import site; print(site.getsitepackages()[0])')"
printf "${PWD}\n" > "${site}/rpyc.pth"

done

Each venv contains a .pth file that appends rpyc to sys.path. We can run rpyc_classic.py using pyenv like so.

PYENV_VERSION=3.10-dev pyenv exec python ./bin/rpyc_classic.py --host 127.0.0.1
PYENV_VERSION=3.9-dev pyenv exec python -c "import rpyc; conn = rpyc.utils.classic.
→˓connect('127.0.0.1'); conn.modules.sys.stderr.write('hello world\n')"

Unit tests can be ran using your desired Python version as well.

PYENV_VERSION=3.9-dev pyenv exec python -m unittest discover -v -k test_affinity
PYENV_VERSION=3.8-dev pyenv exec python -m unittest discover

Testing Supported Python Versions via Docker

Testing RPyC often requires that you use specific Python versions. Docker will make your life easier when testing RPyC
locally, especially when performing packet captures of RPyC communication across Python versions. The current
settings will use bind mounts to simplify synchronization of RPyC source code within the containers. So, remember
to checkout the commit you desire the containers to use on your host!

If desired, individual containers can be specified started

docker-compose -f ./docker/docker-compose.yml create
docker-compose -f ./docker/docker-compose.yml start rpyc-python-3.7
docker-compose -f ./docker/docker-compose.yml start rpyc-python-3.10

The registry server can be started like so

docker exec rpyc-3.8 /opt/rpyc/bin/rpyc_registry.py

The containers can then be used to test to your hearts desire

docker exec rpyc-3.7 /opt/rpyc/bin/rpyc_classic.py --host 0.0.0.0 &
docker exec -it rpyc-3.10 python -c "import rpyc;conn = rpyc.utils.classic.connect('rpyc-
→˓3.7'); conn.modules.sys.stderr.write('hello world\n')"

4.4. Documentation 47

RPyC Documentation, Release 6.0.0/2024-02-23

Tips and Tricks

Display filtering for Wireshark

tcp.port == 18878 || tcp.port == 18879
(tcp.port == 18878 || tcp.port == 18879) && tcp.segment_data contains "rpyc.core.service.
→˓SlaveService"

Running the chained-connection unit test

python -m unittest discover -s ./tests -k test_get_id_pack.Test_get_id_pack.test_chained_
→˓connect

After stopping Wireshark, export specified packets, and open the PCAP. If not already configured, add a custom display
column:

Title, Type, Fields, Field Occurrence
Stream Index, Custom, tcp.stream, 0

The stream index column makes it easier to decide which TCP stream to follow. Following a TCP provides a more
human readable overview of requests and replies that can be printed as a PDF.

RPyC Release Process

A walkthrough of doing a RPyC Release.

1. Ensure a clean and current build environment (i.e., git pull; git status)

2. Describe commit history within CHANGELOG.rst (see Generate Entry)

3. Update release_date in rpyc/version.py and bump version (Semantic Versioning and Versioning using
Hatch)

4. Verify changes and run export ver=$(python -c 'import rpyc; print(rpyc.__version__)'), git
add ., and git push.

5. Create an Annotated tag: git tag -a ${ver} -m "Updated CHANGELOG.rst and version for
release ${ver}"

6. Publish release tag: git push origin ${ver}

7. Install hatch: pyenv exec pip install hatch

8. Clean up any old build artifacts: git clean -Xf -- dist/

9. Create a wheel package: pyenv exec hatch -v build

48 Chapter 4. Contents

https://semver.org/
https://hatch.pypa.io/latest/version/
https://hatch.pypa.io/latest/version/

RPyC Documentation, Release 6.0.0/2024-02-23

10. Upload the wheel package: pyenv exec hatch -v publish --user=__token__
--auth=${pypi_token} ; history -c && history -w

11. Create new release such that the notes are from CHANGELOG.rst entry (%s/`#/#/g and %s/`_//g)

12. Make sure to add the wheel as an attachment to the release and you are done!

Generate CHANGELOG.rst Entry

To create an initial entry draft, run some shell commands.

owner="tomerfiliba-org"
repo="rpyc"
#url="https://github.com/${owner}/${repo}"
revisions="$(git rev-list $(hatch version)..HEAD | sed -z 's/\(.*\)\n/\1/;s/\n/|/g')"
numbers=($(git log $(hatch version)..HEAD --no-merges --oneline | sed -nE 's/^.*#([0-
→˓9]+).*/\1/p' | sort -nu))
issue_numbers="$(echo "${numbers[@]}" | sed 's/ /|/g')"
#
api_filter() {

jq -rc ".[] | select(.${1} | . != null) | select(.${1} | tostring | test(\"${2}\"))
→˓" "${3}"
}
url="https://api.github.com/repos/${owner}/${repo}"
params="state=closed&accept=application/vnd.github+json"
tmp_issues="/tmp/issues.json"
tmp_pulls="/tmp/pulls.json"
curl "${url}/issues?${params}" > "${tmp_issues}"
curl "${url}/pulls?${params}" > "${tmp_pulls}"
Pulls
gh_numbers=()
bullets=()
url_refs=()
while IFS= read -r pull; do

title="$(echo "${pull}" | jq -r .title)"
number="$(echo "${pull}" | jq -r .number)"
pull_url="$(echo "${pull}" | jq -r .html_url)"
Add GH number
gh_numbers+=("${number}")
Add bullet
bullets+=("- \`#${number}\`_ ${title}")
Add url ref
url_ref=".. _#${number}: ${pull_url}"
url_refs+=("${url_ref}")

done <<< "$(api_filter "merge_commit_sha" "${revisions}" "${tmp_pulls}")"
Issues
while IFS= read -r issue; do

title="$(echo "${issue}" | jq -r .title)"
number="$(echo "${issue}" | jq -r .number)"
issue_url="$(echo "${issue}" | jq -r .html_url)"
Add bullet
bullets+=("- \`#${number}\`_ ${title}")
Add url ref

(continues on next page)

4.4. Documentation 49

RPyC Documentation, Release 6.0.0/2024-02-23

(continued from previous page)

url_ref=".. _#${number}: ${issue_url}"
url_refs+=("${url_ref}")

done <<< "$(api_filter "number" "${issue_numbers}" "${tmp_issues}")"

Header
printf '5.X.Y\n=====\n'
printf 'Date: %s\n\n' "$(date --rfc-3339=date)"
for bullet in "${bullets[@]}"; do

printf '%s\n' "${bullet}"
done
printf '\n'
for ref in "${url_refs[@]}"; do

printf '%s\n' "${ref}"
done

Once insert this entry at the top of CHANGELOG.rst, review what it looks like with instant-rst.

instantRst -b chromium -p 8612 -f "CHANGELOG.rst"

Misc. References

• Wheel file name convention

• Servers - using the built-in servers and writing custom ones

• Classic RPyC - using RPyC in slave mode (AKA classic mode), where the client has unrestricted control over
the server.

• RPyC Services - writing well-defined services which restrict the operations a client (or server) can carry out.

• Asynchronous Operation - invoking operations in the background, without having to wait for them to finish.

• Security Concerns - keeping security in mind when using RPyC

• Secure Connections - create an encrypted and authenticated connection over SSL or SSH

• Zero-Deploy - spawn temporary, short-lived RPyC server on remote machine with nothing more than SSH and
a Python interpreter

• Advanced Debugging - debugging at the packet level

4.5 API Reference

4.5.1 Serialization

Brine

Brine is a simple, fast and secure object serializer for immutable objects.

The following types are supported: int, bool, str, float, unicode, bytes, slice, complex, tuple (of simple
types), frozenset (of simple types) as well as the following singletons: None, NotImplemented, and Ellipsis.

Example::

50 Chapter 4. Contents

https://peps.python.org/pep-0427/#file-name-convention

RPyC Documentation, Release 6.0.0/2024-02-23

>>> x = ("he", 7, u"llo", 8, (), 900, None, True, Ellipsis, 18.2, 18.2j + 13,
... slice(1,2,3), frozenset([5,6,7]), NotImplemented)
>>> dumpable(x)
True
>>> y = dump(x)
>>> y.encode("hex")

→˓'140e0b686557080c6c6c6f580216033930300003061840323333333333331b402a000000000000403233333333333319125152531a1255565705
→˓'
>>> z = load(y)
>>> x == z
True

rpyc.core.brine.dump(obj)
Converts (dumps) the given object to a byte-string representation

Parameters
obj – any dumpable() object

Returns
a byte-string representation of the object

rpyc.core.brine.load(data)
Recreates (loads) an object from its byte-string representation

Parameters
data – the byte-string representation of an object

Returns
the dumped object

rpyc.core.brine.dumpable(obj)
Indicates whether the given object is dumpable by brine

Returns
True if the object is dumpable (e.g., dump() would succeed), False otherwise

Vinegar

Vinegar (“when things go sour”) is a safe serializer for exceptions. The configuration parameters control its
mode of operation, for instance, whether to allow old-style exceptions (that do not derive from Exception), whether
to allow the load() to import custom modules (imposes a security risk), etc.

Note that by changing the configuration parameters, this module can be made non-secure. Keep this in mind.

rpyc.core.vinegar.dump(typ, val, tb, include_local_traceback, include_local_version)
Dumps the given exceptions info, as returned by sys.exc_info()

Parameters

• typ – the exception’s type (class)

• val – the exceptions’ value (instance)

• tb – the exception’s traceback (a traceback object)

• include_local_traceback – whether or not to include the local traceback in the dumped
info. This may expose the other side to implementation details (code) and package structure,
and may theoretically impose a security risk.

4.5. API Reference 51

RPyC Documentation, Release 6.0.0/2024-02-23

Returns
A tuple of ((module name, exception name), arguments, attributes, traceback
text). This tuple can be safely passed to brine.dump

rpyc.core.vinegar.load(val, import_custom_exceptions, instantiate_custom_exceptions,
instantiate_oldstyle_exceptions)

Loads a dumped exception (the tuple returned by dump()) info a throwable exception object. If the exception
cannot be instantiated for any reason (i.e., the security parameters do not allow it, or the exception class simply
doesn’t exist on the local machine), a GenericException instance will be returned instead, containing all of
the original exception’s details.

Parameters

• val – the dumped exception

• import_custom_exceptions – whether to allow this function to import custom modules
(imposes a security risk)

• instantiate_custom_exceptions – whether to allow this function to instantiate “custom
exceptions” (i.e., not one of the built-in exceptions, such as ValueError, OSError, etc.)

• instantiate_oldstyle_exceptions – whether to allow this function to instantiate ex-
ception classes that do not derive from BaseException. This is required to support old-style
exceptions. Not applicable for Python 3 and above.

Returns
A throwable exception object

exception rpyc.core.vinegar.GenericException

A ‘generic exception’ that is raised when the exception the gotten from the other party cannot be instantiated
locally

• Brine - A simple and fast serialization format for immutable data (numbers, string, tuples, etc.). Brine is the
“over-the-wire” encoding format of RPyC.

• Vinegar - A configurable serializer for exceptions. Vinegar extracts the exception’s details and stores them in a
brine-friendly format.

4.5.2 IO Layer

Streams

An abstraction layer over OS-dependent file-like objects, that provides a consistent view of a duplex byte stream.

class rpyc.core.stream.Stream

Base Stream

close()

closes the stream, releasing any system resources associated with it

property closed

tests whether the stream is closed or not

fileno()

returns the stream’s file descriptor

poll(timeout)
indicates whether the stream has data to read (within timeout seconds)

52 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

read(count)
reads exactly count bytes, or raise EOFError

Parameters
count – the number of bytes to read

Returns
read data

write(data)
writes the entire data, or raise EOFError

Parameters
data – a string of binary data

class rpyc.core.stream.SocketStream(sock)
A stream over a socket

classmethod connect(host, port, **kwargs)
factory method that creates a SocketStream over a socket connected to host and port

Parameters

• host – the host name

• port – the TCP port

• family – specify a custom socket family

• socktype – specify a custom socket type

• proto – specify a custom socket protocol

• timeout – connection timeout (default is 3 seconds)

• nodelay – set the TCP_NODELAY socket option

• keepalive – enable TCP keepalives. The value should be a boolean, but on Linux, it can
also be an integer specifying the keepalive interval (in seconds)

• ipv6 – if True, creates an IPv6 socket (AF_INET6); otherwise an IPv4 (AF_INET) socket
is created

Returns
a SocketStream

classmethod unix_connect(path, timeout=3)
factory method that creates a SocketStream over a unix domain socket located in path

Parameters

• path – the path to the unix domain socket

• timeout – socket timeout

classmethod ssl_connect(host, port, ssl_kwargs, **kwargs)
factory method that creates a SocketStream over an SSL-wrapped socket, connected to host and port with
the given credentials.

Parameters

• host – the host name

• port – the TCP port

4.5. API Reference 53

RPyC Documentation, Release 6.0.0/2024-02-23

• ssl_kwargs – a dictionary of keyword arguments for ssl.SSLContext and ssl.
SSLContext.wrap_socket

• kwargs – additional keyword arguments: family, socktype, proto, timeout, nodelay,
passed directly to the socket constructor, or ipv6.

• ipv6 – if True, creates an IPv6 socket (AF_INET6); otherwise an IPv4 (AF_INET) socket
is created

Returns
a SocketStream

property closed

tests whether the stream is closed or not

close()

closes the stream, releasing any system resources associated with it

fileno()

returns the stream’s file descriptor

read(count)
reads exactly count bytes, or raise EOFError

Parameters
count – the number of bytes to read

Returns
read data

write(data)
writes the entire data, or raise EOFError

Parameters
data – a string of binary data

class rpyc.core.stream.TunneledSocketStream(sock)
A socket stream over an SSH tunnel (terminates the tunnel when the connection closes)

close()

closes the stream, releasing any system resources associated with it

class rpyc.core.stream.Win32PipeStream(incoming, outgoing)
A stream over two simplex pipes (one used to input, another for output). This is an implementation for Windows
pipes (which suck)

fileno()

returns the stream’s file descriptor

property closed

tests whether the stream is closed or not

close()

closes the stream, releasing any system resources associated with it

read(count)
reads exactly count bytes, or raise EOFError

Parameters
count – the number of bytes to read

54 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

Returns
read data

write(data)
writes the entire data, or raise EOFError

Parameters
data – a string of binary data

poll(timeout, interval=0.001)
a Windows version of select()

class rpyc.core.stream.NamedPipeStream(handle, is_server_side)
A stream over two named pipes (one used to input, another for output). Windows implementation.

classmethod create_server(pipename, connect=True)
factory method that creates a server-side NamedPipeStream, over a newly-created named pipe of the given
name.

Parameters

• pipename – the name of the pipe. It will be considered absolute if it starts with \\.;
otherwise \\.\pipe\rpyc will be prepended.

• connect – whether to connect on creation or not

Returns
a NamedPipeStream instance

connect_server()

connects the server side of an unconnected named pipe (blocks until a connection arrives)

classmethod create_client(pipename)
factory method that creates a client-side NamedPipeStream, over a newly-created named pipe of the given
name.

Parameters
pipename – the name of the pipe. It will be considered absolute if it starts with \\.; otherwise
\\.\pipe\rpyc will be prepended.

Returns
a NamedPipeStream instance

close()

closes the stream, releasing any system resources associated with it

read(count)
reads exactly count bytes, or raise EOFError

Parameters
count – the number of bytes to read

Returns
read data

write(data)
writes the entire data, or raise EOFError

Parameters
data – a string of binary data

4.5. API Reference 55

RPyC Documentation, Release 6.0.0/2024-02-23

poll(timeout, interval=0.001)
Windows version of select()

class rpyc.core.stream.PipeStream(incoming, outgoing)
A stream over two simplex pipes (one used to input, another for output)

classmethod from_std()

factory method that creates a PipeStream over the standard pipes (stdin and stdout)

Returns
a PipeStream instance

classmethod create_pair()

factory method that creates two pairs of anonymous pipes, and creates two PipeStreams over them. Useful
for fork().

Returns
a tuple of two PipeStream instances

property closed

tests whether the stream is closed or not

close()

closes the stream, releasing any system resources associated with it

fileno()

returns the stream’s file descriptor

read(count)
reads exactly count bytes, or raise EOFError

Parameters
count – the number of bytes to read

Returns
read data

write(data)
writes the entire data, or raise EOFError

Parameters
data – a string of binary data

Channel

Channel is an abstraction layer over streams that works with packets of data, rather than an endless stream of bytes,
and adds support for compression.

class rpyc.core.channel.Channel(stream, compress=True)
Channel implementation.

Note: In order to avoid problems with all sorts of line-buffered transports, we deliberately add \n at the end of
each frame.

close()

closes the channel and underlying stream

property closed

indicates whether the underlying stream has been closed

56 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

fileno()

returns the file descriptor of the underlying stream

poll(timeout)
polls the underlying steam for data, waiting up to timeout seconds

recv()

Receives the next packet (or frame) from the underlying stream. This method will block until the packet
has been read completely

Returns
string of data

send(data)
Sends the given string of data as a packet over the underlying stream. Blocks until the packet has been sent.

Parameters
data – the byte string to send as a packet

• Streams - The stream layer (byte-oriented, platform-agnostic streams)

• Channel - The channel layer (framing and compression)

4.5.3 Protocol

Netref

NetRef : a transparent network reference. This module contains quite a lot of magic, so beware.

rpyc.core.netref.DELETED_ATTRS = frozenset({'__array_interface__', '__array_struct__'})

the set of attributes that are local to the netref object

rpyc.core.netref.LOCAL_ATTRS = frozenset({'____conn__', '____id_pack__',
'____refcount__', '__array_interface__', '__array_struct__', '__class__', '__cmp__',
'__del__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__exit__',
'__ge__', '__getattr__', '__getattribute__', '__gt__', '__hash__', '__init__',
'__instancecheck__', '__le__', '__lt__', '__metaclass__', '__methods__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__slots__', '__str__', '__weakref__'})

a list of types considered built-in (shared between connections) this is needed because iterating the members of
the builtins module is not enough, some types (e.g NoneType) are not members of the builtins module. TODO:
this list is not complete.

rpyc.core.netref.syncreq(proxy, handler, *args)
Performs a synchronous request on the given proxy object. Not intended to be invoked directly.

Parameters

• proxy – the proxy on which to issue the request

• handler – the request handler (one of the HANDLE_XXX members of rpyc.protocol.
consts)

• args – arguments to the handler

Raises
any exception raised by the operation will be raised

4.5. API Reference 57

RPyC Documentation, Release 6.0.0/2024-02-23

Returns
the result of the operation

rpyc.core.netref.asyncreq(proxy, handler, *args)
Performs an asynchronous request on the given proxy object. Not intended to be invoked directly.

Parameters

• proxy – the proxy on which to issue the request

• handler – the request handler (one of the HANDLE_XXX members of rpyc.protocol.
consts)

• args – arguments to the handler

Returns
an AsyncResult representing the operation

class rpyc.core.netref.NetrefMetaclass

A metaclass used to customize the __repr__ of netref classes. It is quite useless, but it makes debugging and
interactive programming easier

class rpyc.core.netref.BaseNetref(conn, id_pack)
The base netref class, from which all netref classes derive. Some netref classes are “pre-generated” and cached
upon importing this module (those defined in the _builtin_types), and they are shared between all connec-
tions.

The rest of the netref classes are created by rpyc.core.protocol.Connection._unbox(), and are private to
the connection.

Do not use this class directly; use class_factory() instead.

Parameters

• conn – the rpyc.core.protocol.Connection instance

• id_pack – id tuple for an object ~ (name_pack, remote-class-id, remote-instance-id) (cont.)
name_pack := __module__.__name__ (hits or misses on builtin cache and sys.module)

remote-class-id := id of object class (hits or misses on netref classes cache and instance
checks) remote-instance-id := id object instance (hits or misses on proxy cache)

id_pack is usually created by rpyc.lib.get_id_pack

class rpyc.core.netref.NetrefClass(class_obj)
a descriptor of the class being proxied

Future considerations:

• there may be a cleaner alternative but lib.compat.with_metaclass prevented using __new__

• consider using __slot__ for this class

• revisit the design choice to use properties here

property instance

accessor to class object for the instance being proxied

property owner

accessor to the class object for the instance owner being proxied

58 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

rpyc.core.netref.class_factory(id_pack, methods)
Creates a netref class proxying the given class

Parameters

• id_pack – the id pack used for proxy communication

• methods – a list of (method name, docstring) tuples, of the methods that the class
defines

Returns
a netref class

Async

class rpyc.core.async_.AsyncResult(conn)
AsyncResult represents a computation that occurs in the background and will eventually have a result. Use the
value property to access the result (which will block if the result has not yet arrived).

wait()

Waits for the result to arrive. If the AsyncResult object has an expiry set, and the result did not arrive within
that timeout, an AsyncResultTimeout exception is raised

add_callback(func)
Adds a callback to be invoked when the result arrives. The callback function takes a single argument, which
is the current AsyncResult (self). If the result has already arrived, the function is invoked immediately.

Parameters
func – the callback function to add

set_expiry(timeout)
Sets the expiry time (in seconds, relative to now) or None for unlimited time

Parameters
timeout – the expiry time in seconds or None

property ready

Indicates whether the result has arrived

property error

Indicates whether the returned result is an exception

property expired

Indicates whether the AsyncResult has expired

property value

Returns the result of the operation. If the result has not yet arrived, accessing this property will wait for it.
If the result does not arrive before the expiry time elapses, AsyncResultTimeout is raised. If the returned
result is an exception, it will be raised here. Otherwise, the result is returned directly.

4.5. API Reference 59

RPyC Documentation, Release 6.0.0/2024-02-23

Protocol

The RPyC protocol

exception rpyc.core.protocol.PingError

The exception raised should Connection.ping() fail

rpyc.core.protocol.DEFAULT_CONFIG = {'allow_all_attrs': False, 'allow_delattr': False,
'allow_exposed_attrs': True, 'allow_getattr': True, 'allow_pickle': False,
'allow_public_attrs': False, 'allow_safe_attrs': True, 'allow_setattr': False,
'before_closed': None, 'bind_threads': False, 'close_catchall': False, 'connid':
None, 'credentials': None, 'endpoints': None, 'exposed_prefix': 'exposed_',
'import_custom_exceptions': False, 'include_local_traceback': True,
'include_local_version': True, 'instantiate_custom_exceptions': False,
'instantiate_oldstyle_exceptions': False, 'log_exceptions': True, 'logger': None,
'propagate_KeyboardInterrupt_locally': True, 'propagate_SystemExit_locally': False,
'safe_attrs': {'__abs__', '__add__', '__and__', '__bool__', '__cmp__', '__contains__',
'__delitem__', '__delslice__', '__div__', '__divmod__', '__doc__', '__enter__', '__eq__',
'__exit__', '__float__', '__floordiv__', '__format__', '__ge__', '__getitem__',
'__getslice__', '__gt__', '__hash__', '__hex__', '__iadd__', '__iand__', '__idiv__',
'__ifloordiv__', '__ilshift__', '__imod__', '__imul__', '__index__', '__int__',
'__invert__', '__ior__', '__ipow__', '__irshift__', '__isub__', '__iter__',
'__itruediv__', '__ixor__', '__le__', '__len__', '__length_hint__', '__long__',
'__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__next__',
'__nonzero__', '__oct__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__',
'__rdiv__', '__rdivmod__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__',
'__rmul__', '__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__',
'__rtruediv__', '__rxor__', '__setitem__', '__setslice__', '__str__', '__sub__',
'__truediv__', '__xor__', 'next'}, 'sync_request_timeout': 30}

The default configuration dictionary of the protocol. You can override these parameters by passing a different
configuration dict to the Connection class.

Note: You only need to override the parameters you want to change. There’s no need to repeat parameters
whose values remain unchanged.

60 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

Parameter De-
fault
value

Description

allow_safe_attrsTrue Whether to allow the use of safe attributes (only those listed as safe_attrs)
allow_exposed_attrsTrue Whether to allow exposed attributes (attributes that start with the exposed_prefix)
allow_public_attrsFalse Whether to allow public attributes (attributes that don’t start with _)
allow_all_attrsFalse Whether to allow all attributes (including private)
safe_attrs set([.

..
])

The set of attributes considered safe

exposed_prefix"exposed_"The prefix of exposed attributes
allow_getattr True Whether to allow getting of attributes (getattr)
allow_setattr False Whether to allow setting of attributes (setattr)
allow_delattr False Whether to allow deletion of attributes (delattr)
allow_pickle False Whether to allow the use of pickle
include_local_tracebackTrue Whether to include the local traceback in the remote exception
instantiate_custom_exceptionsFalse Whether to allow instantiation of custom exceptions (not the built in ones)
import_custom_exceptionsFalse Whether to allow importing of exceptions from not-yet-imported modules
instantiate_oldstyle_exceptionsFalse Whether to allow instantiation of exceptions which don’t derive from Exception.

This is not applicable for Python 3 and later.
propagate_SystemExit_locallyFalse Whether to propagate SystemExit locally (kill the server) or to the other party (kill

the client)
propagate_KeyboardInterrupt_locallyFalse Whether to propagate KeyboardInterrupt locally (kill the server) or to the other

party (kill the client)
logger None The logger instance to use to log exceptions (before they are sent to the other party)

and other events. If None, no logging takes place.
connid None Runtime: the RPyC connection ID (used mainly for debugging purposes)
credentials None Runtime: the credentials object that was returned by the server’s authenticator or

None
endpoints None Runtime: The connection’s endpoints. This is a tuple made of the local socket end-

point (getsockname) and the remote one (getpeername). This is set by the server
upon accepting a connection; client side connections do no have this configuration
option set.

sync_request_timeout30 Default timeout for waiting results
bind_threads False Whether to restrict request/reply by thread (experimental). The default value is

False. Setting the environment variable RPYC_BIND_THREADS to “true” will en-
able this feature.

class rpyc.core.protocol.Connection(root, channel, config={})
The RPyC connection (AKA protocol).

Objects referenced over the connection are either local or remote. This class retains a strong reference to local
objects that is deleted when the reference count is zero. Remote/proxied objects have a life-cycle controlled by
a different address space. Since garbage collection is handled on the remote end, a weak reference is used for
netrefs.

Parameters

• root – the Service object to expose

• channel – the Channel over which messages are passed

• config – the connection’s configuration dict (overriding parameters from the default
configuration)

4.5. API Reference 61

RPyC Documentation, Release 6.0.0/2024-02-23

close()

closes the connection, releasing all held resources

property closed

Indicates whether the connection has been closed or not

fileno()

Returns the connectin’s underlying file descriptor

ping(data=None, timeout=3)
Asserts that the other party is functioning properly, by making sure the data is echoed back before the
timeout expires

Parameters

• data – the data to send (leave None for the default buffer)

• timeout – the maximal time to wait for echo

Raises
PingError if the echoed data does not match

Raises
EOFError if the remote host closes the connection

serve(timeout=1, wait_for_lock=True, waiting=<function Connection.<lambda>>)
Serves a single request or reply that arrives within the given time frame (default is 1 sec). Note that the
dispatching of a request might trigger multiple (nested) requests, thus this function may be reentrant.

Returns
True if a request or reply were received, False otherwise.

poll(timeout=0)
Serves a single transaction, should one arrives in the given interval. Note that handling a request/reply may
trigger nested requests, which are all part of a single transaction.

Returns
True if a transaction was served, False otherwise

serve_all()

Serves all requests and replies for as long as the connection is alive.

serve_threaded(thread_count=10)
Serves all requests and replies for as long as the connection is alive.

CAVEAT: using non-immutable types that require a netref to be constructed to serve a request, or invoking
anything else that performs a sync_request, may timeout due to the sync_request reply being received by
another thread serving the connection. A more conventional approach where each client thread opens a new
connection would allow ThreadedServer to naturally avoid such multiplexing issues and is the preferred
approach for threading procedures that invoke sync_request. See issue #345

poll_all(timeout=0)
Serves all requests and replies that arrive within the given interval.

Returns
True if at least a single transaction was served, False otherwise

sync_request(handler, *args)
requests, sends a synchronous request (waits for the reply to arrive)

62 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

Raises
any exception that the requests may be generated

Returns
the result of the request

async_request(handler, *args, **kwargs)
Send an asynchronous request (does not wait for it to finish)

Returns
an rpyc.core.async_.AsyncResult object, which will eventually hold the result (or ex-
ception)

property root

Fetches the root object (service) of the other party

Service

Services are the heart of RPyC: each side of the connection exposes a service, which define the capabilities available
to the other side.

Note that the services by both parties need not be symmetric, e.g., one side may exposed service A, while the other
may expose service B. As long as the two can interoperate, you’re good to go.

class rpyc.core.service.Service

The service base-class. Derive from this class to implement custom RPyC services:

• The name of the class implementing the Foo service should match the pattern FooService (suffixed by
the word ‘Service’)

class FooService(Service):
pass

FooService.get_service_name() # 'FOO'
FooService.get_service_aliases() # ['FOO']

• To supply a different name or aliases, use the ALIASES class attribute

class Foobar(Service):
ALIASES = ["foo", "bar", "lalaland"]

Foobar.get_service_name() # 'FOO'
Foobar.get_service_aliases() # ['FOO', 'BAR', 'LALALAND']

• Override on_connect() to perform custom initialization

• Override on_disconnect() to perform custom finalization

• To add exposed methods or attributes, simply define them normally, but prefix their name by exposed_,
e.g.

class FooService(Service):
def exposed_add(self, x, y):

return x + y

• All other names (not prefixed by exposed_) are local (not accessible to the other party)

4.5. API Reference 63

RPyC Documentation, Release 6.0.0/2024-02-23

Note: You can override _rpyc_getattr, _rpyc_setattr and _rpyc_delattr to change attribute lookup –
but beware of possible security implications!

on_connect(conn)
called when the connection is established

on_disconnect(conn)
called when the connection had already terminated for cleanup (must not perform any IO on the connection)

classmethod get_service_aliases()

returns a list of the aliases of this service

classmethod get_service_name()

returns the canonical name of the service (which is its first alias)

classmethod exposed_get_service_aliases()

returns a list of the aliases of this service

classmethod exposed_get_service_name()

returns the canonical name of the service (which is its first alias)

class rpyc.core.service.VoidService

void service - an do-nothing service

class rpyc.core.service.ModuleNamespace(getmodule)
used by the SlaveService to implement the magical ‘module namespace’

class rpyc.core.service.SlaveService

The SlaveService allows the other side to perform arbitrary imports and execution arbitrary code on the server.
This is provided for compatibility with the classic RPyC (2.6) modus operandi.

This service is very useful in local, secure networks, but it exposes a major security risk otherwise.

on_connect(conn)
called when the connection is established

class rpyc.core.service.FakeSlaveService

VoidService that can be used for connecting to peers that operate a MasterService, ClassicService, or the
old SlaveService (pre v3.5) without exposing any functionality to them.

class rpyc.core.service.MasterService

Peer for a new-style (>=v3.5) SlaveService. Use this service if you want to connect to a SlaveService
without exposing any functionality to them.

on_connect(conn)
called when the connection is established

class rpyc.core.service.ClassicService

Full duplex master/slave service, i.e. both parties have full control over the other. Must be used by both parties.

class rpyc.core.service.ClassicClient

MasterService that can be used for connecting to peers that operate a MasterService, ClassicService with-
out exposing any functionality to them.

• Protocol - The RPyC protocol (Connection class)

• Service - The RPyC service model

64 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

• Netref - Implementation of transparent object proxies (netrefs)

• Async - Asynchronous object proxies (netrefs)

4.5.4 Server-Side

Server

rpyc plug-in server (threaded or forking)

class rpyc.utils.server.Server(service, hostname=None, ipv6=False, port=0, backlog=4096,
reuse_addr=True, authenticator=None, registrar=None,
auto_register=None, protocol_config=None, logger=None,
listener_timeout=0.5, socket_path=None)

Base server implementation

Parameters

• service – the Service to expose

• hostname – the host to bind to. By default, the ‘wildcard address’ is used to listen on all
interfaces. if not properly secured, the server can receive traffic from unintended or even
malicious sources.

• ipv6 – whether to create an IPv6 or IPv4 socket. The default is IPv4

• port – the TCP port to bind to

• backlog – the socket’s backlog (passed to listen())

• reuse_addr – whether or not to create the socket with the SO_REUSEADDR option set.

• authenticator – the Authenticators to use. If None, no authentication is performed.

• registrar – the RegistryClient to use. If None, a default UDPRegistryClient will
be used

• auto_register – whether or not to register using the registrar. By default, the server will
attempt to register only if a registrar was explicitly given.

• protocol_config – the configuration dictionary that is passed to the RPyC con-
nection

• logger – the logger to use (of the built-in logging module). If None, a default logger
will be created.

• listener_timeout – the timeout of the listener socket; set to None to disable (e.g. on
embedded platforms with limited battery)

close()

Closes (terminates) the server and all of its clients. If applicable, also unregisters from the registry server

fileno()

returns the listener socket’s file descriptor

accept()

accepts an incoming socket connection (blocking)

start()

Starts the server (blocking). Use close() to stop

4.5. API Reference 65

RPyC Documentation, Release 6.0.0/2024-02-23

class rpyc.utils.server.OneShotServer(service, hostname=None, ipv6=False, port=0, backlog=4096,
reuse_addr=True, authenticator=None, registrar=None,
auto_register=None, protocol_config=None, logger=None,
listener_timeout=0.5, socket_path=None)

A server that handles a single connection (blockingly), and terminates after that

Parameters: see Server

class rpyc.utils.server.ThreadedServer(service, hostname=None, ipv6=False, port=0, backlog=4096,
reuse_addr=True, authenticator=None, registrar=None,
auto_register=None, protocol_config=None, logger=None,
listener_timeout=0.5, socket_path=None)

A server that spawns a thread for each connection. Works on any platform that supports threads.

Parameters: see Server

class rpyc.utils.server.ThreadPoolServer(*args, **kwargs)
This server is threaded like the ThreadedServer but reuses threads so that recreation is not necessary for each
request. The pool of threads has a fixed size that can be set with the ‘nbThreads’ argument. The default size is
20. The server dispatches request to threads by batch, that is a given thread may process up to request_batch_size
requests from the same connection in one go, before it goes to the next connection with pending requests. By
default, self.request_batch_size is set to 10 and it can be overwritten in the constructor arguments.

Contributed by @sponce

Parameters: see Server

close()

closes a ThreadPoolServer. In particular, joins the thread pool.

class rpyc.utils.server.ForkingServer(*args, **kwargs)
A server that forks a child process for each connection. Available on POSIX compatible systems only.

Parameters: see Server

close()

Closes (terminates) the server and all of its clients. If applicable, also unregisters from the registry server

class rpyc.utils.server.GeventServer(service, hostname=None, ipv6=False, port=0, backlog=4096,
reuse_addr=True, authenticator=None, registrar=None,
auto_register=None, protocol_config=None, logger=None,
listener_timeout=0.5, socket_path=None)

gevent based Server. Requires using gevent.monkey.patch_all().

Authenticators

An authenticator is basically a callable object that takes a socket and “authenticates” it in some way. Upon success, it
must return a tuple containing a socket-like object and its credentials (any object), or raise an AuthenticationError
upon failure. The credentials are any object you wish to associate with the authentication, and it’s stored in the con-
nection’s configuration dict under the key “credentials”.

There are no constraints on what the authenticators, for instance:

def magic_word_authenticator(sock):
if sock.recv(5) != "Ma6ik":

raise AuthenticationError("wrong magic word")
return sock, None

66 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

RPyC comes bundled with an authenticator for SSL (using certificates). This authenticator, for instance, both verifies
the peer’s identity and wraps the socket with an encrypted transport (which replaces the original socket).

Authenticators are used by Server to validate an incoming connection. Using them is pretty trivial

s = ThreadedServer(...., authenticator = magic_word_authenticator)
s.start()

exception rpyc.utils.authenticators.AuthenticationError

raised to signal a failed authentication attempt

class rpyc.utils.authenticators.SSLAuthenticator(keyfile, certfile, ca_certs=None, cert_reqs=None,
ssl_version=None, ciphers=None)

An implementation of the authenticator protocol for SSL. The given socket is wrapped by ssl.SSLContext.
wrap_socket and is validated based on certificates

Parameters

• keyfile – the server’s key file

• certfile – the server’s certificate file

• ca_certs – the server’s certificate authority file

• cert_reqs – the certificate requirements. By default, if ca_cert is specified, the require-
ment is set to CERT_REQUIRED; otherwise it is set to CERT_NONE

• ciphers – the list of ciphers to use, or None, if you do not wish to restrict the available
ciphers. New in Python 2.7/3.2

• ssl_version – the SSL version to use

Refer to ssl.SSLContext for more info.

Clients can connect to this authenticator using rpyc.utils.factory.ssl_connect(). Classic clients can use
directly rpyc.utils.classic.ssl_connect() which sets the correct service parameters.

Registry

RPyC Registry Server maintains service information on RPyC services for Service Registry and Discovery patterns.
Service Registry and Discovery patterns solve the connectivity problem for communication between services and ex-
ternal consumers. RPyC services will register with the server when auto_register is True.

Service registries such as Avahi and Bonjour are alternatives to the RPyC Registry Server. These alternatives do no
support Windows and have more restrictive licensing.

Refer to rpyc/scripts/rpyc_registry.py for more info.

class rpyc.utils.registry.RegistryServer(listenersock, pruning_timeout=None, logger=None,
allow_listing=False)

Base registry server

on_service_added(name, addrinfo)
called when a new service joins the registry (but not on keepalives). override this to add custom logic

on_service_removed(name, addrinfo)
called when a service unregisters or is pruned. override this to add custom logic

cmd_query(host, name)
implementation of the query command

4.5. API Reference 67

http://docs.python.org/dev/library/ssl.html#ssl.SSLContext
http://en.wikipedia.org/wiki/Avahi_(software)
http://en.wikipedia.org/wiki/Bonjour_(software)

RPyC Documentation, Release 6.0.0/2024-02-23

cmd_list(host, filter_host)
implementation for the list command

cmd_register(host, names, port)
implementation of the register command

cmd_unregister(host, port)
implementation of the unregister command

start()

Starts the registry server (blocks)

close()

Closes (terminates) the registry server

class rpyc.utils.registry.UDPRegistryServer(host='0.0.0.0', port=18811, pruning_timeout=None,
logger=None, allow_listing=False)

UDP-based registry server. The server listens to UDP broadcasts and answers them. Useful in local networks,
were broadcasts are allowed

class rpyc.utils.registry.TCPRegistryServer(host='0.0.0.0', port=18811, pruning_timeout=None,
logger=None, reuse_addr=True, allow_listing=False)

TCP-based registry server. The server listens to a certain TCP port and answers requests. Useful when you need
to cross routers in the network, since they block UDP broadcasts

class rpyc.utils.registry.RegistryClient(ip, port, timeout, logger=None)
Base registry client. Also known as registrar

discover(name)
Sends a query for the specified service name.

Parameters
name – the service name (or one of its aliases)

Returns
a list of (host, port) tuples

list(filter_host=None)
Send a query for the full lists of exposed servers :returns: a list of `` service_name ``

register(aliases, port)
Registers the given service aliases with the given TCP port. This API is intended to be called only by an
RPyC server.

Parameters

• aliases – the service's aliases

• port – the listening TCP port of the server

unregister(port)
Unregisters the given RPyC server. This API is intended to be called only by an RPyC server.

Parameters
port – the listening TCP port of the RPyC server to unregister

class rpyc.utils.registry.UDPRegistryClient(ip='255.255.255.255', port=18811, timeout=2,
bcast=None, logger=None, ipv6=False)

68 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

UDP-based registry clients. By default, it sends UDP broadcasts (requires special user privileges on certain
OS’s) and collects the replies. You can also specify the IP address to send to.

Example:

registrar = UDPRegistryClient()
list_of_services = registrar.list()
list_of_servers = registrar.discover("foo")

Note: Consider using rpyc.utils.factory.discover() instead

discover(name)
Sends a query for the specified service name.

Parameters
name – the service name (or one of its aliases)

Returns
a list of (host, port) tuples

list(filter_host=None)
Send a query for the full lists of exposed servers :returns: a list of `` service_name ``

register(aliases, port, interface='')
Registers the given service aliases with the given TCP port. This API is intended to be called only by an
RPyC server.

Parameters

• aliases – the service's aliases

• port – the listening TCP port of the server

unregister(port)
Unregisters the given RPyC server. This API is intended to be called only by an RPyC server.

Parameters
port – the listening TCP port of the RPyC server to unregister

class rpyc.utils.registry.TCPRegistryClient(ip, port=18811, timeout=2, logger=None)
TCP-based registry client. You must specify the host (registry server) to connect to.

Example:

registrar = TCPRegistryClient("localhost")
list_of_services = registrar.list()
list_of_servers = registrar.discover("foo")

Note: Consider using rpyc.utils.factory.discover() instead

discover(name)
Sends a query for the specified service name.

Parameters
name – the service name (or one of its aliases)

4.5. API Reference 69

RPyC Documentation, Release 6.0.0/2024-02-23

Returns
a list of (host, port) tuples

list(filter_host=None)
Send a query for the full lists of exposed servers :returns: a list of `` service_name ``

register(aliases, port, interface='')
Registers the given service aliases with the given TCP port. This API is intended to be called only by an
RPyC server.

Parameters

• aliases – the service's aliases

• port – the listening TCP port of the server

unregister(port)
Unregisters the given RPyC server. This API is intended to be called only by an RPyC server.

Parameters
port – the listening TCP port of the RPyC server to unregister

• Server - The core implementation of RPyC servers; includes the implementation of the forking and threaded
servers.

• Registry - Implementation of the Service Registry; the registry is a bonjour-like discovery agent, with which
RPyC servers register themselves, and allows clients to locate different servers by name.

• Authenticators - Implementation of two common authenticators, for SSL and TLSlite.

4.5.5 Client-Side

Factories

RPyC connection factories: ease the creation of a connection for the common cases)

exception rpyc.utils.factory.DiscoveryError

exception rpyc.utils.factory.ForbiddenError

rpyc.utils.factory.connect_channel(channel, service=<class 'rpyc.core.service.VoidService'>, config={})
creates a connection over a given channel

Parameters

• channel – the channel to use

• service – the local service to expose (defaults to Void)

• config – configuration dict

Returns
an RPyC connection

rpyc.utils.factory.connect_stream(stream, service=<class 'rpyc.core.service.VoidService'>, config={})
creates a connection over a given stream

Parameters

• stream – the stream to use

• service – the local service to expose (defaults to Void)

70 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

• config – configuration dict

Returns
an RPyC connection

rpyc.utils.factory.connect_pipes(input, output, service=<class 'rpyc.core.service.VoidService'>,
config={})

creates a connection over the given input/output pipes

Parameters

• input – the input pipe

• output – the output pipe

• service – the local service to expose (defaults to Void)

• config – configuration dict

Returns
an RPyC connection

rpyc.utils.factory.connect_stdpipes(service=<class 'rpyc.core.service.VoidService'>, config={})
creates a connection over the standard input/output pipes

Parameters

• service – the local service to expose (defaults to Void)

• config – configuration dict

Returns
an RPyC connection

rpyc.utils.factory.connect(host, port, service=<class 'rpyc.core.service.VoidService'>, config={},
ipv6=False, keepalive=False)

creates a socket-connection to the given host and port

Parameters

• host – the hostname to connect to

• port – the TCP port to use

• service – the local service to expose (defaults to Void)

• config – configuration dict

• ipv6 – whether to create an IPv6 socket (defaults to False)

• keepalive – whether to set TCP keepalive on the socket (defaults to False)

Returns
an RPyC connection

rpyc.utils.factory.unix_connect(path, service=<class 'rpyc.core.service.VoidService'>, config={})
creates a socket-connection to the given unix domain socket

Parameters

• path – the path to the unix domain socket

• service – the local service to expose (defaults to Void)

• config – configuration dict

4.5. API Reference 71

RPyC Documentation, Release 6.0.0/2024-02-23

Returns
an RPyC connection

rpyc.utils.factory.ssl_connect(host, port, keyfile=None, certfile=None, ca_certs=None, cert_reqs=None,
ssl_version=None, ciphers=None, service=<class
'rpyc.core.service.VoidService'>, config={}, ipv6=False, keepalive=False,
verify_mode=None)

creates an SSL-wrapped connection to the given host (encrypted and authenticated).

Parameters

• host – the hostname to connect to

• port – the TCP port to use

• service – the local service to expose (defaults to Void)

• config – configuration dict

• ipv6 – whether to create an IPv6 socket or an IPv4 one(defaults to False)

• keepalive – whether to set TCP keepalive on the socket (defaults to False)

• keyfile – see ssl.SSLContext.load_cert_chain. May be None

• certfile – see ssl.SSLContext.load_cert_chain. May be None

• ca_certs – see ssl.SSLContext.load_verify_locations. May be None

• cert_reqs – see ssl.SSLContext.verify_mode. By default, if ca_cert is specified,
the requirement is set to CERT_REQUIRED; otherwise it is set to CERT_NONE

• ssl_version – see ssl.SSLContext. The default is defined by ssl.
create_default_context

• ciphers – see ssl.SSLContext.set_ciphers. May be None. New in Python 2.7/3.2

• verify_mode – see ssl.SSLContext.verify_mode

Returns
an RPyC connection

rpyc.utils.factory.ssh_connect(remote_machine, remote_port, service=<class
'rpyc.core.service.VoidService'>, config={})

Connects to an RPyC server over an SSH tunnel (created by plumbum). See Plumbum tunneling for further
details.

Note: This function attempts to allocate a free TCP port for the underlying tunnel, but doing so is inherently
prone to a race condition with other processes who might bind the same port before sshd does. Albeit unlikely,
there is no sure way around it.

Parameters

• remote_machine – an plumbum.remote.RemoteMachine instance

• remote_port – the port of the remote server

• service – the local service to expose (defaults to Void)

• config – configuration dict

Returns
an RPyC connection

72 Chapter 4. Contents

http://plumbum.readthedocs.org/en/latest/remote.html#tunneling

RPyC Documentation, Release 6.0.0/2024-02-23

rpyc.utils.factory.discover(service_name, host=None, registrar=None, timeout=2)
discovers hosts running the given service

Parameters

• service_name – the service to look for

• host – limit the discovery to the given host only (None means any host)

• registrar – use this registry client to discover services. if None, use the default UDPReg-
istryClient with the default settings.

• timeout – the number of seconds to wait for a reply from the registry if no hosts are found,
raises DiscoveryError

Raises
DiscoveryError if no server is found

Returns
a list of (ip, port) pairs

rpyc.utils.factory.connect_by_service(service_name, host=None, registrar=None, timeout=2,
service=<class 'rpyc.core.service.VoidService'>, config={})

create a connection to an arbitrary server that exposes the requested service

Parameters

• service_name – the service to discover

• host – limit discovery to the given host only (None means any host)

• service – the local service to expose (defaults to Void)

• config – configuration dict

Raises
DiscoveryError if no server is found

Returns
an RPyC connection

rpyc.utils.factory.connect_subproc(args, service=<class 'rpyc.core.service.VoidService'>, config={})
runs an rpyc server on a child process that and connects to it over the stdio pipes. uses the subprocess module.

Parameters

• args – the args to Popen, e.g., [“python”, “-u”, “myfile.py”]

• service – the local service to expose (defaults to Void)

• config – configuration dict

rpyc.utils.factory.connect_thread(service=<class 'rpyc.core.service.VoidService'>, config={},
remote_service=<class 'rpyc.core.service.VoidService'>,
remote_config={})

starts an rpyc server on a new thread, bound to an arbitrary port, and connects to it over a socket.

Parameters

• service – the local service to expose (defaults to Void)

• config – configuration dict

• remote_service – the remote service to expose (of the server; defaults to Void)

• remote_config – remote configuration dict (of the server)

4.5. API Reference 73

RPyC Documentation, Release 6.0.0/2024-02-23

rpyc.utils.factory.connect_multiprocess(service=<class 'rpyc.core.service.VoidService'>, config={},
remote_service=<class 'rpyc.core.service.VoidService'>,
remote_config={}, args={})

starts an rpyc server on a new process, bound to an arbitrary port, and connects to it over a socket. Basically a copy
of connect_thread(). However if args is used and if these are shared memory then changes will be bi-directional.
That is we now have access to shared memory.

Parameters

• service – the local service to expose (defaults to Void)

• config – configuration dict

• remote_service – the remote service to expose (of the server; defaults to Void)

• remote_config – remote configuration dict (of the server)

• args – dict of local vars to pass to new connection, form {‘name’:var}

Contributed by @tvanzyl

Classic

rpyc.utils.classic.connect_channel(channel)
Creates an RPyC connection over the given channel

Parameters
channel – the rpyc.core.channel.Channel instance

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.connect_stream(stream)

Creates an RPyC connection over the given stream

Parameters
channel – the rpyc.core.stream.Stream instance

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.connect_stdpipes()

Creates an RPyC connection over the standard pipes (stdin and stdout)

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.connect_pipes(input, output)
Creates an RPyC connection over two pipes

Parameters

• input – the input pipe

• output – the output pipe

Returns
an RPyC connection exposing SlaveService

74 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

rpyc.utils.classic.connect(host, port=18812, ipv6=False, keepalive=False)
Creates a socket connection to the given host and port.

Parameters

• host – the host to connect to

• port – the TCP port

• ipv6 – whether to create an IPv6 socket or IPv4

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.unix_connect(path)
Creates a socket connection to the given host and port.

Parameters
path – the path to the unix domain socket

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.ssl_connect(host, port=18821, keyfile=None, certfile=None, ca_certs=None,
cert_reqs=None, ssl_version=None, ciphers=None, ipv6=False)

Creates a secure (SSL) socket connection to the given host and port, authenticating with the given certfile and
CA file.

Parameters

• host – the host to connect to

• port – the TCP port to use

• ipv6 – whether to create an IPv6 socket or an IPv4 one

The following arguments are passed to ssl.SSLContext and its corresponding methods:

Parameters

• keyfile – see ssl.SSLContext.load_cert_chain. May be None

• certfile – see ssl.SSLContext.load_cert_chain. May be None

• ca_certs – see ssl.SSLContext.load_verify_locations. May be None

• cert_reqs – see ssl.SSLContext.verify_mode. By default, if ca_cert is specified,
the requirement is set to CERT_REQUIRED; otherwise it is set to CERT_NONE

• ssl_version – see ssl.SSLContext. The default is defined by ssl.
create_default_context

• ciphers – see ssl.SSLContext.set_ciphers. May be None. New in Python 2.7/3.2

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.ssh_connect(remote_machine, remote_port)
Connects to the remote server over an SSH tunnel. See rpyc.utils.factory.ssh_connect() for more info.

Parameters

• remote_machine – the plumbum.remote.RemoteMachine instance

• remote_port – the remote TCP port

4.5. API Reference 75

http://docs.python.org/dev/library/ssl.html#ssl.SSLContext

RPyC Documentation, Release 6.0.0/2024-02-23

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.connect_subproc(server_file=None)
Runs an RPyC classic server as a subprocess and returns an RPyC connection to it over stdio

Parameters
server_file – The full path to the server script (rpyc_classic.py). If not given, which
rpyc_classic.py will be attempted.

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.connect_thread()

Starts a SlaveService on a thread and connects to it. Useful for testing purposes. See rpyc.utils.factory.
connect_thread()

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.connect_multiprocess(args={})
Starts a SlaveService on a multiprocess process and connects to it. Useful for testing purposes and running
multicore code that’s uses shared memory. See rpyc.utils.factory.connect_multiprocess()

Returns
an RPyC connection exposing SlaveService

rpyc.utils.classic.upload(conn, localpath, remotepath, filter=None, ignore_invalid=False,
chunk_size=64000)

uploads a file or a directory to the given remote path

Parameters

• localpath – the local file or directory

• remotepath – the remote path

• filter – a predicate that accepts the filename and determines whether it should be uploaded;
None means any file

• chunk_size – the IO chunk size

rpyc.utils.classic.download(conn, remotepath, localpath, filter=None, ignore_invalid=False,
chunk_size=64000)

download a file or a directory to the given remote path

Parameters

• localpath – the local file or directory

• remotepath – the remote path

• filter – a predicate that accepts the filename and determines whether it should be down-
loaded; None means any file

• chunk_size – the IO chunk size

rpyc.utils.classic.upload_package(conn, module, remotepath=None, chunk_size=64000)
uploads a module or a package to the remote party

Parameters

• conn – the RPyC connection to use

76 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

• module – the local module/package object to upload

• remotepath – the remote path (if None, will default to the remote system’s python library
(as reported by distutils)

• chunk_size – the IO chunk size

Note: upload_module is just an alias to upload_package

example:

import foo.bar
...
rpyc.classic.upload_package(conn, foo.bar)

rpyc.utils.classic.upload_module(conn, module, remotepath=None, chunk_size=64000)
uploads a module or a package to the remote party

Parameters

• conn – the RPyC connection to use

• module – the local module/package object to upload

• remotepath – the remote path (if None, will default to the remote system’s python library
(as reported by distutils)

• chunk_size – the IO chunk size

Note: upload_module is just an alias to upload_package

example:

import foo.bar
...
rpyc.classic.upload_package(conn, foo.bar)

rpyc.utils.classic.obtain(proxy)
obtains (copies) a remote object from a proxy object. the object is pickled on the remote side and unpickled
locally, thus moved by value. changes made to the local object will not reflect remotely.

Parameters
proxy – an RPyC proxy object

Note: the remote object to must be pickle-able

Returns
a copy of the remote object

rpyc.utils.classic.deliver(conn, localobj)
delivers (recreates) a local object on the other party. the object is pickled locally and unpickled on the remote
side, thus moved by value. changes made to the remote object will not reflect locally.

Parameters

4.5. API Reference 77

RPyC Documentation, Release 6.0.0/2024-02-23

• conn – the RPyC connection

• localobj – the local object to deliver

Note: the object must be picklable

Returns
a proxy to the remote object

rpyc.utils.classic.redirected_stdio(conn)
Redirects the other party’s stdin, stdout and stderr to those of the local party, so remote IO will occur locally.

Example usage:

with redirected_stdio(conn):
conn.modules.sys.stdout.write("hello\n") # will be printed locally

rpyc.utils.classic.pm(conn)
same as pdb.pm() but on a remote exception

Parameters
conn – the RPyC connection

rpyc.utils.classic.interact(conn, namespace=None)
remote interactive interpreter

Parameters

• conn – the RPyC connection

• namespace – the namespace to use (a dict)

class rpyc.utils.classic.MockClassicConnection

Mock classic RPyC connection object. Useful when you want the same code to run remotely or locally.

rpyc.utils.classic.teleport_function(conn, func, globals=None, def_=True)
“Teleports” a function (including nested functions/closures) over the RPyC connection. The function is passed
in bytecode form and reconstructed on the other side.

The function cannot have non-brinable defaults (e.g., def f(x, y=[8]):, since a list isn’t brinable), or make
use of non-builtin globals (like modules). You can overcome the second restriction by moving the necessary
imports into the function body, e.g.

def f(x, y):
import os
return (os.getpid() + y) * x

Note: While it is not forbidden to “teleport” functions across different Python versions, it may result in errors
due to Python bytecode differences. It is recommended to ensure both the client and the server are of the same
Python version when using this function.

Parameters

• conn – the RPyC connection

• func – the function object to be delivered to the other party

78 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

Helpers

Helpers and wrappers for common RPyC tasks

rpyc.utils.helpers.buffiter(obj, chunk=10, max_chunk=1000, factor=2)
Buffered iterator - reads the remote iterator in chunks starting with chunk, multiplying the chunk size by factor
every time, as an exponential-backoff, up to a chunk of max_chunk size.

buffiter is very useful for tight loops, where you fetch an element from the other side with every iterator.
Instead of being limited by the network’s latency after every iteration, buffiter fetches a “chunk” of elements
every time, reducing the amount of network I/Os.

Parameters

• obj – An iterable object (supports iter())

• chunk – the initial chunk size

• max_chunk – the maximal chunk size

• factor – the factor by which to multiply the chunk size after every iterator (up to
max_chunk). Must be >= 1.

Returns
an iterator

Example:

cursor = db.get_cursor()
for id, name, dob in buffiter(cursor.select("Id", "Name", "DoB")):

print id, name, dob

rpyc.utils.helpers.restricted(obj, attrs, wattrs=None)
Returns a ‘restricted’ version of an object, i.e., allowing access only to a subset of its attributes. This is useful
when returning a “broad” or “dangerous” object, where you don’t want the other party to have access to all of its
attributes.

New in version 3.2.

Parameters

• obj – any object

• attrs – the set of attributes exposed for reading (getattr) or writing (setattr). The same
set will serve both for reading and writing, unless wattrs is explicitly given.

• wattrs – the set of attributes exposed for writing (setattr). If None, wattrs will default
to attrs. To disable setting attributes completely, set to an empty tuple ().

Returns
a restricted view of the object

Example:

class MyService(rpyc.Service):
def exposed_open(self, filename):

f = open(filename, "r")
return rpyc.restricted(f, {"read", "close"}) # disallow access to `seek`␣

→˓or `write`

4.5. API Reference 79

RPyC Documentation, Release 6.0.0/2024-02-23

rpyc.utils.helpers.async_(proxy)
Creates an async proxy wrapper over an existing proxy. Async proxies are cached. Invoking an async proxy will
return an AsyncResult instead of blocking

class rpyc.utils.helpers.timed(proxy, timeout)
Creates a timed asynchronous proxy. Invoking the timed proxy will run in the background and will raise an
rpyc.core.async_.AsyncResultTimeout exception if the computation does not terminate within the given
time frame

Parameters

• proxy – any callable RPyC proxy

• timeout – the maximal number of seconds to allow the operation to run

Returns
a timed wrapped proxy

Example:

t_sleep = rpyc.timed(conn.modules.time.sleep, 6) # allow up to 6 seconds
t_sleep(4) # okay
t_sleep(8) # will time out and raise AsyncResultTimeout

class rpyc.utils.helpers.BgServingThread(conn, callback=None, serve_interval=0.0, sleep_interval=0.1)
Runs an RPyC server in the background to serve all requests and replies that arrive on the given RPyC connection.
The thread is started upon the the instantiation of the BgServingThread object; you can use the stop()method
to stop the server thread.

CAVEAT: RPyC defaults to bind_threads as False. So, there is no guarantee that the background thread will
serve the request. See issue #522 for an example of this behavior. As the bind_threads feature matures, we may
change the default to to True in the future.

Example:

conn = rpyc.connect(...)
bg_server = BgServingThread(conn)
...
bg_server.stop()

Note: For a more detailed explanation of asynchronous operation and the role of the BgServingThread, see
Part 5: Asynchronous Operation and Events

stop()

stop the server thread. once stopped, it cannot be resumed. you will have to create a new BgServingThread
object later.

rpyc.utils.helpers.classpartial(*args, **kwargs)
Bind arguments to a class’s __init__.

rpyc.utils.helpers.async(proxy)
Creates an async proxy wrapper over an existing proxy. Async proxies are cached. Invoking an async proxy will
return an AsyncResult instead of blocking

• Factories - general-purpose connection factories (over pipes, sockets, SSL, SSH, TLSlite, etc.)

• Classic - Classic-mode factories and utilities

80 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

• Helpers - Various helpers (timed, async_, buffiter, BgServingThread, etc.)

4.5.6 Misc

Zero-Deploy RPyC

New in version 3.3.

Requires [plumbum](http://plumbum.readthedocs.org/)

class rpyc.utils.zerodeploy.DeployedServer(remote_machine,
server_class='rpyc.utils.server.ThreadedServer',
extra_setup='', python_executable=None)

Sets up a temporary, short-lived RPyC deployment on the given remote machine. It will:

1. Create a temporary directory on the remote machine and copy RPyC’s code from the local machine to the
remote temporary directory.

2. Start an RPyC server on the remote machine, binding to an arbitrary TCP port, allowing only in-bound
connections (localhost connections). The server reports the chosen port over stdout.

3. An SSH tunnel is created from an arbitrary local port (on the local host), to the remote machine’s chosen
port. This tunnel is authenticated and encrypted.

4. You get a DeployedServer object that can be used to connect to the newly-spawned server.

5. When the deployment is closed, the SSH tunnel is torn down, the remote server terminates and the tempo-
rary directory is deleted.

Parameters

• remote_machine – a plumbum SshMachine or ParamikoMachine instance, representing
an SSH connection to the desired remote machine

• server_class – the server to create (e.g., "ThreadedServer", "ForkingServer")

• extra_setup – any extra code to add to the script

connect(service=<class 'rpyc.core.service.VoidService'>, config={})
Same as connect(), but with the host and port parameters fixed

classic_connect()

Same as classic.connect, but with the host and port parameters fixed

class rpyc.utils.zerodeploy.MultiServerDeployment(remote_machines,
server_class='rpyc.utils.server.ThreadedServer')

An ‘aggregate’ server deployment to multiple SSH machine. It deploys RPyC to each machine separately, but
lets you manage them as a single deployment.

connect_all(service=<class 'rpyc.core.service.VoidService'>, config={})
connects to all deployed servers; returns a list of connections (order guaranteed)

classic_connect_all()

connects to all deployed servers using classic_connect; returns a list of connections (order guaranteed)

• Zero-Deploy RPyC - Deploy short-living RPyC servers on remote machines with ease - all you’ll need is SSH
access and a Python interpreter installed on the host

4.5. API Reference 81

http://plumbum.readthedocs.org/

RPyC Documentation, Release 6.0.0/2024-02-23

4.6 License

RPyC is released under the MIT license:

Copyright (c) 2005-2013
Tomer Filiba (tomerfiliba@gmail.com)
Copyrights of patches are held by their respective submitters

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

4.7 Release Change Log

4.8 6.0.0

Date: 2024-02-23

• #551 Resolves security issue that results in RCE. The fix breaks backwards compatibility for those that rely on
the __array__ attribute used by numpy. This RCE is only exploitable when the server-side gets the attribute
__array__ and calls it (e.g., np.array(x)). This issues effects all versions since major release 4.

4.9 5.3.1

Date: 2023-02-21

• #527 Resolved timeout issue that was introduced in 5.2.1

• #525 and #524 Fixed experimental thread binding struct for platforms where unsigned long is 8-bits

– While the fix for thread binding is not backwards compatible, it only impacts people using an experimental
feature. Hence, I did a patch version bump.

82 Chapter 4. Contents

https://github.com/tomerfiliba-org/rpyc/issues/551
https://github.com/tomerfiliba-org/rpyc/issues/527
https://github.com/tomerfiliba-org/rpyc/pull/525
https://github.com/tomerfiliba-org/rpyc/issues/524

RPyC Documentation, Release 6.0.0/2024-02-23

4.10 5.3.0

Date: 2022-11-25

• #515 Support for Python 3.11 is available after teleportation bug fix

• #507 Experimental support for threading is added (default is disabled for now)

• #516 Resolved server-side exceptions due to the logic for checking if a name is in ModuleNamespace

• #511 Improved documentation on the life-cycle of a netref/proxy-object

4.11 5.2.3

Date: 2022-08-03

• #503 rpyc_classic.py and rpyc_registry.py can now be resolved without the suffix as well.

4.12 5.2.1

Date: 2022-07-30

• #494 Added support for using decorators to expose methods (see #292)

• #499 Allow BgServingThread serve and sleep intervals to be customized

• #498 Avoid redefining hasattr_static on every _check_attr call

• #489 Updated SSL context usage to avoid deprecated aspects and changes

• #485 Add a configurable timeout on the zero deploy close method

• #484 Fixed –mode CLI argument for rpyc_registry

• #479 Fixed propagation of AttributeErrors raised by exposed descriptors

• #476 Allow filtering by host on list_services

• #493 and #502 Improved documentation and fixed typos

• #492 Some work around race conditions but proper fix is rather involved (see #491)

• 5.2.0 was skipped due to PyPi not allowing file name reuse

4.13 5.1.0

Date: 2022-02-26

• Add types.MappingProxyType to _builtin_types #470

• Updated documentation #469

• Fixed spradic dealock issues from wait within AsyncResult #463 and #455

• Fixed chained Classic RPyC connections #460

• Added ability to list Registry services #452

• Fixed bug that prevented RPyC from running on systems without SSL #451

4.10. 5.3.0 83

https://github.com/tomerfiliba-org/rpyc/pull/515
https://github.com/tomerfiliba-org/rpyc/pull/507
https://github.com/tomerfiliba-org/rpyc/issues/516
https://github.com/tomerfiliba-org/rpyc/issues/511
https://github.com/tomerfiliba-org/rpyc/issues/503
https://github.com/tomerfiliba-org/rpyc/pull/494
https://github.com/tomerfiliba-org/rpyc/issues/292
https://github.com/tomerfiliba-org/rpyc/pull/499
https://github.com/tomerfiliba-org/rpyc/pull/498
https://github.com/tomerfiliba-org/rpyc/pull/489
https://github.com/tomerfiliba-org/rpyc/pull/485
https://github.com/tomerfiliba-org/rpyc/pull/484
https://github.com/tomerfiliba-org/rpyc/pull/479
https://github.com/tomerfiliba-org/rpyc/pull/476
https://github.com/tomerfiliba-org/rpyc/issues/493
https://github.com/tomerfiliba-org/rpyc/pull/502
https://github.com/tomerfiliba-org/rpyc/pull/492
https://github.com/tomerfiliba-org/rpyc/issues/491
https://github.com/tomerfiliba-org/rpyc/pull/470
https://github.com/tomerfiliba-org/rpyc/pull/469
https://github.com/tomerfiliba-org/rpyc/pull/463
https://github.com/tomerfiliba-org/rpyc/pull/455
https://github.com/tomerfiliba-org/rpyc/pull/460
https://github.com/tomerfiliba-org/rpyc/pull/452
https://github.com/tomerfiliba-org/rpyc/pull/451

RPyC Documentation, Release 6.0.0/2024-02-23

• Fixed unexpected behavior with respect to auto_register #445

• Fixed propagation of chunk_size parameter for download_dir #433

4.13.1 5.0.1

Date: 1.11.2021

• Fixed unexpected behavior when using inspect.isfunction #426

• Now prevents installation of RPyC on unsupported versions of python #429

4.13.2 5.0.0

Date: 12.26.2020

Backwards Incompatible

• RPyC 5.0.0 cannot teleport functions to earlier versions

• Deprecated Python 2 support to coincide with it’s EOL

Improvements

• Server hostname default supports IPv4 and IPv6 by using the wildcard address #425

• Added docker/docker-compose.yml for Python 3.6, 3.7, 3.8, 3.9, and 3.10 containers to improve local work-
flow

• Fixed pickle failure on windows for connect_multiprocess and connect_thread #412

• Fixed teleport function behavior for keyword-only arguments with default #422

• Improved documentation on custom exception handling

• Fixed IPv6 support for server #407

• Added a simple asynchronous service example #400

4.13.3 4.1.5

Date: 4.25.2020

• Fixed mutable object used as kwarg for Server ctor #376

• Corrections to teleport example #374

• Lowered GIL-lock acquires for <64kb within channel sends to address slowness #280

84 Chapter 4. Contents

https://github.com/tomerfiliba-org/rpyc/pull/445
https://github.com/tomerfiliba-org/rpyc/pull/433
https://github.com/tomerfiliba/rpyc/issues/426
https://github.com/tomerfiliba/rpyc/pull/429
https://github.com/tomerfiliba-org/rpyc/issues/425
https://github.com/tomerfiliba-org/rpyc/pull/412
https://github.com/tomerfiliba-org/rpyc/pull/422
https://github.com/tomerfiliba-org/rpyc/issues/407
https://github.com/tomerfiliba-org/rpyc/pull/400
https://github.com/tomerfiliba/rpyc/pull/376
https://github.com/tomerfiliba/rpyc/pull/374
https://github.com/tomerfiliba/rpyc/issues/280

RPyC Documentation, Release 6.0.0/2024-02-23

4.13.4 4.1.4

Date: 1.30.2020

• Merged 3.7 and 3.8 teleportatio compat enhancement #371

• Fixed connection hanging due to namepack cursor #369

• Fixed test dependencies and is_py_* for 3.9

4.13.5 4.1.3

Date: 1.25.2020

• Performance improvements: #366 and #351

• Merged fix for propagate_KeyboardInterrupt_locally #364

• Fixed handling of exceptions for request callbacks #365

• Partially fixed return value for netref.__class__ #355

4.13.6 4.1.2

Date: 10.03.2019

• Fixed CVE-2019-16328 which was caused by a missing protocol security check

• Fixed RPyC over RPyC for mutable parameters and extended unit testing for #346

4.13.7 4.1.1

Date: 07.27.2019

• Fixed netref.class_factory id_pack usage per #339 and added test cases

• Name pack casted in _unbox to fix IronPython bug. Fixed #337

• Increased chunk size to improve multi-client response time and throughput of large data #329

• Added warning to _remote_tb when the major version of local and remote mismatch (#332)

• OneShotServer termination was fixed by WilliamBruneau (#343)

• Known issue with 3.8 for CodeType parameters (may drop Python2 support first)

4.13.8 4.1.0

Date: 05.25.2019

• Added connection back-off and attempts for congested workloads

• Fixed minor resource leak for ForkingServer (#304)

• Cross-connection instance check for cached netref classes (#316)

• Hashing fixed (#324)

• New ID Pack convention breaks compatibility between a client/server >= 4.10 with a client/server < 4.10

4.13. 5.1.0 85

https://github.com/tomerfiliba/rpyc/issues/371
https://github.com/tomerfiliba/rpyc/issues/369
https://github.com/tomerfiliba/rpyc/issues/366
https://github.com/tomerfiliba/rpyc/pull/351
https://github.com/tomerfiliba/rpyc/pull/364
https://github.com/tomerfiliba/rpyc/issues/365
https://github.com/tomerfiliba/rpyc/issues/355
https://rpyc.readthedocs.io/en/latest/docs/security.html
https://github.com/tomerfiliba/rpyc/issues/346

RPyC Documentation, Release 6.0.0/2024-02-23

4.13.9 4.0.2

Date: 04.08.2018

• fix default hostname for ipv6 in rpyc_classic.py (#277)

• fix ThreadPoolServer not working (#283)

4.13.10 4.0.1

Date: 12.06.2018

• fix ValueError during install due to absolute PATH in SOURCES.txt (#276)

4.13.11 4.0.0

Date: 11.06.2018

This release brings a few minor backward incompatibilities, so be sure to read on before upgrading. However, fear not:
the ones that are most likely relevant to you have a relatively simple migration path.

Backward Incompatibilities

• classic.teleport_function now executes the function in the connection’s namespace by default. To get the
old behaviour, use teleport_function(conn, func, conn.modules[func.__module__].__dict__)
instead.

• Changed signature of Service.on_connect and on_disconnect, adding the connection as argument.

• Changed signature of Service.__init__, removing the connection argument

• no longer store connection as self._conn. (allows services that serve multiple clients using the same service
object, see #198).

• SlaveService is now split into two asymmetric classes: SlaveService and MasterService. The slave
exposes functionality to the master but can not anymore access remote objects on the master (#232, #248). If
you were previously using SlaveService, you may experience problems when feeding the slave with netrefs to
objects on the master. In this case, do any of the following:

– use ClassicService (acts exactly like the old SlaveService)

– use SlaveService with a config that allows attribute access etc

– use rpyc.utils.deliver to feed copies rather than netrefs to the slave

• RegistryServer.on_service_removed is once again called whenever a service instance is removed, making
it symmetric to on_service_added (#238) This reverts PR #173 on issue #172.

• Removed module rpyc.experimental.splitbrain. It’s too confusing and undocumented for me and I won’t
be developing it, so better remove it altogether. (It’s still available in the splitbrain branch)

• Removed module rpyc.experimental.retunnel. Seemingly unused anywhere, no documentation, no clue
what this is about.

• bin/rpyc_classic.py will bind to 127.0.0.1 instead of 0.0.0.0 by default

• SlaveService no longer serves exposed attributes (i.e., it now uses allow_exposed_attrs=False)

• Exposed attributes no longer hide plain attributes if one otherwise has the required permissions to access the
plain attribute. (#165)

86 Chapter 4. Contents

https://github.com/tomerfiliba/rpyc/issues/276
https://github.com/tomerfiliba/rpyc/issues/198
https://github.com/tomerfiliba/rpyc/issues/232
https://github.com/tomerfiliba/rpyc/issues/248
https://github.com/tomerfiliba/rpyc/issues/238
https://github.com/tomerfiliba/rpyc/issues/173
https://github.com/tomerfiliba/rpyc/issues/172
https://github.com/tomerfiliba/rpyc/issues/165

RPyC Documentation, Release 6.0.0/2024-02-23

What else is new

• teleported functions will now be defined by default in the globals dict

• Can now explicitly specify globals for teleported functions

• Can now use streams as context manager

• keep a hard reference to connection in netrefs, may fix some EOFError issues, in particular on Jython related
(#237)

• handle synchronous and asynchronous requests uniformly

• fix deadlock with connections talking to each other multithreadedly (#270)

• handle timeouts cumulatively

• fix possible performance bug in Win32PipeStream.poll (oversleeping)

• use readthedocs theme for documentation (#269)

• actually time out sync requests (#264)

• clarify documentation concerning exceptions in Connection.ping (#265)

• fix __hash__ for netrefs (#267, #268)

• rename async module to async_ for py37 compatibility (#253)

• fix deliver() from IronPython to CPython2 (#251)

• fix brine string handling in py2 IronPython (#251)

• add gevent Server. For now, this requires using gevent.monkey.patch_all() before importing for rpyc.
Client connections can already be made without further changes to rpyc, just using gevent’s monkey patching.
(#146)

• add function rpyc.lib.spawn to spawn daemon threads

• fix several bugs in bin/rpycd.py that crashed this script on startup (#231)

• fix problem with MongoDB, or more generally any remote objects that have a catch-all __getattr__ (#165)

• fix bug when copying remote numpy arrays (#236)

• added rpyc.utils.helpers.classpartial to bind arguments to services (#244)

• can now pass services optionally as instance or class (could only pass as class, #244)

• The service is now charged with setting up the connection, doing so in Service._connect. This allows using
custom protocols by e.g. subclassing Connection. More discussions and related features in #239-#247.

• service can now easily override protocol handlers, by updating conn._HANDLERS in _connect or on_connect.
For example: conn._HANDLERS[HANDLE_GETATTR] = self._handle_getattr.

• most protocol handlers (Connection._handle_XXX) now directly get the object rather than its ID as first ar-
gument. This makes overriding individual handlers feel much more high-level. And by the way it turns out that
this fixes two long-standing issues (#137, #153)

• fix bug with proxying context managers (#228)

• expose server classes from rpyc top level module

• fix logger issue on jython

4.13. 5.1.0 87

https://github.com/tomerfiliba/rpyc/issues/237
https://github.com/tomerfiliba/rpyc/issues/270
https://github.com/tomerfiliba/rpyc/issues/269
https://github.com/tomerfiliba/rpyc/issues/264
https://github.com/tomerfiliba/rpyc/issues/265
https://github.com/tomerfiliba/rpyc/issues/267
https://github.com/tomerfiliba/rpyc/issues/268
https://github.com/tomerfiliba/rpyc/issues/253
https://github.com/tomerfiliba/rpyc/issues/251
https://github.com/tomerfiliba/rpyc/issues/251
http://www.gevent.org/
https://github.com/tomerfiliba/rpyc/issues/146
https://github.com/tomerfiliba/rpyc/issues/231
https://github.com/tomerfiliba/rpyc/issues/165
https://github.com/tomerfiliba/rpyc/issues/236
https://github.com/tomerfiliba/rpyc/issues/244
https://github.com/tomerfiliba/rpyc/issues/244
https://github.com/tomerfiliba/rpyc/issues/239
https://github.com/tomerfiliba/rpyc/issues/247
https://github.com/tomerfiliba/rpyc/issues/137
https://github.com/tomerfiliba/rpyc/issues/153
https://github.com/tomerfiliba/rpyc/issues/228

RPyC Documentation, Release 6.0.0/2024-02-23

4.13.12 3.4.4

Date: 07.08.2017

• Fix refcount leakage when unboxing from cache (#196)

• Fix TypeError when dispatching exceptions on py2 (unicode)

• Respect rpyc_protocol_config for default Service getattr (#202)

• Support unix domain sockets (#100, #208)

• Use first accessible server in connect_by_service (#220)

• Fix deadlock problem with logging (#207, #212)

• Fix timeout problem for long commands (#169)

4.13.13 3.4.3

Date: 26.07.2017

• Add missing endpoints config in ThreadPoolServer (#222)

• Fix jython support (#156, #171)

• Improve documentation (#158, #185, #189, #198 and more)

4.13.14 3.4.2

Date: 14.06.2017

• Fix export_function on python 3.6

4.13.15 3.4.1

Date: 09.06.2017

• Fix issue high-cpu polling (#191, #218)

• Fix filename argument in logging (#197)

• Improved log messages (#191, #204)

• Drop support for python 3.2 and py 2.5

4.13.16 3.4.0

Date: 29.05.2017

Please excuse the briefity for this versions changelist.

• Add keepalive interface [#151]

• Various fixes: #136, #140, #143, #147, #149, #151, #159, #160, #166, #173, #176, #179, #174, #182, #183 and
others.

88 Chapter 4. Contents

https://github.com/tomerfiliba/rpyc/issues/196
https://github.com/tomerfiliba/rpyc/issues/202
https://github.com/tomerfiliba/rpyc/issues/100
https://github.com/tomerfiliba/rpyc/issues/208
https://github.com/tomerfiliba/rpyc/issues/220
https://github.com/tomerfiliba/rpyc/issues/207
https://github.com/tomerfiliba/rpyc/issues/212
https://github.com/tomerfiliba/rpyc/issues/169
https://github.com/tomerfiliba/rpyc/issues/222
https://github.com/tomerfiliba/rpyc/issues/156
https://github.com/tomerfiliba/rpyc/issues/171
https://github.com/tomerfiliba/rpyc/issues/158
https://github.com/tomerfiliba/rpyc/issues/185
https://github.com/tomerfiliba/rpyc/issues/189
https://github.com/tomerfiliba/rpyc/issues/198
https://github.com/tomerfiliba/rpyc/issues/191
https://github.com/tomerfiliba/rpyc/issues/218
https://github.com/tomerfiliba/rpyc/issues/197
https://github.com/tomerfiliba/rpyc/issues/191
https://github.com/tomerfiliba/rpyc/issues/204
https://github.com/tomerfiliba/rpyc/issues/151
https://github.com/tomerfiliba/rpyc/issues/136
https://github.com/tomerfiliba/rpyc/issues/140
https://github.com/tomerfiliba/rpyc/issues/143
https://github.com/tomerfiliba/rpyc/issues/147
https://github.com/tomerfiliba/rpyc/issues/149
https://github.com/tomerfiliba/rpyc/issues/151
https://github.com/tomerfiliba/rpyc/issues/159
https://github.com/tomerfiliba/rpyc/issues/160
https://github.com/tomerfiliba/rpyc/issues/166
https://github.com/tomerfiliba/rpyc/issues/173
https://github.com/tomerfiliba/rpyc/issues/176
https://github.com/tomerfiliba/rpyc/issues/179
https://github.com/tomerfiliba/rpyc/issues/174
https://github.com/tomerfiliba/rpyc/issues/182
https://github.com/tomerfiliba/rpyc/issues/183

RPyC Documentation, Release 6.0.0/2024-02-23

4.13.17 3.3.0

• RPyC integrates with plumbum; plumbum is required for some features, like rpyc_classic.py and zero deploy,
but the core of the library doesn’t require it. It is, of course, advised to have it installed.

• SshContext, SshTunnel classes killed in favor of plumbum’s SSH tunneling. The interface doesn’t change
much, except that ssh_connect now accept a plumbum.SshMachine instance instead of SshContext.

• Zero deploy: deploy RPyC to a remote machine over an SSH connection and form an SSH tunnel connected to
it, in just one line of code. All you need is SSH access and a Python interpreter installed on the remote machine.

• Dropping Python 2.4 support. RPyC now requires Python 2.5 - 3.3.

• rpycd - a well-behaved daemon for rpyc_classic.py, based on python-daemon

• The OneShotServer is now exposed by rpyc_classic -m oneshot

• scripts directory renamed bin

• Introducing Splitbrain Python - running code on remote machines transparently. Although tested, it is still
considered experimental.

• Removing the BgServerThread and all polling/timeout hacks in favor of a “global background reactor thread”
that handles all incoming transport from all connections. This should solve all threading issues once and for all.

• Added MockClassicConnection - a mock RPyC “connection” that allows you to write code that runs either
locally or remotely without modification

• Added teleport_function

4.13.18 3.2.3

• Fix (issue #76) for real this time

• Fix issue with BgServingThread (#89)

• Fix issue with ThreadPoolServer (#91)

• Remove RPyC’s excepthook in favor of chaining the exception’s remote tracebacks in the exception class’
__str__ method. This solves numerous issues with logging and debugging.

• Add OneShotServer

• Add UNIX domain sockets (#100)

4.13.19 3.2.2

• Windows: make SSH tunnels windowless (#68)

• Fixes a compatibility issue with IronPython on Mono (#72)

• Fixes an issue with introspection when an AttributeError is expected (#71)

• The server now logs all exceptions (#73)

• Forking server: call siginterrupt(False) in forked child (#76)

• Shutting down the old wikidot site

• Adding Travis CI integration

4.13. 5.1.0 89

http://pypi.python.org/pypi/plumbum
http://pypi.python.org/pypi/python-daemon/
https://github.com/tomerfiliba/rpyc/issues/76
https://github.com/tomerfiliba/rpyc/issues/89
https://github.com/tomerfiliba/rpyc/issues/91
https://github.com/tomerfiliba/rpyc/issues/100
https://github.com/tomerfiliba/rpyc/issues/68
https://github.com/tomerfiliba/rpyc/issues/72
https://github.com/tomerfiliba/rpyc/issues/71
https://github.com/tomerfiliba/rpyc/issues/73
https://github.com/tomerfiliba/rpyc/issues/76
http://travis-ci.org/#!/tomerfiliba/rpyc

RPyC Documentation, Release 6.0.0/2024-02-23

4.13.20 3.2.1

• Adding missing import (#52)

• Fixing site documentation issue (#54)

• Fixing Python 3 incompatibilities (#58, #59, #60, #61, #66)

• Fixing slice issue (#62)

• Added the endpoints parameter to the config dict of connection (only on the server side)

4.13.21 3.2.0

• Added support for IPv6 (#28)

• Added SSH tunneling support (ssh_connect)

• Added restricted object wrapping

• Several fixes to AsyncResult and weak references

• Added the ThreadPoolServer

• Fixed some minor (harmless) races that caused tracebacks occasionally when server-threads terminated

• Fixes issues #8, #41, #42, #43, #46, and #49.

• Converted all CRLF to LF (#40)

• Dropped TLSlite integration (#45). We’ve been dragging this corpse for too long.

• New documentation (both the website and docstrings) written in Sphinx

– The site has moved to sourceforge. Wikidot had served us well over the past three years, but they began
displaying way too many ads and didn’t support uploading files over rsync, which made my life hard.

– New docs are part of the git repository. Updating the site is as easy as make upload

• Python 3.0-3.2 support

4.13.22 3.1.0

What’s New

• Supports CPython 2.4-2.7, IronPython, and Jython

• tlslite has been ported to python 2.5-2.7 (the original library targeted 2.3 and 2.4)

• Initial python 3 support – not finished!

• Moves to a more conventional directory structure

• Moves to more standard facilities (logging, nosetests)

• Solves a major performance issue with the BgServingThread (#32), by removing the contention between the
two threads that share the connection

• Fixes lots of issues concerning the ForkingServer (#3, #7, and #15)

• Many small bug fixes (#16, #13, #4, etc.)

• Integrates with the built-in ssl module for SSL support

90 Chapter 4. Contents

https://github.com/tomerfiliba/rpyc/issues/52
https://github.com/tomerfiliba/rpyc/issues/54
https://github.com/tomerfiliba/rpyc/issues/58
https://github.com/tomerfiliba/rpyc/issues/59
https://github.com/tomerfiliba/rpyc/issues/60
https://github.com/tomerfiliba/rpyc/issues/61
https://github.com/tomerfiliba/rpyc/issues/66
https://github.com/tomerfiliba/rpyc/issues/62
https://github.com/tomerfiliba/rpyc/issues/28
https://github.com/tomerfiliba/rpyc/issues/8
https://github.com/tomerfiliba/rpyc/issues/41
https://github.com/tomerfiliba/rpyc/issues/42
https://github.com/tomerfiliba/rpyc/issues/43
https://github.com/tomerfiliba/rpyc/issues/46
https://github.com/tomerfiliba/rpyc/issues/49
https://github.com/tomerfiliba/rpyc/issues/40
https://github.com/tomerfiliba/rpyc/issues/45
http://rpyc.sourceforge.net
http://sourceforge.net/projects/rpyc/files/tlslite
https://github.com/tomerfiliba/rpyc/issues/32
https://github.com/tomerfiliba/rpyc/issues/3
https://github.com/tomerfiliba/rpyc/issues/7
https://github.com/tomerfiliba/rpyc/issues/15
https://github.com/tomerfiliba/rpyc/issues/16
https://github.com/tomerfiliba/rpyc/issues/13
https://github.com/tomerfiliba/rpyc/issues/4

RPyC Documentation, Release 6.0.0/2024-02-23

– rpyc_classic.py now takes several --ssl-xxx switches (see --help for more info)

• Fixes typos, running pylint, etc.

Breakage from 3.0.7

• Removing egg builds (we’re pure python, and eggs just messed up the build)

• Package layout changed drastically, and some files were renamed

– The servers/ directory was renamed scripts/

– classic_server.py was renamed rpyc_classic.py

– They scripts now install to your python scripts directory (no longer part of the package), e.g. C:\python27\
Scripts

• rpyc_classic.py now takes --register in order to register, instead of --dont-register, which was a silly
choice.

• classic.tls_connect, factory.tls_connect were renamed tlslite_connect, to distinguish it from the
new ssl_connect.

4.13.23 3.0.7

• Moving to git as source control

• Build script: more egg formats; register in pypi ; remove svn; auto-generate license.py as well

• Cosmetic touches to Connection: separate serve into _recv and dispatch

• Shutdown socket before closing (SHUT_RDWR) to prevent TIME_WAIT and other problems with various Unixes

• PipeStream: use low-level file APIs (os.read, os.write) to prevent stdio-level buffering that messed up
select

• classic_server.py: open logfile for writing (was opened for reading)

• registry_server.py: type of timeout is now int (was str)

• utils/server.py: better handling of sockets; fix python 2.4 syntax issue

• ForkingServer: re-register SIGCHLD handler after handling that signal, to support non-BSD-compliant plat-
forms where after the invocation of the signal handler, the handler is reset

4.13.24 3.0.6

• Handle metaclasses better in inspect_methods

• vinegar.py: handle old-style-class exceptions better; python 2.4 issues

• VdbAuthenticator: when loading files, open for read only; API changes (from_dict instead of from_users),
from_file accepts open-mode

• ForkingServer: better handling of SIGCHLD

4.13. 5.1.0 91

http://pypi.python.org/pypi/RPyC/

RPyC Documentation, Release 6.0.0/2024-02-23

4.13.25 3.0.5

• setup.py now also creates egg files

• Slightly improved servers/vdbconf.py

• Fixes to utis/server.py:

– The authenticator is now invoked by _accept_client, which means it is invoked on the client’s context
(thread or child process). This solves a problem with the forking server having a TLS authenticator.

– Changed the forking server to handle SIGCHLD instead of using double-fork.

4.13.26 3.0.4

• Fix: inspect_methods used dir and getattr to inspect the given object; this caused a problem with premature
activation of properties (as they are activated by getattr). Now it inspects the object’s type instead, following
the MRO by itself, to avoid possible side effects.

4.13.27 3.0.3

• Changed versioning scheme: now 3.0.3 instead of 3.03, and the version tuple is (3, 0, 3)

• Added servers/vdbconf.py - a utility to manage verifier databases (used by tlslite)

• Added the --vdb switch to classic_server.py, which invokes a secure server (TLS) with the given VDB file.

4.13.28 3.02

• Authenticators: authenticated servers now store the credentials of the connection in conn._config.credentials

• Registry: added UDP and TCP registry servers and clients (from rpyc.utils.registry import ...)

• Minor bug fixes

• More tests

• The test-suite now runs under python 2.4 too

4.13.29 3.01

• Fixes some minor issues/bugs

• The registry server can now be instantiated (no longer a singleton) and customized, and RPyC server can be
customized to use the different registry.

92 Chapter 4. Contents

RPyC Documentation, Release 6.0.0/2024-02-23

4.13.30 3.00

Known Issues

• comparison - comparing remote and local objects will usually not work, but there’s nothing to do about it.

• 64bit platforms: since channels use 32bit length field, you can’t pass data/strings over 4gb. this is not a real
limitation (unless you have a super-fast local network and tons of RAM), but as 64bit python becomes the defacto
standard, I will upgrade channels to 64bit length field.

• threads - in face of no better solution, and after consulting many people, I resorted to setting a timeout on the
underlying recv(). This is not an elegant way, but all other solution required rewriting all sorts of threading
primitives and were not necessarily deadlock/race-free. as the zen says, “practicality beats purity”.

• Windows - pipes supported, but Win32 pipes work like shit

4.13.31 3.00 RC2

Known Issues

• Windows - pipe server doesn’t work

4.13. 5.1.0 93

RPyC Documentation, Release 6.0.0/2024-02-23

94 Chapter 4. Contents

PYTHON MODULE INDEX

r
rpyc.core.async_, 59
rpyc.core.brine, 50
rpyc.core.channel, 56
rpyc.core.netref, 57
rpyc.core.protocol, 60
rpyc.core.service, 63
rpyc.core.stream, 52
rpyc.core.vinegar, 51
rpyc.utils.authenticators, 66
rpyc.utils.classic, 74
rpyc.utils.factory, 70
rpyc.utils.helpers, 79
rpyc.utils.registry, 67
rpyc.utils.server, 65
rpyc.utils.zerodeploy, 81

95

RPyC Documentation, Release 6.0.0/2024-02-23

96 Python Module Index

INDEX

A
accept() (rpyc.utils.server.Server method), 65
add_callback() (rpyc.core.async_.AsyncResult

method), 59
async() (in module rpyc.utils.helpers), 80
async_() (in module rpyc.utils.helpers), 79
async_request() (rpyc.core.protocol.Connection

method), 63
asyncreq() (in module rpyc.core.netref), 58
AsyncResult (class in rpyc.core.async_), 59
AuthenticationError, 67

B
BaseNetref (class in rpyc.core.netref), 58
BgServingThread (class in rpyc.utils.helpers), 80
buffiter() (in module rpyc.utils.helpers), 79

C
Channel (class in rpyc.core.channel), 56
class_factory() (in module rpyc.core.netref), 58
classic_connect() (rpyc.utils.zerodeploy.DeployedServer

method), 81
classic_connect_all()

(rpyc.utils.zerodeploy.MultiServerDeployment
method), 81

ClassicClient (class in rpyc.core.service), 64
ClassicService (class in rpyc.core.service), 64
classpartial() (in module rpyc.utils.helpers), 80
close() (rpyc.core.channel.Channel method), 56
close() (rpyc.core.protocol.Connection method), 61
close() (rpyc.core.stream.NamedPipeStream method),

55
close() (rpyc.core.stream.PipeStream method), 56
close() (rpyc.core.stream.SocketStream method), 54
close() (rpyc.core.stream.Stream method), 52
close() (rpyc.core.stream.TunneledSocketStream

method), 54
close() (rpyc.core.stream.Win32PipeStream method),

54
close() (rpyc.utils.registry.RegistryServer method), 68
close() (rpyc.utils.server.ForkingServer method), 66
close() (rpyc.utils.server.Server method), 65

close() (rpyc.utils.server.ThreadPoolServer method),
66

closed (rpyc.core.channel.Channel property), 56
closed (rpyc.core.protocol.Connection property), 62
closed (rpyc.core.stream.PipeStream property), 56
closed (rpyc.core.stream.SocketStream property), 54
closed (rpyc.core.stream.Stream property), 52
closed (rpyc.core.stream.Win32PipeStream property),

54
cmd_list() (rpyc.utils.registry.RegistryServer method),

67
cmd_query() (rpyc.utils.registry.RegistryServer

method), 67
cmd_register() (rpyc.utils.registry.RegistryServer

method), 68
cmd_unregister() (rpyc.utils.registry.RegistryServer

method), 68
connect() (in module rpyc.utils.classic), 74
connect() (in module rpyc.utils.factory), 71
connect() (rpyc.core.stream.SocketStream class

method), 53
connect() (rpyc.utils.zerodeploy.DeployedServer

method), 81
connect_all() (rpyc.utils.zerodeploy.MultiServerDeployment

method), 81
connect_by_service() (in module rpyc.utils.factory),

73
connect_channel() (in module rpyc.utils.classic), 74
connect_channel() (in module rpyc.utils.factory), 70
connect_multiprocess() (in module

rpyc.utils.classic), 76
connect_multiprocess() (in module

rpyc.utils.factory), 73
connect_pipes() (in module rpyc.utils.classic), 74
connect_pipes() (in module rpyc.utils.factory), 71
connect_server() (rpyc.core.stream.NamedPipeStream

method), 55
connect_stdpipes() (in module rpyc.utils.classic), 74
connect_stdpipes() (in module rpyc.utils.factory), 71
connect_stream() (in module rpyc.utils.classic), 74
connect_stream() (in module rpyc.utils.factory), 70
connect_subproc() (in module rpyc.utils.classic), 76

97

RPyC Documentation, Release 6.0.0/2024-02-23

connect_subproc() (in module rpyc.utils.factory), 73
connect_thread() (in module rpyc.utils.classic), 76
connect_thread() (in module rpyc.utils.factory), 73
Connection (class in rpyc.core.protocol), 61
create_client() (rpyc.core.stream.NamedPipeStream

class method), 55
create_pair() (rpyc.core.stream.PipeStream class

method), 56
create_server() (rpyc.core.stream.NamedPipeStream

class method), 55

D
DEFAULT_CONFIG (in module rpyc.core.protocol), 60
DELETED_ATTRS (in module rpyc.core.netref), 57
deliver() (in module rpyc.utils.classic), 77
DeployedServer (class in rpyc.utils.zerodeploy), 81
discover() (in module rpyc.utils.factory), 73
discover() (rpyc.utils.registry.RegistryClient method),

68
discover() (rpyc.utils.registry.TCPRegistryClient

method), 69
discover() (rpyc.utils.registry.UDPRegistryClient

method), 69
DiscoveryError, 70
download() (in module rpyc.utils.classic), 76
dump() (in module rpyc.core.brine), 51
dump() (in module rpyc.core.vinegar), 51
dumpable() (in module rpyc.core.brine), 51

E
error (rpyc.core.async_.AsyncResult property), 59
expired (rpyc.core.async_.AsyncResult property), 59
exposed_get_service_aliases()

(rpyc.core.service.Service class method),
64

exposed_get_service_name()
(rpyc.core.service.Service class method),
64

F
FakeSlaveService (class in rpyc.core.service), 64
fileno() (rpyc.core.channel.Channel method), 56
fileno() (rpyc.core.protocol.Connection method), 62
fileno() (rpyc.core.stream.PipeStream method), 56
fileno() (rpyc.core.stream.SocketStream method), 54
fileno() (rpyc.core.stream.Stream method), 52
fileno() (rpyc.core.stream.Win32PipeStream method),

54
fileno() (rpyc.utils.server.Server method), 65
ForbiddenError, 70
ForkingServer (class in rpyc.utils.server), 66
from_std() (rpyc.core.stream.PipeStream class

method), 56

G
GenericException, 52
get_service_aliases() (rpyc.core.service.Service

class method), 64
get_service_name() (rpyc.core.service.Service class

method), 64
GeventServer (class in rpyc.utils.server), 66

I
instance (rpyc.core.netref.NetrefClass property), 58
interact() (in module rpyc.utils.classic), 78

L
list() (rpyc.utils.registry.RegistryClient method), 68
list() (rpyc.utils.registry.TCPRegistryClient method),

70
list() (rpyc.utils.registry.UDPRegistryClient method),

69
load() (in module rpyc.core.brine), 51
load() (in module rpyc.core.vinegar), 52
LOCAL_ATTRS (in module rpyc.core.netref), 57

M
MasterService (class in rpyc.core.service), 64
MockClassicConnection (class in rpyc.utils.classic),

78
module

rpyc.core.async_, 59
rpyc.core.brine, 50
rpyc.core.channel, 56
rpyc.core.netref, 57
rpyc.core.protocol, 60
rpyc.core.service, 63
rpyc.core.stream, 52
rpyc.core.vinegar, 51
rpyc.utils.authenticators, 66
rpyc.utils.classic, 74
rpyc.utils.factory, 70
rpyc.utils.helpers, 79
rpyc.utils.registry, 67
rpyc.utils.server, 65
rpyc.utils.zerodeploy, 81

ModuleNamespace (class in rpyc.core.service), 64
MultiServerDeployment (class in

rpyc.utils.zerodeploy), 81

N
NamedPipeStream (class in rpyc.core.stream), 55
NetrefClass (class in rpyc.core.netref), 58
NetrefMetaclass (class in rpyc.core.netref), 58

O
obtain() (in module rpyc.utils.classic), 77

98 Index

RPyC Documentation, Release 6.0.0/2024-02-23

on_connect() (rpyc.core.service.MasterService
method), 64

on_connect() (rpyc.core.service.Service method), 64
on_connect() (rpyc.core.service.SlaveService method),

64
on_disconnect() (rpyc.core.service.Service method),

64
on_service_added() (rpyc.utils.registry.RegistryServer

method), 67
on_service_removed()

(rpyc.utils.registry.RegistryServer method),
67

OneShotServer (class in rpyc.utils.server), 65
owner (rpyc.core.netref.NetrefClass property), 58

P
ping() (rpyc.core.protocol.Connection method), 62
PingError, 60
PipeStream (class in rpyc.core.stream), 56
pm() (in module rpyc.utils.classic), 78
poll() (rpyc.core.channel.Channel method), 57
poll() (rpyc.core.protocol.Connection method), 62
poll() (rpyc.core.stream.NamedPipeStream method), 55
poll() (rpyc.core.stream.Stream method), 52
poll() (rpyc.core.stream.Win32PipeStream method), 55
poll_all() (rpyc.core.protocol.Connection method), 62

R
read() (rpyc.core.stream.NamedPipeStream method), 55
read() (rpyc.core.stream.PipeStream method), 56
read() (rpyc.core.stream.SocketStream method), 54
read() (rpyc.core.stream.Stream method), 52
read() (rpyc.core.stream.Win32PipeStream method), 54
ready (rpyc.core.async_.AsyncResult property), 59
recv() (rpyc.core.channel.Channel method), 57
redirected_stdio() (in module rpyc.utils.classic), 78
register() (rpyc.utils.registry.RegistryClient method),

68
register() (rpyc.utils.registry.TCPRegistryClient

method), 70
register() (rpyc.utils.registry.UDPRegistryClient

method), 69
RegistryClient (class in rpyc.utils.registry), 68
RegistryServer (class in rpyc.utils.registry), 67
restricted() (in module rpyc.utils.helpers), 79
root (rpyc.core.protocol.Connection property), 63
rpyc.core.async_

module, 59
rpyc.core.brine

module, 50
rpyc.core.channel

module, 56
rpyc.core.netref

module, 57

rpyc.core.protocol
module, 60

rpyc.core.service
module, 63

rpyc.core.stream
module, 52

rpyc.core.vinegar
module, 51

rpyc.utils.authenticators
module, 66

rpyc.utils.classic
module, 74

rpyc.utils.factory
module, 70

rpyc.utils.helpers
module, 79

rpyc.utils.registry
module, 67

rpyc.utils.server
module, 65

rpyc.utils.zerodeploy
module, 81

S
send() (rpyc.core.channel.Channel method), 57
serve() (rpyc.core.protocol.Connection method), 62
serve_all() (rpyc.core.protocol.Connection method),

62
serve_threaded() (rpyc.core.protocol.Connection

method), 62
Server (class in rpyc.utils.server), 65
Service (class in rpyc.core.service), 63
set_expiry() (rpyc.core.async_.AsyncResult method),

59
SlaveService (class in rpyc.core.service), 64
SocketStream (class in rpyc.core.stream), 53
ssh_connect() (in module rpyc.utils.classic), 75
ssh_connect() (in module rpyc.utils.factory), 72
ssl_connect() (in module rpyc.utils.classic), 75
ssl_connect() (in module rpyc.utils.factory), 72
ssl_connect() (rpyc.core.stream.SocketStream class

method), 53
SSLAuthenticator (class in rpyc.utils.authenticators),

67
start() (rpyc.utils.registry.RegistryServer method), 68
start() (rpyc.utils.server.Server method), 65
stop() (rpyc.utils.helpers.BgServingThread method), 80
Stream (class in rpyc.core.stream), 52
sync_request() (rpyc.core.protocol.Connection

method), 62
syncreq() (in module rpyc.core.netref), 57

T
TCPRegistryClient (class in rpyc.utils.registry), 69

Index 99

RPyC Documentation, Release 6.0.0/2024-02-23

TCPRegistryServer (class in rpyc.utils.registry), 68
teleport_function() (in module rpyc.utils.classic),

78
ThreadedServer (class in rpyc.utils.server), 66
ThreadPoolServer (class in rpyc.utils.server), 66
timed (class in rpyc.utils.helpers), 80
TunneledSocketStream (class in rpyc.core.stream), 54

U
UDPRegistryClient (class in rpyc.utils.registry), 68
UDPRegistryServer (class in rpyc.utils.registry), 68
unix_connect() (in module rpyc.utils.classic), 75
unix_connect() (in module rpyc.utils.factory), 71
unix_connect() (rpyc.core.stream.SocketStream class

method), 53
unregister() (rpyc.utils.registry.RegistryClient

method), 68
unregister() (rpyc.utils.registry.TCPRegistryClient

method), 70
unregister() (rpyc.utils.registry.UDPRegistryClient

method), 69
upload() (in module rpyc.utils.classic), 76
upload_module() (in module rpyc.utils.classic), 77
upload_package() (in module rpyc.utils.classic), 76

V
value (rpyc.core.async_.AsyncResult property), 59
VoidService (class in rpyc.core.service), 64

W
wait() (rpyc.core.async_.AsyncResult method), 59
Win32PipeStream (class in rpyc.core.stream), 54
write() (rpyc.core.stream.NamedPipeStream method),

55
write() (rpyc.core.stream.PipeStream method), 56
write() (rpyc.core.stream.SocketStream method), 54
write() (rpyc.core.stream.Stream method), 53
write() (rpyc.core.stream.Win32PipeStream method),

55

100 Index

	Getting Started
	Features
	Use Cases
	Contents
	Download and Install
	Platforms and Interpreters
	Cross-Interpreter Compatibility

	Development
	Mailing List
	Repository
	Bugs and Patches
	Dependencies

	Tutorial
	Part 1: Introduction to Classic RPyC
	Running a Server
	Running a Client
	The modules Namespace
	The builtins Namespace
	The eval and execute Methods
	The teleport method

	Part 2: Netrefs and Exceptions
	Setup
	Netrefs
	Exceptions
	Custom Exception Handling Example

	Part 3: Services and New Style RPyC
	Access policy
	Shared service instance
	Passing arguments to the service
	But Wait, There’s More!
	Decoupled Services

	Part 4: Callbacks and Symmetry
	Part 5: Asynchronous Operation and Events
	Asynchronism
	Events

	Documentation
	Introduction
	About RPyC
	Contributors
	v3.2.3
	v3.2.2
	v3.2.1
	v3.2.0
	v3.1.0
	v3.0.0-v3.0.7

	Logo

	Theory of Operation
	Theory
	Implementation
	Boxing
	Object Proxying
	Services

	How To’s
	Redirecting Standard Input/Output
	Debugging
	Tunneling
	Monkey-Patching

	Use Cases
	Remote (“Web”) Services
	Administration and Central Control
	Hardware Resources
	Parallel Execution
	Distributed Computation Platform
	Testing

	Reference
	RPyC Servers
	Classic Server
	General switches
	Registry switches
	SSL switches

	Custom RPyC Servers
	Registry Server
	Switches

	Classic
	Usage

	Services
	Implementing Services
	Built-in Services
	Decoupled Services

	Asynchronous Operation
	async_()
	Usage
	Notes

	timed()
	Example

	Background Serving Thread

	Security
	Wrapping
	Classic Mode
	Configuration Parameters
	Attribute Access

	SSL
	Zero-Deploy RPyC
	How It Works
	Usage
	MultiServerDeployment
	On-Demand Servers
	Security
	Timeouts

	Advanced Debugging
	Testing Supported Python Versions via pyenv
	Testing Supported Python Versions via Docker
	Tips and Tricks

	RPyC Release Process
	Generate CHANGELOG.rst Entry

	Misc. References

	API Reference
	Serialization
	Brine
	Vinegar

	IO Layer
	Streams
	Channel

	Protocol
	Netref
	Async
	Protocol
	Service

	Server-Side
	Server
	Authenticators
	Registry

	Client-Side
	Factories
	Classic
	Helpers

	Misc
	Zero-Deploy RPyC

	License
	Release Change Log
	6.0.0
	5.3.1
	5.3.0
	5.2.3
	5.2.1
	5.1.0
	5.0.1
	5.0.0
	Backwards Incompatible
	Improvements

	4.1.5
	4.1.4
	4.1.3
	4.1.2
	4.1.1
	4.1.0
	4.0.2
	4.0.1
	4.0.0
	Backward Incompatibilities
	What else is new

	3.4.4
	3.4.3
	3.4.2
	3.4.1
	3.4.0
	3.3.0
	3.2.3
	3.2.2
	3.2.1
	3.2.0
	3.1.0
	What’s New
	Breakage from 3.0.7

	3.0.7
	3.0.6
	3.0.5
	3.0.4
	3.0.3
	3.02
	3.01
	3.00
	Known Issues

	3.00 RC2
	Known Issues

	Python Module Index
	Index

