

Welcome to RPLidar’s documentation!

Simple and lightweight module for working with RPLidar rangefinder scanners.

Usage example:

>>> from rplidar import RPLidar
>>> lidar = RPLidar('/dev/ttyUSB0')
>>>
>>> info = lidar.get_info()
>>> print(info)
>>>
>>> health = lidar.get_health()
>>> print(health)
>>>
>>> for i, scan in enumerate(lidar.iter_scans()):
... print('%d: Got %d measurments' % (i, len(scan)))
... if i > 10:
... break
...
>>> lidar.stop()
>>> lidar.stop_motor()
>>> lidar.disconnect()

For additional information please refer to the RPLidar class documentation.

	
class rplidar.RPLidar(port, baudrate=115200, timeout=1, logger=None)

	Class for communicating with RPLidar rangefinder scanners

Methods

	
__init__(port, baudrate=115200, timeout=1, logger=None)

	Initilize RPLidar object for communicating with the sensor.

	Parameters:	port : str

Serial port name to which sensor is connected

baudrate : int, optional

Baudrate for serial connection (the default is 115200)

timeout : float, optional

Serial port connection timeout in seconds (the default is 1)

logger : logging.Logger instance, optional

Logger instance, if none is provided new instance is created

	
motor = False

	Is motor running?

	
port = ''

	Serial port name, e.g. /dev/ttyUSB0

	
baudrate = 115200

	Baudrate for serial port

	
timeout = 1

	Serial port timeout

	
connect()

	Connects to the serial port with the name self.port. If it was
connected to another serial port disconnects from it first.

	
disconnect()

	Disconnects from the serial port

	
start_motor()

	Starts sensor motor

	
stop_motor()

	Stops sensor motor

	
get_info()

	Get device information

	Returns:	dict

Dictionary with the sensor information

	
get_health()

	Get device health state. When the core system detects some
potential risk that may cause hardware failure in the future,
the returned status value will be ‘Warning’. But sensor can still work
as normal. When sensor is in the Protection Stop state, the returned
status value will be ‘Error’. In case of warning or error statuses
non-zero error code will be returned.

	Returns:	status : str

‘Good’, ‘Warning’ or ‘Error’ statuses

error_code : int

The related error code that caused a warning/error.

	
clear_input()

	Clears input buffer by reading all available data

	
stop()

	Stops scanning process, disables laser diode and the measurment
system, moves sensor to the idle state.

	
reset()

	Resets sensor core, reverting it to a similar state as it has
just been powered up.

	
iter_measurments(max_buf_meas=500)

	Iterate over measurments. Note that consumer must be fast enough,
otherwise data will be accumulated inside buffer and consumer will get
data with increaing lag.

	Parameters:	max_buf_meas : int

Maximum number of measurments to be stored inside the buffer. Once
numbe exceeds this limit buffer will be emptied out.

	Yields:	new_scan : bool

True if measurment belongs to a new scan

quality : int

Reflected laser pulse strength

angle : float

The measurment heading angle in degree unit [0, 360)

distance : float

Measured object distance related to the sensor’s rotation center.
In millimeter unit. Set to 0 when measurment is invalid.

	
iter_scans(max_buf_meas=500, min_len=5)

	Iterate over scans. Note that consumer must be fast enough,
otherwise data will be accumulated inside buffer and consumer will get
data with increasing lag.

	Parameters:	max_buf_meas : int

Maximum number of measurments to be stored inside the buffer. Once
numbe exceeds this limit buffer will be emptied out.

min_len : int

Minimum number of measurments in the scan for it to be yelded.

	Yields:	scan : list

List of the measurments. Each measurment is tuple with following
format: (quality, angle, distance). For values description please
refer to iter_measurments method’s documentation.

	
exception rplidar.RPLidarException

	Bases: Exception

Basic exception class for RPLidar

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 rplidar	

Index

 _
 | B
 | C
 | D
 | G
 | I
 | M
 | P
 | R
 | S
 | T

_

 	
 	__init__() (rplidar.RPLidar method)

B

 	
 	baudrate (rplidar.RPLidar attribute)

C

 	
 	clear_input() (rplidar.RPLidar method)

 	
 	connect() (rplidar.RPLidar method)

D

 	
 	disconnect() (rplidar.RPLidar method)

G

 	
 	get_health() (rplidar.RPLidar method)

 	
 	get_info() (rplidar.RPLidar method)

I

 	
 	iter_measurments() (rplidar.RPLidar method)

 	
 	iter_scans() (rplidar.RPLidar method)

M

 	
 	motor (rplidar.RPLidar attribute)

P

 	
 	port (rplidar.RPLidar attribute)

R

 	
 	reset() (rplidar.RPLidar method)

 	RPLidar (class in rplidar)

 	
 	rplidar (module)

 	RPLidarException

S

 	
 	start_motor() (rplidar.RPLidar method)

 	
 	stop() (rplidar.RPLidar method)

 	stop_motor() (rplidar.RPLidar method)

T

 	
 	timeout (rplidar.RPLidar attribute)

 nav.xhtml

 Table of Contents

 		Welcome to RPLidar's documentation!

_static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

