
rowan Documentation
Release 1.0.0

Vyas Ramasubramani

Feb 12, 2019

Contents:

1 rowan 3

2 calculus 13

3 geometry 15

4 interpolate 19

5 mapping 21

6 random 25

7 Development Guide 27
7.1 Philosophy . 27
7.2 Source Code Conventions . 28
7.3 Unit Tests . 28
7.4 General Notes . 28
7.5 Release Guide . 29

8 License 31

9 Changelog 33
9.1 Unreleased . 33
9.2 v0.6.1 - 2018-04-20 . 33
9.3 v0.6.0 - 2018-04-20 . 33
9.4 v0.5.1 - 2018-04-13 . 34
9.5 v0.5.0 - 2018-04-12 . 34
9.6 v0.4.4 - 2018-04-10 . 34
9.7 v0.4.3 - 2018-04-10 . 34
9.8 v0.4.2 - 2018-04-09 . 34
9.9 v0.4.1 - 2018-04-08 . 35
9.10 v0.4.0 - 2018-04-08 . 35
9.11 v0.3.0 - 2018-03-31 . 35
9.12 v0.2.0 - 2018-03-08 . 35
9.13 v0.1.0 - 2018-02-26 . 36

10 Credits 37

i

11 Support and Contribution 39

12 Indices and tables 41

Bibliography 43

Python Module Index 45

ii

rowan Documentation, Release 1.0.0

Welcome to the documentation for rowan, a package for working with quaternions! Quaternions form a number system
with various interesting properties, and they have a number of uses. This package provides tools for standard algebraic
operations on quaternions as well as a number of additional tools for e.g. measuring distances between quaternions,
interpolating between them, and performing basic point-cloud mapping. A particular focus of the rowan package is
working with unit quaternions, which are a popular means of representing rotations in 3D. In order to provide a unified
framework for working with the various rotation formalisms in 3D, rowan allows easy interconversion between these
formalisms.

Core features of rowan include (but are not limited to):

• Algebra (multiplication, exponentiation, etc).

• Derivatives and integrals of quaternions.

• Rotation and reflection operations, with conversions to and from matrices, axis angles, etc.

• Various distance metrics for quaternions.

• Basic point set registration, including solutions of the Procrustes problem and the Iterative Closest Point algo-
rithm.

• Quaternion interpolation (slerp, squad).

To install rowan, you have a few options. The package can either be installed through PyPI:

using conda

or by cloning the repository from source and running setuptools

Note that the conda installation requires that you first add the conda-forge channel.

Contents: 1

https://bitbucket.org/glotzer/rowan

rowan Documentation, Release 1.0.0

2 Contents:

CHAPTER 1

rowan

Overview

rowan.conjugate Conjugates an array of quaternions.
rowan.inverse Computes the inverse of an array of quaternions.
rowan.exp Computes the natural exponential function 𝑒𝑞 .
rowan.expb Computes the exponential function 𝑏𝑞 .
rowan.exp10 Computes the exponential function 10𝑞 .
rowan.log Computes the quaternion natural logarithm.
rowan.logb Computes the quaternion logarithm to some base b.
rowan.log10 Computes the quaternion logarithm base 10.
rowan.multiply Multiplies two arrays of quaternions.
rowan.divide Divides two arrays of quaternions.
rowan.norm Compute the quaternion norm.
rowan.normalize Normalize quaternions.
rowan.rotate Rotate a list of vectors by a corresponding set of quater-

nions.
rowan.vector_vector_rotation Find the quaternion to rotate one vector onto another.
rowan.from_euler Convert Euler angles to quaternions.
rowan.to_euler Convert quaternions to Euler angles.
rowan.from_matrix Convert the rotation matrices mat to quaternions.
rowan.to_matrix Convert quaternions into rotation matrices.
rowan.from_axis_angle Find quaternions to rotate a specified angle about a spec-

ified axis.
rowan.to_axis_angle Convert the quaternions in q to axis angle representa-

tions.
rowan.from_mirror_plane Generate quaternions from mirror plane equations.
rowan.reflect Reflect a list of vectors by a corresponding set of quater-

nions.
rowan.equal Check whether two sets of quaternions are equal.

Continued on next page

3

rowan Documentation, Release 1.0.0

Table 1 – continued from previous page
rowan.not_equal Check whether two sets of quaternions are not equal.
rowan.isfinite Test element-wise for finite quaternions.
rowan.isinf Test element-wise for infinite quaternions.
rowan.isnan Test element-wise for NaN quaternions.

Details

The core rowan package contains functions for operating on quaternions. The core package is focused on robust
implementations of key functions like multiplication, exponentiation, norms, and others. Simple functionality such
as addition is inherited directly from NumPy due to the representation of quaternions as NumPy arrays. Many core
NumPy functions implemented for normal arrays are reimplemented to work on quaternions (such as allclose()
and isfinite()). Additionally, NumPy broadcasting is enabled throughout rowan unless otherwise specified. This
means that any function of 2 (or more) quaternions can take arrays of shapes that do not match and return results
according to NumPy’s broadcasting rules.

rowan.allclose(p, q, **kwargs)
Check whether two sets of quaternions are all close.

This is a direct wrapper of the corresponding NumPy function.

Parameters

• p ((..,4) np.array) – First array of quaternions.

• q ((..,4) np.array) – Second array of quaternions.

• **kwargs – Keyword arguments to pass to np.allclose.

Returns Boolean indicating whether or not all quaternions are close.

rowan.conjugate(q)
Conjugates an array of quaternions.

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) containing conjugates of q.

Example:

q_star = conjugate(q)

rowan.divide(qi, qj)
Divides two arrays of quaternions.

Division is non-commutative; this function returns 𝑞𝑖𝑞−1
𝑗 .

Parameters

• qi ((..,4) np.array) – Dividend quaternions.

• qj ((..,4) np.array) – Divisor quaternions.

Returns Array of shape (. . .) containing element-wise quotients of qi and qj.

Example:

qi = np.array([[1, 0, 0, 0]])
qj = np.array([[1, 0, 0, 0]])
prod = divide(qi, qj)

4 Chapter 1. rowan

https://docs.scipy.org/doc/numpy-1.14.0/user/basics.broadcasting.html

rowan Documentation, Release 1.0.0

rowan.exp(q)
Computes the natural exponential function 𝑒𝑞 .

The exponential of a quaternion in terms of its scalar and vector parts 𝑞 = 𝑎+𝑣 is defined by exponential power
series: formula 𝑒𝑥 =

∑︀∞
𝑘=0

𝑥𝑘

𝑘! as follows:

𝑒𝑞 = 𝑒𝑎+𝑣 (1.1)

= 𝑒𝑎

(︃ ∞∑︁
𝑘=0

𝑣𝑘

𝑘!

)︃
(1.2)

= 𝑒𝑎
(︂

cos||𝑣|| +
𝑣

||𝑣||
sin||𝑣||

)︂
(1.3)

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) containing exponentials of q.

Example:

q_exp = exp(q)

rowan.expb(q, b)
Computes the exponential function 𝑏𝑞 .

We define the exponential of a quaternion to an arbitrary base relative to the exponential function 𝑒𝑞 using the
change of base formula as follows:

𝑏𝑞 = 𝑦 (1.4)

𝑞 = log𝑏 𝑦 =
ln 𝑦

ln 𝑏
(1.5)

𝑦 = 𝑒𝑞 ln 𝑏(1.6)

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) containing exponentials of q.

Example:

q_exp = exp(q, 2)

rowan.exp10(q)
Computes the exponential function 10𝑞 .

Wrapper around expb().

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) containing exponentials of q.

Example:

q_exp = exp(q, 2)

rowan.equal(p, q)
Check whether two sets of quaternions are equal.

This function is a simple wrapper that checks array equality and then aggregates along the quaternion axis.

Parameters

• p ((..,4) np.array) – First array of quaternions.

5

rowan Documentation, Release 1.0.0

• q ((..,4) np.array) – Second array of quaternions.

Returns A boolean array of shape (. . .) indicating equality.

rowan.from_axis_angle(axes, angles)
Find quaternions to rotate a specified angle about a specified axis.

Parameters

• axes ((..,3) np.array) – An array of vectors (the axes).

• angles (float or (..,1) np.array) – An array of angles in radians. Will be
broadcast to match shape of v as needed.

Returns Array of shape (. . . , 4) containing the corresponding rotation quaternions.

Example:

axis = np.array([[1, 0, 0]])
ang = np.pi/3
quat = from_axis_angle(axis, ang)

rowan.from_euler(alpha, beta, gamma, convention=’zyx’, axis_type=’intrinsic’)
Convert Euler angles to quaternions.

For generality, the rotations are computed by composing a sequence of quaternions corresponding to axis-angle
rotations. While more efficient implementations are possible, this method was chosen to prioritize flexibility
since it works for essentially arbitrary Euler angles as long as intrinsic and extrinsic rotations are not intermixed.

Parameters

• alpha ((..) np.array) – Array of 𝛼 values in radians.

• beta ((..) np.array) – Array of 𝛽 values in radians.

• gamma ((..) np.array) – Array of 𝛾 values in radians.

• convention (str) – One of the 12 valid conventions xzx, xyx, yxy, yzy, zyz, zxz, xzy,
xyz, yxz, yzx, zyx, zxy.

• axes (str) – Whether to use extrinsic or intrinsic rotations.

Returns Array of shape (. . . , 4) containing quaternions corresponding to the input angles.

Example:

rands = np.random.rand(100, 3)
alpha, beta, gamma = rands.T
ql = from_euler(alpha, beta, gamma)

rowan.from_matrix(mat, require_orthogonal=True)
Convert the rotation matrices mat to quaternions.

This method uses the algorithm described by Bar-Itzhack in [Itzhack00]. The idea is to construct a matrix K
whose largest eigenvalue corresponds to the desired quaternion. One of the strengths of the algorithm is that for
nonorthogonal matrices it gives the closest quaternion representation rather than failing outright.

Parameters mat ((..,3,3) np.array) – An array of rotation matrices.

Returns Array of shape (. . . , 4) containing the corresponding rotation quaternions.

rowan.from_mirror_plane(x, y, z)
Generate quaternions from mirror plane equations.

6 Chapter 1. rowan

rowan Documentation, Release 1.0.0

Reflection quaternions can be constructed from the form (0, 𝑥, 𝑦, 𝑧), i.e. with zero real component. The vector
(𝑥, 𝑦, 𝑧) is the normal to the mirror plane.

Parameters

• x ((..) np.array) – First planar component.

• y ((..) np.array) – Second planar component.

• z ((..) np.array) – Third planar component.

Returns Array of shape (. . .) containing quaternions reflecting about the input plane (𝑥, 𝑦, 𝑧).

Example:

plane = (1, 2, 3)
quat_ref = from_mirror_plane(*plane)

rowan.inverse(q)
Computes the inverse of an array of quaternions.

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) containing inverses of q.

Example:

q_inv = inverse(q)

rowan.isclose(p, q, **kwargs)
Element-wise check of whether two sets of quaternions are close.

This function is a simple wrapper that checks using the corresponding NumPy function and then aggregates
along the quaternion axis.

Parameters

• p ((..,4) np.array) – First array of quaternions.

• q ((..,4) np.array) – Second array of quaternions.

• **kwargs – Keyword arguments to pass to np.isclose.

Returns A boolean array of shape (. . .) indicating which quaternions are close.

rowan.isinf(q)
Test element-wise for infinite quaternions.

A quaternion is defined as infinite if any elements are infinite.

Parameters q ((..,4) np.array) – Array of quaternions

Returns A boolean array of shape (. . .) indicating infinite quaternions.

rowan.isfinite(q)
Test element-wise for finite quaternions.

A quaternion is defined as finite if all elements are finite.

Parameters q ((..,4) np.array) – Array of quaternions.

Returns A boolean array of shape (. . .) indicating finite quaternions.

rowan.isnan(q)
Test element-wise for NaN quaternions.

A quaternion is defined as NaN if any elements are NaN.

7

rowan Documentation, Release 1.0.0

Parameters q ((..,4) np.array) – Array of quaternions.

Returns A boolean array of shape (. . .) indicating whether or not the input quaternions were NaN.

rowan.is_unit(q)
Check if all input quaternions have unit norm.

rowan.log(q)
Computes the quaternion natural logarithm.

The natural of a quaternion in terms of its scalar and vector parts 𝑞 = 𝑎+𝑣 is defined by inverting the exponential
formula (see exp()), and is defined by the formula 𝑥𝑘

𝑘! as follows:

ln(𝑞) = ln||𝑞|| +
𝑣

||𝑣||
arccos

(︂
𝑎

𝑞

)︂
(1.7)

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) containing logarithms of q.

Example:

ln_q = log(q)

rowan.logb(q, b)
Computes the quaternion logarithm to some base b.

The quaternion logarithm for arbitrary bases is defined using the standard change of basis formula relative to the
natural logarithm.

log𝑏 𝑞 = 𝑦 (1.8)
𝑞 = 𝑏𝑦(1.9)

ln 𝑞 = 𝑦 ln 𝑏(1.10)

𝑦 = log𝑏 𝑞 =
ln 𝑞

ln 𝑏
(1.11)

Parameters

• q ((..,4) np.array) – Array of quaternions.

• n ((..) np.array) – Scalars to use as log bases.

Returns Array of shape (. . .) containing logarithms of q.

Example:

log2_q = logb(q, 2)

rowan.log10(q)
Computes the quaternion logarithm base 10.

Wrapper around logb().

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) containing logarithms of q.

Example:

8 Chapter 1. rowan

rowan Documentation, Release 1.0.0

log10_q = log10(q)

rowan.multiply(qi, qj)
Multiplies two arrays of quaternions.

Note that quaternion multiplication is generally non-commutative, so the first and second set of quaternions
must be passed in the correct order.

Parameters

• qi ((..,4) np.array) – Array of left quaternions.

• qj ((..,4) np.array) – Array of right quaternions.

Returns Array of shape (. . .) containing element-wise products of q.

Example:

qi = np.array([[1, 0, 0, 0]])
qj = np.array([[1, 0, 0, 0]])
prod = multiply(qi, qj)

rowan.norm(q)
Compute the quaternion norm.

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) containing norms of q.

Example:

q = np.random.rand(10, 4)
norms = norm(q)

rowan.normalize(q)
Normalize quaternions.

Parameters q ((..,4) np.array) – Array of quaternions.

Returns Array of shape (. . .) of normalized quaternions.

Example:

q = np.random.rand(10, 4)
u = normalize(q)

rowan.not_equal(p, q)
Check whether two sets of quaternions are not equal.

This function is a simple wrapper that checks array equality and then aggregates along the quaternion axis.

Parameters

• p ((..,4) np.array) – First array of quaternions.

• q ((..,4) np.array) – Second array of quaternions.

Returns A boolean array of shape (. . .) indicating inequality.

rowan.power(q, n)
Computes the power of a quaternion 𝑞𝑛.

Quaternions raised to a scalar power are defined according to the polar decomposition angle 𝜃 and vector �̂�: 𝑞𝑛 =
||𝑞||𝑛 (cos(𝑛𝜃) + �̂� sin(𝑛𝜃)). However, this can be computed more efficiently by noting that 𝑞𝑛 = exp(𝑛 ln(𝑞)).

9

rowan Documentation, Release 1.0.0

Parameters

• q ((..,4) np.array) – Array of quaternions.

• n ((..) np.arrray) – Scalars to exponentiate quaternions with.

Returns Array of shape (. . .) containing powers of q.

Example:

q_n = power(q, n)

rowan.reflect(q, v)
Reflect a list of vectors by a corresponding set of quaternions.

For help constructing a mirror plane, see from_mirror_plane().

Parameters

• q ((..,4) np.array) – Array of quaternions.

• v ((..,3) np.array) – Array of vectors.

Returns Array of shape (. . . , 3) containing reflections of v.

Example:

from rowan import random
q = random.rand(1, 4)
v = np.random.rand(1, 3)
v_reflected = reflect(q, v)

rowan.rotate(q, v)
Rotate a list of vectors by a corresponding set of quaternions.

Parameters

• q ((..,4) np.array) – Array of quaternions.

• v ((..,3) np.array) – Array of vectors.

Returns Array of shape (. . . , 3) containing rotations of v.

Example:

from rowan import random
q = random.rand(1, 4)
v = np.random.rand(1, 3)
v_rot = rotate(q, v)

rowan.to_axis_angle(q)
Convert the quaternions in q to axis angle representations.

Parameters q ((..,4) np.array) – An array of quaternions.

Returns A tuple of np.arrays (axes, angles) where axes has shape (. . . ,3) and angles has shape
(. . . ,1). The angles are in radians.

rowan.to_euler(q, convention=’zyx’, axis_type=’intrinsic’)
Convert quaternions to Euler angles.

Euler angles are returned in the sequence provided, so in, e.g., the default case (‘zyx’), the angles returned are
for a rotation 𝑍(𝛼)𝑌 (𝛽)𝑋(𝛾).

10 Chapter 1. rowan

rowan Documentation, Release 1.0.0

Note: In all cases, the 𝛼 and 𝛾 angles are between ±𝜋. For proper Euler angles, 𝛽 is between 0 and 𝑝𝑖 degrees.
For Tait-Bryan angles, 𝛽 lies between ±𝜋/2.

For simplicity, quaternions are converted to matrices, which are then converted to their Euler angle representa-
tions. All equations for rotations are derived by considering compositions of the three elemental rotations about
the three Cartesian axes:

𝑅𝑥(𝜃) =

⎛⎝ 1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

⎞⎠
𝑅𝑦(𝜃) =

⎛⎝ cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 1 cos 𝜃

⎞⎠
𝑅𝑧(𝜃) =

⎛⎝ cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

⎞⎠
Extrinsic rotations are represented by matrix multiplications in the proper order, so 𝑧 − 𝑦 − 𝑥 is represented by
the multiplication 𝑋𝑌 𝑍 so that the system is rotated first about 𝑍, then about 𝑌 , then finally 𝑋 . For intrinsic
rotations, the order of rotations is reversed, meaning that it matches the order in which the matrices actually
appear i.e. the 𝑧−𝑦′−𝑥′′ convention (yaw, pitch, roll) corresponds to the multiplication of matrices 𝑍𝑌 𝑋 . For
proof of the relationship between intrinsic and extrinsic rotations, see the Wikipedia page on Davenport chained
rotations.

For more information, see the Wikipedia page for Euler angles (specifically the section on converting between
representations).

Parameters

• q ((..,4) np.array) – Quaternions to transform.

• convention (str) – One of the 6 valid conventions zxz, xyx, yzy, zyz, xzx, yxy.

• axes (str) – Whether to use extrinsic or intrinsic.

Returns math:(alpha, beta, gamma) as the last dimension (in radians).

Return type Array of shape (.., 3) containing Euler angles

Example:

rands = np.random.rand(100, 3)
alpha, beta, gamma = rands.T
ql = from_euler(alpha, beta, gamma)
alpha_return, beta_return, gamma_return = to_euler(ql)
assert(np.all(alpha_return == alpha))
assert(np.all(beta_return == beta))
assert(np.all(gamma_return == gamma))

rowan.to_matrix(q, require_unit=True)
Convert quaternions into rotation matrices.

Uses the conversion described on Wikipedia.

Parameters q ((..,4) np.array) – An array of quaternions.

Returns Array of shape (. . . , 3, 3) containing the corresponding rotation matrices.

11

https://en.wikipedia.org/wiki/Davenport_chained_rotations
https://en.wikipedia.org/wiki/Davenport_chained_rotations
https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix

rowan Documentation, Release 1.0.0

rowan.vector_vector_rotation(v1, v2)
Find the quaternion to rotate one vector onto another.

Parameters

• v1 ((..,3) np.array) – Array of vectors to rotate.

• v2 ((..,3) np.array) – Array of vector to rotate onto.

Returns Array of shape (. . . , 4) containing quaternions that rotate v1 onto v2.

12 Chapter 1. rowan

CHAPTER 2

calculus

Overview

rowan.calculus.derivative Compute the instantaneous derivative of unit quater-
nions.

rowan.calculus.integrate Integrate unit quaternions by angular velocity.

Details

This subpackage provides the ability to compute the derivative and integral of a quaternion.

rowan.calculus.derivative(q, v)
Compute the instantaneous derivative of unit quaternions.

Parameters

• q ((..,4) np.array) – Array of quaternions.

• v ((..,3) np.array) – Array of angular velocities.

Returns Array of shape (. . . , 4) containing element-wise derivatives of q.

rowan.calculus.integrate(q, v, dt)
Integrate unit quaternions by angular velocity.

Parameters

• q ((..,4) np.array) – Array of quaternions.

• v ((..,3) np.array) – Array of angular velocities.

• dt ((..) np.array) – Array of timesteps.

Returns Array of shape (. . . , 4) containing element-wise integrals of q.

Example:: q = np.array([1, 0, 0, 0]) v = np.array([0, 0, 1e-2]) v_next = integrate(q, v, 1)

13

rowan Documentation, Release 1.0.0

14 Chapter 2. calculus

CHAPTER 3

geometry

Overview

rowan.geometry.distance Determine the distance between quaternions p and q.
rowan.geometry.sym_distance Determine the distance between quaternions p and q.
rowan.geometry.riemann_exp_map Compute the exponential map on the Riemannian man-

ifold H* of nonzero quaterions.
rowan.geometry.riemann_log_map Compute the log map on the Riemannian manifold H*

of nonzero quaterions.
rowan.geometry.intrinsic_distance Compute the intrinsic distance between quaternions on

the manifold of quaternions.
rowan.geometry.sym_intrinsic_distance Compute the intrinsic distance between quaternions on

the manifold of quaternions.
rowan.geometry.angle Compute the angle of rotation of a quaternion.

Details

This subpackage provides various tools for working with the geometric representation of quaternions. A particular
focus is computing the distance between quaternions. These distance computations can be complicated, particularly
good metrics for distance on the Riemannian manifold representing quaternions do not necessarily coincide with good
metrics for similarities between rotations. An overview of distance measurements can be found in this paper.

rowan.geometry.distance(p, q)
Determine the distance between quaternions p and q.

This is the most basic distance that can be defined on the space of quaternions; it is the metric induced by the
norm on this vector space 𝜌(𝑝, 𝑞) = ||𝑝− 𝑞||.

When applied to unit quaternions, this function produces values in the range [0, 2].

Parameters

• p ((..,4) np.array) – First array of quaternions.

15

https://link.springer.com/article/10.1007/s10851-009-0161-2

rowan Documentation, Release 1.0.0

• q ((..,4) np.array) – Second array of quaternions.

Returns Array of shape (. . .) containing the element-wise distances between the two sets of quater-
nions.

Example:

p = np.array([[1, 0, 0, 0]])
q = np.array([[1, 0, 0, 0]])
distance(p, q)

rowan.geometry.sym_distance(p, q)
Determine the distance between quaternions p and q.

This is a symmetrized version of distance() that accounts for the fact that 𝑝 and −𝑝 represent identical
rotations. This makes it a useful measure of rotation similarity.

Parameters

• p ((..,4) np.array) – First array of quaternions.

• q ((..,4) np.array) – Second array of quaternions.

When applied to unit quaternions, this function produces values in the range [0,
√

2].

Returns Array of shape (. . .) containing the element-wise symmetrized distances between the two
sets of quaternions.

Example:

p = np.array([[1, 0, 0, 0]])
q = np.array([[-1, 0, 0, 0]])
sym_distance(p, q) # 0

rowan.geometry.riemann_exp_map(p, v)
Compute the exponential map on the Riemannian manifold H* of nonzero quaterions.

The nonzero quaternions form a Lie algebra H* that is also a Riemannian manifold. In general, given a point 𝑝
on a Riemannian manifold ℳ and an element of the tangent space at 𝑝, 𝑣 ∈ 𝑇𝑝ℳ, the Riemannian exponential
map is defined by the geodesic starting at 𝑝 and tracing out an arc of length 𝑣 in the direction of 𝑣. This function
computes the endpoint of that path (which is itself a quaternion).

Explicitly, we define the exponential map as

Exp𝑝(𝑣) = 𝑝 exp(𝑣)(3.1)

Parameters

• p ((..,4) np.array) – Points on the manifold of quaternions.

• v ((..,4) np.array) – Tangent vectors to traverse.

Returns Array of shape (. . . , 4) containing the endpoints of the geodesic starting from 𝑝 and traveling a
distance ||𝑣|| in the direction of 𝑣.

rowan.geometry.riemann_log_map(p, q)
Compute the log map on the Riemannian manifold H* of nonzero quaterions.

16 Chapter 3. geometry

rowan Documentation, Release 1.0.0

This function inverts riemann_exp_map(). See that function for more details. In brief, given two quater-
nions p and q, this method returns a third quaternion parameterizing the geodesic passing from p to q. It is
therefore an important measure of the distance between the two input quaternions.

Parameters

• p ((..,4) np.array) – Starting points (quaternions).

• q ((..,4) np.array) – Endpoints (quaternions).

Returns Array of shape (. . . , 4) containing quaternions pointing from p to q with magnitudes equal
to the length of the geodesics joining these quaternions.

rowan.geometry.intrinsic_distance(p, q)
Compute the intrinsic distance between quaternions on the manifold of quaternions.

The quaternion distance is determined as the length of the quaternion joining the two quaternions (see
riemann_log_map()). Rather than computing this directly, however, as shown in [Huynh09] we can com-
pute this distance using the following equivalence:

||log(𝑝𝑞−1)|| = 2 cos(|⟨𝑝, 𝑞⟩|)(3.2)

When applied to unit quaternions, this function produces values in the range [0, 𝜋].

Parameters

• p ((..,4) np.array) – First array of quaternions.

• q ((..,4) np.array) – Second array of quaternions.

Returns Array of shape (. . .) containing the element-wise intrinsic distances between the two sets of
quaternions.

rowan.geometry.sym_intrinsic_distance(p, q)
Compute the intrinsic distance between quaternions on the manifold of quaternions.

This is a symmetrized version of intrinsic_distance() that accounts for the double cover 𝑆𝑈(2) →
𝑆𝑂(3), making it a more useful metric for rotation similarity.

When applied to unit quaternions, this function produces values in the range [0, 𝜋
2].

Parameters

• p ((..,4) np.array) – First array of quaternions.

• q ((..,4) np.array) – Second array of quaternions.

Returns Array of shape (. . .) containing the element-wise symmetrized intrinsic distances between
the two sets of quaternions.

rowan.geometry.angle(p)
Compute the angle of rotation of a quaternion.

Note that this is identical to intrinsic_distance(p, np.array([1, 0, 0, 0])).

Parameters p ((..,4) np.array) – Array of quaternions..

Returns Array of shape (. . .) containing the element-wise angles traced out by these rotations.

17

rowan Documentation, Release 1.0.0

18 Chapter 3. geometry

CHAPTER 4

interpolate

Overview

rowan.interpolate.slerp Spherical linear interpolation between p and q.
rowan.interpolate.slerp_prime Compute the derivative of slerp.
rowan.interpolate.squad Cubically interpolate between p and q.

Details

The rowan package provides a simple interface to slerp, the standard method of quaternion interpolation for two
quaternions.

rowan.interpolate.slerp(q0, q1, t, ensure_shortest=True)
Spherical linear interpolation between p and q.

The slerp formula can be easily expressed in terms of the quaternion exponential (see rowan.exp()).

Parameters

• q0 ((..,4) np.array) – First array of quaternions.

• q1 ((..,4) np.array) – Second array of quaternions.

• t ((..) np.array) – Interpolation parameter ∈ [0, 1]

• ensure_shortest (bool) – Flip quaternions to ensure we traverse the geodesic in the
shorter (< 180∘) direction.

Note: Given inputs such that 𝑡 /∈ [0, 1], the values outside the range are simply assumed to be 0 or 1 (depending
on which side of the interval they fall on).

Returns Array of shape (. . . , 4) containing the element-wise interpolations between p and q.

19

https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp

rowan Documentation, Release 1.0.0

Example:

q0 = np.array([[1, 0, 0, 0]])
q1 = np.array([[np.sqrt(2)/2, np.sqrt(2)/2, 0, 0]])
slerp(q0, q1, 0.5)

rowan.interpolate.slerp_prime(q0, q1, t, ensure_shortest=True)
Compute the derivative of slerp.

Parameters

• q0 ((..,4) np.array) – First set of quaternions.

• q1 ((..,4) np.array) – Second set of quaternions.

• t ((..) np.array) – Interpolation parameter ∈ [0, 1]

• ensure_shortest (bool) – Flip quaternions to ensure we traverse the geodesic in the
shorter (< 180∘) direction

Returns An array of shape (. . . , 4) containing the element-wise derivatives of interpolations between
p and q.

Example:

q0 = np.array([[1, 0, 0, 0]])
q1 = np.array([[np.sqrt(2)/2, np.sqrt(2)/2, 0, 0]])
slerp_prime(q0, q1, 0.5)

rowan.interpolate.squad(p, a, b, q, t)
Cubically interpolate between p and q.

The SQUAD formula is just a repeated application of Slerp between multiple quaternions as originally derived
in [Shoemake85]:

squad(𝑝, 𝑎, 𝑏, 𝑞, 𝑡) = slerp(𝑝, 𝑞, 𝑡)
(︀
slerp(𝑝, 𝑞, 𝑡)−1slerp(𝑎, 𝑏, 𝑡)

)︀2𝑡(1−𝑡)
(4.1)

Parameters

• p ((..,4) np.array) – First endpoint of interpolation.

• a ((..,4) np.array) – First control point of interpolation.

• b ((..,4) np.array) – Second control point of interpolation.

• q ((..,4) np.array) – Second endpoint of interpolation.

• t ((..) np.array) – Interpolation parameter 𝑡 ∈ [0, 1].

Returns An array containing the element-wise interpolations between p and q.

Example:

q0 = np.array([[1, 0, 0, 0]])
q1 = np.array([[np.sqrt(2)/2, np.sqrt(2)/2, 0, 0]])
q2 = np.array([[0, np.sqrt(2)/2, np.sqrt(2)/2, 0]])
q3 = np.array([[0, 0, np.sqrt(2)/2, np.sqrt(2)/2]])
squad(q0, q1, q2, q3, 0.5)

20 Chapter 4. interpolate

CHAPTER 5

mapping

Overview

rowan.mapping.kabsch Find the optimal rotation and translation to map be-
tween two sets of points.

rowan.mapping.davenport Find the optimal rotation and translation to map be-
tween two sets of points.

rowan.mapping.procrustes Solve the orthogonal Procrustes problem with algorith-
mic options.

rowan.mapping.icp Find best mapping using the Iterative Closest Point al-
gorithm.

Details

The general space of problems that this subpackage addresses is a small subset of the broader space of point set
registration, which attempts to optimally align two sets of points. In general, this mapping can be nonlinear. The
restriction of this superposition to linear transformations composed of translation, rotation, and scaling is the study of
Procrustes superposition, the first step in the field of Procrustes analysis, which performs the superposition in order to
compare two (or more) shapes.

If points in the two sets have a known correspondence, the problem is much simpler. Various precise formulations
exist that admit analytical formulations, such as the orthogonal Procrustes problem searching for an orthogonal trans-
formation

𝑅 = argminΩ||Ω𝐴−𝐵||𝐹 , Ω𝑇 Ω = 1(5.1)

21

https://en.wikipedia.org/wiki/Point_set_registration
https://en.wikipedia.org/wiki/Point_set_registration
https://en.wikipedia.org/wiki/Procrustes_analysis#Shape_comparison
https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

rowan Documentation, Release 1.0.0

or, if a pure rotation is desired, Wahba’s problem

min
𝑅∈𝑆𝑂(3)

1

2

𝑁∑︁
𝑘=1

𝑎𝑘||𝑤𝑘 −𝑅𝑣𝑘||2(5.2)

Numerous algorithms to solve this problem exist, particularly in the field of aerospace engineering and robotics where
this problem must be solved on embedded systems with limited processing. Since that constraint does not apply here,
this package simply implements some of the most stable known methods irrespective of cost. In particular, this package
contains the Kabsch algorithm, which solves Wahba’s problem using an SVD in the vein of Peter Schonemann’s
original solution to the orthogonal Procrustes problem. Additionally this package contains the Davenport q method,
which works directly with quaternions. The most popular algorithms for Wahba’s problem are variants of the q method
that are faster at the cost of some stability; we omit these here.

In addition, rowan.mapping also includes some functionality for more general point set registration. If a point
cloud has a set of known symmetries, these can be tested explicitly by rowan.mapping to find the smallest rotation
required for optimal mapping. If no such correspondence is knowna at all, then the iterative closest point algorithm
can be used to approximate the mapping.

rowan.mapping.kabsch(X, Y, require_rotation=True)
Find the optimal rotation and translation to map between two sets of points.

This function implements the Kabsch algorithm, which minimizes the RMSD between two sets of points. One
benefit of this approach is that the SVD works in dimensions > 3.

Parameters

• X ((N, m) np.array) – First set of N points.

• Y ((N, m) np.array) – Second set of N points.

• require_rotation (bool) – If false, the returned quaternion.

Returns A tuple (R, t) where R is the (m x m) rotation matrix to rotate the points and t is the
translation.

rowan.mapping.davenport(X, Y)
Find the optimal rotation and translation to map between two sets of points.

This function implements the Davenport q-method, the most robust method and basis of most modern solvers. It
involves the construction of a particular matrix, the Davenport K-matrix, which is then diagonalized to find the
appropriate eigenvalues. More modern algorithms aim to solve the characteristic equation directly rather than
diagonalizing, which can provide speed benefits at the potential cost of robustness.

Parameters

• X ((N, 3) np.array) – First set of N points.

• Y ((N, 3) np.array) – Second set of N points.

Returns A tuple (q, t) where q is the quaternion to rotate the points and t is the translation.

rowan.mapping.procrustes(X, Y, method=’best’, equivalent_quaternions=None)
Solve the orthogonal Procrustes problem with algorithmic options.

Parameters

• X ((N, m) np.array) – First set of N points.

• Y ((N, m) np.array) – Second set of N points.

22 Chapter 5. mapping

https://link.springer.com/article/10.1007/BF02289451
https://link.springer.com/article/10.1007/BF02289451
https://ntrs.nasa.gov/search.jsp?R=19670009376
https://en.wikipedia.org/wiki/Kabsch_algorithm
https://ntrs.nasa.gov/search.jsp?R=19670009376

rowan Documentation, Release 1.0.0

• method (str) – A method to use. Options are ‘kabsch’, ‘davenport’ and ‘horn’. The
default is to select the best option (‘best’).

• equivalent_quaternions (array-like) – If the precise correspondence is not
known, but the points are known to be part of a body with specific symmetries, the set of
quaternions generating symmetry-equivalent configurations can be provided. These quater-
nions will be tested exhaustively to find the smallest symmetry-equivalent rotation.

Returns A tuple (q, t) where q is the quaternion to rotate the points and t is the translation.

rowan.mapping.icp(X, Y, method=’best’, unique_match=True, max_iterations=20, tolerance=0.001)
Find best mapping using the Iterative Closest Point algorithm.

Parameters

• X ((N, m) np.array) – First set of N points.

• Y ((N, m) np.array) – Second set of N points.

• method (str) – A method to use for each alignment. Options are ‘kabsch’, ‘davenport’
and ‘horn’. The default is to select the best option (‘best’).

• unique_match (bool) – Whether to require nearest neighbors to be unique.

• max_iterations (int) – Number of iterations to attempt.

• tolerance (float) – Indicates convergence.

Returns A tuple (R, t) where R is the matrix to rotate the points and t is the translation.

23

rowan Documentation, Release 1.0.0

24 Chapter 5. mapping

CHAPTER 6

random

Overview

rowan.random.rand Generate random rotations uniformly
rowan.random.random_sample Generate random rotations uniformly

Details

Various functions for generating random sets of rotation quaternions. Note that if you simply want random quaternions
not restricted to 𝑆𝑂(3) you can just generate these directly using np.random.rand(... 4). This subpackage is
entirely focused on generating rotation quaternions.

rowan.random.rand(*args)
Generate random rotations uniformly

This is a convenience function a la np.random.rand. If you want a function that takes a tuple as input, use
random_sample() instead.

Parameters shape (tuple) – The shape of the array to generate.

Returns Random quaternions of the shape provided with an additional axis of length 4.

rowan.random.random_sample(size=None)
Generate random rotations uniformly

In general, sampling from the space of all quaternions will not generate uniform rotations. What we want is
a distribution that accounts for the density of rotations, i.e., a distribution that is uniform with respect to the
appropriate measure. The algorithm used here is detailed in [Shoe92].

Parameters size (tuple) – The shape of the array to generate.

Returns Random quaternions of the shape provided with an additional axis of length 4.

25

rowan Documentation, Release 1.0.0

26 Chapter 6. random

CHAPTER 7

Development Guide

7.1 Philosophy

The goal of rowan is to provide a flexible, easy-to-use, and scalable approach to dealing with rotation representations.
To ensure maximum flexibility, rowan operates entirely on NumPy arrays, which serve as the de facto standard for
efficient multi-dimensional arrays in Python. To be available for a wide variety of applications, rowan aims to work
for arbitrarily shaped NumPy arrays, mimicking NumPy broadcasting to the extent possible. Functions for which this
broadcasting is not available should be documented as such.

Since rowan is designed to work everywhere, all hard dependencies aside from NumPy are avoided, although soft
dependencies for specific functions are allowed. To avoid any dependencies on compilers or other software, all rowan
code is written in pure Python. This means that while rowan is intended to provide good performance, it may not
be the correct choice in cases where performance is critical. The package was written principally for use-cases where
quaternion operations are not the primary bottleneck, so it prioritizes portability, maintainability, and flexibility over
optimization.

7.1.1 PEP 20

In general, all code in rowan should follow the principles in PEP 20. In particular, prefer simple, explicit code where
possible, avoiding unnecessary convolution or complicated code that could be written more simply. Avoid writing
code that is not easy to parse up front.

Inline comments are highly encouraged; however, code should be written in a way that it could be understood without
comments. Comments such as “Set x to 10” are not helpful and simply clutter code. The most useful comments in
a package such as rowan are the ones that explain the underlying algorithm rather than the implementations, which
should be simple. For example, the comment “compute the spectral decomposition of A” is uninformative, since the
code itself should make this obvious, e.g, np.linalg.eigh. On the other hand, the comment “the eigenvector
corresponding to the largest eigenvalue of the A matrix is the quaternion” is instructive.

27

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://www.python.org/dev/peps/pep-0020/

rowan Documentation, Release 1.0.0

7.2 Source Code Conventions

All code in rowan should follow PEP 8 guidelines, which are the de facto standard for Python code. In addition, follow
the Google Python Style Guide, which is largely a superset of PEP 8. Note that Google has amended their standards
to match PEP 8’s 4 spaces guideline, so write code accordingly. In particular, write docstrings in the Google style.

Python example:

This is the correct style
def multiply(x, y):

"""Multiply two numbers

Args:
x (float): The first number
y (float): The second number

Returns:
The product

"""

This is the incorrect style
def multiply(x, y):

"""Multiply two numbers

:param x: The first number
:type x: float
:param y: The second number
:type y: float
:returns: The product
:rtype: float
"""

Documentation must be included for all files, and is then generated from the docstrings using sphinx.

7.3 Unit Tests

All code should include a set of unit tests which test for correct behavior. All tests should be placed in the tests
folder at the root of the project. These tests should be as simple as possible, testing a single function each, and they
should be kept as short as possible. Tests should also be entirely deterministic: if you are using a random set of
objects for testing, they should either be generated once and then stored in the tests/files folder, or the random
number generator in use should be seeded explicitly (e.g, numpy.random.seed or random.seed). Tests should
be written in the style of the standard Python unittest framework. At all times, tests should be executable by simply
running python -m unittest discover tests from the root of the project.

7.4 General Notes

• For consistency, NumPy should always be imported as np in code: import numpy as np.

• Avoid external dependencies where possible, and avoid introducing any hard dependencies. Dependencies other
than NumPy should always be soft, enabling the rest of the package to function as-is.

28 Chapter 7. Development Guide

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html
http://www.sphinx-doc.org/en/stable/index.html
https://docs.python.org/3/library/unittest.html

rowan Documentation, Release 1.0.0

7.5 Release Guide

To make a new release of rowan, follow the following steps:

1. Make a new branch off of develop based on the expected new version, e.g. release-2.3.1.

2. Ensure all tests are passing as expected on the new branch. Make any final changes as desired on this branch.

3. Once the branch is completely finalized, run bumpversion with the appropriate type (patch, minor, major) so
that the version now matches the version number in the branch name.

4. Once all tests pass on the release branch, merge the branch back into develop.

5. Merge develop into master.

6. Generate new source and binary distributions as described in the Python guide for Packaging and distributing
projects.

7. Update the conda recipe.

7.5. Release Guide 29

https://packaging.python.org/tutorials/distributing-packages/#packaging-your-project
https://packaging.python.org/tutorials/distributing-packages/#packaging-your-project

rowan Documentation, Release 1.0.0

30 Chapter 7. Development Guide

CHAPTER 8

License

rowan BSD-3 Clause Open Source Software License

Copyright 2010-2018 The Regents of the University of Michigan
All rights reserved.

rowan may contain modifications ("Contributions") provided, and to which
copyright is held, by various Contributors who have granted The Regents of the
University of Michigan the right to modify and/or distribute such Contributions.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

31

rowan Documentation, Release 1.0.0

32 Chapter 8. License

CHAPTER 9

Changelog

The format is based on Keep a Changelog. This project adheres to Semantic Versioning.

9.1 Unreleased

9.1.1 Fixed

• Numerous style fixes

• Fix version numbering in the Changelog

9.2 v0.6.1 - 2018-04-20

9.2.1 Fixed

• Use of bumpversion and consistent versioning across the package.

9.3 v0.6.0 - 2018-04-20

9.3.1 Added

• Derivatives and integrals of quaternions.

• Point set registration methods and Procrustes analysis.

33

http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html

rowan Documentation, Release 1.0.0

9.4 v0.5.1 - 2018-04-13

9.4.1 Fixed

• README rendering on PyPI

9.5 v0.5.0 - 2018-04-12

9.5.1 Added

• Various distance metrics on quaternion space.

• Quaternion interpolation.

9.5.2 Fixed

• Update empty __all__ variable in geometry to export functions.

9.6 v0.4.4 - 2018-04-10

9.6.1 Added

• Rewrote internals for upload to PyPI.

9.7 v0.4.3 - 2018-04-10

9.7.1 Fixed

• Typos in documentation.

9.8 v0.4.2 - 2018-04-09

9.8.1 Added

• Support for Read The Docs and Codecov.

• Simplify CircleCI testing suite.

• Minor changes to README.

• Properly update this document.

34 Chapter 9. Changelog

rowan Documentation, Release 1.0.0

9.9 v0.4.1 - 2018-04-08

9.9.1 Fixed

• Exponential for bases other than e are calculated correctly.

9.10 v0.4.0 - 2018-04-08

9.10.1 Added

• Add functions relating to exponentiation: exp, expb, exp10, log, logb, log10, power.

• Add core comparison functions for equality, closeness, finiteness.

9.11 v0.3.0 - 2018-03-31

9.11.1 Added

• Broadcasting works for all methods.

• Quaternion reflections.

• Random quaternion generation.

9.11.2 Changed

• Converting from Euler now takes alpha, beta, and gamma as separate args.

• Ensure more complete coverage.

9.12 v0.2.0 - 2018-03-08

9.12.1 Added

• Added documentation.

• Add tox support.

• Add support for range of python and numpy versions.

• Add coverage support.

9.12.2 Changed

• Clean up CI.

• Ensure pep8 compliance.

9.9. v0.4.1 - 2018-04-08 35

rowan Documentation, Release 1.0.0

9.13 v0.1.0 - 2018-02-26

9.13.1 Added

• Initial implementation of all functions.

36 Chapter 9. Changelog

CHAPTER 10

Credits

The following people contributed to the rowan package.

Vyas Ramasubramani <vramasub@umich.edu>, University of Michigan - Lead developer.

• Initial design

• Core quaternion operations

• Sphinx docs support

37

mailto:vramasub@umich.edu

rowan Documentation, Release 1.0.0

38 Chapter 10. Credits

CHAPTER 11

Support and Contribution

This package is hosted on Bitbucket. Please report any bugs or problems that you find on the issue tracker.

All contributions to rowan are welcomed via pull requests! Please see the development guide for more information on
requirements for new code.

39

https://bitbucket.org/glotzer/rowan
https://bitbucket.org/glotzer/rowan/issues

rowan Documentation, Release 1.0.0

40 Chapter 11. Support and Contribution

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

41

rowan Documentation, Release 1.0.0

42 Chapter 12. Indices and tables

Bibliography

[Itzhack00] Itzhack Y. Bar-Itzhack. “New Method for Extracting the Quaternion from a Rotation Matrix”, Journal of
Guidance, Control, and Dynamics, Vol. 23, No. 6 (2000), pp. 1085-1087 https://doi.org/10.2514/2.4654

[Huynh09] Huynh DQ (2009) Metrics for 3D rotations: comparison and analysis. J Math Imaging Vis 35(2):155-164

[Shoemake85] Ken Shoemake. Animating rotation with quaternion curves. SIGGRAPH Comput. Graph., 19(3):245-
254, July 1985.

[Shoe92] Shoemake, K.: Uniform random rotations. In: D. Kirk, editor, Graphics Gems III, pages 124-132. Aca-
demic, New York, 1992.

43

https://doi.org/10.2514/2.4654

rowan Documentation, Release 1.0.0

44 Bibliography

Python Module Index

r
rowan, 4
rowan.calculus, 13
rowan.geometry, 15
rowan.interpolate, 19
rowan.mapping, 21
rowan.random, 25

45

rowan Documentation, Release 1.0.0

46 Python Module Index

Index

A
allclose() (in module rowan), 4
angle() (in module rowan.geometry), 17

C
conjugate() (in module rowan), 4

D
davenport() (in module rowan.mapping), 22
derivative() (in module rowan.calculus), 13
distance() (in module rowan.geometry), 15
divide() (in module rowan), 4

E
equal() (in module rowan), 5
exp() (in module rowan), 4
exp10() (in module rowan), 5
expb() (in module rowan), 5

F
from_axis_angle() (in module rowan), 6
from_euler() (in module rowan), 6
from_matrix() (in module rowan), 6
from_mirror_plane() (in module rowan), 6

I
icp() (in module rowan.mapping), 23
integrate() (in module rowan.calculus), 13
intrinsic_distance() (in module rowan.geometry), 17
inverse() (in module rowan), 7
is_unit() (in module rowan), 8
isclose() (in module rowan), 7
isfinite() (in module rowan), 7
isinf() (in module rowan), 7
isnan() (in module rowan), 7

K
kabsch() (in module rowan.mapping), 22

L
log() (in module rowan), 8
log10() (in module rowan), 8
logb() (in module rowan), 8

M
multiply() (in module rowan), 9

N
norm() (in module rowan), 9
normalize() (in module rowan), 9
not_equal() (in module rowan), 9

P
power() (in module rowan), 9
procrustes() (in module rowan.mapping), 22

R
rand() (in module rowan.random), 25
random_sample() (in module rowan.random), 25
reflect() (in module rowan), 10
riemann_exp_map() (in module rowan.geometry), 16
riemann_log_map() (in module rowan.geometry), 16
rotate() (in module rowan), 10
rowan (module), 4
rowan.calculus (module), 13
rowan.geometry (module), 15
rowan.interpolate (module), 19
rowan.mapping (module), 21
rowan.random (module), 25

S
slerp() (in module rowan.interpolate), 19
slerp_prime() (in module rowan.interpolate), 20
squad() (in module rowan.interpolate), 20
sym_distance() (in module rowan.geometry), 16
sym_intrinsic_distance() (in module rowan.geometry), 17

47

rowan Documentation, Release 1.0.0

T
to_axis_angle() (in module rowan), 10
to_euler() (in module rowan), 10
to_matrix() (in module rowan), 11

V
vector_vector_rotation() (in module rowan), 11

48 Index

	rowan
	calculus
	geometry
	interpolate
	mapping
	random
	Development Guide
	Philosophy
	Source Code Conventions
	Unit Tests
	General Notes
	Release Guide

	License
	Changelog
	Unreleased
	v0.6.1 - 2018-04-20
	v0.6.0 - 2018-04-20
	v0.5.1 - 2018-04-13
	v0.5.0 - 2018-04-12
	v0.4.4 - 2018-04-10
	v0.4.3 - 2018-04-10
	v0.4.2 - 2018-04-09
	v0.4.1 - 2018-04-08
	v0.4.0 - 2018-04-08
	v0.3.0 - 2018-03-31
	v0.2.0 - 2018-03-08
	v0.1.0 - 2018-02-26

	Credits
	Support and Contribution
	Indices and tables
	Bibliography
	Python Module Index

